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The ability to detect sparse signals from noisy, high-dimensional
data is a top priority in modern science and engineering. It is well
known that a sparse solution of the linear system Aρ= b0 can be
found efficiently with an `1-norm minimization approach if the
data are noiseless. However, detection of the signal from data
corrupted by noise is still a challenging problem as the solution
depends, in general, on a regularization parameter with opti-
mal value that is not easy to choose. We propose an efficient
approach that does not require any parameter estimation. We
introduce a no-phantom weight τ and the Noise Collector matrix
C and solve an augmented system Aρ+ Cη = b0 + e, where e is
the noise. We show that the `1-norm minimal solution of this
system has zero false discovery rate for any level of noise, with
probability that tends to one as the dimension of b0 increases
to infinity. We obtain exact support recovery if the noise is not
too large and develop a fast Noise Collector algorithm, which
makes the computational cost of solving the augmented sys-
tem comparable with that of the original one. We demonstrate
the effectiveness of the method in applications to passive array
imaging.

high-dimensional probability | convex geometry | sparsity-promoting
algorithms | noisy data

We want to find sparse solutions ρ∈RK for

Aρ= b [1]

from highly incomplete measurement data b = b0 + e∈RN cor-
rupted by noise e, where 1�N <K . In the noiseless case, ρ can
be found exactly by solving the optimization problem (1)

ρ∗= arg min
ρ
‖ρ‖`1 , subject to Aρ= b, [2]

provided that the measurement matrix A∈RN×K satisfies addi-
tional conditions (e.g., decoherence or restricted isometry prop-
erties) (2, 3) and that the solution vector ρ has a small number M
of nonzero components or degrees of freedom. When measure-
ments are noisy, exact recovery is no longer possible. However,
the exact support of ρ can still be determined if the noise is not
too strong. The most commonly used approach is to solve the
`2-relaxed form of Eq. 2:

ρλ = arg min
ρ

(
λ‖ρ‖`1 + ‖Aρ− b‖2`2

)
, [3]

which is known as Lasso in the statistics literature (4). There are
sufficient conditions for the support of ρλ to be contained within
the true support [e.g., the works of Fuchs (5), Tropp (6), Wain-
wright (7), and Maleki et al. (8)]. These conditions depend on
the signal-to-noise ratio (SNR), which is not known and must be
estimated, and on the regularization parameter λ, which must
be carefully chosen and/or adaptively changed (9). Although
such an adaptive procedure improves the outcome, the resulting
solutions tend to include a large number of “false positives” in
practice (10). Belloni et al. (11) proposed to solve the square root

Lasso minimization problem instead of Eq. 3, which makes the
regularization parameter λ independent of the SNR. Our con-
tribution is a computationally efficient method for exact support
recovery with no false positives in noisy settings. It also does not
require an estimate on SNR.

Main Results
Suppose that ρ is an M -sparse solution of system [1] with no
noise, where the columns of A have unit length. Our main result
ensures that we can still recover the support of ρ when the data
are noisy by looking at the support of ρτ found as

(ρτ ,ητ )= arg min
ρ,η

(
τ‖ρ‖`1 + ‖η‖`1

)
, [4]

subject to Aρ+ Cη = b0 + e,

with an O(1) weight τ and an appropriately chosen Noise Col-
lector matrix C ∈RN×Σ, Σ�K . The minimization problem [4]
can be understood as a relaxation of [2] as it works by absorbing
all of the noise and possibly, some signal in Cητ .

The following theorem shows that, if the signal is pure noise
and the columns of C are chosen independently and at random
on the unit sphere SN−1 = {x ∈RN , ‖x‖`2 = 1}, then Cητ = e for
any level of noise, with large probability.

Theorem 1 (No-Phantom Signal). Suppose that b0 = 0 and that
e/‖e‖`2 is uniformly distributed on SN−1. Fix β > 1, and draw
Σ =N β columns for C independently from the uniform distribu-
tion on SN−1. For any κ> 0, there are constants τ = τ(κ,β) and
N0 =N0(κ,β) such that, for all N >N0, ρτ , the solution of Eq. 4,
is 0 with probability 1− 1/N κ.

This theorem guarantees with large probability a zero false
discovery rate in the absence of signals with meaningful
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information. The key to a zero false discovery rate is the choice
of a no-phantom weight τ . Next, we generalize this result for the
case in which the recorded signals carry useful information.

Theorem 2 (Zero False Discoveries). Let ρ be an M -sparse
solution of the noiseless system Aρ= b0. Assume that κ, β, the
Noise Collector, and the noise are the same as in Theorem 1.
In addition, assume that the columns of A are incoherent in the
sense that |〈ai , aj 〉|≤ 1

3M
. Then, there are constants τ = τ(κ,β)

and N0 =N0(κ,β) such that supp(ρτ )⊆ supp(ρ) for all N >N0

with probability 1− 1/N κ.
This theorem holds for any level of noise and the same value

of τ as in Theorem 1. The incoherence conditions in Theorem
2 are needed to guarantee that the true signal does not create
false positives elsewhere. Theorem 2 guarantees that the sup-
port of ρτ is inside the support of ρ. The next theorem shows
that, if the noise is not too large, then ρτ and ρ have exactly the
same support.

Theorem 3 (Exact Support Recovery). Keep the same assump-
tions as in Theorem 2. Let γ= mini∈supp(ρ) |ρi |/‖ρ‖`∞ . There are
constants τ = τ(κ,β), c1 = c1(κ,β, γ), and N0 =N0(κ,β) such
that, if the noise level satisfies ‖e‖`2 ≤ c1‖b0‖2`2‖ρ‖

−1
`1

√
N /
√

lnN ,
then for all N >N0, supp(ρτ ) = supp(ρ) with probability
1− 1/N κ.

To elucidate an interpretation of the last theorem, consider a
model case where A is the identity matrix and all coefficients of
b0 =ρ are either one or zero. Then, ‖b0‖2`2 = ‖ρ‖`1 =M . In this
case, an acceptable relative level of noise is

‖e‖`2/‖b0‖`2 .
√
N /
√
M lnN . [5]

This means that ‖e‖`2 .
√
N /
√

lnN , and it implies that each
coefficient of b0 may be corrupted by O(1/

√
lnN ) on average

and that some coefficients of b0 may be corrupted by O(1).

Motivation
We are interested in imaging sparse scenes accurately using
limited and noisy data. Such imaging problems arise in many
areas, such as medical imaging (12), structural biology (13), radar
(14), and geophysics (15). In imaging, the `1-norm minimization
method in Eq. 2 is often used (16–21) as it has the desirable prop-
erty of superresolution: that is, the enhancement of the fine-scale
details of the images. This has been analyzed in different settings
by Donoho (22), Candès and Fernandez-Granda (23), Fannjiang
and Liao (24), and Borcea and Kocyigit (25) among others. We
want to retain this property in our method when the data are
corrupted by additive noise.

However, noise fundamentally limits the quality of the images
formed with almost all computational imaging techniques.
Specifically, `1-norm minimization produces images that are
unstable for low SNR due to the ill conditioning of superreso-
lution reconstruction schemes. The instability emerges as clutter
noise in the image, or grass, that degrades the resolution. Our
initial motivation to introduce the Noise Collector matrix C
was to regularize the matrix A and thus, to suppress the clut-
ter in the images. We proposed in ref. 26 to seek the minimal
`1-norm solution of the augmented linear system Aρ+ Cη = b.
The idea was to choose the columns of C almost orthogonal to
those of A. Indeed, the condition number of [A | C] becomes
O(1) when O(N ) columns of C are taken at random. This
essentially follows from the bounds on the largest and the small-
est nonzero singular values of random matrices (theorem 4.6.1
in ref. 27).

The idea to create a dictionary for noise is not new. For exam-
ple, the work by Laska et al. (28) considers a specific version of
the measurement noise model so that b =Aρ+ Ce, where C is
a matrix with fewer (orthonormal) columns than rows and the

noise vector e is sparse. C represents the basis in which the noise
is sparse and it is assumed to be known. Then, they show that
it is possible to recover sparse signals and sparse noise exactly.
We stress that we do not assume here that the noise is sparse.
In our work, the noise is large (SNR can be small) and is evenly
distributed across the data, and therefore, it cannot be sparsely
accommodated.

To suppress the clutter, our theory in ref. 26 required expo-
nentially many columns, and therefore, Σ. eN . This seemed to
make the Noise Collector impractical, but the numerical exper-
iments suggested that O(N ) columns were enough to obtain
excellent results. We address this issue here and explain why the
Noise Collector matrix C only needs algebraically many columns.
Moreover, to absorb the noise completely and thus, improve the
algorithm in ref. 26, we introduce now the no-phantom weight
τ in Eq. 4. Indeed, by weighting the columns of the Noise Col-
lector matrix C with respect to those in the model matrix A, the
algorithm now produces images with no clutter at all regardless
of how much noise is added to the data.

Finally, we want the Noise Collector to be efficient, with
almost no extra computational cost with respect to the Lasso
problem in Eq. 3. To this end, the Noise Collector is constructed
using circulant matrices that allow for efficient matrix vector
multiplications using fast Fourier transforms (FFTs).

We now explain how the Noise Collector works and reduce
our theorems to basic estimates in high-dimensional probability.

The Noise Collector
The method has two main ingredients: the Noise Collector
matrix C and the no-phantom weight τ . The construction of
the Noise Collector matrix C starts with the following three key
properties. First, its columns should be sufficiently orthogonal
to the columns of A, and therefore, it does not absorb signals
with “meaningful” information. Second, the columns of C should
be uniformly distributed on the unit sphere SN−1 so that we
could approximate well a typical noise vector. Third, the num-
ber of columns in C should grow slower than exponential with N ;
otherwise, the method is impractical.

One way to guarantee all three properties is to impose

|〈ai , cj 〉|<
α√
N
∀i , j and |〈ci , cj 〉|<

α√
N
∀i 6= j [6]

with α> 1 and fill out C drawing ci at random with rejections
until the rejection rate becomes too high. Then, by construc-
tion, the columns of C are almost orthogonal to the columns of
A, and when the rejection rate becomes too high, this implies
that we cannot pack more N-dimensional unit vectors into C;
thus, we can approximate well a typical noise vector. Finally, the
Kabatjanskii–Levenstein inequality (discussed in ref. 29) implies
that the number Σ of columns in C grows at most polynomially:
Σ≤Nα2

. The first estimate in Eq. 6 implies that any solution
Cη = ai satisfies, for any i ≤K , ‖η‖`1 &

√
N . This estimate mea-

sures how expensive it is to approximate columns of A (i.e., the
meaningful signal) with the Noise Collector. In turn, the no-
phantom weight τ should be chosen so that it is expensive to
approximate noise using columns of A. It cannot be taken too
large, however, because we may lose the signal. In fact, one can
prove that, if τ ≥

√
N /α, then ρτ ≡ 0 for any ρ and any level of

noise. Intuitively, τ characterizes the rate at which the signal is
lost as the noise increases. The most important property of the
no-phantom weight τ is that it does not depend on the level of
noise, and therefore, it is chosen before we start using the Noise
Collector.

It is, however, more convenient for the proofs to use a proba-
bilistic version of Eq. 6. Suppose that the columns of C are drawn
independently at random. Then, the dot product of any two

Moscoso et al. PNAS | May 26, 2020 | vol. 117 | no. 21 | 11227



random unit vectors is still typically of order 1/
√
N (27). If the

number of columns grows polynomially, we only have to sacri-
fice an asymptotically negligible event where our Noise Collector
does not satisfy the three key properties, and the decoherence
constraints in Eq. 6 are weakened by a logarithmic factor only.
This follows from basic estimates in high-dimensional proba-
bility. We will state them in the next lemma after we interpret
problem [4] geometrically.

Consider the convex hulls

H1 =

{
x ∈RN

∣∣∣∣∣x =

Σ∑
i=1

ξici ,
Σ∑

i=1

|ξi | ≤ 1

}
, [7]

H2 =

{
x ∈RN

∣∣∣∣∣x =

K∑
i=1

ξiai ,

Σ∑
i=1

|ξi | ≤ 1

}
, [8]

and H (τ) = {ξh1/τ + (1− ξ)h2, 0≤ ξ≤ 1, hi ∈Hi}. Theorem 1
states that, for a typical noise vector e, we can find λ0 > 0 such
that e∈λ0∂H1 and e /∈λ∂H (τ) for any λ<λ0.

Lemma 1 (Typical Width of Convex Hulls Hi). Suppose that
Σ =N β , β > 1; vectors ci ∈ SN−1, i = 1, 2, . . . , Σ, are drawn at
random and independently; and e∈ SN−1. Then, for any κ>

0, there are constants c0 = c0(κ,β), α=
√

(β− 1)/2, and N0 =
N0(κ,β) such that, for all N ≥N0,

max

(
max
i≤K

(|〈ai , e〉|), max
i≤Σ

(|〈ci , e〉|)
)
< c0

√
lnN /

√
N [9]

and
α
√

lnN e/
√
N ∈H1 [10]

with probability 1− 1/N κ.
We sketch the proof of estimates [9] and [10] in Proofs. Esti-

mate [9] can also be derived from Milman’s version (30) of
Dvoretzky’s theorem. Informally, inequality [9] states that H1

and H2 are contained in the `2 ball of radius c0

√
lnN /

√
N

except for a few spikes in statistically insignificant directions
(Fig. 1, Left). Inequality [10] states that H1 contains an `2 ball
of radius α

√
lnN /

√
N except for a few statistically insignificant

directions.
These inequalities immediately imply Theorem 1. We just

need to explain how to choose the no-phantom weight τ . There
will be no phantoms if H2/τ is strictly inside the `2 ball of radius
α
√

lnN /
√
N . This could be done if τ > c0/α.

If columns of A are orthogonal to each other, then The-
orem 2 follows from Theorem 1. We just need to project
the linear system in Eq. 4 on the span of ai , i /∈ supp(ρ),

Fig. 1. (Left) A convex hull H1 is an `2 ball of radius O(
√

ln N/
√

N) with
few spikes. (Right) An intersection of H(τ ) with the span (a1, e) is a rounded
rhombus.

and apply Theorem 1 to the projections. If, in addition, we
assume that b0 = a1ρ1, then Proof of Theorem 3 is illus-
trated in Fig. 1, Right. In detail, a typical intersection of V =
span(a1, e), and H (τ) is a rounded rhombus because it is the
convex hull of a1/τ and the `2 ball of radius c0

√
lnN /

√
N .

If a1ρ1 + e∈λ0∂H (τ), then there are two options: 1) a1ρ1 +
e lies on the curved boundary of the rounded rhombus, and
then, supp(ρτ ) = ∅; or 2) a1ρ1 + e lies on the flat boundary of
the rounded rhombus, and then, supp(ρτ ) = supp(ρ). The sec-
ond option happens if the vector a1ρ1 + e intersects the flat
boundary of ∂H (τ). This gives the support recovery estimate in
Theorem 3.

In the general case, the columns of the combined matrix [A | C]
are incoherent. This property allows us to prove Theorems 2 and
3 in Proofs using known techniques (26). In particular, we auto-
matically have exact recovery using ref. 2 applied to [A | C] if the
data are noiseless.

Lemma 2 (Exact Recovery). Suppose that ρ is an M -sparse
solution of Aρ= b and that there is no noise so that e = 0. In addi-
tion, assume that the columns of A are incoherent: |〈ai , aj 〉|≤ 1

3M
.

Then, the solution to Eq. 4 satisfies ρτ =ρ for all

M <
2
√
N

3c0τ
√

lnN
with probability 1− 1

N κ
. [11]

Fast Noise Collector Algorithm
To find the minimizer in Eq. 4, we consider a variational
approach. We define the function

F (ρ,η, z) =λ (τ‖ρ‖`1 + ‖η‖`1) [12]

+
1

2
‖Aρ+ Cη− b‖2`2 + 〈z, b−Aρ−Cη〉

for a no-phantom weight τ and determine the solution as

max
z

min
ρ,η

F (ρ,η, z). [13]

The key observation is that this variational principle finds the
minimum in Eq. 4 exactly for all values of the regularization
parameter λ. Hence, the method has no tuning parameters. To
determine the exact extremum in Eq. 13, we use the iterative
soft thresholding algorithm GeLMA (generalized Lagrangian
multiplier algorithm) (31) that works as follows.

First, pick a value for β and τ . For optimal results, one can cal-
ibrate τ to be the smallest constant such that Theorem 1 holds:
that is, we see no-phantom signals when the algorithm is fed
with pure noise. In our numerical experiments, we use β= 1.5
and τ = 2.

Second, pick a value for the regularization parameter λ (e.g.,
λ= 1). Choose step sizes ∆t1 < 2/‖[A | C]‖2 and ∆t2 <λ/‖A‖.*
Set ρ0 = 0, η0 = 0, and z0 = 0, and iterate for k ≥ 0:

r = b−Aρk −C ηk ,

ρk+1 =S τ λ∆t1 (ρk + ∆t1A∗(zk + r)),

ηk+1 =Sλ∆t1 (ηk + ∆t1 C∗(zk + r)),

zk+1 = zk + ∆t2 r, [14]

where Sr (yi) = sign(yi) max{0, |yi | − r}.
The Noise Collector matrix C is computed by drawing N β−1

normally distributed N -dimensional vectors normalized to unit
length. These are the generating vectors of the Noise Col-
lector. From each of them, a circulant N ×N matrix Ci ,

*Choosing two step sizes instead of the smaller one ∆t1 improves the convergence
speed.

11228 | www.pnas.org/cgi/doi/10.1073/pnas.1913995117 Moscoso et al.
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Fig. 2. General setup for passive array imaging. The source at ~zj emits a
signal that is recorded at all array elements ~xr , r = 1, . . . , Nr .

i = 1, . . . ,N β−1, is constructed. The Noise Collector
matrix is obtained by concatenation, and therefore, C=
[C1 |C2 |. . . |CNβ−1 ]. Exploiting the circulant structure of the
matrices Ci , we perform the matrix vector multiplications Cηk

and C∗(zk + r) in Eq. 14 using the FFT (32). This makes the
complexity associated with the Noise Collector O(N β log(N )).
Note that only the N β−1 generating vectors are stored and
not the entire N ×N β Noise Collector matrix. In practice, we
use β≈ 1.5, which makes the cost of using the Noise Collector
negligible as typically, K �N β−1. The columns of the Noise
Collector matrix C with this circulant structure are uniformly
distributed on SN−1, and they satisfy Lemma 1. This implies that
the theorems of this paper are still valid for such C.

Application to Imaging
We consider passive array imaging of point sources. The prob-
lem consists of determining the positions ~zj and the complex†

amplitudes αj , j = 1, . . . ,M , of a few point sources from mea-
surements of polychromatic signals on an array of receivers
(Fig. 2). The imaging system is characterized by the array aper-
ture a , the distance L to the sources, the bandwidth B , and the
central wavelength λ0.

The sources are located inside an image window (IW), which
is discretized with a uniform grid of points~yk , k = 1, . . . ,K . The
unknown is the source vector ρ= [ρ1, . . . , ρK ]ᵀ ∈CK , with com-
ponents ρk that correspond to the complex amplitudes of the
M sources at the grid points ~yk , k = 1, . . . ,K , with K �M .
For the true source vector, we have ρk =αj if ~yk =~zj for some
j = 1, . . . ,M , while ρk = 0 otherwise.

Denoting by G(~x,~y;ω) Green’s function for the propagation
of a signal of angular frequency ω from point ~y to point ~x, we
define the single-frequency Green’s function vector that con-
nects a point~y in the IW with all points~xr , r = 1, . . . ,Nr , on the
array as

g(~y;ω) = [G(~x1,~y;ω),G(~x2,~y;ω), . . . ,G(~xN ,~y;ω)]ᵀ ∈CNr .

In three dimensions, G(~x,~y;ω) =
exp{iω|~x−~y|/c0}

4π|~x−~y| if the

medium is homogeneous. The data for the imaging problem are
the signals b(~xr ,ωl) =

∑M
j=1 αjG(~xr ,~zj ;ωl) recorded at receiver

†We chose to work with real numbers in the previous sections for ease of presentation,
but the results also hold with complex numbers.

locations~xr , r = 1, . . . ,Nr , at frequencies ωl , l = 1, . . . ,S . These
data are stacked in a column vector

b = [b(ω1)ᵀ, b(ω2)ᵀ, . . . , b(ωS )ᵀ]ᵀ ∈CN ; N =NrS , [15]

with b(ωl) = [b(~x1,ωl), b(~x2,ωl), . . . , b(~xN ,ωl)]
ᵀ ∈CNr . Then,

Aρ= b, with A being the N ×K measurement matrix with
columns ak that are the multiple-frequency Green’s function
vectors

ak = [g(~yk ;ω1)ᵀ, g(~yk ;ω2)ᵀ, . . . , g(~yk ;ωS )ᵀ]ᵀ ∈CN [16]

normalized to have length 1. The system Aρ= b relates the
unknown vector ρ∈CK to the data vector b∈CN .

Next, we illustrate the performance of the Noise Collector in
this imaging setup. The most important features are that 1) no
calibration is necessary with respect to the level of noise, that 2)
exact support recovery is obtained for relatively large levels of
noise [i.e., ‖e‖`2 ≤ c1‖b0‖2`2

√
N /(‖ρ‖`1

√
lnN )], and that 3) we

have zero false discovery rates for all levels of noise with high
probability.

We consider a high-frequency microwave imaging regime with
central frequency f0 = 60 GHz corresponding to λ0 = 5 mm. We
make measurements for S = 25 equally spaced frequencies span-
ning a bandwidth B = 20 GHz. The array has N = 25 receivers
and an aperture a = 50 cm. The distance from the array to the
center of the imaging window is L= 50 cm. Then, the reso-
lution is λ0L/a = 5 mm in the cross-range (direction parallel
to the array) and c0/B = 15 mm in range (direction of prop-
agation). These parameters are typical in microwave scanning
technology (33).

We seek to image a source vector with sparsity M = 12 (Fig. 3,
Left). The size of the imaging window is 20 × 60 cm, and the
pixel spacing is 5 × 15 mm. The number of unknowns is, there-
fore, K = 1,681, and the number of data is N = 625. The size
of the Noise Collector is taken to be Σ = 104, and therefore,
β≈ 1.5. When the data are noiseless, we obtain exact recovery
as expected (Fig. 3, Right).

In Fig. 4, we display the imaging results with and without the
Noise Collector when the data are corrupted by additive noise.
The SNR = 1, and therefore, the `2 norms of the signals and the
noise are equal. In column 1 of Fig. 4, we show the recovered
image using `1-norm minimization without the Noise Collector.
There is a lot of grass in this image, with many nonzero values
outside the true support. When the Noise Collector is used, the
level of the grass is reduced, and the image improves (column 2
of Fig. 4). Still, there are several false discoveries because we use
τ = 1 in algorithm [14].

In column 3 of Fig. 4, we show the image obtained with a
weight τ = 2 in algorithm [14]. With this weight, there are no
false discoveries, and the recovered support is exact. This simpli-
fies the imaging problem dramatically as we can now restrict the
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ρτ , is plotted with red stars, and the true solution vector, ρ, is plotted with
green circles.
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inverse problem to the true support just obtained and then, solve
an overdetermined linear system using a classical `2 approach.
The results are shown in column 4 of Fig. 4. Note that this sec-
ond step largely compensates for the signal that was lost in the
first step due to the high level of noise.

In Fig. 5, we illustrate the performance of the Noise Collector
for different sparsity levels M and ‖e‖`2/‖b0‖`2 values. Success
in recovering the true support of the unknown corresponds to a
value of one (yellow in Fig. 5), and failure corresponds to a value
of zero (blue in Fig. 5). The small phase transition zone (green
in Fig. 5) contains intermediate values. The black lines in Fig. 5
are the theoretical prediction Eq. 5. These results are obtained
by averaging over 10 realizations of noise. We show results for
three values of data sizes N = 342, N = 625, and N = 961. In our
experiments, the nonzero components of the unknown ρ take
values in [0.6, 0.8], and therefore, ‖b0‖`2/‖ρ‖`1 = cst/

√
M .

Remark 1: We considered passive array imaging for ease of
presentation. The same results hold for active array imaging
with or without multiple scattering; ref. 34 discusses the detailed
analytical setup.

Remark 2: We have considered a microwave imaging regime.
Similar results can be obtained in other regimes.

Proofs
Proof of Lemma 1: Using the rotational invariance of all of our
probability distributions, inequality [9] is true if

P(max
i
|〈di , e〉|≥ c0

√
lnN /

√
N )≤ 1/N κ,

where di , i = 1, 2, . . . ,K + Σ are (possibly dependent) uniformly
distributed on SN−1, and we can assume that e = (1, 0, . . . , 0).
Denote the event

Ωt =
{

max
i
|〈di , e〉|≥ t/

√
N
}
.

P
(
|〈di , e〉|≥ t/

√
N
)
≤ 2 exp(−t2/2) for each di . We obtain

P (Ωt)≤ 2(K + Σ) exp(−t2/2) using the union bound. Choos-
ing t = c0

√
lnN for sufficiently large c0, we get P (Ωt)≤

CN βN−c20/2≤N−κ, where c2
0 > 2(β+κ) and N ≥N0. Hence,

Eq. 9 holds with probability 1−N−κ.
If N columns cj , j ∈S of C satisfy

min
j∈S
|〈cj , e〉|≥ θ, θ=α

√
lnN /

√
N , [17]

then their convex hull will contain θe with probability (1/2)N .
Therefore, inequality [10] follows if [17] holds with probability
1− 1/N κ. Using the rotational invariance of all of our prob-
ability distributions, we can assume that e = (1, 0, . . . , 0). For
each ci ,

P
(
|〈ci , e〉|≥ t√

N

)
=

2√
2π

∫ ∞
t

e−
x2

2 dx ≥ 1

2
e−t2 .

Split the index set 1, 2, . . . , Σ into N nonoverlapping subsets Sk ,
k = 1, 2, . . . ,N of size N β−1. For each Sk ,

P

(
max
i∈Sk

|〈ci , e〉|≤ α
√

lnN√
N

)
≤
(

1− 1

2 Nα2

)Nβ−1

≤ e−
1
2
N
β−1
2

for α=
√

(β− 1)/2. By independence,

P ([17] holds)≥ΠN
k=1P(max

i∈Sk

|〈ci , e〉|≥α
√

lnN /
√
N ).

Then, P ([17] holds)≥ (1− e−
1
2
N
β−1
2 )N ≥ 1−N e−

1
2
N
β−1
2 .

Choosing N0 sufficiently large, we obtain [10]. �
Proof of Theorem 2: When columns of A are not orthogonal,

we will choose a τ smaller than that in Theorem 1 by a factor
of two. Suppose that the M -dimensional space V is the span of
the column vectors aj , with j in the support of ρ. Say that V is
spanned by a1 . . . aM . Let W =V⊥ be the orthogonal comple-
ment to V . Consider the orthogonal decomposition ai = av

i + aw
i

for all i ≥M + 1. Incoherence of ai implies that ‖aw
i ‖`2 ≥ 1/2

for all i ≥M + 1. Indeed, fix any i ≥M + 1. Suppose that
av
i =

∑M
k=1 ξkak and that |ξj |= maxk≤M |ξk |= ‖ξ‖l∞ . Thus,

1
3M
≥ |〈aj , av

i 〉|≥ |〈aj ,
∑M

k=1 ξkak 〉|≥ ‖ξ‖l∞
(
1− M−1

3M

)
. Then,

Fig. 4. High level of noise; SNR = 1. (Column 1) `1-norm minimization without the noise collector. (Column 2) `1-norm minimization with a noise collector
with Σ = 104 columns and τ = 1 in algorithm [14]. (Column 3) `1-norm minimization with a noise collector and the correct τ = 2 in algorithm [14]. (Column
4) `2-norm solution restricted to the support. In Upper, we show the images. In Lower, we show the solution vector with red stars and the true solution
vector with green circles. NC = noise collector.
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(blue). The small phase transition zone (green) contains intermediate values. The black lines are the theoretical estimate

√
N/

√
M ln N. Ordinate and abscissa

are the sparsity M and ‖e‖2/‖b0‖`2
. The data sizes are (Left) N = 342, (Center) N = 625, and (Right) N = 961.

‖ξ‖l∞ ≤ 1/(2M ). Therefore, ‖av
i ‖`2 ≤‖ξ‖`1 ≤M ‖ξ‖l∞ ≤ 1/2,

and ‖aw
i ‖`2 ≥‖ai‖`2 −‖a

v
i ‖`2 ≥ 1/2.

Project system [4] on W . Then, we obtain a new system [4].
The `2 norms of the columns of new A are at least 1/2. Oth-
erwise, the new system satisfies all conditions of Theorem 1.
Indeed, b0 is projected to zero. All ci and e/‖e‖`2 are projected
to vectors uniformly distributed on SN−M−1 by the concentra-
tion of measure (27). If any ai , i ≥M + 1, was used in an optimal
approximation of b0 + e, then its projection aw

i is used in an opti-
mal approximation of the projection of b0 + e on W . This is a
contradiction to Lemma 1 if we choose τ < c0/(2α) and recall
that ‖aw

i ‖`2 ≥ 1/2. �
Proof of Theorem 3: Choose τ as in Theorem 2. Incoher-

ence of ai implies that we can argue as in Proof of Theorem
2 and assume that 〈ai , aj 〉= 0 for i 6= j , i , j ∈ supp(ρ). Suppose
that V i are the two-dimensional (2D) spaces spanned by e and
ai for i ∈ supp(ρ). By Lemma 1, all λH (τ)∩V i look like the
rounded rhombi depicted in Fig. 1, Right, and λH1 ∩V i ⊂B i

λ

with probability 1−N−κ, where B i
λ is a 2D `2 ball of radius

λc0

√
lnN /

√
N . Thus, λH (τ)∩V i ⊂H i

λ with probability 1−
N−κ, where H i

λ is the convex hull of B i
λ and a vector λf i , f i =

ρi‖ρ‖−1
`1
τ−1ai . Then, supp(ρτ ) = supp(ρ) if there exists λ0 so

that ρiai + e lies on the flat boundary of H i
λ0

for all i ∈ supp(ρ).
If mini∈supp(ρ) |ρi | ≥ γ‖ρ‖∞, then there is a constant c2 =

c2(γ) such that, if ρiai + e lies on the flat boundary of H i
λ for

some i and some λ, then there exists λ0 so that ρiai + c2e lies
on the flat boundary of H i

λ0
for all i ∈ supp(ρ). Suppose that V

is spanned by e and b0, Hλ⊂V is the convex hull of Bλ and
λf , and f = b0‖ρ‖−1

`1
τ−1 where Bλ⊂V is an `2 ball of radius

λc0

√
lnN /

√
N . If b0 + c2e lies on the flat boundary of Hλ, then

there must be an i ∈ supp(ρ) such that ρiai + c2e lies on the flat
boundary of H i

λ. If

|〈b0, b0 + c2e〉|
‖b0‖`2‖b0 + c2e‖`2

≥ c0

√
lnN√

N ‖f‖`2
, [18]

then b0 + c2e lies on the flat boundary of Hλ. Since
|〈b0, e〉|≤ c0‖e‖`2‖b0‖`2/

√
N with probability 1−N−κ,

Eq. 18 holds if ‖e‖`2/‖b0‖`2 ≤‖f‖`2
√

N /(c2c0

√
lnN )≤

c1‖b0‖`2‖ρ‖
−1
`1

√
N /
√

lnN . �
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numerical simulations.
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