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Abstract

We have recently proposed an alternative picture for the physics at the scale of gauge
coupling unification, where the unified symmetry is realized in higher dimensions but is
broken locally by a symmetry breaking defect. Gauge coupling unification, the quantum
numbers of quarks and leptons and the longevity of the proton arise as phenomena of the
symmetrical bulk, while the lightness of the Higgs doublets and the masses of the light
quarks and leptons probe the symmetry breaking defect. Moreover, the framework is
extremely predictive if the effective higher dimensional theory is valid over a large energy
interval up to the scale of strong coupling. Precise agreement with experiments is obtained
in the simplest theory — SU(5) in five dimensions with two Higgs multiplets propagating
in the bulk. The weak mixing angle is predicted to be sin2 θw = 0.2313±0.0004, which fits
the data with extraordinary accuracy. The compactification scale and the strong coupling
scale are determined to be Mc ≃ 5 × 1014 GeV and Ms ≃ 1 × 1017 GeV, respectively.
Proton decay with a lifetime of order 1034 years is expected with a variety of final states
such as e+π0, and several aspects of flavor, including large neutrino mixing angles, are
understood by the geometrical locations of the matter fields. When combined with a
particular supersymmetry breaking mechanism, the theory predicts large lepton flavor
violating µ → e and τ → µ transitions, with all superpartner masses determined by
only two free parameters. The predicted value of the bottom quark mass from Yukawa
unification agrees well with the data. This paper is mainly a review of the work presented
in hep-ph/0103125, hep-ph/0111068 and hep-ph/0205067 [1, 2, 3].

http://arXiv.org/abs/hep-ph/0212134v1


1 Introduction: Features of 4D Grand Unification

While the manifestations of the strong, weak and electromagnetic forces are very different in

nature, these three interactions all follow from local gauge symmetry, suggesting that they may

be low energy remnants of a single large gauge symmetry at high energies. Such a grand unified

interaction would be described by a single gauge coupling, leading to a correlation among the

strengths of the three forces measured at lower energies. Remarkably, this prediction from gauge

coupling unification is highly successful, if nature is supersymmetric above the scale of the weak

interactions. It implies that the unification of the strong, and electroweak interactions occurs

at a mass scale of order 1016 GeV, but what is the nature of the physical theory underlying

this unification and how can it be experimentally tested?

The conventional answer of four dimensional (4D) grand unification [4] shows a remarkable

dichotomy: parts of the standard model cry out for 4D unification into a gauge group such

as SU(5), while other parts abhor such a unification. For example the quantum numbers of

a generation of quarks and leptons fit beautifully into unified representations, providing an

elegant understanding of the various gauge quantum numbers [5, 4, 6], while the Higgs doublet

resists unification. The SU(5) partner of the Higgs doublet, H3, must be heavy to avoid rapid

proton decay and also because it would spoil gauge coupling unification. Whilst the simplest

picture of supersymmetric grand unification gives us a very significant prediction for the weak

mixing angle [7, 8], it also leads to a prediction for proton decay from the exchange of the

superheavy triplets H3 [9], in strong disagreement with data [10]. Finally, the mass ratio of

quarks and leptons in the third generation, mb/mτ , shows a simple ratio which follows directly

from grand unification [11], while light quark-lepton mass ratios, such as ms/mµ, do not have

values that follow simply from unification. Thus the minimal theory does not explain why

there is a light Higgs boson, is excluded by proton decay, and introduces flavor conundrums.

Of course, this dichotomy does not exclude supersymmetric 4D unification which has been so

much discussed for over 20 years; rather, within these theories we are led to invent a series of

mechanisms for doublet-triplet splitting, proton decay suppression, and flavor. However, the

resulting theories then acquire a certain level of complexity. Can the dichotomy be resolved

more elegantly in an alternative framework?

The prediction of the QCD gauge coupling from 4D supersymmetric unification is good but

certainly not perfect, as illustrated in Figure 1. The effect of the supersymmetric logarithm is

to greatly improve the prediction, but there is an overshoot beyond the experimental value of

αs(MZ) = 0.117 ± 0.002 [12] to αs(MZ) ≃ 0.130 [13]. We typically assume that most of this

discrepancy comes from the unification scale, and is due to the complications to the theory that

we have been forced to add. Since these corrections involve additional free parameters, they

cannot be numerically evaluated. In this talk we will argue that there is an alternative picture
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Figure 1: The predictions for αs(MZ) in non-supersymmetric grand unification, αGUT
s , and su-

persymmetric grand unification, αSGUT
s . The solid error bar represents the threshold corrections

from the superpartner spectrum. Dotted error bars represent threshold corrections from the
unified scale corresponding to a heavy 5+ 5̄ representation with unit logarithmic mass splitting
between doublets and triplets.
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for the physics at the unification scale, and that all aspects of the dichotomy are reconciled in

the simplest model. In the next section we introduce the new picture of symmetry breaking

defects in a higher dimensional spacetime, and argue that the traditional problems are all

elegantly solved. In section 3 we discuss the predictions from gauge coupling and Yukawa

coupling unification in the simplest model. The corrections to the QCD gauge coupling from

physics at the unified scale do not depend on any extra free parameters, and yield precisely the

observed value. The location of matter in the higher dimension is discussed, and predictions

for proton decay are given. In section 4 we introduce a new origin for supersymmetry breaking

in unified theories. Combining this with the minimal model, predictions are given for the

superpartner and Higgs spectrum, for the bottom quark mass from Yukawa unification, and for

flavor changing lepton decays. We conclude in section 5.

2 New Physics for Grand Unification

Building on the ideas and tools developed by others, over the last year or so we have introduced

a new picture for the physics in the energy range of 1015–1017 GeV [1, 2, 3]. We describe the

new physical picture in this section, and the simplest model for its implementation in the next.

At the TeV scale we live in a 4D world, spanned by the coordinates x, and the gauge group

is SU(3)C×SU(2)L×U(1)Y (3-2-1), as illustrated by the sheet on the left-hand side of Figure 2.

At the unification scale we suppose that other dimensions of size R are resolved, described by

coordinates y, as shown on the right of the figure. It is the mass scale 1/R, rather than the

expectation value of some field, that characterizes the scale of unification. Particles moving in

the y direction can be viewed as particles moving in a box of size R and therefore have momenta

py quantized in units of 1/R. To observers in 4D, particles with different py appear as particles

of different mass, so that there is a discrete tower of particles, known as the Kaluza-Klein (KK)

tower. A crucial aspect of our physical picture is the structure of the gauge symmetries in the

box of the y direction. Interactions in the interior of the box are symmetrical under the full

gauge symmetry G of the unified theory, while those on a boundary are only symmetrical under

the standard model 3-2-1 gauge symmetries, as shown in Figure 2.

Since our own four dimensions are known, it is convenient to suppress x and display only the

extra dimensions y, as illustrated in Figure 3 for the case of three extra dimensions. The space of

the extra dimensions is known as the bulk, and we will also refer to it as a box. The sizes of the

extra dimensions need not be the same, although we imagine they are not extremely different,

and, while we have shown a simple box, the bulk may have a more complicated geometry. The

crucial point is that the gauge group throughout the volume of this extra-dimensional bulk is

the unified group G, while that of the standard model appears only on some lower dimensional
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x (x, y)

y

G

3-2-1

Figure 2: Physics at high energies probes extra dimensions, y, that extend over small sizes R.
The interactions in the volume of this higher dimensional box are constrained by a unified gauge
symmetry G, but interactions on a boundary may be constrained only by a smaller symmetry,
such as 3-2-1, creating a defect of lower dimension.
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G

Figure 3: An example of a 3D bulk with a 1D defect.

boundary surface. In Figure 3 we have shown the 3-2-1 surface as having dimension 1, but

it could be a 2D surface, or it could be a point at one of the corners of the box. In our

picture, most of spacetime feels the full gauge invariance of G, while there is a defect on a

lower dimensional surface which only feels the 3-2-1 gauge symmetry. The symmetry breaking

therefore appears explicitly, as a spatial defect — a complete change of viewpoint compared to

4D grand unification! One might naively guess that such local defects could not lead to the

world we see – where 3-2-1 forces are observed to be quite different from each other, and the

other interactions in G are incredibly feeble. Figure 3 gives the impression that the breaking

of G is minor and perhaps just a small correction. For short distance physics in the bulk this

is certainly true – but for long distance physics the boundary effects become all important, as

they determine the light states of the theory.

How does this new picture reconcile the dichotomy of 4D unification? The idea is remarkably

simple: the aspects which fit unification so well, gauge coupling unification, quark and lepton

quantum numbers and mb/mτ , should be phenomena of the regions of the bulk where the

physics is unified and should be insensitive to the 3-2-1 defect, while the aspects which abhor

unification, such as the light Higgs doublet and ms/mµ, should probe the 3-2-1 defect in a non-

trivial way. It will turn out that the suppression of proton decay results from the enlargement

of the spacetime symmetry of the bulk.

What is the origin of the 3-2-1 defect? In particular what determines its location and why is

it on a boundary of the bulk rather than somewhere in the interior? We will answer this in the

context of the effective higher dimensional field theory. We do not explain the origin of the extra

dimensions nor their size, but, given this enlarged spacetime, we write the most general theory

subject to a set of symmetries. The new ingredient here, compared with familiar 4D theories,
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• •

y = 0 y = πR

SU(5) 3−2−1
SU(5)

• •

y = 0 y = πR

SU(5) 3−2−1
SU(5)

Figure 4: In the fifth dimension, space is a line segment with boundaries at y = 0 and at
y = πR. Solid and dotted lines represent the profiles of gauge transformation parameters ξ321
and ξX , respectively. Because ξX(y = πR) = 0, a point defect occurs in the symmetry at the
y = πR boundary, explicitly breaking SU(5) to SU(3)C × SU(2)L × U(1)Y .

is that because our spacetime has boundaries we must specify boundary conditions to define

the theory. The boundary conditions are chosen not to spoil the consistency of the theory, and,

within the effective field theory description, the 3-2-1 defect originates from these boundary

conditions. Specifically, in 4D theories we take the gauge parameters for transformation a to

be arbitrary functions of spacetime, ξa(x), but with a finite bulk we must specify boundary

conditions for these parameters. In particular, at some boundary y = yb we can specify different

conditions on the 3-2-1 gauge parameters, ξ321(yb), and the remaining gauge parameters of G,

ξX(yb), inducing the G-breaking defect on this boundary. For example, if ξX(yb) = 0 and

ξ321(yb) 6= 0 then the unified gauge bosons X do not have interactions on this boundary, while

the 3-2-1 gauge bosons of the standard model do. This is illustrated for the case G = SU(5)

in a 1D bulk in Figure 4. In this example the fields and interactions at the y = πR boundary

need only respect 3-2-1 gauge symmetry — they explicitly break the SU(5) symmetry [1].

This is clearly a radical departure from the familiar Higgs mechanism for spontaneously

breaking gauge symmetries. There is no Higgs field — in the effective field theory the phe-

nomena are geometrical rather than dynamical. In cosmology, as the temperature T of the

universe cools through 1/R, there is no phase transition; rather the symmetry breaking effects

gradually grow in importance. At T ≫ 1/R they are important only very close to the defect,

and irrelevant everywhere else. At lower temperatures they become ever more dominant, and

the symmetries of the bulk cannot be resolved. Remarkably, this explicit breaking of gauge

symmetry does not destroy calculability of the theory. The unitarity behavior of the theory is
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3-2-1

φ(y)

m

1/R

Figure 5: A bulk, having boundary conditions leading to a defect, can be viewed as a “machine”
for creating a mass spectrum of 4D particles, known as a KK tower.

no worse than when the boundary conditions preserve SU(5) [14].

What happens when fields φ(x, y) propagate in such a higher dimensional spacetime with a

gauge symmetry defect induced by non-trivial boundary conditions? The geometry of the box

together with the boundary conditions determine the allowed normal modes. This is just the

field theory analogue of quantizing a particle in a box, but now the allowed p2
y correspond to

the allowed m2 for a 4D observer. Thus the box and boundary conditions can be viewed as a

machine for creating a KK tower of massive states, as illustrated in Figure 5.

The typical spacing or discreteness, 1/R, for the masses of the KK tower is determined

by the size of the box, while the gauge quantum numbers at each level is determined by

the boundary conditions. The important point is that modes having different 3-2-1 quantum

numbers q1, q2, · · ·, have different spectra, because of the G-breaking boundary conditions. At

high energies the discreteness is not so important and the local symmetry G of the bulk is

restored, but at low energies the discreteness is crucial and the gauge quantum numbers of the

lowest lying states are all important. At very low energies, only the zero mass modes can be

excited, and hence a crucial question is how the boundary conditions determine the quantum

numbers of these “zero modes”. We can turn this around: at the scale of unification we want

only the particles of the standard model and their superpartners to be zero modes, so that

running the machine backwards we can find out what geometries and boundary conditions are

of interest for nature. The remarkable thing is that we can start with a pure gauge theory in

the box — there are no mass terms or spontaneous symmetry breakings — and the 4D mass

terms of the KK tower arise from the kinetic energies in the extra dimensions. What are the
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consequences of this new viewpoint for gauge coupling unification, the lightness of the Higgs

doublet, proton decay, and quark-lepton mass ratios? We will not be surprised to see large

changes from the standard picture.

2.1 Gauge coupling unification

Since the unified symmetry G is explicitly broken by boundary conditions, it is not obvious

that gauge coupling unification is preserved. In fact, gauge coupling unification is generically

destroyed due to the presence of local G breaking on the y = yb boundary. To see this,

consider the effective field theory above 1/R. Since the higher dimensional gauge theory is

non-renormalizable, this effective theory must be cut off at some scale Ms, where the theory

is embedded into a more fundamental theory such as string theory. At the scale Ms, the most

general effective action for the gauge kinetic terms is

S =
∫

dx dy
[

1

g2
5

F 2 + δ(y − yb)
1

g̃2
a

F 2
a

]

, (1)

where the first term arises from the interior of the box and is G invariant, while the second

term represents non-unified kinetic operators located on the y = yb boundary (F is the field

strength, and a = 1, 2, 3 represents the standard model gauge groups). This form is ensured by

the y-dependent gauge symmetry of our effective theory, regardless of the unknown ultraviolet

physics above Ms. The standard model gauge couplings in the equivalent 4D theory, ga, are

then obtained by integrating over the extra dimensions:

1

g2
a

=
Rd

g2
5

+
Rd′

g̃2
a

, (2)

for d extra dimensions of size R and defects of dimension d′ < d. This shows that ga depend on

the coefficients of the localized kinetic operators, g̃a, and are not universal at the scale Ms —

in general there is no gauge coupling unification! However, if the extra dimensions have a large

size, we find that the Rd factor dominates over Rd′ , ensuring the unified contribution dominates

over the 3-2-1 defect contribution, and gauge coupling unification is recovered [1].

The energy dependence of the gauge couplings in our scheme is shown in Figure 6. The

estimate for the compactification scale, Mc ≡ 1/R ≈ 1015 GeV, and for the fundamental scale,

Ms ≈ 1017 GeV, are for the particular 5D theory with G = SU(5) discussed in the next section,

but the general behavior of the running of these couplings is generic to our framework. The

couplings do not unify at the compactification scale; rather they continue to evolve even above

the compactification scale where the physics is higher dimensional. The higher dimensional

behavior of the theory is apparent because of the rapid growth of the interaction strength with

energy. Above Mc the couplings continue to approach each other because of the G-violating

8



coupling

≈ 4π

≈ 1

energyMZ Mc

≈ 1015 GeV
Ms

≈ 1017 GeV

ĝ3

ĝ2

ĝ1

ĝG

4D N = 1
SU(3) × SU(2) × U(1)

(MSSM)

5D N = 1

SU(5)

strongly coupled
10D string (?) theory

gravitational

bulk (?)

Figure 6: The energy dependence of the strengths of the gauge interactions.

effects of the 3-2-1 defect. Unification finally occurs at the fundamental scale. It is well known

that a unification with two mass scales, such as Mc and Ms, leads to a loss of predictivity

of the low energy gauge couplings, since they depend on the extra parameter Ms/Mc. We

overcome this by assuming that the theory at Ms is strongly coupled, so that this mass ratio

is predicted [2]:
(

Ms

Mc

)d

≈ 16π2

Cg2(Mc)
, (3)

where C is a group theory Casimir; for example C ≈ 5 for G = SU(5). Given the rapid growth

in the gauge couplings above Mc, and the strong coupling of the theory at Ms, one may wonder

whether the unification can be reliably computed. Remarkably, however, the framework turns

out to be extremely predictive. The strong coupling requirement allows us to reliably estimate

the size of non-unified corrections from unknown ultraviolet physics, and the precise prediction

for the low energy QCD coupling is obtained as long as the volume of the 3-2-1 defects is

sufficiently small [2, 15]. The uncertainties in the estimate of Eq. (3), for example from power-

law corrections to gauge couplings [16], are also well under control and have little effect on the

prediction [2].

In our scheme, the leading power correction to the gauge couplings, which is not a calculable

quantity in the effective field theory, is universal and thus does not contribute to the low
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SO(10)

SO(10)

SO(10)

SU(5) × U(1)X

SU(4)C × SU(2)L × SU(2)R

SO(10)

SU(5) × U(1)X

SU(4)C × SU(2)L × SU(2)R

SU(3)C × SU(2)L × U(1)Y × U(1)X

Figure 7: A 2D bulk with SO(10) gauge symmetry allows for an interesting set of defects.
There are two 1D defects, one having the usual SU(5) unified gauge symmetry and the other
having the left-right SU(4)C × SU(2)L × SU(2)R symmetry introduced by Pati and Salam.
At the intersection of these two defects a point defect arises with the 3-2-1 symmetry of the
standard model, together with an extra U(1)X symmetry.

energy prediction [1, 17]. The relative running of the gauge couplings, which is crucial for the

prediction, is then reliably computed if the volume of the defects is sufficiently small – that is,

if the defects can effectively be viewed as points in the bulk: d′ = 0. In such a setup, the low

energy QCD coupling can be predicted in terms of the geometry of the bulk and the boundary

conditions imposed on the bulk fields φ(y):

αs = αs (d, geometry, boundary conditions, φ(y)) . (4)

As we go to a higher dimensional bulk, many more possibilities open up for the structure of

gauge symmetry breaking by boundary conditions. A variety of defects can be incorporated.

An example of a G = SO(10) theory in a 2D bulk [18] is shown in Figure 7.

There are two 1D defects: a line where the gauge symmetry is SU(5) × U(1)X and a line

where the gauge symmetry is the Pati-Salam subgroup SU(4)C × SU(2)L × SU(2)R. The

intersections of these lines gives a point defect where the reduced symmetry is that of the

standard model, augmented by an extra U(1)X . Other SO(10) models with a 2D bulk are also

possible [19, 18], but generically it is hard, though not impossible [20], to reduce the rank by

boundary conditions.

The prediction from gauge coupling unification differs in all these variations. As shown in

section 3, the minimal SU(5) theory with a single extra dimension agrees most precisely with

data, and this suggests that in theories with higher gauge unification, such as SO(10) in 6D,

one dimension of the box is larger than the others [21].
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SU(5)

SU(5) 3-2-1

Figure 8: The minimal structure: SU(5) gauge symmetry in a 1D bulk with a single 3-2-1 point
defect.

2.2 Split multiplets

If the unified multiplet H which contains the Higgs doublet of the standard model is described

by a bulk field H(y), then the “machine” of Figure 5 will automatically lead to a splitting of

order 1/R between the SU(2) doublet component, h2, and other components. The “doublet-

triplet splitting” puzzle of 4D unified theories is gone: indeed, mass splittings between com-

ponents of bulk multiplets are unavoidable! This phenomenon has been known since the mid

80s [22, 23]. However, the implementation of this for the Higgs multiplet is not obvious —

there are many possible geometries and boundary conditions; and with supersymmetry in the

higher dimensional bulk, as needed for gauge coupling unification, the field H(y) contains many

more superpartners than the 4D case. In 2000, Kawamura discovered an extremely elegant so-

lution [24]: he studied a G = SU(5) theory in 5D and constructed boundary conditions which

broke the gauge symmetry to 3-2-1 such that only the massless modes of H(y) were the Higgs

doublets and their usual 4D superpartners. The colored triplet components, whose exchange

leads to proton decay, and all the 5D superpartners were found to only have massive modes.

In our language of defects the geometry following from his boundary conditions appears

almost trivially simple: a 1D SU(5) bulk, having a 3-2-1 defect at one boundary but not at the

other, as shown in Figure 8. This case was also illustrated in Figures 2 and 4.

One might object that the whole idea of geometrical defects in gauge transformations is

ugly, destroying the beauty of complete symmetry in the underlying theory broken only spon-

taneously by a dynamical choice of the vacuum. It is our contention that nature appears to

prefer such defects, and the first hint of this was the understanding of the light Higgs doublets

given by Kawamura.

2.3 Proton decay

In 4D supersymmetric SU(5) grand unified theories, the two Higgs doublets, h2, h̄2 are accom-

panied by their SU(5) partners H3, H̄3, which are color triplets. The exchange of the heavy

colored Higgs fermions yields a proton decay amplitude at dimension five via the diagram shown

in Figure 9. The cross on the internal line represents the Dirac mass that couples the fermions

11



q

q

l

q

H3 H̄3

Figure 9: Baryon number violation is generated in 4D supersymmetric unified theories via the
exchange of massive colored Higgs triplets.

in H3 and H̄3. In the minimal theory this is the only way these fermions can get heavy, and

the model is excluded by the resulting large amplitude for proton decay [10].

What happens in higher dimensional unified theories with symmetry breaking defects? At

first sight the situation looks very bad: although we understand why the Higgs triplets are heavy

and the Higgs doublets are light, the mass of the Higgs triplets will be determined by geometry

and will be of the order of the compactification scale, 1/R. From gauge coupling unification

we do not expect this to be large enough to avoid disastrous proton decay from H3 fermion

exchange. The origin of the masses of the modes in the KK towers is easily understood by

considering the wavefunctions of the particles in a box with appropriate boundary conditions.

For example, for the 5D SU(5) theory, the curves of Figure 4 can be reinterpreted, with the

solid curves being the wavefunction of the Higgs doublet modes and the dotted curves being the

wavefunctions of the Higgs triplet modes. Since E2 = p2
x + p2

y, the momentum py is interpreted

as a mass in 4D, so that the only massless mode is that of the Higgs doublet having the flat

wavefunction. All the Higgs triplet modes have non-zero py because boundary conditions force

their wavefunctions to vanish at the 3-2-1 defect, and the corresponding 4D fields have masses

of order 1/R. In the minimal theory discussed in the next section 1/R ≈ 1015 GeV, which is

less than the unified mass scale in the conventional 4D theory. Hence one might expect a very

large proton decay amplitude.

In 5D, the form of the mass terms for the H3 and H̄3 fermions is dictated by the higher

dimensional spacetime symmetry of the bulk. Since the smallest fermion representation in 5D

is a Dirac fermion, both H3 and H̄3 fermions are accompanied by their conjugated fermions,

Hc
3 and H̄c

3. The 5D kinetic terms for these fermions contain H3∂yH
c
3 and H̄3∂yH̄

c
3. From the

viewpoint of 4D the masses arise from ∂y, so that the Dirac mass for H3 couples it to Hc
3 rather

than to H̄3. The cross in the diagram of Figure 9 does not exist; H̄3 must be replaced by Hc
3.

On the other hand, an R symmetry arising from higher dimensional supersymmetry forbids

12



any coupling of Hc
3 to quarks and leptons. Hence, we find that the proton decay amplitude

from the exchange of the color triplet Higgs fermions necessarily vanishes in higher dimensional

unified theories [1].

We have shown that the absence of all proton decay from operators in the low energy

theory of dimension four or five is guaranteed by an R symmetry [1, 2]. Hence the leading

contribution will come at dimension six from the exchange of the heavy X gauge bosons. This

depends sensitively on the mass of these gauge bosons, which is also given by 1/R. The precise

value of 1/R is model dependent, and we will return to this issue in section 3.

2.4 Quark-lepton mass relations

So far we have assumed that particles are free to propagate throughout the volume of the bulk.

However, it may be that some particles are restricted to subspaces of the bulk. For example,

in the box of Figure 3, quarks and leptons could be chosen to propagate in the entire 3D bulk,

on a given 2D surface, a 1D line, or they may even be restricted to a point. A quark or lepton

which propagates on a defect with lower gauge symmetry will only feel this lower symmetry:

it will not live in a multiplet of the higher gauge symmetry of the full bulk. It would therefore

seem less attractive to place quarks and leptons precisely on a 3-2-1 defect, since one would

lose the immediate understanding of the gauge quantum numbers of a generation given by the

higher gauge symmetry.1

What distinguishes one generation from another? Could it be that they propagate in dif-

fering numbers of dimensions in the bulk? This is an attractive idea because it leads to a

geometrical understanding of the hierarchy between the masses of the generations. The quark

and lepton masses arise from Yukawa couplings, but these interactions are forbidden by super-

symmetry in dimensions higher than 4. Hence the Yukawa coupling between fermion ψi and

fermion ψj must be located at a point y0 on the surface of the box where the higher dimensional

Lorentz and supersymmetry is broken: LYukawa = δd(y − y0)ψiψjH(y). Since the quarks and

leptons that we observe are zero mass modes in the box, they have flat wavefunctions with nor-

malizations 1/
√
V , where V is the volume of the subspace of the bulk in which they propagate.

Integrating over the volume of the bulk to get the equivalent 4D theory then leads to an entry

in the fermion mass matrix

mij ∝
1

√

ViVj

, (5)

providing both subspaces cover the point y0.

The above relation implies that the heaviest fermions propagate in only a small subspace

1On the other hand, placing the Higgs on a 3-2-1 defect is an alternative way to understand the absence of
a color triplet Higgs in the low energy theory [25].
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of the bulk. This makes it likely that their Yukawa coupling is located far from the G-breaking

defects, so that they will exhibit unified mass relations between quarks and leptons. On the

other hand, lighter fermions must live in a larger subspace of the bulk, and are more likely to

propagate past the defects. Yukawa couplings located on these defects will destroy any unified

mass relations. Unified mass relations between quarks and leptons are expected only for the

heaviest generation [2, 26, 27, 15].

To conclude: higher dimensional grand unified theories with symmetry breaking defects offer

a remarkable possibility. The conventional successes of grand unified theories (quark-lepton

gauge quantum numbers, gauge coupling unification, and mass relations for heavy fermions)

can be retained as phenomena of the symmetrical bulk, while conventional difficulties (mass

splitting between h2 and H3, proton decay, and light fermion mass relations) are automatically

resolved as phenomena of the defects.

3 The Minimal Model

Up to now we have concentrated on the conceptual advantages of higher dimensional unified

theories. We now show that these theories are remarkably predictive if they are valid over a

large energy range, i.e. if Ms/Mc is large, and present a minimal model [2] which is highly

successful in describing physics over a wide energy interval between Ms and Mc.

3.1 Preferred by gauge coupling unification

The numerical test for any unified theory is gauge coupling unification, so we intend to use this

as a tool to guide us in searching for a particular higher dimensional geometry. Recall from

Figure 1: while conventional supersymmetric unification does well, it is not perfect. We have

also seen from Figure 5 that the box and boundary conditions are a “machine” for creating

KK towers of particles. Could the difference between the central value of the conventional

prediction, αs(MZ) = 0.130, and experiment, αs(MZ) = 0.117, be due to the virtual effects

of these KK modes? If so, are there any geometries that are simple enough that they are

numerically predictive?

We have performed a detailed study of supersymmetric theories with d extra dimensions

with equal radii. For d ≥ 3 there are no corrections from the KK modes because of cancellations

forced by the large amount of supersymmetry in higher dimensions. For d = 1, 2 the leading

logarithmic correction is [2]

δαs ≃ − 6

7nπ
α2

s ln
Ms

Mc

, (6)

where n = 2 for d = 1, and for d = 2 it is a positive integer ≥ 2, describing the geometry of

the box. Here, δαs is defined by the difference of our prediction, αKK
s , and the conventional
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energy

Mc ≃ 5 × 1014 GeV

Ms ≃ 1 × 1017 GeV

UV (string?) theory

SU(5)

SU(5) 3-2-1

MSSM

Figure 10: The scheme preferred by gauge coupling unification: the minimal supersymmetric
standard model (MSSM) is the effective theory up to Mc ≈ 5 × 1014 GeV, while the effective
theory for the next factor of 200 in energy is the minimal 5D SU(5) theory with a single 3-2-1
defect.

prediction, αSGUT
s : δαs = αKK

s −αSGUT
s . This result applies only if the Higgs doublets propagate

in the bulk, and are not contained in the vector multiplet; otherwise the sign of the correction

is changed, increasing the discrepancy with data. While this result is very simple, and the sign

is very encouraging, apparently we cannot evaluate it numerically because of the unknowns

Ms/Mc and n. However, using our assumption that the theory is strongly coupled at the

fundamental scale, Ms/Mc can be estimated as in Eq. (3). From this we discover that for most

values of (d, n) the correction |δαs| is too small to give perfect agreement with data. Only in

the case that it is maximized does the central value of the theoretical prediction agree with

data, and this occurs for the simplest case of a single extra dimension, d = 1 (hence n = 2).

In this case the unified gauge group should be SU(5), since larger unified groups cannot be

broken by boundary conditions in a single extra dimension to 3-2-1-G′, so that gauge coupling

unification would depend on further symmetry breaking and predictivity would be lost. These

considerations lead to the effective theory below Ms as given in Figure 10.

Note that we are able to go much further than conventional supersymmetric unification

which simply identifies a single scale Mu ≃ 2 × 1016 GeV as the threshold for unified physics.

We can determine both the compactification scale, Mc ≃ 5× 1014 GeV, and the scale of strong

coupling, Ms ≃ 1 × 1017 GeV, and consequently the masses of all the KK modes of gauge
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0.080
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αexp
s

αGUT
s αSGUT

s αKK
s

SUSY log

KK log

Figure 11: The predictions for αs(MZ) in the three frameworks: non-supersymmetric grand
unification αGUT

s , supersymmetric grand unification αSGUT
s , and higher dimensional grand uni-

fication αKK
s . Solid error bars represent the threshold corrections from the superpartner spec-

trum. Dotted error bars for αGUT
s and αSGUT

s represent threshold corrections from the unified
scale corresponding to a heavy 5 + 5̄ representation with unit logarithmic mass splitting be-
tween doublets and triplets. The dotted error bar for αKK

s is the theoretical uncertainty (other
than from superpartner masses) for our theory, as estimated in Ref. [2].
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bosons, Higgs and matter in this energy interval.2 Apart from discrete choices, such as the

location of the quarks and leptons of the various generations, we determine the entire effective

theory that is valid over an energy range spanning a factor of 200.

In Figure 11 we show the effect of the logarithm from the KK modes in the minimal model —

the prediction is strikingly successful. Because the higher dimensional theory is valid over such

a large energy interval, the uncertainties to this correction are small, as shown in the figure.

The dominant uncertainty in the prediction now comes from the supersymmetric threshold,

which ultimately will be fixed by data.

At energies approaching Ms, our 5D effective theory will break down. It could be that a

higher dimensional structure emerges, such as that of Figure 7, with the vertical dimension

much less than the horizontal one. At this scale it may be possible to interpret the Higgs as

arising from a vector multiplet, for example as a component of the higher dimensional gauge

field [21, 26].

3.2 Yukawa coupling unification

In section 2 we have argued that heavier quarks and leptons should propagate in subspaces

of the bulk with lower dimension. In the minimal theory the heavy third generation should

reside at a boundary of the fifth dimension. To retain the SU(5) understanding of quantum

numbers, this should be the “SU(5) boundary” rather than the “3-2-1 boundary”, giving the

usual tree-level SU(5) mass relation: mb = mτ . In conventional unified theories the corrections

to this relation from running of the Yukawa couplings can be accurately computed, but there

are also corrections from both unknown physics at the unified scale, and from supersymmetric

corrections at the weak scale. In our theory the unified physics is known, and hence we can

compute the corrections at the unified scale. The resulting correction to the prediction for the

b quark mass is [3]
δmb

mb

≃ −5(4g2 − y2
t )

112π2
ln
Ms

Mc

. (7)

As in Eq. (6) for the radiative corrections to αs, the sign improves agreement with data.

However, unlike gauge coupling unification, the prediction for the b quark mass receives large

supersymmetric corrections [28], and hence we leave the comparison with data until section 4

where we incorporate supersymmetry breaking.

Since the minimal theory has only a single extra dimension, all of flavor cannot be un-

derstood in terms of volume factors. Nevertheless, some of the quarks and leptons will have

suppressed masses because they propagate in the bulk, and these light fermions will not exhibit

2Here and below, Mc represents the length scale of the extra dimension, Mc = (πR)−1, which is denoted as
M ′

c
in Refs. [2, 3].
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Figure 12: Locations of SU(5) matter, Higgs and gauge multiplets in the fifth dimension.

unified mass relations. For example, if the right-handed up quark, u, and electron, e, reside

in the bulk they will be the zero modes of a 10-dimensional representation of SU(5): T (u, e),

where the zero modes are written in parenthesis. However, in this case a light quark doublet q

does not arise from this multiplet; rather it arises from another 10-plet having boundary con-

ditions with opposite sign: T ′(q). This may appear to be a step backwards — the light quarks

and leptons are not as unified as in conventional SU(5). However, it can also be viewed as a

virtue: disastrous unified mass relations for light matter are avoided, while the understanding

for quark and lepton quantum numbers is preserved. To see the absence of a mass relation,

consider the fermion Yukawa couplings in the case where the right-handed down quark, d, and

the lepton doublet, l, are unified into the same 5-dimensional multiplet: F (d, l). In this case

the mass terms for the electron and down quark arise from two distinct interactions TFH̄ and

T ′FH̄, respectively, so there is clearly no SU(5) relation between these masses.

One plausible possibility is that the lightest two generations of 5-plets F1,2 are located on the

boundary, while the corresponding 10-plets T1,2 are bulk modes [3], as depicted in Figure 12.

There is no flavor distinction between the three F , so that large neutrino mixing angles are

expected. Small neutrino masses can be understood by introducing right-handed neutrinos

N1,2,3, through the conventional see-saw mechanism [29]. Flavor hierarchies in masses and

mixings arise from the T , both from volume factors [2, 26, 27, 15] and from distortions of

the wavefunctions caused by bulk mass terms [30]. Potential brane-localized anomalies are

canceled by a certain bulk term made out of the bulk gauge field [31]. This gives a larger

hierarchy for up-type quark masses (from TT ) than for down-type and charged lepton masses

(from TF ). The absence of unified relations amongst the lighter two generation quarks and

leptons is entirely due to T1,2 (which really represent T1,2(u, e) and T ′
1,2(q)).

3.3 Predictions for proton decay

In section 2 we saw that higher dimensional theories possess a U(1)R symmetry that forbids

proton decay from operators of dimension five resulting from the exchange of the colored triplet

Higgs. This R symmetry arises from a phase rotation of the coordinates of superspace — it is
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an unavoidable consequence of supersymmetry in the higher dimensional bulk. In 4D super-

symmetric theories one must impose a discrete symmetry by hand to avoid baryon- and lepton-

number violation at the weak scale arising from the superpotential interactions udd, qdl, lle

and lh. In higher dimensional theories this parity can be understood as a subgroup of the

continuous R symmetry. Of course, one cannot prove that these interactions must be absent —

after all there might be an R symmetry breaking defect on the boundary; however, we can say

that in higher dimensional theories there is a very plausible origin for the conventional discrete

symmetry.

Do these theories predict proton stability? No — in general the heavy gauge bosons of the

unified theory can induce proton decay, and hence we must study the masses and couplings

of these gauge bosons in models of interest. In the 5D SU(5) theory there is a KK tower of

X gauge bosons with the lightest mode having mass 1/2R = πMc/2. We have seen that a

calculable weak mixing angle requires a large value of Ms/Mc, and therefore a small value for

Mc. The observed values of the gauge couplings strongly suggest that Ms is the scale of strong

coupling, so thatMc ≃ 5×1014 GeV. Hence this gauge boson has about the same mass as in the

4D Georgi-Glashow SU(5) theory. It appears that we have come around a full circle, and are

excluded, like the non-supersymmetric SU(5) theory, by searches for proton decay. However,

we have not yet investigated the couplings ofX in the 5D theory. We have argued that since the

electron and up quark are so light they should reside in the bulk; thus these states are described

by two 10-plets T1(u, e) and T ′
1(q). This means that the conventional interactions of the X

boson, q†uX, e†qX are not generated by the bulk gauge interactions of the 5D theory, at least

for the lightest generation, and hence in the absence of CKM mixing between the generations

the proton would be stable [1]. The mode expected from CKM mixing is p → K+ν̄, but the

rate is now highly dependent on the flavor structure of the theory [15, 32], and while the rate

is no longer too large, it is not guaranteed to be in reach of future detectors.

Remarkably there is an additional source for the q†uX, e†qX interactions. They result

from a boundary localized contribution to the gauge interactions, and therefore have a size

which is suppressed relative to the usual gauge coupling by the volume factor Mc/Ms. The

proton lifetime cannot be precisely predicted since the boundary gauge interaction involves

a dimensionless coupling that is not predicted. If this coupling is of order unity then τp ≈
1034 years, with comparable branching ratios for the decay modes e+π0, µ+π0, e+K0, µ+K0, π+ν̄

and K+ν̄ [3]. The most promising discovery mode is e+π0. A large mixing angle between F1

and F2 implies that the e+π0 and µ+π0 modes have comparable branching ratios and that

Γ(p→ µ+π0)

Γ(p→ e+π0)
≃ Γ(p→ e+K0)

Γ(p→ µ+K0)
, (8)

independent of the sizes of hadronic matrix elements [3]. This analysis for proton decay depends
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Figure 13: The breaking of supersymmetry by the misalignment of boundary defects.

on matter location, but is completely independent of supersymmetry breaking.

4 Supersymmetry Breaking

Theories with weak scale supersymmetry will lead to a plethora of new particles and couplings

to be measured in the TeV domain. The supersymmetry breaking interactions, like the gauge

and Yukawa interactions, may encode information about the unified theory [33]. For this to

happen they must remain as local interactions up to the unification scale — we say that the

messenger scale of supersymmetry breaking must be at least as large as the unification scale. If

this happens in higher dimensional theories, then the soft supersymmetry breaking operators

will provide a window on the physics of the bulk [3]. In particular, the flavor symmetry of

the bulk SU(5) gauge interactions U(3)T × U(3)F will be modified by the locations of the

three T and three F fields. This will lead to non-universal squark and slepton masses, and to

flavor changing neutral currents from superpartner exchange, allowing experiment to probe the

geometry and matter locations in the bulk.

Such signals will depend on the mechanism for supersymmetry breaking. In this section

we discuss the possibility that boundary conditions in the bulk break supersymmetry as well

as the unified gauge symmetry [34]. In the minimal 5D SU(5) model there is a unique way

to accomplish such a breaking [35]. In the 5D bulk there are two independent supersymmetry

transformations and they form a doublet of the SU(2) R symmetry. However, the boundaries

are four dimensional and can support only a single supersymmetry. Thus the boundaries can

be viewed as defects in the space of supersymmetry transformations, and the key question is

whether the two supersymmetries, S and S ′, respected by the two boundaries are the same or

not, as illustrated in Figure 13. In the limit that the relative orientation angle α vanishes, S ′ = S

and the single supersymmetry S is preserved everywhere and must therefore be a symmetry

of the low energy 4D theory. On the other hand, if there is a misalignment of the two defects

characterized by a non-zero value of α, then supersymmetry is broken in the low energy theory,
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with the supersymmetry breaking mass scale given by m̃ = αMc. The appearance of the

continuous parameter α describing the defects represents an important difference compared

with the case of SU(5) gauge symmetry breaking, where the breaking scale is necessarily Mc.

The parameter α can also be viewed as the vacuum condensation of a component of the higher

dimensional gravitational supermultiplet [36], implying that the supersymmetry breaking is

spontaneous and the hierarchy of the scales, m̃≪ Mc, can naturally be obtained.

The tree-level form of the supersymmetry breaking soft operators is very simple [3]. All

bulk superpartners have mass m̃, all boundary-located superpartners are massless, and the size

of the trilinear scalar interaction is m̃, 2m̃ or 3m̃, counting the number of bulk scalars:

Lsoft = −1

2
(m̃λλ+ h.c.) − m̃2h†h− m̃2f̃ †

B f̃B

+
(

yfm̃f̃bf̃bh+ 2yfm̃f̃B f̃bh + 3yfm̃f̃Bf̃Bh+ h.c.
)

, (9)

where λ, h, f̃B and f̃b collectively represent the gauginos, two Higgs doublets, squarks/sleptons

in the bulk and squarks/sleptons on the brane, respectively, and yf is the value of the corre-

sponding Yukawa coupling. Since supersymmetry breaking effects from boundary conditions

are shut off above the compactification scale, the soft supersymmetry breaking masses in Eq. (9)

must be regarded as the running mass parameters at the compactification scale Mc. Inciden-

tally, this type of theory can also generate the weak-scale µ and B terms naturally through the

vacuum readjustment mechanism [37].

Applying these results to the minimal model yields two immediate consequences: first the

flavor changing neutral current effects induced by superpartner exchange are too large unless

the squarks (sleptons) of the first two generations are degenerate. This means that T1 and T2

must have the same location, and similarly for F1 and F2. When coupled with constraints from

proton decay and from fermion mass relations, the location assignments of Figure 12 become

unique. Hence, we are now able to predict that the neutrino mixing angles are large. Secondly

the Higgs potential and superpartner masses are determined in terms of only three parameters

m̃, µ and B. After fixing the Z mass the two independent parameters can be taken to be m̃

and tan β, the ratio of the two Higgs vacuum expectation values. The entire superpartner and

Higgs spectrum is shown in Table 1 for two representative values of these parameters. The

mass of the lightest Higgs boson, h, includes one-loop radiative corrections from top quarks

and squarks. The sign and large size of the relevant scalar trilinear of Eq. (9) makes these

corrections large and the resulting Higgs boson becomes relatively heavy. The squarks and

sleptons from T3 and F1,2,3 are relatively light as they reside on the boundary and do not get

mass at tree level. For example, this makes l̃ lighter than ẽ. The two lightest superpartners are

the scalar tau and the bino. Either could be the LSP, and hence collider signals involve either

stable charged particle tracks or missing transverse energy [3].
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m̃ 300 400
tanβ 5 10
g̃ 699 911
χ̃±

1 251 334
χ̃±

2 427 531
χ̃0

1 130 175
χ̃0

2 251 334
χ̃0

3 417 518
χ̃0

4 422 528
q̃ 701 915
ũ 675 880

d̃ 602 780

l̃ 209 277
ẽ 317 422
t̃1 425 547
t̃2 619 780

b̃1 563 727

b̃2 601 774
τ̃1 106 126
τ̃2 214 280
h 118 128
A 552 690
H0 553 690
H± 558 695

αs(MZ) {±0.003} 0.119 0.118
mb(MZ) {±0.10} 3.37 3.26

Br(µ→ eγ) 6 × 10−12 8 × 10−12

Br(µ→ 3e) 4 × 10−14 5 × 10−14

Cr(µ→ e; 48
22Ti) 4 × 10−14 5 × 10−14

Br(τ → µγ) 1 × 10−8 1 × 10−8

Table 1: Predictions for the superpartner spectrum, the Higgs spectrum, gauge and Yukawa
unification, and lepton flavor violating processes. The predictions are for two representative
values of m̃ and tanβ, and all masses are given in GeV. Mass eigenvalues are given for the gluino,
g̃, the charginos, χ̃±, the neutralinos, χ̃0, the squarks and sleptons of the third generation,
t̃1,2, b̃1,2 and τ̃1,2, and the Higgs bosons, h,A,H0 and H±. For the first two generations of
squarks and sleptons the masses are shown for q̃, ũ, d̃, l̃ and ẽ and do not include contributions
from electroweak D terms.
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Figure 14: A comparison of the prediction of the b quark mass from Yukawa unification with
experiment. The prediction from conventional 4D unification, without supersymmetric thresh-
old corrections is too large. In the minimal 5D SU(5) theory, the unified corrections of Eq. (7)
bring the prediction within 1σ of the data. If supersymmetry is broken by boundary condi-
tions, the superpartner corrections are linear in tanβ and bring complete agreement with data.
Values of tanβ larger than about 20 are disfavored by lepton flavor changing processes.
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Now that the superpartner spectrum is known, the supersymmetric threshold correction for

the b quark mass prediction from Yukawa unification can be calculated. Since we are computing

the correction to a dimensionless Yukawa coupling, m̃ drops out and the result depends only

on tan β: the fractional correction to the b quark mass is −0.006 tanβ if the µ parameter is

negative. The prediction for mb(MZ) is shown in Figure 14, including the unified threshold

corrections of Eq. (7). The supersymmetric threshold correction to the QCD coupling can also

be calculated, and these predictions may be written in the compact form [3]

αs(MZ) =

(

0.1182 − 0.0030 ln
m̃

400 GeV
− 0.0019 ln

Ms/Mc

200

)

± 0.003, (10)

mb(MZ) =

(

3.26 − 0.022 (tanβ − 10) − 0.026 ln
Ms/Mc

200

)

± 0.1 GeV, (11)

where we have also included the finite correction to αs(MZ) from Mc, calculated using dimen-

sional regularization [38].

The third generation squarks and sleptons are massless at tree level since they reside on the

boundary, while the squarks and sleptons of the first two generations of T have a tree level mass

m̃ as they propagate in the bulk. This means that the U(3)T flavor symmetry is broken to U(2)T

at tree level in the superpartner spectrum. The flavor changing effects triggered by this flavor

symmetry breaking are expected to be larger than in conventional supersymmetric unification

with gravity mediated supersymmetry breaking, where such flavor breaking occurs only through

top quark radiative corrections [33, 39, 40]. The signals are particularly important in the lepton

sector. By rotating to a mass eigenstate basis for charged leptons, while maintaining diagonal

scalar mass-squared matrices, we can go to a basis where the lepton flavor violation appears

only via a single new mixing matrix W e in the lepton-slepton-gaugino interaction:

LLFV = −
(√

2g′eW e†ẽ†b̃+ h.c.
)

, (12)

and in Higgs interactions. Here, b̃ represents the U(1)Y gaugino and

W e = Re
23R

e
12 =







ce12 −se
12 0

se
12 c

e
23 ce12 c

e
23 −se

23

se
12 s

e
23 ce12 s

e
23 ce23





 , (13)

where ceij ≡ cos θe
ij and se

ij ≡ sin θe
ij . Therefore, we find a remarkable result that all the lepton

flavor violating processes are completely described by two angles, θe
12 and θe

23, as far as the

charged lepton sector is concerned.

The gaugino exchange diagram for µ→ eγ is shown in Figure 15. Including other one-loop

contributions, we find the branching ratio to be [3]

Br(µ→ eγ) ≃ 3 × 10−11

(

200 GeV

m̃

)4
( |W e

τµ|
0.04

)2 ( |W e
τe|

0.01

)2 (

tan β

5.0

)2

. (14)
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Figure 15: A Feynman diagram contributing to µ→ eγ.

Here, we have normalized elements of the new mixing matrix W e by the corresponding values in

the CKM matrix. This is well motivated because W e comes from a rotation of the right-handed

charged leptons e, and the rotation of e is expected to be similar to that of the left-handed

quarks q, which determines the CKM matrix.

The prediction given in Eq. (14) is very interesting, since it gives a number close to the

present experimental bound Br(µ → eγ) <∼ 1.2 × 10−11 [41]. While we expect an uncertainty

of a factor of a few in the estimate of Eq. (14), we can still say that the present µ→ eγ decay

experiment has already probed the theory up to about m̃ ≃ 200 GeV (300 GeV) for tanβ = 5

(10). Furthermore, a new experiment is under construction at PSI which aims for a sensitivity

to Br(µ → eγ) at the 10−14 level [42]. From Eq. (14), Br(µ → eγ) <∼ 10−14 corresponds

to m̃ >∼ 1.5 TeV (2 TeV) for tanβ = 5 (10), so that this experiment will probe essentially

all the parameter region of the theory where radiative electroweak symmetry breaking occurs

naturally.

Another important lepton flavor violating process is τ → µγ decay, which is predicted as

Br(τ → µγ) ≃ 5 × 10−8

(

200 GeV

m̃

)4
( |W e

τµ|
0.04

)2 ( |W e
ττ |

1.0

)2 (

tanβ

5.0

)2

. (15)

The present experimental bound comes from CLEO: Br(τ → µγ) <∼ 1.1 × 10−6 [43]. The

B factories at KEK and SLAC will improve the bound to the level of 10−7. Note that the

combination of lepton flavor violation mixing angles, θe
ij , appearing in Eq. (15) is different from

that in Eq. (14). Therefore, in principle, we can determine all the lepton flavor violation mixing

angles, θe
12 and θe

23, by measuring both µ → e and τ → µ transition rates, if we know m̃ and

tan β from independent measurements of the superparticle spectrum. These branching ratios,

together with the branching ratio for µ→ eee and the rate for µ→ e conversion, are shown [3]

in Table 1 for two representative values of m̃ and tan β.
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5 Conclusions

We have proposed an alternative framework for physics at the scale of unification of the strong

and electroweak interactions. The three pillars of physics beyond the standard model — grand

unification, supersymmetry and extra dimensions — are combined in a way that allows cal-

culations to a new level of precision. There are two keys to this framework: breaking of the

unified gauge symmetry by local defects and the validity of the higher dimensional theory over

a large energy range. The framework is illustrated in Figure 5. The geometrical breaking of

gauge symmetry leads to a new constrained set of theories, and a high degree of calculability

follows because the effective theory is valid up to the high energy scale of strong coupling and

the spectrum of KK modes is determined.

Local gauge symmetry breaking defects could be viewed as a step backwards: the Higgs

mechanism provides a dynamical origin for symmetry breaking resulting from an underlying

theory that is completely symmetrical. Defects represent explicit local breaking of gauge sym-

metry. They arise from the assumed form for boundary conditions on the fields in extra di-

mensions, which are presumably to be determined by a more fundamental theory. However, in

practice we find that the symmetry breaking boundary conditions provide a simple and elegant

description of nature, making the Higgs fields and Higgs potentials of realistic 4D grand unified

theories appear complicated and cumbersome.

The defect framework elegantly solves outstanding problems of 4D unification, and the sim-

plest model fits the data with extraordinary accuracy. The mass splitting of Higgs doublets and

triplets is a necessary consequence of a bulk Higgs multiplet, proton decay from dimension five

operators is forbidden by a spacetime symmetry of the bulk, and quark-lepton mass relations

occur only for the heavy generation located on a symmetrical boundary.

The minimal model has an SU(5) gauge symmetry in a 5D bulk, valid over the energy

interval Mc ≃ 5 × 1014 GeV to Ms ≃ 1 × 1017 GeV, as shown in Figure 10. The single 3-2-1

point defect leads to a revised picture of gauge coupling unification, illustrated in Figures 6

and 11. Since the physics between Mc and Ms is known, unified threshold corrections can be

computed, yielding a successful prediction for the weak mixing angle of extraordinary precision:

sin2 θw = 0.2313 ± 0.0004. Proton decay by X gauge boson exchange is governed by the scale

Mc, and a lifetime of order 1034 years is expected for the mode e+π0. Predictions for other

modes can also be made.

Further predictions depend on how supersymmetry is broken, and we have explored the

consequences of having this breaking also follow from boundary defects in the same extra

dimension. There are two supersymmetries in 5D, but the boundaries of the fifth dimension

can support only a single supersymmetry. If there is a misalignment of the supersymmetries

at the two boundaries by a small angle α, as shown in Figures 13, supersymmetry is broken
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in the low energy 4D theory by an amount m̃ = αMc. The entire superpartner spectrum can

then be predicted in terms of m̃ and tan β, as shown in Table 1. Furthermore, large tree-level

lepton flavor violation is expected, leading to observable rates for µ→ e and τ → µ transitions.

Finally, the supersymmetric threshold corrections to the quark-lepton mass relation mb/mτ can

be computed. In the minimal 5D model this result is more successful than in the case of 4D

unification, and is shown in Figure 14.
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