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This dissertation is a comprehensive account of the low-Reynolds number (Re)

flow over a cambered airfoil for a wide range of angles of attack with a focus on the

dynamics of boundary layer separation and transition. The unsteady and complex phe-

nomena of the transitional flow are analyzed through a combination of direct numerical

simulations (DNS), large-eddy simulations (LES), experiments, and development of La-

grangian theory and methods.

A discontinuous Galerkin spectral element method (DGSEM) is used to model

the compressible Navier-Stokes equations in two and three dimensions. The DGSEM

generates high-order accurate results with low dispersion and diffusion errors and has
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been developed to include kinetic-energy conserving volume fluxes, tools to efficiently

track Lagrangian fluid tracers, and computation of higher wall-normal velocity deriva-

tives. The code is benchmarked through a series of Navier-Stokes flows using different

DG variants and polynomial orders.

High-fidelity DNS in three dimensions show that the transitional flow over a

cambered NACA 65(1)-412 airfoil at Re = 2×104 swiftly changes from a state of laminar

separation at mid-chord without reattachment to a laminar separation bubble (LSB)

at the leading edge with a turbulent boundary layer. The bifurcation occurs within an

angle-of-attack change of two degrees and is accompanied by a rapid increase of the

lift and decrease of the drag force, which is observed in computations and experiments

likewise. Each flow regime is governed by different dynamics, instabilities, and wake

structures that change with the transition location of the separated shear layer. The

kinematic aspects of flow separation are further investigated in the Lagrangian frame,

where the initial motion of upwelling fluid material from the wall is related to the

long-term attracting manifolds in the flow field.

An objective finite-time diagnostic for instabilities in shear flows based on the

curvature of Lagrangian material lines is introduced. By defining a flow instability in

the Lagrangian frame as the increased folding of lines of fluid particles, subtle pertur-

bations and unstable growth thereof are detected early based solely on the curvature

change of material lines over finite time.
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Chapter 1

Introduction

1.1 Motivation

As interest in practical small-scale flying devices, turbomachinery at various

scales, and high-altitude unmanned aerial vehicles (UAV) proliferates, it becomes in-

creasingly important to understand and characterize flows at moderate Reynolds num-

ber (Re). The aerodynamics of airfoils at low to intermediate Reynolds numbers in the

range 104 ≤ Re ≤ 105 are commonly characterized by an initially laminar boundary

layer, its separation under an adverse pressure gradient, and transition to turbulence of

the separated shear layer [2]. If the transition occurs upstream of the airfoil’s trailing

edge, the flow can reattach and form a laminar separation bubble (LSB). Because the

transition from laminar to turbulent flow can yield significant and sudden changes in

the flow topology (and forces) with minor changes in flow conditions, accurate predic-

tion and control of such events are of interest for the operation of aerodynamic devices

at moderate Reynolds numbers.

The control and prevention of flow separation can yield a substantial extension

of the operating range of such aerodynamic devices, but the dynamics of flow separation
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are highly non-linear and make the design of an effective passive and active flow control

system challenging. While some flow control concepts work by completely removing

or re-energizing the separated fluid through suction and blowing (see e.g. Schlichting

and Gersten [3]), other techniques take advantage of instabilities and non-linearities in

the flow by using more compact zero-net mass flux (ZNMF) devices such as synthetic

jets [4, 5, 6]. Given the limited power of these ZNMF instruments, the design of an

effective and efficient control strategy should not only focus on directly changing the

global events in the flow, but rather on understanding and controlling the more subtle

and unsteady features of separation.

To capture these unsteady events, highly accurate flow field data and tools to

to extract the relevant structures are required. Direct numerical simulations (DNS)

generate space and time-resolved flow field data without employing user-defined models

and are therefore ideally suited to research the complex dynamics of flow separation.

They are, however, computationally expensive and require highly accurate and efficient

numerical schemes. The discontinuous Galerkin spectral element method (DGSEM)

is such a scheme and combines high-order accuracy with adaptability to complex flow

problems, which makes it ideally suited to tackle the dynamics of flow separation.

1.2 Simulation of low-Reynolds number airfoil flow

Modeling transitional flow is challenging and first-principle methods, such as

XFoil [1], fail to accurately predict the transition and the aerodynamic forces [7]. Nu-

merical methods based on the Reynolds-Averaged Navier-Stokes (RANS) equations are

a widely used design tool for complex geometries and turbulent flow, but the solution

is neither time nor space resolved, depends on the choice of turbulent closure models

[8], and fails to predict transitional flow characteristics [9]. Large-eddy simulations
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(LES) [10] or detached-eddy simulations (DES) [11] capture the larger structures of

the unsteady flow, but similarly employ user-defined models to account for the the

sub-grid scale fluid motions. In direct numerical simulations (DNS), the Navier-Stokes

equations are computed without additional modeling terms and the fluid motion is

resolved in space and time. The independence of user-defined models and the high

accuracy make DNS the primary choice to model flow instabilities and transition [12].

Balancing the high accuracy required to create high-fidelity datasets with com-

putational efficiency is demanding on numerical and computational methods. The DNS

community generally agrees that high-order approximations are necessary to obtain

accurate results with low diffusion and dissipation [12]. The high-order discontinuous

Galerkin (DG) method is one of the high-order methods that has emerged as a dis-

cretization for DNS [13, 14]. DG combines high-order accuracy with grid complexity

and parallel efficiency. A down-side of high-order methods is that they can be temper-

amental, i.e. they can be unstable or produce spurious oscillations if insufficient grid

resolution is used. Filter functions and artificial viscosity have been successfully ap-

plied to remedy this problem [15] and much of the recent high-order method research

has gone towards the development of provably stable schemes, that preserve kinetic

energy and/or entropy [16, 17].

High-fidelity simulations of airfoils in the transitional flow regime have only

been subject to research for the past decade and to date, only few DNS results in the

Reynolds number range 104 ≤ Re ≤ 105 are reported in literature, e.g. [18, 19, 20, 21].

The premier challenge of DNS is that it is computationally intensive to resolve all

spatial and temporal scales of fluid motion, which limits their application to low and

moderate Reynolds numbers and small computational domains [12]. Although airfoils

are generally part of more complex flow systems, the high computational cost has

restricted research to isolated configurations, e.g. a wing section in free stream or
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a single blade section in a turbine cascade. These high-fidelity results are, however,

fundamental to the understanding of complex flow phenomenons such as boundary

layer separation, instability growth, or turbulent reattachment.

Airfoil simulations in free stream have been primarily carried out on the sym-

metric NACA 0012: Shan et al. [18] study the flow separation on a NACA 0012 airfoil

at a chord-based Reynolds number of Re = 1 × 105 through DNS and found that a

three-dimensional instability emerges from the interaction of the vortices in the wake.

For the same airfoil, Jones et al. [19] study the laminar separation bubble at Re =

5 × 104 at 5◦ incidence with a span of 0.2c and report on self-sustaining turbulence

from the LSB flow. The authors later elaborate on the receptivity of the LSB and

found that acoustic feedback from instability waves originating from the vortex shed-

ding at the trailing edge induce a global instability [20, 22]. Sandberg and Jones [23]

further show that a serrated trailing edge does not significantly affect the upstream

flow field but results in some variations of the structures within the separated shear

layer. Almutairi et al. [24] study the intermittent bursting of a LSB on a NACA 0012

through LES and show that a spanwise domain size of 50% of the chord was neces-

sary to capture the event. A sufficiently long span is therefore required to accurately

capture the stability properties of LSBs on airfoils. Lee et al. [9] compare two- and

three-dimensional simulations, as well as experiments, of the NACA 0012 at Reynolds

numbers from Re = 1 × 104 to Re = 5 × 104 and show that the RANS method fails

to accurately predict the aerodynamic characteristics. Aerodynamic statistics are also

evaluated by Balakumar [25] for simulations at Re = 5 × 104 and 1 × 106. The effect

of a wavy leading edge configuration on a NACA 0012 for Reynolds numbers of Re =

1× 104 and 5× 104 is studied by Serson et al. [26] and Visbal and Garmann [27] later

reported on the deep stall dynamics of a pitching NACA 0012 at Re = 2× 105.

Despite the rich literature on the symmetric NACA 0012 airfoil, in engineering
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applications one usually encounters cambered profiles that generate optimal perfor-

mance for a given operating condition. The SD 7003 is a cambered airfoil designed for

low-Reynolds number operations that has attracted attention in the last decade. The

airfoil allows for a thin LSB under various conditions and performs well as the LSB

forces the flow to transition and reattach. Several studies on implicit LES have been

published on the transitional flow over this wing: Galbraith and Visbal [28] report on

the bursting of a LSB at a Reynolds number of Re = 6 × 104 and Visbal [29] later

addresses the dynamic stall of a plunging SD 7003. For the same airfoil, Uranga et al.

[7] show the shift from laminar, separated flow at Re = 1 × 104 to transitional flow

with turbulent reattachment past a LSB at Re = 2.2 × 104 and Re = 6 × 104. LES

results on the SD 7003 by Beck et al. [30] are in overall good agreement with data in

literature but show discrepancies in the skin friction coefficient distribution, which are

attributed to the influence of the far-field boundaries and hence an insufficient domain

size. Zhang et al. [21] compare the flows over the symmetric NACA 0012-64 and the

cambered NACA 4412 at Re = 1× 104 and 10◦ incidence and report a significant de-

lay of the laminar-turbulent transition for the cambered airfoil. DNS of a compressor

section include the work by Zaki et al. [31], who investigate the effect of free-stream

turbulence on the transition of a NACA-65 compressor cascade at Re = 138,500. Tur-

bulent inflow conditions are also investigated by Sandberg et al. [32], who compute the

flow in a LPT turbine cascade at a Reynolds number of 60,500.

Compressor blades owe their shape to the adverse pressure gradient against

which they operate and their slender profile and small camber allows the flow to remain

attached over most of the airfoil under operating conditions. In turbomachinery, for

example, the blades in axial flow compressors are commonly selected from the NACA

65-series [33, 34] or Eppler series. The profile of the NACA 65(1)-412 differs from

the canonical NACA 0012 or the SD 7003 in that it is intended to extend the region

5



(a) NACA 0012 (b) SD 7003 (c) NACA 65(1)-412

Figure 1.1: Pressure coefficients (black) for inviscid flow over airfoils (grey)
at 0◦ incidence. NACA 0012 (a), SD 7003 (b), and NACA 65(1)-412 (c) [1].

of laminar flow over the wing. Figure 1.1 summarizes the pressure coefficients for

the NACA 0012, SD 7003, and NACA 65(1)-412 at 0◦ incidence. It is evident that

the pressure distribution of the NACA 65(1)-412 differs significantly and features an

extended favorable pressure gradient over half of the wing. While the boundary layer

in airfoil flows with a Reynolds numbers larger than 106 generally transitions upstream

of the location of the pressure minimum and is therefore likely to withstand the adverse

pressure gradient, the laminar boundary layer in low-Reynolds number flow is prone

to separate and thereby dictates the airfoil performance in this regime [2]. The airfoil

shape is therefore central to the transition characteristics of the wing.

For the NACA 65(1)-412 airfoil at moderate Reynolds number, Tank et al. [35]

show that laminar separated flow rapidly transitions and forms a LSB at the leading

edge within one degree change of the flow angle. Although jumps in the aerodynamic

forces are not unique to this airfoil (cf. Lee et al. [9]), its particular shape favors laminar

flow over a long range of angles with a nearly linear lift trend until the transition of the

boundary layer results in the sudden formation of a LSB at the leading edge. Because

airfoils used in gas compressor and turbine configurations (e.g. as inlet guide vanes)

are commonly assembled as arrays, they are directly impacted by the unsteady wake

dynamics of the upstream assembly. The wake dynamics, however, are only sparsely
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discussed in the literature discussed above.

1.3 The kinematics of flow separation

The aerodynamics of airfoils in the low to moderate Reynolds number regime

are governed by the separation and transition of the laminar boundary layer. In steady

flows, separation from a no-slip wall is well-known to be exactly identified by Prandtl’s

condition through a point of zero skin friction and a negative friction gradient in

wall-tangential direction. For unsteady flows, similar first-principle criteria were only

recently developed by Haller [36]. He proved that for time periodic flows, an objec-

tive Lagrangian separation point is located at the averaged zero-skin-friction location.

Haller further showed that flow separation from a no-slip boundary starts with an up-

welling of Lagrangian fluid tracers upstream of the separation point and that those

particles are drawn towards an unstable manifold in the flow while they are ejected

from the wall. This so-called asymptotic separation profile is anchored at the separa-

tion point and it guides fluid particles as they break away in the vicinity of the wall

(see Haller [36] and Weldon et al. [37]).

To illustrate this Lagrangian separation behavior, we consider the time periodic

flow over a circular cylinder in Figure 1.2. A set of fluid particle tracers is initialized in a

layer parallel to the cylinder wall and is color-coded based on the linear approximation

of the dividing asymptotic separation line. As the particles are advected, they undergo

an upwelling motion, which is visible through an increasingly sharp spike in the material

lines that are initially parallel to the wall. The spikes of particles are asymptotically

drawn towards the attracting separation line. Mathematically, these attracting lines

are interpreted as unstable manifolds.

In general, stable and unstable manifolds can be identified by extracting ridges
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Figure 1.2: Snapshots of color coded particles advected over a circular
cylinder near the separation point. Particles are divided in an upstream (red)
and downstream (blue) group by the linear approximation of the separation
line (green). Also visualized are the instantaneous zero-skin-friction point

(green dot) and streamlines (black).
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in the Finite-Time Lyapunov Exponent (FTLE) fields. These FTLE fields are de-

termined from the maximum deformations in flow maps that are in turn constructed

from integrated particle tracer fields in forward and backward time, respectively. The

ridges usually demarcate a hyperbolic Lagrangian Coherent Structure (LCS) [38, 39].

Although a hyperbolic LCS can be identified through local maxima in the FTLE field,

Haller [40] shows that the FTLE field has ridges in regions of high shear which are

non-hyperbolic [41].

Even though hyperbolic LCS are mostly near zero-flux material lines [42], they

fall short in the identification of the start of flow separation at the boundary wall. Be-

cause of the zero-velocity no-slip condition, the wall is naturally a set of non-hyperbolic

fixed points. As a result, the backward time (attracting) FTLE cannot intersect the

wall, but envelopes the aerodynamic body. The FTLE can, hence, only identify long-

term attracting and repelling surfaces away from the wall rather than the onset of

separation.

Based on the initial upwelling and subsequent spike formation described above,

Serra et al. [43] developed a kinematic methodology to extract the Lagrangian backbone

of separation, i.e. the theoretical centerpiece of the forming spike in wall-bounded flows

from the analysis of the curvature of material lines. If the backbone connects to the wall,

we call the separation on wall, and the intersection point the Lagrangian spiking point.

This analysis therefore yields a criterion for determining the start of flow separation

in the Lagrangian frame. The Lagrangian spiking point can also be directly related

to higher-order derivatives of the normal velocity at the wall and therefore provides a

criterion for the origin of flow separation in the kinematic sense using only wall-based

quantities [43].

Historically, the control of flow separation has focused on techniques such as

boundary layer suction and blowing [3] which, although very effective, require the
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use of external pumps or compressors and can be very difficult to install, especially

if the aerodynamic body is small. Alternative approaches include zero-net mass flux

devices such as synthetic jets [4, 5, 6, 44], which use the working fluid itself by inducing

instabilities in the shear layer. With the objective to design effective and efficient flow

controllers, knowledge of the Lagrangian separation manifold (asymptotic separation

line, attracting LCS and spiking point) might therefore inspire new control concepts

or improve existing ones.

1.4 Objective identification of kinematic instabili-

ties

The flow over airfoils at moderate Reynolds number is governed by the separa-

tion and possible transition and reattachment of the laminar boundary layer. Funda-

mental to the transition dynamics of the laminar shear layer is the is the development

of instabilities and the question whether a local disturbance to an otherwise unper-

turbed base flow grows or recedes in space and time. In linear stability analysis (LSA),

for example, a disturbance is assumed to have the form of complex waves. The sta-

bility of these waves can be determined by an eigenvalue problem that follows from

substitution into linearized governing flow equations [45]. The theoretical treatment

of instabilities has been subject of research for many decades (see Bayly et al. [46],

Huerre and Monkewitz [45], Drazin and Reid [47], Schmid [48], and Theofilis [49], for

a comprehensive overview).

Many flows, however, do not have a well-defined base flow. Either, there are

multiple possible frame of references and/or a complex time dependency makes it

impossible to define a base flow, preventing LSA. As stated in (Drazin and Reid [47],

p. 354) “the meaning of instability is not clear when the magnitude of the basic flow
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changes substantially with time” and “the method of normal modes is not applicable”.

Simple examples include the flow over a moving flat plate initially at rest [47] or the

onset of vortex shedding in the wake behind a circular cylinder [50]. More complex

examples are plentiful, such as the flow interaction of two flapping wings or maneuvering

flying objects (see for example the flight mechanics of a dragonfly [51]).

Moreover, applying LSA to flows of general complexity can be challenging.

While methods have been proposed to this end (Theofilis [49], Ranjan et al. [52]),

they are recent and require significant computational resources and complicated algo-

rithms whose limitations and by extension generality remain to be assessed. Even more

importantly, perhaps, is that the stability properties of flows often vary in time and

non-normal growth can drive the perturbations rather than the most unstable mode

predicted by LSA [48]. The introduction of a finite-time horizon to the stability analy-

sis and description of flow instabilities with a non-modal approach has been shown to

reveal new perturbations dynamics [53, 48].

Since there is no limit to the complexity of flow problems, an instability should

not depend on the frame of the observer. An analysis based on velocity components or

the streamlines is inherently non-objective, as these are not invariant under coordinate

transformations and always defined with respect to a reference frame. Velocity gradient

based flow identifiers and visualizers, including vorticity and other Eulerian vortex

identification criteria, such as the Q-criterion by Hunt et al. [54] or the λ2-criterion by

Jeong and Hussain [55], are frame-invariant in the Galilean sense, i.e. their values are

consistent in coordinate systems moving at a constant relative speed. A quantity that

remains invariant under any rotation or translation of the form

y = Q(t)x + b(t), (1.1)

is called objective, where Q(t) is an orthogonal tensor and b(t) denotes a translation
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vector. From this argument, Haller [56], Serra and Haller [57], Haller et al. [58] propose

objective definitions of a vortex.

Material invariance is also the basis for the objective definition of hyperbolic

Lagrangian Coherent Structures (LCS) [56] and Objective Eulerian Coherent Struc-

tures (OECSs) [57]. In general, hyperbolic LCS are manifolds that attract or repel

fluid material and can be identified through ridges in the Finite-Time Lyapunov Expo-

nent (FTLE) fields [39]. Although maxima in the FTLE identify potential LCS, it has

been shown that non-hyperbolic ridges can occur in regions of high shear [40]. Haller

[41] presents a methodology to resolve this inconsistency, but admits that the required

computation is challenging and sensitive to noise. Babaee et al. [59] discuss the compu-

tation of reduced-order FTLEs based on the optimally time-dependent (OTD) modes

associated with finite-time instabilities. The OTD modes were previously introduced

by Babaee and Sapsis [60] and are shown to capture transient instabilities and their

direction. For a more comprehensive literature overview of existing methods to iden-

tify transient instabilities and perform dimensionality reduction, we refer the reader to

Babaee et al. [59] and the references therein.

Invariably, both the FTLE and the variational Coherent Structures [56, 57] are

based solely on the stretching of fluid material. Divergence of particle trajectories,

however, may require a long integration time to manifest. This is an undesired feature

if one seeks to detect unstable modes in shear flows early. Only recently, Serra et al.

[43, 61], Klose et al. [62] have focused on more subtle short-term events in Lagrangian

fluid trajectories. Using the curvature of near-wall material lines, they identified the

point early fluid upwelling from a no-slip boundary, and showed that such locations

remain hidden to existing techniques. The material line curvature is independent of

its parametrization, invariant to frame changes under (1.1) and naturally combines

stretching- and rotation-based quantities [43]. The objective identification of early and
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subtle changes in material lines naturally fits to the identification of instabilities, but a

definition of instability based on this perspective has not been coined yet and is subject

of this work.

1.5 Contributions and Outline

This dissertation is a comprehensive account of the low-Reynolds number flow

over a cambered airfoil for a wide range of angles of attack with a focus on the dynamics

of boundary layer separation. The unsteady and complex phenomena of the transitional

flow are analyzed through a combination of DNS, LES, experiment, and development

of Lagrangian theory and methods.

The main contributions of this thesis are summarized as follows:

• Two and three-dimensional direct numerical simulations of the compressible flow

over NACA 65(1)-412 airfoil at Reynolds number Re = 2× 104 are analyzed for

angles of attack ranging from zero to ten degrees. The three-dimensional flow

topology, stability characteristics, wake structures, statistics, and aerodynamic

forces show a rich and wide variety of flow regimes and dynamics that change

rapidly with the location of the laminar separation bubble. Despite the extensive

effort, a mismatch in the critical angle between computations and wind tunnel

experiments remains.

• A comprehensive description of the kinematics of flow separation in the La-

grangian frame for general two-dimensional external aerodynamics including air-

foils is presented. FTLE structures that identify coherent structures in the wake

are connected to asymptotic Lagrangian separation lines and initial fluid up-

welling. A method for extracting the initial location of fluid upwelling within the

DGSEM framework is developed and tested. (Klose et al. [62])
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• A Lagrangian definition of an instability in shear flows is coined as the wrinkling

of material lines over a finite-time interval. The wrinkling is determined through

the curvature change of material lines which is objective by definition. A theoretic

relation between normal velocity modes in the Eulerian frame and the Lagrangian

flow map is developed and links linear stability analysis to the curvature change

of Lagrangian material lines.

• The stability and accuracy of marginally resolved DNS with a discontinuous

Galerkin spectral element method in standard and kinetic energy conserving for-

mulation is assessed. The study establishes the accuracy, robustness, and effi-

ciency of the DG variants used for the three-dimensional airfoil DNS. (Klose et al.

[17])

The following two chapters of this thesis describe the governing equations and

the numerical method, including a review of the split-form DG formulation. The

stability and accuracy of the DG scheme for marginally resolved Navier-Stokes flows is

presented in Chapter 4. The next chapter discusses the three-dimensional flow over a

NACA 65(1)-412 at Re = 2×104 and various angles of attack. The analysis focuses on

the rapidly changing flow regimes and the effect on the topology, wake structures, and

statistics. Chapter 7 presents the kinematics of Lagrangian flow separation in external

aerodynamics and the work on the objective identification of kinematic instabilities

is discussed thereafter. A summary and outlook is listed in the final chapter of this

thesis.
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Chapter 2

Governing Equations

2.1 Conservation Laws

We compute solutions to the compressible Navier-Stokes equations, which can

be written in non-dimensional form as the system of equations

∂tU +∇ · F = 0. (2.1)

In (2.1), U represents the vector of the conserved variables,

U = [ ρ ρu ρv ρw ρe ]T . (2.2)

The flux vector F is split into an advective (superscript a) and a viscous part (super-

script v),

∇ · F = ∂xFa + ∂yGa + ∂zHa − 1
Ref

(∂xFv + ∂yGv + ∂zHv) , (2.3)

where

Fa =
[
ρu p+ρu2 ρuv ρuw u(ρe+p)

]T
,

Ga =
[
ρv ρvu p+ρv2 ρvw v(ρe+p)

]T
,

Ha =
[
ρw ρwu ρwv p+ρw2 w(ρe+p)

]T
,

(2.4)
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Fv =
[

0 τxx τyx τzx uτxx+vτyx+wτzx+
κ

(γ − 1)PrM2
f

Tx

]T
,

Gv =
[

0 τxy τyy τzy uτxy+vτyy+wτzy+
κ

(γ − 1)PrM2
f

Ty

]T
,

Hv =
[

0 τxz τyz τzz uτxz+vτyz+wτzz+
κ

(γ − 1)PrM2
f

Tz

]T
.

(2.5)

ρ, u, v, w, p, and T are the density, velocities, pressure, and temperature respectively.

The specific total energy is ρe = p/(γ − 1) + 1
2ρ(u2 + v2 +w2) and the system is closed

by the equation of state,

p = ρT

γM2
f

. (2.6)

All quantities are non-dimensionalized with respect to a problem specific refer-

ence length, velocity, density, and temperature yielding the non-dimensional Reynolds

number, Ref and Mach number, Mf .

We approximate the system, (2.1), with a discontinuous Galerkin spectral el-

ement method (DGSEM). Details can be found in [13, 17] and will not be discussed

here.

2.2 Boundary layer relations

The boundary layer velocity profile is computed according to the methodology

described by Alam and Sandham [63] and Uranga et al. [7], who use a pseudo-velocity

profile inside the rotational boundary layer flow based on the spanwise vorticity

u∗(s, η) =
∫ η

0
ω(s, η̃)× n(s) dη̃, (2.7)

where s and η refer to the wall-tangential and normal coordinates respectively and n(s)

is the wall-normal unit vector. The boundary layer edge ηe is located at a distance

where the vorticity magnitude and gradient are below a certain threshold and the
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flow is assumed to be irrotational [7]. The displacement thickness δ∗ and momentum

thickness θ are compute by integrating the velocity profile across the boundary layer

δ∗(s) =
∫ ηe

0

(
1− us(s, η)

ue(s)

)
dη, (2.8)

θ(s) =
∫ ηe

0

us(s, η)
ue(s)

(
1− us(s, η)

ue(s)

)
dη. (2.9)

Here, us is the local, tangential velocity component and ue the velocity magnitude

evaluated at the boundary layer edge ηe. The shape factor is defined as the ratio of

displacement to momentum thickness, H = δ∗/θ.

2.3 Finite-Time Lyapunov Exponent

We extract structures and patterns from flow field data using a Finite-Time

Lyapunov Exponent contour field [42]. The FTLE, which characterizes the maximal

stretching of infinitesimal fluid volumes over a given time interval, is determined by

tracing fluid particles over time and subsequently computing the deformation tensor

induced by the flow map.

We express the particle trajectories as

x (x0, t0;T ) = x0 +
∫ t0+T

t0
v (x (τ ; x0, t0) , τ) dτ, (2.10)

from which the flow map Φ is defined:

Φt
t0 (x0, t0;T ) ≡ x (x0, t0;T ) . (2.11)

From the deformation gradient tensor ∇Φt
t0 , the right Cauchy-Green strain tensor

Ct
t0 = [∇Φt

t0 ]∗∇Φt
t0 can be used to compute the strain in the Lagrangian frame. With

the largest eigenvalue of the strain tensor σ2
(
Ct
t0(x0)

)
, the finite-time Lyapunov ex-

ponent field is defined as

σtt0(x0) = 1
|t− t0|

ln
√
σ2(x0). (2.12)
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This FTLE identifies the highest Lagrangian rate of stretching in the flow field. Tracing

fluid particles forward or backward in time, ridges of the FTLE field can be used to

identify hyperbolic repelling and attracting Lagrangian coherent structures (see Haller

[38, 40], Nelson and Jacobs [64] for a more detailed description).

2.4 Separation Point and Angle

Haller [36] shows that for flows with an asymptotic mean, such as periodic flows,

the asymptotic separation point γ is located at the integrated zero-skin-friction (cf )

point
1

t1 − t0

∫ t1

t0
cf (γ, t) dt = 0. (2.13)

Haller [36] further derives an analytic expression for the separation profile which is a

wall-bounded unsteady manifold along which fluid particles are ejected from the wall

into the free-stream. The slope, or separation angle, of this line can be computed just

by evaluating integrated values of the pressure and skin friction data at the wall:

tan (α (t0)) = − lim
T→−∞

3
∫ T
t0
τx (γ, t) dt∫ T

t0

[
px (γ, yw, t) + 3τx (γ, t)

∫ t
t0

1
µ
τ (γ, s) ds

]
dt
. (2.14)

Here, the x coordinate refers to wall tangential direction and y points in wall-normal

direction. The separation angle α is the angle to the tangent of the wall at the sep-

aration point. Using both, the separation point and the separation angle, a linear

approximation of the separation profile can be constructed.
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2.5 The Lagrangian Backbone of Separation and

the Spiking Point

Flow separation is invariably characterized by the ejection of fluid particles

from a no-slip wall. While the long-time (asymptotic) behavior of these particles are

governed by attracting LCSs in the flow field, the onset of separation is not related to

asymptotic structures. Serra et al. [43] show that the formation of a material spike is

characterized by high folding induced by the flow on material lines close to the wall

(Figure 6.1), which appears at a different location - generally upstream - compared to

the asymptotic separation point (e.g., the zero-skin-friction point in the case of steady

flows). This deformed spike, then, eventually converges to the breakaway from the wall

along the corresponding long-term separation structure. The materially evolving set

of points forming the centerpiece of the separation spike (magenta curve in Figure 6.1)

is also referred to as the backbone of separation [43].

Following Serra et al. [43], separation is on-wall if the backbone has a trans-

verse intersection with the non-slip boundary, off-wall otherwise. We note that such

a distinction is not postulated a priori based on heuristic arguments, but rather is an

outcome of the theory proposed in [43]. Using a coordinate system [s, η] in direction

tangential and normal to the wall respectively, we compute the Lagrangian curva-

ture change relative to the initial curvature κ̄t0+T
t0 := κt0+T

t0 − κ0 in a neighborhood of

the no-slip boundary foliated by a set of material lines initially parallel to the wall,

parametrized by rη(s), s ∈ [s1, s2] ⊂ R, η ∈ [0, η1] ⊂ R. Such a foliation enslaves the

initial local tangent r′η and curvature κ0η to the position rη, making therefore κ̄t0+T
t0 a

function of t0, T and of the initial configuration rη only. Here (·)′ := d
ds

(·). The κ̄t0+T
t0
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field can be directly computed from the flow map Φt0+T
t0 using the relation

κ̄t0+T
t0 =

〈(
∇2Φt0+T

t0 (rη)r′η
)

r′η,R∇Φt0+T
t0 (rη)r′η

〉
〈
r′η,C

t0+T
t0 (rη)r′η

〉3/2

+ κ0η

det
(
∇Φt0+T

t0 (rη)
) 〈

r′η, r′η
〉3/2

〈
r′η,C

t0+T
t0 (rη)r′η

〉3/2 − 1

 , (2.15)

where 〈·, ·〉 denotes the inner product; (∇2Φt
t0(rη)r′η)ij =

2∑
k=1

∂jkΦt
t0 i

(rη)r′ηk , i, j ∈

{1, 2}, and R is the rotation matrix defined as

R :=

 0 1

−1 0

 . (2.16)

We note that with a clockwise parametrization of the no-slip boundary, Rr′η is the

vector normal to the initial material line, pointing towards the boundary. The initial

position B(t0) of the Lagrangian backbone of separation – i.e., the theoretical cen-

terpiece of the material spike over [t0, t0 + T ] – is then defined as a positive-valued

wall-transverse ridge of the κ̄t0+T
t0 field (Serra et al. [43] for details). Later position

of the backbone B(t) can be computed by materially advecting B(t0), i.e., letting

B(t) := Φt
t0(B(t0)), t ∈ [t0, t0 + T ]. If B(t0) connects to the wall transversally, the

intersection point is called the Lagrangian spiking point and is defined by

(sp, 0) := B(t0) ∩ no-slip wall. (2.17)

Serra et al. [43] derived also alternative exact formulas for the Lagrangian spik-

ing point using only on-wall Eulerian quantities in the case of steady, time periodic and

generally aperiodic flows (cf. Table 2.1). Finally, in the instantaneous limit (T = 0),

the Lagrangian backbone of separation and spiking point turns into their correspondent

Eulerian versions (Serra et al. [43]).

In Table 2.1, v̂ indicates the velocity in normal direction to the wall, and can be
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Table 2.1: Equations determining the Lagrangian spiking point for generally
aperiodic compressible (left) and incompressible (right) flows on a no-slip
boundary in terms of on-wall Eulerian quantities. v̂ indicates the velocity

direction normal to the wall.
Lagrangian spiking point : (sp, 0)

∇ · v 6= 0 ∇ · v = 0
∫ t0+T
t0

∂sssηv̂ (sp, 0, t) = 0,∫ t0+T
t0

∂ssssηv̂ (sp, 0, t) > 0,∫ t0+T
t0

∂ssηv̂ (sp, 0, t) < 0.


∫ t0+T
t0

∂sssηηv̂ (sp, 0, t) = 0,∫ t0+T
t0

∂ssssηηv̂ (sp, 0, t) > 0,∫ t0+T
t0

∂ssηηv̂ (sp, 0, t) < 0,

computed from the inner product:

v̂ = 〈v,n〉 = unx + vny, n := R
r′η
|r′η|

, |r′η| =
√
〈r′η, r′η〉. (2.18)

Assuming a curved, parametrized boundaryW(s), the normal vector n at each colloca-

tion point xi is the vector pointing to the closest intersection point with the boundary

W and found by minimizing the distance function di(s) = |xi −W(s)|. If we assume

a continuous and sufficiently smooth function v̂, we can switch the order of differenti-

ation in Table 2.1 and compute the normal gradients first. Once the normal velocity

is obtained at each collocation point, the gradient can be computed by multiplication

with the derivative matrix D. Using the spectral operator D gives the derivatives in

x- and y-direction in the polynomial order of the scheme.

∇v̂ = Dv̂. (2.19)

The directional derivative of the normal velocity v̂ in direction of the wall-normal

vector n is computed as

∂ηv̂ = ∇nv̂ = ∇v̂ · n = (∂xv̂)nx + (∂yv̂)ny. (2.20)

This relation allows us to calculate the normal derivatives everywhere in the

flow field from the velocity gradient and the normal vector at each point. Once ∂ηv̂

or ∂ηηv̂ are determined, they can be projected onto the boundary and the derivatives

tangential to the wall can be computed subsequently as one-dimensional operations.
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Chapter 3

The Discontinuous Galerkin

Spectral Element Method

We approximate the system, (2.1), with a discontinuous Galerkin spectral ele-

ment method (DGSEM). Details can be found in [13, 65] and we only provide a short

summary here.

The physical domain is subdivided into hexahedral elements, each of which is

mapped from the reference element, E = [−1, 1]3 by a transformation ~x = ~X (ξ, η, ζ).

Under the transformation, the reference space equations become

Ũt +∇ξ · F̃ = 0, (3.1)

where Ũ = JU, J is the transformation Jacobian, and F̃ is the contravariant flux.

The DGSEM approximates the conserved variables and the contravariant fluxes

as polynomials of arbitrary order N within each element. We approximate the vector

Ũ as

ŨN =
N∑
i=0

N∑
j=0

N∑
k=0

(
ŨN

)
i,j,k

`i(ξ)`j(η)`k(ζ), (3.2)
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where the Lagrange interpolating polynomials, `i(ξ) are

`i(ξ) =
N∏
n=0
n6=i

ξ − ξn
ξi − ξn

, (3.3)

and similarly for `j (η) and `k (ζ). The nodes ξi, ηj, and ζk are chosen to be the nodes

of a Gauss quadrature.

Weak Formulation

The approximation satisfies a weak form the conservation law, constructed by

taking the inner product of (3.1) with a test function φ,∫
E

(
∂tŨ +∇ · F̃

)
φ dξ = 0, (3.4)

and integrating by parts∫
E
∂tŨφ dξ +

∫
∂E

F̃ · nφ dS −
∫
E

F̃ · ∇φ dξ = 0. (3.5)

DG approximations do not require the solution to be continuous at the interface,

and elements are coupled through the boundary flux in (3.5). We replace F̃ with a

numerical flux F̃∗
(
ŨL, ŨR

)
, which depends only on the solutions on the left and right

of the interface between two elements, and is computed through a Riemann solver, e.g.

the upwinding scheme by Roe [66].

The integrals in (3.5) are approximated with a Gauss quadrature of N + 1

nodes, and two choices have been commonly used. The first is the Legendre-Gauss

(LG) quadrature, which approximates the integral exactly for polynomial integrands

of order 2N + 1 or less, but whose nodes do not include endpoints. The second is

the Legendre-Gauss-Lobatto (LGL) quadrature, whose nodes include endpoints, but

is only exact for polynomial integrands of order 2N − 1 or less. For a more detailed

discussion of the differences between LG and LGL quadrature we refer to Gassner and

Kopriva [67].
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By replacing the integrals in (3.5) with quadrature, and choosing φ =

`i(ξ)`j(η)`k(ζ), the flux derivatives
∫
E∇ · F̃φdξ for the Gauss-Lobatto version at the

node (i, j, k) become

∂ξF̃
∣∣∣
ijk
≈
(
δiN F̃∗Njk − δi0F̃∗0jk

)
+

N∑
m=0

D̂imF̃mjk,

∂ηG̃
∣∣∣
ijk
≈
(
δjNG̃∗iNk − δj0G̃∗i0k

)
+

N∑
m=0

D̂jmG̃imk,

∂ζH̃
∣∣∣
ijk
≈
(
δkNH̃∗ijN − δk0H̃∗ij0

)
+

N∑
m=0

D̂kmH̃ijm,

(3.6)

where D̂ij = −Djiwj/wi, Dij = `′j(ξi), i, j = 0, . . . , N is the derivative matrix, and wi

is the quadrature weight at node i.

Formulations in strong and split form

Integrating (3.5) by parts one more time lets us rewrite (3.5) in what is known

as the strong form
∫
E
∂tŨφ dξ +

∫
∂E

(
F̃∗ − F̃

)
· nφ dS +

∫
E
∇ · F̃φ dξ = 0. (3.7)

Again, we replace the integrals with quadrature and choose φ = `i(ξ)`j(η)`k(ζ),

so that for the Gauss-Lobatto version the flux derivatives in (3.7) become [13]

∂ξF̃
∣∣∣
ijk
≈
(
δiN

[
F̃∗ − F̃

]
Njk
− δi0

[
F̃∗ − F̃

]
0jk

)
+

N∑
m=0

DimF̃mjk,

∂ηG̃
∣∣∣
ijk
≈
(
δjN

[
G̃∗ − G̃

]
iNk
− δj0

[
G̃∗ − G̃

]
i0k

)
+

N∑
m=0

DjmG̃imk,

∂ζH̃
∣∣∣
ijk
≈
(
δkN

[
H̃∗ − H̃

]
ijN
− δk0

[
H̃∗ − H̃

]
ij0

)
+

N∑
m=0

DkmH̃ijm,

(3.8)

where Dij = `′j(ξi), i, j = 0, . . . , N is the derivative matrix. Note that the forms (3.6)

and (3.8) are algebraically equivalent [68].

The non-linearity of the inviscid Euler fluxes introduces aliasing errors when the

fluxes are approximated by polynomials, which can lead to instability. Gassner et al.
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[16, 65] showed that through the SPB property of the derivative operator when using

the LGL points, the volume term contributions in (3.8) can be rewritten as

∂ξF̃
∣∣∣
ijk
≈
(
δiN

[
F̃∗ − F̃

]
Njk
− δi0

[
F̃∗ − F̃

]
0jk

)
+ 2

N∑
m=0

DimF̃#
(i,m),j,k,

∂ηG̃
∣∣∣
ijk
≈
(
δjN

[
G̃∗ − G̃

]
iNk
− δj0

[
G̃∗ − G̃

]
i0k

)
+ 2

N∑
m=0

DjmG̃#
i,(j,m),k,

∂ηH̃
∣∣∣
ijk
≈
(
δkN

[
H̃∗ − H̃

]
ijN
− δk0

[
H̃∗ − H̃

]
ij0

)
+ 2

N∑
m=0

DkmH̃#
i,j,(k,m).

(3.9)

so that the scheme becomes entropy or energy conserving, depending on the choice of

the new two-point fluxes Fa,#, Ga,#, and Ha,#, and the numerical surface fluxes. The

indices in parenthesis in (3.9) indicate the two nodes for the two-point fluxes. In this

work, we choose the kinetic energy conserving split form by Pirozzoli [69]

Fa,# =



{{ρ}}{{u}}

{{ρ}}{{u}}2+{{p}}

{{ρ}}{{u}}{{v}}

{{ρ}}{{u}}{{w}}

{{ρ}}{{u}}{{h}}


, Ga,# =



{{ρ}}{{v}}

{{ρ}}{{u}}{{v}}

{{ρ}}{{v}}2+{{p}}

{{ρ}}{{v}}{{w}}

{{ρ}}{{v}}{{h}}


,

Ha,# =



{{ρ}}{{w}}

{{ρ}}{{u}}{{w}}

{{ρ}}{{v}}{{w}}

{{ρ}}{{w}}2+{{p}}

{{ρ}}{{w}}{{h}}


,

(3.10)

with the notation {{a}}im := 1
2(ai + am).

The viscous stresses are computed in the standard formulation Fv,# = {{Fv}},

Gv,# = {{Gv}}, and Hv,# = {{Hv}} and the total fluxes are F# = Fa,# − 1
Ref

Fv,#,

with the contravariant forms follow from F̃# =
[
F#,G#,H#

]
· ∇ξ, see [13, 65]. For-

mulations for G̃# and H̃# are obtained similarly.
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It was also shown in [16] that the scheme is kinetic energy conserving only if

a central Riemann solver, e.g. the Lax-Friedrichs numerical flux without additional

stabilization terms, is chosen as the numerical flux. Additional dissipation can be

added through the appropriate choice of Riemann solver to increase robustness or for

implicit large eddy simulations [70].
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Chapter 4

Assessing standard and kinetic

energy conserving volume fluxes in

discontinuous Galerkin

formulations for marginally

resolved Navier-Stokes flows

4.1 Overview and Summary

In this chapter, we asses the stability and accuracy of discontinuous Galerkin

approximations in the standard conservation form and in a kinetic energy conserving

split form for under-resolved computations. To this end, direct numerical simulations

of a three dimensional inviscid Taylor-Green vortex, the viscous flows over a square

cylinder, a plane jet, and an airfoil flow in two and three dimensions are conducted.

Following Gassner et al. [16], we demonstrate the kinetic energy conservation of the
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DG scheme on the inviscid Taylor-Green vortex and challenge the method’s robustness

and accuracy by computation of the turbulent break up of a plane jet (e.g. [71, 47]).

The square cylinder is frequently used as a canonical test for numerical schemes and

has been extensively studied in the past [72, 73, 74, 75], while the flow over a NACA

65(1)-412 cambered airfoil at incidence is a relevant case encountered in engineering

applications, e.g. in turbomachinery [76].

On the basis of the examples introduced above, we show that the split form

DGSEM produces numerically stable results of Navier-Stokes flows where the stan-

dard scheme fails. While the computations converge to the same solutions for high

enough polynomial orders, the robustness of the kinetic energy conserving split form

for simulations of marginally resolved flows makes it the primary choice for implicit

LES computations.

The governing equations and the numerical model are outlined in Chapters

2 and 3. In Section 4.2, we present the setup and results of our computations. A

summary and conclusion are presented at the end of this paper in Section 4.3.

4.2 Results and Discussion

In the this section, we present the setup and computed results for the Taylor-

Green vortex, the square cylinder flow, the plane jet and the flow over a NACA 65(1)-

412 airfoil. Each problem is simulated using the standard DGSEM, which supports

both Gauss and Gauss-Lobatto nodes, and the kinetic energy conserving formulation

of the split form (SF) with Gauss-Lobatto points. To advance the solution in time, the

system of equations (2.1) is integrated with an explicit low-dispersion 6-stage 4th-order

Runge-Kutta scheme [77].
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4.2.1 Taylor-Green Vortex

The implementation of the kinetic-energy preserving inviscid fluxes into the

DGSEM code is verified with the Taylor-Green vortex in three dimensions, as it has

been done by Gassner et al. [16]. In addition to inviscid flow, we also consider the effect

of viscosity and compute the Taylor-Green vortex at Re = 1,000. 163 elements in a

[0, 2π]3 box with periodic boundary conditions in all directions are used in combination

with spatially uniform polynomial orders of N = 3, 6 and 9. A free-stream Mach

number of M = 0.1 ensures low compressibility effects. Two DGSEM schemes are

considered: the standard form using LG nodes and the split form with LGL nodes,

where the interface fluxes are computed with an upwinding Roe solver (Roe), a central

Lax-Friedrichs solver with a stabilization term (LxF), and a central Riemann solver

without dissipation (Central). Note that the Pirozzoli flux splitting is also applied to

the Lax-Friedrichs solver for cases using the split form. Based on the smallest node

spacing, a Courant-Fridrichs-Lewy (CFL) number of 0.5 is used for computations with

the standard Gauss DGSEM and 0.2 for the Gauss-Lobatto split-form variant to have

similar time step sizes.

The kinetic energy k = (u2+v2+w2)/2 is integrated over the domain at each

time step and plotted in Figure 4.1 for inviscid flow and a polynomial order of N =

3. As expected, the standard form without dissipation at the interfaces is unstable.

Upwinding or dissipative schemes are stable for this problem, but decrease the total

kinetic energy with time (Fig. 4.1a). The split form approximation conserves the

kinetic energy if a central Riemann solver without stabilization terms is used, while

the Roe and Lax-Fiedrichs solvers add numerical viscosity and decrease the total kinetic

energy (Fig. 4.1b), just as in the standard form. Consistent with [16], the Pirozzoli

split form shows a marginal decrease in the kinetic energy over time (Fig. 4.1b), which

can be attributed to the discretization of the pressure term.
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(a) Gauss nodes & standard DG (b) Gauss-Lobatto nodes & split form DG

Figure 4.1: Integrated kinetic energy over time of the Taylor-Green vortex in
3D with different Riemann solvers (Roe, Lax-Friedrichs (LxF), Central

without dissipation) for polynomial order N = 3. (a) Standard form with LG
nodes. (b) Split form with LGL nodes.

The numerical stability of the Taylor-Green vortex for different parameters is

summarized in Table 4.1. For inviscid flow, the standard DGSEM scheme produces

numerically stable results only at low order (N = 3) and with a dissipative Riemann

solver, while the split form DG is numerically more robust and only fails for higher

orders when the central Riemann solver is used. This result is consistent with the

findings by Gassner et al. [16], who also report unstable results for polynomial orders

N > 3. The introduction of viscosity stabilizes the simulations and the standard

scheme fails only when run in conjunction with the non-dissipative central Riemann

solver, while the split form DGSEM is now stable for all cases (Tab. 4.1).

Although the Roe and Lax-Friedrichs Riemann solvers both show the same

stability properties here, it has been shown that the energy spectrum of the Roe solver

follows the -5/3 law more closely than the Lax-Friedrichs scheme [78, 79]. Therefore,

the upwinding Riemann solver of Roe is used in the following test problems.
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Table 4.1: Numerical Stability of the Taylor-Green vortex. X= stable, x =
unstable. DGSEM scheme: standard & Gauss nodes (LG) and split-form &
Gauss-Lobatto nodes (LGL-SF). Riemann solver: upwinding Roe (Roe),

central Lax-Friedrichs with stabilization (LxF) and central Riemann without
dissipation (Cen).

Inviscid Re = 1,000
LG LGL-SF LG LGL-SF

N Roe LxF Cen Roe LxF Cen Roe LxF Cen Roe LxF Cen
3 X X x X X X X X x X X X
6 x x x X X x X X x X X X
9 x x x X X x X X x X X X

4.2.2 Plane Jet

Fluid jets are naturally unstable shear flows that show exponential growth to

perturbations and eventually transition to turbulence [47]. A high-order scheme can

accurately capture these instabilities, but its numerical robustness might be challenged

by the developing turbulence in this flow. We simulate the two-dimensional flow of a

strong jet at a Reynolds number of Reh = 27,300, based on the jet width h and the

difference between centerline and coflow velocities, and a center flow Mach number of

0.3. The computational domain consists of 3,200 elements over -10h ≤ y ≤ 10h and 0

≤ x ≤ 40h.

A top-hat inflow velocity profile is set at the left boundary, with the commonly

used hyperbolic tangent function

u = U1 + U2

2 + U1 − U2

2 tanh
(
y

2Θ

)
. (4.1)

Here, U1 is the centerline velocity and U2 is the coflow velocity. We set U1 = 1 and U2 =

0.09, which results in a velocity ratio η = ∆U/(U1 +U2) = 0.83 between the flows. The

parameter Θ is the inflow momentum thickness and is set to Θ = h/20, in accordance

with the setup used by Stanley et al. [80]. At the other boundaries, a Riemannian free-

stream pressure condition [81] is prescribed. A buffer layer of thickness 3h gradually

damps the solution to the uniform free-stream value to avoid spurious reflections from
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Table 4.2: Numerical Stability of the plane jet. X= stable, x = unstable.
Node type Flux method N = 1 N = 3 N = 5 N = 7 N = 9
LG Standard x X X X X
LGL Standard x x x x x
LGL Split form X X X X X

the boundaries, as described by Stanescu et al. [82]. Similar approaches have been

used by Jacobs et al. [81] and Rasetarinera et al. [83]. We compute the flow using

polynomial orders of N = [1, 3, 5, 7, 9] and a CFL number of 0.8. The velocity history

and average flow field is recorded over 1,000 convective time units and the temporal

spectrum of the turbulent kinetic energy is extracted at the center line and x = 20h.

Figure 4.2 shows instantaneous vorticity contours of the jet flow. Driven by the

Kelvin-Helmholtz instability, vortices form in the shear layer and break up the jet.

Figure 4.2: Instantaneous vorticity of the jet flow (N = 9).

Table 4.2 summarizes the numerical robustness of the approximations for this

flow. The standard form with Gauss-Lobatto nodes is numerically unstable at all

polynomial orders, while the split form remains stable for all cases. The standard form

with Gauss nodes only crashes for this flow if a polynomial order of N = 1 is used.

Figure 4.3 shows the power spectra of the turbulent kinetic energy Sk computed

from the velocity history at the center line at x/h = 20. Although the split form gives a

result for a polynomial order of N = 1, the large deviation of the spectrum to the higher-
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(a) Gauss nodes & standard DG (b) Gauss-Lobatto nodes & split form DG

Figure 4.3: Temporal power spectra of the turbulent kinetic energy for (a)
standard form with LG nodes and (b) split form with LGL nodes.

order solutions renders the physical meaning of this solution irrelevant. All spectra

obtained from higher-order simulations initially show a -5/3 decay, but an earlier start

of the dissipation range at lower resolution indicates increased numerical dissipation

at orders N = 3 and N = 5. Although the spectra for N = 9 are nearly identical

for the standard and the split form, the lower-order results indicate higher accuracy

when using the Gauss nodes, as the solution obtained with Gauss-Lobatto nodes is

overly dissipated at higher frequencies. This result is the effect of underintegration

when using Gauss-Lobatto nodes, which acts as a modal filter on the highest modes,

as explained by Gassner and Kopriva [67].

Figure 4.4 shows the normalized velocity profile over the jet half-width for dif-

ferent streamwise locations for polynomial orders of N = 3 and N = 5. While the

initial top-hat profile dominates close to the inlet, the well-known self-similar solution

is obtained further away. The low-order approximation obtained with Gauss nodes

shows a spurious oscillation in the velocity profile close to the inlet (Fig. 4.4a), while

the result of the LGL solution does not. At higher order (N = 5), the profiles are

similar and no spurious oscillations are present in the Gauss approximation.

34



(a) LG, N = 3 (b) LGL-SF, N = 3

(c) LG, N = 5 (d) LGL-SF, N = 5

Figure 4.4: Normalized velocity profiles at different streamwise locations.
The color indicates the location from x/h = 0 (blue) to x/h = 15 (yellow). LG

= Legendre-Gauss nodes (standard DG formulation). LGL-SF =
Legendre-Gauss-Lobatto nodes & split form DG).
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Table 4.3: Maximum stable convective time step size ∆t · 10−3, x = unstable.
Node type Flux method N = 5 N = 7 N = 9
LG Standard 2.8 1.9 1.2
LGL Standard x x x
LGL Split form 4.7 2.6 1.6

As noted by Gassner and Kopriva [67], using Gauss-Lobatto nodes reduces the

stiffness of the problem and can allow larger time steps. For the jet flow, we summarize

the maximum stable time step sizes in Table 4.3 and show that simulations using the

split form allow for a 66% (N = 5) to 32% (N = 9) increase in the step size ∆t

over the standard DG formulation. Although the leading order of operations for the

computation of the advective flux derivatives is (N+1)dim+1 for both the standard

DGSEM and the split form, the total number of arithmetic operations required by

the split form is approximately 3.9 (N = 5) to 4.5 (N = 9) times higher than with

the standard scheme. For computations of viscous Navier-Stokes flows, this introduces

an overhead of 64% (N = 5) to 150% (N = 9) per time step on the machine tested

(Intel E5520), but has been observed to vary significantly between different computer

systems.

Although the spectra indicate superior accuracy of the Gauss nodes for under-

resolved computations, the results must be examined carefully, as spurious oscillations

might be present. In such a case, the underintegrated solution of the Lobatto-Gauss

nodes and its higher numerical diffusion might be beneficial, as such approximations

should rather be considered implicit LES than DNS. This test case also highlights the

effect of the kinetic energy conserving volume fluxes on the robustness of the scheme,

as the standard form with LGL nodes crashes for all tested polynomial orders while

the split form is numerically stable.
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Table 4.4: Strouhal numbers of square cylinder flow at Re = 100 (literature).
Source St
Okajima [72] 0.141-0.145
Sohankar et al. [73] 0.144-0.146
Darekar and Sherwin [74] 0.145
Shahbazi et al. [75] 0.145

4.2.3 Square Cylinder Flow

The canonical flow over a square cylinder at a Reynolds number of Re = 100 is

chosen because of the numerous data sets available in the literature [81, 72, 73, 74, 75],

which makes it a good candidate for the verification of the numerical method. The

Strouhal numbers reported in the literature are summarized in Table 4.4.

The computational domain consists of 3,350 quadrilateral elements and has

a blockage of 2.3%, matching previous computations in literature [74, 75]. Three

polynomial orders of N = [1, 2, 4] are used in the simulations and the time step size

is based on a CFL number of 0.8. The cylinder walls are approximated with no-slip

adiabatic walls and Riemannian free stream conditions [81] are applied at the outer

boundaries at x = [-15d, 26d] and y = [-22d, 22d]. A Mach number of M = 0.1 renders

compressibility effects negligible. For all cases, the Strouhal number St = fL/U , based

on the frequency of the lift coefficient, is computed over 400 convective time units after

quasi-steady state is reached.

A plot of the instantaneous vorticity in Figure 4.5 shows the shedding of counter-

rotating vortices from the square cylinder into a Von-Karman vortex street. This flow

pattern is well known and has been observed in experiments, e.g. by Okajima [72].

The Strouhal numbers computed from spectral analysis of the lift coefficient are

summarized in Table 4.5 and show convergence to St = 0.145 at a polynomial of N =

2, independent of the quadrature nodes or form of the advective fluxes. This value is

in excellent agreement with the Strouhal numbers reported in literature (Tab. 4.4).
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Figure 4.5: Instantaneous vorticity plot (N = 4).

All computations are numerically stable, but at a polynomial order of N = 1, the

flows are under-resolved and differ from the converged solution by 4% for the Gauss and

7% - 8% for Gauss-Lobatto quadrature nodes. Given that the quadrature with Gauss-

Lobatto nodes is only exact for polynomials of order 2N − 1, Gassner and Kopriva [67]

showed that underintegration with Gauss-Lobatto points can be interpreted as a modal

filter and leads to damping of the highest modes. The higher accuracy of the Gauss

quadrature translates to a smaller error of the Strouhal number for the under-resolved

flow. Differences between the standard and the split form are minor, as the error for

this problem appears to be dominated by the choice of quadrature nodes.

Table 4.5: Strouhal numbers of square cylinder flow at Re = 100 (present).
Node type Flux method N St
LG Standard 1 0.139
LGL Standard 1 0.135
LGL Split form 1 0.134
LG Standard 2 0.145
LGL Standard 2 0.145
LGL Split form 2 0.145
LG Standard 4 0.145
LGL Standard 4 0.145
LGL Split form 4 0.145
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4.2.4 Two-Dimensional Airfoil Flow

The flow over a NACA 65(1)-412 airfoil is simulated at a Reynolds number

based on the chord length of Rec = 20,000 and a Mach number of M = 0.3. The airfoil

is at 4◦ incidence.

The computational domain consists of 2,256 quadrilateral elements, where the

boundaries are curved and fitted to a spline representing the airfoil’s surface as de-

scribed by Nelson et al. [76]. The mesh extends 15c (cord lengths) behind the airfoil

and 5c in each vertical direction. The outer boundaries of the domain are defined as

Riemannian free-stream boundaries while the airfoil surface is treated as a non-slip,

adiabatic wall. Polynomial orders of N = [3, 6, 12] are used in all elements, where N

= 12 has been found to give a grid converged solution. A more detailed description of

the base flow is given by Nelson et al. [76], Klose et al. [84]. The CFL number is set

to 0.8 and all computations are run until quasi-steady state is reached. Statistics are

subsequently computed over 10 convective time units.

The vorticity plot in Figure 4.6 shows that the boundary layer separates mid-

cord, enclosing a recirculation region on the airfoil’s upper side. Periodic shedding of

vortices lead to the formation of a Von-Karmann type vortex street in the wake.

Figure 4.6: Instantaneous vorticity contours of flow over NACA 65(1)-412.

The averaged lift and drag coefficients, as well as the Strouhal numbers are

summarized in Table 4.6. For a polynomial order of N = 12, the averaged lift and

drag coefficients are C̄l = 0.442 for both LG and LGL-SF schemes and C̄d = 0.0552
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Table 4.6: Aerodynamic data of airfoil flows at different polynomial orders.
Node type Flux method N C̄l C̄d St
LG Standard 3 0.457 0.0530 3.37
LGL Standard 3 - - -
LGL Split form 3 0.405 0.0732 2.30
LG Standard 6 0.445 0.0561 2.69
LGL Standard 6 0.415 0.0560 2.59
LGL Split form 6 0.440 0.0565 2.75
LG Standard 12 0.442 0.0552 2.78
LGL Standard 12 0.442 0.0554 2.78
LGL Split form 12 0.442 0.0554 2.78

for the standard form with Gauss points and C̄d = 0.0554 for the split form, resulting

in a relative difference of <0.4%. The Strouhal number based on the frequency of the

lift coefficient is consistently at St = 2.78 for all cases. The fact that no significant

difference between the LG and LGL results are found is in accordance with the findings

by Nelson et al., who reported convergence for a polynomial order of N = 12 using LG

points [76].

To evaluate the performance on under-resolved computations, we decrease the

polynomial order to N = 6 and N = 3 and compare the results to the reference

solution at N = 12. At a polynomial order of N = 3, the methods using Gauss-

Lobatto quadrature nodes perform rather poorly, as the standard form is numerically

unstable and the split form largely overestimates the drag (33%, Tab. 4.6). Results

obtained from the standard LG form are closer to the converged solution (<4%), with

the exception of the Strouhal number (21% over-estimated).

As expected, increasing the polynomial order to N = 6 considerably improves

the quality of the results. The differences in the lift coefficient and Strouhal number of

the split form are now below 1% and only the drag is slightly over-estimated by about

2%. The standard LG form matches lift and drag closely, but has a frequency error of

3% with a spurious low-frequency component in the lift and drag force (Fig. 4.7). The
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standard form using LGL nodes gives the poorest results with larger errors in the lift

and Strouhal number.

Overall, the results show that for the marginally resolved airfoil flow at N =

6, the split form yields the best results with the lift coefficient and Strouhal num-

ber matching the converged solution closely and only slightly larger deviations in the

drag as compared to the standard DG scheme. For strongly under-resolved flows, the

standard formulation with LG nodes is advantageous, as the errors in lift and drag co-

efficients are much smaller than for simulations using LGL nodes. Again, this result is

expected, as the Gauss-Lobatto quadrature underintegrates and thus is less accurate.

The favorable dispersion relation of the Gauss-Lobatto nodes, as shown by Gassner

and Kopriva [67], also gives a reasonable explanation for the better representation of

the Strouhal number for under-resolved cases when using the LGL split form.

(a) Lift coefficient (b) Drag coefficient

Figure 4.7: Lift (a) and drag (b) coefficients of underresolved flows for a
polynomial orders of N = 6. LG = Legendre-Gauss nodes (standard DG

formulation), LGL = Legendre-Gauss-Lobatto nodes (standard DG
formulation), LGL-SF = Legendre-Gauss-Lobatto nodes & split form DG).
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Table 4.7: Numerical Stability of the 3D airfoil simulations at 10◦ incidence.
X= stable, x = unstable.

Node type Flux method N = 10 N = 12
LG Standard x x
LGL Split form X X

4.2.5 Three-Dimensional Airfoil Flow

Finally, we solve the three-dimensional flow over the NACA 65(1)-412 airfoil

under an angle of attack of α = 10◦ at Reynolds number Rec = 20,000. The flow is

characterized by a laminar separation bubble at the leading edge and subsequent tran-

sition to turbulence [84]. Free-stream conditions are applied at the outer boundaries

of the computational domain 30 cord lengths from the wing. The airfoil is extruded by

half a cord length (0.5c) in the spanwise direction and periodic boundary conditions

are used to approximate an infinite wing, resulting in a total of 33,660 hexahedral

elements. The computations are initialized by mapping a two-dimensional flow field

uniformly in the spanwise direction.

Two cases are considered: the standard DG scheme with Gauss nodes and

the kinetic energy stable split form with Gauss-Lobatto nodes. Polynomial orders

of N = 10 and N = 12 in the region close to the airfoil are chosen, but the order

is gradually lowered in the far field to decrease the computational costs. To reduce

spurious reflections from vortices entering lower order elements, a spectral filter [15]

is applied to elements at least half a cord length away from the airfoil. A 5-stage

4th-order Runge-Kutta scheme [85] is used with a CFL number of 0.5.

Only the split form DG scheme has the numerical robustness to compute this

flow and produce results past the initial start-up phase, as summarized in Table 4.7.

Figure 4.8 (a) shows the lift coefficient over time for the different schemes and polyno-

mial orders, where the dashed lines indicate the points of termination (crash). Figures

4.8 (b) – (d) show iso-surfaces of the vorticity at t = 0.2, t = 1.6, and t = 18.1 re-
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spectively and illustrate the flow transition to three dimensional turbulent structures.

The numerically unstable elements in the standard DG scheme are highlighted in red

in Figure 4.8 (b).

(a) Lift coefficient (b) Iso-vorticity, t = 0.2

(c) Iso-vorticity, t = 1.6 (d) Iso-vorticity, t = 18.1

Figure 4.8: (a) Lift coefficient for N = 10 & 12 and standard & split form
DG. Times of termination indicated by dashed lines. (b) – (d): Iso-surfaces of

the vorticity are presented for the LGL-SF computations (N = 12).
Numerically unstable elements for the standard DG are highlighted in red.

Although the Reynolds number is moderate, the turbulent flow over the airfoil

in Figure 4.8 (d) illustrates the small-scale vortical structures and the need for a nu-

merically robust scheme to capture them without filtering. Because the standard DG

formulation crashes – even with high-order approximations – we see that transitional

flows with high velocity gradients greatly benefit from the enhanced robustness of the

split form DG scheme.
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4.3 Summary of Results

We have conducted a series of computations to evaluate the robustness and ac-

curacy of the standard and a split form DG formulation for converged and marginally

resolved viscous flows. The flows over a square cylinder, an airfoil and a plane jet are

simulated for different polynomial orders, where each case is computed using the stan-

dard flux form with Legendre-Gauss and Legendre-Gauss-Lobatto quadrature nodes

and the split form approximation of the advective fluxes with LGL nodes.

It is shown that the Gauss DG scheme has a higher accuracy per point and

increased numerical robustness over the the standard Gauss-Lobatto formulation and

matches the converged solution more closely for the marginally resolved cylinder and

jet flow cases. This result is in accordance with the work by Gassner and Kopriva

[67]. There is, however, no proof of numerical stability, and errors in the non-linear

terms result in the termination of the computation for under-resolved simulations if

the dissipation (physical or interface) is not large enough. This is demonstrated by

the three-dimensional Taylor-Green vortex and the airfoil simulation, where the Gauss

DGSEM crashes, even for high polynomial orders. Additionally, a spurious low fre-

quency component in the lift and drag coefficient of the under-resolved two-dimensional

airfoil simulation is present when using LG nodes.

The split form DGSEM, on the other hand, is provably stable in the sense

that the kinetic energy is either conserved or dissipated, and generates solutions for

marginally resolved flows that are inaccessible with the standard DG scheme. Although

standard and split form DG approximations converge to the same solutions with in-

creasing polynomial order, as shown for the two-dimensional cylinder, jet and airfoil

flows, the split form DGSEM should be the primary choice for the computation of

under-resolved flows, as it is robust and generates consistent results.
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Chapter 5

The multitude of flow regimes in

cambered airfoil aerodynamics at

Re = 20,000: a two-sided story

5.1 Overview and Summary

In this chapter, we analyze the flow over a cambered NACA 65(1)-412 airfoil at

a chord-based Reynolds number of Re = 2× 104 for angles of attack (AOA, α) ranging

from 0◦ to 10◦ using a combination of DNS and implicit LES. The results are obtained

numerically with a high-order compressible discontinuous Galerkin spectral element

method using a large span (0.5c) and domain (30c) to capture the significant spanwise

instability modes and far field wake dynamics. The separation of the laminar boundary

layer, transition to turbulence, and possible formation of a laminar separation bubble

are studied in detail through analysis of the flow topology, statistics, and aerodynamic

forces. The spatially and temporally resolved data sets are a comprehensive account of

the transitional flow over a cambered airfoil at low Reynolds number, are generalizable
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to other geometries and Reynolds numbers, and will serve as a baseline for future

research in airfoil aerodynamics and flow control.

The governing equations used in this chapter are outlined in Chapter 2 and the

numerical method is introduced subsequently in Chapter 3. In Section 5.2 we outline

the setup of our computations and discuss the results of three-dimensional direct nu-

merical simulations in Section 5.3. A summary and concluding remarks are given in

Section 5.4. A parametric study based on two-dimensional DNS is given in appendix

A.1, where we assess the effects of compressibility, resolution, and computational do-

main size.

5.2 Setup

The flow over a NACA 65(1)-412 airfoil is simulated in two and three dimensions

at a chord-based Reynolds number of Rec = 2×104 and a free-stream Mach number of

M = 0.3. At this Mach number, the compressibility effect on the pressure coefficient

are expected to be of the order of 5% in relation to incompressible flow, according to

the Prandtl-Glauert correction Cp,M/Cp,i = 1/
√

1−M2. While the Mach number in

comparable wind tunnel experiments is typically lower than 0.3, the increased stiffness

of the explicit numerical scheme results in extremely small time step sizes that are

unfeasible for three-dimensional simulations. A Prandtl number of Pr = 0.72, Suther-

land constant RT = S/Tf = 110/200, and ratio of specific heats γ = 1.4 are chosen in

accordance with Nelson [86].

The Navier-Stokes equations are solved using a discontinuous Galerkin spectral

element method (DGSEM) [13]. The conservative variables (2.2) are spatially ap-

proximated on a Nth order polynomial basis and collocated on Legendre-Gauss (G) or

Legendre-Gauss-Lobatto (GL) nodes. The flux derivatives in (2.1) are either computed
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using the standard DGSEM formulation with Gauss quadrature nodes or kinetic en-

ergy conserving flux splitting of the inviscid term and Gauss-Lobatto quadrature nodes

(see Klose et al. [17] for details). An upwinding Roe scheme is used for the advective

interface fluxes and a Bassy-Rebay formulation for the viscous part. A fouth-order ex-

plicit Runge-Kutta adaptive time-stepping scheme is used with time step sizes ranging

between 2.3 × 10−5 ≤ ∆t ≤ 8.4 × 10−6, depending on the choice of quadrature nodes

and the resolution.

Consistent with the discontinuous Galerkin airfoil simulations by Uranga et al.

[7] and Beck et al. [30], Riemannian free-stream conditions are applied at the outer

boundaries of the domain. Spurious oscillations from exiting vortices are prevented

through grid coarsening towards the outflow, as well as a damping layer on the energy

term to reduce the reflected pressure waves [81]. The surface of the airfoil is treated as

no-slip adiabatic wall and, to account for its curvature, we fit the neighboring boundary

elements to a spline representing the profile of the wing according to Nelson et al. [76].

For 3D simulations, the spanwise boundaries are set to be periodic.

All simulations are run until the flow has fully transitioned to a three-

dimensional state and the solution has reached quasi-steady state with the lift and

drag coefficients fluctuating around a mean, typical after 10 to 20 convective time

units. Flow statistics are recorded subsequently.

5.2.1 Domain Size

The impact of the outer boundaries on the numerical solution through blockage

and spurious reflections is governed by the size of the computational domain. A com-

promise has to be found between a large-enough domain to minimize such boundary

effects and the available computational resources limiting the number of grid points

to be used. In figure 5.1(a), typical domain parameters such as the radius R and the
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Figure 5.1: (a) C-type computational domain with general parameters.
Elements of 2D computational meshes Grid 1 (b) and Grid 2 (c) around the

airfoil. Only elements without interior Gauss nodes are shown.

wake length W are shown.

Table 5.1 provides a selection of domain sizes used in selected airfoil simulations

in literature. The domain radius of these airfoil DNS ranges from 4c [87] to 100c

[29, 30].

In the present study, two different C-type meshes are applied, where each grid

has a sharp trailing edge and a domain radius and wake length of 30 chord lengths.

These values are higher than in most comparable studies (cf. table 5.1), but necessary

to avoid spurious reflections from the outflow boundaries or changes in the separation

bubble shape [30]. For three-dimensional computations with periodic boundaries, the

domain is extruded in z-direction by Lz = 0.5c, as recommended by Almutairi et al.
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Table 5.1: Domain sizes of selected airfoil studies.

Source R/c W/c Lz/c
Deng et al. [87] 4 3 0.1
Jones et al. [19] 7.3 5 0.2
Uranga et al. [7] 6 6.4 0.2
Visbal [29] 100 100 0.1-0.8
Beck et al. [30] 100 100 0.2
Lee et al. [9] 25 25 0.2
Zhang et al. [21] 6 10 0.1-0.8
Balakumar [25] 15 15 0.2
Serson et al. [26] 15 10 0.5-2.0
present 30 30 0.5

[24] in their LES study of the NACA 0012.

5.2.2 Resolution - Is it DNS?

Two C-type meshes are employed in this study: Grid 1 consists of 3,366 quadri-

lateral elements in the x-y plane and is extruded by 10 elements along the span for 3D

simulations (see figure 5.1b). Grid 2 is refined with 23,400 elements per 2D plane and

50 elements in spanwise direction (see figure 5.1c). For Re = 2× 104 and 4◦ incidence,

Nelson et al. [76], Klose et al. [17] have reported a grid-converged solution at a poly-

nomial of N = 12 for a mesh nearly identical to Grid 1, but limited to R = 5c and

W = 15c. Klose et al. [17], however, show that numerical instabilities occur at higher

angles of attack (10◦) if the standard DGSEM scheme is applied, but can be stabilized

through a kinetic energy conserving formulation of the advective volume fluxes based

on the split form by Pirozzoli [69]. While the coarse grid is proven to give a converged

solution at N = 12 for lower angles of attack (0◦ and 4◦), we use the refined Grid 2

with a lower order of N = 4 and N = 6 for computations around the critical angle

of attack at 7◦ and 8◦ respectively, which is more suitable for turbulent flow. At 8◦
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incidence, the maximum wall-normal height of the first element (Grid 2 ) at the leading

edge is η+
e = 8 and places the first Gauss point at a wall coordinate of η+

g = 0.2. The

maximum tangential grid spacing, based on the average spacing per element, is ζ+ =

4 and occurs at the reattachment point of the LSB at x/c ≈ 0.4. These values are well

within the limits accepted for DNS [88]. Resolution studies of selected cases have been

conducted in two space dimensions and are presented in appendix A.1.

Only for the an angle of 10◦, we abstain from resolving all scales of motion

but use implicit LES computations and approximate the turbulent flow on Grid 1

with twelfth order polynomials in the near field and reduced order elements in the

outer field. A spectral filter reduces spurious oscillations from the decreasing order

approximations away from the airfoil.

5.2.3 Overview of Simulations

Table 5.2 gives an overview of the three-dimensional simulations. The data has

been collected over a long period of time and contains different meshes, polynomial

orders and refinements. The cases are computationally very demanding and typically

run on clusters of 1000 to 4000 processors. Consecutive entries in table 5.2 at the

same flow angle and domain size are interpolated from the previous run. The results

presented in this work are highlighted in bold font.

5.3 Results and Discussion

We start the discussion of the low-Reynolds number flow over the NACA 65(1)-

412 with a summary of the lift and drag coefficients of DNS and experiments. An

in-depth analysis of the flow topology, the statistics, and the aerodynamic forces based

in on the DNS results follows in the subsequent sections.
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Table 5.2: Overview of 3D simulations. Re = free-stream Reynolds number,
α = angle of attack, R/c = domain radius, G = standard Gauss DGSEM (* =
with spectral filter), GL-SF = split form DGSEM with Gauss-Lobatto nodes,
Tinit/Tfin = initial/final convective time of run, (2x) = h-refined, Ni(No) =
polynomial order inner (outer) region, DOF = degrees of freedom (number of

high-order nodes).

Re α Mesh R/c Scheme Ni(No) Tinit Tfin DOF (×106)
2× 104 0◦ Grid 1 30 GL-SF 12 0 43.2 74.0
2× 104 0◦ Grid 1 30 G 12(1) 24.2 40.0 30.7
2× 104 4◦ Grid 1 3.5 G 12(1) 0 12.0 9.1
2× 104 4◦ Grid 1 30 GL-SF 12 0 46.7 74.0
2× 104 4◦ Grid 1 30 G 14(1) 20 30.0 43.2
2× 104 7◦ Grid 2 30 G 4 0 19.0 146.3
2× 104 8◦ Grid 1 (2x) 3.5 G 4(1) 0 13.5 5.9
2× 104 8◦ Grid 1 (2x) 3.5 G 6(1) 13.5 16.8 15.0
2× 104 8◦ Grid 1 30 GL-SF 12(1) 0 25.8 30.7
2× 104 8◦ Grid 2 30 G 6 25.8 39.0 401.3
2× 104 10◦ Grid 1 (2x) 3.5 G 4(1) 0 11.5 5.9
2× 104 10◦ Grid 1 (2x) 3.5 G 6(1) 11.5 20.0 15.0
2× 104 10◦ Grid 1 30 GL-SF 10(1) 0 15.6 21.5
2× 104 10◦ Grid 1 30 GL-SF 12(1) 15.6 36.1 30.7
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(a) Lift coefficient (b) Drag coefficient

Figure 5.2: Lift (a) and drag (b) coefficients obtained from wind tunnel
experiments at USC and SDSU, DNS data (2D & 3D), and Xfoil data

(forward and backward sweep) for a NACA 65(1)-412 at Re = 2× 104. Error
bars indicate RMS level of DNS. Gray area identifies the total lift and drag
range of the parametric 2D study given by the averaged coefficient +/-

standard deviation.

Figure 5.2 presents the lift (a) and drag (b) coefficients over the angle of attack

α. The results include experiments conducted at the University of California, Los

Angeles (USC) [35] and San Diego State University (SDSU) [89], DNS in two and

three space dimensions, and data generated with Xfoil [1] for forward and backward

angle sweeps. The 2πα-line of thin-airfoil theory [90] is included as a reference for ideal,

inviscid flow. Despite some discrepancies between the computations and experiments,

all result imply the existence of two flow regimes, between which the lift force changes

rapidly. At this critical angle of attack αcrit, the flow transitions from a state of laminar

separation without reattachment to turbulent reattachment and formation of a laminar

separation bubble (LSB) at the leading edge [35].
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5.3.1 Flow topology – separation, transition, and wake

In the following section, three-dimensional DNS results are presented for angles

of attack of 0◦, 4◦, 7◦ and 8◦, as well as results of implicit LES of the flow at 10◦. This

section is divided into the discussion of the flow topology, transition to turbulence,

structures of the wake, and averaged velocity and boundary layer profiles. Given their

similarity, the flow angles of 0◦ and 4◦, as well as 8◦ and 10◦ are discussed together.

In this work, the asymptotic locations of flow separation and reattachment are

based on the zero-crossings of the time and space-averaged skin friction coefficient. In

accordance with Uranga et al. [7], the transition point indicates the location of a local

maximum in the shape factor. We note, however, that the definition of the transition

point is not unique and e.g. Alam and Sandham [63] use the point of maximum negative

skin friction.

AOA = 0◦ and AOA = 4◦

At an angle of 0◦ and 4◦, the flow is characterized by a the separation of the

boundary layer without reattachment to the airfoil surface and the formation of a

regular vortex street in the wake. The lift coefficient (see figure 5.2) is well below the

inviscid limit and implies that viscous forces deteriorate the aerodynamic performance.

In the following section, we discuss the topology of the transitional flow and the wake.

Separation and transition At 0◦ incidence, the laminar boundary layer separates

from the airfoil surface at the asymptotic (time-averaged) separation point at xs/c =

0.6 and transitions to a three-dimensional flow in the wake. The temporal development

of the separating shear layer and the formation of the vortex street behind the airfoil

is outlined in figure 5.3 where contours of instantaneous vorticity ωz are plotted along

a slice at z/c = 0.025. The figure shows the separation of the laminar boundary layer
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(a) t = 42.7 (b) t = 42.8

(c) t = 42.9 (d) t = 43.0

-50 0 50

Figure 5.3: Snapshots of instantaneous vorticity ωz along a slice z/c = 0.025
from t = 42.7 (a) to t = 43.0 (d). S indicates the mean locations of

separation. AOA = 0◦

(marked as location S) on the upper side of the wing and the alternate shedding of

left-turning vortices from the bottom and right-turning vortices from the top. The

boundary layer separation is induced by an adverse pressure gradient downstream of

the maximum thickness of the profile caused by the convexly curved surface (cf. inviscid

profile in figure 1.1c). The flow along the bottom surface remains attached until the

shear layer sheds off the trailing edge of the airfoil. The formation of the vortices start

with the roll-up of the bottom boundary layer at the sharp trailing edge (see figure

5.3b–d) and the generation of a strong, left turning eddy that forces the separated shear

layer from the upper side to bend down and form a counter-rotating vortex. This pair

of vortices then sheds off to form a Von-Karmann-type street behind the wing.

The three-dimensionality of the boundary layer separation and vortex formation

process is outlined in figure 5.4: iso-surfaces of the vorticity magnitude |ω| = 30 (a) and

the second invariant of the velocity gradient Q = 80 visualize instantaneous, coherent

vortical flow structures. Following Jeong and Hussain [55], positive contours of Q
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≡ (u2
i,i − ui,juj,i)/2 are commonly used to identify vortical structures, as it balances

vorticity and shear strain, thereby revealing structures within region of high shear that

remain hidden in the vorticity. In both plots, the iso-surfaces are colored according

to the spanwise vorticity component, ωz, and indicate the rotational direction of the

vortices with respect to the axis aligned with the airfoil span. The vorticity surfaces in

figure 5.4(a) show the separation of the laminar shear layer as a quasi two-dimensional

vortex sheet, where the transition to three-dimensional structures occurs only in the

wake once the bottom shear layer interacts with the separated flow from the top.

The topology of the vortex shedding is characterized by spanwise rollers enveloped by

longitudinal braid vortices that have their origin at the trailing edge and connect the

spanwise eddies (braid region).

These spanwise rollers, also called ‘Strouhal’ or ‘Karman’ vortices, are the pri-

mary structures associated with the vortex shedding [91, 92], where elliptic flow within

the vortex cores and hyperbolic flow along the braid shear layer can induce three-

dimensional flow instabilities [92, 93, 94]. The elliptic instability is known to introduce

a spanwise perturbation mode within rollers (called mode A) and scales with the length

scales of the primary vortex. The braid region between the Karman vortices, on the

other hand, is a hyperbolic shear flow and a three-dimensional instability along the

braid shear layer results in the generation of the spanwise loop vortices at a wave-

length that scales with the smaller braid shear layer (called mode B) [93, 94]. For

the wake behind a circular cylinder, Williamson [93] show that the mode A has a

wavelength λz ≈ 4D and mode B a wavelength of λz ≈ 1D, where D is the cylinder

diameter.

For the NACA 65(1)-412, the size of the Karman vortices are limited by the

projected thickness of the profile, which is 0.12c and 0.126c at 0◦ and 4◦ incidence

respectively and which we therefore assume a proper reference length scale for the
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(a) Vorticity (b) Q-criterion

Figure 5.4: Iso-surfaces of vorticity |ω| (level 30) and Q-criterion (level 80)
colored by vorticity ωz at t = 42.7. AOA = 0◦.

instability mode. The wavelength of mode A is therefore of the order of 0.48c and

0.12c for mode B. Figure 5.4(b) indicates that the primary rollers are subject to a

mode that includes five waves over the span. This suggests that the streamwise loops

correspond to an instability of mode B and are caused by the hyperbolic flow along

the braid shear layer. In accordance with findings by Williamson [93], the generation

of the streamwise vortices is self-sustaining and tied to the flow-recirculation region,

where the braids induce perturbations to the upstream flow and induce the next set of

loop vortices.

The topology of the flow at 4◦ incidence is similar to the previously discussed

case at AOA = 0◦ and we will therefore focus the discussion on the differences. Anal-

ogously, a laminar boundary layer develops over the wing, but separates further up-

stream at mid-chord (xs/c = 0.49) as a result of the increased pressure gradient that

is induced by the larger displacement of the flow at the higher angle of attack. Again,

the shear layers from the top and bottom side of the wing shed off at the trailing edge

and establish a vortex street in the wake (see figure 5.5). The vortex formation likewise
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(a) t = 46.4 (b) t = 46.5

(c) t = 46.6 (d) t = 46.7

-50 0 50

Figure 5.5: Snapshots of instantaneous vorticity ωz along a slice z/c = 0.025
from t = 31.4 (a) to t = 31.7 (d). S indicates the mean locations of

separation. AOA = 4◦

starts from the roll-up of the bottom boundary layer but yields larger eddies compared

to the case at 0◦ because the frontal area of the wing, which limits the vortex size,

increases with the angle of attack. The resulting velocity gradients are higher and

amplify perturbations more rapidly, therefore promoting the bursting of the spanwise

rollers and transition to a turbulent wake flow.

Similar to the AOA = 0◦ case, the topology of the vortex shedding is char-

acterized by spanwise Karman vortices and longitudinal braids that originate at the

trailing edge of the airfoil within the recirculation region in a self-sustaining manner

(see figure 5.6). Three-dimensional structures are also present within the recirculation

region and stimulate the transition of the laminar flow by perturbing the formation

of the trailing-edge vortex. The resulting vortical structures are less regular than at

0◦ incidence and interact directly upon shedding of the airfoil (see figure 5.6b). As

discussed earlier, the high velocity gradient at the vortex edges promotes the rapid

growth of such perturbations and accelerates the break-down of the large-scale vortices
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(a) Vorticity (b) Q-criterion

Figure 5.6: Iso-surfaces of vorticity |ω| (level 30) and Q-criterion (level 100)
colored by vorticity ωz at t = 46.6. AOA = 4◦.

and the transition into turbulence in the wake early on.

The presence of three-dimensional flow is outlined in figure 5.7: instantaneous

contours of the spanwise (w) velocity are plotted along a plane in x-y direction (a) and

along a curved surfaces at a constant wall-normal distance ∆η = 0.02c (b), where, η

is the wall-normal coordinate. Streamlines of the instantaneous u and v velocity com-

ponents in (a) illustrate the separating flow at xs/c = 0.49 (S) and show the roll-up

of the bottom-side vortex at the trailing edge. The three-dimensional flow is strongly

amplified at the edges of the trailing-edge vortex and along the streamwise braid vor-

tices. Clock-wise rotating flow within the bubble transports the transverse (spanwise)

momentum from the longitudinal vortex loops upstream, where it recirculates and is

advected downstream with the separated shear layer flow on the upper side (see figure

5.6a and b). This perturbation facilitates the transition process in a self-sustaining

manner and induces three-dimensional vortex loops upon the interaction of upper and

lower shear layer.
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(a) x-y plane (b) x-z plane

Figure 5.7: Instantaneous transverse velocity w and streamlines along a x-y
plane at z/c = 0.025 (a) and along a surface normal to the airfoil wall
displaced by ∆η = 0.02c (b) at t = 46.6. S indicates the locations of

asymptotic flow separation. AOA = 4◦

Wake topology The spatial development of the vortex street in the airfoil wake is

visualized in figure 5.8 for a flow angle of 0◦ and figure 5.9 for 4◦, where contours of the

instantaneous, spanwise vorticity component ωz are plotted in (a) and contours of the

specific entropy s in (b). Vorticity is generated at the airfoil wall and is transported

away through convection and diffusion [95, 96, 97]. Stretching of vortex filaments,

mixing, and diffusion results in the decay of the vorticity amplitude in the wake as

an increasing amount of fluid is entrained by the swirling flow and causes the gradual

spreading of the wake.

The transport of fluid from the airfoil into the wake is visualized by contours of

specific entropy in figures 5.8(b) and 5.9(b). According to the second law of thermody-

namics, irreversible processes, e.g. viscous dissipation at a no-slip boundary, generate

entropy such that Dsirr/Dt > 0 [98]. The specific entropy s = ln(p/ργ)/(γ(γ − 1)M2
f )

follows a scalar transport equation with a production term for such irreversible pro-

cesses [98, 15]. Figure 5.8(b) shows that entropy is generated in the shear layer around

the airfoil and within the separated flow region on the upper side, is then transported

away and mixes with the surrounding fluid by diffusion and convection which results

in its gradual decay far downstream from the wing. The mixing rate with the sur-
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(a) Vorticity ωz

(b) Specific entropy s

Figure 5.8: Instantaneous snapshots of the vorticity ωz (a) and the specific
entropy s = ln(p/ργ)/(γ(γ − 1)M2

f ) (b) along a slice at z/c = 0.025 and t =
42.7. AOA = 0◦.

rounding fluid is, however, low and local patches of high entropy indicate the presence

of coherent structures in the wake flow several chord lengths behind the airfoil.

At 4◦ incidence, the vortex street in the airfoil wake looses its regularity shortly

downstream of the trailing edge and transitions to a turbulent flow. The initial stages

of the large-scale vortex break down are visualized by the iso-surface plots presented

in figure 5.6, where the braid vortices induce significant transverse flow (see also fig-

ure 5.7a). The three-dimensional, transitional wake is characterized by an increased

vorticity decay and chaotic entropy contours that spread at a higher rate than at 0◦

incidence.

Given that the NACA 65(1)-412 is designed to maximize the laminar flow region

over the wing, it is not surprising that the flow remains laminar over the airfoil at low

angels of attack of 0◦ and 4◦, with transition occurring only in the wake at 4◦. The

absence of an early transition to turbulence, however, prevents the reattachment of the

separated boundary layer on the airfoil’s rear side and results in a significant loss of
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(a) Vorticity ωz

(b) Specific entropy s

Figure 5.9: Instantaneous snapshots of the vorticity ωz (a) and the specific
entropy s = ln(p/ργ)/(γ(γ − 1)M2

f ) (b) along a slice at z/c = 0.025 and t =
46.6. AOA = 4◦.

the lifting force, which is even negative at AOA = 0◦ (see figure 5.2). At low angles

of attack, the operation of laminar airfoils in low-Reynolds number flow condition

therefore obliges the use of flow controllers.

AOA = 7◦

The flow at 7◦ incidence is characterized by a high lift and low drag force

(see figure 5.2), which can be attributed to the collapse of the separated recirculation

region that exists at lower angles of attack. In the following section, we discuss the

temporal development and natural transition from two to three-dimensional flow and

the formation of an absolute instability within a laminar separation bubble (LSB), as

well as the flow topology of the turbulent vortex shedding.

Early temporal development and natural transition The early temporal de-

velopment of the flow over the airfoil and the transition of the initial two-dimensional

to three-dimensional structures is outlined in figure 5.10, where iso-surfaces of Q
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are colored by the spanwise velocity component to visualize the emergence of three-

dimensional modes within the vortices. Note that no perturbation or forcing is added

to the flow and the transition occurs naturally. The flow is initially two-dimensional

and characterized by the formation of spanwise Karman vortices from the separating

shear layer at mid-chord (see figure 5.10a). A well-defined low-frequency perturbation

mode develops along the spanwise rollers at the trailing edge, as highlighted by the

transverse velocity coloring, and leads to the weak bending of the vortical structures

downstream in the wake (see figure 5.10a). This perturbation is likely driven by an

elliptic instability, which induces a three-dimensional mode along the vortex if the

surrounding two-dimensional streamlines are elliptical [99]. A similar observation has

been made by Jones et al. [19] for the LSB on a NACA 0012 and by Williamson [92]

for the wake behind a circular cylinder. With time, the perturbation grows upstream

and the vortex pairs deform into hairpin-like structures, also called horseshoe or loop

vortices [100]. Because these loop vortices are initially formed at the rear side of the

airfoil and therefore only grow over a short distance before shedding off the trailing

edge, the hairpin-roller pairs are isolated at first and advect without the connecting

braids to the upstream vortex pair (see figure 5.10b). Only at later times, when the

flow becomes more turbulent and the perturbation has moved further upstream, a set

of braid vortices link consecutive Karman rollers and establish a continuous wake of

three-dimensional, turbulent motion (see figure 5.10d).

To monitor the development of the three-dimensional instability, we consider

a time series of streamwise vorticity iso-surfaces |ωx| = 1 in figure 5.11. The vortical

structures identified in this way only relate to rotating fluid along the streamwise

axis and hence detect three-dimensional flow patterns without being obscured by the

dominating two-dimensional topology. The ωx surfaces in figure 5.11 are flat layers that

are stacked on the airfoil surface and lifted off by passing spanwise vortices (cf. figure
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(a) t = 7.8 (b) t = 8.8

(c) t = 9.8 (d) t = 10.8

Figure 5.10: Iso-surfaces of Q-criterion (level: 100) colored by transverse
velocity from t = 7.8 (a) to t = 10.8 (d). Instantaneous streamlines in black.

AOA = 7◦
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5.10). A similar topology of streamwise vorticity surfaces has been reported by Sakai

et al. [101] for the instability of a laminar separation bubble under a solitary wave. In

the present case, a total of four patches of positive and negative vorticity reflect the

same perturbation pattern observed in figure 5.10 and identifies a three-dimensional

elliptic instability mode with wavelength λz = 0.25c, i.e. half the span. We note

that, although this mode is imposed by the spanwise domain length Lz = 0.5c, the

wavelength λz = 0.25c confirms that Lz is sufficiently large to contain wavenumbers

smaller than the naturally occurring minimum.

The time series in figure 5.11 illustrates that the streamwise vorticity is retained

within a slender region of recirculating fluid at the airfoil surface after the vortices

have moved downstream. As the next vortex forms, it is bent by the persisting three-

dimensional mode at the airfoil surface and induces streamwise vorticity itself, thereby

amplifying the three-dimensional instability. As shown in figure 5.11, the continuous

repetition of this process gradually increases the bending of the spanwise vortices to-

wards the trailing edge at a location where patches of positive and negative ωx are in

contact and therefore induce fluid movement in the same, upward direction. Figure

5.10(b-c) indicates that this asymmetric bending is associated with the generation of

hairpin vortices that eventually grow into the enveloping braids at later times.

The upstream growth of the flow instability is therefore a result of the continuous

amplification of three-dimensional flow within a slender region of recirculating fluid and

verifies that the underlying instability mechanism is of absolute and not of convective

nature.

Separation and transition As introduced above, the large recirculation zone ex-

isting at lower angles of attack has collapsed at 7◦ and the flow transitions over the

rear side of the wing as the separated shear layer has become unstable. The transition
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(a) t = 8.7 (b) t = 8.8 (c) t = 8.9

(d) t = 9.0 (e) t = 9.1 (f) t = 9.2

Figure 5.11: Iso-surfaces of the streamwise vorticity +ωx (red) and −ωx
(blue) for a level |ωx| = 1. Rear section of the airfoil shown between x/c = 0.4

and x/c = 1.1 for t = 8.7 (a) to t = 9.2 (f). Instantaneous streamlines in
black. AOA = 7◦
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(a) t = 18.6 (b) t = 18.7

(c) t = 18.8 (d) t = 18.9

-50 0 50

Figure 5.12: Snapshots of instantaneous vorticity ωz along a slice z/c =
0.025 from t = 18.6 (a) to t = 18.9 (d). S, T, and R indicate the mean

locations of separation, transition, and reattachment. AOA = 7◦

process is visualized in figure 5.12, where the emergence and subsequent break-down

of vortices along the upper shear layer is distinct. Because the large, low-speed recir-

culation zone is absent at 7◦ incidence, the bottom-side boundary layer can no longer

roll-up into the strong trailing-edge vortex, but is carried downstream by the turbulent,

reattached flow from the top.

The three-dimensional flow topology is outlined by plots of iso-Q surfaces in fig-

ure 5.13 and show that the vortex shedding at mid-chord is initially two-dimensional

but promptly transitions into three-dimensional, chaotic vortical structures upon in-

teracting with the instability retained within the slim recirculation region close to the

airfoil surface (cf. figure 5.11). Given that the transition occurs upstream of the trail-

ing edge, the vortices transport momentum from the outer flow into the boundary layer

and cause the streamlines to reattach to the wall, thereby forming a slender laminar

separation bubble (LSB) on the airfoil’s rear side.

Compared to the lower flow angles shown in figure 5.4 and 5.6, the vortex
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(a) Overview

(b) Detailed view

(c) Side view

(d) Top view

Figure 5.13: Iso-surfaces of Q-criterion (level: 100) colored by the velocity
magnitude |u| at t = 18.6. Instantaneous streamlines at z/c = 0 in black. S,

T, and R indicate the mean locations of separation, transition, and
reattachment. Detailed view (b) of vortices in the region 0.55 < x/c < 1 and 0

< z/c < 0.2. AOA = 7◦

bursting is more rapid and yield smaller length scales because (a) the flow has to work

against a stronger adverse pressure gradient and (b) the vortices form upstream of

the trailing edge and therefore interact with the recirculating, three-dimensional flow

inside the LSB. The bursting vortices, however, retain their coherence on a large scale

and can be identified in the continuous shedding of patches of turbulence, or “puffs”,

from the airfoil (see also figure 5.12).

We outline the transition from two to three-dimensional flow in figure 5.14,
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(a) x-y plane (b) x-z plane

Figure 5.14: Instantaneous transverse velocity w and streamlines along a x-y
plane at z/c = 0.025 (a) and along a surface normal to the airfoil wall
displaced by ∆η = 0.01c (b) at t = 18.6. S, T, and R indicate the mean

locations of separation, transition, and reattachment. AOA = 7◦

where instantaneous contours of the transverse (w) velocity are plotted along a plane

in x-y direction (a) and a curved surfaces at a distance ∆η = 0.01c normal to the

airfoil wall (b). The w-velocity contours show that three-dimensional flow is present

within the entire LSB and forms a low-amplitude mode with a wavelength equal to the

spanwise domain size. Around the transition point T, the transverse flow is strongly

amplified as the shear layer rolls up and sheds.

The instantaneous streamlines shown in figure 5.14(a), the low-frequency mode

of transverse velocity shown in (b), and the spanwise bending of the associated vortex

tube at x/c = 0.6 (see figure 5.13) suggests that an elliptic instability causes the

transition from two to three-dimensional flow. Similar observations in flows with LSBs

have been made by Jones et al. [19] and Sakai et al. [101].

Wake topology The topology of the vortical structures within the airfoil wake is

visualized in figure 5.15, where contours of instantaneous spanwise vorticy ωz (a) and

specific entropy s (b) are plotted. As introduced earlier, vorticity is generated at the

airfoil wall and is transported away through convection and diffusion. Stretching of

vortex filaments, mixing, and diffusion results in the decay of the vorticity amplitude
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(a) Vorticity ωz

(b) Specific entropy s

Figure 5.15: Instantaneous snapshots of the vorticity ωz (a) and the specific
entropy s = ln(p/ργ)/(γ(γ − 1)M2

f ) (b) along a slice at z/c = 0.025 and t =
18.6. AOA = 7◦.

in the wake as an increasing amount of fluid is entrained in the vortical motion. The

entropy generated from dissipative processes within the transitioning flow over the wing

is preserved within the eddies downstream and highlight the topology of the wake in

figure 5.15(b). The scalar field shows that the vortices combine at the airfoil’s trailing

edge and form large-scale turbulent puffs as they shed downstream into the wake.

These turbulent patches carry large amounts of specific entropy downstream and mix

with the surrounding fluid which results in the gradual decay of entropy as the wake

spreads.

As figure 5.15 shows, the vortices assemble into a low-frequency turbulent vor-

tex street behind the wing, whose wavelength is of the order of the airfoil’s chord.

Compared to the flow at lower angles of attack without reattachment, the spread of

the vortices is significantly increased and results in a much wider wake at AOA = 7◦.
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Velocity and boundary layer profiles The streamlines, wall-normal velocity pro-

file, and the boundary layer displacement thickness of time and space-averaged flow

field data are plotted in figure 5.16(a). Superposed are contours of the reverse flow mag-

nitude normalized by the local velocity magnitude at the boundary layer edge within

the LSB. In (b), the profiles of the displacement thickness δ∗, momentum thickness θ,

and the shape factor H are plotted over the horizontal coordinate x/c.

The laminar boundary layer separates at location S and marks the leading edge

of a long and slender LSB, which stretches over a large section of the airfoil from xs/c

= 0.29 to xr/c = 0.92. The increase of the displacement thickness accelerates upon

separation, whereas the momentum loss thickness abruptly grows at the center of the

LSB where the flow transitions to turbulence. The delayed increase results in a local

peak of the shape factor and marks the transition location T. As the flow becomes

turbulent, The boundary layer reattaches at the trailing edge (xr/c = 0.92) and the

shape factor decreases below its upstream laminar level. Similar boundary layer profiles

have been observed by Galbraith and Visbal [28] and Uranga et al. [7] for the formation

of a LSB over a SD 7003.

The continuous breakdown of the separated, two-dimensional shear layer into

three-dimensional turbulent structures suggests that an instability mode is estab-

lished as a mechanism for self-sustaining turbulence. As noted by Jones et al. [19],

three-dimensional fluctuations in a convectively unstable flow would be transported

away from the LSB and revert the bubble into a two-dimensional state, whereas self-

sustaining turbulence requires constant feeding of fluctuations from an existing insta-

bility. Following Alam and Sandham [63] and Jones et al. [19], laminar separation

bubbles require a reverse flow velocity UR of 15-20% of the local boundary layer edge

velocity to develop an absolute stability. For values below this threshold, the instability

is assumed to be of convective nature. We therefore evaluate the reverse flow within the
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(a) Velocity profile (b) Boundary layer thickness

Figure 5.16: (a) Time and space (spanwise) averaged streamlines in gray,
tangential velocity profiles at selected locations in black and displacement

thickness δ∗ as dotted, black line. Contours of reverse flow normalized by the
local velocity at the boundary layer edge in blue. S, T, and R indicate the

mean locations of separation, transition, and reattachment. (b) Displacement
thickness, momentum thickness, and shape factor. AOA = 7◦.

laminar separation bubble to quantify if an absolute instability has potentially been

established within the bubble.

The maximum level of the reverse velocity component is UR = 11.7%, relative

to the velocity magnitude at the boundary layer edge (see figure 5.16a). This value is

lower than the 15.2% reported by Jones et al. [19] for the NACA 0012, and is below

the threshold suggested by Alam and Sandham [63] of 15% to 20% to maintain an

absolute instability. Although an absolute instability in the classical sense may not

be the cause for the self-sustained turbulence here, the temporal and spatial growth

of three-dimensional, turbulent flow suggests the presence of an instability mechanism

not predicted by linear stability analysis based on the averaged velocity profile of the

LSB [19]. Because three-dimensional vortical structures persist within the reverse flow

region and grow upstream within the bubble over time, the presence of the self-exciting

three-dimensional mode is likely the result of an elliptic instability combined with the

reverse flow within the LSB.

72



AOA = 8◦ and AOA = 10◦

At 8◦ and 10◦ incidence, the laminar boundary layer separates at the leading

edge, transitions to turbulence at mid-chord and forms a laminar separation bubble

over the airfoil’s front surface.

Separation and transition The transition process is outlined in Figure 5.17: con-

tours of instantaneous vorticity along a slice at z/c = 0.025 show that the flow is

initially laminar and, under a strong, adverse pressure gradient, separates from the

leading edge at xs/c = 0.016 (marked as location S). A Kelvin-Helmholtz (K-H) insta-

bility drives the formation of large, spanwise vortices along the separated shear layer

between x/c = 0.3 and 0.4. Upon their generation, these vortices have a clear outline

but quickly burst as they roll up over the airfoil surface and transition to turbulence

(marked as location T ) by forming local turbulent clouds or “puffs”. Because the tran-

sition process occurs far upstream of the trailing edge, the roll-up of the vortices over

the wing transports momentum from the outer flow to the wall, which results to the

reattachment of the flow in the time-averaged sense at xr/c = 0.48 (marked as location

R in figure 5.17).

The three-dimensionality of the transition process is outlined in figure 5.18,

where iso-surfaces of the Q-criterion colored by the velocity magnitude visualize coher-

ent vortical structures in the field. The separation of the boundary layer at location

S and the subsequent shedding of laminar vortices correspond to the contours of the

snapshot shown in figure 5.17(b). Three coherent, spanwise vortices (I – III) are identi-

fied around the transition point T and can be characterized as (I) formation of vortices

within the separated shear layer, (II) growth and roll-up over the airfoil surface, and

(III) bursting and loss of spanwise coherence. Upon formation along the separated

shear layer, the spanwise vortices show an initial three-dimensional mode induced from
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(a) t = 35.9 (b) t = 36.0

(c) t = 36.1 (d) t = 36.2
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Figure 5.17: Snapshots of instantaneous vorticity ωz along a slice z/c =
0.025 from t = 35.9 (a) to t = 36.2 (d). S, T, and R indicate the mean

locations of separation, transition, and reattachment. AOA = 8◦
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(a) Overview

(b) Detailed view

(c) Side view

(d) Top view

Figure 5.18: Iso-surfaces of Q-criterion (level: 100) colored by the velocity
magnitude |u| at t = 35.9. S, T, and R indicate the mean locations of

separation, transition, and reattachment. Vortices in separated shear layer
(I–III). Detailed view (b) of hairpin vortices in the region 0.45 < x/c < 0.8

and 0 < z/c < 0.15. AOA = 8◦

perturbing flow inside the LSB. As the vortices grow along the shear layer, they con-

tinue to bend until their interaction with the wall causes them to burst and loose their

coherence. The resulting turbulent flow downstream of the LSB is governed by the

formation of a series of wall-bounded hairpin vortices that emerge from the roll-up and

bursting of vortex III over the airfoil surface at mid-chord. The coloring of the iso-

surfaces by the velocity magnitude in figure 5.17(d) shows that the large-scale rollers

are generated within a region of high momentum which they transfer into vortices of

smaller scales and thereby into lateral and spanwise fluid motion.
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(a) x-y plane (b) x-z plane

Figure 5.19: Instantaneous transverse velocity w and streamlines along a x-y
plane at z/c = 0.025 (a) and along a surface normal to the airfoil wall
displaced by ∆η = 0.01c (b) at t = 35.9. S, T, and R indicate the mean

locations of separation, transition, and reattachment. AOA = 8◦

We outline the transition from two to three-dimensional flow in figure 5.19,

where instantaneous contours of the transverse (w) velocity are plotted along a plane

in x-y direction (a) and a curved surfaces at a distance ∆η = 0.01c normal to the airfoil

wall (b). The instantaneous streamlines plotted in (a) illustrate the recirculating flow

within the LSB and form spirals along the vortex cores that indicate fluid motion along

the span. The w-velocity contours in (b) show that three-dimensional flow is present

within the entire LSB and forms a low-amplitude mode with a wavelength equal to the

spanwise domain size. At x/c = 0.3, the formation of the first eddy (see also figure

5.18 and 5.20) induces strong, three-dimensional flow associated with the streamwise

tubes of hairpin vortices. These are generated in the high velocity gradient from the

interaction of the perturbed span-wise rollers and the no-slip wall. The transport of

transverse momentum into the LSB hints the presence of an absolute instability mode

as a mechanism for self-sustaining turbulence.

The wall signature of the laminar separation bubble and subsequent transition

to turbulence is visualized by skin-friction lines in figure 5.20. Friction lines, also called

surface streamlines, are tangent lines in direction of the wall shear stress and provide

information about the flow structure near the surface. Locations of flow separation and
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reattachment, for example, can be identified through singular points in the friction line

topology [102, 103]. As such critical points are characterized by vanishing wall shear

stress, they either act as a source or a sink for surface streamlines [102].

In figure 5.20, the friction lines are superimposed onto contours of instantaneous

wall shear stress magnitude (a) and the wall-pressure coefficient (b) to relate the flow

topology to aerodynamic wall-based quantities. A straight, transverse shear line at the

leading edge identifies the location of flow separation (xs = 0.016c, highlighted in red).

From the separation point, the shear lines have a streamwise, parallel orientation until

singular lines in transverse direction at x/c = 0.3 indicate the change of direction of

the wall shear stress along the edges of the first vortex (cf. figure 5.18d). This location

agrees very well with the transition point xt/c = 0.32, which is indicates by the second

red line in figure 5.20. Downstream of the transition point xt, the high magnitude

of the wall shear stress between 0.4 < x/c < 0.5 indicates that the vortices generated

within the separated shear layer now roll up over the airfoil surface and induce a strong

velocity gradient. Driven by upstream perturbation, the high velocity gradients at the

vortex edges result in the rapid transition of the flow and a strongly increased transfer

of momentum from the outer flow to the airfoil surface that leads to the reattachment

of the streamlines in the time-averaged flow field at xr/c = 0.48 (third red line).

Downstream of the reattachment point, the flow has transitioned to turbulence

and the topology of the surface streamlines resembles patterns found in other turbulent

wall-bounded flows [104, 97]. The highly increased momentum flux towards the airfoil

surface in the turbulent region results in recovery of the wall pressure from the outer

flow (cf. figure 5.20b), which directly translates into a reduced form drag. Note that

the mechanism of pressure recovery is absent in the separated flow at lower angles of

attack (0◦ and 4◦).

Results of implicit LES show that the airfoil flow at 10◦ incidence is governed
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(a) Skin friction coefficient (b) Pressure coefficient

Figure 5.20: Skin friction and pressure coefficient contours on upper side of
the airfoil at t = 35.9. Surface streamlines in black. Red lines indicate location
of separation, transition, and reattachment (from left to right). AOA = 8◦.

by a large, leading-edge LSB and transition to turbulence of the separated shear layer

over the wing, similar to the case at 8◦ angle of attack. Contour plots of instantaneous

vorticity (see figure 5.21), as well as iso-surfaces of the Q-criterion (see figure 5.22),

illustrate how the spanwise vortices from the separated shear layer quickly burst and

result in turbulent fluid motions downstream of the LSB. The strong, adverse pressure

gradient at 10◦ incidence accelerates the flow transition and cause the vortices to loose

their coherent shape earlier in comparison to the flow at 8◦ angle of attack. A larger,

turbulent boundary layer downstream of the bubble results in higher viscous losses

and lower performance as the airfoil moves closer to aerodynamic stall conditions (see

figure 5.2).

Wake topology The subsequent break down of vortical structures from the separat-

ing shear layer over the airfoil into the turbulent wake is visualized for AOA = 8◦ in

figure 5.23, which shows contours of instantaneous spanwise vorticy ωz (a) and specific

entropy s (b). As introduced earlier, vorticity is generated at the airfoil wall and is

transported away through convection and diffusion. Stretching of vortex filaments,

mixing, and diffusion results in the decay of the vorticity amplitude in the wake as an

increasing amount of fluid is entrained in the vortical motion.
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Figure 5.21: Snapshots of instantaneous vorticity ωz along a slice z/c =
0.025 at t = 35.8 (a) and t = 36.1 (b). S, T, and R indicate the mean
locations of separation, transition, and reattachment. AOA = 10◦

Figure 5.22: Iso-surfaces of Q-criterion (level: 100) colored by the velocity
magnitude |u| at t = 36.1. S, T, and R indicate the mean locations of

separation, transition, and reattachment. AOA = 10◦
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(a) Vorticity ωz

(b) Specific entropy s

Figure 5.23: Instantaneous snapshots of the vorticity ωz (a) and the specific
entropy s = ln(p/ργ)/(γ(γ − 1)M2

f ) (b) along a slice at z/c = 0.025 and t =
35.9. AOA = 8◦.

The entropy generated from dissipative processes within the transitioning flow

over the wing is preserved within the eddies downstream and highlight the topology

of the wake in figure 5.23(b). The scalar field shows that the bursting vortices form

large-scale turbulent puffs downstream in the wake as they merge with each other

and the shear layer from the bottom side of the airfoil at the trailing edge. These

turbulent structures carry large amounts of specific entropy downstream and mix with

the surrounding fluid which results in the gradual decay of entropy as the wake spreads.

The conservation of local patches with high entropy downstream in the wake indicate

the existence of coherent structures.

Remarkably, the spread of the wake is smaller than for the flow at 7◦, despite

the higher angle of attack and larger projected frontal area. Because the turbulence

develops over a longer distance before shedding off the airfoil, the vortices are less

coherent at AOA = 8◦ and the flow leaves the trailing edge more uniformly than at

AOA = 7◦.
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Figure 5.24: (a) Time and space (spanwise) averaged streamlines in gray,
tangential velocity profiles at selected locations in black and displacement

thickness δ∗ as dotted, black line. Contours of reverse flow normalized by the
local velocity at the boundary layer edge in blue. S, T, and R indicate the

mean locations of separation, transition, and reattachment. (b) Displacement
thickness, momentum thickness, and shape factor. AOA = 8◦.

Velocity and boundary layer profiles The streamlines, wall-normal velocity pro-

file, and the boundary layer displacement thickness of time and space-averaged flow

field data are plotted in figure 5.24(a) for AOA = 8◦ and 5.25(a) for AOA = 10◦.

Superposed are contours of the reverse flow magnitude normalized by the local veloc-

ity magnitude at the boundary layer edge within the LSB. In (b), the profiles of the

displacement thickness δ∗, momentum thickness θ, and the shape factor H are plotted

over the horizontal coordinate x/c.

The flow separates at the leading edge (location S) and reattaches after tran-

sitioning to turbulence at approximately mid-chord, thereby forming a LSB over the

first half of the wing. The displacement thickness increases strongly until the center of

the LSB, where the momentum loss thickness starts to grow and results in a local peak

of the shape factor, marking the transition point T. After the reattachment at xr/c =

0.48 (AOA = 8◦) and xr/c = 0.46 (AOA = 10◦), the flow transitions to a turbulent

boundary layer and the shape factor levels out. Similar to the bubble dynamics at

7◦, the turbulence is self-sustaining in case of the leading-edge LSB encountered at 8◦

and 10◦ incidence. Again, we evaluate the reverse flow within the separation bubble to
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Figure 5.25: (a) Time and space (spanwise) averaged streamlines in gray,
tangential velocity profiles at selected locations in black and displacement

thickness δ∗ as dotted, black line. Contours of reverse flow normalized by the
local velocity at the boundary layer edge in blue. S, T, and R indicate the

mean locations of separation, transition, and reattachment. (b) Displacement
thickness, momentum thickness, and shape factor. AOA = 10◦.

quantify if an absolute instability has potentially been established. At an angle of 8◦,

the maximum level of the reverse velocity component is UR = 10.3%, relative to the

velocity magnitude at the boundary layer edge. This value is lower than the 11.7% at

7◦ or the 15.2% reported by Jones et al. [19] for the NACA 0012, and is clearly below

the threshold suggested by Alam and Sandham [63] of 15% to 20% to maintain an

absolute instability. At 10◦ incidence, the increased bubble height results in a higher

reverse flow level with UR = 11.5% of the local boundary-layer edge velocity, but still

fails meet the criterion referenced by Alam and Sandham [63].

In both cases, the self-sustained turbulence within the leading-edge LSB is likely

driven by a three-dimensional instability mode, where, similar to the previously dis-

cussed case at 7◦ incidence, the disturbance feeds from the upstream transport of

streamwise vortical structures through the reverse flow region.
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Figure 5.26: (a) Lift coefficients over time. (b) Frequency spectrum of the
lift coefficient. AOA = 0◦.

5.3.2 Aerodynamic forces

The following section addresses the aerodynamic forces on the wing and dis-

cusses time-averaged profiles of the pressure and skin friction coefficients as well as the

time history of the integrated lift and drag forces and the associated frequency spectra.

Note that the time unit is scaled with the free-stream velocity Uf and the chord-length

of the airfoil c, such that the corresponding frequency identifies as the Strouhal number

St = fc/Uf of the flow.

AOA = 0◦

Figure 5.26 shows the time-history of the lift coefficient and the corresponding

frequency spectrum within the quasi-steady regime for the flow at AOA = 0◦. The

fluctuations of the forces are driven by the shedding of the laminar shear layers at the

trailing edge and directly relate to the vortex street in the wake presented in figure

5.8. The forces steadily oscillate around a time-averaged mean of C̄l = -0.041 and C̄d

= 0.036 and the frequency spectrum of the lift coefficient shows a single distinct peak

at a Strouhal number of St = 3.1.
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Figure 5.27: Time and spanwise averaged pressure and skin friction
coefficients. AOA = 0◦

The time-averaged profiles of the pressure and skin friction coefficients are plot-

ted over the chord length of the airfoil in figure 5.27. The pressure distribution differs

significantly from the inviscid solution (see figure 1.1c) and shows an overall higher

pressure on the upper side that results in the negative lifting force. At the leading

edge, the positive peak of the pressure coefficient on the upper side is caused by the

stagnation point flow (Cp ≈ 1), whereas the negative peak is related to the fluid turn-

ing around the leading edge from the upper to the bottom side, causing a low pressure

region and negative lift. The separation point of the boundary layer on the upper side

is indicated by negative skin friction at xs/c = 0.6, while the flow stays attached on the

bottom side. Downstream of the separation point, the pressure remains nearly con-

stant as the flow has separated and the free-stream pressure is not recovered towards

the trailing edge.

AOA = 4◦

At 4◦, the flow topology is similar to 0◦ and is governed by the boundary layer

separation at mid-chord. The lift and drag forces still oscillate in a quasi-steady manner

(see figure 5.28), but contain additional low-frequency components. The time-averaged
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Figure 5.28: (a) Lift coefficients over time. (b) Frequency spectrum of the
lift coefficient. AOA = 4◦.

forces are C̄l = 0.378 and C̄d = 0.051 at a Strouhal number of St = fc/Uf = 2.7, where

we take f to be the most energetic frequency of the lift coefficient. The change in

the vortex-shedding frequency is driven by the larger size of vortices generated at the

trailing edge. The vortex size is limited by the projected height of the wing area onto

the free-stream plane and therefore increases with the angle of attack, allowing for the

generation of larger vortices.

Figure 5.29 shows the pressure and skin friction coefficients plotted over the

airfoil chord. The upper (suction) side shows a moderate adverse pressure gradient

until the flow separates at xs/c = 0.49, where again the pressure remains constant

throughout the recirculation region and is not recovered towards the trailing edge.

The skin friction coefficient gradually decreases after the leading-edge spike as the

boundary layer thickens and turns negative at the separation point at xs/c = 0.49 on

the upper side.
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Figure 5.29: Time and spanwise averaged pressure and skin friction
coefficients. AOA = 4◦
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Figure 5.30: (a) Lift coefficients over time. (b) Frequency spectrum of the
lift coefficient. AOA = 7◦.

AOA = 7◦

The lift history and the associated frequencies are given in figure 5.30. The

trend is highly irregular and shows a clear transition from two-dimensional (t < 10)

to three-dimensional (t > 10) flow. The time-averaged forces are C̄l = 0.98 and C̄d =

0.063 at a Strouhal number of St = fc/Uf = 1.2, where, again, we take f to be the

most energetic frequency of the lift coefficient.

Figure 5.31 shows the pressure and skin friction coefficients plotted over the
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Figure 5.31: Time and spanwise averaged pressure and skin friction
coefficients. AOA = 7◦

airfoil chord. The upper (suction) side shows a strong adverse pressure gradient at

the leading edge which levels out downstream until the flow transitions at xt/c = 0.62

where the pressure shows a local minimum. The skin friction distribution over the wing

is rather unique: downstream of the leading edge spike, the shear stress at the wall

drops to near zero and remains low until the flow transitions and turbulence causes

high shear gradients for x/c > 0.6. Although the time-averaged zero-skin friction point

is at xs/c = 0.29, the skin friction periodically becomes negative at the trailing edge

(not shown), thus making the exact determination of the separation point challenging.

AOA = 8◦

The transition to a flow with a LSB at the leading edge and subsequent turbulent

boundary layer over the rear side of the airfoil results in a chaotic pattern of the lift

and drag forces. As discussed in Section 5.2, the simulation is initially run with at

low spatial resolution and interpolated onto the finer grid with higher wall resolution

at t ≈ 26 to better account for the small-scale turbulent structures, resulting in a

transition period from t ≈ 26 to t ≈ 30, which is the taken to be the starting point for

87



20 25 30 35 40

0.94

0.96

0.98

1

1.02

1.04

1.06

0 2 4 6

0

1

2

3

4
10

-3

(a) Lift coefficient (b) Lift spectrum

Figure 5.32: (a) Lift coefficients over time. Dashed line indicates
interpolation from Grid 1 to Grid 2. (b) Frequency spectrum of the lift

coefficient. AOA = 8◦.

the temporal statistics in this computation. The time-averaged mean of the lift and

drag coefficients are C̄l = 1.03 and C̄d = 0.056. Contrary to the flows at sub-critical

angles of attack, the lift spectrum does not yield a single, dominant frequency peak

in the spectrum, but indicates an exponential decay of the energy content typical for

turbulent flows.

Figure 5.33 presents plots of the time and space-averaged pressure and skin

friction profiles of the flow at AOA = 8◦ (compare to instantaneous results in figure

5.20). As shown in the previous section, the laminar boundary layer separates at the

leading edge (xs/c = 0.02), transitions (xt/c = 0.32), and reattaches (xr/c = 0.48),

thereby forming a laminar separation bubble over the upper front side of the wing.

Figure 5.33(a) shows that the pressure coefficient strongly increases at the leading edge,

causing a local adverse pressure gradient and separation of the laminar boundary layer.

Downstream of the separation point, the pressure remains constant across the LSB

before it abruptly increases at the reattachment point and then gradually approaches

towards the free-stream pressure at the trailing edge, resulting in low form drag. The
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Figure 5.33: Time and spanwise averaged pressure and skin friction
coefficients. AOA = 8◦

reverse flow region inside the LSB induces a negative skin friction until the shear layer

transitions (xt/c = 0.32) and reattaches at xr/c = 0.48. Between the transition and

the reattachment point, the skin friction shows a prominent negative peak caused by

the clock-wise rotating flow as the growing vortex rolls up over the airfoil surface. The

subsequent bursting results in highly increased transport of momentum from the outer

flow to the wing surface and in the recovery of the pressure over the rear side of the

wing, as shown in figure 5.33(a).

AOA = 10◦

Figure 5.34 presents the lift coefficient history and the corresponding frequency

spectrum of the implicit LES simulations at 10◦ incidence. The time-averaged mean of

the lift and drag coefficients are C̄l = 1.06 and C̄d = 0.095. Similar to the flow at 8◦,

the lift spectrum does not yield a single dominant frequency, but shows several peaks

of decreasing amplitude with Strouhal number caused by the turbulent boundary layer

that develops downstream of the LSB. The time and space-averaged pressure and skin

friction coefficients in figure 5.35 are similar to the profiles at 8◦ angle of attack, but

show a decreased length of constant pressure across the LSB and a broader peak of
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Figure 5.34: (a) Lift coefficients over time. (b) Frequency spectrum of the
lift coefficient. AOA = 10◦.
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Figure 5.35: Time and spanwise averaged pressure and skin friction
coefficients. LES results are filtered to increase smoothness. AOA = 10◦

negative shear stress at the transition point.
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5.3.3 Temporal and spatial statistics

For compressible flows, the transfer of energy between the mean flow, turbulent

fluctuations, and internal energy is described by a set of transport equations that derive

from the decomposition of the Favre-averaged Navier-Stokes equations, as shown by

Huang et al. [105]. The terms in these equations are relevant for the testing and

development of turbulence models [12]. The decomposition results in three separate

equations for the transport of mean-flow, turbulent, and internal energy, where shared

terms represent the energy transfer between these quantities. In the following, 〈ui〉

= T−1 ∫
T ui(t)dt refers to Reynolds-averaged variables and {ui} = 〈ρui〉/〈ρ〉 refers to

Favre-averages. The decomposition into mean and fluctuating components is such that

ui = 〈ui〉 + u′i and ui = {ui} + u′′i .

The turbulent kinetic energy (TKE) {k} = {u′′i u′′i }/2 is governed by the trans-

port equation

∂〈ρ〉{uk}{k}
∂xk

= −〈ρ〉{u′′i u′′k}
∂{ui}
∂xk

− ∂〈ρ〉{u′′kk′′}
∂xk

− ∂〈p′u′k〉
∂xk

+ 1
Ref

∂〈τ ′iku′i〉
∂xk

− 1
Ref

〈
τ ′ik
∂u′i
∂xk

〉
− 〈u′′k〉

∂〈p〉
∂xk

+ 1
Ref
〈u′′i 〉

∂〈τik〉
∂xk

+
〈
p′
∂u′k
∂xk

〉
. (5.1)

In (5.1), the advection of the TKE is balanced by several terms on the right-hand

side that represent the transfer to the mean-flow and the internal energy. The first

right-hand side term describes the energy production, the second is the turbulence

transport, the third describes transport related to the velocity-pressure gradient, the

fourth is viscous diffusion, and the fifth is the viscous energy dissipation. The last

three terms in (5.1) are energy transport associated with compressibility effects.

In this section, we evaluate the energy budget of the turbulent kinetic energy

for the transitional airfoil flow. Additionally, we determine the frequency content

and spatial coherence of the turbulent structures within the separated flow region by

assessing the energy spectrum of the turbulent kinetic energy 〈k〉 = 〈u′iu′i〉/2 along the
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Figure 5.36: (a) Production of the TKE in the airfoil wake (Y-axis
stretched). (b) TKE budgets plotted along a line shown in (a). AOA = 0◦.

span at selected locations based on the averaged flow pattern.

AOA = 0◦ and AOA = 4◦

We evaluate the production, transport, and dissipation of the turbulent kinetic

energy for the flow at 0◦ incidence in figure 5.36. In (a), contours of the production

term −〈ρ〉{u′′i u′′k}∂{ui}/∂xk are overlayed by streamlines from time-averaged flow field

data. The plot shows that turbulent kinetic energy is produced in a short region at the

downstream edge of the recirculation bubble. At this location, the separated bottom

and top shear layer meet and form vortex pairs, as shown in the instantaneous vorticity

plots in figure 5.3.

Figure 5.36(b) evaluates the first five terms on the right-hand side of (5.1) along

a line in the wake (see figure 5.36a). The turbulent production dominates the TKE

budget and is mainly balanced by turbulent transport −∂(〈ρ〉{u′′kk′′})∂xk and velocity-

pressure gradient diffusion −∂(〈p′u′k〉)∂xk. The contribution of the viscous diffusion

and viscous dissipation is small compared to the other terms, as the flow is no longer

wall-bounded at this location which highly reduces the contribution of viscous forces.
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Figure 5.37: (a) Production of the TKE in the airfoil wake (Y-axis
stretched). (b) TKE budgets plotted along a line shown in (a). AOA = 4◦.

At 4◦ incidence, the turbulent kinetic energy production approximately doubles

over the values reported at 0◦ and spans a slightly larger region that is consistent with

the increase in the size of the separation bubble (see figure 5.37). Again, the TKE

production is strictly limited to the outside of the recirculation zone where the bottom

and top vortex meet. Figure 5.37(b) shows that the first five right-hand side terms of

(5.1) follow the pattern found at 0◦, with the production being balanced by turbulent

and velocity-pressure diffusion.

It should be noted that at both flow angles the TKE production is negative at

the separation bubble edge and indicate a local region of reverse energy transfer, i.e.

from energy of turbulent fluctuations to the mean flow.

Spectra of the velocity fluctuations are recorded at three locations along span-

wise lines. The probe locations are selected such that location 1 lies within the recircu-

lation zone, location 2 at the edge, and location 3 in the wake 0.3c behind the trailing

edge, as shown in figures 5.38(a) and 5.39(a) for 0◦ and 4◦ respectively. Both velocity

spectra are similar in shape and approximately follow the -5/3 decay for wavenumbers

between 10 < kz < 30, but deviate in their smoothness. Despite averaging the spectra
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Figure 5.38: (a) Spanwise-averaged vorticity at t = 42.7 and time-averaged
streamlines. Green markers indicate probe locations for spanwise velocity
spectra. Y-axis stretched. (b) Spanwise velocity spectra (power spectral

density) at locations marked in (a). Spectra are averaged over 99 samples.
AOA = 0◦.

over ten convective time units, figure 5.38(b) shows several low-wavenumber peaks at

kz = 8, 12, and 16. These peaks correspond to the well-defined longitudinal braid-

vortices that emerge from the vortex roll-up at the trailing edge (see figure 5.4). The

lack of smoothness indicates that the flow remains laminar at the probed locations and

does not transition to turbulence, as is the case at 4◦, where a much smoother velocity

spectrum in figure 5.39(b) results from the onset of turbulent motion at the trailing

edge (see figure 5.6).

AOA = 8◦

Because the laminar flow transitions upstream of the trailing edge at higher

angles of attack and forms a separation bubble at the leading edge, the generation of

turbulence is wall-bounded and no longer limited to the wake. Figure 5.40(a) shows

that the TKE production peaks towards the rear end of the LSB, right between the

94



10
1

10
2

10
-8

10
-6

10
-4

10
-2

(a) Locations (b) Spectra

Figure 5.39: (a) Spanwise-averaged vorticity at t = 46.0 and time-averaged
streamlines. Green markers indicate probe locations for spanwise velocity
spectra. Y-axis stretched. (b) Spanwise velocity spectra (power spectral

density) at locations marked in (a). Spectra are averaged over 102 samples.
AOA = 4◦.

transition point at xt/c = 0.32 and the reattachment point of the time-averaged flow at

xr/c = 0.48. This location is consistent with the bursting of the spanwise vortices (see

figure 5.18d), local maxima in the skin friction (see figure 5.20a), and rapid increase of

the spanwise velocity component (see figure 5.19b).

We evaluate the TKE production, transport, and dissipation in the vicinity

of the reattachment point (xr/c = 0.48) along wall-normal lines at 40% and 55%

chord length in figure 5.40(b). The first line is within the LSB at a location of high

reverse flow (see figure 5.24) and the second measurement is taken downstream of

the reattachment point, such that the measurements are approximately symmetric

around xr. The change in the profiles of the TKE budget between the two locations is

remarkable, as the prominent peak in the production term at x/c = 0.4 is reduced by

78% at the downstream location (x/c = 0.55). Accordingly, the balancing turbulent

and velocity-pressure transport terms show similar decays in amplitude and only the
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viscous diffusion and dissipation preserve their shape.

The profiles observed in figure 5.40(b) are in accordance with the data reported

by Alam and Sandham [63] for a laminar separation bubble on a flat plate. Specifically,

the measurements downstream of the LSB reattachment point show a nearly identical

shape of the production, dissipation, turbulent transport, and viscous diffusion. Only

the transport through the pressure-velocity gradient is considerably larger in the airfoil

flow, with compressibility effects and the complex geometry of the wing being likely

responsible for the deviation.

The dominant peak in the TKE production within the separation bubble is

consistent with the finding that the LSB is subject an absolute instability and self-

sustaining turbulence. The viscous diffusion and dissipation terms, while nearly zero

for flow angles 0◦ and 4◦, have high contributions of opposite sign close to the wall,

but decrease rapidly outside the viscous sublayer. Besides the peak at the wall, the

dissipation has a local maximum at a wall-normal distance of ∆η0.4c = 0.016c and

∆η0.55c = 0.014c. Compared to the peak production in the shear layer, the magnitude

of the local dissipation maxima accounts only to 23% (x/c = 0.4) and 76% (x/c =

0.55) of the production and is clearly balanced by the other transport terms.

We evaluate the velocity spectrum at four locations over the airfoil for the

turbulent flow at 8◦ incidence. The first two probes are located at the transition

point xt and the reattachment point xr respectively, while the other two locations are

selected to lie downstream within the turbulent boundary layer (x/c = 0.7 and x/c

= 0.9). All probes have a wall-normal distance of ∆η/c = 0.03, such that the first

points lies within the separated shear layer (see figure 5.41a). The velocity spectrum

in figure 5.41(b) shows that the energy of the velocity fluctuations follows the -5/3

decay over a short frequency range for probe locations downstream of the transition

point (location 1). The absence of an extended region with -5/3 slope is like related to
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Figure 5.40: (a) Production of the TKE over the airfoil (Y-axis stretched). T
and R indicate the mean locations of transition and reattachment. (b) TKE
budgets plotted along the lines shown in (a). Solid line: x/c = 0.4, dashed

line: x/c = 0.55. AOA = 8◦.

the low Reynolds number of this airfoil flow. At location 4, the high-frequency content

decays according to the -7 slope and matches the result for turbulent flow over a flat

plate by Wu and Moin [106], thereby confirming that a fully turbulent boundary layer

develops at the airfoil’s trailing edge. At location 1 (transition point xt), the energy

contained in the velocity fluctuations is distinctly lower than at the downstream probes

because the flow has only started to transition and involves fewer scales of motion. The

spectrum, however, shows a distinct local peak at a wavenumber of kz = 18, indicated

by the dashed line in figure 5.41(b), that refers to a spanwise mode with 9 waves over

the span and a wavelength λ = 0.056c at the trailing edge of the laminar separation

bubble. Figure 5.18(d) hints that this mode corresponds to the number of hairpin

vortices that emerge from the breaking vortex roller at the reattachment point.

The characteristic energy decay within the turbulent boundary layer at the

airfoil’s trailing edge is confirmed by the analysis of the u-velocity component’s time

history and corresponding frequency spectrum in figure 5.42. The velocity is recorded
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Figure 5.41: (a) Spanwise-averaged vorticity at t = 35.9 and time-averaged
streamlines. Green markers indicate probe locations for spanwise velocity
spectra. Y-axis stretched. (b) Spanwise velocity spectra (power spectral

density) at locations marked in (a). Spectra are averaged over 69 samples.
Dashed line indicates local peak at kz = 18. AOA = 8◦.

at [x, y, z] = [0.85,−0.044, 0.25] (for a rotated coordinate system with horizontal inflow)

and is close to location 4 plotted in figure 5.41(a). Similar to the spatial frequency

spectrum at location 4, the temporal spectrum follows the -5/3 and -7 slopes, where

the -5/3 decay is more pronounced than in the spatial analysis. Because the time-

history is recorded at every time step, the temporal spectrum has a significantly higher

resolution than the spatial analysis, which is based on samples extracted every one-

tenth convective time units.

5.4 Summary of Results

The laminar separation and transition of the low-Reynolds number flow over a

cambered NACA 65(1)-412 airfoil is analyzed for flow angles from 0◦ to 10◦ through a

series of high-fidelity DNS and implicit LES. The NACA 65(1)-412 is designed to extend
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Figure 5.42: (a) History of the u-velocity component at probe location
[x, y, z] = [0.85,−0.044, 0.25] and the mean indicated by the dashed line. (b)
Power spectral density estimate of u(t), where the dashed lines indicate -5/3

and -7 slopes. AOA = 8◦.

the laminar flow regime under operating conditions and has its maximum thickness at

x/c = 0.4. The flow topology, wake structure, aerodynamic forces, and statistics are

shown to be governed by the transition location of the separated shear layer on the

airfoil’s suction side, which divides the flow into two regimes: at angles of attack

smaller than 7◦, the upper boundary layer separates around mid-chord and remains

laminar until it interacts with the trailing edge vortex, which forms from the roll-up

of the bottom-side boundary layer. For angles larger than 7◦, the separation point

moves to the leading edge of the airfoil and the shear layer transitions to turbulence

and reattaches, resulting in a laminar separation bubble at the leading edge. The

bifurcation of the flow is accompanied by a rapid increase of the aerodynamic lift and

decrease of drag, which is attributed to the recovery of the free-stream pressure at the

trailing edge. An intermediate state is shown to exist at 7◦ incidence, where a LSB

forms at the rear side of the airfoil. Here, the flow reattachment occurs just upstream

of the trailing edge (0.92c) such that the development of turbulent structures is not

wall-bounded but shed off in large patches or “puffs”.
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It is further shown that the change in flow regimes over the airfoil directly

affects the topology of the wake: at angles smaller than 7◦, the vortices are shed in

a fairly regular manner and form a distinct, narrow street in the wake. Transition of

the laminar flow occurs after a few chord lengths behind the trailing edge where the

street looses its coherence. At an angle of attack larger than 7◦, the wake is highly

irregular and governed by the turbulent structures that shed from the leading-edge

LSB, resulting in a wide range of scales of motion. Remarkably, the intermediate state

at 7◦ is characterized by fast spreading vortices that form in low-frequency vortex

street. Although the shear layer becomes unstable shortly after mid-chord, the wall

interaction of the generated vortices is limited in this case and they shed off in the

form of turbulent clouds or “puffs” while retaining their coherence.

The results of the low-Reynolds number flow over an airfoil designed for laminar

flow can be summarized as follows:

(i) At lower angles of attack, the flow separates shortly downstream of the airfoil’s

maximum thickness without reattaching and forms a transitional, narrow wake

with a regular vortex street. The free-stream pressure is not recovered at the

trailing edge resulting in losses of the lift force.

(ii) At higher angles of attack, the sharp leading edge induces flow separation and

promotes the formation of a leading-edge separation bubble with subsequent wall-

bounded turbulent flow. Flow reattachment results in the recovery of the ambient

pressure at the trailing edge and therefore high lift forces. The airfoil is close to

aerodynamic stall.

(iii) An intermediate state can exist if the boundary layer separates downstream of

the leading edge but transitions upstream of the trailing edge. The result is a long

and slender LSB that strongly reduces the form drag. The limited wall interaction
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of the vortices results in large-scale turbulent patches that shed off the airfoil.

Because the NACA 65(1)-412 is designed to maximize the laminar flow region

over the wing, the absence of an early transition to turbulence at low Reynolds number

prevents the reattachment of the separated boundary layer on the airfoil’s rear side at

lower angles of attack and results in a significant loss of the lifting force, which is even

negative at AOA = 0◦. With the rapid increase in the lifting force upon bifurcation

of the flow, the efficient operation of laminar airfoils in low-Reynolds number flow

conditions can be challenging and difficult to predict. The use of active or passive

flow controllers to induce transition early should therefore be considered in order to

alleviate these drawbacks.
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Chapter 6

The Kinematics of Lagrangian Flow

Separation in External

Aerodynamics

6.1 Overview and Summary

In this chapter, we present a comprehensive kinematic study of Lagrangian flow

separation in external aerodynamics by connecting FTLE dynamics, the asymptotic

separation line and spike formation. Using direct numerical simulations of a circular

cylinder flow and the flow over a cambered NACA 65(1)-412 airfoil, we show that while

the motion of fluid particles in the vicinity of the no-slip wall is governed by the spike

formation theory (Serra et al. [43]) over short times, and over long times by the asymp-

totic separation profile (Haller [36]), the off-wall kinematics are governed by long-term

attracting LCSs in the flow field that can be extracted from ridges in the backward-time

FTLE. We find that the shape of the Lagrangian backbone of separation attains strong

bends along the boundary layer heights identified through momentum and displace-
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Figure 6.1: Schematic of the manifolds involved in Lagrangian flow
separation: backward-time FTLE (blue), upwelling material lines (red) and
associated Lagrangian backbone (magenta), linear separation profile and

asymptotic separation point (green). Schematic is not to scale.

ment thickness. These boundary layers thickness approximations are based on kinetics

arguments and typically involve a threshold value. The purely kinematic Lagrangian

backbone of separation, in contrast, is threshold free and consistently distinguishes on-

and off-wall regions characterized by different dynamics.

A schematic of the principal mechanisms of separation in steady or periodic

flows with an asymptotic mean is presented in Figure 6.1. The attracting LCS, which

is identified from the backward-time FTLE ridge (blue), attracts the upwelling fluid

material (red) from the wall. This ridge does not intersect with the wall, but rather

develops along the separated shear layer. The Lagrangian backbone of separation

(magenta) is the theoretical centerpiece of the spike and intersects the boundary at the

so-called spiking point. Attracted by the hyperbolic LCS, the backbone then aligns

with the FTLE ridge once the Lagrangian fluid tracers have left the vicinity of the

wall. Downstream of the spiking point, the asymptotic separation profile (green) is

anchored at the location of averaged zero skin friction and oriented in the direction of

particle break-away.

We further identify the wall signature of upwelling material lines, i.e. the spik-

ing point [43], from Lagrangian quantities and, for the first time, from high-order

wall-based velocity derivatives. By matching the spiking points extracted from the La-

grangian curvature change of material lines and Eulerian on-wall velocity derivatives of
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the circular cylinder, we verify the criterion proposed by Serra et al. [43]. The cylinder

case benefits from an analytically known boundary with constant curvature. To extend

the test to a non-analytic wall representations, the flow around the airfoil with a cubic-

spline based boundary is analyzed. Although the material lines show the formation of

a single spike at mid-cord characterized by a severe curvature change, very weak curva-

ture ridges occur upstream of the asymptotic location of separation. The higher-order

on-wall derivatives reflect these ridges and show their relation to the piece-wise linear

curvature of the wall. Applying a filter with a kernel based on the distance between

supporting points of the spline, we recover the spiking point of the principal separation

event from the on-wall velocity derivatives and match the wall intersection of the La-

grangian backbone of separation. The robustness of this method to local oscillations

or noise is an important result that will benefit future applications, given that many

engineering applications rely on surface representations through splines.

We further show that singular points, such as the stagnation point at the lead-

ing edge, must be excluded from the analysis of material spike formation, as they

can induce fluid upwelling without separation. Barring this limitation, the material

spike formation provides wall-based and short-term information that remains hidden

in the backward-time FTLE and the asymptotic separation profile. The new informa-

tion about the material spike adds a valuable piece to the picture of Lagrangian flow

separation and is a promising tool in the design of flow controllers.

The governing equations and the numerical model are defined in Chapter 2 and

3. In Section 6.2 we outline the setup of our computations and the results are discussed

in the subsequent part. A summary and conclusion is given in Section 6.4.
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Figure 6.2: 2D computational domain for circular cylinder.

6.2 Problem Setup

The canonical circular cylinder flow is computed at a Reynolds number of

Red = 100 based on a cylinder diameter of unity and Mach number of 0.1, render-

ing compressibility effects negligible. The computational domain is divided into 347

quadrilateral elements and the solution is approximated with a 16th order polynomial.

This accounts to a total of 100,283 collocation points. At the outer boundaries, a

free stream condition is applied while the cylinder is approximated with curved ele-

ment faces and an adiabatic no-slip wall. A Riemann solver is used to sort out the

characteristic relations at the boundaries [107, 81]. 402,201 Lagrangian particles are

initialized in 201 wall-parallel lines around the cylinder with a spacing of ∆/d = 0.001

between each line.

The flow over a NACA 65(1)-412 airfoil is simulated at a Reynolds number

based on the chord length of Rec = 20, 000 and a Mach number of M = 0.3. The

Mach number is relatively low ensuring a nominally incompressible flow, but it is high
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Figure 6.3: 2D computational domain for NACA 65(1)-412. Only elements
without interior Gauss-Lobatto nodes are shown.

enough to prevent stability issues pertaining to the explicit time integration we use.

The computational domain is given in Figure 6.3 and consists of 2,256 quadrilateral

elements, with the dimensions of the domain being adopted from Nelson et al. [76],

who show that the solution is not significantly affected by the domain size. Boundary

conditions at outer edges of the computational domain are specified as free-stream

boundaries while the airfoil surface is treated as a non-slip, adiabatic wall. The wall-

boundary elements are curved and fitted to a spline representing the airfoil’s surface

according to Nelson et al. [76]. Again, the characteristic relations at the boundaries are

sorted out by using a Riemann solver. The solution vector is approximated with a 16th

order polynomial, giving a total of 651,984 collocation points in the domain. 1,005,201

Lagrangian particles are initialized in 201 wall-parallel lines around the airfoil with a

spacing of ∆/c = 0.0002 between each line.

In both simulations, Lagrangian particles are tracked by spectrally interpolating

the velocity field for each particle and numerically integrating ẋ (x, t) = v (x (t) , t)

using a 3rd order Adam-Bashfort scheme. The gslib library is used for efficient particle

tracking and velocity interpolation, as described by Mittal et al. [108]. Once the

Lagrangian curvature change field (Eq. 2.15) is calculated, a basic smoothing operation
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is performed to filter out numerical noise.

The wall-normal derivatives in Table 2.1 are computed within the DGSEM

solver. With Equations 2.18 and 2.20, the quantities v̂η and v̂ηη can be spectrally

computed in each element using the operators available in the DGSEM framework and

subsequently projected onto the wall using Lagrange interpolating polynomials. The

derivatives in wall-tangential direction can either be computed within the DGSEM

solver or as part of the post-processing work. Given the sensitive nature to numerical

noise of second and higher derivatives, a smoothing filter is applied to the DNS output

data as a post-processing step.

6.3 Results and Discussion

6.3.1 Cylinder Flow

To study the kinematics of flow separation, we consider a cylinder flow at Red =

100. Ridges in the FTLE field show a flow pattern that is well-known to be dominated

by a pair of counter-rotating vortices alternately shedding in a regular manner from

the top and bottom of the cylinder with a period of approximately six convective

time units [92, 109]. A snapshot of the backward-time FTLE (Figure 6.4) reveals

the long-term attracting LCSs in the wake, which highlight the edges of the advected

vortices. Although this LCS is associated with separation (see Mohseni et al. [110])

and with early vortex formation and shedding [109], the FTLE ridge cannot intersect

with the cylinder wall but rather envelopes the body. This is a direct consequence

of the no-slip condition at the wall and non-hyperbolicity, as was explained in the

introduction. The exact on-wall origin of separation can hence not be identified solely

based on a strain-based FTLE field. A more rigorous analysis of the near-wall flow field

is required. To this end, we first determine the asymptotic separation point and line
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Figure 6.4: Backward-time FTLE from integration over one vortex shedding
period.

[36] and then compute the Lagrangian curvature change κ̄t0+T
t0 and associated spiking

dynamics. Later, we will relate the material spiking and the FTLE.

The averaged zero-skin-friction point is determined according to Eq. 2.13 with

the temporal mean of the skin friction coefficient over one vortex shedding period. It

is located at x/d = 0.23, approximately half way between center and the rear end

of the cylinder. The angle of the separation line with respect to the tangent of the

cylinder surface at the separation point is determined with Eq. 2.14. It oscillates

periodically between 34◦ and 57◦. We use the angle and separation point to create a

linear approximation of the unstable manifold to which fluid particles that eject from

the wall are asymptotically attracted.

The near-wall dynamics are visualized in Figure 6.5, where color-coded fluid

tracers, the linear separation profile and instantaneous streamlines are plotted for dif-

ferent integration times, T . Particles up- and downstream of the line undergo an initial

upwelling (spiking) and are drawn towards the unstable manifold.

To identify the onset of flow separation, i.e. the origin of material spiking,

we extract a backbone from the evolution of the material lines through ridges in

the corresponding advected curvature field κ̄t0+T
t0 . We plot the curvature field for

integration times of T = [0.1, 0.4, 0.7, 1.0], and t0 = 0 in Figure 6.6. Note that
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Figure 6.5: Snapshots of color coded particles advected over a circular
cylinder near the separation point. Particles are divided in an upstream (red)
and downstream (blue) group by the linear approximation of the separation
line (green). Also visualized are the instantaneous zero-skin-friction point

(green dot) and streamlines (black).

109



we first compute κ̄t0+T
t0 , which is a scalar field based at t0, and then advect it with

Φt0+T
t0 . The latter operation reflects the material property of lines and the backbone,

B(t0 + T ) := Φt0+T
t0 (B(t0)). The backbone, B(t), shown in magenta. For reference, we

also plot the instantaneous zero-skin-friction point and the linear approximation of the

separation profile in green.

The evolution of material lines in Figure 6.6 show that the backbone profile

B(t) is correctly placed along the local spikes of material lines and intersects with

the wall shortly upstream of the center of the cylinder. The separated fluid tracers

then follow the direction of the linearly approximated separation profile. While the

asymptotic separation profile provides information about the long-term behavior of

separating fluid tracers, the initial material spike formation remains hidden and can

only be extracted from analysis of the curvature scalar field.

The curvature change field κ̄t0+T
t0 for integration time intervals of T = 0.4 and

1.0 in Figure 6.7 reveal a total number of four Lagrangian backbones. Two originate

from the top and the bottom of the cylinder and evolve along a dominant, growing

ridge in the curvature field driven by the separation of the boundary layer. The two

other backbones are located within the recirculation region in the separated cylinder

wake. They are based on much weaker curvature ridges and we therefore deem them

of secondary interest in the onset of separation.

Spiking phenomenon and FTLE

The spike formation, which occurs over short time, is hidden to the FTLE field

[43]. For longer integration times, however, the material spike, governed by off-wall

dynamics, converge to the attracting backward-time FTLE ridge (Fig. 6.1). For the

cylinder case, we visualize the spatial relation between the backbone, material lines

and the backward-time FTLE field at different time instances in Figure 6.8. In this
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Figure 6.6: Advection of material lines and the curvature field κ̄tt0 , t = t0 + T
around a cylinder for different integration times. The backbone B(t) is

highlighted in magenta. Linear separation line and zero-skin-friction point in
green.
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Figure 6.7: Surface plot of the curvature scalar fields κ̄0.4
0 and κ̄1

0. Backbone
of separation in magenta.

figure, a time interval of one vortex shedding period, T = 6, is used to compute the

FTLE field. Material lines and the backbone are advected from t = 0 to t = 1, 2, 3,

and 4 (black).

Initially, the fluid tracers undergo an upward motion in transverse direction to

the cylinder and the backbone along the material spike crosses the FTLE ridge (t =

1). As the integration time increases, however, the material lines bend downwards (t

= 2) and gradually align with the unstable manifold for t ≥ 3. The long-term manifold

identified through the backward-time FTLE ridge attracts the separating fluid material

and gradually aligns with the material backbone. The trace of the separated fluid in

the wake follows the same pattern and shows long-term sharp spikes along dominant

FTLE ridges, as illustrated in Figure 6.9.

The above results highlight that the Lagrangian backbones of separation and

the FTLE provide critical complementary structures in the analysis of Lagrangian

flow separation. While the initial motion through upwelling of fluid material can only

be determined through the analysis of the curvature change field [43], the long-term

off-wall dynamics are governed by the FTLE. A combination of both methodologies
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Figure 6.8: Backward-time FTLE field (contour plot) computed from t to t
− T over T = 6. Advected material lines from 0 to t in black and the

Lagrangian backbone of separation in magenta. Asymptotic separation profile
in green. Y-axis stretched.

therefore, together with the asymptotic separation line, gives a complete picture of the

kinematics of separation (see Figure 6.1).

Extraction of Spiking Points

The spiking points, sp, are the wall signatures of material upwelling and can

either be identified from the intersection of a wall-transverse curvature change ridge

with the boundary (Eq. (2.17)) or from on-wall Eulerian derivatives of the wall-normal

velocity (Table 2.1). Here, we extract sp using the criterion for incompressible flows,

since the flow with a free-stream Mach number of M = 0.1 is nearly incompressible.

From the condition specified in Table 2.1, the spiking points are located at

minima of the integrated derivatives of the normal velocity in normal and tangential

direction,
∫ t0+T
t0

∂ηηssv̂dt. We plot this function in Figure 6.10 (a) for the upper half of
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Figure 6.9: Backward-time FTLE and material lines in the wake.

the cylinder and an interval of T = 1. The resulting spiking points are indicated with

red circles. Figure 6.10 (b) shows the curvature change field κ̄1
0 and the Lagrangian

backbones of separation B(t0) in magenta. The spiking points identified from the nor-

mal velocity derivatives are plotted as red dots at the boundary and match exactly with

the intersection of the backbones and the wall. Through the agreement of the spik-

ing points determined from Eulerian on-wall quantities and the alternative Lagrangian

definition (Eq. (2.17)), here, we verify the theory by Serra et al. [43] for the first time,

i.e. we confirm the theory that material upwelling in the Lagrangian frame can be

captured also by using wall-based Eulerian quantities only.

Figure 6.11 shows the curvature change field, based at the initial time, on the

upper side of the cylinder for increasing integration times, together with the Lagrangian

spiking points from on-wall quantities (red), backbones of separation (magenta), and

boundary layer approximations based on the momentum and displacement thickness

in grey and black respectively. These plots are based on the same particle trace that

is used in the previous Figures 6.6, 6.7, and 6.10 (b). The Lagrangian spiking point sp

114



(a) (b)

Figure 6.10: (a) −
∫ 1

0 ∂ηηssv̂dt with spiking points in red. (b) Curvature
change field κ̄1

0 with backbones (magenta) and Lagrangian spiking points (red)
identified from Eulerian on-wall quantities.

is located at x/d = -0.09, which places it far upstream of the asymptotic separation

point (x/d = 0.23) and, remarkably, even upstream from the cylinder center.

We find that there is a strong correlation between the curvature change field

and the boundary layer scaling thicknesses, such as the displacement thickness and mo-

mentum loss thickness [3]. Figure 6.11 shows that, as the integration time increases,

ridges of κ̄t0+T
t0 form and develop a peak at the intersection with the displacement

thickness (black line). Within the momentum thickness layer (grey line), the curvature

of the ridge abruptly decreases. The dependence of the backbone of separation on the

displacement and momentum thickness is a remarkable result, as boundary layer thick-

nesses follow kinetic arguments and typically involve thresholds parameters. Inflection

of the backbone of separation, in contrast, despite being threshold free and purely kine-

matic, accurately separate on- and off-wall regions characterized by different dynamics.

We are currently exploring this correlation in material and plan to report on this in

the near future.
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Figure 6.11: Lagrangian curvature change field with the corresponding
backbone of separation (magenta) and Lagrangian spiking points (red)

identified from Eulerian on-wall quantities for different integration times.
Zero-skin-friction point in green, boundary layer displacement thickness in

black and momentum thickness in grey.

We note that even though the curvature change ridge develops a ‘nose’ and

moves upstream with increasing integration time, the backbone B(t0) maintains its

original on-wall signature and intersects the wall at the spiking points identified by the

criteria in Table 2.1.

6.3.2 Airfoil Flow

For a more complex and encompassing external aerodynamics test case, we

study the kinematics of flow separation on a cambered NACA 65(1)-412 airfoil at

a chord-based Reynolds number of Rec = 20, 000 and 4◦ angle of attack. The low

Reynolds airfoil flow is characterized by boundary layer separation at mid-cord, a
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Figure 6.12: Backward-time FTLE from integration over one vortex
shedding period.

recirculation region downstream of the separation location and a Von-Karmann-type

vortex shedding in the wake, resulting in a time-periodic flow pattern with a period of

T = 0.36 convective time units.

A snapshot of the backward-time FTLE (Figure 6.12) visualizes the separated

shear layer and the edges of the shedded and advected vortices.

The asymptotic separation point is computing using the mean over one vortex

shedding period, and is located at the averaged zero-skin-friction point at x/c = 0.50,

i.e. exactly at mid-cord, slightly behind the maximum thickness location of the airfoil

(x/c = 0.4). This is in accordance with the result reported in Nelson et al. [76] and

Kamphuis et al. [111]. The angle of the separation line with respect to the tangent of

the airfoil surface periodically oscillates between 7.05◦ and 7.5◦. These near-wall dy-

namics are summarized in Figure 6.13, where color-coded fluid tracers, the asymptotic

separation profile and instantaneous streamlines are plotted for different integration

times. Similar to the cylinder flow, the particles upstream of the asymptotic sepa-

ration point undergo an upwelling motion and form a sharp spike that will be later

guided by an attracting LCS in the flow.

The advected curvature change field at the final time, together with a set of

material lines, is shown in Figure 6.14 for different integration times. Multiple spikes

emerge on the suction side of the airfoil: a dominant ridge evolves along the separating
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Figure 6.13: Snapshots of particles advected over the airfoil near the
asymptotic separation point. Particles are divided by the asymptotic linear
separation line (green) in an upstream (red) and downstream (blue) grouped.
Also visualized the instantaneous zero-skin-friction point (green dot) and

streamlines (black).
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shear layer and several smaller spikes appear within the separated recirculation region.

On the pressure (bottom) side, the flow remains attached and the fluid tracers are

advected without breaking away from the boundary until the trailing edge is reached.

Given that global separation occurs only on the suction side of the airfoil, we focus our

analysis on the upper section of the profile. A magnified view of the curvature scalar

field introduced in Figure 6.14, together with the backbone of separation B(t) and the

asymptotic separation profile is given in Figure 6.15. Note that the y-axis is stretched

to aid visibility of subtle features.

The backbone emerging at mid-cord is based on the upwelling of separating

material lines in the vicinity of the asymptotic separation line and intersects the no-slip

wall at sp/c = 0.46. This location is slightly upstream of the asymptotic separation

point at x/c = 0.5. Additional curvature ridges are detected within the separated

recirculation region, but, given that the boundary layer has already separated, are of

little interest for determining the start of Lagrangian flow separation.

Spiking phenomenon and FTLE

The relation between the Lagrangian backbone of separation, material lines,

and the backward-time FTLE field is illustrated in Figure 6.16 at different snapshots

in time. To determine the backward-time FTLE field, again, we use an integration

time interval equal to one vortex shedding period (T = 0.36). Material lines (black)

and backbones (magenta) are advected forward in time from t = 0 to t = 0.05, 0.1,

0.2, 0.3, 0.4, and 0.5.

Similar to our findings for the cylinder flow, the material spike starts from the

no-slip wall, crossing the FTLE ridge at short time scales. As the integration time

increases, the material spike, along with the backbone of separation, aligns to the

attracting FTLE ridge, which again governs the off-wall dynamics of the separated
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Figure 6.14: Advection of material lines and the curvature field κ̄t0+T
t0 around

the airfoil for different integration times. Zero-skin-friction point in green.
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Figure 6.15: Advected curvature scalar field with material lines (black) and
the Lagrangian backbone of separation B(t) (magenta). Zero-skin-friction

point and linear separation line in green. Y-axis stretched.

fluid tracers. The separation picture is then completed by the asymptotic separation

line (green) and its connection to backward-time FTLE ridge (see Figure 6.16).

Extraction of Spiking Points

We extract the spiking points of the separating airfoil flow from both their

Lagrangian and wall-based Eulerian definitions. The curvature change field κ̄t0+T
t0 is

given in Figure 6.17 for three different integration intervals in x and η coordinates,

where η is the wall-normal distance. Besides the large ridges at mid-cord and at

x/c ≈ 0.75, a weak waviness in the curvature field exists upstream of the asymptotic

separation point (x/c = 0.5). This oscillatory pattern is recovered in the Eulerian wall

derivative
∫ 0.25

0 ∂ηηssv̂dt, shown on left of Figure 6.18.

According to the conditions specified in Table 2.1, spiking points are located at

local maxima of the function −
∫ t0+T
t0

∂ηηssv̂dt, which identifies three locations upstream

of the separation point in Figure 6.18 (a). Weak curvature ridges are present at these

locations that we found are not contributing to material spiking and fluid break away

in the context of flow separation. The oscillatory curvature field and associated ridges

correlate directly with the piece-wise linear curvature κ0 of the airfoil surface represen-
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Figure 6.16: Backward-time FTLE field (contour plot) computed from t to t
− T over T = 0.36. Advected material lines from 0 to t in black and the

Lagrangian backbone of separation in magenta. Asymptotic separation profile
in green. Y-axis stretched.
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Figure 6.17: Surface plot of the curvature scalar field κ̄t0+T
t0 for T = 0.01,

0.05, and 0.10. Wall-normal coordinate on y-axis. Backbone in magenta,
spiking point in red.

tation (dashed line) that is inherent to the cubic spline boundary representation used

for the design of the airfoil. The three ridges are hence a geometric artifact and should

not be interpreted as significant spiking events.

We can reduce the oscillatory trend from the spline parametrization by filtering

the function
∫ t0+T
t0

∂ηηssv̂dt with a kernel width based on the approximate distance

between two spline segments. The filtered solution (red line) successfully recovers the

underlying correct function and identifies a single spiking point at x/c = 0.45 (red

circle) upstream of the separation point.

Figure 6.18 (b) shows the curvature scalar field κ̄0.25
0 at t0 in x and y coordinates

with the ridge highlighted in magenta and the spiking point from Eulerian on-wall

quantities in red. With the close match of the backbone-wall intersection at x/c =

0.46 and the Eulerian criterion at x/c = 0.45, we demonstrate that the spiking point

can be extracted from on-wall based quantities even with approximate parametrization

of the boundary, as used in engineering applications.

In Figure 6.14 and 6.15, we show that the global separation of fluid particles

traces back to the formation of an initial material spike at mid-cord, shortly upstream

of the asymptotic separation point. For larger integration time intervals, however, an

additional curvature ridge with an origin at the leading edge is detected (see Figure
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(a) (b)

Figure 6.18: (a) −
∫ 0.25

0 ∂ηηssv̂dt in black. Filtered results and Spiking points
in red. Surface curvature κ0 as dashed line. (b) Curvature change field

log(κ̄0.25
0 ) at x0 with backbone (magenta) and Lagrangian spiking point (red)

identified from Eulerian on-wall quantities. Displacement thickness in black
and momentum thickness in grey. Zero-skin-friction point in green.

6.15). This sharp spike in the material line occurs only in the vicinity of the wall and

has no direct connection to the global separation event at mid-cord. Of course, when

the leading edge ridge advects to the location of the asymptotic separation manifold,

the particles do follow this manifold.

Figure 6.19 shows the advection of a Lagrangian particle sheet at the leading

edge to visualize the Lagrangian flow behavior at the stagnation point in more detail:

the local contraction of the streamlines forces the fluid to accelerate and the particles

closer to the leading edge are initialized on streamlines with higher velocity, leading to

upwelling and folding of the material line. Consequently, the spike is rather the result

of the displacement of streamlines by the growing boundary layer and the associated

normal velocity, than an event associated with separating flow. We conclude that the

leading edge spike formation is an artifact from the stagnation point flow and is not an

indication of flow separation in this case. A more detailed analysis of this phenomenon

will be subject to future studies.
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Figure 6.19: Advection of a set of particles at the leading edge. Streamlines
shown in black.

6.4 Summary of Results

Kinematic aspects of flow separation have been investigated in external aero-

dynamics by extracting the initial motion of upwelling fluid material from the wall

and its relation to the long-term attracting manifolds in the flow field. Although the

wall-bounded kinematics are governed by the formation of a material spike upstream

of the asymptotic separation point and ejection of particles in direction of the sepa-

ration line, it was shown that the off-wall trajectories of the fluid tracers are driven

by attracting ridges in the finite-time Lyapunov exponents. Therefore, the complete

pathway of Lagrangian flow separation was obtained: from the initial upwelling at the

spiking point over the ejection of particles along the asymptotic separation profile to

the attracting LCSs.

For the flow around a circular cylinder and a cambered NACA 65(1)-412 airfoil,
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the footprint of the initial material upwelling, i.e. the spiking point, was determined

by evaluating the curvature of Lagrangian fluid tracers and by extracting high-order

on-wall derivatives of the normal velocity as proposed in [43]. An exact match of the

Lagrangian and Eulerian criterion for the start of material line spiking verifies the Eu-

lerian criterion and associated the principal location of material upwelling for the first

time in two test cases, i.e., the cylinder flow and the flow over an airfoil. For the latter,

the spiking point was recovered by appropriately filtering the spurious oscillations in

the velocity derivative induced by the spline-based boundary parametrization of the

NACA profile, thereby showing that this method is robust to noise. Determining the

spiking points requires the extraction of high-order velocity derivatives, which is chal-

lenging for general geometries and in experimental settings because it requires very

high-resolution data and an accurate representation of the geometry.

With the ability to compute the birth of separation instantaneously from Eu-

lerian on-wall data, the Lagrangian pathway from the spiking point to the asymptotic

separation profile can be used as input parameters for dynamic flow controllers.
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Chapter 7

Objective early identification of

kinematic instabilities in shear flows

7.1 Overview and Summary

In this chapter, we present an objective diagnostic for the early identification of

instabilities based on the maxima in finite-time changes of the curvature of material

lines. The maxima are precursors of significant wrinkling of material lines as illustrated

for a shear flow in figure 7.1(a–d): a line of Lagrangian fluid tracers initialized along

an unstable shear layer undergoes an oscillatory motion induced by an underlying

velocity mode and rolls up along the forming vortices as the flow develops. Strong

bending locations of material lines point to potential break-up locations of the laminar

flow field. These can be visualized and identified through curvature changes. Figure

7.1 also illustrates that the instability definition as a non-wall-bounded wrinkling is

distinct from the theory of the backbone of separation [43]. While the latter is based

on material curvature also, the separation theory considers a wall-bounded flow and,

moreover, it identifies a one-sided, upwelling instead of wrinkling of the material line.
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(a) t = t0

(b) t = t1

(c) t = t2

(d) t = t3

(e) t = t0

(f) t = t1

(g) t = t2

Figure 7.1: Temporal development of a material line in an unstable shear
layer (a – d). Time development of material lines and backbone of separation
(dashed) in a separated flow in the vicinity of a no-slip wall (e – g) . Coloring

by material line curvature from blue (negative) to red (positive).

The kinematic instability identification approach does not rely on assumptions

or knowledge of the averaged solution of the flow, as the diagnostic only depends on

the kinematics of the material lines. The finite-time approach has practical benefits

since in experiments only limited data are available. In addition to being objective, the

finite-time integration of Lagrangian particles can prove beneficial in the detection of

intermittent instabilities, such as turbulent burst in a sub-critical Poiseuille flow, which

will leave a footprint in the Lagrangian deformations even if the flow relaminarizes.

More generally, our approach can capture non-normal growths [53], an essential trigger

for nonlinear behavior, which remain hidden to LSA.
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We first provide analytic formulas connecting characteristic quantities used in

LSA of perturbed shear flow with the induced flow map and Lagrangian curvature

change. Then, we illustrate and verify the performance of the Lagrangian instability

identifier on three two-dimensional Navier-Stokes flows. In a temporally developing jet

flow, it is shown that maximum curvature growth rates recover the linear growth rates of

several unstable modes as predicted by LSA theory. The unsteady, separated flow over

a cambered airfoil at a moderate Reynolds number of 20,000 shows that the curvature

modes capture instability in the separated shear layer promptly over finite time without

knowledge of a mean or base flow. Finally, the approach is shown to identify instabilities

in a flow without a mean during the onset of wake instability in the growing wake behind

a circular cylinder at low Reynolds number. In the following sections, the governing

equations and the numerical setup of the three cases are presented first (Section 7.2).

Then, the results are discussed in Section 7.3. Conclusions are reserved for Section 7.4.

7.2 Methodology and Setup

7.2.1 The curvature scalar

Following Serra et al. [43], we consider a smooth material curve γ ∈ R2,

parametrized at t0 in the form r(s), s ∈ [s1, s2] ⊂ R, and denote its local tangent

vector by r′(s) and curvature scalar by κ0(s) = 〈r′′(s),Rr′(s)〉√
〈r′(s),r′(s)〉

3 (see figure 7.2). The cur-

vature change (or folding) κ̄t0+T
t0 := κt0+T

t0 - κ0 of γ under the action of Φt
t0 can then be

computed as

129



Figure 7.2: Sketch of a material line γ parametrized at t0 in the form r(s),
s ∈ [s1, s2] ⊂ R, transported and deformed by the flow map Φt

t0 . At any point
r(s), the Lagrangian folding κ̄t0+T

t0 = κt0+T
t0 - κ0 of γ can be computed from

equation (7.1).

κ̄t0+T
t0 =

〈(
∇2Φt0+T

t0 (r)r′
)

r′,R∇Φt0+T
t0 (r)r′

〉
〈
r′,Ct0+T

t0 (r)r′
〉3/2 +κ0

det
(
∇Φt0+T

t0 (r)
)
〈r′, r′〉3/2〈

r′,Ct0+T
t0 (r)r′

〉3/2 − 1

 ,
(7.1)

where 〈·, ·〉 denotes the inner product; (∇2Φt
t0(r)r′)ij =

2∑
k=1

∂jkΦt
t0 i

(r)r′k, i, j ∈ {1, 2},

R is a clockwise ninety-degree rotation matrix defined as

R :=

 0 1

−1 0

 , (7.2)

and Ct
t0 = [∇Φt

t0 ]>∇Φt
t0 is the right Cauchy-Green strain tensor. Equation 7.1 shows

that the Lagrangian folding depends on spatial inhomogeneities of Φt
t0 , the curve

stretching encoded by Ct
t0 , the initial curvature and the compressibility of the flow

described by det
(
∇Φt

t0

)
. See Serra et al. [43] for a more detailed description.

7.2.2 Linear stability analysis

Instabilities in shear flows are commonly analyzed by the growth of a perturba-

tion to a base flow. The incompressible flow field described by u, v, and p is decomposed

into a base with a perturbation as u = U + u′, v = V + v′, and p = P + p′, which
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is then substituted into the Navier-Stokes equations. Assuming small, exponentially

growing perturbations of the form

[u′, v′, p′] = Re
(
[û(y), v̂(y), p̂(y)]ei(kx−ωt)

)
, (7.3)

the governing equations can be linearized and solved as an eigenvalue problem (see

Drazin and Reid [47] for details). In (7.3), the quantities û(y), v̂(y), and p̂(y) are

the complex amplitudes of the perturbations and k and ω are the real wavenumber

and complex frequency. For the analysis of a temporal developing flow, we consider

temporal growth governed by the imaginary part ωi of the complex frequency. An

eigenvalue solver determines the frequencies ωi and corresponding eigenmodes û, v̂,

and p̂ for a given wavenumber k.

7.2.3 Lagrangian Curvature growth

A theoretical connection between linear stability analysis and the curvature

analysis can be made for material lines initialized along the x-axis such that r′ =

[1, 0]>. For these lines, the material time derivative of κ̄t0+T
t0 relates to the lateral

velocity as κ̇t0 = −∂xxv as proven in appendix B.1. Decomposition of v into a base

flow V and fluctuating component v′ yields κ̇t0 = −(∂xxv′+ ∂xxV ). With the base flow

V = 0 for the planar jet flow, the y-velocity component is v = v′ = v̂(y)eikx−iωt and

substitution results in

κ̇t = −∂xxv′ = −v̂(y)∂xxeikx−iωt = k2v̂(y)eikx−iωt = k2v′, (7.4)

showing that the rate-of-change of κ scales with v′ by the square of the wavenumber.

This connection, however, is valid only instantaneously and hence lacks the memory

trace, or Lagrangian history, of fluid flows.

To understand how perturbations of a base flow in the infinite-dimensional space

leave a footprint on the physical phase space of fluid particles, we derive an analytic
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expression relating the Eulerian growth rate and wavenumber of the perturbation and

the induced Lagrangian folding of fluid. We focus our analysis on general parallel shear

flows perturbed with small perturbations of the form uε = u0 + εu′, 0 < ε� 1, where

u0 = [U(y), 0]> is the base flow and u′ = Re([û(y), v̂(y)]ei(kx−ωt)) the perturbation .

Because there are no analytic flow maps Φε induced by uε, we first find an analytical

approximation of Φε neglecting O(ε2) terms. We then use the approximated Φε and

equation (7.1) to compute an analytical expression of the Lagrangian curvature change

for initially straight material lines. Using the formulas derived in appendix B.2, we

obtain the following result.

Theorem 1 Consider a planar parallel shear flow of the form uε = u0 + εu′, 0 <

ε� 1, where u0 = [U(y), 0]> is the base flow and εu′ = εRe([û(y), v̂(y)]>ei(kx−ωt)) the

perturbation. The flow map εΦt0+T
t0 (x0) induced by uε admits an analytic solution at

leading order, of the form

εΦt0+T
t0 (x0) = 0Φt0+T

t0 (x0) + At0+T
t0 (x0)ε+O(ε2), (7.5)

where At0+T
t0 (x0) satisfies the following initial value problem

Ȧt
t0(x0) = ∇u0(0Φt

t0(x0))At
t0(x0) + u′(0Φt

t0(x0), t)

At0
t0(x0) = 0

0Φt
t0(x0) = x0 + u0(x0)(t− t0).

(7.6)

We provide the explicit formula for εΦt0+T
t0 (x0) in equation (B.19).

The curvature change induced by uε during [t0, t0 + T ] on an initially straight

(κ0 = 0) material line located at x0 = [x0, y0]> and aligned with the stream-wise direc-
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tion r′ = [1, 0]>, can be computed as

κ̄t0+T
t0 (x0) = k2

ω2
i + ω2

r − 2ωrkU(y0) + k2U2(y0)

[

eωit0
((
− ωiv̂r(y0) + (ωr − kU(y0))v̂i(y0)

)
cos(kx0 − ωrt0)

+
(
ωiv̂i(y0) + (ωr − kU(y0))v̂r(y0)

)
sin(kx0 − ωrt0)

)
+ eωi(t0+T )

((
ωiv̂r(y0)− (ωr − kU(y0))v̂i(y0)

)
cos(kx0 − ωr(t0 + T ) + kU(y0)T )

−
(
ωiv̂i(y0) + (ωr − kU(y0))v̂r(y0)

)
sin(kx0 − ωr(t0 + T ) + kU(y0)T )

)]
+O(ε2),

(7.7)

where û = ûr + iûi, v̂ = v̂r + iv̂i are complex amplitudes, ω = ωr + iωi is the complex

frequency and k the real wave number.

Proof. See appendix B.2. �

Properties of Lagrangian Curvature growth

Equation (7.7) provides an analytic relation between a velocity field composed

of normal modes and the Lagrangian curvature change and therefore directly connects

LSA-based quantities with fluid material wrinkling, which is objective under (1.1).

Several essential properties of the curvature change in unstable flows given by equation

(7.7) follow:

(i) First and foremost, the curvature change grows exponentially at a rate ωi ac-

cording to LSA after adjusting from the initial, zero κ̄. This theoretical proof

solidifies the validity of the definition of the instability through curvature modes

and connects it with the LSA for velocity fields which is not frame-invariant.

(ii) For ωi < 0 (ceasing perturbation), the κ̄ converges to a finite value because

the initial perturbation is retained in the fluid deformation (cf. figure B.2). This
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memory trace of fluid history is particularly relevant in the context of non-normal

growth.

(iii) The curvature and the velocity field are phase shifted if the fluid particles move

relative to the velocity perturbation mode. Along the critical layer [47], i.e. where

U = cr = ωr/k, the curvature maxima of material lines travel in phase with the

perturbation and are therefore material.

We note that if no reference flow direction is available, the placement of material

lines is not trivial, but could be based on flow structures such as zero-mass-flux lines

or Lagrangian coherent structures (LCS) [42, 41, 56].

7.2.4 Test cases

Solutions to the two-dimensional compressible Navier-Stokes equations for con-

servation of mass, momentum and energy in non-dimensional form are obtained using

a discontinuous Galerkin spectral element method for spatial approximation and a 4th-

order explicit Runge-Kutta scheme for temporal integration. For a description of the

method and validation of the solver we refer the interested reader to Kopriva [112], Nel-

son and Jacobs [64] and references therein. Lagrangian fluid particles are traced with

a 3rd order Adam-Bashfort scheme in time according to Mittal et al. [108].

Temporarily developing jet

The temporal stability of a top-hat jet profile is investigated computationally in

a periodic domain. The characteristic scales of the problem are the jet width h and the

velocity difference ∆U between center flow U1 and coflow U2. The field is initialized
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(a) Velocity profile (b) Dispersion relation (c) Computational domain

Figure 7.3: (a) Hyperbolic tangent, jet flow velocity profile normalized by
the velocity difference ∆U between center and coflow. (b) Dispersion relation,
i.e. temporal growth rates ωi(t) versus wavenumbers k, determined with LSA
for viscous jet velocity profiles at t = 0, 5, and 10. (c) Computational domain
and grid in normalized coordinates with initial particle positions (shaded red

area) and flow direction (red arrow).

with a hyperbolic tangent function velocity profile (see figure 7.3a),

U = U1 − U2

2

(
tanh

y + 1
2h

2θ − tanh
y − 1

2h

2θ

)
+ U2, (7.8)

where the lateral velocity component is V = 0. The center and coflow velocities are

U1/∆U = 1.1 and U2/∆U = 0.1, respectively.

Following Stanley et al. [80], the shear layer momentum thickness is set to θ/h

= 1/20 and the Reynolds number based on the jet width h and velocity difference

∆U to Reh = ∆Uh/ν = 3000. A free-stream Mach number of M = 0.1, based on a

characteristic velocity of unity (M = 0.11 if based on the center flow and M = 0.01 if

based on the outer flow), ensures that flow has negligible compressibility effects. This

is verified by a comparison of a simulation at M = 0.05 which shows no discernible

changes in the results presented below.

Using LSA, the dispersion relation is determined for the incompressible jet flow

profile. It is plotted in figure 7.3(b) and peaks at a wavenumber of kmax = 4.2. The

eigenmodes corresponding to wavenumbers k = 2.1, k = 4.2 and k = 8.4 are visual-
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(a) k = 2.1 (b) k = 4.2 (c) k = 8.4

Figure 7.4: Real and imaginary components of the unstable eigenmodes of u,
v, and p obtained from LSA for wavenumbers k = 2.1 (a), k = 4.2 (b), and k

= 8.4 (c).

ized in figure 7.4(a–c). Note that the temporarily developing viscous jet flow does not

have a time-independent base flow state and diffuses in time. The dipersion relation

as shown in figure 7.3(b) is therefore time-dependent also. Based on the wavelength of

this most unstable mode λmax = 2π/kmax at t=0, the computational domain is sized

to fit 16 waves in x-direction (x ∈ [0, 16λmax]) and is large enough in y-direction (y/h

∈ [−3π, 3π]) for the eigenmodes (see figure 7.4) to reduce to machine precision zero.

To avoid grid resolution issues, an unnecessarily high number of 7200 quadrilateral

elements clustered around the center line is used with the solution approximated with

a 9th order polynomial within each element (see figure 7.3c). Periodic boundary condi-

tions are specified in x-direction and Riemannian free-stream boundary conditions [81]

are imposed in y-direction. The velocity field is initialized according to (7.8). The real

part of the eigenmodes corresponding to kpert = 2.1, kpert = kmax = 4.2, and kpert = 8.4

(see figure 7.4) are scaled with a factor of 10−3 and superimposed onto the base flow

as initial perturbation. Additionally, we also consider random noise perturbations. A

sheet of 501×251 Lagrangian fluid tracers is initialized in the region xp ∈ [0, 4λmax]

and yp ∈ [−h, h] for cases using LSA eigenmodes and 2001×251 (xp ∈ [0, 16λmax])

tracers are initialized for computations with random noise perturbations.
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NACA 65(1)-412 airfoil flow

To test the kinematic approach for an unstable flow without an analytical base

field, we consider the stability of a separated and unstable shear layer in the flow field

over a cambered NACA 65(1)-412 airfoil at 7◦ incidence for a chord-based Reynolds

number of Rec = 20,000 and a free-stream Mach number of M = 0.3. The parameter c

refers to the chord length of the wing. We have studied flow separation and Lagrangian

wake dynamics extensively for this geometry in previous work (e.g. [76, 84, 35]) and

use the setup that yields a grid-independent solution with negligible blockage effects

of these investigations here.

The computational domain (C-grid) consists of 23,400 quadrilateral elements

and, within each element, the solution is approximated by 6th order Legendre-Gauss

polynomials. The in- and outflow boundaries of the domain are 30 chord lengths

away from the airfoil, yielding a blockage effect of 1% by the computational domain.

A damping layer at the outflow boundary reduces pressure reflections from outflow

boundary [81]. The mesh is refined around the airfoil (see figure 7.5a), with first

grid point away from the wall at approximately y+
g = 0.2. where, y+ refers to the

dimensionless wall coordinate. Figure 7.5(a) further illustrates the location of the

4001×300 Lagrangian fluid tracers that are initialized in wall-parallel lines along the

upper surface of the airfoil.

Circular cylinder

In a final test, the origin and onset of vortex shedding in the wake behind

circular cylinder at Red = 200 is considered with the goal of illustrating the objective

nature of the kinematic approach. Strykowski and Sreenivasan [50] show that the

vortex shedding behind a circular cylinder has its origin in unstable modes in the

growing cylinder wake region. Control of those modes can delay or prevent shedding
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(a) NACA 65(1)-412 (b) Circular cylinder

Figure 7.5: Computational domain and grid used for simulations of the flows
over (a) a NACA 65(1)-412 airfoil and (b) a circular cylinder. Only elements
edges (no quadrature grid points within the element) are shown. Fluid particle

tracers are initialized in the element colored in red.

from occurring. Because the instability is associated with temporal growth of the wake,

a steady base velocity and a corresponding velocity perturbation cannot be defined.

The finite-time material line curvature change can be.

Following the problem setup in Klose et al. [62] that was used for the analysis of

kinematic aspects of Lagrangian separation, a free-stream Mach number of M = 0.1 is

specified. The grid-independent solution [62] is approximated with a high, 18th order

polynomial approximation on 347 quadrilateral elements (see figure 7.5 b). Riemannian

free-stream conditions are prescribed at all outer boundaries and the vertical domain

size y/d ∈ [−20, 20] yields a blockage of 2.5%. A sheet of 501×251 Lagrangian fluid

tracers is initialized half a diameter downstream from the cylinder in the region xp ∈

[1d, 11d] and yp ∈ [−1.5d, 1.5d], as shown in figure 7.5(b).
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7.3 Results and Discussion

7.3.1 Temporarily developing jet

Finite-time instabilities are extracted from Lagrangian particles by integrating

fluid tracers from some time t0 over the interval T until the time t = t0 + T . Given

that the curvature change depends on both, t0 and T , two cases are considered for the

computation of κ̄t0+T
t0 based on (7.1): (a) the reference state is set at t0 = 0 and we

calculate κ̄t0 based on a single particle trace or (b) the integration interval T is kept

constant and the curvature follows as κ̄tt−T with the particle trace re-initialized every

interval T . In both cases, the tangent vector is r′ = [1, 0]T and κ0 = 0, such that only

the first term of (7.1) contributes to the curvature change. The resulting curvature

scalar field κ̄t0+T
t0 is plotted over the advected particle positions in figures 7.6 and 7.7.

Consistent with figure 7.1, the time series (a) – (c) shows how the initial waviness

in the curvature field and associated early wrinkles in the material line are precursors

of regions with increased and concentrated curvature change magnitudes associated

with vortex roll-up at later times. Local extrema in the curvature fields (green and

orange markers in figures 7.6 and 7.7), as well as the point in between with a maximum

gradient (yellow marker), represent point identifiers of significant material wrinkling

and vortex formation at later times. Per the property (iii) described in section 7.2.3,

local maxima of the Lagrangian curvature change in unstable, parallel shear layers are

only material along the critical layer where U(y) = c and can shift elsewhere in regions

where the unstable mode has a different phase velocity as compared to the flow’s

convection velocity. The yellow point markers are located exactly on the critical lines

at y = ±0.51h and y = ±0.50h for kpert = 2.1 and kpert = 4.2 and can be considered

critical points in the Lagrangian analysis.

The shift between the vertical curvature change bands visualized in Figure 7.6
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(a) t = 4.0 (b) t = 8.0 (c) t = 10.0

Figure 7.6: Contours of the curvature scalar field κ̄t0 (upper figures) and κ̄tt−1
(lower figures) at t = 4.0 (a), t = 8.0 (b) and t = 10.0 (c) for a jet flow

computation with initial velocity perturbation according to eigenmodes with a
wavenumber kpert = 2.1. Only the upper half of the jet is shown. Time units
are scaled by h/∆U . Bright visualizations are for directly computed fields.
The faded contours are copies of the bright contours. Color-coded tracers:

max(|∇κ̄8
0|) in yellow, max(κ̄8

0) in green, and min(κ̄8
0) in orange, based on the

scalar field in (b). Material position of color-coded tracers at earlier and later
times indicated in (a) and (c). Dashed line indicates indicates location of

center marker in upper figure and is duplicated in lower figure, together with
yellow marker.

and 7.7 for long and short integration intervals, i.e. κ̄t0 and κ̄tt−1, respectively, is also

explained by the relative velocity difference of the modes and the fluid. Because the

phase shift between the finite-time curvature change and the velocity mode depends

on the integration interval T of the particle trace (cf. equation (7.7)), different initial

times (t − T ) of κ̄tt−T yield a different phase in the curvature field. Along the critical

layer, particles are not subjected to passing unstable wave modes, and the short and

long time-integrated curvature contours have their maxima and minima at the same

location. Above and below, the fluid particles move at a different speed as compared to

the velocity mode such that the bands are slightly shifted with respect to each other.

An analysis of the phase shift for a simple traveling mode is presented with additional
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(a) t = 4.0 (b) t = 6.0 (c) t = 8.0

Figure 7.7: Contours of the curvature scalar field κ̄t0 (upper figures) and κ̄tt−1
(lower figures) for t = 4.0 (a), t = 6.0 (b) and t = 8.0 (c) for a jet flow

computation with initial velocity perturbation according to eigenmodes with a
wavenumber kpert = 4.2. Only the upper half of the jet is shown. Time units
are scaled by h/∆U . Bright visualizations are for directly computed fields.
The faded contours are copies of the bright contours. Color-coded tracers:

max(|∇κ̄6
0|) in yellow, max(κ̄6

0) in green, and min(κ̄6
0) in orange, based on the

scalar field in (b). Material position of color-coded tracers at earlier and later
times indicated in (a) and (c). Dashed line indicates indicates location of

center marker in upper figure and is duplicated in lower figure, together with
yellow marker.
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visualizations in appendix B.3 to provide a theoretical basis for the phase shift.

To determine the growth of the maximum curvature change in the temporally

developing jet flow, we consider the material line with a local maximum curvature

gradient |∇κ̄8
0| and |∇κ̄6

0| according to the yellow markers in figures 7.6 and 7.7 respec-

tively. Along these lines, we evaluate the Fourier transform F(k) of κ̄t0 and κ̄tt−1 at

every time step and record its amplitude, as shown in figure 7.8(a–b) where surfaces

of |F| are plotted over the wavenumber space and time. Similarly, the v′ velocity am-

plitude is determined along the critical layer (y/h = 0.5) and is added for reference in

figure 7.8(c).

All surface plots in figure 7.8 have a ridge of local maximum |F| at the respective

perturbation wavenumber kpert (indicated as red line). Additional ridges emerge over

time in figure 7.8(a–c). These are an indication of non-linear energy transfer to modes

at other frequencies as the base profile diffuses over time.

A direct comparison of of v′, κ̄t0, and κ̄tt−1 at the perturbation wavenumber is

presented in figure 7.8(d), where the time-dependent Fourier transform amplitudes are

plotted versus time. The slope of the dotted straight line, which is plotted for reference,

is according to the exponential growth rate obtained from LSA, eωi(t0)t. The v′ velocity

initially grows according to the rate predicted by LSA (dashed lines), but departs from

the linear growth trend when the shear layer diffuses significantly over time. While the

v′ velocity growth starts from the imposed perturbation, the material lines have zero

curvature change at the initial time. Because of this the growth of the material line’s

curvature change follows the growth predicted by LSA (dashed lines in figure 7.8d)

only after an initial adjustment phase. This characteristic is confirmed by the analytic

form of the curvature scalar equation (7.7). An initial curvature can be added to the

material line in the form of a sinuous perturbation (denoted by ε) with the wavelength

set to the LSA eigenmodes. In that case, the curvature change follows the growth
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predicted by LSA without the adjustment phase as shown in figure 7.9.

The Lagrangian curvature change for relatively short integration intervals, κ̄tt−1,

(green) in figure 7.8(d) closely follows the trends of the v′ velocity (red). This is

consistent with the relation between κ̄tt−1 and v′ as derived in (7.4), as it can be expected

that the short time curvature change follows the infinitesimally small curvature change,

κ̇t, and thus also scales with the transverse velocity perturbation.

For larger time intervals, T , however, this reasoning no longer applies because

non-linearities lead to coupling with and excitation of other modes, and so (7.4) which

is derived for a single mode perturbation equation (7.7) becomes invalid. For pertur-

bations at higher wave number (figure 7.8), this mode coupling occurs at an earlier

time as compared to cases with the lower wave number perturbations. For example,

in the case of perturbation with symmetric eigenmodes at kpert = 8.4 (see figure 7.8d),

κ̄t0 grows whereas the v′ and κ̄tt−1 reduce after a short initial growth, i.e. the perturba-

tion is ceasing and the flow becomes stable. Owing to the low Reynolds number, the

shear layer diffuses leading to changes in the stability properties over time and as a

result the mode at k = 8.4 moves outside the unstable regime (see figure 7.3b). In the

kinematic analysis, however, the initial perturbation of the fluid particles is carried on

(unless the tracers are re-inialized) yielding a continuously growing deformation of the

material lines within the layer 0.47 < |y/h| < 0.53, as shown in figure 7.10. Notably,

the curvature κ̄t0 of the material line at y/h = 0.5 follows the growth rate given by LSA

(see figure 7.8d). This continuous growth of the deformation in the Lagrangian frame

showcases how the footprint of a temporary instability persists. This curvature persis-

tence is a very useful feature in practice as one necessarily has to identify instabilities

over a finite time in experiments, while the LSA and the instantaneous growth rate of

v′ are generally unavailable.

To asses the ability of the kinematic approach to identify emerging unstable
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Figure 7.8: Columns (a–c): amplitude of the Fourier transform F of v′ (a),
κ̄t0 (b), and κ̄tt−1 (c) plotted versus wavenumber and time. The temporal

development of maxima in |F| at is highlighted with a red line. (d)
Comparison of the amplitude of the Fourier transforms over time with the

LSA growth rate (dashed lines). The rows correspond to the wavenumbers of
the initial perturbation mode with kpert = 2.1, 4.2, and 8.4.
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Figure 7.9: Comparison of the temporal development of the maximum
amplitude of the Fourier transform F of κ̄t0 and κ̄tε for kpert = 4.2, where ε is

an initial perturbation of the material line.

Figure 7.10: Curvature scalar field κ̄15.0
0 plotted along advected particle

positions at t = 15.0 for an initial perturbation mode with wavenumber kpert
= 8.4. The right figure is a zoomed in visualization of the box identified in the

left figure.
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modes in a flow subject to perturbations with multiple modes, the jet flow is simulated

with an initial random mode perturbation. Following Kraichnan [113], the velocity per-

turbation is initialized by superposition of fifty Fourier modes with random coefficients

and amplitude as follows:

u′ = 2
N=50∑
n=1

ũnσn cos (kn · x + ψn). (7.9)

Here, ũn is the randomized amplitude function, kn the wavenumber vector and ψn a

random phase shift. By imposing a solenoidal velocity field, the condition kn · σn

= 0 determines the components of the unit vector σ. Only multiples of the smallest

possible wavenumber in the domain, i.e. kx,y;n = nkmin, where n is a random integer

in the range 1 ≤ n ≤ N , are considered to ensure periodicity. The flow is simulated

at a higher Reynolds number of Reh = 300,000 as compared to the cases above, which

reduces the impact of the shear layer growth and the associated shifting of the stability

properties of the flow (see figure 7.3b).

Snapshots of the particle trace colored by the curvature κ̄t0 are presented in

figure 7.11 for integration times T = 7 (a) and T = 11 (b). The random modes leave

a footprint in the particle trace and high frequency content is still visible at t = 7. At

this time, however, the dominant modes driving the fluid deformation have emerged

in the curvature field and are decisive in the the topology of the material lines at t =

11 (see figure 7.11b). To understand the connection between the curvature field at t

= 7 and t = 11, fluid tracers are initialized at local curvature maxima at t = 7 (see

green markers). At t = 11, the material lines have deformed significantly along the

shear layers, leading to increased local magnitudes of the maximum curvature. Figure

7.11(b) shows that the green tracers initialized at t = 7 are located at the maximum

fluid wrinkling and curvature locations of the forming vortices at t = 11, underscoring

that local curvature maxima can identify locations of vortex roll-up at early times.
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(a) t = 7.0

(b) t = 11.0

Figure 7.11: Contours of the curvature scalar field κ̄7.0
0 (a) and κ̄11.0

0 (b) for
perturbation with random modes. Green tracers: max(κ̄7

0) of the scalar field
within the lower half of the jet shown in (a) and advected positions at t = 11

in (b).

7.3.2 NACA 65(1)-412 airfoil flow

The transitional flow over a NACA 65(1)-412 airfoil at 7◦ incidence and chord-

based Reynolds number Rec = 20,000 is characterized by a laminar separation bubble

(LSB) as shown by the time averaged velocity field and streamlines in figure 7.12. Up-

stream of the separation bubble, fluid particles well up as discussed in the introduction

and depicted in figure 7.1(e-g). They consequently move towards an asymptotic man-

ifold that has its origin at the averaged zero skin friction point (figure 7.12) where the

streamlines break away from the wall.

Upon flow separation, a shear layer forms that is unstable as plots of the in-

stantaneous Lagrangian curvature change field κ̄55.01
55.0 and κ̄55.1

55.0 (based on wall-parallel

material lines) in figure 7.13(a–b) show. In the figure, the y coordinate is independently

scaled from the x-coordinate to obtain a clearer visualization of the flow phenomena

that occur in a thin region close to the airfoil. Kelvin-Helmholtz instabilities along
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Figure 7.12: Contours of time-averaged velocity magnitude and streamlines
(white) for a two-dimensional Navier-Stokes flow over the NACA-65(1)412
airfoil at 7◦ incidence. The black circle identifies the time-averaged zero skin

friction point. Plot shows rotated field with horizontally aligned inflow
velocity vector.

the spatially developing, separated shear layer lead to vortex formation upstream of

the location where the LSB reattaches. Further downstream, the flow transitions to a

wall-bounded, vortex dominated pattern. The curvature fields κ̄55.01
55.0 and κ̄55.1

55.0 show the

wrinkling modes associated with the Kelvin-Helmholtz instabilities. These modes are

visible through bands of positive and negative curvatures in the vicinity the separated

shear layer similar to the temporally developing jet.

The bands in the Lagrangian curvature fields in figure 7.13(a) and (b) upstream

of the vortex roll-up at x/c = 0.7 identify the process of off-wall material line folding

associated with the Kelvin-Helmholtz instability in the shear layer. The green, circular

markers identify the locations of the local maxima of κ̄55.01
55.0 on these curvature bands in

figure 7.13(a) and their advected locations at t = 55.1 in figure 7.13(b). The advected

Lagrangian grids (grey) based on the tracers initialized according to figure 7.5(a) are

also plotted for reference. Similar to the jet flow, the maximum wrinkling occurs in the

vicinity of the curvature extrema. These curvature peaks are also nearly material and

remain close to the local maxima of the curvature computed over a longer integration

interval, κ̄55.1
55.0 (see green, diamond-shaped markers). The strongly increasing magnitude

of the curvature maxima along the spatially developing unstable shear flow provides

evidence that curvature changes identify instabilities and the material wrinkling at the
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(a) κ̄55.01
55.0 (b) κ̄55.1

55.0

Figure 7.13: Contour plots of the curvature scalar κ̄55.01
55.0 (a) and κ̄55.1

55.0 (b)
with advected Lagrangian grid in gray. Local maxima of the curvature scalar
in green: max(κ̄55.01

55.0 ) (circles) are based on the scalar field in (a) and their
advected positions plotted in (b). max(κ̄55.1

55.0) (diamonds) are based on the
scalar field in (b). The y-axis is stretched.

onset of vortex formation.

7.3.3 Wake behind a circular cylinder

To understand the material wrinkling and its curvature field related to the

emergence of an unstable mode in the growing wake of a circular cylinder, horizontal

material lines are initialized half a diameter downstream of the cylinder and advected

for one convective time unit. The Lagrangian curvature change (κ̄tt−1) and curvature

rate (κ̇t) are extracted from the material lines and contours fields thereof are plotted in

figure 7.14 at times t = 105 and t = 160, together with common Eulerian quantities such

as the transverse velocity component, vorticity and the Q-criterion. Also visualized for

reference are the advected and deformed Lagrangian grids, which are overlayed to the

κ̄tt−1 fields.

Up to t = 105, the recirculation region is growing with time. No steady time-

averaged solution is hence available that would allow for the computation of perturba-

tion quantities. While all (frame-dependent) Eulerian quantities in figure 7.14 show a
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(a) t = 105 (b) t = 160

Figure 7.14: Comparison of Eulerian and Lagrangian quantities for the
circular cylinder. From top to bottom: v velocity, vorticity, Q-criterion,

Lagrangian curvature scalar field κ̄tt−1 (with deformed Lagrangian grid) and
Lagrangian curvature rate κ̇t at times t = 105 (a) and t = 160 (b). Local
minima and maxima of κ̄105

104 indicated by orange and green markers in (a).
The particle trace is added to the plots of Eulerian quantities for orientation.

Note that the range of the color map changes with t.
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symmetric topology with respect to the x axis at t = 105, the curvature scalars κ̄105
104

and κ̇105 show an asymmetric fluid deformation at this early stage. This asymmetry is

the early indicator of the development of the wake instability that remains hidden to

the other fields.

At a later time (t = 160), the wake is unstable and has developed the character-

istic Von-Karman vortex street, where the strongly increased transverse fluid motion

results in significant bending of the material lines visualized through the deformed

material grid along with κ̄160
159. While vortices in the wake are identified by regions

of large vorticity or positive values of the Q-criterion, their rotating motion induces

pairs of negative and positive curvature that resemble the yin-yang symbol in the κ̄160
159

field. Connectors between vortices are identified as slender curvature ridges and pos-

itive and negative values provide directional information about the fluid motion and

deformations.

7.4 Summary of Results

A finite-time curvature change diagnostic is introduced to identify instabilities in

material lines in the Lagrangian frame. By defining a flow instability in the Lagrangian

frame as the increased folding of lines of fluid particles, the identification does not

require knowledge of the base flow profile or averaged flow fields but only the flow map

of particle traces. Material lines are sensitive to fluid deformation and can therefore

locate unstable modes in the particle phase early on. Because the transient short-term

instabilities leave a footprint in the advected fluid material line’s curvature change

over finite time, a convenient time interval would be available in practice to capture

instabilities. The material curvature is objective, independent of the parametrization,

and so the identification applies to a broad variety of flows, including those over general
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complex geometries, rotating frames, and experimental setups with particle tracers.

Analytic formulas for the approximation of the flow map and curvature change

are provided for perturbed parallel shear flows. These formulas connect relevant Eule-

rian quantities used in LSA characterizing the dynamics of perturbations in the infinite-

dimensional space of velocities with their induced effects in the physical space of fluid

flows. The workings of the diagnostic are illustrated conceptually for the case of the

hyperbolic tangent jet in a periodic domain for perturbations with eigenmodes of three

different wavenumbers and random noise. It is shown that the material curvature

change accurately captures the unstable modes early in the jet flow. Exponential

growth rates of Lagrangian curvature match the values predicted by linear stability

analysis, as we predict analytically. In a jet flow with random initial mode perturba-

tions, the curvature field captures the emerging unstable mode.

Tests of the flows over a cambered airfoil at incidence and the wake behind

a circular cylinder demonstrate the ability of the kinematic approach to identify

instabilities without the requirement of an analytical mean or a frame of reference.

The curvature field identifies the early onset of vortex formation that remains hidden

to typical Eulerian diagnostics.
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Chapter 8

Conclusions

A comprehensive account of the transitional flow over a cambered airfoil is given

to enhance the general understanding of boundary layer separation and instabilities en-

countered in low-Reynolds number airfoil aerodynamics. The airfoil flow is analyzed for

a series of angles of attack through a combination of highly accurate three-dimensional

simulations and Lagrangian particle dynamics. Additionally, a definition of kinematic

instabilities is introduced based on the finite-time wrinkling of Lagrangian material

lines and is shown to capture unstable modes in shear flows early. The diagnostic is

based on the curvature change of material lines, is objective, and can be applied to

flow problems of general complexity.

8.1 Low-Reynolds number airfoil flow

Boundary layer separation and the corresponding three-dimensional structures

in the transitional flow over a cambered airfoil are analyzed through a series of high-

fidelity simulations at various flow angles and a chord-based Reynolds number of Re

= 2 × 104. The flow topology, wake structure, aerodynamic forces, and statistics are
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governed by the transition location of the separated shear layer on the suction side

of the profile, which divides the flow into two dynamical regimes: at angles of attack

smaller than 7◦, the upper boundary layer separates around mid-chord and remains

laminar until it interacts with the trailing edge vortex, which forms from the roll-

up of the bottom-side boundary layer. As a result, a transitional Von-Karman-type

vortex street is established in the wake. For angles larger than 7◦, the separation point

moves to the leading edge of the airfoil and the shear layer transitions to turbulence

and reattaches, resulting in a laminar separation bubble at the leading edge and a

turbulent wake. The bifurcation of the flow is accompanied by a rapid increase of

the aerodynamic lift and decrease of drag, which is attributed to the recovery of the

free-stream pressure at the trailing edge. An intermediate state is shown to exist at 7◦

incidence, where a LSB forms at the rear side of the airfoil. Here, the flow reattachment

occurs just upstream of the trailing edge (0.92c) such that the breaking vortices do not

transition into a fully developed turbulent boundary layer, but shed off in large patches

or “puffs” of turbulent motion.

Because the NACA 65(1)-412 is designed to maximize the laminar flow region

over the wing, the absence of an early transition to turbulence at low Reynolds number

prevents the reattachment of the separated boundary layer on the airfoil’s rear side at

lower angles of attack and results in a significant loss of the lifting force, which is even

negative at AOA = 0◦. With the rapid increase in the lifting force upon bifurcation

of the flow, the efficient operation of laminar airfoils in low-Reynolds number flow

conditions can be challenging and difficult to predict. The use of active or passive

flow controllers to induce transition early should therefore be considered in order to

alleviate these drawbacks.

In a preceding study of marginally resolved Navier-Stokes simulations, the per-

formance of the underlying DGSEM code is evaluated. It is shown that the implemen-
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tation of kinetic energy conserving volume fluxes into the scheme results in a stabiliza-

tion of the oftentimes temperamental numerical method without the use of filters or

artificial viscosity.

8.2 The kinematics of flow separation

Kinematic aspects of flow separation have been investigated in external aero-

dynamics by extracting the initial motion of upwelling fluid material from the wall

and its relation to the long-term attracting manifolds in the flow field. Although the

wall-bounded kinematics are governed by the formation of a material spike upstream

of the asymptotic separation point and ejection of particles in direction of the sepa-

ration line, it was shown that the off-wall trajectories of the fluid tracers are driven

by attracting ridges in the finite-time Lyapunov exponents. Therefore, the complete

pathway of Lagrangian flow separation was obtained: from the initial upwelling at the

spiking point over the ejection of particles along the asymptotic separation profile to

the attracting LCSs.

For the flow around a circular cylinder and a cambered NACA 65(1)-412 airfoil,

the footprint of the initial material upwelling, i.e. the spiking point, was determined

by evaluating the curvature of Lagrangian fluid tracers and by extracting high-order

on-wall derivatives of the normal velocity as proposed in [43]. An exact match of the

Lagrangian and Eulerian criterion for the start of material line spiking verifies the Eu-

lerian criterion and associated the principal location of material upwelling for the first

time in two test cases, i.e., the cylinder flow and the flow over an airfoil. For the latter,

the spiking point was recovered by appropriately filtering the spurious oscillations in

the velocity derivative induced by the spline-based boundary parametrization of the

NACA profile, thereby showing that this method is robust to noise. Determining the
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spiking points requires the extraction of high-order velocity derivatives, which is chal-

lenging for general geometries and in experimental settings because it requires very

high-resolution data and an accurate representation of the geometry.

With the ability to compute the birth of separation instantaneously from Eu-

lerian on-wall data, the Lagrangian pathway from the spiking point to the asymptotic

separation profile can be used as input parameters for dynamic flow controllers.

8.3 Objective identification of kinematic instabili-

ties

A finite-time curvature change diagnostic is introduced to identify instabilities in

material lines in the Lagrangian frame. By defining a flow instability in the Lagrangian

frame as the increased folding of lines of fluid particles, the identification does not

require knowledge of the base flow profile or averaged flow fields but only the flow map

of particle traces. Material lines are sensitive to fluid deformation and can therefore

locate unstable modes in the particle phase early on. Because the transient short-term

instabilities leave a footprint in the advected fluid material line’s curvature change

over finite time, a convenient time interval would be available in practice to capture

instabilities. The material curvature is objective, independent of the parametrization,

and so the identification applies to a broad variety of flows, including those over general

complex geometries, rotating frames, and experimental setups with particle tracers.

Analytic formulas for the approximation of the flow map and curvature change

are provided for perturbed parallel shear flows. These formulas connect relevant Eule-

rian quantities used in LSA characterizing the dynamics of perturbations in the infinite-

dimensional space of velocities with their induced effects in the physical space of fluid

flows. The workings of the diagnostic are illustrated conceptually for the case of the
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hyperbolic tangent jet in a periodic domain for perturbations with eigenmodes of three

different wavenumbers and random noise. It is shown that the material curvature

change accurately captures the unstable modes early in the jet flow. Exponential

growth rates of Lagrangian curvature match the values predicted by linear stability

analysis, as we predict analytically. In a jet flow with random initial mode perturba-

tions, the curvature field captures the emerging unstable mode.

Tests of the flows over a cambered airfoil at incidence and the wake behind a

circular cylinder demonstrate the ability of the kinematic approach to identify insta-

bilities without the requirement of an analytical mean or a frame of reference. The

curvature field identifies the early onset of vortex formation that remains hidden to

typical Eulerian diagnostics.

8.4 Future work

The analysis of low-Reynolds number airfoil aerodynamics, the kinematics of

Lagrangian structures in boundary layer separation, and the stability analysis based on

material line wrinkling are generalizable to other flow problems and Reynolds numbers

and provide the foundation to make informed decisions on the design, operation, and

control of aerodynamic devices in the transitional flow regime. The application of

active flow control concepts that take advantage of the three-dimensional instabilities

should therefore be explored in future research. Additionally, analysis of geometric

variations in this airfoil flow, for example endplates and/or slits at the wing tips, and

their effect on the boundary layer separation and the critical angle could enhance our

understanding of the differences observed in computations and experiments.

The extension of the kinematics of flow separation and the identification of

kinematic finite-time instabilities to three-dimensional flows would make those concepts
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available to a large number of complex applications. The effect of turbulence modeling

on the Lagrangian separation dynamics and the application of the fluid spike extraction

in time-averaged flows at high Reynolds numbers are also unknown. Such research

could open these concepts to the broader computational fluid dynamics community, as

well as commercial software applications.
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Appendix A

The multitude of flow regimes in

cambered airfoil aerodynamics at

Re = 20,000: a two-sided story

A.1 Parameter study: 2D simulations

In this section we present results of two-dimensional Navier-Stokes simulations

of the NACA 65(1)-412 and elaborate on the effect of resolution, domain size, and

Mach number. Although the physical meaning of these results is limited because vortex

stretching is absent in two-dimensional approximation, they are relevant for assessing

conditions in numerical experiment through parametric studies.

A.1.1 Effect of Mach number

Although low-Reynolds number flows also typically operate at low Mach num-

bers, some applications (e.g. UAV at high altitude) may encounter compressibility

effects [2]. The Prandtl-Glauert correction rule to estimate the compressibility effects
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Figure A.1: Lift and drag coefficients at AOA = 4◦ over time for different
Mach numbers. Domain radius R = 30c.

Table A.1: Lift and drag forces for AOA = 4◦ and different Mach numbers.

M Cl Cl,p Cl,f Cd Cd,p Cd,f
0.1 0.444 0.443 0.001 0.051 0.033 0.019
0.3 0.463 0.462 0.001 0.054 0.036 0.019

of the flow is Cp,M/Cp,i = 1/
√

1−M2. For Mach numbers M = 0.1 and M = 0.3, the

correction factors are Cp,M=0.1/Cp,i = 1.005 and Cp,M=0.3/Cp,i = 1.048 respectively and

hence we expect deviations of around 4% – 5%.

At 4◦ angle of attack, the lower compressibility at M = 0.1 results in a larger

amplitude of the lift and drag force oscillations, as well as an offset of the time-averaged

values by 4% and 6% respectively (see table A.1). These values are in very good agree-

ment with the predicted deviations based on the Prandtl-Glauert correction. Time-

averaged profiles of the the pressure and skin friction coefficients in figure A.2 show

that the differences in compressibility effect mainly the pressure distribution on the

suction side of the airfoil and have a negligible impact on the skin friction distribution.

At 8◦ incidence, a slender LSB stretches from the leading until xr/c = 0.45, 0.41,

and 0.49 for M = 0.05, 0.1, and 0.3 respectively. The profiles of the pressure and skin
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Figure A.2: Time-averaged pressure and skin friction coefficients for M =
0.1 and M = 0.3 at AOA = 4◦, R = 30c.
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Figure A.3: Time-averaged pressure and skin friction coefficients for different
Mach numbers at AOA = 8◦, R = 30c.

friction coefficients are given in figure A.3 and show that the higher compressibility in

case of M = 0.3 results in a more distinct pressure plateau and elongated separation

bubble with downstream reattachment compared to the lower-Mach number cases.

Streamlines of the time-averaged recirculating flow within the LSB are plotted in figure

A.5 and illustrate the difference in bubble sizes. The lift and drag coefficient averages

differ by 2% and 12% respectively (see table A.2) and can be attributed to the modified

pressure distribution caused by the different LSB sizes.

In addition to assessing compressibility effects by computing the flow at different

Mach numbers with the compressible DGSEM solver, we also compare our results
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Table A.2: Lift and drag forces for AOA = 8◦ and different Mach numbers.

M Cl Cl,p Cl,f Cd Cd,p Cd,f
0.05 0.941 0.940 0.002 0.052 0.041 0.010
0.1 0.946 0.944 0.002 0.052 0.042 0.011
0.3 0.965 0.964 0.002 0.058 0.048 0.010

with incompressible flow simulations performed with ANSYS FLUENT. Transient,

incompressible computations are conducted with a pressure-based solver, second-order

upwind for the spatial discretization, and second-order implicit time-stepping. No

turbulence model is applied such that only source for artificial viscosity is through

numerical dissipation from the upwinding scheme. A C-type domain with radius and

wake length of 30 chords and consisting of 802,300 quadrilateral elements is used. The

outer boundaries treated as velocity inflow (left, lower, and upper) and pressure outflow

conditions (right) and a no-slip condition is applied at airfoil surface.

Figure A.4 shows the history of the lift and drag coefficients obtained from

compressible DGSEM computations at a Mach number of M = 0.05 and sixth order

polynomial representation and incompressible simulations with FLUENT. The results

are in remarkably good agreement and confirm that the solution to this particular

flow has converged across different numerical solvers. The case also shows that com-

presibility effects are not the cause for the disagreement with the USC wind tunnel

experiments at AOA = 8◦ as all simulations show the transitioned state regardless of

the Mach number.

A comparison of the streamlines inside the LSB (see figure A.5) indicates that

the bubble size in the FLUENT computations is nearly identical with the DGSEM

results at M = 0.3, but deviates from the topology found at M = 0.05. While the

differences between the DGSEM results are solely related to the compressibility effects,

results from the FLUENT simulation are also affected by the lower order accuracy of

162



0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

1.1

1.2

0 10 20 30 40 50

0.02

0.04

0.06

0.08

0.1

(a) Lift coefficient (b) Drag coefficient

Figure A.4: Lift and drag coefficients at AOA = 8◦ over time DGSEM (M =
0.05) and FLUENT (incompressible) computations.

Figure A.5: Laminar separation bubble for M = 0.05 and M = 0.3
(DGSEM) and incompressible (FLUENT) at AOA = 8◦, R = 30c.

the spatial and temporal discretization and the increased numerical dissipation of the

upwind scheme.

A.1.2 Resolution – is it DNS?

The resolution in spectral element methods can be adjusted either through mesh

refinement (h) or by increasing the polynomial order per element (p). The two meshes

employed in this paper, Grid 1 and Grid 2, are based on very different element sizes and

polynomial orders (cf. 5.1). For 4◦ incidence, Nelson et al. [76] reports a grid-converged

solution for a polynomial order of P = 12 on Grid 1. Because the flow transitions to

turbulence at higher angles of attack, we compare time-averaged results of the coarser
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Figure A.6: Time-averaged leading-edge skin friction for Grid 1 and Grid 2
at different polynomial orders. Rec = 20,000, AOA = 8◦.

Grid 1 and the refined Grid 2 at different polynomial orders for 8◦ incidence. At this

angle, the wind tunnel experiments at USC and the computations deviate considerably

as the experiment is still in the laminar regime below αcrit while the DNS simulations

has already become turbulent.

We assess the fidelity of the numerical results by comparison of the skin friction

coefficient for different resolutions. Figure A.6(a) shows that at a polynomial order

of N = 12, resolution at the airfoil’s leading edge is insufficient and causes spurious,

numerical oscillations in the solution. Although of considerable amplitude, these oscil-

lations remain a local artifact and do not affect the results significantly in comparison

to the converged solution at N = 18. The higher mesh refinement of Grid 2 requires

lower polynomial orders to reach a converged solution and the skin friction coefficients

plotted in figure A.6(b) show good agreement for polynomial orders N = 4 – N = 8.

The minor deviations can be attributed to the finite number of samples collected for

temporal statistics. Note that differences between figure A.6(a) and (b) stem from a

larger buffer layer region in Grid 1 that results in reduced feedback of waves from the

wake.
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Table A.3: Lift and drag coefficients for AOA = 4◦ and different domain sizes.

Domain radius Cl Cl,p Cl,f Cd Cd,p Cd,f
3.5c 0.434 0.433 0.001 0.055 0.036 0.019
30c 0.463 0.462 0.001 0.054 0.036 0.019

Given that no filter is employed in either of the simulations and the solution

shows convergence, we consider the results presented in this paper DNS with the ex-

ception of the case at 10◦, which show some under-resolution at the leading edge and

should therefore be considered implicit LES.

A.1.3 Domain size

We assess the effect of the Riemannian free-stream boundaries on the solution by

comparing the aerodynamic forces, pressure and skin friction coefficients for different

sizes of the computational domain for several angles of attack.

Figure A.7 illustrates the lift and drag coefficient for the flow at 4◦ incidence

and domain radii from R = 3.5c to R = 50c. Corresponding pressure and skin friction

distributions over the wing are plotted in figure A.8 for R = 3.5c and 30c. The free-

stream boundaries show a strong impact on the pressure coefficient at the leading edge,

which is significantly lower for the larger domain and indicates that the proximity of

the boundaries for R = 3.5c forces the flow in this region. The pressure deviation is

reflected in the trend of the lifting force with deviations of the time-averaged solution of

6% between small and large domains (see table A.3). As the discrepancies are mainly

caused by the differences in the pressure distribution, the drag force shows only minor

variations between the cases and converges more quickly. The strongly sinusoidal time

dependency of the forces is maintained for all domain radii.

Because the magnitude of the pressure and friction forces increases with the
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Figure A.7: Lift and drag coefficients over time for different computational
domain sizes and AOA = 4◦, M = 0.3.
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Figure A.8: Time-averaged pressure and skin friction coefficients for R =
3.5c and R = 30c at AOA = 4◦, M = 0.3.
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Figure A.9: Laminar separation bubble for domain radii R = 3.5c and R =
30c at AOA = 7◦, M = 0.3.
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Figure A.10: Time-averaged pressure and skin friction coefficients for R =
3.5c and R = 30c at AOA = 7◦, M = 0.3.

flow angle, the influence of the free-stream boundaries also becomes more distinct. For

7◦ incidence, the separated boundary layer reattaches at the rear of the airfoil and

forms a local LSB. Streamlines of the time-averaged solution within the separation

bubble are plotted in figure A.9 for domain sizes of R = 3.5c and R = 30c. The LSB is

significantly larger in the smaller domain where the free-stream boundaries impact the

solution stronger by forcing the flow. The difference in LSB sizes is distinctly visible in

the time-averaged profiles of the surface pressure and skin friction coefficients, where

both, Cp and Cf , show the shift of the reattachment point of the LSB (see figure

A.10). Despite these significant differences in the flow topology, the time-averaged lift

coefficient deviates only by 1.5%, while the drag force differs by more than 40% (see

table A.4). Note that the magnitude of the drag is only about 5% of the lift force and

hence is more susceptible to such changes.

The effect of free-stream boundaries on the flow topology is even more pro-
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Table A.4: Lift and drag coefficients for AOA = 7◦ and different domain sizes.

Domain radius Cl Cl,p Cl,f Cd Cd,p Cd,f
3.5c 0.931 0.928 0.002 0.074 0.062 0.012
30c 0.946 0.944 0.002 0.052 0.041 0.011

Figure A.11: Laminar separation bubble for domain radii R = 3.5c and R =
30c at AOA = 8◦, M = 0.3.

nounced at 8◦ incidence, where the location of the LSB completely shifts between the

front and the rear side of the airfoil (see figure A.11). This, again, is reflected in the

surface pressure and the skin friction coefficient (see figure A.12), but curiously does

not translate into a significant change in the integrated lift or the drag force, as summa-

rized in table A.5. The reason is that the bubble height is small and hence only slightly

changes the pressure distribution, which remains approximately constant throughout

separated flow regions. Given that both lift and drag coefficients are dominated by the

pressure force (see table A.5), the location of the LSB has only a limited affect on the

lift as long as the bubble remains slender.

The parametric study of two-dimensional Navier-Stokes simulations show that

although the LSB location can be notably affected by changes in domain size, resolu-

tion, and Mach number, the results do not indicate that any of the tested parameters

move the critical angle of attack to higher values. Particularly, the good agreement

Table A.5: Lift and drag coefficients for AOA = 8◦ and different domain sizes.

Domain radius Cl Cl,p Cl,f Cd Cd,p Cd,f
3.5c 0.989 0.987 0.002 0.064 0.053 0.011
30c 0.962 0.961 0.002 0.058 0.047 0.010
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Figure A.12: Time-averaged pressure and skin friction coefficients for R =
3.5c and R = 30c at AOA = 8◦, M = 0.3.

between DGSEM and FLUENT simulations imply that the flow at 8◦ incidence has

converged to a reasonable level across different numerical solvers. We therefore consider

the high-order results presented in this paper to be high-fidelity DNS.
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Appendix B

Objective early identification of

kinematic instabilities in shear flows

B.1 Proof of κ̇t = −∂xxv

Following Serra et al. [43], the material curvature rate of material lines

parametrized by arc-length is

κ̇t = 〈(∇Sr′)r′,Rr′〉 − 1
2〈∇ω, r

′〉 − 3κ0〈r′,Sr′〉, (B.1)

with the rate-of-strain tensor S = 1
2(∇u +∇u>), the local tangent vector r′, |r′| = 1,

and R is a rotation matrix defined according to (7.2).

We now separate the right-hand side of (B.1) into 3 parts and simplify each

term separately under the assumption r′ = [1, 0]>.

Evaluation of the first term: 〈(∇Sr′)r′,Rr′〉
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∇Sr′ = ∂xSr′x + ∂ySr′y

= ∂x

 ∂xu (∂yu+ ∂xv)/2

(∂xv + ∂yu)/2 ∂yv

 r′x + ∂y

 ∂xu (∂yu+ ∂xv)/2

(∂xv + ∂yu)/2 ∂yv

 r′y

=

 ∂xxur
′
x r′x(∂yxu+ ∂xxv)/2

r′x(∂xxv + ∂yxu)/2 ∂yxvr
′
x

+

 ∂xyur
′
y r′y(∂yyu+ ∂xyv)/2

r′y(∂xyv + ∂yyu)/2 ∂yyvr
′
y


(B.2)

(∇Sr′)r′ =

∂xxur′2x + r′xr
′
y(∂yxu+ ∂xxv)/2

r′2x (∂xxv + ∂yxu)/2 + ∂yxvr
′
xr
′
y

+

∂xyur′yr′x + r′2y (∂yyu+ ∂xyv)/2

r′yr
′
x(∂xyv + ∂yyu)/2 + ∂yyvr

′2
y



=

∂xxur′2x + r′xr
′
y(∂yxu+ ∂xxv)/2 + ∂xyur

′
yr
′
x + r′2y (∂yyu+ ∂xyv)/2

r′2x (∂xxv + ∂yxu)/2 + ∂yxvr
′
xr
′
y + r′yr

′
x(∂xyv + ∂yyu)/2 + ∂yyvr

′2
y


(B.3)

〈(∇Sr′)r′,Rr′〉 = ∂xxur
′2
x r
′
y + r′xr

′2
y (∂yxu+ ∂xxv)/2 + ∂xyur

′2
y r
′
x + r′3y (∂yyu+ ∂xyv)/2

− r′3x (∂xxv + ∂yxu)/2− ∂yxvr′2x r′y − r′yr′2x (∂xyv + ∂yyu)/2− ∂yyvr′2y r′x

(B.4)

For a tangent vector r′ = [1, 0]>, (B.4) can be rewritten as

〈(∇Sr′)r′,Rr′〉 = −(∂xxv + ∂yxu)/2. (B.5)

Evaluation of the second term: −1
2〈∇ω, r

′〉

− 1
2〈∇ω, r

′〉 = −(∂xωr′x + ∂yωr
′
y)/2 (B.6)

Again, we assume a tangent vector r′ = [1, 0]>, which simplifies (B.6) to

− 1
2〈∇ω, r

′〉 = −∂xω/2. (B.7)
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Evaluation of the third term: −3κ0〈r′,Sr′〉

Sr′ =

∂xur′x + r′y(∂yu+ ∂xv)/2

r′x(∂xv + ∂yu)/2 + ∂yvr
′
y

 (B.8)

− 3κ0〈r′,Sr′〉 = −3κ0(∂xur′2x + r′yr
′
x(∂yu+ ∂xv)/2 + r′xr

′
y(∂xv+ ∂yu)/2 + ∂yvr

′2
y ) (B.9)

Again, simplification with r′ = [1, 0]> leads to

− 3κ0〈r′,Sr′〉 = −3κ0∂xu, (B.10)

where the initial curvature κ0 is also zero so that

− 3κ0〈r′,Sr′〉 = 0. (B.11)

Substituting the three simplified terms back into (B.1) yields

κ̇t = 〈(∇Sr′)r′,Rr′〉 − 1
2〈∇ω, r

′〉 − 3κ0〈r′,Sr′〉 = −1
2(∂xxv + ∂yxu+ ∂xω), (B.12)

and with ω = ∂xv − ∂yu it follows that

κ̇t = −1
2∂x(∂xv + ∂yu+ ω) = −1

2∂x(∂xv + ∂yu+ ∂xv − ∂yu) = −∂xxv. (B.13)

B.2 Proof of Theorem 1

Here we derive an analytic expression for the curvature change κ̄t0+T
t0 in per-

turbed parallel shear flows of the form

uε = u0 + εu′, 0 < ε� 1, (B.14)
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where u0 = [U(y), 0]> is the base flow and u′ = Re([û(y), v̂(y)]ei(kx−ωt)) is the pertur-

bation, whose components are

u′ = eωit [ûr cos(kx− ωrt)− ûi sin(kx− ωrt)] ,

v′ = eωit [v̂r cos(kx− ωrt)− v̂i sin(kx− ωrt)] .
(B.15)

Here, û = ûr + iûi, v̂ = v̂r + iv̂i are complex amplitudes, ω = ωr + iωi is the complex

frequency and k the real wave number. Because analytic solutions of of the flow map

εΦ induced by uε are not available, we first seek an analytic approximation of εΦ by

neglecting O(ε2) terms. We define the flow map of the base flow and the perturbed

flows as

0Φt0+T
t0 (x0) = x0 +

∫ t0+T

t0
u0
(

0Φτ
t0(x0), τ

)
dτ,

εΦt0+T
t0 (x0) = x0 +

∫ t0+T

t0
uε
(
εΦτ

t0(x0), τ
)

dτ.
(B.16)

Computing a Taylor expansion of εΦ with respect to ε, we obtain

εΦt0+T
t0 (x0)− 0Φt0+T

t0 (x0) = d

dε
εΦt0+T

t0 (x0)|ε=0︸ ︷︷ ︸
At0+T
t0

(x0)

ε+O(ε2), (B.17)

where At0+T
t0 (x0) is a vector governing the leading order deviations between trajectories

of the base flow and the perturbed flow. From equations (B.16-B.17), we find that

At0+T
t0 (x0) satisfies the linear non-autonomous vectorial differential equation

Ȧt
t0(x0) = ∇u0(0Φt

t0(x0))At
t0(x0) + u′(0Φt

t0(x0), t)

At0
t0(x0) = 0

0Φt
t0(x0) = x0 + u0(x0)(t− t0).

(B.18)

The dynamic matrix of equation (B.18) is the Jacobian of the base flow, while the

forcing term is the perturbation, both of which evaluated along trajectories of the

base flow. These terms as well as (B.18) admit analytic solutions, hence providing the
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following analytic leading order approximation of the perturbed flow map

εΦt0+T
t0 (x0) = 0Φt0+T

t0 (x0) + At0+T
t0 (x0)ε+O(ε2)

=

x0 + U(y0)T + ε (f1(y0)ûr(y0) + f2(y0)ûi(y0)) /g(y0)

y0 + ε (f5(y0)v̂r(y0) + f6(y0)v̂i(y0)) /g(y0)

 (B.19)

+

ε (f3(y0)v̂r(y0) ∂yU(y0) + f4(y0)v̂i(y0) ∂yU(y0)) /g2(y0)

0

+O(ε2),

where

f1 = −eωit0ωi cos(kx0 − ωrt0) + eωit0
(
ωr − kU(y0)

)
sin(kx0 − ωrt0)

+ eωi(t0+T )ωi cos(kx0 − ωr(t0 + T ) + kU(y0)T )

− eωi(t0+T )
(
ωr − kU(y0)

)
sin(kx0 − ωr(t0 + T ) + kU(y0)T ),

(B.20)

f2 = eωit0ωi sin(kx0 − ωrt0) + eωit0
(
ωr − kU(y0)

)
cos(kx0 − ωrt0)

− eωi(t0+T )ωi sin(kx0 − ωr(t0 + T ) + kU(y0)T )

− eωi(t0+T )
(
ωr − kU(y0)

)
cos(kx0 − ωr(t0 + T ) + kU(y0)T ),

(B.21)

f3 = −eωit0
(
ω2
i + ω3

i T − ω2
r + ωiω

2
rT − k2U2(y0) + ωik

2U2(y0)T

+ 2ωrkU(y0)− 2ωiωrkU(y0)T
)

cos(kx0 − ωrt0)

+ eωit0
(

2ωiωr + ω2
i ωrT + ω3

rT − k3U3(y0)T + 3ωrk2U2(y0)T − 2ωikU(y0)

− ω2
i kU(y0)T − 3ω2

rkU(y0)T
)

sin(kx0 − ωrt0)

+ eωi(t0+T )
(
ω2
i − ω2

r − k2U2(y0) + 2ωrkU(y0)
)

cos(kx0 − ωr(t0 + T ) + kU(y0)T )

− eωi(t0+T )
(

2ωiωr − 2ωikU(y0)
)

sin(kx0 − ωr(t0 + T ) + kU(y0)T ),

(B.22)
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f4 = eωit0
(
ω2
i + ω3

i T − ω2
r + ωiω

2
rT − k2U2(y0) + ωik

2U2(y0)T

+ 2ωrkU(y0)− 2ωiωrkU(y0)T
)

sin(kx0 − ωrt0)

+ eωit0
(

2ωiωr + ω2
i ωrT + ω3

rT − k3U3(y0)T + 3ωrk2U2(y0)T − 2ωikU(y0)

− ω2
i kU(y0)T − 3ω2

rkU(y0)T
)

cos(kx0 − ωrt0)

− eωi(t0+T )
(
ω2
i − ω2

r − k2U2(y0) + 2ωrkU(y0)
)

sin(kx0 − ωr(t0 + T ) + kU(y0)T )

− eωi(t0+T )
(

2ωiωr − 2ωikU(y0)
)

cos(kx0 − ωr(t0 + T ) + kU(y0)T ),

(B.23)

f5 = −eωit0ωi cos(kx0 − ωrt0) + eωit0
(
ωr − kU(y0)

)
sin(kx0 − ωrt0)

+ eωi(t0+T )ωi cos(kx0 − ωr(t0 + T ) + kU(y0)T )

− eωi(t0+T )
(
ωr − kU(y0)

)
sin(kx0 − ωr(t0 + T ) + kU(y0)T ),

(B.24)

f6 = eωit0ωi sin(kx0 − ωrt0) + eωit0
(
ωr − kU(y0)

)
cos(kx0 − ωrt0)

− eωi(t0+T )ωi sin(kx0 − ωr(t0 + T ) + kU(y0)T )

− eωi(t0+T )
(
ωr − kU(y0)

)
cos(kx0 − ωr(t0 + T ) + kU(y0)T ),

(B.25)

g = ω2
i + ω2

r − 2ωrkU(y0) + k2U2(y0). (B.26)

The baseflow profile U = U(y0) and the perturbation modes û(y0) and v̂(y0) are

functions of the initial y-location of the tracers.

With the flow map of the perturbed flow available, we can compute the de-

formation gradient and Cauchy-Green strain tensor and apply (7.1) to calculate the

Lagrangian curvature change. We determine the leading order terms of κ̄t0+T
t0 , for the

case of r′ = [1, 0]> and κ0 = 0, by performing a Taylor series expansion in the pertur-

bation ε and collecting the first-order terms. To the first order, the curvature change
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for horizontal material lines in a perturbed parallel shear flow can be computed as

κ̄t0+T
t0 = k2

ω2
i + ω2

r − 2ωrkU(y0) + k2U2(y0)

[

eωit0
((
− ωiv̂r(y0) + (ωr − kU(y0))v̂i(y0)

)
cos(kx0 − ωrt0)

+
(
ωiv̂i(y0) + (ωr − kU(y0))v̂r(y0)

)
sin(kx0 − ωrt0)

)
+ eωi(t0+T )

((
ωiv̂r(y0)− (ωr − kU(y0))v̂i(y0)

)
cos(kx0 − ωr(t0 + T ) + kU(y0)T )

−
(
ωiv̂i(y0) + (ωr − kU(y0))v̂r(y0)

)
sin(kx0 − ωr(t0 + T ) + kU(y0)T )

)]
ε+O(ε2).

(B.27)

This completes the proof of Theorem 1.

We check the analytic solutions of the flow map (B.19) and the curvature

scalar (B.27) for a material line advected under u0 = [(1 + tanh(y))/2, 0]> (hy-

perbolic tangent shear profile) and time-dependent perturbations of the form u′ =

Re([û(y), v̂(y)]ei(kx−ωt)). The tracers are initialized at y0 = 0 and x0 ∈ [0, 10] and the

parameters are chosen to be k = 1, ωr = 2, ωi = 0.1, ε = 1%, and T = 20. The

eigenmode shape functions are set to ûr(y) = ûi(y) = − tanh(y) sech(y)/k and v̂r(y)

= −v̂i(y) = sech(y), such that a solenoidal velocity field is constructed. In figure B.1,

the analytic solutions from (B.19) and (B.27) are compared to their numerical results

from integrating uε = u0 + εu′ described above. The deviations are small confirming

the validity of our analytical approximation.

The temporal development of the curvature scalar (B.27) is illustrated in figure

B.2 together with the velocity v = Re(v̂(y)ei(kx−ωt)) for positive (growing perturbation)

and negative (ceasing perturbation) temporal growth rates. The set of parameters is

the same as introduced above, but for a single point [x0, y0] = [1, 0] instead of a material

line.
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(a) Flow map (b) Curvature scalar

Figure B.1: Comparison of analytic and numerical approximations of the
flow map εΦ20

0 and the curvature scalar for κ̄20
0 . Fx and Fy are the x and y

components of the flow map Φ. Parameters: u0 = [(1 + tanh(y))/2, 0]>, y0 =
0, k = 1, ωr = 2, ωi = 0.1, ε = 1%, and T = 20.

(a) ωi > 0 (b) ωi < 0

Figure B.2: Comparison of analytic curvature scalar (B.27), the velocity v =
Re(v̂(y)ei(kx−ωt)), and the envelope function eωit. Parameters:

u0 = [(1 + tanh(y))/2, 0]>, y0 = 0, k = 1, ωr = 2, |ωi| = 0.1, ε = 1%.

177



B.3 Material response to a traveling wave

B.3.1 Model problem: traveling sine wave

To understand the kinematic response of fluid material to a traveling wave in

general, the exponentially growing velocity field of a traveling sine wave is considered

and as given by [u, v]> = [0, Aeωit sin (kcrt− kx)]. The wave amplitude, speed and

wave number are set to A = 0.01, cr = 0.5 and k = 4.2, respectively.

Integration of the kinematic equation yields the particle coordinates xp =
∫ t1
t0
udt

and yp =
∫ t1
t0
vdt. Because u = 0 there is no motion of the fluid material in x-direction.

If the velocity amplitude is constant (ωi = 0), then the y-location of a material line

initialized at yp(t0=0) = 0 is

yp(x, t) = A

kcr
[cos (kx)− cos (kcrt− kx)] . (B.28)

Hence, the wave length of this traveling material wave is the same as that of the velocity

wave. The former, however, travels at half the phase speed as compared to the latter.

This can be understand by inspecting the x-location of the particle mode evaluated at

yp = 0 from (B.28)

x|yp=0 = 1
2crt. (B.29)

For an exponentially increasing velocity field (ωi = 0.9), the y-location of a

material line initialized at yp(t0=0) = 0 is

yp(x, t) = A

ω2
i + (kcr)2 [ωi sin (kx) + kcr cos (kx)+ (B.30)

eωit(ωi sin (kcrt− kx)− kcr cos (kcrt− kx))
]
. (B.31)

Asymptotically for t→∞, the material mode locks on to the velocity mode as is again
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(a) t = 0.3 (b) t = 3.0 (c) t = 6.0

Figure B.3: (a–c) Development of a material line (blue) under the velocity
field [u, v]> = [0, Aeωit sin (kcrt− kx)] (black-white) over time. Location

history of Lagrangian curvature peaks in red.

understood by inspecting x evaluated at yp=0.

lim
t→∞

x|yp=0 = crt−
1
k

arctan
(
kcr
ωi

)
. (B.32)

Figure B.3(a–c) shows the development of a material line (blue) subject to

an exponentially growing velocity mode (black-white), with the location history of

curvature peaks in red. The x-location of the first curvature peak over time is shown

in figure B.4, where the slope confirms that the curvature mode initially travels at

half the phase speed of the velocity mode but accelerates until they move uniformly.

The plots in (a) to (c) confirm the locking of the modes and shows that curvature and

velocity peaks travel separated by the phase shift introduced in (B.32). If wavenumber

and phase speed are known, the growth rate ωi can therefore be computed solely based

on the shift between the curvature and the velocity mode.

B.3.2 Traveling mode in the jet flow

The shifting of velocity and curvature modes for the jet flow is visualized in

figure B.5. For a very short integration interval, the Lagrangian curvature field is

approximately equal to κ̇t and directly matches the pattern of the Eulerian transverse
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Figure B.4: X-locations of the first Lagrangian curvature peak (see figure
B.3) over time. Phase velocity c (slopes) indicated as solid lines in black.

velocity. While the material line motion initially corresponds to v′ (see figure B.5a),

the modes develop a phase shift in the jet core and the outer region as the velocity

modes travel relative to the Lagrangian particle trace (see figure B.5b). Only along

the shear layer, where the phase speed closely matches the advection velocity of the

fluid, extrema of κ̄t0+T
t0 and v′ move together and result in much larger deformations of

the particle trace than in the core flow (compare right plots of figure B.5b). From a

Lagrangian perspective, the fluid particles in the shear layer see the perturbation mode

as standing wave and therefore diverge faster than particles outside or inside the jet.
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(a) t = 0.1 (b) t = 5.0

Figure B.5: Curvature scalar field κ̄t0 (blue-white-red) graphed over
transverse velocity perturbation field v′ (black-white) at times t = 0.1 (a) and
t = 5.0 (b). Initial perturbation with eigenmodes for wavenumber kpert = 4.2.
(a) and (b) each have an overview plot on the left and detail plots of material
lines along the shear layer and center line on the right. Location of material
lines and detail plots pointed out by green arrows and boxes. Y-axis of detail
plots is strongly stretched to show fluid particle motion (see green boxes).

Note that the color maps are adjusted at each time step.
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