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ABSTRACT OF THE THESIS 

 

 

A Geostatistical Analysis of Electric Charging  

Infrastructure in the United States 

 

by 

 

Joy Qiaoyi Chen 

Master of Applied Statistics and Data Science 

University of California, Los Angeles, 2023 

Professor Frederic R. Paik Schoenberg, Chair 

 

 

One of the greatest societal challenges of the twenty-first century is tackling the ever-growing issue of 

global climate change. Transportation alone accounts for nearly 15% of all global emissions1, and 

implementing new, cleaner alternatives to traditional fuel-combustion engines is critical in the fight 

against a warming planet. Electric passenger vehicles play a significant role in a path to 

decarbonization, and, subsequently, there must be robust electric charging infrastructure to support 

the increasing adoption of electric vehicles. This analysis utilizes electric charging station data from 

the U.S. Department of Energy’s Alternative Fuels Data Center and employs geostatistical methods 

to explore clustering of electric charging infrastructure in the United States. Additionally, the analysis 

aims to identify covariates in areas that exhibit clustering patterns on national and regional levels and 

utilizes point processes to model station intensity as functions of such covariates.   

 
1 United States Environmental Protection Agency, Global Greenhouse Gas Emissions Data, www.epa.gov. 
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CHAPTER 1 

Introduction 
 
 
 

The global climate crisis has become one of the greatest existential threats to humanity. Ninety seven 

percent or more of actively publishing climate scientists and numerous scientific organizations agree 

that human activity has largely been responsible for climate-warming trends in the past century [1]. 

Excessive warming of the planet above 1.5 degrees Celsius (oC) can trigger severe consequences 

including extreme weather, rising sea levels, coral bleaching, and extensive loss of natural ecosystems 

[2] – all of which can threaten societal and economic stability across the globe.  

To address this ever-growing threat, one hundred ninety-five nations gathered in Paris in 2015 

and ratified the Paris Agreement which pledged each ratifying member will determine a path towards 

limiting carbon emissions to curb global warming to 1.5 oC [3]. This global call to limit carbon 

emissions has precipitated the demand to shift energy infrastructure away from burning fossil fuels, 

particularly in the transportation sector. According to the United States Environmental Protection 

Agency, nearly 15% of global carbon emissions are due to transportation-related activities [4]. Electric 

vehicles (EVs) and associated electric charging infrastructure are key technologies that, with rapid, 

widespread adoption, can assist in the fight against climate change.  

Progress for electric vehicle infrastructure has been positive since the turn of the century as 

seen with the meteoric rise of Tesla as well as an industry-wide shift to large investments in electric 

vehicle research and development. Some of the largest global car manufactures such as Volkswagen, 

Daimler, BMW, General Motors, Ford, and Toyota have all announced multi-billion-dollar investment 

efforts to develop electric vehicle infrastructure.  
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To power this future generation of electric vehicles, specifically in the United States, there 

must be an extensive electric charging network across the country. While most vehicles are used for 

short-range distances, a significant hurdle in electric vehicle adoption is “range anxiety” – the 

perception that EVs are not capable of travelling longer distances due to lack of charging resources. 

A decade ago, “range anxiety” was a legitimate concern given there were a mere 2,100 charging stations 

nationwide in 2011 [6]; however, the infrastructure has developed at a rapid speed to boast over 53,000 

public charging outlets in 2022 [6]. This growth in charging resources has built a platform enabling 

even greater EV adoption.  

Various private companies – including Tesla, Chargepoint, EVgo, and Volta – have entered 

the market to provide different networks that now spans across the country. While the stations are 

available nationally, they are not distributed evenly. Thus, there are areas with greater concentrations 

of stations than others. Utilizing data from the U.S. Department of Energy’s Alternative Fuels 

database (“the data”), this analysis will apply geostatistical methods to assess clustering of nation-wide 

electric charging infrastructure, and, based on any prevalence of clustering, examine the geographic 

and sociopolitical characteristics of such areas to reveal any patterns and covariates of electric station 

clustering and utilizes point processes to model station intensity. 
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CHAPTER 2 

U.S. Department of Energy  
Alternative Fuels Data 

 
 

 
The data for electric charging stations in the United States is provided by the U.S. Department of 

Energy’s Alternative Fuels Database [6]. The data holds nearly 56,000 observations for alternative 

fuels stations across the U.S. including information about biodiesel, ethanol, hydrogen propane and 

natural gas stations in addition to electric charging stations. 

The original dataset includes sixty-four variables for each station including: station name, 

address, network information (i.e. Tesla), DC charging availability (fast charging), station opening date, 

latitude, longitude, operational status and various others. The data was filtered to reflect only 

operational, public electric charging stations in the continental United States (i.e. excluding Hawaii 

and Alaska), resulting in a trimmed dataset of nearly 51,400 stations. We focus on public chargers to 

better understand the network characteristics of chargers that all drivers can access compared to 

private chargers (i.e. company-specific, government-owned) that serve a standard, repeating user base. 

Additional variable selection, creation and cleaning narrowed the original sixty-four variables to 

twenty-seven. 
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CHAPTER 3 

Previous Research 
 
 
 
Given increasing public and governmental focus on shifting to renewable energy, there has been 

significant recent research in the battery electric vehicle and charging space. Specifically, there is much 

discussion surrounding optimal placement of charging stations within cities to address grid power 

availability or driver demand.  

Shahraki et al. (2015) have proposed an optimization model for charging locations to increase 

vehicle-miles traveled for electric taxis [7], while Xi et al. (2013) have also proposed an optimization 

model but applied towards maximizing private electric vehicle use [8]. More recently, He et al. (2018) 

have developed an algorithm based on vehicle range to identify optimal station locations that 

maximize path flows to stations [9]. 

 While this previous literature provides critical insight into the development of electric charging 

networks, they do not address the geo-sociopolitical and business patterns of network expansion. 

Additionally, while there may be mathematically optimal locations based on maximizing vehicle range 

or increasing utilization, network providers account for different factors when planning locations.  

For example, providers must also consider their customers’ geographic distribution and areas 

that are feasible for charger installation. If the majority of electric vehicle owners live in a certain area, 

it would be more logical to focus on grouping chargers more closely to such customers – even if doing 

so is not “optimal” for increasing coverage or maximizing vehicle range. Additionally, even if a certain 

location is identified as algorithmically “optimal”, it provides little use if the same area is strategically 

infeasible to build a charger (i.e. private property, heavily industrial area, no customers in region, etc.). 
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This analysis differs in that it aims to employ geostatistical methods to identify sociopolitical and 

geographic characteristics that help inform the distribution of chargers in the United States – rather 

than suggesting where stations should be built. Based on station distributions, we will identify potential 

covariates (i.e. income, population, etc.) in areas that display heavy levels of geographic clustering and 

model station intensity as a function of such covariates. We will test the results of such models help 

reveal the if certain covariates could in fact be key to charging network providers’ building strategies 

on national and regional levels. For example, are there greater concentrations of stations in areas with 

higher incomes or other economic factors? Understanding of these sociopolitical and geographic 

covariates could provide more societally contextualized insight into the future development and 

expansion of electric charging networks. 
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CHAPTER 4 

Geostatistical Methods  
Overview 

 
 

 
4.1 Overview of Point Processes 

Point processes belong to a subsection of statistical theory that have many crucial and significant 

applications to real-world occurrences and events. They are commonly leveraged in various 

applications including epidemiology, land management, finance and various other industries. 

According to Schoenberg, point processes are random collections of points falling in some space and 

/ or time [11]. They can be commonly classified into spatial and temporal point process which capture 

the locations in space (two-dimensional) and times (one-dimensional), respectively, where and during 

which certain points occur. For this analysis, we are primarily interested in utilizing spatial point 

processes.  

 One of the most prominent forms of point processes is the Poisson Process. According to 

Keeler (2018), a Poisson process is a point process where each point is stochastically independent 

from all others governed by an intensity function (x) which describes the average rate of “events” 

that occur [11]. The intensity function defines the density or concentration of events within a 

designated space [11]. A spatial Poisson process is a point process defined on the plane R2 [11]. 

Poisson Processes can be classified as homogenous if the intensity function  is constant over R2 

(events occur uniformly) or inhomogenous if the intensity function varies according to underlying spatial 

trends or patterns within R2. According to Hartmann et al. (2018), the properties of a homogenous 
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point process are often referenced as complete spatial randomness (CSR) [12]. According to Zhang et al. 

(2019), in most applications, the property of homogeneity is not practical and thus inhomogeneous 

point processes are the most widespread point process models [13]. Inhomogeneity indicates the 

underlying point pattern is subject to external factors, thus understanding the influence of covariates 

is key to modeling the intensity function [13].  

 

4.2 Estimation Techniques 

4.2.1 F, G, K and J Functions 

F Functions 

According to Hartmann et al. (2018), “the F function measures the distribution of all distances from 

an arbitrary reference location u in a plane to the nearest observed event j.” Thus, the F function is 

commonly referred to as the empty space function. The empirical distribution function on a grid 𝑢𝑗 , j = 

1, …, m is: 

𝐹̂(𝑟) =
1

𝑚
∑1

𝑗

{𝑑(𝑢𝑗 , 𝑥) ≤ 𝑟} 

For a homogenous Poisson process with intensity , the value of the F function becomes (Hartmann): 

𝐹𝑝𝑜𝑖𝑠(𝑟) = 1 − exp⁡(𝜋𝑟2) 

To determine if a spatial pattern exhibits clustering, 𝐹̂(𝑟) is compared with 𝐹𝑝𝑜𝑖𝑠(𝑟) when plotted. 

Cases where 𝐹̂(𝑟) < 𝐹𝑝𝑜𝑖𝑠(𝑟) suggest clustering is present in the pattern [12] 
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G Functions 

The G Function is a measure of the distribution of distances from an arbitrary event to its nearest 

neighbors [12]. The empirical distribution function is [12]: 

𝐺̂(𝑟) =
1

𝑛(𝑥)
∑1

𝑖

{𝑡𝑖 ≤ 𝑟} 

For a homogenous Poisson point process [12]: 

𝐺𝑝𝑜𝑖𝑠(𝑟) = 1 − exp⁡(−𝜋𝑟2) 

Thus, the G function has the reverse interpretation as the F function: if 𝐺̂(𝑟) > 𝐺𝑝𝑜𝑖𝑠(𝑟), there is 

evidence of clustering within the pattern [12]. 

 

K Functions 

The K function calculates the expected number of other points within a certain distance r of a point 

within the point process [12]. The empirical distribution function is [12]: 

𝐾̂(𝑟) =
1

̂⁡𝑎𝑟𝑒𝑎(𝑊)
∑∑1

𝑖≠𝑗𝑖

{‖𝑥𝑖 − 𝑥𝑗‖}𝑒(𝑥𝑖 ∙ 𝑥𝑗) 

For a homogenous Poisson point process [12]: 

𝐾𝑝𝑜𝑖𝑠(𝑟) = 𝜋𝑟2 

When comparing 𝐾̂(𝑟) and 𝐾𝑝𝑜𝑖𝑠(𝑟), cases where 𝐾̂(𝑟) > 𝐾𝑝𝑜𝑖𝑠(𝑟) suggests clustering within the 

point pattern. 
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J Functions 

The J function is calculated using the F and G functions [12, 14]: 

𝐽(𝑟) =
1 − 𝐺(𝑟)

1 − 𝐹(𝑟)
 

For an homogenous Poisson process, the F function = G function and thus [14]: 

𝐽𝑝𝑜𝑖𝑠(𝑟) = 1 

To determine if a pattern exhibits clustering, 𝐽(𝑟) < 1 [14]. 

 

4.2.2 Kernel Smoothing (Kernel Density Estimation) 

Kernel Smoothing is a nonparametric density technique to estimating an underlying probability density 

function for a point process [15]. It uses the principle of weighting distributions according to proximity 

to a set location utilizing a kernel function and a smoothing bandwidth [16]. The primary thesis of the method 

is to estimate a density function at a specific point using neighboring observations [17]. A critical part 

of kernel smoothing includes selecting the right bandwidth for the estimator given it is responsible for 

the amount of smoothing that occurs [17]. Bandwidth values that are too small can lead to 

undersmoothing while the inverse occurs with values too large [18]. With application of the right 

bandwidth, kernel smoothing can provide insight into the presence of clustering within a point 

process. 
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CHAPTER 5 

Data Analysis and  
Results 

 
 
 
5.1 National-Level Data 
 
5.1.1 Graphical Analysis 

We begin by examining the spatial characteristics of charging stations on a nationwide basis to 

understand broader distribution patterns across the continental United States. Figure 5.1 below is a 

graphical representation of stations across the U.S., with each blue dot representing one station: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: National Distribution of Electric Charging Stations 
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Graphically, it appears there are heavy distributions of stations on the coasts – particularly California 

and the New York / Tri-State region – while there are noticeable gaps in the mid-Northern states 

such as Idaho, Montana, Wyoming, North and South Dakota and Kansas. Additionally, there are 

multiple large groupings across the country that correspond to locations for some of the largest cities 

in the nation. For example, the large congregation of points in Southern California correspond to Los 

Angeles and San Diego areas while the large grouping in Colorado to Denver. Figure 5.2 below 

juxtaposes a few names of large cities corresponding to some of the prominent station concentrations: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: National Distribution of Charging Stations with Superimposed City Labels 

 

Based on initial observations, it appears the national distribution of electric charging stations 

is inhomogeneous with exhibited clustering around large cities. It may appear qualitatively obvious 

that cities would foster higher concentrations of electric stations given the majority of people, and 

subsequently vehicles, reside in such metropolitan areas. However, we must present tangible evidence 
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to evaluate this statement. We will utilize geostatistical methods to demonstrate, firstly, that stations 

exhibit clustering on a national level, and, secondly, that the clustering correlates with large 

metropolitan areas. Given cities typically have larger populations, county population will be used as a 

proxy for metropolitan areas. 

 

5.1.2 Clustering Analysis 

F, G, K and J functions are employed to identify the presence of clustering in the nationwide station 

data. Below are renderings for F, G, K, and J function curves for national data: 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: F, G, K, and J Functions for National Station Distribution 

 

The estimated function curves appear to support the presence of clustering in the national data – the 

J function < 1, the K and G functions are above the theoretical Poisson curve while, inversely, the F 

function is below. To better understand the presence of such clustering as the F, G, J and K functions 

entail, kernel smoothing was employed after normalizing latitude and longitude data to a [0,1] x [0,1] 

grid. The results are as follows:  
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Figure 5.4: National Distribution of Electric Charging Stations (left) Juxtaposed against Kernel Smoothing (right) 

 

The panel on the left displays the original, scaled data points and on the right, the kernel smoothing 

which displays estimated intensities on an increasing grey-scale (i.e. the darker the kernel, the higher 

the estimated intensity). The kernel smoothing appears to confirm the initial graphical analysis with 

heavy clustering on the coasts in California and the New York / Tri-State area while picking up on 

the larger cities in the mid-Western corridor (east of Texas). 

 

5.1.3 Clustering Correlation with Population on a National Level 

The kernel smoothing appears to support the initial hypothesis of heavy clustering in larger cities. 

Kernels are highlighting large groupings that correlate with locations of large metropolitan areas. 

Specifically, the kernel smoothing attributes the highest estimated intensities to Los Angeles, the San 

Francisco Bay Area, and the New York / Tri-State region – corroborating the visual analysis from 

Figure 5.2. 
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To further analyze the potential relationship between large metropolitan areas and station 

clustering, we utilize data from the 2014-2018 5-Year American Community Survey (ACS) available 

through the ‘tidycensus’ package in R. Based on ACS data for population by county, we highlight and 

juxtapose the top 150 most populous counties against the original distribution of station points. The 

median population of these counties is approximately 796,000 people, while Los Angeles County – 

the largest in the United States – supports over 10 million. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: National Distribution of Electric Charging Stations with 150 most Populous Counties Superimposed 

Figure 5.5 depicts the top 150 populated counties shaded in green, and the areas they cover visibly 

appear to correspond with the previously identified point clusters. Notably, areas the previous kernel 

smoothing identified with high levels of clustering – Los Angeles, the San Francisco Bay Area, and 

Washington DC to Boston corridor – are all highlighted as areas with high populations. In addition, 

other large cities with station clusters are also highlighted including, but not limited to, Phoenix 
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(Arizona), Houston (Texas) and Atlanta (Georgia). This suggests, on a national level, electric charging 

stations exhibits clustering behavior more commonly in large metropolitan areas. 

A national view, however, is expansive and difficult to identify how the stations are creating 

the clustering effects within highly populated metropolitan areas. While the analysis helps to confirm 

some underlying relationship between population and clustering of electric charging stations, that 

information may not be the most useful given its obvious nature. Generally, we can expect that electric 

charging stations are centralized around areas which large numbers of people are residing and traveling 

within.  

Thus, we are interested in the more detailed factors within these large metropolitan areas that 

correlate to intra-city clustering. Using Los Angeles as an example, is the clustering in the city created 

by various collections of neighborhood-level clusters? Or are the stations more evenly spaced 

throughout Los Angeles, but at a higher density than other areas of California, which then appear 

clustered from a nationwide perspective? We are also interested in uncovering other potential covariate 

variables (in addition to high population) these clustered areas may share that could give greater insight 

into the geographic strategies that organizations employ when constructing stations. 

We will further explore specific regions identified as high-cluster, high population areas to 

analyze how stations are distributed. Based on the national analysis results, we will focus on the Los 

Angeles and New York regions – two of the largest cities in the nation according to the US Census 

Bureau [19]. 
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5.2 Analysis of Los Angeles, California 
 
We will perform a closer analysis of Los Angeles, California, given its particularly high density of 

stations, to uncover more detailed covariates associated with station clustering in addition to 

population as identified in the national-level data. 

 

5.2.1 Graphical Analysis 

To examine the distribution of stations for Los Angeles, we filtered the national data by longitude and 

latitude coordinates within Los Angeles County south of the 34.35o latitude parallel. We choose to 

exclude areas north of the 34.35o latitude due to the more rural nature of the area and significant 

presence of forests. Below are two maps: on the left, a Google Map layout of Los Angeles and, on the 

right, the same map with charging station points superimposed: 

 

 

Figure 5.6: Map of Los Angeles (left) and Overlay of Station Locations (right) 
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Visually, it appears there are groupings predominately along the north-western edge of the city 

(south of the Hollywood Hills) including in Santa Monica and Beverly Hills, as well as in Hollywood 

and the DTLA (downtown LA) region. In addition, it seems the density of stations generally decreases 

moving inland with a particularly noticeable “desert” south of DTLA through Compton bounded by 

the Interstate 405. From these visual observations, it appears charging stations are not evenly 

distributed across Los Angeles. We will conduct clustering analysis to statistically demonstrate the 

presence of clustering and present observations of the clustering areas. 

 

5.2.2 Clustering Analysis 

Visually, it appears there are station groupings predominately along the north-western edge of the city 

(south of the Hollywood Hills) including in Santa Monica and Beverly Hills, as well as in Hollywood 

and the DTLA (downtown LA) region. F, G, K and J functions are employed to identify the presence 

of clustering within the Los Angeles station data. Results for F/G/J/K functions and kernel 

smoothing are available below to statistically analyze if indeed such clustering is present: 

 

 

Figure 5.7: F, G, K, and J Functions for Los Angeles Station Distribution 
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Figure 5.8: Los Angeles Distribution of Electric Charging Stations (left) Juxtaposed against Kernel Smoothing 

(right) 

 

The kernel smoothing and pseudo-likelihood models both attribute high levels of clustering in what 

corresponds to the Santa Monica and DTLA regions. We “zoom-in” to these regions to better 

understand where the stations are located that contributes to the higher intensities within the city. For 

Santa Monica, it appears many stations are congregated about what is the Third-Street Promenade, 

and, in DTLA, within the area bounded between the Interstate 110 and S Grand Ave. – the same area 

with Staples Center, Grand Central Market and various high-end restaurants.  
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Figure 5.9: Station Distribution in Santa Monica (left) and Station Distribution in DTLA (right) 

 

5.2.3 Observations 

Similar to the national analysis, there appears to be evidence of clustering within Los Angeles. The 

estimated function curves appear to support the presence of clustering in the Los Angeles data – the 

F function is below the theoretical Poisson curve, the K and G functions are above the theoretical 

Poisson curve, and the J function is < 1. The kernel smoothing attributes high estinated densities to 

to DTLA and Santa monica., and there is a generally skewed distribution of stations towards the 

northern edges of the city (excluding North Hollywood). These regions all appear to commonly 

demonstrate higher levels of tourism and commerce, particularly for Hollywood, Santa Monica and 

DTLA. 
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5.3 Analysis of New York, New York 

5.3.1 Graphical Analysis 

Employing a similar analytical process to the Los Angeles data, we graphically examine the 

distribution of charging stations within the New York City area. A Google Map layout of New York 

City and, on the right, the same map with charging station points superimposed: 

 

 

Figure 5.10: Map of New York City (left) and Map with Overlay of Station Locations (right) 

 
Visually, the concentration of stations within the Manhattan area it is immediately striking compared 

to the rather dispersed nature of stations everywhere else. It appears there is also some congregations 

within Williamsburg, Brooklyn (southeast of the tip of Manhattan). Given Manhattan has various 

distinct areas, we zoom in further specifically into Manhattan to better visualize the distribution. The 

below figure displays, on a closer scale, charging stations within Manhattan: 
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Figure 5.11: Map of Manhattan with Overlay of Station Locations 

From the close-up in Manhattan, it appears there are a significant number of stations around the 

Upper West and East Sides, the southern end of Central Park, Greenwich Village, and the Financial 

District (Ground Zero). These areas We will perform geostatistical analysis within Manhattan to 

demonstrate the presence of clustering and present observations of the clustered areas. 

 

5.3.2 Clustering Analysis 

F, G, K and J functions are again employed to identify the presence of clustering within the Los 

Angeles station data. Results forF/G/J/K functions and kernel smoothing are available below to 

analyze if indeed such clustering is present: 
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Figure 5.12: F, G, K, and J Functions for New York Station Distribution 

 

 

 

 

Figure 5.13: New York Distribution of Electric Charging Stations (left) Juxtaposed against Kernel Smoothing 

(right) 
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5.3.3 Observations 

Based on the analysis above, there appears to be evidence of clustering within New York City and 

Manhattan specifically. The estimated function curves appear to support the presence of clustering in 

the New York data – the F function is below the theoretical Poisson curve, the K and G functions 

are above the theoretical Poisson curve, and the J function is < 1. The pseudo-likelihood model and 

kernel smoothing both appear to demonstrate there is a generally skewed distribution of stations 

towards the southern borders of Central Park as well as the areas in Greenwich Village bordering 

Washington Square Park.  

In relation to the broader New York City area, Manhattan is undoubtedly considered the 

“hub” of attractions and tourism. On that scale, as many stations are concentrated on Manhattan, it 

seems stations in New York City follow a similar pattern of being centralized in busy, tourist- and 

commerce-heavy areas. When “zooming-in” to Manhattan, clustering appears to be in areas that have 

higher values of real estate. For example, the area immediately south of Central Park, where the 

clustering analysis shows the highest estimated intensities, is known as “Billionaire’s Row” [ref] while 

the south-western edge of the Park corresponds to Columbus Circle where some of the largest hotels 

such as the Mandarin Oriental and Trump Tower are located. 

 

5.4 Observed Potential Covariates  

For both Los Angeles and New York, there appears to be a pattern where stations are clustered around 

busy, downtown areas and touristic attractions. For example, New York appears to feature heavy 

concentrations of stations within Manhattan in comparison to the broader metropolitan area. This is 

https://streeteasy.com/blog/billionaires-row-nyc/
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particularly interesting given only 22% of households in Manhattan own a car compared to other 

regions with much higher car ownership (Queens 62%, Brooklyn 44%) [20] as well as the existence of 

the MTA subway system. Why would there be such a large clustering effect of electric charging stations 

in an area where there is low car ownership and high usage of public transportation? Similarly in Los 

Angeles, stations demonstrate clustering around Santa Monica, Downtown LA, Hollywood and 

Beverly Hills. This would appear counter-intuitive as these touristic areas typically correlate with 

difficult driving conditions, large crowds and limited or expensive parking options. Assuming most 

people would not be interested in driving through such areas, why are there such high concentrations 

of charging stations?  

 One hypothesis for why charging stations are centralized around tourist and sight-seeing 

districts could be due to the current time-requirements for charging vehicles. While technology has 

been improving steadily over the past decade around battery capacity and charging efficiency, charging 

an electric vehicle is still a time-consuming process that, depending upon the battery size, could take 

anywhere between 30 minutes to an hour. Thus, charging companies, to improve the experience for 

customers, strategically designate stations in areas that have attractions nearby where people can easily 

visit while waiting for their vehicles to charge. These “touristy” areas also correlate with high levels of 

restaurants, bars and other hospitality-related services.  

When comparing more granularly between high-clustering areas in Los Angeles (Santa 

Monica, DTLA) and New York (Manhattan), it appears stations in Santa Monica / DTLA may have 

tourism / hospitality as a covariate as we see the high concentrations of stations in areas such as Third 

Street Promenade and the DTLA Financial District. On the other hand, Manhattan appears to have 

real estate value as a covariate as we see high density of stations around the upper West and East sides 

as well as Billionaire’s Row. 
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To test the potential of these covariates on a city-level, we will fit Poisson point process models 

for both cities and analyze the results. It would be noted that this model fitting differs from the 

previously utilized kernel smoothing and pseudo-likelihood models in that we will be using original 

geographical data, not normalized coordinates on a [1, 1] grid. We will employ data from the US 

Census’ 5-Year American Community Survey (ACS) in 2020.  
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CHAPTER 6 

Modeling Station Intensity as 

a Function of Covariates 
 
 
 
6.1 Overview 
 
As previously mentioned, we are more interested in understanding the granular city-level implications 

and relationships of stations distributions given the association (on a national-scale) between 

population and station clustering appears qualitatively obvious. We will utilize ACS Data to fit Poisson 

point process models to Los Angeles using Total Service occupations: Arts, entertainment, and recreation and 

accommodation and food services (variable id: C24050_040) and New York data using real estate taxes paid 

by census tract (as a proxy for real estate value: Estimate of Median Real Estate Taxes Paid – Total (US 

Dollars) (variable id: B25103_001) [21].  

  

6.2 Model Results 
 
6.2.1 Los Angeles 

We utilize spatstat in R to fit a Poisson point process model to the Los Angeles data using total 

median real estate taxes paid as a covariate. Below are the results of the model summary as well as a 

plot of model predictions juxtaposed with the observed station pattern: 
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Figure 6.1: Los Angeles PPP Spatial Point Pattern (left) and Predicted Model Intensities (right) 

 

 

 

 

Figure 6.2: Effectfun() Plot of Los Angeles Model 
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Figure 6.3: Model Summary Statistics of Los Angeles Model 

 

Graphically analyzing the model results compared to the spatial point pattern, it appears that, the 

model captures some of the same high-density areas such as the Santa Monica and Hollywood regions. 

However, the model does not capture the high density to the same degree within DTLA while 

assigning higher densities to the more eastern edges of the county. The model outputs demonstrate 

there is a general positive relationship between station intensity and hospitality jobs as a covariate. 

This is further illustrated in the effectfun() plot in Figure 6.3. 

 

6.2.2 New York 

Below are the results of the model summary as well as a plot of model predictions juxtaposed with 

the observed station pattern: 

 

 



29 
 

 

Figure 6.4: New York PPP Spatial Point Pattern (left) and Predicted Model Intensities (right) 
 

 

Figure 6.5: Effectfun() Plot of New York Model 
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Figure 6.6: Model Summary Statistics of New York Model 

 

Graphically analyzing the model results against the spatial point pattern, it appears the model also 

captures corresponding areas in Manhattan – particularly around Central Park. The model also appears 

to highlight high densities in areas of Williamsberg (East of the southern tip of Manhattan). The model 

summary and effectfun() plot demonstrate a positive relationship between the real estate value (taxes) 

covariate and intensity. 
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CHAPTER 7 

Conclusion and Further 
Research 

 
 
 

Our analysis demonstrates that, for Los Angeles, the presence of hospitality jobs – and related 

tourism areas – are positively related to charging station intensity. When comparing between the spatial 

point pattern and the plotted predictions, the intensities of model predictions appear to capture areas 

in Santa Monica, Hollywood and northern Los Angeles. The model does not, however, capture the 

same levels of intensity in DTLA and assigns high densities to areas on the eastern edge of the city. 

From the results, it appears that there are other covariate interactions that may be at play that require 

further investigation. For New York, the use of real estate taxes paid as a proxy for real estate value 

appears to better capture intensities as reflected in the spatial point pattern as we can see the key areas 

of Billionaire’s Row (immediately south of Central Park), the Upper and East Sides, as well as regions 

in the Financial District (southern tip of Manhattan). The model appears to higher densities to areas 

in the Brooklyn region compared to the observed spatial point pattern. Thus, there may be additional 

covariate variables to consider for that region. 

 This analysis was primarily concentrated on the two largest cities in the US [19] by population 

due to the heavy clustering in both regions within our national analysis. Both areas, while on opposite 

sides of the country, share many commonalities regarding economic size, wealth, political 

demographics and metropolitan constitution. There are thousands of additional cities and towns 

within the US with charging stations that have different characteristics which could lead to different 
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covariate identification. Further research is needed among a broader diversity of areas geographically, 

economically, and socio-politically to gain greater insights into how charging stations are distributed.  

The difference in covariates between the two cities could demonstrate that charging stations 

are built tailored to each specific city they are in and there may not be a “blanket” strategy across the 

nation. However, our sample size between Los Angeles and New York is too small and additional 

research is needed to fully investigate this hypothesis. Further guidance would also include a thorough 

understanding of the nation’s electric grid infrastructure as charging stations are reliant upon 

availability and feasibility of electricity supply. 
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