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ABSTRACT 

Most large commercial buildings have digital controls for their heating, ventilation, and 
air-conditioning (HVAC) and lighting systems with the potential to implement advanced control 
strategies and data analytics. However, advanced control strategies and data analytics are rarely 
deployed at scale due to non-standard naming conventions and heterogenous building 
configurations. Semantic metadata standards, like Brick, show promise to proliferate these 
applications across many buildings, but they have not been widely adopted by industry due to 
barriers such as perceived risk and unfamiliarity with the technology. This paper describes the 
workflow we established and evaluated while using it to develop over ten Brick models of 
existing buildings. Through this process, we observed that digitizing existing commercial 
buildings is a cost and labor-intensive effort in which understanding the buildings’ data streams 
is the major bottleneck. Yet, we conclude this investment is worthwhile since various use case 
applications such as fault detection and diagnostics, thermal comfort analysis, and HVAC control 
optimization can utilize the same Brick model. The paper also explores the challenges and 
lessons learned we encountered while creating these data models, such as: 1) difficulties in 
finding metadata descriptions and relationships for existing buildings; 2) handling missing 
concepts in the schema needed to model a building; 3) lack of guidance on how to structure the 
data model or how much detail to include; 4) unfamiliarity with technologies, which makes the 
learning curve steep for applications developers. Finally, we also describe future directions for 
semantic metadata research and development to make such transformative technologies more 
accessible to practitioners. 

Introduction 

Building management systems (BMS) are an increasingly common feature in buildings 
that control heating, ventilation, and air-conditioning (HVAC) and lighting systems. This is 
especially true in large commercial buildings (EIA 2022). The network of sensors provided by 
the BMS allows opportunities for energy consumption, cost, and control optimizations, as well as 
predictive maintenance, grid-interaction, visualization and reporting, and fault detection and 
diagnostics. Unfortunately, control strategies in the BMS are typically programmed with simple 
sequences that have limited potential to deliver on these opportunities, which may cost a building 
5%-40% in energy savings (Ahmed et al. 2010; Lin, Kramer, and Granderson 2020). However, 



there has been significant growth in the adoption of energy management and information 
systems in the past decade, enabling the opportunities mentioned above (Kramer et al. 2020).  
Still, barriers exist that hinder the widespread use of advanced controls and analytics. These 
barriers include proprietary equipment and BMS, the unique naming convention of building 
assets and data points, and the inherent uniqueness of buildings and their systems, contributing to 
the lack of interoperability and portability of software tools at scale (Ahmed et al. 2010; Fierro 
2021). For example, the lack of interoperability within a specific building prevents HVAC 
control sequences from using occupancy sensors installed for the lighting system that can also be 
used by the HVAC to enable occupancy-based controls. Another example is that various third-
party vendors with new control and analytic platforms may enter the building at any stage during 
its occupied lifecycle to implement their latest algorithms. One of the first steps for these vendors 
is the discovery of existing data streams and other building resources and mapping them to their 
individual applications or platforms, but data point mapping might be a project in and of itself 
(Ploennigs et al. 2014; Wang et al. 2018). Naming conventions of data streams for new BMS 
deployments is currently not a standardized practice and the completeness of relevant 
information in the initial naming process directly influences the effort that future third-party 
vendors will undertake to onboard their algorithms (Butler and Veelenturf 2010; A. A. 
Bhattacharya et al. 2015; Wang et al. 2018). Moreover, each vendor will often need to undertake 
its own point mapping process since the organization or structure of the data collected by one 
vendor may be inadequate for another (Bergmann et al. 2020). Application onboarding, which 
includes the point mapping process, can cost several hundreds of dollars per point (Granderson 
and Lin 2016). Any repetitive effort by control vendors is inefficient and derails resources from 
implementing other energy saving applications or improvements in the performance of the 
applications.  

Semantic metadata schemas offer a solution to the high costs of configuring and 
deploying analytics and controls by organizing building information into a single unified 
representation that can serve as the foundation for applications for many third-party vendors. 
Recent research identified 40 public semantic metadata schemas for various lifecycle stages of 
the building, but many of them are designed for building services, such as HVAC, lighting, 
domestic hot water, life and fire safety (Pritoni et al. 2021). Semantic metadata schemas for 
building services standardize the meaning of data communicated over a building’s extensive 
network of sensors that make up the BMS. The high number of schemas available within 
building services gives a couple of insights. First, the building industry sees the value added in 
defining the transmitted data in a more complete and consistent way. Second, the industry is still 
in the early stages of determining the scope of schemas to benefit existing use cases while having 
the flexibility to adapt to future ones. The building industry will eventually coalesce into a 
smaller number of complete, extensible, expressive, and usable schemas that satisfy the needs of 
the majority of building stakeholders (A. Bhattacharya, Ploennigs, and Culler 2015). 

Brick is an example of a metadata schema that shows promise to aid the industry in 
proliferating existing and future advanced control strategies and analytics (Balaji et al. 2016). It 
is an ontology that organizes its formal entities, or objects, into a class hierarchy using three root 
nodes: Equipment, Point, and Location. Equipment generally refers to a physical device that 
provides some service to part or all of the building. Point generally refers to a source of data or a 
control input made available over a building’s control network. Points are how applications 
interact with the building’s control network; for example, a Sensor in Brick does not refer to the 
physical device or transducer but rather the digital source of those measurements on the network. 



Nameplate characteristics such as design capacities, air flows, and voltage ratings of an 
equipment are defined as properties of the equipment. Location generally refers to either physical 
or logical spaces that can be grouped based on a common characteristic. The definition of 
subclasses from these root classes becomes more specific further down the hierarchy. As 
illustrated in Figure 1, the Equipment class is a parent class with subclasses that include HVAC, 
Lighting, and Electrical while these subclasses are parent classes to more specific subclasses 
such as Air Handling Unit and Chiller for HVAC.  

Figure 1: Excerpt of the Brick schema class hierarchy with three root nodes: Equipment, Point, and Location. Each 
box represents an example of a Brick class entity with a formal definition and set of properties. Two entities, or 
classes, can be connected through a relationship (Fierro 2021). 

Eventually, we can identify a class in the hierarchy that is specific enough to assign to a 
building’s asset and associate properties to it. Then we can take two classes and associate them 
by assigning a formal Brick relationship. Brick relationships add the functional and spatial 
relationships for equipment, points, and building spaces or thermal zones. Figure 2 shows (top) a 
schematic and (bottom) the corresponding Brick data model of a multi-zone variable air volume 
(VAV) air-handling unit (AHU) in a typical built-up HVAC system. The figure shows how we 
used the hasPart relationship to indicate the main and subcomponents of a built-up AHU unit. 
Next, we used the feeds relationship to indicate the order of the subcomponents as air transverses 
through the system. Many analytics need information on the order of components to do the 
proper analysis, such as the order of the heating and cooling coils or if it is a blow- or draw- fan 
design system. Lastly, the hasPoint relationship indicates the data streams associated with each 
component. 

The Brick ontology1 is currently under active development; thus, new features are 
regularly added. Nevertheless, the latest iteration shows great promise to capture the 
requirements of three fundamental use cases identified by Pritoni et al. (2021). The three use 
cases are 1) building energy audits, 2) automated fault detection and diagnostics, and 3) optimal 
control of building services. Brick has been gaining traction among academia and industry 
stakeholders (Brick Consortium 2022). However, there is a lack of documentation that illustrates 
the workflow to create Brick data models for buildings. Therefore, we present the process we 
undertook to develop Brick data models for more than ten existing buildings using the currently 

1 brickschema.org/ 



available tools. There were no specific selection criteria for the development of data models for 
these ten plus buildings except that we had data available or access to the building to develop the 
Brick models. Then, we present lessons learned and gathered from undertaking these efforts and 
existing challenges that need to be addressed in future iterations of the Brick ontology. We will 
finish by discussing future directions we envision that will help increase the widespread adoption 
of building schemas, focusing on the Brick ontology. 

Figure 2: (Top) schematic of a multi-zone variable air volume (VAV) air handling unit (AHU).(Bottom) the 
corresponding Brick data model. The boxes in this figure represent instances of the class name given by the text 
inside. 



Brick Model 

Development Workflow 

This section presents the workflow we used to develop Brick data models for over ten 
existing buildings. The buildings in the list include buildings with conventional air-based HVAC 
systems and hydronic-based systems. It also includes various BMS. Figure 3 shows the five-step 
workflow we employed to develop the buildings’ Brick models: 1) collect siloed metadata, 2) 
organize metadata, 3) transform metadata, 4) apply inference and reasoning to Brick model, and 
5) validate Brick model.

The first step is to collect metadata that is siloed in various document sources and 
formats. Since our interest is in researching the potential of Brick models to facilitate analytics 
and controls, we centered our process around the time series data available through the BMS. 
Thus, we initiate the workflow process by scanning the BMS communication network to retrieve 
a list of points available. The scan feature may be available through the BMS interface. In other 
cases where it is not, we performed a BACnet network scan and point list retrieval using open-
source network discovery utilities and other related software such as Nmap and BACpypes 
(Nmap 2022; Bender 2018). At a minimum, we obtain point names and additional information 
that may include point type, data units, short description, and BACnet object properties. Point 
names can contain a significant amount of information (Butler and Veelenturf, 2010). Therefore, 
we used our domain expertise to extract the embedded information. An example of the type of 
embedded metadata is illustrated in Figure 4. We performed this extraction of information 
manually or semi-automatically if the naming conventions were consistent. In most cases, we 
used a mix of the two methods since it was rare that consistency was found among all point 
names within one building. For example, all air temperature points followed one pattern while air 
flow points followed another, or the delimiter was exchanged from an underscore to a hyphen. 
Then we referred to mechanical and architectural drawings when available to complete the 
functional and spatial relationships among the various sensors and equipment.  

Figure 3: The five-step workflow process to develop a Brick model for a building. 



Figure 4: Example of metadata embedded in a point name (Fierro 2021) and metadata embedded in a floor plan 
drawing. These metadata may tell us site name, equipment information, sensor type and location, room/space type, 
number, and location, and occupancy. 

The second step in the Brick building workflow is to organize and implement an initial 
structure to the collected metadata. In this step, we found spreadsheets to work well. We initiate 
the process by organizing the point names in one column and the Brick classes in another. It may 
also be helpful to group points by plant, distribution, and zone level. In this way, we can add 
columns with information pertinent to the specific group. For instance, we can group zone 
terminal equipment that can be part of the distribution level. For this group, we can define 
columns that indicate which AHU serves each terminal equipment, the available sensors on each 
terminal unit, the zone(s) or room(s) that each terminal unit serves, type of zone (such as office, 
conference, breakroom, etc), the area of the zone, the floor number that the equipment/zone is 
on, and any design parameters of the terminal units, (e.g., minimum and maximum air flow rate). 

The third step is to transform the metadata into machine-readable text files capable of 
accepting programmatic queries. It is easier to use currently available tools on the semi-
structured metadata we implemented in step two to transform it into a Brick data model. A Brick 
data model represents the information we gathered by identifying and characterizing the “things” 
inside a building called entities and the relationships between them; this is a graph structure. The 
RDF2 data model, which Brick is built on, describes graphs as a set of statements called triples. 
Triples have three parts: a subject node or entity, an object node or entity, and an edge which 
describes the relationship from the subject to the object. The relationship is also known as the 
predicate and has a direction. In Figure 2, the various colored nodes represent instances of 
classes defined by Brick.  The set of triples describing a building makes up the Brick model for 
that building (Balaji et al. 2016); this is a machine-readable representation which can be queried 
by applications. One example of a triple from Figure 2 is ( Air_Handling_Unit (subject) hasPart 

2 Resource Description Framework (www.w3.org/RDF/) 



(predicate) Hot_Water_Coil (object) ). We used the open-source tool brick-builder available on 
Github to transform our spreadsheet-organized metadata to Brick data models (Fierro 2022). 

The fourth step is to apply inference to a Brick model to discover implied information 
and make it explicit. Recall that Brick is an ontology, a formal logic-based representation of the 
knowledge in some domain. The Brick ontology leverages this representation to define rules and 
axioms that outline what additional information can be derived from the statements in a 
building’s Brick model. This includes “inherited” information such as the substance and quantity 
measured by a sensor and what equipment is further upstream or downstream of some entity 
(Fierro et al. 2020a). The process of applying inference will add this derived information to the 
building model so users of the model can access it. The inference process alleviates the process 
of producing a Brick model because it allows helpful annotations and statements to be produced 
automatically rather than manually. Brick defines inference rules using modern web technologies 
to formalize knowledge representation such as the OWL3 2 RL and SHACL4 W3C5 standards 
(Motik et al. 2012; Knublauch and Kontokostas 2017). Adopting these standards lets users 
choose from a wide array of open-source and commercial products to perform the inference on 
Brick models. 

The fifth step is to validate a Brick model against predefined conditions and constraints to 
ensure that entities and relationships were used properly. These are defined using the SHACL 
W3C standard. Constraints enforce the logical and semantic consistency of the model. Logical 
constraints ensure that the Brick ontology is being used correctly. For example, a sensor class 
entity cannot also be a location, points must be related to equipment via the “isPointOf” 
relationship rather than “isPartOf” or other relationships. Semantic constraints encode domain 
knowledge in a way that can be automatically verified: buildings contain rooms and not the other 
way around; sensors should have associated units that are appropriate to what the sensor is 
measuring. Constraints can also be used to express invariants that must hold true for a particular 
kind of equipment or a particular building. For example, certain models of VAV terminal units 
might be required to have a certain array of associated points, or a specific building might have 
20 HVAC zones. These constraints can ensure that the building model has the expected 
metadata. 

Use cases and applications 

Brick data models offer great flexibility for various use cases. We have developed 
applications that span fault detection and diagnostics, thermal comfort analysis, and HVAC 
control optimization, energy predictions, and dashboards. We used the Brick data models we 
created, in addition to Brick models created by others, as part of the Mortar6 database (Fierro et 
al. 2020a) to run various applications. The applications include one that retrieves relevant VAV 
terminal unit data streams to categorize if the hot water reheat valve in the device lets hot water 
through when it is supposed to be closed (passing valves) (Duarte Roa et al. 2022). This 
application analyzed 1,335 VAV terminal units in 20 buildings. In another example, we retrieved 
temperature data streams from 1,953 zones in 25 buildings to assess their ability to maintain 
long-term thermal comfort (Sun, Duarte Roa, and Raftery 2022). Finally, we are in the process of 

3 Web Ontology Language (www.w3.org/TR/owl2-profiles/) 
4 Shapes Constraint Language (www.w3.org/TR/shacl/) 
5 World Wide Web Consortium (www.w3.org/) 
6 mortardata.org/ 



demonstrating real-time control of the hot water plant in an existing building. We embedded 
BACnet object information within the building’s Brick data model to retrieve real-time 
measurements and information from the BMS and sent new commands to it to adjust the hot 
water supply temperature. In theory, this application can be ported over to another building with 
a hot water plant and Brick data model with little or no modification, similar to the first two 
applications where multiple buildings were analyzed with only one instance of the application. 

Lessons learned 

Digitizing existing commercial buildings is currently a labor-intensive effort. We 
observed that digitizing buildings with Brick by using the five-step workflow process outlined in 
Figure 3 is no exception. Gathering building information and understanding data streams from 
existing buildings are major bottlenecks; these correspond to the first two steps of the workflow 
process we presented. Accurate, complete, and readable building drawings are harder to come by 
for older buildings. Older buildings also have the increased likelihood of multiple retrofits which 
means multiple independent documents detailing those retrofits which need to be tracked down 
and reconciled with all other building data. In many cases, the documents are also a mix of paper 
and digital formats. Efforts to digitize a full or partial building with Brick as well as another 
schema is redundant and not good use of time. If third party vendors adapted their platforms or 
algorithms to utilize a single semantic metadata schema, this would save time and money. Even 
though developing a Brick data model for an existing building is a significant effort, we believe 
the investment is worthwhile. A Brick data model offers an interoperable digital representation 
of a building with the capacity to store information and be continually updated to assist a variety 
of use cases within the scope of building services provided by different vendors. Recent work 
(Fierro et al. 2020b) proposes algorithms for incrementally editing a Brick model over time as 
different digital representations evolve. The development costs start being recouped after the 
Brick data model enables the second vendor to reduce onboarding process time and costs, but 
further studies are needed to calculate a data model’s return on investment. The use of open-
source technologies within the design of the Brick ontology ensures that various stakeholders 
with many software tools that support these technologies can take advantage of a Brick data 
model.      

Challenges encountered 

Though there are clear advantages in using Brick to merge siloed metadata into one 
machine-readable and interoperable format, we encountered some challenges throughout the 
workflow. The four main challenges are the following: 

1. Difficulties in finding metadata descriptions and relationships for existing
buildings.

2. Missing concepts in the Brick ontology.
3. Lack of guidance on how to structure the Brick data model or how much detail to

include.
4. Unfamiliarity with technologies, which makes the learning curve steep for

applications developers.



The Brick ontology’s design supports use cases in building services, thus BMS point 
names are a good place to start the metadata extraction process. We took advantage of some 
naming conventions, as illustrated in Figure 4, but those are not always present , and the 
convention was not maintained throughout a single building let alone across multiple buildings. 
We attempted to develop simple rule-based programs to semi-automate the metadata extraction, 
but it proved difficult. We found ourselves implementing many logical conditions to address the 
inconsistencies, such as an underscore switched for a hyphen, the order of the expected 
information was reversed, or the abbreviations used for a single piece of information varied. 
After extracting the available information from point names, we continued with building 
drawings. Unfortunately, though, information in drawings is sometimes not well recorded. For 
example, it may be difficult to tell if the drawings supplied by the building manager are the as-
built drawings of the building or if they include any retrofit information. On one occasion, we 
carried out a walkthrough of the building to identify information about the return air streams of 
the HVAC system to properly document it in the Brick data model. These examples stress the 
importance of keeping metadata updated and why Brick data models may be useful as a 
repository of information that can be easily updated with clear versioning. 

 Buildings are highly unique with customized built-up systems that reflect their designed 
function, performance, and environmental conditions they must withstand. The Brick ontology 
may not have all the concepts needed to model a building. In particular, the initial concepts for 
Brick were developed for a typical all-air system, which made it challenging to build Brick 
models for two of our buildings whose HVAC systems are mainly composed of hydronic water 
loops. The two buildings incorporated radiant heating and cooling systems in their HVAC 
systems. Therefore, the zone equipment is no longer a VAV terminal unit where the air is the 
controlled temperature but a concrete slab or metal panel whose core or surface temperature is 
controlled using various types of water valves (e.g., two-way valves or modulating valves). One 
of the buildings also contained reversible water-to-air heat pumps that were not included in the 
Brick ontology version we used to create the data model for that building. We also need a way to 
represent the data stream that informs if the heat pump is extracting (heating mode) or adding 
(cooling mode) energy from/in the water loop. The modeling gets more complex if modeling the 
lower-level components of a heat pump system is essential. There is no support for 
differentiating between equipment with dynamic functions such as a heat exchanger that can act 
as both a condenser and an evaporator in a heat pump system. Similar issues may arise when 
encountering buildings with variable refrigerant flow (VRF) HVAC systems. The Brick 
development team is currently developing heat pump and VRF equipment entities and related 
points for future release that address some of the issues mentioned above. 

The Brick ontology offers tremendous flexibility to develop Brick data models. However, 
there is a lack of guidance on how to structure the data model or how much detail to include. One 
option is to be very detailed, as we attempted to illustrate in Figure 2. Still, we believe that 
adding some Brick entities such as Entering and Leaving Air Temperature Sensor, along with 
similar entities for other fluids and sensor types, would allow for a better representation of a 
detailed Brick data model. The addition of these suggested entities would have allowed us to 
attach a Leaving Air Temperature Sensor to the heating coil and the supply fan. This explicitly 
identifies the state of a medium right before or after undergoing some processing through a piece 
of equipment. Similarly, we can increase the detail and be more explicit in the model by 
attaching Entering or Leaving Air Flow Sensors to the components of the AHU instead of 
connecting them to the high-level equipment (AHU). 



The other option is to reduce the complexity of the data model and keep points attached 
to the high-level equipment and avoid the detailed feeds relationships between the internal 
components of the AHU as depicted in Figure 2. Instead, we would directly connect the feeds 
from the AHU to the VAV terminal units. Much of the information will be implied in this type of 
structure, and some details may not be modeled. For example, there are no Air Temperature 
Sensor subclasses to model extra sensors that might be in the AHU after internal components 
such as the air temperature sensor after the heating coil as depicted in Figure 2. This loss of 
information for interim processes might be okay for the modeler and the Brick data model 
purposes. Each structure has its advantages and disadvantages. A less detailed model takes less 
time to build, and extracting information may be straightforward. However, a simpler model 
might introduce ambiguity in the capabilities of the building. 

On the other hand, a detailed model can take full advantage of sophisticated current and 
future algorithms that depend on the interactions and processes of the low-level equipment. 
Furthermore, since it is presumably more complete, more application developers will have the 
ability to bootstrap their platforms and applications to a Brick data model. For example, our 
passing valve application mentioned above can also apply to hot and chilled water valves found 
in the AHU, but we could not analyze them because the majority of developers of the Mortar 
database Brick models we used in the analysis chose to model the AHU at a high level. Thus, we 
did not have the internal air temperature sensors before and after the hot and chilled water coils 
to do a proper analysis. 

Finally, the Semantic Web technologies used in designing the Brick ontology and its 
supporting tools are generally unfamiliar to the building industry. Although, many companies 
outside the building industry, (e.g., technology, search, and social media companies), have used 
these technologies to standardize the exchange of information on the modern-day internet. 
Nevertheless, there are perceived risks and the time and effort to learn, adopt, and embrace these 
technologies can be steep for the building industry. New Brick users need knowledge in these 
Semantic Web technologies, in addition to their domain expertise, to develop complete and 
beneficial Brick data models. Furthermore, all Brick modelers need to foresee the Brick model’s 
use cases and think about how application developers might create programmatic queries to 
extract information contained within it and avoid any ambiguity. As discussed above, there are 
multiple approaches to model a building with Brick, making it difficult to construct a 
programmatic query that encompasses the various modeling approaches which result in 
fundamentally different graph structures. For example, one model may have an Air Temperature 
Sensor related to the room while another model has a Zone Air Temperature Sensor related to a 
VAV terminal unit which then feeds to an HVAC zone which in turn hasPart part a room. A 
single programmatic query to extract the room's air temperature will return successful results for 
one but not the other. This issue can sometimes be addressed with generalized queries (Bennani 
et al. 2021) but in other times, too generic queries can derail from the analysis intent of the 
application, such as analyzing thermal comfort by using the VAV terminal unit’s supply air 
temperature instead of the zone’s air temperature. Thus, having a consistent structure expected 
within Brick data models is paramount to creating effective portable queries. 

Recommendations for the future 

The Brick ontology is showing great promise to proliferate applications that are written 
once and run across multiple buildings. We have some suggestions to further improve upon this 



goal. The Brick project team needs to open new pathways to increase the involvement of the 
building industry. This could be done by increasing the available documentation for Brick to 
show the benefits and advantages to digitizing buildings with Brick. This may involve creating 
Brick modeling examples of simple and/or typical systems and examples of programmatic 
queries to retrieve the available information within them. The examples must establish a 
preferred modeling approach and final structure of a Brick graph so the community of Brick 
modelers can follow suit. The collaboration with the building industry community will also help 
identify modeling gaps and missing concepts and entities. In these early stages of Brick, we 
envision the use cases and the development of the Brick ontology to co-evolve and this is most 
likely a good approach since it is directly taking into account the user of the Brick ontology. 

Conclusion 

This paper documents the five-step workflow process we used to develop Brick data 
models for more than ten existing buildings. The five steps are to 1) collect siloed metadata from 
various sources and formats; 2) organize the collected metadata and implement a semi-structured 
format; 3) transform the semi-structured format into a Brick data model which is a machine-
readable and interoperable text file; 4) apply inference and reasoning to the initial Brick model to 
discover implied information and make it explicit; and 5) validate the newly created Brick data 
model to ensure that entities and relationships were correctly used. The five-step process, along 
with other point mapping techniques performed by third-party vendors, is time-consuming, and 
therefore, the process should only be performed once but allow multiple building stakeholders to 
make use of the knowledge gathered from the process.  

The Brick data model is moving in the right direction to serve as the singular repository 
containing the knowledge gathered to serve multiple needs. A Brick data model can undergo 
continual updates to adapt as different sensor measurements and other information are needed for 
incoming third-party vendors with new algorithms or platforms.  

However, we encountered challenges that may hinder the widespread adoption of the 
Brick ontology. Buildings are highly unique and Brick is well equipped to model the various 
systems pertaining to building services (e.g., HVAC, lighting, domestic hot water, and life and 
fire safety), but not all the concepts needed to model the variation found in buildings currently 
exist within the Brick ontology. Brick allows a building to be modeled in many different ways 
but there is a lack of guidance on a preferred approach to structure the Brick data model and how 
much to include. 

The Brick project must continue to be involved with the community of Brick modelers 
and Brick application developers to understand and receive feedback on the missing gaps and 
concepts to increase the coverage of the Brick ontology. There is a need for increased 
documentation and examples on how to model common systems with the preferred modeling 
approach. This documentation and examples would also include how data should be extracted 
and help the building industry get familiar with Web Semantic technologies. Documentation and 
examples could also show the possibilities of using these technologies within the building 
industry and reduce the perceived risks with learning, adopting, and embracing these 
technologies.  
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