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Abstract: The active form of vitamin B6, pyridoxal phosphate (PLP), is essential for human
metabolism. The brain is dependent on vitamin B6 for its neurotransmitter balance. To obtain
insight into the genetic determinants of vitamin B6 homeostasis, we conducted a genome-wide
association study (GWAS) of the B6 vitamers pyridoxal (PL), PLP and the degradation product of
vitamin B6, pyridoxic acid (PA). We collected a unique sample set of cerebrospinal fluid (CSF) and
plasma from the same healthy human subjects of Dutch ancestry (n = 493) and included concentrations
and ratios in and between these body fluids in our analysis. Based on a multivariate joint analysis of
all B6 vitamers and their ratios, we identified a genome-wide significant association at a locus on
chromosome 1 containing the ALPL (alkaline phosphatase) gene (minimal p = 7.89× 10−10, rs1106357,
minor allele frequency (MAF) = 0.46), previously associated with vitamin B6 levels in blood. Subjects
homozygous for the minor allele showed a 1.4-times-higher ratio between PLP and PL in plasma,
and even a 1.6-times-higher ratio between PLP and PL in CSF than subjects homozygous for the
major allele. In addition, we observed a suggestive association with the CSF:plasma ratio of PLP on
chromosome 15 (minimal p = 7.93 × 10−7, and MAF = 0.06 for rs28789220). Even though this finding
is not reaching genome-wide significance, it highlights the potential of our experimental setup for
studying transport and metabolism across the blood–CSF barrier. This GWAS of B6 vitamers identifies
alkaline phosphatase as a key regulator in human vitamin B6 metabolism in CSF as well as plasma.
Furthermore, our results demonstrate the potential of genetic studies of metabolites in plasma and
CSF to elucidate biological aspects underlying metabolite generation, transport and degradation.

Keywords: genome wide association study; vitamin B6; cerebrospinal fluid; plasma

1. Introduction

The active form of vitamin B6, pyridoxal phosphate (PLP), functions as a co-factor in >200
enzymatic reactions in human metabolism [1,2]. Inverse relationships have been found between
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vitamin B6 and conditions such as diabetes, oxidative stress, cardiovascular disease, inflammation and
cancer [3–7]. Its role in amino acid and neurotransmitter metabolism renders vitamin B6 specifically
essential for brain development and functioning. Lower concentrations of PLP in plasma have not
only been associated with symptoms of depression (according to the Major Depression Inventory [8]),
but also with poor cognition [9] and Alzheimer’s disease [10,11].

The dependence of the neurotransmitter balance in the brain on vitamin B6 is illustrated by inborn
errors of metabolism resulting in hampered vitamin B6 metabolism. Such patients may present with
epilepsy and intellectual disability [12]. Examples of these genetic disorders are antiquitin deficiency
(OMIM #266100) [13], pyridox(am)ine-5′-phosphate oxidase (PNPO) deficiency (OMIM #610090) [14],
hyperprolinaemia type II (pyrroline-5-carboxylate dehydrogenase deficiency; OMIM #239510) [15]
and hypophosphatasia (alkaline phosphatase (ALPL) deficiency; OMIM #241500) [16,17]. Although in
antiquitin and PNPO deficiencies, treatment with vitamin B6 is successful in antagonizing the epilepsy,
patients with these inborn metabolic disorders will still suffer from intellectual disability [12,18]. In
addition to these known causes of functional vitamin B6 deficiency, there are patients in whom the
cause of their vitamin B6-responsive epilepsy remains unelucidated.

Humans depend on dietary sources of vitamin B6 since they are unable to synthesize
it. The different B6 vitamers—pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL) and their
respective phosphate-esters (Figure 1)—are interconvertible through the action of several enzymes.
Transport across the cell membrane is preceded by hydrolysis of the phosphorylated B6 vitamers by
membrane-bound alkaline phosphatase (ALPL) [19]. The ALPL locus has been associated with PLP
and vitamin B6 in plasma [20–23]. Intracellularly, phosphorylation by pyridoxal kinase (PDXK) [24]
yields PNP, PMP and PLP (Figure 1). Pyridox(am)ine phosphate oxidase converts PNP and PMP
into the active co-factor, PLP [25]. Release of vitamin B6 from the cell is dependent on a vitamin
B6-specific phosphatase (pyridoxal phosphatase (PDXP)) [26]. Oxidation of the resulting PL by
aldehyde oxidase (AOX) [27] constitutes the degradation pathway of vitamin B6, of which the major
product, pyridoxic acid (PA), is excreted into urine (Figure 1) [28]. Although the enzymes involved in
vitamin B6 metabolism have been elucidated at genetic and protein levels, knowledge about human
vitamin B6 transport is very limited. At the biochemical level, there is evidence for carrier-mediated
transport [29–31], but not a single human vitamin B6 transporter has been identified to date.
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Figure 1. Schematic display of vitamin B6 metabolism. The different B6 vitamers pyridoxine (PN), 
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Figure 1. Schematic display of vitamin B6 metabolism. The different B6 vitamers pyridoxine (PN),
pyridoxamine (PM), pyridoxal (PL) and their respective phosphate-esters (PNP, PMP and PLP) are
interconvertible through the action of several enzymes. Pyridoxic acid (PA) is the main degradation
product of vitamin B6. PDXK = pyridoxal kinase. PDXP = pyridoxal phosphatase. PNPO =
pyridox(am)ine oxidase. AOX = aldehyde oxidase.

From our previous studies [32,33], we know that the B6 vitamer composition of human
cerebrospinal fluid (CSF) differs from that of human plasma, and that B6 vitamer concentrations
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are tightly controlled in and between both body fluids. Vitamin B6 intake, metabolism, transport
and/or genetic regulation are possible mechanisms contributing to these observations. To study the
genetic regulation of vitamin B6 homeostasis, we conducted a genome-wide association study (GWAS)
of B6 vitamers and their ratios. We collected a unique sample set of CSF and plasma from the same 493
healthy human subjects. We aimed to explore the genetic architecture of B6 metabolism in CSF and the
genetic control of the crosstalk between the central nervous system and peripheral blood.

2. Subjects and Methods

2.1. Subjects and Sample Collection

Subject characteristics and collection of samples have been described in detail by Luykx et
al. [34,35]. In summary, plasma and/or CSF were collected from 533 healthy and fasting subjects
undergoing spinal anesthesia for minor elective surgery in different hospitals in and near Utrecht,
The Netherlands. Subjects were 18–63 years of age and of North-Western European descent. Most
of the subjects underwent knee arthroscopy and do reflect the general population with respect to
comorbidities [36]. The study was approved by the ethics committee of the University Medical Center
(UMC) Utrecht and by all local ethics committees (The Medisch Ethische Toetsingscommissie approval
number 23042.041.08 date 07/30/08). The participants provided written informed consent. After
withdrawal, plasma and CSF were stored at −80 ◦C until further analysis.

2.2. Determination of B6 Vitamer Concentrations

Concentrations of the B6 vitamers PL, PLP, PM, PMP and PN, as well as the concentration of PA,
were determined in plasma and CSF (nmol/L) by ultra-performance liquid chromatography–tandem
mass spectrometry (UPLC–MS/MS) [33,37]. After exclusion of subjects with outlier B6 vitamer
concentrations (n = 10, e.g., B6 vitamers >1.5 times lower or higher than the lower or upper reference
limit, see [33] for details), B6 vitamer concentrations in plasma and/or CSF of 523 subjects remained
for genome-wide association analyses (see Table 1 for more details). Ratios between B6 vitamers in
CSF and plasma, and ratios for B6 vitamers between CSF and plasma, were calculated.

Table 1. Characteristics of the 493 genotyped subjects and their B6 vitamer (pyridoxal (PL), pyridoxal
phosphate (PLP)) and pyridoxic acid (PA) concentrations (nmol/L) and ratios in and between
cerebrospinal fluid (CSF) and plasma.

Number Median Range

Sex 353 male
140 female n.a. n.a.

Age (years) 493 42 18–63

PL
Plasma 480 10.5 3.0–56.2

CSF 399 30.0 13.5–66.4

PLP
Plasma 480 55.7 10.2–335

CSF 399 16.0 5.3–45.8

PA Plasma 480 23.6 2.7–243

PLP:PL
Plasma 480 5.4 1.1–36.8

CSF 399 0.5 0.2–1.8

PA:PL Plasma 480 2.4 0.3–15.1

PA:PLP Plasma 480 0.44 0.03–2.5

PL in CSF:plasma 386 2.9 0.9–10.6

PLP in CSF:plasma 386 0.3 0.1–0.9
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2.3. Phenotyping

As described previously [32,33,37,38], concentrations of PMP and PN in plasma and CSF, as
well as the concentration of PM in plasma, generally are below limits of quantification and thus
undetectable. Since this also applied to our current dataset, these B6 vitamers were not included in
the association analyses. Because the very low concentrations of PM and PA in CSF could not be
reliably quantified (relatively high variation) [37], PM and PA in CSF were also not taken along in the
association analyses.

Since none of the B6 vitamers, nor their unstandardized residuals, showed a normal
distribution, B6 vitamer concentrations and ratios were normalized using a rank-based inverse normal
transformation (INT) [20] before association analyses were performed.

We also included ratios between B6 vitamers and ratios between fluid types in our analyses.
Ratios between the B6 vitamers constitute an approximation of the conversion rate of the enzymatic
reactions of substrate–product pairs [39]. Another potential advantage of taking metabolite ratios is
the signal-to-noise ratio reduction by correcting for known and unknown confounders such as hidden
batch effects [40]. Additionally, the ratios between CSF and plasma may inform us on functional
mechanisms of vitamin B6 transport across the blood–brain or blood–CSF barriers.

2.4. Genotyping, Imputation and Quality Control Procedures

From 506 out of 523 subjects in whom we determined plasma and/or CSF B6 vitamer
concentrations, whole-genome single nucleotide polymorphism (SNP) data were available (Illumina
HumanOmniExpressExome Beadchip (987,734 SNPs), UCLA Neuroscience Genomic Core facility [35]).
The genotyping platform and methods have been described in detail by Luykx et al. [35].

Prior to imputation, we applied the following quality control using PLINK (v1.08p) [41]. We
excluded samples with ambiguous sex or with imputed sex inconsistent with our database (n = 1),
as well as samples with missing genotyping >2% (n = 9). Based on a set of 87,956 independent
high-quality SNPs (with a minor allele frequency (MAF) >10%, missing genotype rate <1%, Hardy
Weinberg equilibrium (HWE) p-value < 1.0 × 10−5, and a maximum linkage disequilibrium (LD)
R2 of 0.2), we tested for too high (>mean +3SD) or too low (<mean −3SD) heterozygosity (n =
0). We also excluded samples related up to the level of distant cousins (pi-hat <0.2, n = 1), and
outliers based on multidimensional scaling (MDS) clustering of our data with HapMap3 [42] (n =
2; Supplementary Figure S1). We removed SNPs with missingness >2%, HWE p < 1.0 × 10−6; and
excluded non-autosomal SNPs. The remaining n = 493 samples and 903,536 variants were used
for imputation.

Imputation was performed using the Michigan imputation server [43], the 1000 G Phase3v5
reference panel, HapiUR phasing, and the European reference population. Post-imputation, we
selected high-quality variants with an imputation score RSQ > 0.8 and converted the dose files to
PLINK format. From the set of 9,135,989 high-quality imputed variants, we only kept variants with
HWE p < 0.001, MAF > 0.05 in our GWAS, resulting in a total number of n = 493 samples and 6,260,487
SNPs to be included in our analyses.

2.5. Multivariate Analysis

To detect SNPs relevant to B6 vitamer concentrations and ratios in and between CSF and plasma,
we performed a genome-wide multivariate association study.

Multivariate association studies have several advantages over performing several univariate
analyses separately. Foremost, power is increased in case of the presence of genetic correlation
between the different traits [44], but also multiple testing burden is alleviated compared to multiple
univariate analyses.

In this study we performed a multivariate GWAS using multivariate canonical correlation analysis
(CCA) implemented in PLINK [45]. This method is based on extracting the linear combination of
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traits (i.e., metabolite levels and ratios) that explain the largest possible amount of covariation between
the SNP and all traits. In comparison to other multivariate methods, it has been shown to perform
particularly well in situations where both the phenotypes and their genetic control are correlated, as is
expected in our data [46].

The traits included in our analysis are: PL in plasma, PL in CSF, PLP in plasma, PLP in CSF, PA
in plasma, PLP:PL in plasma, PLP:PL in CSF, PA:PL in plasma, PA:PLP in plasma, PL in CSF:plasma
and PLP in CSF:plasma, see Table 1. Prior to association, we regressed out covariates of sex, age and
the first four MDS components to account for possible population stratification. We used the setting
–mqfam-find 1 in order to retain individuals with missing data for certain phenotypes. Each association
test yielded an F-statistic, a corresponding p-value, and a weight for each metabolite indicating the
relative contribution of that metabolite to the overall association. To summarize these associations in
terms of the index SNP with the highest association and other SNPs in high linkage disequilibrium with
the index SNP, we used the following settings in PLINK: –clump-p1 1e-4 –clump-p2 1e-4 –clump-r2 0.1
–clump-kb 3000.

Human Genome 19 (UCSC Genome Browser) was used for SNP annotation. QQ- and Manhattan
plots were generated with R and regional association plots were created using LocusZoom (http:
//statgen.sph.umich.edu/locuszoom/).

2.6. Univariate Analysis

In order to follow up our findings of interest, we also performed a univariate analysis for the
phenotypes with the highest weights for our multivariate top hits (these are: PLP in CSF, PLP in
plasma, PLP:PL in CSF, PLP:PL in plasma and PA:PLP in plasma). Univariate analysis was performed
using PLINK (v1.08p) by applying an additive linear model on normalized metabolite levels including
the same covariates of sex and age and four MDS components in the association.

2.7. Gene-Based Association Using PrediXcan

Finally, we applied PrediXcan [47], a gene-based association method that prioritizes genes that
are likely to be causal for a phenotype, to our data. The approach “imputes” gene expression from
imputed genotype data, and by association with the phenotype it is able to identify genes involved in
the etiology of the phenotype.

We imputed the expression of 11,581 genes from our sample, using the prediction model
DGN-WB_0.5.db [47], which is based on whole blood, and performed association analyses for all eleven
included phenotypes. Without further correction for multiple testing, the threshold for genome-wide
significant association was set to the Bonferroni-corrected p-value of 0.05/11,581 = 4.32 × 10−6.

3. Results

Table 1 shows characteristics of the 493 genotyped subjects who remained after quality control,
and their PL, PLP and PA concentrations and ratios in and between CSF and plasma (n = 399 for CSF,
n = 480 for plasma and n = 386 for both). The B6 vitamer profile of CSF (PL > PLP) differed from that
of plasma (PLP > PA > PL, p < 10 × 10−16 for each comparison, rank sum test). Concentrations of
PLP in CSF were only 30% of those in plasma, whereas PL was almost three times higher in CSF than
in plasma.

Multivariate analysis resulted in one genome-wide significant locus on chromosome 1, containing
the NBPF3 (neuroblastoma breakpoint family, member 3) and ALPL (alkaline phosphatase) genes
(Figure 2, Table 2, Figure 3A), with index SNP rs1106357 (p = 7.89 × 10−10, MAF = 0.46). This locus
correlated mostly with the ratio between PLP and PL in plasma (weight 0.66) and the ratio between
PLP and PL in CSF (weight 0.65) (Table 2; Supplementary Figure S2). Since the genomic inflation
factor was 0.97, population stratification was not likely (Figure 2B). It should be noted that while
the index SNP is imputed, the locus also contains a significant SNP that was genotyped (rs465474,
p = 2.50 × 10−9). Univariate analysis of the phenotypes with the highest weights confirms this locus

http://statgen.sph.umich.edu/locuszoom/
http://statgen.sph.umich.edu/locuszoom/
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(Supplementary Table S2) and shows a univariate genome-wide significant association with the ratio
between PLP and PL in CSF (p = 3.51 × 10−9) and with the ratio between PLP and PL in plasma (p =
4.16 × 10−9).
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Table 2. Genome-wide significant locus for B6 vitamer (PL, PLP) and PA concentrations and ratios in and between CSF and plasma (n = 493). Only weights ≤−0.30 or
≥0.30 are shown.

Index
SNP Chr Allele

Position
(bp) MAF Genes F

Significance
(p-Value) OMIM

Weights

PLP
in CSF

PLP
in Plasma

PLP:PL
in CSF

PLP:PL
in Plasma

PA:PLP
in Plasma

rs1106357 1 T/C 2,181,7085 0.46 NBPF3,
ALPL

6.34 7.89 × 10−10 #146300
#241500
#241510

0.58 0.48 0.65 0.66 −0.58

SNP = single nucleotide polymorphism, Chr = chromosome, bp = base pair (HG19), MAF = minor allele frequency, F = F statistic.
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Figure 3. Regional association plot for the genome-wide significant locus for the ratio between PLP
and PL on chromosome 1 (A) and scatterplots of the relation between genotype and measured PLP:PL
in CSF (left) and plasma (right) (B).

Subjects homozygous for the minor allele of rs1106357 showed a 1.6–times-higher ratio between
PLP and PL in CSF (Figure 3B, Table 3) and a 1.4-times-higher ratio between PLP and PL in plasma
than subjects homozygous for the major allele. In our sample, higher PLP:PL ratios in CSF and plasma
are caused by higher concentrations of PLP rather than by lower PL: subjects homozygous for the
minor allele showed a 1.5-times-higher concentration of PLP in CSF (20.3 vs. 13.9 nmol/L) and a
1.4-times-higher concentration of PLP in plasma (67.8 vs. 48.2 nmol/L) than subjects homozygous for
the major allele of these SNPs. Concentrations of PL in CSF (29.8 vs. 30.4 nmol/L) and plasma (10.6
vs. 10.8 nmol/L) did not differ between genotypes for this SNP. Similarly, the plasma PA:PLP ratio in
these subjects was 1.7 times lower (0.3 vs. 0.5) due to an increase of PLP, rather than due to altered
concentrations of plasma PA (21.8 vs. 25.3 nmol/L). This suggests that the ALPL locus does not affect
the degradation pathway of vitamin B6 to PA.
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Table 3. Relation between genotype and phenotype for the genome-wide significant locus. Only
phenotypes with the highest weight for each genotype are shown.

SNP Chr Genotype
(n)

PLP:PL in
Plasma

(Median
(Range))

Significance
(p-Value) *

PLP:PL in
CSF

(Median
(Range))

Significance
(p-Value) *

rs1106357 1
0 (143) 4.6 (1.7–16.3) 0 vs. 1 3.23 × 10−3

0 vs. 2 <5.0 × 10−7

1 vs. 2 5.95 × 10−4

0.4 (0.2–1.3) 0 vs. 1 3.26 × 10−3

0 vs. 2 <5.0 × 10−7

1 vs. 2 4.45 × 10−4
1 (233) 5.5 (1.1–22.3) 0.5 (0.2–1.3)
2 (104) 6.4 (2.3–36.8) 0.7 (0.2–1.8)

Genotype: 0 = 0 minor alleles, 1 = 1 minor allele, 2 = 2 minor alleles; n = number; * = Mann-Whitney U test.

Of additional interest is one locus on chromosome 15 (minimal p = 7.93 × 10−7, and MAF = 0.06
for rs28789220), which showed a suggestive association with the CSF:plasma ratio of PLP (weight
0.69) and to a lesser extent with the PLP:PL ratio in CSF (weight 0.39) (Supplementary Figure S3,
Supplementary Table S2). The associated variants are located in an intron of an uncharacterized
locus (LOC102723493). While all variants at this locus were imputed, imputation quality was very
high (R2 0.97–0.98). The univariate analysis of these variants with the CSF:plasma ratio of PLP also
showed some association signal (p = 2.64 × 10−6), however, not reaching genome-wide significance
(Supplementary Figure S4).

None of the genes known to be involved in vitamin B6 metabolism (PDXK, PNPO, PDXP and
AOX1) [24–27] showed any association (p > 1.0 × 10−3).

The gene-based association using PrediXcan yielded no genes significantly associated with any
of our included phenotypes. In addition, no genes at the significant locus on chromosome 1, the
suggestive locus on chromosome 15, or any of the genes previously known to be involved in B6
metabolism showed suggestively significant associations (p < 1.0 × 10−4). Based on a lookup in
the GTEx database, the top associated SNP rs1106357 on chromosome 1 is a significant expression
quantitative trait locus (eQTL) for the gene for NBPF3 in multiple tissues including liver, and to a
lesser extent for ALPL in skin [48]. The variant on chromosome 15 is not a known eQTL for any gene.

4. Discussion

Here, we present the first GWAS of B6 vitamers and their ratios in and between CSF and plasma
in a study of healthy adults. Despite the relatively small sample size, we were able to replicate a
locus on chromosome 1 containing the ALPL gene (p = 7.89 × 10−10) previously associated with
PLP and vitamin B6 in plasma [20–23] (Table 4). In our multivariate analyses, this locus was not
only associated with plasma PLP and the plasma ratio between PLP and PL (weights 0.58 and 0.75,
respectively), but at similar levels with PLP in CSF, and the CSF ratio between PLP and PL (weights
of 0.59 and 0.62, respectively; Table 2). For these B6 vitamers and vitamer ratios, this locus reaches
genome-wide significance by univariate analysis as well. Interestingly, the higher PLP:PL ratios in
CSF and plasma are caused by higher concentrations of PLP and not by differences in PL. This finding
not only replicates the association of plasma PLP concentrations with the ALPL locus, but shows that
B6 metabolism in CSF is genetically regulated, and highlights the potential of genetic analyses of
metabolites in CSF.
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Table 4. Published genome-wide significant associations for plasma vitamin B6 (PLP).

Index SNP Chr Allele Position (bp) MAF Beta * Significance
(p-Value)

Body Fluid & B6
Vitamer Methods Reference

rs1256335

1

A/G 21,890,386 0.21 −0.14 1.40 × 10−15 Plasma PLP Meta-analysis of three GWAS (n = 4763) [22]
rs4654748 C/T 21,786,068 0.50 −1.45 8.30 × 10−18 Plasma vitamin B6 Four GWAS cohort meta-analysis (n = 1864) [23]
rs1697421 G/A 21,823,292 0.47 0.173 7.06 × 10−10 Plasma PLP GWAS (n = 2100) [20]
rs1772719 A/C 21,904,374 0.23 −0.06 2.48 × 10−16 Plasma PLP GWAS (n = 2158) [21]

* For Hazra et al. [22], the beta is generated using a fixed-effects model after log-transformation of plasma PLP concentrations; for Tanaka et al. [23], the beta represents the change in
amount of vitamin B6 (ng/mL) per copy of the C allele of the SNP; for Keene et al. [20], the beta represents the linear regression coefficient after inverse normal transformation of plasma
PLP concentrations in an additive model including age, sex and the top 10 principal components; for Carter et al. [21], the beta is based on a linear regression model adjusted for age, sex
and vitamin B6 intake, and the outcome variable is a log10-transformation of the plasma PLP concentration. All reported associations are at the ALPL/NBPF3 locus on chromosome 1.
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The ALPL gene encodes a tissue-nonspecific and membrane-bound isoenzyme of alkaline
phosphatase (ALPL; EC 3.1.3.1), which catalyzes hydrolysis reactions producing an alcohol and an
inorganic phosphate from a phosphate monoester and water. Tissue expression of ALPL is ubiquitous,
but liver, bone and kidney are the main locations for this enzyme. The physiological function of
ALPL has not been fully elucidated, but its indispensable role in vitamin B6 uptake by cells (through
hydrolysis of PLP into PL) is well known [19]. This role likely explains the strong association between
the ALPL locus on chromosome 1 and the concentrations of PLP in CSF and plasma (Table 2). Since
homozygosity for the minor allele is associated with higher PLP levels and PLP:PL ratios, rather
than altered PL levels, we hypothesize that it is associated with decreased expression of ALPL. SNPs
at the ALPL locus have indeed been shown to significantly influence plasma ALPL levels [49–51].
Unfortunately, our Predixcan analysis was not able to corroborate this hypothesis, possibly due to lack
of power. In addition, the fact that the most significant SNP is an eQTL primarily for neuroblastoma
breakpoint family member 3 (NBPF3), the other gene at the locus, rather than ALPL, leaves room for
further investigation. Prior to our GWAS analyses, we normalized B6 vitamer levels by applying rank
inverse transformation. Normalization of the phenotype is necessary to perform a linear regression,
but it may affect the exact reported effect sizes in our study, as well as others. However, in the present
study, the reported effect sizes are strong and robust.

In our study we have not only measured PLP and PL as in previous studies [20–23], but the
degradation product PA as well. The absence of any link with PA levels suggests indeed that ALPL
plays a role in B6 uptake rather than in vitamin B6 degradation.

Limited by current sample sizes, our study is underpowered to fully disentangle the genetic
contribution of vitamin B6 metabolism in CSF versus that in plasma. For example, the regulation of
B6 levels through the ALPL locus may be independent in plasma and CSF, or the observed signals
may both be due to genetic regulation in the liver. However, the suggestive signal on chromosome
15, while not reaching genome-wide significance, is of particular interest. This locus is associated
specifically with the ratio of PLP between CSF and plasma, and may be involved with vitamin B6
transport across the blood–brain or blood–CSF barriers. Future studies with larger sample sizes are
needed to corroborate this hypothesis, and are likely to elucidate biological aspects underlying vitamin
B6 generation, transport and degradation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/1/8/s1.
Table S1: Univariate p-values for SNPs with genome-wide significant multivariate associations for B6 vitamer
(PL, PLP) and PA concentrations and ratios in and between CSF and plasma; Table S2: Loci with suggestively
significant associations for B6 vitamer (PL, PLP) and PA concentrations and ratios in and between CSF and
plasma; Figure S1: MDS plot based on a set of 87,956 independent high-quality SNPs using our sample (A) and
clustered using HapMap3 (B); Figure S2: Correlation between PLP and PL in CSF and plasma; Figure S3: Regional
association plot for the suggestive (but nonsignificant) locus on chromosome 15. Figure S4: Manhattan plot for the
univariate analysis of the CSF:plasma ratio of PLP.
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