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Abstract

Diverse phytoplankton modulate the coupling between the ocean carbon and nutrient cycles

through life-history traits such as cell size, elemental quotas, and ratios. Biodiversity is

mostly considered at broad functional levels, but major phytoplankton lineages are them-

selves highly diverse. As an example, Synechococcus is found in nearly all ocean regions,

and we demonstrate contains extensive intraspecific variation. Here, we grew four closely

related Synechococcus isolates in serially transferred cultures across a range of tempera-

tures (16–25˚C) to quantify for the relative role of intraspecific trait variation vs. environmen-

tal change. We report differences in cell size (p<0.01) as a function of strain and clade

(p<0.01). The carbon (QC), nitrogen (QN), and phosphorus (QP) cell quotas all increased

with cell size. Furthermore, cell size has an inverse relationship to growth rate. Within our

experimental design, temperature alone had a weak physiological effect on cell quota and

elemental ratios. Instead, we find systemic intraspecific variance of C:N:P, with cell size and

N:P having an inverse relationship. Our results suggest a key role for intraspecific life history

traits in determining elemental quotas and stoichiometry. Thus, the extensive biodiversity

harbored within many lineages may modulate the impact of environmental change on ocean

biogeochemical cycles.

Introduction

Phytoplankton link the ocean carbon, nitrogen, and phosphorus cycles through the biomass

ratios of these elements [1–4]. The Redfield ratio describes the oceanic carbon:nitrogen:phos-

phorus (C:N:P) stoichiometry and is used in models to assess export and productivity [5,6].

However, elemental ratios are variable in surface ecosystem [7,8], and ratios in the interior

ocean may change over long-time scales, thereby influencing the ability of the oceans to

sequester carbon relative to other nutrient elements [9]. Small cyanobacteria are currently esti-

mated to account for approximately 25% of marine net primary production [10]. Therefore, a

clear understanding of how key traits of marine cyanobacteria interact with environmental
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changes is needed to reduce uncertainties in ocean models of biogeochemistry and net primary

production.

A number of factors are known to influence stoichiometry and elemental quotas. Latitudi-

nal gradients in nutrient concentrations, temperature and community composition are domi-

nant predictors of stoichiometry. However, their respective influences are difficult to decipher

and accurately model as they strongly covary in the surface ocean. The nutrient hypothesis

predicts that storage of phosphate (P) in polyphosphates [11] and nitrogen (N) storage in phy-

cobiliproteins [12–15] are depleted under nutrient limitation, but elemental ratios approach

an optimum under fast-growth when abundances and activities of components like P-rich

ribosomes are high [2,16,17]. Temperature may directly influence the abundance of P-rich

ribosomes in cells through a compensatory mechanism for reduced transcriptional activity

under low temperature [18]. Future change is projected to cause an increase in sea surface tem-

peratures globally [19]. It is important to assess physiological responses to temperature in a

warning world.

Cellular elemental stoichiometry is also known to vary between major phylogenetic groups

[20]. Cell size is a master trait that has significant implications for ecology and biogeochem-

istry, as a number of subordinal traits depend upon this key trait [21]. The dominance of small

microbes in the open ocean facilitates rapid cycling of carbon by the microbial loop [22]. Sink-

ing velocity increases with cell size, and aggregates of cells may form larger particles, which

may more rapidly sink and lead to greater carbon sequestration [23]. The metabolic rate has

been reported to scale inversely with cell size, with the degree of variance dependent on phy-

logeny [23–27]. Nutrient diffusion and uptake are enhanced in smaller cells due to their

greater surface area to volume ratio [23,28]. Thus, cell size may influence elemental stoichiom-

etry through these subordinal traits. In the open ocean, cell size varies inversely with popula-

tion abundance [29], thereby exerting strong influences on ecology and biogeochemical

models that rely on abundance [6,10,30–32]. If temperature deviates from the thermal opti-

mum (Topt), variation in cell size may occur [23]. Key factors such as temperature and nutrient

availability are considered major factors in determining certain biogeochemical estimates,

such as C:N:P and net primary production, but it is also important to consider cell size [10].

At the genus level, Synechococcus is one of the most productive lineages in the global ocean

and plays an important role at the base of food webs along broad nutrient and thermal gradi-

ents [10]. Within Synechococcus, multiple clades have been cited as being differently thermally

adapted, with some clades more dominant in cold, nutrient-rich water relative to others

[33,34]. Variable thermal optima for growth may be key in contributing to differences in bio-

geographical dominance of clades [35] but unknown traits may influence its biogeography.

Variability in cell size among lineages of Synechococcus is known to exist [2,35] but has not

been thoroughly examined despite the roles that cell size may play in determining cellular

growth rate (μ), elemental quotas, and stoichiometry.

Here, we ask the following questions: 1) How does cell size vary between lineages of Syne-
chococcus? 2) Are elemental quotas and ratios systematically different between strains of Syne-
chococcus? 3) How does temperature influence growth rate, elemental quotas, and ratios of

Synechococcus? We selected temperature as a factor due to assess the response of phytoplank-

ton to well-documented current and projected anthropogenic increases in sea surface temper-

ature [36,37]. We hypothesized cell size, stoichiometry, and elemental quotas would all be

closely and strongly linked to Synechococcus strain identity. We also hypothesized strong ther-

mal effects on stoichiometry, elemental quotas, and growth rate, as per the translation-com-

pensation hypothesis, with a greater amount of phosphorus found in cells with elevated

growth rates or under lower experimental temperatures. To test these hypotheses, we exam-

ined four Synechococcus strains, representing a gradient in cell size, from two cold-adapted
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clades isolated from three locations across the world: CC9902, BL107 (clade IV), CC9311, and

ROS8604 (clade I) [38–41]. We selected four strains from two-cold adapted clades to investi-

gate potential differences in size, cell quotas, growth rate, and stoichiometry that evolutionary

thermal adaptations alone cannot account for. We present new findings about the potential

link between cell size and phylogeny of Synechococcus, raising new questions about the ecology

and biogeochemistry of picocyanobacteria.

Materials and methods

Strain information

Culture conditions. We incubated serially transferred cultures of Synechococcus
(CC9311, BL107, ROS8604, CC9902, representing two clades) (Fig 1, Table 1) in triplicate 1 L

flasks at 16˚C, 18˚C, 20˚C, 22˚C, 25˚C, and 27˚C. We supplied ambient light (60 μmol quanta

m-2 s-1) using white fluorescent lamps on a 12:12 light-dark cycle. Culture media (modified

artificial sea water) was prepared as described in Garcia et al. (2016) [2]. To ascertain that we

did not impose growth rates upon cultures and the observed growth rates are a product of

strain and environmental conditions, we used nutrient replete media and sampled prior to cul-

tures encountering nutrient limitation; we supplied nitrate (NO3
-) and phosphate (PO4

3−) in

concentrations of 125 μM and 10 μM, respectively. Cells utilized a mean of 17% of the supplied

nitrogen, and 22% of the supplied phosphorus, indicating cultures did not reach nutrient limi-

tation. We transferred media and diluted cultures using an open flame in a hood in order to

avoid contamination. We diluted weekly by approximately an order of magnitude to avoid

nutrient limitation and maintain a stable growth rate. While other questions, such as the role

nutrient limitation and temperature may serve in determining physiological responses in these

strains of Synechococcus, may be posed, chemostats (a continuous culture method) are likely

better suited to answer such questions rather than our serial transfer methodology [2].

Particulate Organic Matter (POM) measurements. We measured particulate organic

carbon (POC), particulate organic nitrogen (PON), and particulate organic phosphorus

(POP), as well as cell enumeration by flow cytometry, following the methods outlined in Gar-

cia et al. (2016) [2]. We sampled after seven doublings or one month to acclimate cells to the

temperature conditions. We vacuum filtered POC, PON (150 mL), and POP (50 mL) samples

onto pre-combusted GF/F Whatman glass filters (450˚C) at 10 psi. We dried particulate

organic carbon and particulate organic nitrogen samples at 50–80˚C for a minimum of 48

hours and pelletized prior to analysis using a Flash EA 1112 NC Soil Analyzer (Thermo-Scien-

tific, MA). We rinsed filtered particulate organic phosphorus samples with 0.17 M NaSO4,

immersed the filter in 2 mL of MgSO4, dried at 80˚C overnight, and combusted at 450˚C for 2

hours. We then added 5 mL of 0.2 M HCl and baked the samples at 80–90˚C. We measured

particulate organic phosphorus samples via colorimetric assay following the Bermuda Atlantic

Time-series methodology [51] using a Genesys 10S UV-vis spectrophotometer (Thermo-Sci-

entific) at 885 nm.

Cell counting

We measured culture cell density every two-three days and immediately prior to sampling

using a NovoCyte 1000 flow cytometer (Agilent) (excitation laser 488 nm, emission peak 575

nm) and forward scatter. We assessed growth rate using flow cytometry based on increases in

biomass measured across time points using the following equation: μ = ln(CD2)-ln(CD1))/

(T2-T1), in which CD2 and CD1 are cell counts in cells/mL-1 on the most recent count and the

previous count, respectively, and T2 and T1 represent time points. We accounted for recent

dilutions in accounting for growth rate; we counted cells prior to and after dilutions to ensure
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Fig 1. Phylogeny of examined Synechococcus strains. Color represents clades and the outgroup. Vibrio cholerae serves as the outgroup

for constructed Synechococcus phylogeny. CC9605 and WH8102 represent clades II and III, respectively.

https://doi.org/10.1371/journal.pone.0292337.g001
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growth rate was accurately assessed. We counted the cells at a flow rate of 35 μL/min. To assess

heterotrophic populations, we stained the cultures with SYBR Green (Thermo-Fisher) for 15

minutes at room temperature, vortexed them, and counted using the (excitation laser 488 nm,

emission peak 520 nm) channel. We recorded duplicate cell counts at each sampling.

Cell sizing

We measured cell diameter by microscopy under oil immersion at 1000x magnification using

the Axioplan2 and AxioView 1.4.5 sizing software (Carl Zeiss, Goettingen, Germany) with ref-

erence to a staged micrometer (Ted Pella Inc., Redding, CA). To estimate cell diameter, we cre-

ated a conversion factor determined by plotting the mean observed cell diameters and mean

forward scatter values for several strains of Synechococcus (Fig 2).

Additional thermal information

A literature review suggests the optimum growth in clades I and IV are between 22–25˚C

[46,48]. These temperatures are above the minimum temperature used in our experimental

conditions (16˚C). Additionally, these conditions allow us to test the upper thermal limits of

strains in both Clade I and IV, as well as several temperatures below this upper thermal limit

[46,48]. We attempted to probe under which thermal conditions cell growth was enhanced

and declined.

Statistical analyses

We used the R statistical software (www.r-project.org) to perform linear discriminant analyses,

analysis of variance, and multivariate analysis of variance analyses. We used the package PHY-

LIP (https://evolution.genetics.washington.edu/phylip.html) to construct a phylogenetic tree

using rpoc1 sequences [52–57].

Results

We observed distinct ranges in cell size linked to strain identity and phylogeny, whereas tem-

perature had weak effects. We found hierarchical effects on Synechococcus cell size. Clade I

strains ROS8604 and CC9311 exhibited the largest cell sizes, while clade IV strains BL107 and

CC9902 were substantially lower in cell size (Table 1, Fig 3). Inter-clade differences in the

effects on cell size were greater than intra-clade effects (Fig 3). However, our results indicated

strain served as a secondary phylogenetic effect on cell size; we observed the widest ranges and

highest coefficient of variation in cell size in CC9311 (S2 and S7 Tables). In contrast to the

effects of clade and strain on cell size, we observed weaker thermal effects on cell size (S1

Table). We found strain exerted a strong effect on cell size and temperature exerted weak

effects on cell size.

We next investigated the relative role of intraspecific trait variation vs. temperature on ele-

mental quotas. The cellular carbon quota (QC) displayed a strong positive relationship with

cell size (Fig 4A). A similar pattern was also seen between cell size and the nitrogen quota (QN)

and the phosphorus quota (QP) (Fig 4). As cell sizes were unique among the strains, significant

relationships between all cell quotas and strain identity were seen (S2 Table). However, we did

not find thermal effects alone on QP, QC or QN, but did observe the presence of thermal effects

when other factors, such as strain, were considered for each of these elemental quotas (S4 and

S5 Tables). Synechococcus represented a diversity of elemental quotas within a limited selection

of strains; QC ranges from 35.4 fg to 520 fg, QN ranges from 10.0 fg to 96.7 fg, and QP ranges

from 1.23 fg to 14.7 fg. The Synechococcus strains we studied exhibit elemental quota ranges of
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14.7 times for QC, 9.7 for QN, and 11.4 for QP (Fig 4). The degree of variability in elemental

quotas is dependent upon lineage; for example, Clade I strains exhibited a wider range in ele-

mental quotas than Clade IV strains (Fig 4A and 4C). We found strain exerted strong effects

on elemental quotas, while the role of temperature was weak.

The intraspecific differences in cell size influenced stoichiometry, while the degree and pre-

cise nature of the influence varied (Fig 5). We observed significant relationships between strain

and both the C:N and N:P ratios (Fig 5B, S2 Table). In contrast, we found no relationship

between strain and C:P ratio (Fig 5C, S2 Table). However, when stoichiometric response was

examined by clade, we did observe significant differences in N:P and C:P (S3 Table and S3 Fig)

but not for C:N ratio (S3 Table and S3 Fig). We found no effects of temperature alone on the

Fig 2. Cell diameter is linked to forward scatter. Cell size measured using flow cytometry (forward scatter, FSCH) and microscopy are highly correlated (r2 =

0.83, p = 0.001).

https://doi.org/10.1371/journal.pone.0292337.g002
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N:P, C:N, or C:P (S1 Table). While we did not observe a significant relationship between cell

size and C:N or C:P, we did determine a highly significant, inverse relationship between cell

size and N:P (Fig 5D–5F, S6 Table). We observed the greatest range in C:N for CC9902 (4.10–

10.0), and the lowest range in C:N in BL107 (6.5–8.0). We found CC9902 was the strain with

the greatest range in N:P (9.6–22.0), with the smallest range found in BL107 (11–19). We

found C:N mean values were 6.30 (CC9902), 7.30 (BL107), 8.60 (CC9311), and 6.60

(ROS8604). We observed the lowest C:P mean (ROS8604, 113.0) for the largest strain exam-

ined (CC9902, 155.0; BL107, 145.0; CC9311; 150.0). We found cell size and strain influenced

stoichiometry, while thermal effects were weak.

We next detected a link between cell size, growth rate and elemental quotas, with a weaker

influence of temperature. We assessed the cellular phosphorus quota (QP) and growth rate at

different temperatures in Clade IV and I. We observed an inverse relationship between growth

Fig 3. Intraspecific cell size variation among Synechococcus strains. Ranges in cell size (FSCH) across strains of Synechococcus. We compared the effects of

strain on cell size using a one-way ANOVA and Tukey’s honest significance difference (HSD) test, represented by compact letter display (CLD).

https://doi.org/10.1371/journal.pone.0292337.g003
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rate and QP, QN, and QC (Fig 6A–6C and S6 Table). Furthermore, growth rate was influenced

by temperature only when strain was also considered as a factor likely reflecting the additional

effect of adaptation (Fig 6D and S5 Table). Cell size and growth rate varied as a function of

both clade and strain, with the two smaller strains (clade IV) demonstrating a greater growth

rate than the two larger strains (clade IV) (Fig 6E–6G, S2 and S4 Tables). We found cell size

and strain influenced elemental quotas, with a reduced role for temperature.

Discussion

We observed substantial intraspecific differences in stoichiometric responses among Synecho-
coccus strains. We reported higher C:N values relative to previous research conducted using

the warm-adapted clade IIIa (WH8012 and WH8103) [33,58]. We found lower C:P ranges in

clades I and IV (52–155) relative to those reported for clade IIIa (121–165) [58]. However,

while the collective N:P ratios varied between phyla, the grand mean of N:P ratios across all

strains of our nutrient-replete Synechococcus during exponential growth (13.7) aligned with

previously reported values for WH8103 (clade IIIa) (15) and WH7803 (clade V) (13.3) [58,59].

This alignment was only observed during the exponential growth phase (in which we collected

samples) emphasizing the importance of growth stage [23,60,61]. Additionally, strains across

clade I and IV consistently deviated from the Redfield proportions, supporting the idea that

isolates differ from the average ratio of 106:16:1 [5,13]. Our findings suggest phylogeny plays a

major role in the stoichiometric response of Synechococcus.
Our estimates of cell size clearly partitioned isolates into distinct size classes within the

commonly identified range for Synechococcus [32]. Our estimates for cell diameter were con-

siderably smaller than some previous estimates [62]. Cell diameter was inversely related to

growth rate [12,63], perhaps due to differences in surface area to volume ratios [23]. When

combined, low nutrient quotas and high growth rates enable small cells to reach high abun-

dances, particularly in nutrient-poor waters [64]. However, the advantages of being small are

counteracted by the costs associated with grazing pressure, which accelerates the trophic trans-

fer of carbon through ecosystems. Conversely, large cells have a higher sinking velocity and rel-

ative contribution to carbon export [23]. Modeled estimates of net primary production (NPP),

which rely on estimates of QC (NPP = μ x QC x Ncell) (Ncell represents number of cells) and are

typically applied to broad phytoplankton groups [6,31]; as differences in cell size may affect

differences in carbon flux, our reported variability in cell size within Synechococcus—and the

associated linkage with QC—highlight the importance of considering strain related variability

in QC. While our results suggest intraclade differences in cell size (S3 Fig and S3 Table) (clade I

Fig 4. Elemental quotas scale with cell size across Synechococcus strains. Fig 4A depicts the carbon cell quota (QC) with forward scatter, Fig 4B depicts

nitrogen cell quota QN with forward scatter, and Fig 4C depicts QP with forward scatter. Elemental quotas are depicted in femtomoles (fmol). Point shape

represents strain plotted. Point color represents temperature. We performed principal component regressions for each elemental quota and cell size.

https://doi.org/10.1371/journal.pone.0292337.g004
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Fig 5. Interactions between Synechococcus strain and stoichiometry, and cell size and stoichiometry. We depict effects of strain on N:P (Fig 5A), C:N (Fig 5B),

and C:P (Fig 5C) stoichiometry. We depict effects of cell size on N:P (Fig 5D), C:N (Fig 5E), and C:P (Fig 5F) stoichiometry. Color represents temperature (Fig 5A–

5C). We compared the effects of strain on stoichiometry (Fig 5A–5C) using a one-way ANOVA and Tukey’s honest significance difference (HSD) test, and are

represented by compact letter display (CLD). Elemental ratios were calculated using femtomoles (fmol).

https://doi.org/10.1371/journal.pone.0292337.g005

PLOS ONE Intraspecific trait variation drives C:N:P in Synechococcus

PLOS ONE | https://doi.org/10.1371/journal.pone.0292337 March 18, 2024 10 / 18

https://doi.org/10.1371/journal.pone.0292337.g005
https://doi.org/10.1371/journal.pone.0292337


strains are larger than those of clade IV), we only examined two strains from each clade, and

additional research is necessary to more definitively assess this potential relationship. Our

results align with previous literature establishing variability in cell size within related phyto-

plankton groups [65–67]. Our results, which indicate a large range in Synechococcus cell size in

a small number of strains, suggest it is important to consider this variability in cell size by phy-

logeny when modeling net primary productivity.

We found temperature exerted little to no direct effect on cell quotas and stoichiometry

under nutrient replete serial transfer growth, consistent with previous findings of weak to no

thermal effects on growth under nutrient replete conditions [68,69]. Strain-specific tempera-

ture responses have been reported in Prochlorococcus [60] but the lack of response observed in

a previous study on Synechococcus was proposed to result from studying Synechococcus exclu-

sively at the genus level, and thus only dominant taxa were assessed [70]. As temperature is

believed to influence the biodiversity and distribution of phytoplankton, and the optimal C:N:

P content is known to vary based on taxonomy or specific oceanic regions [8,20], we also ques-

tioned how C:N:P varies across isolates. Although temperature is thought to affect the C:N:P

ratios of phytoplankton through the translation-compensation hypothesis [18], we did not

find this effect in our assessment of multiple strains of Synechococcus across two clades from

three distinct regions. We report the observation of indirect thermal effects (e.g., thermal

effects as a function of strain). A possible explanation for the lack of strong direct thermal

effects may be the lack of our experimental assessment of the lower thermal limits of the four

Synechococcus strains. Thus, we are unable to make statements about the lower temperature

ranges (i.e., approaching thermal limits), where Synechococcus may be capable of growth

under significant thermal stress. While we did not probe the lower thermal limits of the

Fig 6. Influence of growth rate on elemental quotas, cell size, and stoichiometry. Growth rate and elemental quotas QP (Fig 6A), QN (Fig 6B), and QC (Fig

6C), cell size (Fig 6D), N:P (Fig 6E), C:N (Fig 6F), and C:P (Fig 6G). Color represents temperature (Fig 6A–6D) or stoichiometry (Fig 5E and 5F). Point shape

represents strain. We performed principal component analyses of μ and QP (Fig 6A), QN (Fig 6B), QC (Fig 6C) and cell size (Fig 6D), represented by the

regression lines. Elemental ratios were calculated using femtomoles (fmol).

https://doi.org/10.1371/journal.pone.0292337.g006

PLOS ONE Intraspecific trait variation drives C:N:P in Synechococcus

PLOS ONE | https://doi.org/10.1371/journal.pone.0292337 March 18, 2024 11 / 18

https://doi.org/10.1371/journal.pone.0292337.g006
https://doi.org/10.1371/journal.pone.0292337


Synechococcus strains used in our experimentation, our results collectively suggest a weak role

for thermal effects, which aligns with previous findings [68,69].

We observed some disparities in previously reported and recorded thermal optima

(Table 1). Our reported TOpt of CC9311 (22˚C) is three degrees lower than that reported by

Doré et al. (25˚C) [48]. Research conducted by Breton et al indicates BL107 has a TOpt of 24˚C

[46]. Our reported BL107 TOpt is 22˚C; this have arisen as a consequence of our thermal condi-

tions including 22˚C and 25˚C rather than 24˚C. We observed the largest disparity in previ-

ously reported and our observed TOpt in ROS8604; previous literature reports TOpt for this

strain at 25˚C, while our experimentation yielded a TOpt at 18˚C [48,50]. Our experimental

conditions differed in several ways, which may contribute to the discrepancies in our results

[48]. Our cultures were grown on a 12 hour light:dark cycle at 60 μmol quanta m−2 s−1 in con-

trast to the continuous lighting conditions previously used [48,50]. Additionally we used mod-

ified Artificial Sea Water medium rather than PCR S11 [48,50]. The isolation temperature of

ROS8604 was lower than those probed by our experimental conditions (13˚C); however, there

is reportedly no growth below 14˚C [50]. Similarly, the reported thermal minimum for BL107

is 10.37˚C [46], and growth declines considerably below 16˚C. We grew Synechococcus within

a broad temperature range of 16–27˚C, with 27˚C as the upper thermal limit under our experi-

mental conditions. Another explanation is tied to the serial transfer method of culturing Syne-
chococcus cells. BL107 and CC9311 demonstrated the greatest strain and temperature

differences in growth rate at 16˚C (S5 Table). This roughly aligns with findings of Varkey et al.

(2016), in which BL107 experiences a decrease in growth rate at lower temperatures, albeit the

lowest temperature probed in our experimentation was 16˚C rather than 18˚C [71]. Here,

nutrient levels are elevated possibly resulting in nutrient storage, which may have obscured the

role that temperature may play in determining physiological response cell quotas and stoichi-

ometry. Thus, a temperature effect may be more pronounced in polar regions or in conjunc-

tion with severe nutrient limitation where nutrient storage is depleted. While we observed

some discrepancies in previously reported thermal optima for the Synechococcus strains used

in our experimentation, our experimental conditions differ in several ways.

The four Synechococcus strains differ in their background in terms of adaptation to environ-

mental nutrients, and have distinctive thermal ranges. CC9902 and CC9311 are both mesotro-

phic strains of Synechococcus, adapted to higher concentrations of phosphorus and iron, yet

have very distinct physiological responses, which suggests the role of strain is greater than that

of adaptation to environmental nutrients in determining environmental responses (Table 1)

[42,44,47,49]. This becomes more pronounced as BL107 is an oligotrophic strain, yet its cell

size and elemental quotas more closely resemble those of CC9902 (Figs 3–6). As previously

reported thermal ranges for these Synechococcus strains are similar, and thus we believe it is

unlikely we conducted research in drastically different fractions of the upper and lower ther-

mal limits of each strain (Table 1).

The growth rate hypothesis, as articulated in Elser et al. 2000, posits that variations in cellu-

lar allocation affecting ribosomal abundance alongside growth in turn affects cellular stoichi-

ometry [72]. The hypothesis states there is an increase in phosphorus and RNA relative to the

amounts of nitrogen and proteins that are present [73]. One specific test of the growth rate

hypothesis emphasizes the relationship between the maximum growth rate (μmax) and phos-

phorus content [74]. Another way of testing the growth rate hypothesis is in terms of physiol-

ogy, or growth rate (μ); this test examines a given genotype and subjects this clonal organism

to variation in environmental conditions; our experimentation took a similar approach, using

four Synechococcus strains and varying temperature [75]. There remains considerable debate

regarding the consistency of the regulation of μ across all environmental parameters which

may regulate growth, such as nutrients and temperature [3], with some positing the specific
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variable limiting growth may strongly affect the outcome [3,72]. Research with Synechococcus
under N and P limitation indicates nucleic acid phosphorus does not drive Synechococcus stoi-

chiometry within the ranges of growth examined [2]. Some interpretations of the growth rate

hypothesis state that when temperature controls growth, the increased speed of cellular pro-

cesses may mask the effects on stoichiometry [3]. As we report little to no thermal effects (S1

and S5 Tables), the maximum growth rate should remain the same. Our findings are in agree-

ment with this interpretation of the growth rate hypothesis, and suggest the overall effect of

temperature, both within and across strains, has a small physiological effect on growth rate

(Fig 6).

Phytoplankton play an essential role in biogeochemical cycling through the ratios of car-

bon, nitrogen, and phosphorus inside cells. It is crucial to understand the environmental

effects on picocyanobacterial traits in order to provide more accurate projections of net pri-

mary production (NPP) and their contribution to biogeochemical cycling. We provide evi-

dence that intraspecific variation may play a role in the stoichiometric response and cell size of

Synechococcus. Our findings of distinct size classes within Synechococcus evoke those of other

phytoplankton phyla, and thus underscore the importance of considering intraspecific trait

variation in biogeochemical and productivity models to generate accurate projections of future

changes. Our findings may be used as a foundation for future research for other multi-factorial

experiments, such as determining the role of temperature and nutrient supply on these strains

and clades of phytoplankton in response to projected change.

Supporting information

S1 Fig. Thermal effects on elemental quotas and stoichiometry of Synechococcus. Statistical

analysis was performed using ANOVA. Points are colored by strain. Horizontal lines represent

the median value for elemental quotas or stoichiometry. Regions highlighted in yellow repre-

sent the experimental conditions at which the highest growth rate was recorded.

(TIF)

S2 Fig. Continued biomass growth past sampling date without addition of further nutrient

supply indicates Synechococcus cultures used are nutrient replete. Strain is represented by

point color, sampling day (BL107, CC9311: day 14, ROS8604, CC9902: day 40) is highlighted

in yellow.

(TIF)

S3 Fig. Cell size is linked to Synechococcus clade. Ranges in cell size (FSCH) across clade IV

and I of Synechococcus. We compared the effects of clade on cell size using a one-way ANOVA

and Tukey’s honest significance difference (HSD) test and are represented by compact letter

display (CLD).

(TIF)

S4 Fig. N:P and C:P is linked to Synechococcus clade. Ranges in stoichiometry across clade

IV and I of Synechococcus. We compared the effects of clade on stoichiometry using a one-way

ANOVA and Tukey’s honest significance difference test (HSD), and are represented by com-

pact letter display (CLD).

(TIF)

S1 Table. One-way ANOVA (temperature) analyses for Synechococcus experiments. Signifi-

cance is denoted with an asterisk (*).
(CSV)
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S2 Table. One-way ANOVA (strain) analyses for Synechococcus experiments. Significance

is denoted with an asterisk (*).
(CSV)

S3 Table. One-way ANOVA (clade) analyses for Synechococcus experiments. Significance is

denoted with an asterisk (*).
(CSV)

S4 Table. Two-way ANOVAs for Synechococcus experiments (clade, temperature). We per-

formed two-way ANOVAs to assess the effects of multiple independent variables on a depen-

dent variable. Significance is denoted with an asterisk (*).
(CSV)

S5 Table. Two-way ANOVAs for Synechococcus experiments (strain, temperature). We

performed two-way ANOVAs to assess the effects of multiple independent variables on a

dependent variable. Significance is denoted with an asterisk (*).
(CSV)

S6 Table. Principal component regressions and logarithmic regression for Synechococcus
experiments. Significance is denoted with an asterisk (*).
(CSV)

S7 Table. Coefficient of variation in cell size of Synechococcus strains.

(CSV)

S8 Table.

(CSV)

S1 File.

(ZIP)
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