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Genome-wide analysis in over 1 million 
individuals of European ancestry yields 
improved polygenic risk scores for blood 
pressure traits

Hypertension affects more than one billion people worldwide. Here we 
identify 113 novel loci, reporting a total of 2,103 independent genetic 
signals (P < 5 × 10−8) from the largest single-stage blood pressure 
(BP) genome-wide association study to date (n = 1,028,980 European 
individuals). These associations explain more than 60% of single nucleotide 
polymorphism-based BP heritability. Comparing top versus bottom deciles 
of polygenic risk scores (PRSs) reveals clinically meaningful differences in 
BP (16.9 mmHg systolic BP, 95% CI, 15.5–18.2 mmHg, P = 2.22 × 10−126) and 
more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 
95% CI, 5.54–9.70; P = 4.13 × 10−44) in an independent dataset. Adding PRS 
into hypertension-prediction models increased the area under the receiver 
operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781–0.801) 
to 0.826 (95% CI, 0.817–0.836, ∆AUROC, 0.035, P = 1.98 × 10−34). We compare 
the 2,103 loci results in non-European ancestries and show significant 
PRS associations in a large African-American sample. Secondary analyses 
implicate 500 genes previously unreported for BP. Our study highlights the 
role of increasingly large genomic studies for precision health research.

Over 30% of adults worldwide have hypertension, which is a leading 
modifiable risk factor for cardiovascular disease and death1–3. Hyper-
tension is defined by elevated levels of systolic BP (SBP) and/or dias-
tolic BP (DBP). SBP, the maximal arterial pressure exerted as the heart 
is beating, continuously increases with older age, whereas DBP, the 
arterial pressure between heartbeats, gradually plateaus by mid-life. 
Pulse pressure (PP), defined as the difference between SBP and DBP, 
is an indicator of arterial stiffness. BP is highly heritable, and multiple 
genome-wide association studies (GWAS) have highlighted its complex, 
polygenic architecture4–9.

Two recent large-scale GWAS meta-analyses with over 750,000 
participants of European descent4,5, incorporating available data  
from biobanks and consortia such as the UK Biobank (UKB), the 
International Consortium for Blood Pressure (ICBP) and the Million  
Veteran Program (MVP), identified more than 1,000 independent loci 

associated with BP. Results from these studies have been applied to 
fine-mapping and candidate gene prioritization follow-up studies to 
further investigate the underlying BP biology10–12. Experience from 
prior BP-GWAS reveals that an increase in sample size can result in an 
enriched catalog of BP-associated genetic loci as well as an increase 
in the proportion of inter-individual variation in BP explained by the 
lead variants.

In this study, we conducted a single-stage GWAS meta-analysis 
combining all available genetic data from the UKB, ICBP and MVP 
from the previous two papers, using their existing GWAS summary 
statistics data together with new data (n ~ 50,000) from Vanderbilt Uni-
versity’s biorepository of DNA linked to de-identified medical records 
(BioVU)13. We accumulated data from over one million individuals of 
European descent, the largest sample size to date in a single-stage 
GWAS for BP. The analysis was performed using ~7.5 million imputed 
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BP traits: (1) achieving genome-wide significance (P < 5 × 10−8) (Fig. 1 and 
Tables 1–3); (2) with consistent direction of effect in all available studies 
(Supplementary Table 1); and (3) no evidence of heterogeneity across 
studies (Tables 1–3 and Supplementary Figs. 1 and 2). Of these 113 novel 
loci, 35 reached a more stringent one-stage significance threshold of 
P < 5 × 10−9. Of all 113 novel loci (Supplementary Fig. 3), 40, 42 and 31 senti-
nel SNPs were significantly associated with SBP, DBP and PP, respectively, 
as the most significant trait with consistent effect direction. As in prior 
studies, the newly discovered loci had smaller effect sizes than previously 
reported SNPs, owing to the larger sample size and increased power to 
detect common variants with smaller effect sizes (Extended Data Fig. 2).

LD score regression intercepts
In our overall meta-analyses, genomic inflation factors (λGC) were calcu-
lated and λGC values were 1.82, 1.76 and 1.70 for SBP, DBP and PP, respec-
tively. We calculated the LD score regression (LDSR) intercepts in our 
overall GWAS meta-analysis data as well as in the GWAS data remaining 
after the exclusion of all known BP loci to evaluate whether inflation of 
our test statistics was a result of polygenicity or residual population 
substructure (Supplementary Table 2). Attenuation ratios14 in overall 
analyses were 0.0884, 0.0844 and 0.0794, while attenuation ratios in 
the novel partition of our results were 0.0996, 0.0722 and 0.1085 for 
SBP, DBP and PP, respectively. LDSR intercepts in overall analyses were 
1.2254, 1.2037 and 1.1756, while intercepts in the novel partition of our 
results were 1.0931, 1.0624 and 1.0806 for SBP, DBP and PP, respectively. 
These LDSR intercepts and attenuation ratios suggest that any observed 
inflation in our data is caused primarily by polygenicity.

Known loci
Using our data to assign all 3,800 SNPs previously reported for  
BP traits into loci resulted in the identification of 1,165 independent 
loci that were ≥1 Mb apart and not in strong LD (r2 < 0.1) with each  
other or with known BP loci (Supplementary Table 3). LD pruning 
resulted in 1,723 pairwise-independent genetic signals from known 
SNPs (Supplementary Table 4).

single nucleotide polymorphisms (SNPs) with a minor allele frequency 
(MAF) > 1% as the contributing GWAS data focused on common variants.

Our goals were to identify novel BP variants, reveal new biology 
underlying BP and generate a new BP PRS. Herein, we report the dis-
covery of 113 novel loci for BP traits. The large sample size and current 
statistical methods increased the SNP-based heritability (h2

SNP) of BP 
traits explained by GWAS variants to >60%. We developed genome-wide 
BP PRSs and tested these for the prediction of BP traits and hyperten-
sion risk in two independent datasets of European and African-American 
ancestry individuals.

We also applied methods that leverage the statistical precision 
of the GWAS and independent reference data from cardiovascular 
tissues to infer relationships between BP traits and gene expression, 
and we observed evidence of association with BP biology of 500 pre-
viously unreported genes. Many of these genes are located in pre-
viously mapped regions of the genome but were not identified by 
nearest-gene annotations in the literature, allowing the scientific yield 
from BP genetic studies to advance from lists of loci to lists of genes. 
These analyses provide insights into both the extent to which regula-
tory effects mediate genetic associations with BP traits as well as a  
principled data-driven mapping of associated loci with linked  
biology. This knowledge can be used to identify potential drug targets, 
develop testable hypotheses in model systems and advance under-
standing of BP regulation at the level of tissues and systems.

Results
Within our one-stage meta-analysis study of 7,584,058 SNPs in up to 
1,028,980 individuals, there are a total of 1,495, 1,504 and 1,318 signifi-
cant loci (P < 5 × 10−8) from the GWAS of SBP, DBP and PP, respectively 
(linkage disequilibrium (LD) r2 < 0.1 and 1 Mb distance; Extended Data 
Fig. 1). After excluding all known loci and their correlated variants in LD 
(LD r2 > 0.1 at ±500 kb) and applying clumping and LD-pruning methods 
to the remaining SNPs to identify independent loci ≥1 Mb apart and not 
in strong LD (r2 < 0.1), we detected sentinel SNPs indexing 113 novel loci 
for robust signficant association with at least one of the three continuous 
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Fig. 1 | Manhattan plots of SBP, DBP and PP GWAS meta-analyses, illustrating 113 novel loci. Manhattan plots from top to bottom show novel results of SBP, DBP 
and PP GWAS meta-analysis, respectively, using inverse variance-weighted method. All loci are reported at genome-wide significance threshold (5 × 10−8). Annotated in 
red are loci reaching the more stringent P value of 5 × 10−9.
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As many of these known SNPs were previously identified using 
data contained within our meta-analysis, we did not seek to provide 
any replication of these published SNPs, but we did use the opportunity 
provided by our large-scale meta-analysis to present up-to-date and 

accurate results for the significance and effect estimates of the BP 
associations of all these SNPs (Supplementary Tables 4–6). Considering 
the sentinel SNPs of the 1,165 independent known loci, 1,092 of these 
were covered in our GWAS data, and 963 (88%) of these exact SNPs 

Table 1 | 40 of the 113 novel loci (P < 5 × 10−8) identified with SBP as the primary trait

SNP CHR:BP Trait Gene A1 A2 EAF Effect s.e. P value neff Phet

rs880132 18:7131618 SBP;DBP LAMA1 C T 0.573 −0.182 0.027 1.04 × 10−11 846,466 0.347

rs10991952 9:94252964 SBP;PP NFIL3 G A 0.299 0.169 0.027 1.98 × 10−10 978,737 0.641

rs36563 14:71352648 SBP PCNX1 G T 0.845 0.206 0.033 6.21 × 10−10 1,001,700 0.908

rs538180 3:16363689 SBP;DBP OXNAD1 A T 0.417 −0.151 0.025 8.47 × 10−10 989,900 0.833

rs2978398 8:146130326 SBP ZNF250 A G 0.423 −0.152 0.025 9.06 × 10−10 964,640 0.645

rs76637716 12:51355243 SBP;DBP HIGD1C A G 0.055 −0.337 0.055 1.19 × 10−9 912,832 0.594

rs817140 1:193271526 SBP LINC01031 C T 0.276 0.161 0.027 2.52 × 10−9 995,667 0.558

rs10904910 10:17266389 SBP VIM-AS1 A C 0.31 0.155 0.026 2.56 × 10−9 996,726 0.481

rs2286130 7:156990554 SBP UBE3C T C 0.241 −0.167 0.028 2.82 × 10−9 1,004,680 0.142

rs11988716 8:57153503 SBP CHCHD7 G A 0.134 0.211 0.036 3.62 × 10−9 975,452 0.84

rs61890399 11:66325484 SBP ACTN3 C T 0.104 −0.244 0.042 4.02 × 10−9 927,273 0.896

rs10018970 4:84452950 SBP GPAT3 A G 0.501 −0.142 0.024 4.24 × 10−9 995,118 0.322

rs9596839 13:54264395 SBP LINC00558 A G 0.291 −0.155 0.027 5.87 × 10−9 985,600 0.471

rs6729623 2:105205551 SBP LINC01102 G A 0.496 −0.141 0.024 5.88 × 10−9 984,559 0.319

rs7160184 14:88825415 SBP SPATA7 T C 0.094 −0.241 0.042 6.22 × 10−9 993,970 0.175

rs13162174 5:39444718 SBP DAB2 T G 0.601 −0.143 0.025 6.45 × 10−9 998,700 0.863

rs2224858 9:83432105 SBP TLE1 G A 0.815 0.179 0.031 7.37 × 10−9 1,006,540 0.092

rs2092867 1:61877445 SBP NFIA A C 0.647 0.145 0.025 7.40 × 10−9 997,972 0.928

rs9675039 17:81036344 SBP METRNL A G 0.367 0.146 0.026 1.07 × 10−8 953,745 0.372

rs72917789 18:46461487 SBP;PP SMAD7 T C 0.069 −0.277 0.049 1.14 × 10−8 973,426 0.329

rs17766830 18:44040660 SBP RNF165 C T 0.263 0.165 0.029 1.16 × 10−8 919,040 0.98

rs4573493 1:166023209 SBP FAM78B C T 0.491 −0.138 0.024 1.42 × 10−8 976,312 0.204

rs75243511 2:54738168 SBP SPTBN1 C T 0.045 0.338 0.06 1.42 × 10−8 959,440 0.343

rs6723772 2:12994692 SBP TRIB2 T C 0.105 −0.227 0.04 1.55 × 10−8 965,181 0.383

rs9877020 3:43992455 SBP MIR138-1 T C 0.161 0.184 0.033 2.57 × 10−8 988,044 0.688

rs190533862 13:40671137 SBP LINC00332 A T 0.064 0.288 0.052 2.75 × 10−8 913,864 0.154

rs10172510 2:32620888 SBP BIRC6 A G 0.439 0.134 0.024 2.85 × 10−8 1,002,860 0.389

rs13022015 2:128822702 SBP UGGT1 C A 0.185 −0.173 0.031 3.08 × 10−8 981,303 0.417

rs9886857 9:27230388 SBP TEK A G 0.151 −0.187 0.034 3.13 × 10−8 993,289 0.944

rs1319701 11:19736996 SBP NAV2 G T 0.497 0.134 0.024 3.19 × 10−8 984,376 0.499

rs11123059 2:125429006 SBP CNTNAP5 A G 0.568 0.134 0.024 3.47 × 10−8 994,840 0.954

rs56350535 2:39061959 SBP DHX57 A G 0.123 −0.207 0.038 3.85 × 10−8 955,006 0.953

rs7665985 4:153006312 SBP LINC02273 C T 0.641 −0.141 0.026 3.85 × 10−8 954,739 0.167

rs17542254 11:113655696 SBP CLDN25 G A 0.278 0.148 0.027 3.98 × 10−8 991,891 0.368

rs844218 3:71607861 SBP FOXP1 G A 0.688 −0.143 0.026 4.03 × 10−8 989,767 0.465

rs12145044 1:93524045 SBP MTF2 G T 0.047 −0.328 0.06 4.10 × 10−8 931,542 0.068

rs278123 12:120124578 SBP CIT A G 0.318 0.142 0.026 4.37 × 10−8 996,302 0.3

rs11136373 8:1212030 SBP DLGAP2 G C 0.633 0.141 0.026 4.40 × 10−8 943,472 0.37

rs11690153 2:127839534 SBP BIN1 C T 0.194 0.174 0.032 4.48 × 10−8 925,702 0.381

rs3861882 9:132465304 SBP PRRX2 C T 0.281 −0.147 0.027 4.79 × 10−8 994,844 0.137

40 of the 113 novel loci (P < 5 × 10−8) with concordant direction of effect in all available studies after distance-based (±500 kb) and LD (r2 > 0.1) pruning, identified with SBP as the primary trait. 
SNPs are ordered by two-sided P value for the most significant BP association in inverse variance-weighted meta-analyses. SNP, dbSNP accession number; CHR:BP, chromosome and build 
37 position; Trait, primary BP trait for which the most significant association was observed and for which summary statistics are provided in subsequent columns; for novel loci that reach 
genome-wide significance (P < 5 × 10−8) for a second trait, this second trait is also listed; Nearest Gene, most proximal gene within 250 kb of sentinel SNP; A1, allele corresponding to measured 
effect on the outcome; A2, allele not corresponding to measured effect on the outcome; EAF, effect allele frequency in the meta-analysis; Effect, measured effect in the meta-analysis 
(mmHg); s.e., standard error of the measured effect in the meta-analysis; P value, association P value for the measured effect in the meta-analysis; neff, effective number of subjects in the GWAS 
meta-analysis (calculated at study-level as n × SNP imputation quality INFO); Phet, value for Cochran’s Q test of statistical heterogeneity in the GWAS meta-analysis.
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Table 2 | 42 of the 113 novel loci (P < 5 × 10−8) identified with DBP as the primary trait

SNP CHR:BP Trait Gene A1 A2 EAF Effect s.e. P value neff Phet

rs36209093 1:110229787 DBP GSTM1 T C 0.688 0.17 0.022 9.94 × 10−15 566,609 0.64

rs117777118 18:77161324 DBP; SBP NFATC1 A G 0.04 −0.358 0.049 2.40 × 10−13 636,875 0.446

rs57989773 6:100629078 DBP MCHR2-AS1 C T 0.245 −0.123 0.018 2.49 × 10−11 909,846 0.141

rs3765618 11:128769876 DBP C11orf45 G C 0.088 −0.18 0.027 3.87 × 10−11 974,839 0.266

rs10819246 9:129643296 DBP; SBP ZBTB34 T G 0.099 0.166 0.025 5.91 × 10−11 995,493 0.341

rs10087280 8:49391836 DBP; SBP LOC101929268 G A 0.171 −0.127 0.02 1.86 × 10−10 1,011,420 0.079

rs57503539 2:9803203 DBP YWHAQ A G 0.21 −0.118 0.019 3.42 × 10−10 968,278 0.988

rs61909958 11:96151677 DBP JRKL-AS1 G C 0.188 −0.123 0.02 6.11 × 10−10 941,830 0.165

rs62370646 5:42515027 DBP GHR C A 0.188 −0.119 0.019 7.97 × 10−10 1,008,790 0.701

rs8056413 16:84082650 DBP MBTPS1 T G 0.599 −0.093 0.016 1.75 × 10−9 989,746 0.718

rs11604175 11:124619407 DBP VSIG2 T C 0.256 0.104 0.017 1.99 × 10−9 1,000,810 0.47

rs12919839 16:56859216 DBP NUP93 T C 0.286 −0.099 0.017 2.15 × 10−9 1,013,420 0.471

rs28490942 15:51559845 DBP MIR4713HG C G 0.449 −0.089 0.015 3.25 × 10−9 1,015,690 0.524

rs7671332 4:152163489 DBP; SBP SH3D19 C T 0.039 0.233 0.04 4.27 × 10−9 969,793 0.803

rs6669446 1:118223275 DBP TENT5C C T 0.421 −0.089 0.015 4.29 × 10−9 1,016,030 0.876

rs2306623 3:25424929 DBP RARB-AS1 C T 0.67 0.093 0.016 5.22 × 10−9 1,013,160 0.202

rs10889711 1:68143195 DBP GADD45A C T 0.631 −0.091 0.016 6.57 × 10−9 1,000,190 0.628

rs172906 5:38616887 DBP LIFR-AS1 C A 0.558 0.095 0.016 7.13 × 10−9 853,173 0.837

rs1546722 6:109625797 DBP CCDC162P G A 0.517 −0.087 0.015 7.46 × 10−9 1,017,590 0.35

rs7174977 15:94214587 DBP LINC02207 T A 0.637 0.091 0.016 8.15 × 10−9 993,989 0.598

rs1732235 12:52418075 DBP NR4A1 C T 0.498 −0.087 0.015 8.18 × 10−9 1,010,320 0.293

rs2774052 14:59900020 DBP GPR135 G A 0.543 0.087 0.015 1.07 × 10−8 1,007,010 0.517

rs56312513 13:38249726 DBP TRPC4 A C 0.261 0.098 0.017 1.12 × 10−8 1,007,860 0.013

rs2320590 1:21155195 DBP EIF4G3 T C 0.55 0.085 0.015 1.38 × 10−8 1,021,190 0.559

rs73231988 3:136692308 DBP IL20RB A G 0.116 0.135 0.024 1.45 × 10−8 982,317 0.956

rs6822301 4:72002332 DBP SLC4A4 G A 0.198 0.108 0.019 1.73 × 10−8 978,454 0.493

rs565522 1:112261533 DBP RAP1A C T 0.435 −0.086 0.015 1.74 × 10−8 986,922 0.857

rs6982341 8:134229535 DBP CCN4 G A 0.581 0.085 0.015 1.74 × 10−8 1,026,530 0.203

rs7350752 14:21841154 DBP SUPT16H A G 0.123 −0.147 0.026 1.89 × 10−8 782,069 0.27

rs9685837 4:187818466 DBP FAT1 A G 0.307 −0.092 0.016 1.98 × 10−8 990,892 0.731

rs2125578 19:44746657 DBP ZNF227 T C 0.539 −0.083 0.015 2.70 × 10−8 1,022,260 0.556

rs146827176 20:35169916 DBP DLGAP4-AS1 T C 0.048 −0.205 0.037 2.75 × 10−8 940,533 0.727

rs9477605 6:10034452 DBP TFAP2A A G 0.353 0.087 0.016 3.22 × 10−8 1,013,520 0.917

rs6805393 3:117492152 DBP LINC02024 A G 0.508 −0.083 0.015 3.27 × 10−8 1,021,160 0.244

rs9370995 6:17477425 DBP CAP2 G C 0.536 0.084 0.015 3.31 × 10−8 993,051 0.46

rs2041330 14:71874638 DBP SIPA1L1 G A 0.44 0.084 0.015 3.42 × 10−8 1,002,690 0.698

rs983353 15:82186535 DBP MEX3B G A 0.302 0.091 0.017 3.65 × 10−8 995,889 0.217

rs34237622 5:76884661 DBP OTP A G 0.164 −0.114 0.021 3.72 × 10−8 974,348 0.349

rs11212666 11:108350451 DBP POGLUT3 T A 0.413 0.085 0.016 4.39 × 10−8 966,213 0.971

rs2034879 15:72429989 DBP SENP8 A G 0.737 0.097 0.018 4.39 × 10−8 946,840 0.98

rs10061553 5:58352210 DBP PDE4D T C 0.312 −0.089 0.016 4.60 × 10−8 1,002,160 0.953

rs12883344 14:84911548 DBP SNORD3P3 A C 0.399 0.083 0.015 4.94 × 10−8 1,019,700 0.507

42 of the 113 novel loci (P < 5 × 10−8) with concordant direction of effect in all available studies after distance-based (±500 kb) and LD (r2 > 0.1) pruning, identified with DBP as the primary trait. 
SNPs are ordered by two-sided P value for the most significant BP association in inverse variance-weighted meta-analyses. SNP, dbSNP accession number; CHR:BP, chromosome and build 
37 position; Trait, primary BP trait for which the most significant association was observed and for which summary statistics are provided in subsequent columns; for novel loci which reach 
genome-wide significance (P < 5 × 10−8) for a second trait, this second trait is also listed; Nearest Gene, most proximal gene within 250 kb of sentinel SNP; A1, allele corresponding to measured 
effect on the outcome; A2, allele not corresponding to measured effect on the outcome; EAF, effect allele frequency in the meta-analysis; Effect, measured effect in the meta-analysis 
(mmHg); s.e., standard error of the measured effect in the meta-analysis; P value, association P value for the measured effect in the meta-analysis; neff, effective number of subjects in the GWAS 
meta-analysis (calculated at study-level as n × SNP imputation quality INFO); Phet, value for Cochran’s Q test of statistical heterogeneity in the GWAS meta-analysis.
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or close proxies (r2 > 0.8 and <500 kb) reached genome-wide signifi-
cance in our data and 1,017 (93%) reached genome-wide significance 
at the locus level (Supplementary Tables 3 and 6), with less significant 
SNPs corresponding to associations originally reported from analyses  
of non-European ancestry, exome-chip studies or non-standard anal-
yses that are not main-effect BP-GWAS analyses. Of 298 previously 
reported SNPs unavailable in our data, 227 (76%) were identified in 
rare-variant, non-European ancestry and/or in gene–environment 
interaction analyses. MAF and effect sizes of previously reported SNPs 
in our meta-analyses are concordant with published results (Supple-
mentary Figs. 4 and 5).

Conditional analysis
Genome-wide conditional analysis of SBP, DBP and PP meta-analyses 
identified a total of 267 additional independent significant secondary 

SNPs reaching a significance threshold of P < 5 × 10−8 in the conditional 
joint model (Supplementary Table 7). Of the 267 SNPs, 203 secondary 
SNPs also reached P < 5 × 10−8 in our primary meta-analyses and 23 
mapped to one of our 113 novel BP loci.

GWAS results summary
In summary, we report 1,723 pairwise-independent genetic signals 
among SNPs previously published for BP, 113 genome-wide significant 
novel loci from our meta-analyses and 267 additional independent 
significant secondary SNPs from conditional analysis, yielding a total 
of 2,103 independent genetic signals across all three BP traits.

Variance explained
Within the independent sample of 10,210 Lifelines participants (who 
were not included in the discovery GWAS), the genetic risk score (GRS) 

Table 3 | 31 of the 113 novel loci (P < 5 × 10−8) identified with PP as the primary trait

SNP CHR:BP Trait Gene A1 A2 EAF Effect s.e. P value neff Phet

rs34361301 9:14535119 PP NFIB C T 0.266 0.122 0.02 6.76 × 10−10 974,146 0.322

rs34139656 16:88534923 PP ZFPM1 G A 0.327 −0.117 0.019 7.30 × 10−10 939,836 0.819

rs300753 2:209622 PP SH3YL1 T C 0.548 0.106 0.017 1.06 × 10−9 975,060 0.487

rs61241090 9:35191014 PP UNC13B C T 0.236 −0.123 0.02 1.40 × 10−9 991,997 0.658

rs116643984 15:101791212 PP CHSY1 A C 0.163 −0.143 0.024 2.45 × 10−9 954,926 0.806

rs2987903 9:133711263 PP ABL1 A G 0.128 −0.154 0.026 2.49 × 10−9 995,802 0.631

rs4944038 11:73783478 PP C2CD3 T A 0.477 −0.101 0.017 4.30 × 10−9 1,006,450 0.33

rs3821817 3:187456904 PP BCL6 G C 0.178 −0.135 0.023 4.59 × 10−9 944,591 0.274

rs77759442 11:110657616 PP ARHGAP20 T C 0.132 0.15 0.026 5.91 × 10−9 960,047 0.358

rs75177877 7:16117030 PP CRPPA T C 0.172 0.136 0.024 7.02 × 10−9 941,294 0.169

rs62253186 3:69919744 PP MITF G C 0.061 0.217 0.038 7.14 × 10−9 920,630 0.94

rs4517643 13:94417873 PP GPC6 C A 0.566 0.101 0.018 7.47 × 10−9 990,764 0.633

rs12828693 12:46385848 PP SCAF11 T C 0.205 0.125 0.022 8.20 × 10−9 970,335 0.806

rs4053778 6:85988429 PP LINC02535 G A 0.395 −0.103 0.018 8.67 × 10−9 968,001 0.332

rs71664847 1:115019239 PP TRIM33 T A 0.19 0.126 0.022 9.99 × 10−9 993,341 0.633

rs12134085 1:40763095 PP COL9A2 T C 0.198 −0.133 0.023 1.05 × 10−8 864,823 0.003

rs9320778 6:121258543 PP TBC1D32 T C 0.75 0.115 0.02 1.05 × 10−8 973,244 0.75

rs112324977 9:80751434 PP CEP78 A T 0.131 −0.147 0.026 1.07 × 10−8 992,833 0.763

rs72751391 9:122890934 PP MIR147A T C 0.125 0.156 0.027 1.23 × 10−8 907,738 0.942

rs10208493 2:196590414 PP SLC39A10 T C 0.571 −0.099 0.017 1.36 × 10−8 986,727 0.186

rs2953937 8:34164285 PP LINC01288 C A 0.133 0.143 0.026 1.76 × 10−8 993,180 0.135

rs36036692 8:108319395 PP ANGPT1 G C 0.374 0.1 0.018 1.89 × 10−8 997,711 0.167

rs12943001 17:78238645 PP RNF213 C T 0.641 −0.111 0.02 2.29 × 10−8 830,757 0.064

rs67615620 7:15421023 PP AGMO C T 0.199 0.122 0.022 2.32 × 10−8 973,513 0.463

rs9554446 13:98859019 PP FARP1 A T 0.095 0.166 0.03 2.32 × 10−8 974,068 0.586

rs9671694 14:103330144 PP TRAF3 G C 0.337 0.104 0.019 2.40 × 10−8 961,925 0.743

rs72943226 6:99548729 PP MIR548AI A G 0.319 0.102 0.018 3.12 × 10−8 999,371 0.245

rs1062298 12:12045264 PP ETV6 T G 0.421 0.097 0.018 3.24 × 10−8 977,558 0.084

rs855791 22:37462936 PP TMPRSS6 G A 0.563 −0.096 0.017 3.24 × 10−8 996,826 0.861

rs12084868 1:72229240 PP NEGR1 A G 0.028 0.302 0.055 4.67 × 10−8 898,662 0.546

rs11022023 11:11793978 PP MIR8070 A G 0.083 −0.174 0.032 4.80 × 10−8 964,778 0.539

31 of the 113 novel loci (P < 5 × 10−8) with concordant direction of effect in all available studies after distance-based (±500 kb) and LD (r2 > 0.1) pruning, identified with PP as the primary trait. 
SNPs are ordered by two-sided P value for the most significant BP association in inverse variance-weighted meta-analyses. SNP, dbSNP accession number; CHR:BP, chromosome and build 
37 position; Trait, primary BP trait for which the most significant association was observed and for which summary statistics are provided in subsequent columns; for novel loci which reach 
genome-wide significance (P < 5 × 10−8) for a second trait, this second trait is also listed; Nearest Gene, most proximal gene within 250 kb of sentinel SNP; A1, allele corresponding to measured 
effect on the outcome; A2, allele not corresponding to measured effect on the outcome; EAF, effect allele frequency in the meta-analysis; Effect, measured effect in the meta-analysis 
(mmHg); s.e., standard error of the measured effect in the meta-analysis; P value, association P value for the measured effect in the meta-analysis; neff, effective number of subjects in the GWAS 
meta-analysis (calculated at study-level as n × SNP imputation quality INFO); Phet, value for Cochran’s Q test of statistical heterogeneity in the GWAS meta-analysis.
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of our 113 novel loci explained a small but statistically significant pro-
portion of BP variance: 0.06%, 0.08% and 0.02% for SBP, DBP and PP, 
respectively. Our findings contributed a small gain in the percentage 
of variance explained (%VE) for SBP, DBP and PP. For example, for 
SBP, the %VE by GRS increased from 6.77% for the 1,723 previously 
published SNPs to 6.80% after adding the 113 novel sentinel SNPs, 
and to 6.93% for all 2,103 independent BP genetic signals after also  
adding 267 independent secondary SNPs (Table 4). Furthermore, we 
first constructed a benchmark PRS based on the standard clumping and 
thresholding procedure for each BP trait (P value threshold, 1 × 10−3, 
0.01 and 0.01 for SBP, DBP and PP, respectively). These PRSs captured 
a total of 7.17%, 7.83% and 4.53% of the variance in SBP, DBP and PP, 
respectively (Extended Data Fig. 3). Second, we calculated BP PRSs 
using SBayesRC15, which integrates GWAS data with functional genomic 
annotations and has been shown to have better prediction accuracy 
than other state-of-the-art PRS methods. We observed striking improve-
ments in the percentages of variance explained by the SBayesRC PRS 
to 11.37%, 12.12% and 7.30% for SBP, DBP and PP, respectively (Table 4). 
The SBayesRC PRSs were used in all further PRS analyses in the Lifelines 
(European ancestry) and All-Of-Us (African ancestry) databases.

Analyses of PRS in Lifelines
The SBayesRC PRSs showed sex-adjusted differences between  
top and bottom deciles of the PRS distribution of 16.9 mmHg  
for SBP (95% CI, 15.5–18.2 mmHg, P = 2.22 × 10−126), 10.3 mmHg for  
DBP (95% CI, 9.5–11.1 mmHg, P = 2.96 × 10−130) and 10.0 mmHg for  

PP (95% CI, 9.1–11.0 mmHg, P = 3.11 × 10−94) in 10,210 Lifelines parti-
cipants. In addition, we observed more than a sevenfold higher 
sex-adjusted odds of hypertension (odds ratio (OR), 7.33, 95% CI, 
5.54–9.70, P = 4.13 × 10−44) between the top and bottom deciles of the 
SBayesRC PRS in Lifelines when modeling both the SBP and DBP PRSs 
(Fig. 2, Extended Data Fig. 4 and Supplementary Table 8a). Alternatively, 
compared with middle deciles of the PRS distribution, individuals in  
the top decile had on average 8.82 mmHg higher SBP, 5.13 mmHg  
higher DBP, 5.64 mmHg higher PP and over twofold higher odds of 
hypertension (OR, 2.48) (Supplementary Table 8b).

Hypertension model performance and calibration in Lifelines
The area under the receiver operating characteristic curve (AUROC) 
for model 1, which included only covariates, was 0.791 (95% CI,  
0.781–0.801) and increased to 0.826 (95% CI, 0.817–0.836) for model 2, 
which included covariates as well as the SBP and DBP SBayesRC PRSs, 
a small but statistically significant difference of 0.035 (P = 1.98 × 10−34; 
Extended Data Fig. 5 and Supplementary Table 9a). Brier scores for 
model 1 (0.14) and model 2 (0.13) indicate that our models were rea-
sonably well-calibrated. The Youden indices for model 1 and model 2  
were 1.43 and 1.51, respectively, and correspond to the 58th and  
60th percentile of the total sample. Hypertension prevalence in  
Lifelines was 23.6%. Addition of PRSs improved classification for a net of 
4.72% of individuals (n = 114) with hypertension and 3.26% of individuals  
(n = 254) without hypertension (net reclassification index (NRI), 0.080, 
95% CI, 0.063–0.097, P = 7.9 × 10−22; Supplementary Table 9b).

Table 4 | Variance explained in SBP, DBP and PP for all four GRSs, the clumping and thresholding PRS and the SBayesRC PRS 
analyzed in an independent Lifelines dataset (n = 10,210) of European-descent individuals

Risk score SBP DBP PP

VE (%) P value VE (%) P value VE (%) P value

(1) All 1,723 known SNPs 6.77 3.60 × 10−158 6.77 8.52 × 10−158 4.29 5.96 × 10−100

(2) 113 novel sentinel SNPs 0.06 0.00927 0.08 0.00298 0.02 0.0741

(3) 1,723 known + 113 sentinel SNPs 6.80 6.67 × 10−159 6.83 3.48 × 10−159 4.29 7.05 × 10−100

(4) 1,723 known + 113 sentinel SNPs + 267 secondary SNPs 6.93 4.97 × 10−162 6.92 2.55 × 10−161 4.47 3.73 × 10−104

(5) Clumping and thresholding PRS 7.17 7.25 × 10−168 7.83 3.63 × 10−183 4.53 1.60 × 10−105

(6) SBayesRC PRS 11.37 6.34 × 10−271 12.12 1.06 × 10−288 7.30 4.17 × 10−171

GRS, genetic risk score; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; VE, variance explained by the risk score for the respective BP trait expressed as a 
percentage; P value, two-sided association P value for the risk score with the respective blood pressure trait; PRS, polygenic risk score.
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Fig. 2 | Relationship of deciles of the SBayesRC PRSs with SBP and DBP and 
risk of hypertension in European ancestry individuals from Lifelines cohort 
(n = 10,210). a,b, Plots show sex-adjusted SBP and DBP (a) and sex-adjusted 

odds ratios of hypertension (b) comparing each of the upper nine PRS deciles 
with the lowest decile. Dotted lines represent mean; error bars, s.e.m. in a and 
95% CI in b.
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Heritability in Lifelines
The GCTA-GREML16 SNP-based heritability (h2

SNP) estimates in Life-
lines data (n = 10,210) were 17.4%, 18.8% and 16.1% for SBP, DBP and 
PP, respectively. These GCTA-GREML16 h2

SNP estimates were used 
in the denominator of %VE / h2

SNP calculations, as both %VE and  
h2

SNP were derived from the same dataset. Hence, the total propor-
tions of common SNP heritability that our GWAS explained, either 
for all 2,103 independent BP genetic signals combined or for the full 
clumping and thresholding PRSs capturing all genome-wide common  
SNP variation, were 39.8% (6.93% out of 17.4%) and 41.2% (7.17% out  
of 17.4%), respectively, for SBP, 36.8% (6.92% out of 18.8%) and  
41.6% (7.83% out of 18.8%), respectively, for DBP and 27.8% (4.47% 
out of 16.1%) and 28.1% (4.53% out of 16.1%), respectively, for PP. Our 
improved PRSs using SBayesRC explained 65.4% (11.37% out of 17.4%), 
64.5% (12.12% out of 18.8%) and 45.3% (7.30% out of 16.1%) of the com-
mon SNP heritability for SBP, DBP and PP, respectively.

Association of BP variants in non-European ancestries
When comparing the distributions of allele frequency and effect sizes 
for the 2,103 independent BP-associated SNPs reported from our  
European meta-analysis within other ancestries, there was greater 
concordance within the Japanese population ( Japan Biobank ( JBB); 
n = 145,000, r = 0.69 and 0.5 correlation of effects, with 79% and 70% 
concordance in effect direction for known and novel SNPs, respectively) 
than within an African-ancestry meta-analysis sample (n = 83,890, 
r = 0.22 and 0.45 correlation, with 65% and 66% concordance for known 
and novel SNPs) (Extended Data Figs. 6 and 7 and Supplementary 
Table 10). Our novel loci showed weaker concordance than known 
loci for the Japanese comparisons but higher correlation than known 
loci for the African comparisons.

PRS analyses in African-American ancestry
The SBayesRC PRS generated from our European meta-analysis is also 
associated with higher BP in an African-American ancestry sample 
(n = 21,843) from the All-Of-Us cohort: for example, with sex-adjusted 
differences between top and bottom deciles of the PRS distribu-
tion of 10.6 mmHg for SBP (95% CI, 9.4–11.8 mmHg, P = 1.20 × 10−71) 
and increased sex-adjusted odds of hypertension (OR, 1.73, 95% CI, 
1.5–2.0, P = 2.33 × 10−13) (Fig. 3, Extended Data Fig. 8 and Supplemen-
tary Table 11). We observe a significant (P = 1.16 × 10−5) incremental 
increase in the AUROC from the covariate-only model (0.671; 95% 

CI, 0.666–0.680) to the model also including the PRS (0.676; 95% CI, 
0.670–0.685) (Supplementary Table 12 and Supplementary Fig. 6). Of 
note, hypertension prevalence of 37% in the African-American subset 
of All-Of-Us is higher than in the European Lifelines cohort (Supple-
mentary Table 13). The addition of the PRSs led to a non-significant 
reclassification result (NRI, 0.01, 95% CI, 0.006–0.021, P = 7.6 × 10−2), 
with only slight improvements in classification for a net of 0.22% of 
individuals (n = 49) with hypertension and 0.51% of individuals (n = 111) 
without hypertension (Supplementary Table 14).

Variant functions of novel loci
More than 90% of the novel sentinel SNPs lie within non-coding regions 
(Supplementary Table 15). One novel sentinel SNP (rs855791) and  
seven highly correlated SNPs (r2 > 0.8) are non-synonymous vari-
ants in genes at six novel loci: TMPRSS6, GLRX2, RLF, HELQ, ZNF235  
and UNC13B; three of these non-synonymous SNPs reside in UNC13B 
(Supplementary Table 16).

Overlap of novel loci across BP traits and with other traits
Across all 113 novel loci, we see concordance in the associations across 
the three BP traits (Supplementary Figs. 7 and 8), especially between 
SBP and DBP and between SBP and PP, which are known to be the more 
highly correlated BP trait pairs, so this is consistent with previous 
observations4,5,7. The Pearson correlation values for comparison of 
the effect estimates across all 113 novel loci are r = 0.82 for SBP vs DBP; 
r = 0.83 for SBP vs PP; and r = 0.37 for DBP vs PP. Nine of the 113 novel loci  
are genome-wide significant for a second BP trait in addition to their 
primary associated trait (as indicated in Tables 1–3).

Shared associations with at least one other disease trait reported 
within the GWAS Catalog or PhenoScanner database were observed 
for 41 out of the 113 novel loci; that is, sentinel SNPs and all SNPs in 
high LD (r2 > 0.8).

The novel locus with the most shared associations was MCHR2-AS1, 
which has significant associations with seven disease or trait categories: 
anthropometric, reproductive, lipids, thyroid, cardiovascular, neurologi-
cal and metabolic. Other loci showed associations with hematological 
traits (for example, hemoglobin, red blood cell count, white blood cell 
count, and so on), immune system (for example, inflammation, allergy, 
autoimmune, and so on), respiratory traits (for example, vital capacity, 
expiratory volume, expiratory flow, and so on) and minerals (for exam-
ple, iron metabolism) (Extended Data Fig. 9 and Supplementary Table 17).
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Fig. 3 | Relationship of deciles of the SBayesRC PRSs with SBP and DBP and 
risk of hypertension in African-American ancestry individuals from All-Of-Us 
cohort (n = 21,843). a,b, Plots show sex-adjusted mean SBP and DBP (a) and 

sex-adjusted odds ratios of hypertension (b) comparing each of the upper nine 
PRS deciles with the lowest decile. Dotted lines represent mean; error bars, s.e.m. 
in a and 95% CI in b.
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Inferred gene expression and colocalization analysis
Applying S-PrediXcan analysis to infer the effects of genetically pre-
dicted gene expression on BP traits, we identified 5,538 statistically 
significant gene–tissue combinations that are genetically predictive 

of BP traits (Supplementary Table 18 and Supplementary Fig. 9). These 
combinations correspond to 1,873 unique genes, of which 569 (30%) 
have been identified by nearest-gene mapping of previously reported 
BP SNPs or novel sentinel SNPs identified in our meta-analyses. A total 

Table 5 | Prioritized genes through converging evidence across analyses

TWASa

Gene SNP GWAS Pmin GWAS Traitmin Prior TWAS SBP DBP PP DGI

GSTM1 rs36209093 9.94 × 10−15 DBP No ----- ----↓ ----- -

CASQ2 rs4073778 5.00 × 10−13 PP Yes ----- ----- -↑*↑*↑*- -

MEF2D rs1185700 9.68 × 10−12 PP No -↑*--- ----- -↑*--- -

BTN2A1 rs2893856 3.00 × 10−11 DBP No ----↑ ----↑ ----- -

MYL12A rs7811 1.14 × 10−10 PP No ----- ----- ↓*↓*↓*-- -

CCDC97 rs56254331 1.18 × 10−10 DBP No ----- ---↑- ----- -

CKB rs8017780 1.40 × 10−10 PP No ----- ↓---- ----- -

FOXN3 rs7151849 1.77 × 10−10 PP No -

ACTN4 rs2303040 2.00 × 10−10 PP No ----- ----- ↑*-↑*↑*- -

AMZ1 rs798538 3.50 × 10−10 DBP No ----- --↑-- ----- -

PCNX rs36563 6.21 × 10−10 SBP No ↑↑*↑*-- ----- ----- -

FUBP1 rs750720 9.01 × 10−10 PP No -↑--- ↑↑↑-- ----- -

ADRA1A rs58623861 9.07 × 10−10 DBP No -↑--- -↑--- ----- ¥

GRB10 rs79617314 1.36 × 10−9 PP No ----- ↓---- ↑*---- -

NOTCH4 rs2849017 1.78 × 10−9 DBP Yes ↓*↓↓-- ----- ↓*↓*↓↓*- -

ARID3B rs74781061 1.81 × 10−9 DBP No ----- -↓--- ----- -

UBE3C rs2286130 2.82 × 10−9 SBP No -↓*--- ----- -↓*--- -

FGFR2 rs12255289 2.97 × 10−9 DBP No ----- ↑*↑--- ----- ¥

LNPEP rs114772891 5.72 × 10−9 SBP No -↑*--- -↑*--↑* ----- -

TMEM51 rs7553381 6.48 × 10−9 SBP No ---↑- ----- ----- -

GPC6 rs4517643 7.47 × 10−9 PP No ----- ----- ↑*↑*↑*-- -

SCAF11 rs12828693 8.20 × 10−9 PP No ----- ----- ----↓ -

TRIM33 rs71664847 9.99 × 10−9 PP No ----- ----- -↑*--- -

COL9A2 rs12134085 1.05 × 10−8 PP Yes ----- ----- ↓*↓*--- -

KLHL23 rs78843689 1.08 × 10−8 DBP No -↓--- ----- ----- -

RP11-460N16.1 rs9868203 1.28 × 10−8 PP No ----- ----- -↓*--- -

SLC39A10 rs10208493 1.36 × 10−8 PP No ----- ----- -↓*↓*↓*↓* -

IL20RB rs73231988 1.45 × 10−8 DBP No ↓↓--- ↓---- ----- -

CLIP2 rs229872 2.08 × 10−8 DBP No ----- ↑---- ----- -

ABCC8 rs77889556 2.91 × 10−8 PP Yes ----- ----- -↓*--- ¥

GTF2IRD1 rs37613 3.08 × 10−8 SBP No ↑*---- ----- ----- -

SLC15A2 rs9842387 3.20 × 10−8 SBP No ↑*-↑*↑*- ----- ----- ¥

DNAJC13 rs2369796 3.32 × 10−8 DBP No ----- ↑---↑ ----- -

ANKH rs2921604 4.17 × 10−8 DBP No ----↓ ----↓ ----- -

BIN1 rs11690153 4.48 × 10−8 SBP No ↑*---↑* ----- ----- -

PRRX2 rs3861882 4.79 × 10−8 SBP No ↑*---- ----- ↑*↑*--- -

NAGLU rs86312 4.94 × 10−8 SBP No ----- ----- ↑*↑*--- ¥

Table is sorted by minimum P value across all GWAS meta-analyses. Selection criteria: evidence from S-PrediXcan analysis and nearest-gene mapping of sentinel SNPs from GWAS 
meta-analysis. Gene, gene was significant in genetically predicted gene expression analysis using S-PrediXcan for aorta, tibial artery, left ventricle, atrial appendage and whole blood tissues 
and was annotated using ANNOVAR as the gene nearest the sentinel SNP at that locus. SNP, sentinel SNP from GWAS meta-analyses for each independent locus. GWAS Pmin, minimum 
P value across all inverse variance-weighted GWAS meta-analyses. GWAS Traitmin, BP trait corresponding to the GWAS Pmin. Prior TWAS indicates whether the association was replicated in the 
previous S-PrediXcan analysis4 (where TWAS (transcriptome-wide association study) here refers to an inferred gene expression analysis using S-PrediXcan). TWAS indicates the direction of 
effect for significant associations in the SBP, DBP and PP S-PrediXcan analyses in aorta, tibial artery, left ventricle, atrial appendage and whole blood tissues, respectively; if the gene met the 
posterior probability threshold of ≥90% for colocalization of SBP, DBP and PP association and gene expression in aorta, tibial artery, left ventricle, atrial appendage and whole blood tissues, a 
small superscript (*) at the right of each arrow is shown. DGI, drug–gene interaction column summarizing if there are available drugs targeting genes that were identified (¥) according to the 
following databases: Guide to Pharmacology Interactions, DTC, DrugBank, JAX-CKB, My Cancer Genome, PharmGKB, Clearity Foundation Clinical Trials, TDG Clinical Trials, TALC, TTD, TEND 
and/or ChEMBL Interactions. aIndicates whether gene expression was positively associated (↑), negatively associated (↓), or non-significant (−) in S-PrediXcan analyses.
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of 468 (25%) unique genes were previously identified in the equivalent 
S-PrediXcan and colocalization analyses4. We identified 1,029 (55%) 
unique genes in this analysis that have not previously been reported 
in BP-GWAS (Supplementary Table 18). The majority of associations 
were observed in arterial tissues (n = 1,503 for tibial artery; n = 1,205 for 
aorta). Associations were evenly distributed across all three BP traits 
(n = 1,851 for SBP; n = 1,962 for DBP; n = 1,725 for PP).

Additionally, we used COLOC to identify the subset of significant 
genes for which there was a high posterior probability that a SNP in 
the S-PrediXcan model for each gene exhibited colocalized associa-
tion with both gene expression and changes in quantitative measures  
of BP traits. This analysis refined our S-PrediXcan analysis by char-
acterizing the contribution of underlying expression quantitative  
trait loci (eQTLs) within our gene models to the observed S-PrediXcan 
associations. We detected 2,793 gene–tissue pairs in which there  
was a statistically significant S-PrediXcan association with at least  
one BP trait and high posterior probability (PP.H4 > 0.9) of colocaliza-
tion, corresponding to a total of 1,070 distinct genes (642, 431 and 
647 genes for SBP, DBP and PP, respectively). Of these 1,070 genes, 
500 (47%) have not been previously annotated for SNP associations 
with BP traits.

Druggable targets from transcriptome-wide association 
studies and colocalization results
We collated evidence for genes that mapped to our novel sentinel  
SNPs or mapped to our secondary SNPs but did not map from our  
primary GWAS or previous GWAS. We then found the intersection  
with genes that were significant in our inferred gene expression  
analyses and highlighted noteworthy examples (Table 5). We iden-
tified 38 genes satisfying this criterion, including an established  
drug target for BP medications (ADRA1A) and five genes targeted by 
other approved drugs (Supplementary Table 19).

Pathway analyses
We input all 1,070 significant genes from S-PrediXcan and colocaliza-
tion analyses into downstream enrichment analyses using FUMA17 
(Supplementary Figs. 10–13 and Supplementary Tables 20–23). Results 
for tissue specificity were similar across all BP traits, with high enrich-
ment in cardiovascular tissues (heart, arterial and whole blood), as 
expected, and in brain tissues of the central nervous system, given 
that hypertension associates with sympathetic nervous system activ-
ity. Enrichment in liver and pancreas tissues may be representative 
of the broader pleiotropy of BP genes and cardiometabolic diseases. 
The pathway analyses reveal a total of 4,617 unique significant terms 
(adjusted P < 0.05) across 20 different databases of functional anno-
tations, boasting the complex biology of BP regulation. Some newly 
identified gene ontology annotations, not overlapping with pathway 
analysis results from previous BP studies, which are robustly reported 
across all BP trait input genes, include endoplasmic reticulum stress, 
carbohydrate and/or lipid metabolism, cell polarity, response to UV, 
DNA damage, autophagy, apoptotic mitochondrial envelop changes 
and (metal) ion transport.

Discussion
In the largest single-stage common-variant GWAS of BP to date includ-
ing more than one million European-ancestry adults, we report >2,000 
independent BP signals from known and 113 novel loci as well as new 
secondary signals. The richness of results permitted the creation of 
PRSs that captured substantial interindividual variation in BP traits. 
These full PRSs are publicly accessible and can be used by the global 
research community to explore the contributions of BP to a variety of 
health outcomes.

This GWAS provides additional insights into the genetic contribu-
tion of BP and suggests that expansions of statistical power will continue 
to yield the discovery of additional loci primarily harboring common 

variants with smaller effect sizes, as has been recently achieved from 
GWAS of height18.

Our results demonstrate that the biology of BP is highly complex 
and polygenic, influenced by thousands of SNPs with extremely subtle 
effect sizes. In aggregate, these associations explain large differences 
in average BP and have a very strong influence on the risk of hyperten-
sion. Understanding the heritable influences on BP has the potential 
to provide foreknowledge of severe hypertension and its sequelae19,20. 
This study is, therefore, another key step toward understanding one  
of the most complex and highly regulated biological systems in  
humans that has significant implications for health, disease treatment 
and prevention.

We used a novel Bayesian method that fits genome-wide SNPs 
as random effects with a multi-component functionally informed 
prior for the PRS calculation15. These SBayesRC PRSs showed strik-
ing improvements in %VE for the different BP traits compared to the 
standard clumping and thresholding method, which includes only a 
subset of SNPs with ascertainment. For example, the SBayesRC PRS 
for SBP explained 65.4% of its common SNP-based heritability. This is 
more than double the 26.8% of the SBP h2

SNP explained and previously 
reported5. The remarkable improvement in the variance explained for 
all BP traits suggests a complex genetic architecture with common 
causal variants enriched in functionally important genomic regions. 
Even though we demonstrate that a large proportion of the genetic 
variance in BP is discoverable by GWAS, another gap remains between 
the common-variant-based heritability and the total pedigree-based 
h2 estimates that were recently reported to range from 25–30% for 
SBP, DBP and PP21. This gap is probably attributable to rare variants, 
as has been reported recently for height and body mass index (BMI) 
on the basis of whole genome sequencing data22. Rare variants associ-
ated with BP have been recently reported from separate large-scale 
exome-chip analyses23.

Application of the SBayesRC PRS in an external independent study 
(Lifelines), comparing top versus bottom deciles of the PRS distribu-
tion, demonstrated large BP differences; for example, 16.9 mmHg for 
SBP and 7.3-fold increased odds of hypertension. AUROC analyses 
indicated significant improvement in discrimination and calibration 
with the PRS included in the predictive model for hypertension. The 
observed negative predictive value of 91.6% for the full model Youden 
index cut-off demonstrates accurate discrimination of false negatives, 
an important goal in the classification of hypertension susceptibility. 
The improved performance of our PRS may allow for the identification 
of causal contributions of BP for many hypertension-related diseases. 
Furthermore, we found that the addition of the PRS to the model signifi-
cantly improved the classification of hypertension. Nonetheless, the 
clinical utility of even our improved PRS will remain limited, given the 
uncertainty in individual PRS estimation for complex traits including 
hypertension as shown in a recent publication24.

In addition to mapping genomic locations, our pathway analyses 
also demonstrate the complexity of BP biology from the vast number 
of biological pathways enriched by BP genes. Furthermore, we show 
that many loci are associated with BP traits through regulatory effects 
on gene expression. We identified significant colocalized associations 
between BP traits and genetically predicted gene expression of 1,070 
genes, 500 of which have not been identified in prior BP-GWAS. Of these 
500 genes, 314 remain novel, at the time of submission, after updated 
searches within the GWAS Catalog and cross-referencing with a recently 
published list of prioritized BP genes from a post-GWAS candidate gene 
prioritization study10.

These new gene observations can provide opportunities for  
further experimentation in model systems and elucidate candidate 
targets for drug development or repurposing.

Among novel loci, TMPRSS6 (rs855791; PP P = 3.20 × 10−8) is a  
promising candidate as a potential drug target. This gene, encod-
ing transmembrane serine protease 6, has been implicated in the 
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attenuation of dietary iron overload in heart tissue leading to cardio-
protective effects25,26. Genetic variation at TMPRSS6 is also associ-
ated with biomarkers of iron overload27. SMAD7 (rs72917789; SBP 
P = 1.14 × 10−8) has been shown to modulate the expression of hepcidin, 
a key regulator of intestinal iron absorption28,29. Additionally, GSTM1 
(rs36209093; DBP P = 9.94 × 10−15), encoding glutathione S-transferase 
Mu 1, has been implicated in cardiomyopathy resulting from iron over-
load30,31. These results suggest that altered iron metabolism may have a 
role in BP regulation and hypertension-related cardiovascular disease 
and are consistent with previous studies linking high iron stores to 
cardiovascular disease32.

Evaluation of the intersection of inferred gene expression and 
colocalization results with novel and secondary loci highlights several 
genes targeted by approved medications or with compelling biological 
evidence supporting their role in BP physiology. ADRA1A, encoding the 
α−1-adrenergic receptor 1A, the product of which is a well-known target 
for medications treating both hypertension and hypotension33, was pre-
viously unreported in BP-GWAS. Considering our conditional analysis 
and inferred gene expression associations at this locus, cis-regulatory 
variants for ADRA1 may affect the efficacy of targeted medications. 
ABCC8, an established diabetes GWAS locus34, the product of which is 
targeted by sulfonylurea medications35,36, harbors rare variants con-
tributing to pulmonary arterial hypertension37–39. FGFR2, targeted by 
anti-angiogenesis medications in the treatment of cancer40, is involved 
in sexual dimorphism of the baroreflex afferent function on BP regu-
lation in rats41 and has been implicated in parenchymal and vascular 
remodeling in pulmonary arterial hypertension42. These findings are 
biologically plausible, and the ADRA1A receptor protein is targeted to 
manipulate BP, demonstrating that our approach detects genes with 
biological and pharmacological impact. This suggests that additional 
genes from our analysis may be viable options for drug targeting and 
further study.

This study has several limitations. Owing to the large sample 
size, independent study samples to replicate our findings in a more 
traditional two-stage design are not readily available, so it is not pos-
sible to report loci with formal validation as has been done for previ-
ous two-stage BP-GWAS analyses. We have attempted to address this 
limitation by implementing robust reporting criteria appropriate for 
a single-stage discovery analysis, with rigorous post-quality-control 
(QC) filtering of the meta-analysis data, requiring full concordance 
in the direction of novel SNP effects across all four datasets in the 
meta-analysis in addition to no evidence of heterogeneity across these 
four datasets, and highlighting SNP results that meet a higher 5 × 10−9 
significance threshold. Owing to the available GWAS datasets, our study 
is restricted to the analysis of common variants only with MAF > 1%, 
but it is important for future analyses to consider both common and 
rare variants, especially now with sample sizes exceeding one million 
individuals.

Although our discovery GWAS was limited to non-Hispanic white 
participants, we provide plots to illustrate the concordance of the 
effects of BP variants in Japanese and African individuals. As the 
levels of correlation vary between the comparisons with Japanese 
versus African ancestries and between novel versus known loci, it 
highlights the importance of further testing of BP variants derived 
from European studies within different non-European populations in 
the future, to clarify which genetic signals are shared and which may 
have ancestry-specific effects43.

We do show a significant association of our European-derived PRS 
with BP and hypertension in an African-American sample. However, 
the nominal increases in AUROC or NRI statistics when adding the PRS 
into hypertension-prediction models in African-American individuals 
shows that substantial studies that include individuals of non-European 
ancestry, or alternative methodological approaches44, are essential to 
understand ancestrally related disparities in hypertension, observa-
tions that mirror those for other complex traits45,46.

Our study results suggest that efforts should continue for future 
BP-GWAS to leverage large-scale biobank resources and cohort stud-
ies to expand the sample size further, as well as extending to diverse 
ancestries. The benefits of this approach may include improved homo-
geneity of associations if the data are collected under uniform condi-
tions, as in the UKB47. Our data also show high concordance in GWAS 
results between studies of different designs (Supplementary Fig. 14), 
supporting a continuing role for the inclusion of large electronic 
health record (EHR)-derived studies within meta-analysis projects. 
Future studies should also continue to evaluate associations with 
genetically predicted gene expression to stimulate other avenues of 
investigation. These goals, if accomplished, will provide researchers 
with translational knowledge to mitigate disparities and reduce the 
global impact of health outcomes for which hypertension is a highly 
common risk factor.
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Methods
We conducted a single-stage BP-GWAS meta-analysis of individuals of 
European ancestry, evaluating common SNPs, as the GWAS summary 
statistics data used had already previously been filtered to MAF ≥ 1%. 
SBP, DBP and PP GWAS summary statistics from each study were 
obtained from linear regression models analyzing SNP associations 
adjusted for age at BP measurement, age2, sex, BMI and the top ten 
genetic principal components. Inferences were limited to SNPs with 
imputation quality (INFO) scores of 0.1 or higher, Hardy–Weinberg 
equilibrium P values of ≥1 × 10−6 and MAF ≥ 1%. PP was calculated in 
each study as the difference between SBP and DBP.

Study populations
The total sample size for this investigation was up to 1,028,980 adults 
from the meta-analysis of four existing BP-GWAS datasets: UKB, ICBP, 
MVP and BioVU. Characteristics of these studies are presented in Sup-
plementary Table 24. We acknowledge the different demographics of 
MVP, being predominantly male (only 7.1% female compared to 58.4% 
and 54.2% for BioVU and UKB, respectively), and note the higher pro-
portion of individuals taking anti-hypertensive medication (48.9% and 
59.5% for MVP and BioVU, respectively, compared to only 20.6% for 
UKB) probably because the data were drawn from EHR data within a 
clinical environment. ICBP is a large meta-analysis of 77 studies; there-
fore, descriptive characteristics were not available. More detailed infor-
mation on study populations is provided in the Supplementary Notes.

Study-level QC
We applied a harmonized QC procedure for each BP trait in all four 
studies (that is, 12 GWAS datasets in total) using the GWASInspector R 
package48. The 1000 Genomes Project reference panel49, supplemented 
with the Haplotype Reference Consortium data panel50–53, was used 
as the reference dataset for appropriate flipping and/or switching of 
the alleles, checking for allele frequency concordance with the 1000 
Genomes reference, annotating dbSNP rs accession numbers and con-
structing harmonized identifiers for meta-analyses. Allele frequency 
differences between the reference and individual GWAS data were not 
used for filtering the variants unless an unexplained off-diagonal cross 
line could be distinguished in the correlation scatterplot. In this case, 
we used a difference of 0.25 between the reference and individual GWAS 
data as the cut-off to filter out variants with seemingly flipped alleles. 
This was the case for only a very small number of variants within the 
MVP cohort, requiring the removal of about 12,000 SNPs (<0.15% of the 
data). SNP effect sizes from ICBP were considered as the reference to 
validate the reported effect sizes from the other three GWAS datasets 
(Supplementary Figs. 15–17)7,54.

The following criteria were then used for filtering the GWAS data-
sets: (1) SNPs only (that is, no insertions or deletions, copy number 
variants, and so forth); (2) MAF ≥ 1%; (3) INFO scores greater than 0.1; 
(4) Hardy–Weinberg equilibrium P ≥ 1 × 10−6. Effective sample size was 
calculated as the product of the total sample size and INFO for each SNP.

Meta-analysis
We initially applied LDSR14 to the summary statistics for three of our 
four component datasets (UKB, MVP and BioVU) to calculate the LDSR 
intercepts that were used to correct for pre-meta-analysis genomic 
inflation. ICBP summary statistics, as a meta-analysis of 77 independent 
cohorts, were previously corrected for genomic inflation5. HapMap3 
(ref. 55) SNP alleles and pre-calculated LD scores from 1000 Genomes 
Project49 European reference data supplied with the package were used 
to calculate LDSR intercepts. Observed LDSR intercepts for SBP, DBP 
and PP, respectively were as follows for each dataset: 1.2177, 1.2195 and 
1.1851 for UKB; 1.0530, 1.0247 and 1.0413 for MVP; and 1.0288, 1.0127 and 
1.0207 for BioVU. Inverse variance-weighted fixed-effects meta-analysis 
of common (MAF ≥ 0.01) bi-allelic SNPs with INFO scores greater than 
or equal to 0.1 across our four studies was performed using METAL56 

software. No further GC correction was applied to the meta-analysis 
results, which combined our four datasets.

QC of the meta-analysis results
Similar to study-level QC, we used the GWASInspector R package48  
to ensure standardization and perform QC of post-meta-analysis  
summary statistics. Analyses included checks of allele frequency 
concordance with the 1000 Genomes reference and concordance of 
effect sizes with ICBP (Supplementary Fig. 18) as well as evaluation 
of Q–Q plots and genomic inflation factors (Supplementary Fig. 18) 
and evaluation of bivariate scatterplots of key summary statistics  
to identify patterns indicating the presence of low-quality SNPs  
(Supplementary Fig. 19).

These analyses revealed the presence of SNPs in our data with  
low effective sample sizes and large standard errors as well as a 
sub-peak of SNPs with higher effective sample sizes and large standard 
errors. Based on these observations, we applied a filtering threshold for  
SNPs that were present in at least three of our four studies or SNPs  
that reached an effective sample size greater than or equal to 60% 
of the maximum (Supplementary Figs. 20–22). Application of these 
criteria to achieve an optimal balance between the quality of retained 
SNPs and sample size resulted in 7,584,058 SNPs available for analysis.

Distinguishing known from novel loci
Published BP SNPs. We collated published BP-GWAS and compiled 
all 3,800 unique BP SNPs reported to date (Supplementary Tables 5  
and 25). In many BP-GWAS papers, the list of previously reported BP  
variants has focused on the lead sentinel variant, with validated 
evidence from independent replication. To expand to a fully com-
prehensive list of known variants, we curated a list of all published 
common and rare variants, including results from studies conducted in 
non-European ancestries, all types of methodological analyses includ-
ing interaction analyses, results from both one-stage and two-stage 
study designs, and secondary variants reported from conditional or 
fine-mapping analyses. We began with the list of all 984 SNPs from the 
total of 901 previously known and novel loci previously reported5, then 
added (1) any secondary SNPs reported from conditional analyses in 
publications up to 2018 (refs. 5,7,9,57); (2) SNPs reported from a large 
one-stage discovery analysis before 2018 (ref. 8); (3) SNPs reported in 
a previous publication from 2019 (ref. 4) and all other SNPs from GWAS 
published between 2018 and the end of 2020 (refs. 23,58–63). We 
removed duplicated SNPs to generate a unique set of ~3,800 SNPs. Sub-
sequent checks of our results in GWAS Catalog64 and PhenoScanner65  
confirmed that all published BP variants had been successfully cap-
tured. For QC purposes, we compared the allele frequencies and 
the resulting effect estimates of these published SNPs in our GWAS 
meta-analysis data with the published data.

LD analyses. LD was calculated using PLINK-2 (ref. 66) with 1000 
Genomes Project49 phase 3 version 5 European reference genotypes.  
LD proxies were captured for the ~3,800 previously reported BP SNPs 
at an r2 threshold of >0.8 and a maximum distance of 500 kb. Further-
more, we identified the most strongly associated SNP within 500 kb 
of each known SNP regardless of LD (that is, ‘distance proxies’). The 
strongest trait-specific associations of these previously reported SNPs, 
their best LD proxies and best distance proxies in our meta-analyses 
are presented in Supplementary Table 6.

We partitioned our data into known and unknown subsets. To 
identify the ‘unknown’ portion of our GWAS results, we removed pre-
viously reported SNPs, SNPs within 500 kb of previously reported 
SNPs, LD proxies for previously reported SNPs at an r2 threshold of 
>0.1 and a maximum distance of 5 Mb, and SNPs within the human 
leukocyte antigen region of chromosome 6 (25–34 Mb) from each of 
our meta-analyses. Q–Q plots of all SNPs versus unknown SNPs are 
shown in Supplementary Fig. 23.
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Reporting criteria for novel loci. All remaining SNPs reaching 
genome-wide significance (P < 5 × 10−8) and consistent direction of 
effect in all available studies were clumped into 1 Mb regions, and 
the most significant SNP for any trait was selected from each region 
as a sentinel variant for the locus. Novel sentinel SNPs were checked 
for pairwise LD against all other novel sentinel SNPs at an r2 > 0.1 to 
confirm independence. Considering our one-stage study design, we 
imposed two additional stringent reporting criteria in addition to 
achieving genome-wide significance. To declare a novel sentinel SNP, 
we required genome-wide significance P < 5 × 10−8 in the meta-analysis; 
consistent direction of effect across all the available sub-datasets; and 
no evidence of heterogeneity across the four datasets with heterogene-
ity P < 1 × 10−4. We also highlight how many of these novel loci reach a 
stricter significance threshold of P < 5 × 10−9.

Categorizing known variants into independent loci. Similarly, pre-
viously reported SNPs, their best LD proxy if the SNP was unavailable 
in our data or the best distance proxy if neither was available, were 
clumped into 1 Mb regions and the most significant SNP for any trait 
was selected. Selected SNPs were then checked for pairwise LD against 
all other selected SNPs at an r2 > 0.1 to confirm independence. The 
most significant SNP for any trait was selected within each LD block, 
and these independent SNPs were designated as known sentinel SNPs.

LDSR approach for determination of polygenicity
We applied LDSR to each of our three meta-analyses (SBP, DBP and PP) 
as well as the novel proportion of each meta-analysis and compared 
these values with genomic inflation factors to determine whether 
inflation of our test statistics was a result of population substructure 
or polygenicity.

Functional annotation and associations of novel loci
Novel signals were extended to their correlated variants in LD (r2 > 0.5) 
using an in silico sequencing approach67. PLINK66 was used for LD  
calculations and ANNOVAR68 software was used to annotate the  
nearest genes for novel signals and to annotate variant functions. Then 
the extended loci (r2 > 0.8) were used to search the GWAS Catalog64  
as well as PhenoScanner65 for shared associations (P < 5 × 10−8).

Conditional analysis
Genome-wide joint conditional analysis was performed using GCTA- 
COJO v1.93 (ref. 69), specifying a 5 Mb LD window and a genome-wide 
significance threshold of 5 × 10−8 and using UKB European-ancestry 
sample genotypes as the LD reference. For each of our three BP traits, 
summary statistics were analyzed by chromosome to build a stepwise 
joint conditional model that selected independently associated SNPs. 
Pairwise LD was calculated in both the 1000 Genomes Project49 phase 3 
version 5 European reference genotypes and UKB European-ancestry 
sample genotypes. SNPs in LD (r2 > 0.1 in either UKB or 1000 Genomes 
reference at ±5 Mb) with known or novel sentinel SNPs from our pri-
mary analysis or in LD with known SNPs not available in our data were 
excluded. Among SNPs identified in the conditional analysis, the most 
significant SNP for any trait was selected within each LD block, and these 
independent SNPs were designated as secondary SNPs. Secondary  
SNPs were further evaluated to determine whether they fell within the 
novel portion of our data.

GRS and PRS construction and variance explained
For our study, GRS is defined as a risk score comprising SNPs reaching 
genome-wide significance (P < 5 × 10−8) in our analyses or in previously 
published studies, and PRS is a full genome-wide risk score calculated 
by the standard clumping and thresholding method or SBayesRC15  
(R package v.0.2.2). We calculated GRS and PRS and assessed variance 
explained in the Lifelines data (Extended Data Fig. 10). Both GRS and 
PRS were calculated as the sum of an individual’s risk alleles, weighted 

by BP trait-specific risk allele effect sizes. In SBayesRC, the risk allele 
effects of genome-wide SNPs were estimated from the GWAS data 
with a multi-normal mixture prior incorporating functional genomic 
annotations from BaselineLD (v.2.2)70. In addition to the SNP QC above, 
we further removed around 5,000 SNPs for which the per-SNP sample 
size in the meta-analyzed GWAS result was more than four standard 
deviations away from the mean value, before the SBayesRC analysis.

To calculate the percentage of BP variance explained by genetic 
variants in an independent dataset, we generated the residuals from 
a regression of each BP trait against sex, age, age2 and BMI in 10,210 
Lifelines individuals71. We then fit a second linear model for the trait 
residuals with the top ten principal components and a third linear 
model for the trait residuals with ten principal components plus GRS. 
The difference in the adjusted R2 between the third and the second 
model is the estimation of the percentage of variance of the dependent 
(BP) variable explained by the GRS. To evaluate the contribution of pre-
viously reported BP loci as well as novel and secondary loci detected in 
our analyses, to observed variance in BP traits and to test the predictive 
value of our genome-wide results, we constructed four different GRSs 
and two PRSs: (1) GRS of 1,723 pairwise-independent (LD-pruned with 
r2 < 0.1) SNPs from published known loci; (2) GRS of 113 sentinel SNPs 
at genome-wide significant (P < 5 × 10−8) novel loci; (3) GRS of 1,723 
known SNPs plus 113 sentinel SNPs at genome-wide significant novel 
loci; (4) GRS of 1,723 known SNPs plus 113 SNPs from novel loci plus 
267 secondary SNPs; (5) standard clumping and thresholding PRSs at 
optimally selected P value thresholds (1 × 10−3, 0.01 and 0.01 for SBP, 
DBP and and PP, respectively) that maximized variance explained in the 
Lifelines data; and (6) full PRS calculated using SBayesRC, a Bayesian 
method that incorporates functional genomic annotations into the 
PRS calculation15. SBayesRC has been shown to have better prediction 
accuracy in both European ancestry and trans-ancestry prediction than 
other state-of-the-art PRS methods15.

We generated GRS and PRS by multiplying the risk allele dosages 
for each SNP by its respective effect size as weight and then summed 
all SNPs in the score. For PRS calculated by SBayesRC, the functional 
annotation-informed effect sizes were used as SNP weights. The four 
different GRS included the same set of SNPs for all three BP traits (SBP, 
DBP and PP) but were weighted by the trait-specific beta coefficients 
from the GWAS results for SBP, DBP and PP. Summary statistics for all 
SNPs in the GRS are displayed in Supplementary Table 4.

For each BP trait, we calculated full PRS by the clumping and 
thresholding approach72. Summary statistics of final GWAS results 
for each trait and the LD reference panel of 503 European ancestry 
samples from 1000 Genomes phase 3 (ref. 49) were used. SNPs with 
ambiguous strands (A/T or C/G) were removed for the score deriva-
tion. An LD-driven clumping procedure was then performed by PLINK 
version 1.90 (r2 < 0.1, 1,000 kb window). Finally, the clumping and 
thresholding PRSs were generated at 17 selected P value thresholds 
(1 × 10−8, 5 × 10−8, 1 × 10−7, 5 × 10−7, 1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 
5 × 10−4, 1 × 10−3, 5 × 10−3, 0.01, 0.05, 0.1, 0.5 and 1). For optimum P value 
thresholds maximizing the variance explained in each trait, summary 
statistics of all SNPs are displayed in Supplementary Table 26a–c. 
We also applied the SBayesRC algorithm15 on summary statistics of 
final GWAS results for each BP trait and derived the effect estimates 
weighted by the functional annotations. These new effect estimates 
were made publicly available through the Polygenic Score Catalog 
(www.pgscatalog.org). We compared the performance of the PRS 
calculated by the classic clumping and thresholding approach with 
the PRS calculated by SBayesRC. The PRS method that explained more 
variance in BP traits of the Lifelines data was used in all further PRS 
analyses as described below.

Decile analyses of BP PRS in Lifelines
To evaluate to what extent BP PRS were predictive for SBP, DBP, PP and 
hypertension, we tested the PRS of SBP, DBP and PP for decile analyses 
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of their respective traits and modeled the joint effect of the PRS for 
SBP and DBP for hypertension analyses. Then we applied linear and 
logistic regression with adjustment for sex to compare BP levels and 
risk of hypertension, respectively, in all deciles versus the bottom decile  
of the PRS distribution of 10,210 Lifelines individuals. We also com-
pared BP levels and risk of hypertension, respectively, in all deciles 
versus the middle deciles of the PRS distribution. P values were  
calculated from the normal distribution for BP traits and from a 
chi-squared distribution with two degrees of freedom for hypertension.

Hypertension model performance and calibration in Lifelines
Hypertension-prediction model discrimination and calibration were 
examined by calculating the AUROC73,74 and Brier score75,76, respectively. 
Discrimination AUROC quantifies the ability of a model to classify 
cases and controls correctly, and specifically is the probability that a 
randomly chosen case will have a higher posterior probability of being 
a case than a randomly chosen control. Calibration quantifies the 
similarity of the posterior probability of being a case with the observed 
proportion of cases in that quantile of the ranked posterior probabili-
ties from the model. These analyses were implemented using the pROC  
R package77 with tenfold cross-validation to mitigate overfitting, which 
occurs when predictions are made using the same data on which the 
model parameters were estimated. An AUROC value of 0.5 indicates 
no discrimination or random classification, while a value of 1 is perfect 
discrimination or perfect classification. The Brier score is the average 
squared difference between predicted probability and observed out-
come, with values approaching zero indicating high calibration. The 
cut-off value of hypertension odds to predict high risk were identified 
using the Youden index (max(sensitivity + specificity)), the point on 
the AUROC at which sensitivity and specificity are maximized. Other 
cut-off points could be chosen to maximize performance for other 
parameters, but the Youden index is a reasonable starting point that 
balances several aspects of predictive performance. Statistics were 
calculated for two models: a model including covariates used in GWAS 
meta-analyses (sex, age, age2, BMI; model 1); and a model including 
covariates and PRS for SBP and DBP (model 2). We also calculated 
the NRI to indicate what proportion of the subjects are reclassified as 
high-risk or low-risk when the PRSs are added to the model.

Comparison of restricted maximum likelihood methods to 
calculate heritability
The h2

SNP of BP traits has previously been calculated within the 
n ~ 457,000 UKB cohort GWAS dataset using the restricted maximum 
likelihood (REML) method BOLT-REML v2.3 (ref. 78); for example, with 
h2

SNP = 21.3% for SBP5. To check the consistency across different software 
and to compare to previously published results, we calculated h2

SNP 
of SBP within the UKB BP-GWAS dataset using GCTA-GREML69. The 
full imputed genetic data was converted from BGEN dosage format 
into hard-call genotyped PLINK format. SNPs were filtered according 
to MAF > 1% and high imputation quality with INFO ≥ 0.9 from the 
central UKB QC and then restricted to only the set of SNPs present in 
our full meta-analysis dataset. Owing to the high amount of RAM that 
GCTA software requires, we selected a representative subset from UKB 
for our analysis. We calculated percentiles of principal components 
PC1 and PC2 of all individuals from the centrally provided UKB QC 
data and extracted the most homogeneous subset of individuals cen-
tered around the median data points with both PC1 and PC2 within the 
40–60th percentile range, resulting in a subset sample size of n = 19,410. 
Within GCTA, the genetic relatedness matrix was generated for each 
autosome separately, then merged together and filtered for relatedness 
according to a 0.2 cut-off to remove any first-degree and second-degree 
relatives. Then h2

SNP for SBP was calculated with adjustment of the same 
covariates applied to the UKB BP-GWAS; namely sex, age, age2, BMI, 
genotyping chip array and the top ten PCs. One-tailed P values were 
calculated according to the h2

SNP and standard error results in base R.

This SNP-based heritability analysis of SBP in the small subset 
of the UKB data (n = 19,410) yielded an h2

SNP estimate of 22.8%, which 
is consistent with the estimate of 21.3% reported previously5 using 
BOLT-REML, demonstrating that the GCTA-GREML approach is also 
appropriate to use for calculation of heritability within our other 
smaller Lifelines cohort.

Heritability analyses in Lifelines data
We used GCTA-GREML16 to calculate h2

SNP for BP in the same Lifelines 
dataset as in the %VE analyses (n = 10,210). SNPs in Lifelines were 
restricted to the same list of SNPs used in the UKB GCTA-GREML16 
analyses. Then h2

SNP for SBP, DBP and PP was calculated with adjustment 
of sex, age, age2, BMI and ten PCs.

BP-GWAS in African-Americans from All-Of-Us (n = 21,843)
We performed regression association tests with additive models for 
untransformed medication-adjusted BP traits (SBP, DBP, PP) and hyper-
tension case or control status using HAIL (https://doi.org/10.5281/
zenodo.6807412). Models were adjusted for age, age2, sex at birth, 
BMI and ten PCs. For quantitative BP traits, age at median SBP was 
used. Age at first hypertension ICD9/10 code was used for cases with 
a hypertension phecode, and age at median SBP measurement was 
used for controls and cases with only anti-hypertensive medication 
use. Sex was restricted to male or female at birth. BMI on the date of, 
or nearest to, median SBP measurement was extracted from the EHR 
and was restricted to the range of 10–100 kg m−2.

Association of BP variants in other ancestries
We looked up the lead SNP at each of the 2,103 BP-associated loci 
reported in our European meta-analysis, within two different 
non-European ancestry samples. We extracted results from a BP-GWAS 
on over 145,000 individuals from the JBB79. We also performed a new 
African-ancestry BP-GWAS meta-analysis (AA-meta) comprising 
n = 83,890 African-ancestry individuals from four different datasets: 
UKB (n = 3,277), BioVU (n = 9,277) and MVP (n = 49,493) with existing 
GWAS results; plus results from a new BP-GWAS that we conducted in 
n = 21,843 African-American ancestry individuals from the All-Of-Us 
cohort. Of the total 2,103 SNPs, 1,671 and 2,102 were available and 1,613 
and 2,092 SNPs remained in the JBB and AA-meta-datasets, respectively, 
after excluding any SNPs that were rare (MAF < 0.01) in either of the 
non-European datasets, for comparison of common SNPs only. We 
then compared the allele frequencies and the effect sizes between our 
European meta-analysis and each of the two non-European datasets by 
calculating Pearson correlations and the percentage of concordance in 
the direction of SNP effects. We used only the best associated BP trait 
for each SNP with the same trait from the non-European dataset and 
performed our comparisons for novel, secondary and known SNPs 
separately.

BP PRS association analyses in African-American ancestry
To evaluate to what extent BP PRSs were predictive for hypertension 
in non-European ancestry individuals, we performed analyses of our 
European ancestry PRS within an African-American ancestry sample 
(n = 21,843) from the All-Of-Us cohort. We conducted the same PRS 
analysis pipeline as used for the European Lifelines cohort (Methods).

In silico transcriptome-wide association study
Genetically predicted gene expression analysis. Our in silico 
transcriptome-wide association study of inferred gene expression 
was performed using S-PrediXcan80, an approach that imputes geneti-
cally predicted gene expression in a given tissue and tests predicted 
expression for association with a GWAS outcome using SNP-level sum-
mary statistics. For this study, input included summary statistics from  
each of the meta-analyses (SBP, DBP and PP) and gene-expression  
references for five tissues from GTEx81 v.7 including aorta, tibial artery, 
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left ventricle, atrial appendage and whole blood. Our analyses incor-
porated covariance matrices based on 1000 Genomes49 European 
populations to account for LD structure. The Bonferroni-corrected 
significance threshold was 1.55 × 10−6 to account for the total number 
of gene models assessed across all tissues in these analyses.

Colocalization analysis. The hypothesis that a single variant underlies 
GWAS and eQTL associations at a given locus (that is, colocalization) 
was tested using COLOC82, a Bayesian gene-level test that evaluates 
GWAS and eQTL association summary statistics at each SNP at the 
locus and provides gene-level and SNP-level posterior probabilities 
for colocalization. For this analysis, inputs included results for com-
mon variants in our study and eQTL summary statistics corresponding 
to the gene-expression references used in the S-PrediXcan analysis, 
restricting to only variants included in the S-PrediXcan models. Output 
includes posterior probabilities for the null hypothesis (PP.H0) that 
SNPs at the locus are associated with neither gene expression nor the 
outcome (that is SBP, DBP or PP), the first alternative hypothesis (PP.H1)  
that SNPs are associated with expression but not the outcome, the 
second alternative hypothesis (PP.H2) that SNPs are associated with the 
outcome but not expression, the third alternative hypothesis (PP.H3)  
that SNPs are associated with both expression and the outcome but 
not colocalized and the fourth alternative hypothesis (PP.H4) that SNPs 
associated with both expression and the outcome are colocalized. Also 
included are annotations of the SNPs with the highest PP.H4 at each 
locus and the corresponding posterior probability. A PP.H4 of greater 
than 90% was considered evidence of colocalization.

Pathway analyses. Downstream analyses were performed using  
the functional mapping and annotation of genome-wide association 
studies (FUMA-GWAS)17,83 online software tool. The list of all 1,070 
genes from the inferred gene expression analyses that were significant  
from S-PrediXcan and filtered after the colocalization and eQTL analyses  
was used as the input into FUMA, and Genotype–Tissue Expression 
(GTEx) v.7 was used as the gene expression dataset. All other parame-
ters selected were chosen to be consistent with the options used for the 
S-PrediXcan analysis. We conducted FUMA analyses for tissue specifi-
city tests and for gene set enrichment analyses to yield pathway analysis 
results according to different pathway datasets: KEGG, Reactome and 
WikiPathways. Four different analyses were performed according to 
different BP traits: a ‘unified’ analysis based on the list of all unique sig-
nificant genes across all three BP traits and three trait-specific analyses 
for each of SBP, DBP and PP. When presenting the outputs, the adjusted 
P value results take multiple testing into account, and all results tables 
are filtered by adjusted P < 0.05.

Ethics statement
Our study is based on meta-analysis of previously published, publicly 
available data for which appropriate site-specific Institutional Review 
Boards and ethical review at local institutions have previously approved 
the use of this data.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Full GWAS summary statistics of our meta-analyses are publicly avail-
able on the GWAS Catalog website data repository (https://www.ebi. 
ac.uk/gwas) with data accession codes GCST90310294, GCST90310295 
and GCST90310296 for SBP, DBP and PP, respectively. The SBayesRC 
PRS data for SBP, DBP and PP are deposited on the PGS Catalog website 
(https://www.pgscatalog.org), with data accession codes PGS004603, 
PGS004604 and PGS004605 for SBP, DBP and PP, respectively, along-
side publication ID PGP000581. The standard clumping and threshold 

PRSs for SBP, DBP and PP; summary statistics for sentinel SNPs for each 
BP trait as well as optimized PRS; and statistically significant reports 
for S-PrediXcan results for all five tissues for all BP traits evaluated are 
available in the Supplementary Tables.

Code availability
All software programs used in the study are publicly available as 
described in Methods and the Reporting Summary.
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Extended Data Fig. 1 | Manhattan plots of meta-analysis full results. Manhattan plots of meta-analysis full results using inverse variance-weighted method, showing 
1,495, 1,504, and 1,318 significant loci for systolic (SBP, top plot), diastolic (DBP, middle plot), and pulse pressure (PP, bottom plot) in total (r2 < 0.05 and 1 Mb distance).
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Extended Data Fig. 2 | Comparison of the newly discovered loci with the known loci in effect size distribution. Comparison of the newly discovered loci with the 
known loci in effect size distribution, plotting Minor Allele Frequency (MAF) on the x-axis, vs GWAS effect estimate size on the y-axis, from the meta-analysis for SBP 
(a), DBP (b), PP (c).
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Extended Data Fig. 3 | Variance explained by Polygenic Risk Scores (PRSs) at different P value thresholds. Variance explained by clumping and threshold 
Polygenic Risk Scores (PRSs) at different P value thresholds of inverse variance- weighted meta-analysis results, for SBP, DBP and PP, in the independent Lifelines 
cohort data.
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Extended Data Fig. 4 | Relationship of deciles of the SBayesRC PRS with Pulse Pressure (PP) in Lifelines. Relationship of deciles of the SBayesRC PRS with Pulse 
Pressure (PP) in Lifelines of European ancestry (n = 10,210). Plot shows sex-adjusted mean PP comparing each of the upper nine PRS deciles with the lowest decile. 
Dotted lines represent 95% confidence intervals.
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Extended Data Fig. 5 | Area under the ROC curve of the two models for Hypertension prediction in Lifelines. Area under the ROC curve (AUROC) of the two models 
(covariates only and covariates plus SBayesRC PRS) for Hypertension prediction in Lifelines (n = 10,210) cohort of European ancestry.
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Extended Data Fig. 6 | Pairwise allele frequency and effect size comparisons 
of 2103 GRS SNPs between our Mega-meta results and Japan Biobank. 
Pairwise allele frequency (a) and effect size (b) comparisons of 2103 GRS SNPs 
between our Mega-meta results and Japan Biobank ( JBB) (n∼145k). Comparisons 
are separately made for the 113 novel SNPs (‘Novel’), 267 additional novel  
SNPs from conditional analysis (‘Secondary’), and 1723 known SNPs (‘Known’). 

Black, red and blue represent SNPs with SBP, DBP, and PP as the best associated 
traits, respectively. r = Pearson’s Correlation coefficient. ‘concordant’ means 
the proportion of SNPs showing directional concordance between European 
and Japanese populations. Please note that JBB effect sizes are standardized by 
Z-score transformation.
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Extended Data Fig. 7 | Pairwise allele frequency and effect size comparisons 
of 2103 GRS SNPs between our Mega-meta results and a meta-analysis of 
African-American ancestry individuals. Pairwise allele frequency (a) and 
effect size (b) comparisons of 2103 GRS SNPs between our Mega-meta results 
and a meta-analysis of African-American ancestry individuals (N = 83,890). 
Comparisons are separately made for the 113 novel SNPs (‘Novel’), 267 additional 

novel SNPs from conditional analysis (‘Secondary’), and 1723 known SNPs 
(‘Known’). Black, red and blue represent SNPs with SBP, DBP, and PP as the best 
associated traits, respectively. r = Pearson’s Correlation coefficient. ‘concordant’ 
means the proportion of SNPs showing directional concordance between 
European and African-American populations.
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Extended Data Fig. 8 | PRS for PP in AA. Relationship of deciles of the SBayesRC PRS with PP in African-American Ancestry individuals from All-Of-Us Cohort 
(n = 21,843). Plots show sex-adjusted mean PP comparing each of the upper nine PRS deciles with the lowest decile. Dotted lines represent 95% confidence intervals.
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Extended Data Fig. 9 | Cross-trait associations for 41 Blood Pressure novel loci with other diseases/traits. Cross-trait associations for 41 of the 113 Blood Pressure 
novel loci with other disease/trait categories from lookups within GWAS Catalog and Phenoscanner. Segment size depends on the number of locus-trait category 
associations.

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | GRSs and PRS tested for percent variance explained in Lifelines cohort. Two PRSs were calculated: 1) a standard ‘benchmark’ clumping and 
thresholding PRS, and; 2) an ‘optimized’ PRS based on SBayesRC. GRS = Genetic Risk Score; PRS = Polygenic Risk Score; SNP = Single Nucleotide Polymorphism.
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Data access links 
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