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Abstract

In this paper, we consider the use of H(div) elements in the velocity–pressure formulation to 

discretize Stokes equations in two dimensions. We address the error estimate of the element pair 

RT0–P0, which is known to be suboptimal, and render the error estimate optimal by the symmetry 

of the grids and by the superconvergence result of Lagrange inter-polant. By enlarging RT0 such 

that it becomes a modified BDM-type element, we develop a new discretization . We, 

therefore, generalize the classical MAC scheme on rectangular grids to triangular grids and retain 

all the desirable properties of the MAC scheme: exact divergence-free, solver-friendly, and local 

conservation of physical quantities. Further, we prove that the proposed discretization 

achieves the optimal convergence rate for both velocity and pressure on general quasi-uniform 

grids, and one and half order convergence rate for the vorticity and a recovered pressure. We 

demonstrate the validity of theories developed here by numerical experiments.

Keywords

Stokes equations; H(div) element; Exact divergence free

1 Introduction

We consider the steady-state Stokes equations

(1.1)
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where u is the velocity field, p the pressure, and f the external force field. In this paper, we 

will explore only the two-dimensional domain. For simplicity, we assume that Ω is simply 

connected and the Dirichlet boundary condition gD = 0.

The MAC scheme introduced by Harlow et al. [27] is a well known finite difference 

discretization of Stokes equations (1.1) on rectangular meshes. In particular, the MAC 

scheme is remarkable for its ability to enforce the incompressibility constraint of the 

velocity field point-wisely. It should also be noted that many efficient solvers, such as the 

distributive Gauss-Seidel (DGS) smoother based multigrid methods [6,41,47,48], have been 

devised for solving the corresponding saddle-point problem. Further, the MAC scheme has 

been shown to locally conserve the mass, momentum, kinetic energy, and circulation 

[42,43]. However, the standard MAC scheme is limited to rectangular meshes. To address 

this shortcoming, significant research effort has been dedicated to generalizing the MAC 

scheme to triangular meshes (TMAC).

Pioneering work on the TMAC discretization of Stokes equations dates back to Nédélec 

[35], who constructed a H(div) element to approximate velocity. Since then, the TMAC 

scheme has been investigated using the finite volume methods approach [13,21,37], the 

finite element methods approach [18–20,23,24], and the discountinuous Galerkin (DG) 

approach [7,14,15,45,46]. The MAC scheme can be interpreted within these approaches 

when the underlying grids are rectangular [23,26,30,34,37].

Very recently, an error analysis of a vorticity–velocity–pressure formulation has been 

presented using the finite element exterior calculus framework. The study [2] demonstrates 

that a loss of exactness of the underlying differential complex causes a decrease in the order 

of convergence for the pressure and the vorticity. In particular, for the lowest-order 

approximation, the pressure has only half order convergence on general unstructured grids. 

In practice, however, first-order convergence is observed for meshes with good mesh quality 

and second-order for uniform grids [18–20]. In [12], we obtain a second-order convergence 

of the MAC scheme on uniform rectangular grids. In the present paper, we will investigate 

the convergence of TMAC schemes on general unstructured grids and mildly structured 

grids.

Although the vorticity–velocity–pressure formulation [18–20] seems a natural formulation 

when using H(div) elements, we are interested in the more popular and traditional velocity–

pressure formulation. In the velocity–pressure formulation, the vorticity will be eliminated 

in the discretization. In this way, we are able to reduce the size of the resulting linear 

algebraic equation, and thereby construct efficient multigrid solvers [47]. To eliminate 

vorticity, the inverse of the mass matrix for the vorticity element, which is in general a dense 

matrix, should be computed. Mass lumping will be applied to obtain a diagonal mass matrix 

so that the inverse is practical.

The main contributions of this paper are as follows:

1. We prove that the symmetry of the grids will improve the rate of convergence for 

the RT0–P0 element. The error analysis is closely related to the superconvergence 

results of the Lagrange interpolation of the linear element developed in [4]. More 
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precisely, suppose that the irregularity of the mesh is (h2σ) (see Sect. 4 for a 

detailed definition).

We prove that

where uI is the canonical interpolation of u on to the space RT0, pI is the L2 

projection to P0, uh and ph are the RT0–P0 approximation, ω is the vorticity and ωh 

is the numerical approximation of ω based on uh, and ‖ · ‖Ah is a discrete version of 

the H1-norm.

2. We propose a new velocity-pressure discretization . The velocity space 

is enriched to BDM1 plus a cubic bubble function. This scheme maintains all the 

desirable properties of TMAC schemes; i.e., both schemes are divergence-free and 

solver-friendly, and can achieve local conservation. More importantly, it is both 

robust and more accurate than the RT0–P0 element and the error estimate can be 

improved to

For general quasi-uniform but unstructured grids, the  scheme will 

produce an optimal first-order approximation for u and p and a one and half order 

approximation for vorticity. Further, we can recover a linear pressure 

approximation that has one and half order convergence.

3. Since point-wise divergence free elements are used to approximate the velocity, the 

right-hand side of our error estimates is independent of the pressure and the 

viscosity. For weakly divergence free elements, e.g., the popular Taylor-Hood 

elements [44], the term v−1‖p − pI‖ will appear in the right-hand side, which might 

be large when the pressure gradient is large or ν is small (i.e. the Reynolds number 

is large).

4. We present a new proof of the stability of the mixed finite element discretization of 

the vector Laplacian by establishing a discrete Poincaré inequality.

The paper is organized as follows. In Sect. 2, we introduce the TMAC discretization of the 

Stokes equations. In Sect. 3, we prove the stability of the TMAC scheme. In Sect. 4, we 

perform an error analysis of the TMAC scheme with an irregularity assumption on the 

meshes. We present numerical experiments in the last section.

We use a ≲ b to denote existence of a positive constant C independent of the mesh size h, 

such that a ≤ Cb, and we use a ≂ b to denote a ≲ b ≲ a. Bold face is used to denote vectors.
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2 Discretization of Stokes Equations in the H(div) Space

Let us recall the following Sobolev spaces on a two-dimensional domain Ω. In order to 

distinguish between the curl operator acting on the scalar function from that acting on the 

vector function, we denote, for scalar ω and vector u = [u, υ]t, respectively, as follows

Note that curl = grad⊥ and that rot u = div u⊥. Here ⊥ refers to a 90° degree clockwise 

rotation. We then introduce the following spaces on Ω:

As curl is a rotation of grad, H(curl) ≅ H1 and . The inner product for L2 or 

L2 is denoted by (·, ·).

2.1 The Velocity–Pressure Formulation of Stokes Equations using H(div) Elements

The velocity–pressure formulation of Stokes equations (1.1) considered here is based on this 

observation: for , the following identity holds in H−1 topology:

Then a weak formulation of the Stokes equations (1.1) seeks  satisfying

(2.1)

where the bilinear forms a(·, ·) and b(·, ·) are defined as

(2.2)

(2.3)

In order to obtain a discretization of the weak formulation (2.1), it is necessary to choose 

appropriate discrete spaces to approximate spaces  and . Let h be a shape regular 

mesh of the domain Ω. Suppose that Σh ⊂ H(curl), ,  and 

 are appropriate discrete subspaces based on h.
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Definition 1 The linear operator  is defined as follows: for a given 

,  such that

(2.4)

The linear operator roth : Vh → Σh is defined as follows: for a given u ∈ Vh, rothu ∈ Σh such 

that

(2.5)

The linear operator  is defined as: for a given ,  such 

that

(2.6)

The operators rot0,h, roth and gradh are well defined, since all these three systems are non-

singular finite dimensional square systems.

The normal boundary condition u · n = 0 is build into the space, whereas the tangential 

boundary condition u · t = 0 is imposed weakly by the definition of weak rot operator roth; 

see (2.5). We will mainly apply roth to . Note that . Applying 

rot0,h to  will enforce a boundary condition to the vorticity, which conflicts with the 

setting of the Stokes equations, i.e., no boundary condition of the vorticity is given.

With the help of operator roth, we define the discrete bilinear form ah (·, ·) on the discrete 

space  as

(2.7)

Hence, a discrete formulation of (2.1) seeks  such that:

(2.8)

Here ah(·, ·) indicates that (2.8) is a nonconforming discretization of a(·, ·). However, the 

divergence-free constraint is imposed point-wisely. The traditional finite element method 

uses a conforming discretization of a(·, ·), but with this method it is not easy to impose the 

exact divergence-free constraint. A recent attempt to construct conforming and point-wise 

divergence-free finite elements on general triangular grids can be found in [22,25].
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To compute roth, the mass matrix of space Σh should be inverted. This is not practical since 

the inverse of the mass matrix is dense. Therefore we will use mass lumping to approximate 

roth on the discrete space Σh. Equivalently, the L2 inner product will be changed to a discrete 

one. More precisely, for ρ, τ ∈ Σh,

(2.9)

where {xi, i = 1, ⋯, n} denote the quadrature points, n denotes the number of quadrature 

points of the triangulation, and {wi, i = 1, ⋯, n} are the corresponding integration weights. 

The quadrature should be chosen such that the mass matrix is diagonal for some bases, and 

〈·, ·〉 is an accurate enough approximation of (·, ·).

Definition 2 The linear operator  is defined as follows: for a given u ∈ Vh, 

 such that

(2.10)

where 〈·, ·〉 is the discrete L2 inner product (2.9).

With the help of operator , we define the bilinear form ãh(·, ·) on the discrete space 

as

Remark 1 We can also define the bilinear form as

which is easier to implement. The stability and error estimates can be proved similarly.

Then a discrete formulation of (2.1) seeks  such that

(2.11)

2.2 Two Specific Discretizations of Stokes Equations

We now discuss appropriate discrete subspaces Σh ⊂ H(curl), , and , 

which are critical for the stability of the discretization. Given an integer r ≥ 1, a stable 
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method is achieved by choosing Σh as the Lagrange element of degree r,  as the Raviart-

Thomas element RTr−1, and  as the discontinuous piecewise polynomial function space of 

degree r − 1. The case r = 1 corresponds to the lowest-order elements discretization, i.e., P1–

RT0–P0.

Another method relies on choosing Σh as the Lagrange element of degree r + 1,  as the 

Brezzi–Douglas–Marini element BDMr, and  as the discontinuous piecewise polynomial 

function space of degree r − 1. The case r = 1 corresponds to the lowest-order element in 

this sequence, i.e., P2–BDM1–P0.

In this paper, we will consider the simplest elements in each sequence, i.e., P1–RT0–P0 and 

P2–BDM1–P0, for which mass lumping is relatively easy.

2.2.1 RT0–P0 Element Discretization—First, we consider the pair P1–RT0–P0. The 

bases of P1 are the lowest-order continuous Lagrange element associated with each vertex. 

For a triangle τ, denote Vi (i = 1, 2, 3) as its three vertices. With the trapezoidal quadrature 

rule

the lumped local mass matrix of P1 element is diagonal:

Consequently the global mass matrix is also diagonal.

Let {λi, i = 1, 2, ⋯, N} denote the linear nodal bases functions, where N is the number of 

vertices. The basis of RT0, ϕk on edge eij, is given by

The basis of P0 is chosen as the characteristic function of each element τ. Given these bases, 

the matrix representation of the curl operator from P1 to RT0 is the incidences matrix 

between the edges and vertices, and the div matrix from RT0 to P0 is the incidences matrix 

between the triangles and edges.

Remark 2 When the triangulation is Delaunay, the mass matrix of RT0 can be lumped with 

the help of circumcenters of triangles [5]. In this case, the discretization is identical to the 

co-volume method developed by Nicolaides [36,37], which in the rectangular case is 
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precisely the MAC scheme. The current finite element formulation, however, does not 

require the mesh to be Delaunay.

2.2.2  Element Discretization—We consider the pair P2–BDM1–P0. On 

each element τ, we have six nodal bases for P2:

To maintain accuracy, the quadrature formula must be exact for quadratic functions. This 

can be achieved by using quadrature at the middle point of each edge. However, this 

quadrature yields a singular diagonal matrix, i.e., the rows corresponding to the unknowns at 

vertices are zero, as θi vanishes at these points. One way to resolve this is to add the bubble 

function ωb = 27λ1λ2λ3 to P2 element [16]. We construct θî associated with vertices Vi and 

η̂
i associated with edges Ei vanishing at the barycenter Cτ of the triangle by

Then a quadrature is obtained by expanding a quadratic function in the bases (θî, η̂
i, ωb), i.e., 

 and applying the integral formula of each 

basis to get

This quadrature is exact for f ∈ P2 since .

The element-wise mass matrix for  is thus given by

The basis of BDM1, ϕk and ψk on edge eij, are given by

Note that  and thus div ψk = 0.
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As ωb is added to the vorticity space, we add one more bubble function χb = curl ωb to 

BDM1 in order to ensure the inf-sup stability. After the vorticity is eliminated, the resulting 

scheme is denoted by .

In the implementation, the discrete differential operators are easy to construct with the 

hierarchical bases by using θ1 = λ1, θ2 = λ2, and θ3 = λ3. The curl matrix from  to 

will be block diagonal consisting of that from P1 to RT0 and one identity matrix. The curl 

matrix for the bases (θ̂i, η̂
i, ωb) can be obtained by the transfer operator between the 

hierarchical bases (θi, ηi, ωb) and nodal bases (θ̂
i, η̂

i, ωb). The non-zeros of div matrix 

remains the same.

3 Stability of TMAC

In this section, we prove the stability of the TMAC scheme formulation (2.8) without mass 

lumping and of the formulation (2.11) with mass lumping. The abstract proof works for all 

stable pairs Pr–RTr−1–Pr−1 and Pr+1–BDMr–Pr−1 for integer r ≥ 1, and the stability result 

holds for all shape regular meshes which are not necessarily quasi-uniform.

3.1 Well-Posedness of the Discrete Formulation Without Mass Lumping

We will first prove that the bilinear form ah(·, ·) defined in (2.7) is an inner product, and we 

will introduce the associated norm ‖ · ‖Ah on the space . Then we prove the inf-sup 

condition for ah(·, ·) and b(·, ·) with respect to the norm ‖ · ‖Ah, which implies the well-

posedness of the discrete formulation (2.8).

The Hodge decomposition plays an important role in the analysis of well-posedness. On the 

continuous level, the Hodge (or Helmholtz) decomposition is

We have an analogous discrete Hodge decomposition based on the following exact 

sequence:

(3.1)

Lemma 1—(Discrete Hodge Decomposition [1]) Suppose that , , and  are 

appropriate subspaces for spaces H0(curl), H0(div), and , respectively, such that the 

sequence in (3.1) is exact. Then, we have

(3.2)

where the operator gradh is defined in (2.6)
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Definition 3 For , define .

According to the definition of ah(·, ·) in (2.7), it is obvious that ah(·, ·) is symmetric and 

semi-positive definite and thus ‖ · ‖Ah defines a semi-norm on . We will prove a discrete 

Poincaré inequality and consequently ‖ · ‖Ah indeed defines a norm on .

Let us first recall the following Poincaré inequalities [2]:

(3.3)

(3.4)

Lemma 2—(Discrete Poincaré Inequality) We have the following discrete Poincaré 

inequality with respect to ‖ · ‖Ah:

(3.5)

Proof From the discrete Hodge decomposition in Lemma 1, for , there exist 

 and  such that

(3.6)

By applying operator div to (3.6), we obtain div uh = div gradhϕ. By multiplying this 

equation with ϕ, using the definition of gradh (2.6), and using (3.3), we obtain

Therefore, we have ‖gradhϕ‖ ≲ ‖ div uh‖.

For the other part, by applying roth to uh = curl ρ + gradhϕ and then testing with ρ and 

integration by parts, we obtain

Therefore, by the Poincaré inequality for curl in (3.4), we obtain
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which leads to ‖ curl ρ‖ ≲ ‖rothuh‖.

In summary, we have proved that

Remark 3 In the proof, we use the fact that for any , we have

(3.7)

However, (rothgradhϕ, ρ) ≠ 0 if ρ ∈ Σh and  since now curl  and the second 

equality in (3.7) fails.

According to Lemma 2, we can obtain the following lemma, which is equivalent to the inf-

sup condition of the bilinear form ah (·, ·).

Lemma 3—The bilinear form ah(·, ·) on  satisfies

1. Continuity: ah(u, υ) ≲ ‖u‖Ah ‖υ‖Ah;

2.
Coercivity: .

We denote the canonical interpolations as , where C0(Ω) denotes the 

continus functions with zero trace on ∂Ω,  and . 

Based on P1–RT0–P0 as an example, the canonical interpolations are defined as following:

It is well known that the canonical interpolations are commuting with the corresponding 

differential operators [28]. More specifically,  and .

In order to prove the inf-sup condition of the bilinear form b(·, ·) on the discrete level, we 

take advantage of the properties of the canonical projection; i.e., for any , we 

have , and , where hτ = diam(τ) and ‖ · ‖τ, 

‖ · ‖1,τ are norms restricted to the triangle τ.

Lemma 4—For any , there exists  such that
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Proof It is well known that the operator  is surjective and that the right 

inverse is stable [23]. Namely, for any , there exists  such that:

Let , then we have . We prove ‖ 

rothυh‖ ≲ ‖qh‖ as follows:

Then we obtain ‖rothυh‖ ≲ ‖qh‖. In summary, we have proved that ‖ υh ‖ Ah ≲ ‖qh‖.

We summarize the well-posedness of the H(div) discretization (2.8) and the stability of the 

Stokes equations in the following theorem.

Theorem 1 There exists a unique solution  to the weak formulation of 

the Stokes equations (2.8), and

Where .

Proof The existences and uniqueness is from the Babuska-Brezzi theory since the inf-sup 

conditions have been proved in Lemmas 3 and 4. We prove the stability as follows.

Choosing υh = uh in (2.8), we obtain
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which leads to the stability of uh. By Lemma 4, we can chose  such that div υh = ph 

and ‖υh‖Ah ≲ ‖ph‖. Choosing such υh in (2.8), we obtain

Then by the stability of uh and the inequality ‖υh ‖Ah ≲ ‖ph‖, we have

which leads to the stability of ph.

3.2 Well-Posedness of the Discrete Formulation with Mass Lumping

In this subsection, we prove the well-posedness of the discrete formulation (2.11), in which 

mass lumping is applied to the discrete space Σh. Let ‖ · ‖h denote the associated discrete L2 

norm of quadrature (2.9), i.e., . Based on the results in the previous subsection, it 

is sufficient to verify that the norm induced by the bilinear form ãh(·, ·) is equivalent to the 

norm ‖ · ‖Ah.

Definition 4 For , define .

Let us prove the following norm equivalence.

Lemma 5—Assume that the discrete L2 norm is equivalent to the L2 norm; i.e, ‖ρ‖h ≲ ‖ρ‖ 

≲ ‖ρ‖h for any ρ ∈ Σh. Then the norm ‖ · ‖Ãh is equivalent to ‖ · ‖Ah; i.e., for any uh ∈ Vh,

Proof It suffices to prove the part associated with the operators roth and . By definition, 

we have

(3.8)
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Let  in (3.8), and use  to get 

, which leads to ‖uh ‖ Ãh ≲ ‖uh‖Ah. The other inequality can be proved similarly.

By Lemma 5, the stability results of the bilinear forms ãh(·, ·) and b(·, ·) with respect to the 

norm ‖ · ‖Ãh are straightforward. Thus, we have proved the well-posedness of the H(div) 

discretization (2.11) of the Stokes equations.

Theorem 2 Assume that the discrete L2 norm is equivalent to the L2 norm. Then there exists 

a unique solution  to the weak formulation of the Stokes equations 

(2.11) and

Where .

In particular, for the two mass lumping schemes considered in this paper, the corresponding 

discrete L2 norm is equivalent to the L2 norm and thus the corresponding discretization is 

stable.

4 Error Analysis

In this section, we prove that for the RT0–P0 approximation, the convergence order depends 

on the symmetry of the mesh. For the BDM1–P0 approximation, first-order convergence is 

always achieved. The results in this section are derived for quasi-uniform meshes h for 

which all triangles are shape regular and of comparable diameter h.

Let us clarify the notation before we present the details of our error analysis. For a given 

space pair , let (ωI, uI, pI) denote the canonical interpolation of (ω, u, p); i.e., 

 and , and (ωh, uh, ph) denote the numerical solution of 

(2.8). For vorticity ω, the approximation without mass lumping is denoted by ωh = roth uh, 

and the approximation with mass lumping by . The choice of spaces 

 will be indicated in the context. For an integer r ≥ 1, we will use  to 

indicate the degree of polynomial used for the Lagrange element is r.

In the proof, we will use the L2 projection Qh : L2 → Σh which is defined such that for a 

given f ∈ L2, Qh f ∈ Σh satisfies
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The following approximation properties of the L2 projection are well known.

Lemma 6—For any quasi-uniform mesh with mesh size h, the L2 projection 

satisfies

where 1 ≤ s ≤ r.

4.1 Error Analysis of the RT0–P0 Formulation Without Mass Lumping

First we present a definition for the irregular triangulation following Bank and Xu [4]. We 

also recall their superconvergence result. Based on that, we obtain the error estimates for 

both velocity and pressure, each of which has an optimal order on meshes with certain 

symmetry.

Let e be an interior edge in the triangulation h. Let τ and τ′ be the two triangles sharing e. 

We say that τ and τ′ form an (h2) approximate parallelogram if the lengths of any two 

opposite edges differ only by (h2). Let x be a vertex lying on ∂Ω, and let e and e′ be the 

two boundary edges sharing x as an endpoint. Let τ and τ′ be the two elements having e and 

e′, respectively, as edges, and let t and t′ be the unit tangents of e and e′, respectively. Take e 

and e′ as one pair of corresponding edges, and make a clockwise traversal of ∂τ and ∂τ′ to 

define two additional corresponding edge pairs. In this case, we say that τ and τ′ form an 

(h2) approximate parallelogram if |t − t′| = (h), and the lengths or any two corresponding 

edges differ only by (h2).

Definition 5 Given a triangulation h, the triangulation h is (h2σ) irregular if the 

following hold:

a. Let ε = ε1 ⊕ ε2 denote the set of interior edges in the triangulation mesh. For any e 

∈ ε1, two triangles τe and  containing e form an (h2) approximate parallelogram, 

and .

b. Let =  = 1 ⊕ 2 denote the set of boundary vertices. The elements associated 

with each x ∈ 1 form an (h2) approximate parallelogram, and | 2| = κ where κ 

is independent of h.

Examples of (h2σ) irregular grids can be found in Sect. 5.

Remark 4 It is straightforward to generalize our error analysis to the mesh in which an 

(h1+α) approximated parallelogram property holds for most pairs of triangles [31,49]. For 

such meshes, the rate min(1, σ) will be replaced by min(α, σ).

Lemma 7—(Bank and Xu [4]) Assume that  and that the triangulation h 

is (h2σ). Let ρI be the piecewise linear nodal interpolation of ρ based on h. Then for any 

continuous and piecewise linear function φh,
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(4.1)

First, we give an estimate of the interpolation operator with the help of Lemmas 6 and 7. In 

making this estimate, we draw on [3] and note that the general consistency analysis on the 

codifferential operators can be found in [3].

Lemma 8—Assume that , div u = 0, and the triangulation is (h2σ) 

irregular. For the RT0 space, we have the interpolation error estimate

Proof By the triangle inequality and the first-order approximation of Qh in the L2 norm in 

Lemma 6, we have

Let us estimate the second term. As div u = 0 and , there exists a ρ ∈ W3,∞ 

⋂ H0(curl) such that u = curl ρ. As the canonical projections commute with differential 

operators, we have . For any qh ∈ Σh, we 

have

Thus, we have ‖Qh rot u – rothuI‖ ≲ hmin(1,σ) |log h|1/2‖u‖2,∞, such that the desired estimate 

is obtained.

Then, we present the convergence result for the RT0−P0 discretization.

Theorem 3 Assume that the solution of the Stokes equations satisfies  and 

rot u ∈ H2. Assume the triangulation mesh is (h2σ) irregular. Let uh and ph be the solution 

of the RT0−P0 approximation using formulation (2.8). Then, we have the error estimate
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Proof Notice that div uh = 0 and . It is evident that

By Lemma 8, we can obtain the error estimate of the first part:

Using the first-order approximation of the L2 projection Qh in the H1 norm in Lemma 6, we 

have

If we choose vh = uI – uh, it is easy to see that I3 = v−1(p – ph, – div vh) = 0. By combining 

these estimates, we obtain

which leads to the estimate of ‖uh – uI‖Ah.

By Lemma 8 and the error estimate of the velocity, we obtain

To prove the error estimate of the pressure, for any , we have
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By the stability result presented in Lemma 4, we can choose  such that

With such vh, we have

For part I5, since pI is the L2 projection of p to  space,

Overall, we obtain

By dividing ‖pI – ph‖ on both sides, we obtain the desired estimate.

Remark 5 The term I3 = v−1(p – ph, – div uh) vanishes due to the point-wise divergence free 

of the velocity. For weakly divergence free elements, in general (p, div uh) ≠ 0 and therefore 

the right-hand side of the error estimate will involve the term v−1 ‖p – pI‖ which might be 

large when the pressure gradient is large or v is small (i.e. the Reynolds number is large). 

Our error estimate of the velocity and the vorticity is independent of pressure and v. Thus 

our schemes can produce more accurate and robust approximation of the velocity and the 

vorticity.

Remark 6 Let xτ denote the barycenter of a triangle τ. We define the interpolation operator 

Ih : C(Ω) → Sh as
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As both the L2 projection and interpolation Ih preserve piecewise constant functions, if 

, then

For the pressure error estimate in Theorem 3, we can obtain the same order of convergence 

for an H1 pressure if we replace the L2 projection pI with the interpolation Ih p.

4.2 Error Analysis of RT0−P0 Formulation with Mass Lumping

In this subsection, we prove the error estimates of element RT0−P0 with mass lumping.

Define the discrete L2 projection with mass lumping Q̃
h : L2 → Σ h, as for any f ∈ L2

The following first-order approximation of Q̃
h in the L2 norm is crucial to ensuring the 

approximation of mass lumping.

Lemma 9—For any quasi-uniform triangulation with size h, the discrete L2 projection 

 satisfies

Proof Let {λi,i = 1,…, N} denote the nodal bases of Σh. By the definition of Q̃
h and by 

, we have  and , then we 

get

Here, in the last step, we use the fact that the functional  preserves the piecewise 

constant function on Ωi, where Ωi is the support of the i-th basis function λi.
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Lemma 10—Assume that , div u = 0 and that the triangulation mesh is 

(h2σ) irregular. Let uI be the canonical interpolation of u on to RT0. Then, we have the error 

estimate

Proof Using Q̃h to replace Qh in the proof of Lemma 8, we have

To estimate the second term, we test with a qh ∈ Σh:

The rest is the same as the proof of Lemma 8.

Theorem 4 Assume that the solution of the Stokes equations satisfies  and 

rot u ∈ H2, and that the triangulation mesh is (h2σ) irregular. Let uh and ph be the solution 

of the RT0−P0 approximation using formulation (2.11). Then, we have the error estimate

Proof Similar to the proof of Theorem 3, we have
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The error estimates of the first three terms were obtained in Lemma 10 and Theorem 3. For 

the last term, we obtain the following estimate by using the first-order approximation of Qh 

and Q̃
h in the L2 norm,

As with the proof of Theorem 3, we can finish the error estimate and obtain the desired 

results.

4.3 Error Analysis of the RT0−P0 Formulation on General Unstructured Grids

The error estimate in Theorem 4 relies on the symmetry of the edge patch through the 

parameter σ. For general grids with σ = 0, there is no order due to the inconsistency of the 

interpolation. In this subsection, we obtain error estimates for the discrete formulation (2.8) 

with the RT0−P0 element on the general unstructured grids by taking advantage of the 

projection operator constructed in [2].

Definition 6 (Arnold et al. [2]) Define the projection operator 

 by the equation

(4.2)

The estimate of the projection operator is given in the following lemma.

Lemma 11—(Arnold et al. [2]) Let vII be the projection of v on to RT0 in Definition 6. 

Then, for any quasi-uniform triangulation with size h,

Lemma 12—Assume that  and rot u ∈ H1. Let uII be the projection of v 
on to RT0 in Definition 6. Then, we have the error estimate

Proof By the triangle inequality, we have

To estimate the second term, we have for any qh ∈ Σh,
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Thus, we have ‖Qh rot u – roth uII‖ ≲ h1/2 |logh|‖u‖1,∞ and thereby obtain the desired 

estimate.

Similarly, the error estimates for the velocity, the vorticity, and the pressure on general 

unstructured grids can be obtained by following the proof of Theorem 3.

Theorem 5 (Arnold et al. [2]) Assume that the solution of the Stokes equations satisfies 

 and rot u ∈ H2. Let uh and ph be the solution of the RT0−P0 

approximation using formulation (2.8). Then, we have the following error estimate

Remark 7 The error estimates of Lemma 12 and Theorem 5 can easily be generalized to the 

lumped case formulation (2.11) according to the analysis of Subsect. 4.2.

Remark 8 Compared with Theorem 3 for general unstructured grids with , the error 

estimates in Theorem 5 increase from order σ to . However, for grids with , we can 

obtain better error estimates by Theorems 3 and 4.

4.4 Error Analysis of the BDM1–P0 Formulation Without Mass Lumping

In this subsection, we present the error estimates for the discrete formulation (2.8) with the 

BDM1–P0 element. The first-order convergence for the velocity and the pressure is obtained 

without any constraint on the irregularity of meshes.

Lemma 13—Assume that , and div u = 0. Let uI be the canonical 

interpolation of u on to BDM1. Then, we have the error estimate

Proof As in Lemma 8, we have ‖rot u − rothuI‖ ≲ h‖rot u‖1 + ‖Qh rot u – rothuI‖.

In regard estimating the second term, the only difference to the proof of Lemma 8 is that ρI 

∈ P2. Thus, we have

As ‖rot u‖1 ≤ ‖u‖2, we obtain ‖rot u – rothuI‖ ≲ h‖u‖2.
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The following result can be proved using the proof of Theorem 3 and the improved 

interpolation error estimate in Lemma 13.

Theorem 6 Assume that the solution of the Stokes equations satisfies  and rot 

u ∈ H2. Let uh and ph be the solution of the BDM1–P0 approximation using formulation 

(2.8). Then, we have the following error estimate

Remark 9 As uh and ph are piecewise linear and piecewise constant functions, respectively, 

the velocity approximation in the H1-norm and the pressure approximation in the L2-norm 

are at most first-order. From this point of view, the estimate is optimal for u and p, but not 

for vorticity ω for which the ideal order is three since a quadratic element is used.

4.5 Error Analysis of the  Formulation with Mass Lumping

The quadrature is exact to quadratic functions. Therefore, similar to Lemma 9, we have the 

first-order approximation of the discrete L2 projection in the L2 norm.

Lemma 14—For any quasi-uniform triangulation with size h, the discrete L2 projection 

 satisfies

With this first-order approximation property, we have the interpolation error estimate.

Lemma 15—Assume that . Let uI be the canonical interpolation of u on to 

the space . Then, we have the error estimate

Theorem 7 Assume that the solution of the Stokes equations satisfies  and rot 

u ∈ H2. Let uh and ph be the solution of the  approximation using formulation 

(2.11). Then, we have the following error estimate
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4.6 Improved Error Analysis of the BDM1−P0 and  Formulations

In this subsection, we improve the error estimates for the discrete formulation (2.8) with 

BDM1−P0 or  elements. First we present Huang and Xu's superconvergence 

results for the P2 element [29]. Based on that, we obtain the improved error estimates.

Lemma 16—(Huang and Xu [29]) Assume that . Suppose the 

triangulation h is (h2σ) irregular. Let ρI be the quadratic Lagrange interpolation of ρ 

based on h Then, for any continuous and piecewise quadratic function φh,

(4.3)

Lemma 17—Assume that  div u = 0 and that the triangulation mesh 

is (h2σ) irregular. Let uI be the canonical interpolation of u on to BDM1. Then, we have 

the error estimate

Theorem 8 Assume that the solution of the Stokes equations satisfies 

 and rot u ∈ H3, and that the triangulation mesh is (h2σ) irregular. 

Let uh and ph be the solution of the BDM1−P0 approximation using formulation (2.8). Then, 

we have the error estimate

Proof One key difference between the current proof with that of Theorem 3 is that we apply 

the second-order approximation of Qh to the quadratic element in the H1 norm

To get the corresponding error estimate for the lumped scheme  it suffices to 

establish the improved L2 error estimate of the lumped L2-projection Q̃
h.

Lemma 18—Assume the triangulation mesh is (h2σ) irregular. The discrete L2 projection 

 satisfies
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Proof We first introduce the quadratic interpolation

Here recall that Vi, Ei, Cτ are vertices, middle points of edges, and barycenter of triangles, 

respectively. And NV, NE are the number of total vertices and edges, respectively. The 

formulae of bases θî, η̂
i, ωb can be found in Sect. 2.2.2. Recall that by definition

Since the quadratic interpolation will preserve the piecewise quadratic function, we have the 

standard interpolation error estimate

So we only need to estimate the coefficients of the difference ϕI — Q̃
hϕ.

Let Iτ(ϕ) = ϕ(Cτ) − (ϕ, ωb, τ)/(1, ωb, τ). By direct calculation, one can easily verify Iτ (λi) = 0 

for i = 1, 2, 3, where λi is the basis of the linear element at vertices Vi of the triangle τ. 

Therefore Iτ (ϕ) = Iτ(ϕ − p1) for any linear polynomial p1 and consequently by Bramble-

Hilbert lemma |Iτ(ϕ)| ≲ h3/2|ϕ|3/2,∞,τ.

Let IE(ϕ) = ϕ(E) − (ϕ, η̂
E)/(1, η̂

E). Let p1 be a linear interpolant of ϕ on the patch ΩE. Then |

IE(ϕ − p1)| ≲ h3/2 |ϕ|3/2,∞,ΩE. We now estimate |IE(p1)|. It is obvious IE(c) = 0 for a constant. 

Let us use a local coordinate with original at E and check the order for p1 = x or p1 = y. For 

an interior edge E, suppose ΩE = τ∪τ′. Chose a quadrature rule using the triangular lattice 

points for polynomial of degree less than or equal to 4. We can use such a quadrature to 

evaluate the integral

where (xi, yi) are quadrature points and wi is the corresponding weight. If we write the 

quadrature points and η̂
E in the barycentric coordinate, it is easy to see the quantity 

. If the patch ΩE forms an (h2) parallelogram, then 

 and |τ| – |τ|′ = (h3). Namely the patch is (h2) symmetric with respect to Ei. 

Therefor I2(p1) ≲ (h2). For other edges, IE(p1) ≲ (h). But the measure of such edge 

patches is bounded by (h2σ). Summing over all edges, we get
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Let IV(ϕ) = ϕ(V) – (ϕ, η̂V)/(1, η̂V). To estimate this term, we split vertices into two parts. We 

define 1,h = {xi ∈ h | every two neighboring triangles in Ωi forms an (h2) approximated 

parallelogram}, and 2,h = h \ 1,h. For vertices x in 1,h, the patch Ωx is (h2) 

symmetry. The measure | ∪x∈ 2,h Ωx | ≲ (h2σ). We can thus prove the estimate

similarly.

The desirable estimate obtained by noticing that 

.

Theorem 9 Assume that the solution of the Stokes equations satisfies 

 and rot u ∈ H3, and that the triangulation mesh is (h2σ) irregular. 

Let uh and ph be the solution of the  approximation using formulation (2.11). 

Then, we have the error estimate

We obtain the following error estimates for the BDM1–P0 formulation on general 

unstructured grids in a way similar to that in Sect. 4.3.

Lemma 19—(Arnold et al. [2]) Let vII be the projection of v on to BDM1 in Definition 6. 

Then, for any quasi-uniform triangulation with size h, we have the error estimate

Lemma 20—Assume that  and rot u ∈ H2. Let uII be the projection of u 
on to the space BDM1 in Definition 6. Then, for any quasi-uniform triangulation with size h, 

we have the error estimate
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Theorem 10 Assume that the solution of the Stokes equations satisfies 

and rot u ∈ H3. Let uh and ph be the solution of the BDM1–P0 approximation using 

formulation (2.8). Then, we have the following error estimate

Given the superconvergence of the pressure, we can recover the pressure from the piece-

wise constant to a piecewise linear function. We shall combine two methods, the least 

squares fitting and the harmonic averaging, both of which locally preserve linear functions. 

The procedure is described as follows.

We first evaluate the piecewise constant function ph at the barycenter of each triangle. A 

piecewise linear pressure function  can be obtained by assigning values at vertices. This 

can be done by using the least square fitting to fit the piecewise constant defined on the 

triangles around a vertex. We will only apply the least square fitting to the boundary nodes. 

For the interior nodes, we construct a dual triangular mesh by connecting barycenter to the 

vertex, and to use it to solve a local harmonic equation. We refer to [10] for details. On the 

aspect of implementation, the harmonic averaging is more efficient than least square fitting 

for large size triangulations.

5 Numerical Experiments

In this section, we present numerical tests for both the RT0−P0 discretization and the 

 discretization. In all examples, the viscosity is chosen as one, i.e., ν = 1. For 

both schemes, we consider three different types of grids: a criss-cross grid of the unit square, 

a three-directional structured grid (all triangles are formed by edges parallel to three 

directions only) of the unit square, and a unstructured grid of the unit disk. We refer to Figs. 

1 and 2 for an illustration of these meshes. We use a uniform bisect strategy for refining the 

criss-cross grid. That is the triangle is bisected twice by connecting the midpoint of the 

longest edge to its opposite vertex. The resulting grids are still in the criss-cross type. In the 

so-called red refinement the triangle is divided into four congruent sub-triangles by 

connecting the midpoint of each edge. We use a uniform red refinement for refining the 

three-directional grids such that the resulting grids remains three-directional. By the (h2σ) 

irregularity Definition 5, the three-directional structured grids correspond to σ = ∞, i.e., the 

(h2) approximate parallelogram property is satisfied for all pairs of adjacent triangles, and 

the bisection corresponds to σ = 0 since the patch of the majority of edges, which are parallel 

to axis, is not an (h2) approximate parallelogram. For the unstructured grids of the unit 

disk, we first generate a initial shape regular grid and then apply uniform red refinement. To 

fit the boundary, we project the boundary nodes onto the unit circle after each refinement. 

To improve the mesh quality, after each refinement, we apply ODT mesh optimization 

methods [8,11] several times. In practice these mesh optimization technique will intend to 

make every two adjacent triangles form an (h1+α) parallelogram and a small portion, 

which has a measure (h2σ) of elements do not satisfy this property.
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We implemented the schemes by using the MATLAB© software package iFEM [9].

Example 1 In the numerical tests with the unit square domain (0, 1) × (0, 1), the right-hand 

side f = 0 and the Dirichlet boundary condition for u are chosen. The analytical solutions are

Example 2 In the numerical tests with the unit square domain (0, 1) × (0, 1), the Dirichlet 

boundary condition for u are chosen. The velocity is the same as that in Example 1 and the 

pressure is set zero:

Example 3 In the numerical tests with the unit disk domain centered at point (0, 0), we use 

the test example in [19]. The Dirichlet boundary condition for u are chosen, and the 

analytical solutions and the corresponding right-hand side function are

We present the numerical results in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, in which N is the 

number of vertices of a mesh, uh, ph, and ω̃h represent the approximations; uI is the 

canonical interpolation of velocity u; Ih p is the interpolation of pressure p at the 

barycenters;  represents the recovered pressure; and ωI is the nodal interpolation of 

vorticity ω. Based on the numerical results, we can make the following observations:

1. For criss-cross grids, the errors ‖uI – uh‖Ãh and  have no order of 

convergence when the RT0−P0 discretization is used. Both error estimates are 

improved to first-order, however, when the  discretization is used. This 

is supported by our theory since σ = 0 for criss-cross grids.

2. For three-directional girds, the errors ‖uI – uh‖Ãh and (  can achieve 

first-order convergence when the RT0−P0 discretization is used, and both increase 

to one and half order when the  discretization is used. This is also 

supported by our theory since in this case σ = ∞.

3. The error for pressure ‖p – ph‖ reaches half order for criss-cross grids, first order 

for three-directional grids when the RT0−P0 discretization is used, and first order 

for both grids when the  discretization is used. This is consistent with 

our theory.
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4. The error for vorticity ‖ω– ω̃
h‖ reaches half order for criss-cross grids and first-

order for three-directional grids when the RT0−P0 discretization is used. It reaches 

one and half order for both grids when the  discretization is used. The 

H1 norm of the error ‖ω1 – ω̃
h‖1 is one order less than ‖ω1 – ω̃

h‖ for all cases, which 

can be easily proved by the inverse inequality and the triangle inequality. In 

particular, for criss-cross grids, this error diverges with half order when the RT0−P0 

discretization is used. This is consistent with our theory.

5. For Examples 1 and 2, the error for velocity and vorticity are exactly the same 

which demonstrates the pressure independent error estimate for velocity and 

vorticity.

6. For the examples on the unstructured grids of the unit disk, the error of the RT0−P0 

discretization depends on the parameter a which measures the symmetry of edge 

patches. While the  discretization achieves much better accuracy on the 

same grids and achieves the theoretical predicted order of convergence; see Tables 

5 and 6.

7. We also report other norms not covered by our theory.

- uI and uh are super-close in the maximum norm in all cases. A better velocity 

could be reconstruct based on this fact.

- ‖u — uh‖ is first order for the RT0−P0 discretization, and second order for the 

 discretization. This is reasonable, as BDM1 contains a linear 

polynomial whereas RT0 is incompletely linear.

- ‖Ih p — ph‖∞ and ‖ωI – ω̃
h‖∞ are zero order for the RT0−P0 discretization and 

first order for the  discretization. Especially for the unit disk 

example, the computed ph from the RT0−P0 discretization has no accuracy near 

the boundary of the disk; see the detailed explanation in [19]. The 

discretization, however, pushes down the error near the boundary into order 

(h).

6 Conclusion and Future Work

We have analyzed MAC type schemes for Stokes equations using H(div) elements on 

unstructured triangular grids in two dimensions. When the lowest order element RT0 is used, 

the rate is suboptimal on general quasi-uniform meshes. It can be improved to optimal order 

of convergence either by the symmetry of the mesh or by the enhancement of the velocity 

space to .

In the future work, we shall extend our results in two directions. One is the non-linear 

Navier–Stokes equations and another is the discretization in three dimensions. For Navier–

Stokes equations, we shall use the vorticity–velocity–pressure formulation −ν Δu + ω × u + 

Δ(p + |u|2/2) = f and replace the vorticity . We shall follow [39] to establish some 

energy estimate first and then derive corresponding error estimate.
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Generalization to three dimensions is much harder since now the space for the vorticity is 

the edge element space. Mass lumping for the edge element space is not obvious. And 

supreconvergence results for edge element spaces are rare [32,33]. We may need to work on 

different discretizations using the vorticity–velocity–pressure formulation. For example, 

results on three dimensional co-volume methods for Stokes and Maxwell's equations can be 

found in [38,40] and least-square formulation for the three dimensional Stokes equations 

based on the vorticity-velocity-pressure formulation can be found in [17].
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Fig. 1. Criss-cross grids and three-directional structured grids of a square domain
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Fig. 2. Unstructured grids of a disk domain
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Table 1
Example 1: errors for the RT0–P0 element discretization on criss−cross grids

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

289 3.899e+00 8.615e−02 4.065e−01 1.742e−02

1,089 4.021e+00 4.337e−02 2.028e−01 4.572e−03

4,225 4.082e+00 2.176e−02 1.013e−01 1.169e−03

16,641 4.111e+00 1.090e−02 5.063e−02 2.954e−04

Order −0.017 1.013 1.018 2.010

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

289 9.873e−01 1.208e+00 3.910e−01 8.660e+00

1,089 6.525e−01 7.396e−01 1.208e−01 7.215e+00

4,225 4.499e−01 4.824e−01 4.573e−02 6.801e+00

16,641 3.144e−01 3.262e−01 2.211e−02 6.581e+00

Order 0.536 0.600 1.246 0.067

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

289 6.406e+01 1.134e+00 2.243e+00 3.048e+01

1,089 8.195e+01 6.860e−01 2.113e+00 3.024e+01

4,225 1.091e+02 4.421e−01 2.081e+00 3.012e+01

16,641 1.491e+02 2.968e−01 2.073e+00 3.006e+01

Order −0.439 0.614 0.014 0.004
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Table 2
Example 2: errors for the RT0−P0 element discretization on criss-cross grids

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

289 3.899e+00 8.615e−02 4.065e−01 1.742e−02

1,089 4.021e+00 4.337e−02 2.028e−01 4.572e−03

4,225 4.082e+00 2.176e−02 1.013e−01 1.169e−03

16,641 4.111e+00 1.090e−02 5.063e−02 2.954e−04

Order −0.017 1.013 1.018 2.010

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

289 9.865e−01 9.865e−01 2.858e−01 8.672e+00

1,089 6.523e−01 6.523e−01 9.751e−02 7.212e+00

4,225 4.498e−01 4.498e−01 4.191e−02 6.800e+00

16,641 3.144e−01 3.143e−01 2.167e−02 6.580e+00

Order 0.535 0.535 1.103 0.067

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

289 6.406e+01 1.134e+00 2.243e+00 3.048e+01

1,089 8.195e+01 6.860e−01 2.113e+00 3.024e+01

4,225 1.091e+02 4.421e−01 2.081e+00 3.012e+01

16,641 1.491e+02 2.968e−01 2.073e+00 3.006e+01

Order −0.439 0.614 0.014 0.004

J Sci Comput. Author manuscript; available in PMC 2015 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 37

Table 3
Example 1: errors for the RT0−P0 element discretization on three-directional grids

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

289 2.491e−01 1.273e−02 4.683e−01 2.157e−03

1,089 1.041e−01 3.397e−03 2.344e−01 3.601e−04

4,225 4.045e−02 8.683e−04 1.172e−01 5.364e−05

16,641 1.510e−02 2.187e−04 5.862e−02 7.501e−06

Order 1.416 2.012 1.017 2.840

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

289 5.018e−01 8.590e−01 4.951e−01 9.077e+00

1,089 1.993e−01 4.016e−01 1.745e−01 7.264e+00

4,225 8.640e−02 1.945e−01 6.786e−02 6.199e+00

16,641 4.048e−02 9.610e−02 2.980e−02 5.619e+00

Order 1.169 1.049 1.296 0.188

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

289 5.050e+01 1.083e+00 1.093e+00 3.909e+01

1,089 5.068e+01 5.358e−01 5.407e−01 3.954e+01

4,225 5.082e+01 2.670e−01 2.687e−01 3.977e+01

16,641 5.090e+01 1.334e−01 1.339e−01 3.988e+01

Order −0.006 1.020 1.024 −0.006
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Table 4
Example 2: errors for the RT0−P0 element discretization on three-directional grids

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

289 2.491e−01 1.273e−02 4.683e−01 2.157e−03

1,089 1.041e−01 3.397e−03 2.344e−01 3.601e−04

4,225 4.045e−02 8.683e−04 1.172e−01 5.364e−05

16,641 1.510e−02 2.187e−04 5.862e−02 7.501e−06

Order 1.416 2.012 1.017 2.840

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

289 5.025e−01 5.025e−01 4.451e−01 9.089e+00

1,089 1.995e−01 1.995e−01 1.650e−01 7.267e+00

4,225 8.642e−02 8.642e−02 6.629e−02 6.200e+00

16,641 4.048e−02 4.048e−02 2.957e−02 5.619e+00

Order 1.169 1.169 1.261 0.188

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

289 5.050e+01 1.083e+00 1.093e+00 3.909e+01

1,089 5.068e+01 5.358e−01 5.407e−01 3.954e+01

4,225 5.082e+01 2.670e−01 2.687e−01 3.977e+01

16,641 5.090e+01 1.334e−01 1.339e−01 3.988e+01

Order −0.006 1.020 1.024 −0.006
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Table 5
Example 1: errors for the  element discretization on criss-cross grids

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

289 2.836e−01 3.544e−03 1.088e−02 1.228e−03

1,089 1.393e−01 8.724e−04 2.710e−03 1.630e−04

4,225 6.903e−02 2.161e−04 6.763e−04 2.099e−05

16,641 3.436e−02 5.374e−05 1.689e−04 2.663e−06

Order 1.026 2.044 2.035 3.018

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

289 3.925e−02 6.977e−01 1.760e−01 2.282e−01

1,089 1.381e−02 3.488e−01 5.347e−02 1.125e−01

4,225 4.881e−03 1.744e−01 1.704e−02 5.582e−02

16,641 1.726e−03 8.717e−02 5.659e−03 2.779e−02

Order 1.525 1.017 1.647 1.026

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

289 1.150e+01 1.235e−01 5.504e−01 2.750e+00

1,089 8.064e+00 4.352e−02 2.703e−01 1.397e+00

4,225 5.675e+00 1.536e−02 1.339e−01 7.044e−01

16,641 4.003e+00 5.423e−03 6.662e−02 3.536e−01

Order 0.513 1.527 1.027 1.008
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Table 6
Example 2: Errors for the  element discretization on criss-cross grids

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

289 2.836e−01 3.544e−03 1.088e−02 1.228e−03

1,089 1.393e−01 8.724e−04 2.710e−03 1.630e−04

4,225 6.903e−02 2.161e−04 6.763e−04 2.099e−05

16,641 3.436e−02 5.374e−05 1.689e−04 2.663e−06

Order 1.026 2.044 2.035 3.018

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

289 3.870e−02 3.870e−01 4.212e−02 2.155e−01

1,089 1.372e−02 1.372e−02 1.577e−02 1.093e−01

4,225 4.865e−03 4.865e−03 5.735e−03 5.501e−02

16,641 1.724e−03 1.724e−03 2.056e−03 2.758e−02

Order 1.521 1.521 1.495 1.010

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

289 1.150e+01 1.235e−01 5.504e−01 2.750e+00

1,089 8.064e+00 4.352e−02 2.703e−01 1.397e+00

4,225 5.675e+00 1.536e−02 1.339e−01 7.044e−01

16,641 4.003e+00 5.423e−03 6.662e−02 3.536e−01

Order 0.513 1.527 1.027 1.008
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Table 7
Example 1: errors for the  element discretization on three-directional grids

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

289 1.414e−01 1.529e−03 1.326e−02 5.706e−04

1,089 4.719e−02 2.635e−04 3.308e−03 7.215e−05

4,225 1.606e−02 4.561e−05 8.261e−04 9.062e−06

16,641 5.555e−03 8.018e−06 2.064e−04 1.135e−06

Order 1.569 2.561 2.035 3.045

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

289 7.021e−02 7.001e−01 1.372e−01 9.643e−01

1,089 2.224e−02 3.492e−01 4.100e−02 4.928e−01

4,225 7.308e−03 1.744e−01 1.290e−02 2.488e−01

16,641 2.475e−03 8.719e−02 4.243e−03 1.250e−01

Order 1.610 1.018 1.663 1.006

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

289 2.300e+01 1.960e−01 3.259e−01 2.947e+00

1,089 1.662e+01 7.086e−02 1.174e−01 1.512e+00

4,225 1.187e+01 2.532e−02 4.192e−02 7.659e−01

16,641 8.440e+00 9.000e−03 1.489e−02 3.854e−01

Order 0.497 1.513 1.514 1.002
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Table 8
Example 2: errors for the  element discretization on three-directional grids

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

289 1.414e−01 1.529e−03 1.326e−02 5.706e−04

1,089 4.719e−02 2.635e−04 3.308e−03 7.215e−05

4,225 1.606e−02 4.561e−05 8.261e−04 9.062e−06

16,641 5.555e−03 8.018e−06 2.064e−04 1.135e−06

Order 1.569 2.561 2.035 3.045

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

289 6.993e−02 6.993e−02 1.169e−01 9.581e−01

1,089 2.220e−02 2.220e−02 3.705e−02 4.912e−01

4,225 7.301e−03 7.301e−03 1.215e−02 2.484e−01

16,641 2.474e−03 2.474e−03 4.105e−03 1.249e−01

Order 1.609 1.609 1.614 1.005

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

289 2.300e+01 1.960e−01 3.259e−01 2.947e+00

1,089 1.662e+01 7.086e−02 1.174e−01 1.512e+00

4,225 1.187e+01 2.532e−02 4.192e−02 7.659e−01

16,641 8.440e+00 9.000e−03 1.489e−02 3.854e−01

Order 0.497 1.513 1.514 1.002
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Table 9
Example 3: Errors for the RT0–P0 element discretization on unstructured grids of the 

unit disk

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

194 1.753e+00 1.622e−01 9.720e−01 3.223e−02

727 7.453e−01 4.245e−02 4.844e−01 5.701e−03

2,813 3.397e−01 1.096e−02 2.420e−01 1.198e−03

11,065 1.630e−01 2.815e−03 1.210e−01 2.756e−04

Order 1.116 1.993 1.019 2.225

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

194 3.871e−01 3.871e−01 2.434e−01 1.153e+00

727 2.892e−01 2.892e−01 1.320e−01 1.695e+00

2,813 1.699e−01 1.699e−01 9.116e−02 1.790e+00

11,065 8.831e−02 8.831e−02 5.140e−02 1.802e+00

Order 0.871 0.871 0.693 −0.045

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

194 7.664e+00 3.639e−01 1.350e+00 2.762e+00

727 1.432e+01 2.630e−01 6.126e−01 3.941e+00

2,813 1.497e+01 1.589e−01 2.910e−01 4.311e+00

11,065 1.503e+01 8.289e−02 1.416e−01 4.401e+00

Order −0.035 0.848 1.076 −0.081
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Table 10
Example 3: errors for the  element discretization on unstructured grids of the 

unit disk

N ‖uI − uh‖Ãh ‖uI − uh‖ ‖u − uh‖ ‖uI − uh‖∞

194 2.018e−01 4.302e−03 2.152e−02 1.616e−03

727 6.932e−02 7.531e−04 5.358e−03 2.419e−04

2,813 2.498e−02 1.372e−04 1.337e−03 3.354e−05

11,065 9.041e−03 2.483e−05 3.339e−04 4.237e−06

Order 1.496 2.506 2.038 2.971

N ‖Ihp − ph‖ ‖p − ph‖ ‖Ihp − ph‖∞

194 3.010e−02 3.010e−02 4.375e−02 1.028e−01

727 1.205e−02 1.205e−02 2.014e−02 6.260e−02

2,813 4.666e−03 4.666e−03 7.872e−03 3.234e−02

11,065 1.731e−03 1.731e−03 2.914e−03 1.639e−02

Order 1.426 1.426 1.420 0.984

N ‖ωI − ωh̃‖1 ‖ω − ωh̃‖ ‖ωI − ωh̃‖∞

194 1.105e+01 2.114e−01 2.701e−01 9.710e−01

727 8.025e+00 7.654e−02 1.008e−01 5.067e−01

2,813 5.765e+00 2.731e−02 3.655e−02 2.572e−01

11,065 4.110e+00 9.702e−03 1.308e−02 1.294e−01

Order 0.491 1.517 1.500 1.002
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