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Epigenome‑wide association study 
and epigenetic age acceleration 
associated with cigarette smoking 
among Costa Rican adults
Andres Cardenas1*, Simone Ecker2, Raj P. Fadadu3, Karen Huen1, Allan Orozco4, 
Lisa M. McEwen5, Hannah‑Ruth Engelbrecht6, Nicole Gladish6, Michael S. Kobor6, 
Luis Rosero‑Bixby7, William H. Dow8 & David H. Rehkopf9

Smoking‑associated DNA methylation (DNAm) signatures are reproducible among studies of mostly 
European descent, with mixed evidence if smoking accelerates epigenetic aging and its relationship 
to longevity. We evaluated smoking‑associated DNAm signatures in the Costa Rican Study on 
Longevity and Healthy Aging (CRELES), including participants from the high longevity region of 
Nicoya. We measured genome‑wide DNAm in leukocytes, tested Epigenetic Age Acceleration (EAA) 
from five clocks and estimates of telomere length (DNAmTL), and examined effect modification by 
the high longevity region. 489 participants had a mean (SD) age of 79.4 (10.8) years, and 18% were 
from Nicoya. Overall, 7.6% reported currently smoking, 35% were former smokers, and 57.4% never 
smoked. 46 CpGs and five regions (e.g. AHRR, SCARNA6/SNORD39, SNORA20, and F2RL3) were 
differentially methylated for current smokers. Former smokers had increased Horvath’s EAA (1.69‑
years; 95% CI 0.72, 2.67), Hannum’s EAA (0.77‑years; 95% CI 0.01, 1.52), GrimAge (2.34‑years; 95% 
CI1.66, 3.02), extrinsic EAA (1.27‑years; 95% CI 0.34, 2.21), intrinsic EAA (1.03‑years; 95% CI 0.12, 
1.94) and shorter DNAmTL (− 0.04‑kb; 95% CI − 0.08, − 0.01) relative to non‑smokers. There was 
no evidence of effect modification among residents of Nicoya. Our findings recapitulate previously 
reported and novel smoking‑associated DNAm changes in a Latino cohort.

Cigarette smoke causes adverse health outcomes; however, smoking cigarettes remains a common behavior 
around the  world1. The smoke is comprised of a complex chemical mixture of over 7000 compounds, includ-
ing multiple known human  carcinogens2. Smoking is a major environmental risk factor for the development of 
respiratory and cardiovascular illnesses, including chronic obstructive pulmonary disease and coronary heart 
 disease3,4. Smoking cigarettes has deleterious effects on multiple organs throughout the body and is both the larg-
est preventable cause of cancer-related  deaths5–7 and the leading intervenable cause of death in the United States, 
greater than diet and physical activity patterns  combined8,9. Biological pathways implicated in the smoking-
induced pathogenesis of diseases include inflammation, oxidative stress, cellular apoptosis, extracellular matrix 
destruction, and impaired cellular  signaling10,11. Growing evidence suggests that both direct DNA damage and 
epigenetic mechanisms play major roles in smoking-associated diseases.

A common epigenetic modification is DNA methylation, the addition of a methyl group to a cytosine nucleo-
tide followed by a guanine (CpG), which can regulate gene expression. Multiple epigenome-wide association 
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studies (EWAS) conducted in blood samples have shown that adult cigarette smoking is associated with altered 
DNA methylation patterns of leukocytes across cohorts of mostly European  descent12–18. These smoking-associ-
ated changes in DNA methylation may contribute to an increased risk for poor health outcomes among smokers. 
For example, studies have consistently found hypomethylation of the F2RL3 (coagulation factor II receptor-like 3) 
and AHRR (aryl hydrocarbon receptor repressor) genes in smokers compared to non-smokers, which, in turn, has 
been associated with reduced lung function and increased  mortality13,19–22. Most studies and meta-analyses have 
tested DNA methylation changes with the 450K methylation array (Infinium HumanMethylation450 BeadChip; 
Illumina), and only few have used the newer and more comprehensive 850K methylation array (Infinium Human-
Methylation EPIC BeadChip; Illumina), which may provide further  insights23. Furthermore, the reproducibility 
of smoking-associated DNA methylation signatures in non-Caucasian populations is not well established.

Other important biomarkers to elucidate the effects of environmental exposures, specifically on the aging 
process and age-related diseases, are epigenetic clocks. Epigenetic clocks use DNA methylation levels of age-
associated CpG sites to estimate an epigenetic age that can then be compared to chronological age in order to 
determine age acceleration, a measure of biological  aging24. Among adults, increased epigenetic age accelera-
tion is associated with factors like an unhealthy diet, lack of exercise, and lifetime stress and has been shown 
to help evaluate susceptibility to diseases like lung  cancer25–28. Several epigenetic clocks have been developed 
in order to include epigenetic markers in specific or multiple tissues and improve predictive performance for 
specific aging measures, morbidity, or mortality. These include the Hannum  blood29, Horvath Pan  Tissue24, 
Skin-Blood30,  PhenoAge31, and  GrimAge32 clocks. Additionally, telomere length can be estimated from DNA 
methylation (DNAmTL), which more closely correlates with chronological age relative to measured telomere 
 length33. The GrimAge clock is particularly successful at predicting mortality associated with factors like smoking 
and  obesity32. Unlike the other clocks, GrimAge was trained on smoking pack-years and includes chronological 
age in its input. Cigarette smoking has recently been shown to be associated with increased age acceleration in 
respiratory tissues, which may be reversed by smoking  cessation34.

Overall, there is a lack of EWAS data and epigenetic age acceleration studies on smoking conducted with 
diverse populations, including Latinos, in which three of the top five populations-specific causes of death—can-
cer, stroke, and heart disease—are all associated with  smoking35. Studying the epigenetic effects of smoking in 
a Latino population could contribute to characterizing health disparities this group  experiences36,37 as well as 
assess the generalizability of findings from other studies, as epigenetic analyses on the effects of smoking have 
been found to differ by ethnic  groups14. In this study, we investigated DNA methylation patterns of current and 
former smokers compared to non-smokers in people living in Costa Rica in order to address the lack of studies 
in Latino populations. The study population includes participants from the Nicoya peninsula: a “Blue Zone” 
characterized by exceptionally high longevity compared to the rest of Costa Rica and the  world38,39. We also use 
multiple epigenetic aging biomarkers to understand how smoking may impact biological aging of participants. 
We hypothesized that most previously identified smoking signatures would be generalizable to this Latino cohort 
and that study participants from the high longevity region would exhibit epigenomic resiliency to smoking-
associated epigenetic changes and epigenetic age acceleration.

Methods
Data collection and sample preparation. The study participants were selected from The Costa Rican 
Study on Longevity and Healthy Aging (CRELES) cohort; the study protocol has been previously  described40–42. 
Briefly, CRELES is a prospective longitudinal study of a nationally representative sample of 2827 residents of 
Costa Rica who were age 60 years and older at baseline in 2004–2006, with a second wave of interviews and 
data collection in 2006–2008. Information from a CRELES-complementary sample of Nicoyan quasi-centenar-
ians (age 95 and above) were also collected. All data, examinations, and specimens were taken in the partici-
pants’ homes, and details about sample, field, and laboratory procedures have been previously  reported40,41. The 
Ethical Science Committee of the University of Costa Rica granted human subjects approval to CRELES (VI-
763-CEC-23-04). All participants granted written informed consent by means of their signature and the study 
was conducted according to the guidelines laid down in the Declaration of Helsinki.

We randomly selected 512 individual samples from both wave 1 and wave 2 blood samples for DNA meth-
ylation (DNAm) analysis. We ascertained smoking behavior by interviews and classified participants as current 
smokers if they reported smoking > 100 cigarettes in their lifetime as well as currently smoking at the study visit. 
Former smokers reported smoking > 100 cigarettes in their lifetime but not currently smoking at the study visit, 
while non-smokers reported not smoking over > 100 cigarettes in their lifetime and currently not smoking. We 
also investigated ever smoking (> 100 cigarettes in their lifetime) vs. non-smokers for comparability with previ-
ous studies.

DNA methylation measurements. Whole blood samples were collected via venipuncture and processed 
at the University of Costa Rica, as previously  described43. Genomic DNA was extracted from 2 mL of frozen 
whole blood using the phenolchloroform method. DNA was bisulfite converted with the Zymo Research EZ 
DNA Methylation™ Kit (Irvine, CA, USA). Bisulfite-converted DNA from each sample was randomized across 
Infinium MethylationEPIC BeadChips as well as sentrix row and run in one batch according to the manufac-
turer’s protocol (San Diego, CA, USA)42.

We processed raw DNA methylation image files using the R statistical software (www.r- proje ct. org/) and 
several Bioconductor  packages44 including the minfi pipeline for quality  control45. All samples had median 
methylated and unmethylated log-intensities above a threshold considered to be of good quality (> 10.5). We 
used functional normalization with 3 principal components capturing > 90% of the variation in the control probes 
to normalize samples. We chose this normalization method given that participants came from two geographic 
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regions in Costa Rica, and we expected genetic ancestry differences that could influence DNA methylation 
by region. A total of 512 samples were analyzed, and 12 samples were identified as outliers based on principal 
component  analyses29 or by having ≥ 5% of CpGs with non-significant detection (P > 1 ×  10–16). We also removed 
3 samples mismatched on recorded sex and 8 technical replicates, leaving a total of 489 samples. Data from the 
489 participants from waves 1 (n = 274) and 2 (n = 215) were included after quality control. We removed 59 SNP 
probes, probes with < 3 beads or with a non-significant detection (P > 1 ×  10–16) in ≥ 1% of samples, removing a 
total of 22,261 non-reliable probes. We further removed 18,474 probes in XY chromosomes and 25,395 poly-
morphic probes containing a SNP at the CpG site or single base extension with a minor allele frequency > 1%. We 
removed 9671 autosomal probes that cross-hybridize to sex  chromosomes46. A total of 790,058 high quality CpGs 
were used in statistical analyses. Finally, we corrected for sample plate, row (position within the array), and chip 
using  ComBat47. We visualized the density distributions for samples at all processing steps and performed prin-
cipal components (PC) analyses to examine the associations of methylation differences with technical, biological, 
and measured traits with global DNA methylation variation. For each CpG site, methylation is reported as the 
average β-value, corresponding to an interval scaled quantity between zero and one interpreted as the fraction of 
DNA molecules whose target CpG is methylated. All results are presented on the β-value scale multiplied by 100 
to ease interpretability as percent change in DNA methylation. To estimate leukocyte composition as proportions, 
we used a reference panel of isolated leukocytes with the IDOL projection and Houseman  method48 to estimate 
cell-type proportions (CD8 + T cells, CD4 + T cells, NK, B-cells, monocytes, and neutrophils)49.

Genotyping of samples. Genotyping data was measured at 618,540 single nucleotide polymorphism 
(SNP) sites using the Infinium Global Screening Array (GSA) BeadChips according to the Illumina’s stand-
ard protocol (Illumina). GenomeStudio 2.0 Genotyping software was used to transform the raw intensity files 
into clusters, and subsequently genotype calls by producing cohort-specific clustering files and manifest GSA-
24v1-0_C1 (Version 1 A2, Illumina). We applied standard quality control procedures to the array, and SNPs with 
a MAF ≤ 5% were removed prior to performing PCA using pca (PCAtools). Horn’s analysis was used to deter-
mine how many PCs to retain (n = 2) using the paran function (MASS)50. Participants were ascribed the rotated 
PC1 and PC2 loadings to represent and control for genetic ancestry differences in subsequent analyses. After 
quality control, a total of 465 participants had complete DNA methylation and genetic ancestry data. EWAS of 
smoking adjusting for genotype PCs was restricted to the 465 participants with high quality DNA methylation 
and genotyping data.

Calculation of epigenetic aging biomarkers. Epigenetic age was calculated using five clocks: the Hor-
vath Pan Tissue, Horvath Skin-Blood, Hannum Blood, PhenoAge, and GrimAge clocks. We calculated all epi-
genetic aging biomarkers utilizing the online Horvath calculator (http:// dnama ge. genet ics. ucla. edu/) with the 
advanced analysis option. The outcome of interest was the “AgeAccelerationResidual” or residuals resulting from 
a linear regression model where each DNA methylation clock is regressed on chronological age of each par-
ticipant. We refer to all acceleration measures as Epigenetic Age Acceleration (EAA) for the specific clock and 
defined the residuals of the DNA methylation estimate of telomere length linearly regressed on chronological 
age as DNAmTL adjusted for age. A positive EAA indicates that the estimated epigenetic age is higher than 
the chronological age (increased biological aging) and a negative DNAmTL adjusted for age reflects a shorter 
telomere length. In addition, we tested Extrinsic EAA (EEAA) and Intrinsic EAA (IEAA) for Hannum’s and 
Horvath’s clocks,  respectively51. The EEAA measure is associated with age-related changes in blood cell counts 
due to immune system aging and is calculated by upweighting the contributions of age-associated blood cell 
counts (naive cytotoxic T cells, exhausted cytotoxic T cells, and plasmablasts). The IEAA measure is independ-
ent of blood cell counts, represents intrinsic cellular aging, and is calculated by adding immune cell counts in 
addition to chronological age when calculating regression residuals. Analyses of epigenetic clocks included the 
489 participants with high quality DNA methylation data.

Statistical analysis. We described our study sample using means and proportions for the variables ana-
lyzed and evaluated accuracy of all epigenetic aging biomarkers via their empirical correlation with chrono-
logical age as well as scatterplots. In a linear EWAS model, we compared current and former smokers to non-
smokers via limma52, with each individual CpG on the beta value scale while adjusting for sex, chronological 
age, BMI, education, household assets, the first two principal components from genetic data, and estimated 
cell-type composition. We report statistically significant results adjusted for multiple comparisons using both a 
Bonferroni correction of α = 0.05/790,058, or P < 6.33 ×  10–8 and by controlling the False Discovery Rate at 5% 
(FDR < 0.05). Additionally, we tested for Differentially Methylated Regions (DMRs) using DMRcate53 for the 
comparison of current to non-smokers as well as current to former smokers while adjusting for the same covari-
ates as individual linear models. To test for effect modification by region, we fitted a linear model that incor-
porated interactions between smoking status (current, former, and non-smokers) and residence in the Nicoya 
Peninsula as binary. We evaluated EWAS model fit by visualizing quantile–quantile plots of the observed vs. 
expected P-values and estimated the genomic inflation factor (λ). We used missMethyl54 to test for enrichment of 
differentially methylated sites across KEGG biological pathways. We summarized results using Manhattan and 
volcano plots of EWAS as well as a circular genomic plot. To test for EAA, we used linear regression to estimate 
mean differences between smoking groups across acceleration measures of epigenetic aging as the outcome. 
Namely, we tested the residuals of regressing each epigenetic clock on chronological age against self-reported 
smoking behavior (current, former and non-smokers). We also tested associations between ever smoking vs. 
never smoking for comparability with other studies of EAA. Effect modification was evaluated by fitting a mul-
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tiplicative term between smoking behavior and Nicoya residency in linear regression models of EAA. We report 
estimates and 95% confidence intervals (95% CI) as well as unadjusted P-values for EAA analyses.

Results
A total of 489 CRELES study participants had complete data and DNA methylation measurements (Table 1); they 
had a mean (SD) age of 79.4 years (10.8 years), and 90 (18.4%) lived in the high longevity region of the Nicoya 
Peninsula. Of all participants, 278 were female (57%), 37 (7.6%) reported currently smoking, 171 (35%) were 
former smokers, and 281 (57.4%) reported never smoking. The majority of participants only had an elementary 
school education (69%), and 97 participants (20%) had no formal education. To control for population stratifi-
cation, we adjusted EWAS models for two principal components from genome-wide SNP arrays, limiting these 
analyses to 465 study participants. These two principal components significantly differed between the regions 
(P < 1 ×  10–7), with region of residence explaining 28% and 8% of the variance for the first and second genetic 
principal components, respectively.

Epigenome‑wide association analyses (EWAS) of current smoking. In EWAS adjusted for sex, 
age, BMI, education, household assets, two principal components of genotypes, and estimated leukocyte com-
position, a total of 46 CpGs were differentially methylated when comparing current smokers to non-smokers, 
while adjusting for former smokers. Among the 46 CpGs with a FDR < 0.05, 26 CpGs were statistically significant 
using a Bonferroni adjusted threshold of P < 6.33 ×  10–8 (α = 0.5/790,058). A Manhattan plot, volcano plot, and 
circular genomic plot of EWAS results for current vs. non-smokers displaying genomic position, effect sizes and 
gene annotations are shown in Figs. 1, 2 and 3. Multiple of the top 30 differentially methylated CpGs from this 
analysis annotated to the same genes (AHRR, PRSS23, SIN3B, and F2RL3) and a region in chromosome 2 (chr2: 
233,283,010–233,286,229), and almost all were hypomethylated, as shown in Table 2. Among all 46 differentially 
methylated CpGs found with  a FDR < 0.05, 44 (96%) were hypomethylated (Table  S1 in Supplementary File 
1). The CpGs with the greatest increase (cg07943658; 4.0%) and decrease (cg05575921; − 12.49%) in methyla-
tion among current smokers were both annotated to the AHRR gene. A comparison of the CpGs found in our 
study across many others is available in Table S2 in Supplementary File 1. Five CpGs (cg04706667, cg06991517, 
cg13511253, cg18234441, and cg22812571) have not been previously reported to be differentially methylated 

Table 1.  Characteristics of participants from the Costa Rican Study on Longevity and Healthy Aging 
(CRELES) included in this study, overall and stratified by residents from the Nicoya Peninsula (Nicoyans) or 
non-residents (non-Nicoyans). Statistics presented are n (%) or mean (SD). *Missing genetic data for 24 study 
participants.

Participant characteristics Overall (N = 489) Non-Nicoyans (N = 399) Nicoyans (N = 90)

Sex

Male 211 (43%) 165 (41%) 46 (51%)

Female 278 (57%) 234 (59%) 44 (49%)

Level of education

None 97 (20%) 78 (20%) 19 (21%)

Elementary (1–6 years) 338 (69%) 270 (68%) 68 (76%)

Secondary (7–11 years) 27 (6%) 27 (7%) –

Post-Secondary (> = 12 years) 27 (6%) 24 (6%) 3 (3%)

Household assets (0–10) 7.99 (1.76) 8.13 (1.69) 7.36 (1.93)

BMI (kg/m^2) 25.2 (5.5) 25.7 (5.6) 23.4 (4.7)

Age, (years) 79.4 (10.8) 78 (10.4) 85.3 (10.9)

Smoking status

Current 37 (7.6%) 28 (7%) 9 (10%)

Former 171 (35%) 138 (34.6%) 33 (36.7%)

Never 281 (57.4%) 233 (58.4%) 48 (53.3%)

Genetic principal components (PCs)*

PC1 − 0.55 (32.69) − 8.51 (27.17) 37.11 (31.23)

PC2 0.11 (22.32) 3.11 (20.51) − 12.08 (23.06)

Missing – 15 (3.8%) 9 (10%)

Estimated leukocyte composition (%)

Neutrophils 54.5 (10.6) 54.7 (10.3) 53.9 (12)

NK 8.1 (3.3) 8 (3.2) 8.6 (3.3)

CD4 + -T 14.1 (5.2) 14.1 (5.3) 14.2 (5.1)

CD8 + -T 10.9 (5.0) 10.9 (5) 10.6 (4.9)

Monocytes 8.3 (2.4) 8.2 (2.2) 8.7 (2.9)

B-cells 5.3 (2.5) 5.3 (2.5) 5.4 (2.5)
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Figure 1.  Manhattan plot of epigenome-wide associations among current smokers relative to non-smokers (red 
line represents a Bonferroni corrected level of significance; blue line represents a false discovery rate of 5%).

Figure 2.  Volcano plot of the -log10(p-values) against adjusted regression coefficients for each CpG for the 
Epigenome-Wide Association Study comparing current smokers to non-smokers (red solid line represents a 
Bonferroni corrected level of significance; orange dotted line represents a false discovery rate of 5%).
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in other smoking-related studies, including large meta-analyses (Table  S2 in Supplementary File 1). Four of 
these novel CpGs were hypomethylated and annotated to the mitogen-activated protein kinase 4 (MAPK4), the 
heterogeneous nuclear ribonucleoprotein M (HNRNPM), and the prostaglandin  I2 receptor (PTGIR) genes. The 
remaining CpG was hypermethylated and annotated to the thioredoxin reductase 1 (TXNRD1) gene. The direc-
tionality of methylation—increased or decreased—for the remaining 41 sites is in alignment with prior findings 
in the literature, such as the large meta-analysis of Joehanes et al.55 and a recent analysis of samples evaluated 
with the EPIC array from Domingo-Relloso et al. (2020)  study55,56. The genomic inflation factor (λ = 1.05) and 
quantile–quantile plot of observed vs. expected P-value distribution show no major concerns for the analyses 
(Supplementary Figure S1).

EWAS of former smoking. For the adjusted EWAS comparing former to non-smokers while adjusting for 
current smoking, only one CpG site (cg05575921; AHRR) was found to have a significant association with smok-
ing, with a smaller magnitude of effect (− 2.93%). The quantile–quantile P-value and Manhattan plots for the 
EWAS of former smokers relative to non-smokers are shown in Supplementary Figures S2 and S3, respectively.

DMRs among current smokers and modification of associations by longevity region. Testing 
for DMRs yielded five DMRs hypomethylated among current smokers relative to non-smokers. Two DMRs 
annotated to the AHRR gene and a single DMR was observed for the F2RL3, the Small Nucleolar RNA, H/
ACA Box 20 (SNORA20), and Small Cajal Body-Specific RNA 6 (SCARNA6)/Small nucleolar RNA (SNORD55/
SNORD39) genes. Results of DMR analyses are shown in Table  3. No DMRs were found for former smok-
ers relative to non-smokers. Among the differentially methylated CpGs for current smokers relative to non-
smokers, three KEGG biological pathways were marginally enriched or overrepresented (Punadjusted < 0.05), with 
more than one gene differentially methylated: hsa05200 or “Pathways in cancer”, hsa04611 “Platelet activation,” 
and hsa04080 “Neuroactive ligand-receptor interaction.” However, these results did not survive multiple testing 
adjustments.

Figure 3.  Circular genomics plot for current vs. never smokers. From the outermost ring to the center: gene 
names, chromosome numbers, locations of CpG sites within each chromosome, and effect sizes of DNA 
methylation (blue points above the horizontal line of 0 represent hypermethylation; red points below the line 
represent hypomethylation).
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In EWAS analyses with interactions between smoking (current, former, and never) and longevity region 
residency, there was no statistical evidence that smoking related DNAm signatures differed between Nicoyan 
and non-Nicoyan smokers after adjusting for multiple testing (Supplementary Figure S4).

Correlation plots comparing each study participant’s epigenetic age, as determined by five different epigenetic 
clocks, DNAmTL biomarker, and chronological age are displayed in Fig. 4. Overall, there were strong, positive, 
and significant correlations between chronological age and epigenetic age for the Horvath Pan Tissue (r = 0.76), 
Skin-Blood (r = 0.87), Hannum Blood (r = 0.82), PhenoAge (r = 0.77), and the GrimAge (r = 0.88) clocks. Of 
note, the GrimAge clock includes chronological age as an input. A moderate negative correlation was observed 
between DNAmTL estimates and chronological age (r = − 0.57). As expected, the EAA measures were uncor-
related with chronological ages.

Table 2.  Top 30 differentially methylated CpGs for current smokers relative to non-smokers, ranked by 
smallest P-value and sorted by chromosome and position. a Linear regression models adjusted for sex, age, 
BMI, education, household assets, two principal components from genetic data, and estimated cell-type 
composition (CD8 + -T, CD4 + -T, NK, B-cell, monocytes, and neutrophils).

CpG CHR Position UCSC Gene Name
Adjusted %-DNA 
methylation  differencea FDRP-value Relation to Island Gene region

cg17087741 2 233283010 − 2.75 2.92E−13 N_Shore

cg03329539 2 233283329 − 3.56 1.15E−03 N_Shore

cg21566642 2 233284661 − 10.18 8.24E−15 Island

cg01940273 2 233284934 − 6.61 5.29E−12 Island

cg22812571 2 233286229 − 6.17 6.05E−04 S_Shore

cg08064403 3 98240258 CLDND1 − 1.46 3.58E−04 N_Shore Body

cg19859270 3 98251294 GPR15 − 1.76 3.89E−11 OpenSea 1st Exon

cg04180924 3 98272064 − 0.67 1.96E−03 OpenSea

cg02978227 3 98292027 − 2.54 8.86E−09 OpenSea

cg07943658 5 352001 AHRR 4.03 1.43E−03 OpenSea Body

cg05575921 5 373378 AHRR − 12.49 1.35E−32 N_Shore Body

cg04551776 5 393366 AHRR − 2.48 2.94E−04 OpenSea Body

cg25648203 5 395444 AHRR − 3.81 3.54E−13 OpenSea Body

cg21161138 5 399360 AHRR − 3.71 6.23E−06 OpenSea Body

cg14466441 6 11392193 − 2.52 1.26E−08 OpenSea

cg24859433 6 30720203 −3.39 3.54E−07 OpenSea

cg15342087 6 30720209 − 2.62 1.63E−04 OpenSea

cg26768182 9 134272679 − 2.18 1.21E−03 S_Shelf

cg10750182 10 73497514 C10orf105 − 2.33 2.16E−03 OpenSea 5’ UTR 

cg11660018 11 86510915 PRSS23 − 3.76 2.22E−03 N_Shore TSS1500

cg14391737 11 86513429 PRSS23 − 7.79 8.86E−09 S_Shore 5’ UTR 

cg00475490 11 86517110 PRSS23 − 2.85 1.91E−03 OpenSea 5’ UTR 

cg05284742 14 93552128 ITPK1 − 2.34 1.65E−04 OpenSea Body

cg18110140 15 75350380 − 4.69 2.98E−04 OpenSea

cg17739917 17 38477572 RARA − 5.71 1.26E−07 S_Shelf 5’ UTR 

cg03384915 19 16986822 SIN3B − 1.16 2.50E−04 Island Body

cg14712058 19 16988083 SIN3B − 2.49 1.86E−03 N_Shore Body

cg21911711 19 16998668 F2RL3 − 5.26 6.36E−04 N_Shore TSS1500

cg03636183 19 17000585 F2RL3 − 6.84 3.54E−13 N_Shore Body

cg05086879 22 39861490 MGAT3 − 3 1.63E−04 OpenSea 5’UTR 

Table 3.  Differentially methylated regions (DMRs) associated with current smoking status relative to non-
smokers.

Chromosome Start End Width CpGs Stouffer P-value
Mean %-DNAm difference 
at DMR Overlapping genes

chr2 233283010 233286229 3220 12 3.23 ×  10–13 − 3.29 SCARNA6, SNORD39

chr5 373378 374093 716 3 5.38 ×  10–7 − 4.34 AHRR

chr5 395444 395717 274 2 9.30 ×  10–5 − 2.08 AHRR

chr6 30719807 30720484 678 6 0.017 − 1.64 SNORA20

chr19 17000585 17001002 418 3 0.022 − 2.29 F2RL3
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Epigenetic age acceleration for ever versus never smokers. To compare our data to previous 
reports, we first tested differences in epigenetic age acceleration when comparing ever smokers, that included 
current and former smokers, to never-smokers (Fig. 5A); the data are also displayed in Supplementary Table S3. 
The highest epigenetic age acceleration among ever smokers was found for the GrimAge clock (3.07 years, 95% 
CI 2.41, 3.74), which incorporates DNA methylation estimated smoking pack-years in its calculation, so this 
was expected. All clocks showed the same trend of increased age acceleration among smokers, with the Horvath 
Clock and Extrinsic EAA measure demonstrating significantly increased EAA: 1.24 years (95% CI 0.32, 2.16) 
and 1.15 years (95% CI 0.27, 2.03), respectively. Additionally, smokers had on average 0.04 kb shorter (95% 
CI − 0.07, − 0.01) DNA methylation estimates of telomere length residuals after adjusting for chronological 
age. Similar results were observed when stratifying models with participants from the Nicoya region, with the 
exception that PhenoAge was significantly accelerated among ever smokers compared to non-smokers from 
the Nicoya Peninsula (2.11 years; 95% CI 0.14, 4.08) but not in the other region (P = 0.44). However, no effect 
modification of smoking on epigenetic aging was observed for the longevity region in multiplicative interaction 
models (P > 0.05).

Epigenetic age acceleration for current and former smokers. Furthermore, we tested differences 
between current and former smokers relative to non-smokers across all age acceleration measures (Fig. 5B,C) 
and stratified by Nicoya residence (Table  S4). Epigenetic age acceleration estimates among current smokers 
relative to non-smokers were not statistically significant, inconsistent in directionality, and relatively weak in 
strength, except for GrimAge, which was expected due to the incorporation of pack-years in its calculation. For 
former smokers, acceleration measures for the Horvath Pan Tissue, Hannum Blood, EEAA, and IEAA measures 
were positive and statistically significant: 1.69 years (95% CI 0.72, 2.67), 0.77 years (95% CI 0.01, 1.52), 1.27 years 
(95% CI 0.34, 2.21), and 1.03 (95% CI 0.12, 1.94), respectively. Overall, the greatest age acceleration was again 
observed for the GrimAge clock: 6.36 years (95% CI 5.14, 7.58) for current smokers and 2.34 years (95% CI 
1.66, 3.02) for former smokers. After regressing age out from DNAmTL, a 0.04 kb lower (95% CI − 0.08, − 0.01) 
estimate was observed among former smokers compared to current smokers. No significant effect modification 
was observed for the relationship between smoking and epigenetic aging markers by longevity region residency 
(P > 0.05).

Overall, stratified results were consistent between Nicoyans and non-Nicoyans despite the sample size of the 
former group. However, the EAA for the PhenoAge clock was significantly accelerated, 2.28 years (95% CI 0.11, 
4.44) among former smokers in Nicoya compared to 0.39 years (95% CI − 0.58, 1.36) for former smokers not 
from Nicoya. Some prior studies have found negative and/or insignificant differences in age acceleration when 
using whole blood samples from former, current, and never smokers, as summarized in Supplementary Table S5.

Figure 4.  Scatterplots and correlation coefficients of DNA methylation aging biomarkers (epigenetic clocks) 
and chronological age in years: (A) Horvath’s Clock, (B) Horvath’s Skin-Blood Clock, (C) Hannum’s Clock, (D) 
PhenoAge Clock, (E) GrimAge Clock, and (F) Horvath’s DNAm telomere length (DNAmTL).
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Discussion
In this study of a Latino adult population living in Costa Rica, including residents from the high longevity 
region of the Nicoya Peninsula, we investigated associations between current, former, and never smoking status 
with DNA methylation signatures and epigenetic age acceleration. Our findings replicated previously reported 
associations within the AHRR, PRSS23, SIN3B, and F2RL3 genes and found 5 novel signatures, which annotated 
to the MAPK4, HNRNPM, PTGIR, and TXNRD1 genes. Lastly, our results provided strong support that former 
smokers have accelerated epigenetic aging for Horvath’s and Hannum’s epigenetic clocks as well as extrinsic and 
intrinsic measures of aging. Consistently, former smokers had shorter DNA methylation estimates of telomere 
length adjusted for age. In addition, we did not observe significant epigenetic age acceleration among current 
smokers, except for GrimAge, which could be due to small sample size and suggest importance of differentiating 
current and past smoking habits to test associations.

In the EWAS comparing current smokers to non-smokers, we found 41 CpG sites that were replicated in 
previous studies as well as five novel CpGs. The directionality of methylation for the overlapping CpG sites aligns 
with findings from previous  studies55–61. The majority of the significant CpG sites in this study overlapped with 
findings from a study on cigarette smoking among American Indian  adults56, and fewer overlapped with find-
ings from a study of African American  women58, both using the EPIC array. The five novel sites that we found 
have not been reported in other studies, even those that similarly used the 850K EPIC Illumina BeadChip and 
included participants from a racial minority  population56,58,62. Four of these sites were hypomethylated and 
annotated to the MAPK4, HNRNPM, and PTGIR genes. MAPK4 is an atypical kinase involved with the AKT/
mTOR signaling pathway, and overexpression is associated with acute lung injury and  cancers63,64. Similarly, 
the HNRNPM and PTGIR proteins have been shown to promote cancerous cell growth and be associated with 
poorer oncogenic  outcomes65,66. The latter is also involved with vascular remodeling, and its loss of function may 
increase risk for vessel stenosis and  dissection67. If MAPK4 (TSS1500), HNRNPM, and PTGIR hypomethyla-
tion among smokers—what we observed—leads to greater protein expression, this could partially explain their 
increased risk for lung and heart diseases and several cancers. The remaining novel CpG site was hypermethylated 
and annotated to the TXNRD1 gene. The TXNRD1 protein is involved in protecting cells from reactive oxygen 
species and also promotes tumor growth and DNA  replication68. Further study of changes to gene expression 
arising from epigenetic modifications among smokers can elucidate how environmental tobacco exposure leads 
to the development of diseases.

Our analysis of epigenetic age acceleration demonstrated that for several biological aging biomarkers, ever 
smokers experience accelerated aging compared to non-smokers. The varied age acceleration results may be 
because some clocks are better at capturing adverse health impacts from specific environmental stimuli than 
other clocks. For example, the largest age acceleration associated with smoking was found for the GrimAge 
clock, which is in alignment with previous studies demonstrating the clock’s success at predicting mortality 
associated with smoking  exposure32,69. We expected this result, as pack-years is used in the estimation of Grim-
Age  years32. In all other clocks, age acceleration was positive and statistically significant for former smokers but 
not current smokers. This might be explained by delayed effects of smoking on the development of negative 
health outcomes or active compensation in the epigenome of current smokers for the toxic exposure of cigarette 
smoke, which could explain the mostly null age accelerations. Alternately, current smokers that made it into the 
study at the older ages of recruitment might be uniquely unaffected by smoking. For example, former smokers 
might have ceased to smoke due to declining health while current smokers continued as they were unaffected. 

Figure 5.  Estimated differences in years of epigenetic age acceleration when comparing: (A) ever smokers to 
never smokers, (B) current smokers to never smokers, and (C) former smokers to never smokers. Diamonds 
represent point estimates, error bars represent 95% confidence intervals, and red dashed line represent the null 
hypothesis. The telomere length biomarker (DNAmTL) was excluded due to scaling.
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This might be partially supported by genetic findings showing that long-lived smokers carry variants that may 
confer  protection70. This hypothesis warrants further testing in the context of epigenetic clocks. Interestingly, 
the opposite was true in site-by-site analyses for EWAS, where we observed strong associations among current 
smokers compared to former smokers.

Overall, there are inconsistent results across existing studies that have used a variety of epigenetic clocks on 
whole blood samples to assess the effects of smoking status on epigenetic age acceleration. Many studies that 
found null age acceleration results comparing smokers to non-smokers did not stratify smokers into current 
and former  smokers25,71,72. This may lead to results that misrepresent the epigenetic effects of cigarette smoke 
exposure. Also, inconsistencies in those studies and this one may be due to participants’ duration and intensity 
of smoking as well as time since smoking cessation, which are individual-level factors that can affect epigenetic 
age acceleration  outcomes73–75. Among ever smokers, some studies found positive results that are not statistically 
significant or slightly negative epigenetic age  acceleration25,71,73,76,77. We also observed non-significant epigenetic 
age deacceleration among current smokers for Horvath’s Clock, the Skin-Blood Clock, and the IEAA measure. 
In contrast to our study, previous analyses of smoking have found no associations with  IEAA25,28. Our analysis 
builds on previous evidence by including a comprehensive set of epigenetic age acceleration outcomes to assess 
the consistency of results across different epigenetic clocks. While we did not find evidence of effect modifica-
tion by the high longevity region, future research should evaluate associations between epigenetic aging and 
plant-based diets, consistent physical activity, and sociocultural connectedness—factors found to be increased 
in Blue  Zones78. For example, residents from Nicoya report higher levels of physical activity and greater intake 
of fruits and vegetables, black beans, corn tortillas and  rice79.

This study has some limitations. Due to the study design, we were unable to determine temporality and results 
might be influenced by recall bias. Also, the associations that we found could be explained by a common factor 
that was unaccounted for, as residual confounding is a common source of bias in observational studies. However, 
given the replication of previous smoking signatures, we think this is less likely. To mitigate the chance that this 
may occur, we controlled for sociodemographic characteristics, genetic principal components, and estimated 
cell-type composition in EWAS models. Another limitation is that only 90 of the study participants lived in 
the Nicoya region and only 9 were current smokers, which reduces the statistical power of the study to detect 
differences in associations among smokers and non-smokers living inside and outside the region. The sample 
from Nicoya was also older, which might introduce survivor bias regarding the smokers included in this study. 
Importantly, cigarette smoking data was self-reported by participants, which may introduce bias in the exposure 
assessment, but we expect this to be non-differential relative to DNA methylation or epigenetic aging measures.

In this EWAS of smoking conducted with a Latino cohort, we found five novel differentially methylated CpG 
sites among smokers. It also replicated several DNA methylation signatures of current smoking found in previ-
ous studies, such as hypomethylation of CpG sites annotated to the AHRR, F2RL3, SIN3B, and PRSS23 genes. 
In our study, former smokers exhibited consistent increased epigenetic age acceleration for several epigenetic 
clocks. Future studies with diverse populations and transcriptome analysis would assist in determining how 
environmental factors increase health risks among smokers and affect health disparities. Importantly, addressing 
factors that might promote resilient epigenomes even in the presence of harmful exposure can help optimize 
public health interventions.

Data availability
Public-use version of the CRELES data is available from the Inter-University Consortium for Political and Social 
Research (ICPSR) repository (http:// doi. org/ 10. 3886/ ICPSR 31263. v1). Since data DNA methylation and the 
complementary sample of centenarians in Nicoya are not currently part of the public-use, requests for restricted 
access to data can be submitted at http:// www. creles. berke ley. edu/ following institutional review approval.
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