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Transporting 11 billion tonnes annually, the maritime shipping 
industry handles nearly 90% of global trade by mass1,2. The 
industry’s meteoric growth has been underpinned by access 

to cheap, energy-dense heavy fuel oil (HFO). The shipping industry 
consumes 3.5 million barrels of low-grade HFO annually, produces 
2.5% of total anthropogenic carbon dioxide equivalent (CO2e) emis-
sions in 20182,3, and engenders enormous damages from marine 
eutrophication and ecotoxicity, air pollution, and climate change 
impacts4. By 2050, maritime shipping emissions are projected to 
contribute as much as 17% of global CO2e emissions5,6. The indus-
try’s outsized contribution to criteria air pollutants—12% and 13% 
of global annual anthropogenic SO2 and NOx emissions, respec-
tively—caused an estimated 403,300 premature deaths from lung 
cancer and cardiovascular disease in 20203,7.

Mounting political pressure has prompted the International 
Maritime Organization (IMO) to take regulatory action to reduce 
GHG emissions consistent with the Paris Agreement. Actions 
include resolution MEPC.302(72), which aims to reduce annual 
CO2e emissions by 50% by 2050 from 2008 levels8, and recom-
mended amendments to the International Convention for the 
Prevention of Pollution from Ships (MARPOL)—whose members 
cover 99.4% of world shipping tonnage—to prohibit using or car-
rying HFO in Arctic waters after 20249,10. In concert, IMO’s 2020 
emissions standards reduced the allowable marine fuel sulfur con-
tent from 3.5% to 0.5% by mass11.

Faced with this tightening regulatory landscape, the marine 
shipping industry is racing to identify commercially deployable 
zero-emission alternatives to HFO at a pace sufficient to sub-
stantially curb the sector’s emissions and avert catastrophic cli-
mate change. Optimistic outlooks for zero-emissions alternatives 
for marine applications suggest that electrofuels (e-fuels) would 
increase the total cost of ownership for bulks carriers by 200–600% 
relative to HFO12. Such analysis prompts additional research into 
which existing propulsion technologies could achieve parity with 
HFO in the near-future, particularly battery-electric propulsion. 

Maersk, the largest shipping company by volume, is already pilot-
ing battery hybridization on a containership operating between 
East Asia and West Africa13. A fully electric 80 m containership, 
the Yara Birkeland, is expected to begin autonomous operation in 
Norway in the early 2020s. Similar battery-electric vessel projects 
are underway in Japan, Sweden and Denmark14,15. However, system-
atic analysis of the adoption potential for battery-electric container-
ships has yet to be conducted. With the exception of these initial 
pilot projects, battery-electric propulsion has been underexplored 
as a potential low-emissions alternative in the marine shipping sec-
tor despite: its considerable emissions reduction potential; recent 
decline in battery costs; improvements in battery energy densities; 
increasing availability of low-cost, renewably generated electricity; 
and its substantial efficiency advantage over e-fuels such as green 
hydrogen and ammonia.

Using the best-available battery costs and energy densities, we 
examine the technical outlook, economic feasibility and environ-
mental impact of battery-electric containerships. We define two sce-
narios: first, a baseline scenario using today’s best-available battery 
costs, HFO costs, battery energy densities and renewable energy 
prices; and, second, a near-future scenario that tests the impacts 
of projected 2030 improvements in these variables. By contrast to 
most previous studies, we treat the volume repurposed to house 
the battery energy storage (BES) system as an opportunity cost 
instead of a fixed technical constraint. We specify eight container-
ship size classes and model their energy needs, their CO2, NOx and 
SO2 emissions, and total cost of propulsion (TCP) across 13 major 
world trade routes—creating 104 unique scenarios of ship size and 
route length that can be compared with almost any containership 
operating today. We focus on battery-electric containerships and 
briefly explore the implications of our results for electrifying other 
ship types. Our results suggest that over 40% of global containership 
traffic could be electrified cost-effectively with current technology, 
reducing CO2 emissions by 14% for US-based vessels, and mitigat-
ing the health impacts of air pollution on coastal communities.

Rapid battery cost declines accelerate the 
prospects of all-electric interregional container 
shipping
Jessica Kersey   1, Natalie D. Popovich2 and Amol A. Phadke   2 ✉

International maritime shipping—powered by heavy fuel oil—is a major contributor to global CO2, SO2, and NOx emissions. The 
direct electrification of maritime vessels has been underexplored as a low-emission option despite its considerable efficiency 
advantage over electrofuels. Past studies on ship electrification have relied on outdated assumptions on battery cost, energy 
density values and available on-board space. We show that at battery prices of US$100 kWh−1 the electrification of intrare-
gional trade routes of less than 1,500 km is economical, with minimal impact to ship carrying capacity. Including the environ-
mental costs increases the economical range to 5,000 km. If batteries achieve a US$50 kWh−1 price point, the economical range 
nearly doubles. We describe a pathway for the battery electrification of containerships within this decade that electrifies over 
40% of global containership traffic, reduces CO2 emissions by 14% for US-based vessels, and mitigates the health impacts of 
air pollution on coastal communities.
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the search for low-emissions pathways for maritime 
shipping
In the short term, most ship operators have turned to energy effi-
ciency measures such as slow steaming (deliberately reducing a ship’s 
cruising speed to reduce fuel consumption), route optimization and 
hull fouling management to meet IMO mandates16. However, the 
10–15% emissions reductions achievable through these measures 
are not sufficient to comply with forthcoming IMO efficiency regu-
lations17,18. Hybrid battery technology has been explored a viable 
short-term solution to reduce—but not eliminate—emissions from 
fossil-fuel energy sources. One study suggests a best-case scenario 
for hybrid systems is only 14% reduction in emissions for dry bulk 
carriers (comprising 2% of global fleet emissions)19, not substantially 
better than the existing energy efficiency measures. Small modular 
nuclear reactors, which have been used in military and submarine 
applications for decades20, are a viable alternative, but are unlikely 
to achieve wide-spread deployment in commercial vessels given the 
regulatory challenges surrounding nuclear proliferation, safety and 
waste disposal. Marine gas oil, liquefied petroleum gas, liquefied nat-
ural gas, methanol and their bio-derivations have received substan-
tial attention as medium- to long-term options, but recent research 
has questioned the potential of these fuels to reach cost parity and 
considerably reduce lifecycle GHG emissions21–23. Not all transport 
modes are viable candidates for immediate and direct electrification; 
commercial jet planes cannot reasonably be electrified until battery 
pack specific energy increases to three to ten times their current 
values24. It is within this context that propulsion technologies gen-
erated with renewable power have received the most attention. For 
example, blue hydrogen (hydrogen produced from natural gas with 
carbon capture and storage) is expected to reduce GHG emissions 
by only 20% compared with burning natural gas25. Although renew-
ably produced ammonia and hydrogen provide operational emis-
sions reductions, the inefficiency of the production process relative 
to HFO makes them unlikely to become sufficiently cost-competitive 
to displace fossil fuels26,27. By contrast, direct electrification is typi-
cally five times more efficient than e-fuels in the transportation sec-
tor, exclusive of losses from e-fuel transport and storage27.

By contrast to other modes where battery weight dramatically 
reduces payload capacity or range, such as light-duty vehicles and 
planes, the sheer size of containerships means that the additional 
weight from the battery can potentially be offset with a smaller 
percentage forfeiture of cargo. Past work has suggested that bat-
tery electrification of marine vessels is unfavourable given the 
low energy density of batteries relative to hydrocarbon fuels28–31. 
However, their assumptions about battery energy density and cost 
are outdated, differing in some cases by one to two orders of mag-
nitude from today’s best-available figures of 210 Wh kg−1 specific 
energy32 and US$100–134 kWh−1 (ref. 33). Furthermore, these stud-
ies assumed that the maximum battery capacity is limited by the 
existing onboard space dedicated to mechanical propulsion systems 
and fuel storage, so their findings suggest that battery-electric ships 
would require several recharges to traverse even short routes.

technical feasibility of battery-electric container shipping
The key technical constraint for battery-electric container ship-
ping is the volume of the battery system and electric motor relative 
to the volume occupied by a vessel’s existing engines, fuel stor-
age and mechanical space. The extra weight of the BES system is, 
however, non-trivial in determining a vessel’s power requirements. 
Operationally, containerships can increase their carrying capacity 
by increasing draught (that is, the vertical distance between the 
waterline and the keel) on the basis of the Archimedes principle. A 
higher draught increases the hull resistance, and thus more power is 
required to achieve the same speed. On voyages less than 5,000 km, 
we find that the necessary increase in power is less than 10% of the 
original power requirements. For example, for a 5,000 km range 

small neo-Panamax ship, we estimate that a 5 GWh battery with 
lithium iron phosphate (LFP) chemistry, with a specific energy of 
260 Wh kg−1 (ref. 34), will weigh 20,000 t and increase the draught by 
1 m—a small fraction of the ship’s total height and well within the 
bounds of the vessel’s Scantling (maximum) draught. For voyages 
longer than 5,000 km, the increase in draught exceeds the vessel’s 
Scantling draught.

The distribution of additional weight also impacts the hydrody-
namics, aerodynamics, stability and energy consumption of a ves-
sel35. Internal combustion engine (ICE) vessels use a ballast system 
whereby water tanks charge and discharge depending on the cargo 
load to distribute weight and counteract buoyancy. Case studies 
of fully electric or hybrid propulsion systems suggest that ballast 
systems can be partially or fully replaced by BES systems without 
substantial impacts to symmetry (trim) and balance by distributing 
battery components throughout existing void, mechanical and bal-
last spaces35. Furthermore, BES systems do not need to be arranged 
around a central drive shaft and can be more flexibly configured 
within the vessel’s interior12,36. The volume of an onboard BES sys-
tem depends on the ship’s power requirements, cruising speed, 
voyage length, electrical efficiency and battery energy density. 
Containership energy consumption can be approximated with the 
Admiralty Law, a version of the propeller law that is widely used 
in first-order estimations of ship power requirements and fuel con-
sumption37,38. Although a bottom-up approach to estimating energy 
requirements would incorporate additional terms, our objective is 
to capture the relative changes in energy requirements between the 
two propulsion methods. Assuming an identical vessel and opera-
tional profile, the energy needs of ICE and battery-electric ships dif-
fer only by the engine efficiencies and mass, which directly changes 
the vessel draught.

eICE =

PSMCR × tvoyage
ηICE

×

V3
average

V3max
(1)

Equation (1) describes the energy needs of a ship with a 
low-speed, two-stroke marine ICE fed by IMO-compliant low-sulfur 
HFO, where PSMCR is the maximum continuous power rating (where 
SCMR is the specified maximum continuous rating), Vaverage is the 
average cruising speed, Vmax is the maximum design speed, tvoyage 
is the time to traverse the route and ηICE is the ICE tank-to-wake 
efficiency.

ebattery =
PSMCR × tvoyage
ηinverter × ηmotor

×

T
2
3
loaded

T
2
3
reference

×

V3
average

V3max
(2)

Equation (2) describes the energy needs of an equivalent 
battery-electric ship, which includes a correction for increased 
draught due to battery system weight, where Tloaded is the draught 
when loaded with the battery energy system, Treference is the typical 
operating draught, and ηmotor and ηinverter are motor and inverter effi-
ciencies, respectively.

Nickel manganese cobalt oxide, LFP, nickel cobalt aluminium 
and lithium titanate oxide are commercially available lithium-ion 
chemistries with the requisite cycle life, specific power, charge rates 
and operating temperatures to support container shipping applica-
tions39,40. The choice of battery chemistry depends on specific oper-
ational characteristics. Vessels with shorter, more frequent voyages, 
lower power requirements, and charging time constraints would 
favour the high charge rates and long lifecycles of LFP batteries41,42. 
For ships with longer ranges and less frequent battery cycling, the 
relatively low cycle life and high energy density of nickel manganese 
cobalt oxide batteries may be more suitable. Given that electrifica-
tion will probably be limited to small, short-range vessels until bat-
tery costs are further reduced, we model the use of LFP batteries.
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We find that minimal carrying capacity must be repurposed to 
house the battery system for most ship size classes and along short 
to medium-length routes. For a small neo-Panamax containership, 
representing an average containership in the global fleet, the vol-
ume required by the battery system is less than the volume currently 
dedicated to the ICE and fuel tanks for routes under 3,000 km. For 
the longest modelled route of 20,000 km for this ship class, the bat-
tery would occupy 2,500 twenty-foot equivalent unit (TEU) slots or 
32% of the ship’s carrying capacity. Supplementary Table 1 provides 
the baseline values used for each ship class. Figure 1 shows the per-
centage of ship carrying capacity forfeited to the BES system for the 
eight modelled ship classes across routes from 0 to 22,000 km, with 
current and near-future battery energy densities. We find that as car-
rying capacity increases, the percentage of total carrying capacity 
volume occupied by batteries decreases because larger ships typically 
have lower energy requirements per unit of carrying capacity43,44.

Megawatt-scale charging infrastructure will be required to meet 
the large energy requirements of battery-electric containerships (for 
example, 6,500 MWh for a small neo-Panamax containership over 
a 5,000 km route) without disrupting normal port operation. The 
average queuing time plus berthing time in a port is 31 h for con-
tainerships of 1,000–3,000 TEUs and 97 h for the largest contain-
ership size classes of 10,000–20,000 TEUs45. The requisite charger 

capacity to charge within the available port time is less than 300 MW 
for all ship classes on voyages less than 10,000 km. We estimate that 
a 220 MW charger could charge a 7,650 TEU small neo-Panamax 
containership in 24 h. For longer voyages requiring larger battery 
capacities, offshore charging infrastructure could be strategically 
located in global shipping chokepoints such as the Strait of Hormuz, 
the Panama Canal and the Strait of Malacca, where ships regularly 
queue for days awaiting passage.

A number of contact-based options are already commercially 
available for the shore-to-ship interface, including manual and auto-
mated plugs from ABB, Cavotec, Mobimar, Zinus and Stemmann–
Technik, with non-contact inductive charging solutions currently 
under development46. Charging stations can be deployed at port 
terminals or offshore to allow ships to charge while queuing for  
berth allocation.

The optimized and high-throughput nature of port operations 
(average berth utilization rates typically exceed 50%) support high 
charging infrastructure utilization and associated cost reductions45. 
Adapting methods used for trucks40 and trains47 we estimate the 
levelized cost of a 300 MW charging station interconnected at the 
transmission level to be US$0.03 kWh−1 at 50% utilization, inclusive 
of hardware, installation, grid interconnection, and annual opera-
tions and maintenance costs across the system lifetime48.

Near future
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Fig. 1 | Carrying capacity forfeited to onboard battery system as percentage of total teu by voyage length. We model the volume of the ICE ship’s 
combined engine and mechanical space, assuming a battery packing fraction of 0.76 and an 80% depth of discharge. The line thicknesses denote 
increasing vessel carrying capacity. A small feeder, with a TEU capacity of around 1,000, is the smallest vessel modelled, whereas the ultra-large container 
vessel, with a TEU capacity of around 18,000, is the largest. a, The baseline scenario results, with a battery energy density of 470 Wh l−1. In this scenario, 
the battery volume is less than that of the existing ICE mechanical space at voyage lengths less than 1,300–2,000 km. The impacts of the battery system 
volume on TEU forfeiture decreases as ship capacity increases, reflecting innovations in ultra-large containership design that optimize carrying capacity 
and energy consumption better than feeder ships. b, The results with a battery energy density of 1,200 Wh l−1. In this near-future scenario, the net change 
in carrying capacity is positive for voyages of up to 2,000–5,000 km, depending on ship type.
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Cost parity with HFO
We test the economic feasibility of a battery-electric containership 
against that of a slow-speed, two-stroke ICE ship fuelled by very 
low sulfur fuel oil (VLSFO)—0.5% sulfur content—by calculat-
ing its TCP per kilometre by voyage length. For both ship types, 
we calculate fuel, operations and maintenance costs, as well as the 
environmental costs of NOx, SO2 and CO2 emissions from direct 
combustion or grid electricity. For battery-electric vessels, we 
include the costs of an original and replacement battery set, the 
opportunity cost of forfeiting TEUs to the battery system and the 
levelized cost of charging equipment. As we account for the extra 

cost of the battery energy system separately, we omit the capital cost 
of the vessel, given that propulsion systems constitute only a small 
portion of ship newbuild costs and the cost advantage of electric 
motors relative to marine ICEs.

In the baseline scenario, the TCP of a battery-electric ship 
is lower than that of the incumbent ICE vessel only for ship 
classes larger than 8,000 TEUs over voyages of less than 1,000 km  
(refs. 5,40,47,49,50). Over longer voyages, the additional cost of the bat-
tery system, increased power requirements and charging infrastruc-
ture outweighs the savings from fuel switching and the efficiency 
gains of direct electrification. However, if the environmental costs of 
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Fig. 2 | tCP including air pollution of a typical small neo-Panamax vessel. A neo-Panamax vessel of 7,650 TEU is modelled over a 1,565 km voyage. 
a, The TCP of an ICE ship in the baseline scenario. b, The TCP of the battery-electric equivalent in the baseline scenario. c,d, The TCP of ICE (c) and 
battery-electric (d) vessels in the near-future scenario. Coloured bars (red for ICE, teal for battery-electric) show non-environmental costs. Grey bars 
and dashed lines capture environmental damages attributed to NOx, SO2 and CO2. Not accounting for environmental damages, in the baseline scenario, 
the cost of the battery system and charging infrastructure outweigh the economic benefits of fuel switching, leading to a battery-electric TCP that is 
US$39 km−1 higher than the ICE TCP. The baseline scenario assumes a battery cost of US$100 kWh−1, a battery volumetric energy density of 470 Wh l−1, 
charging station utilization of 50%, wholesale electricity price of US$0.035 kWh−1, and a HFO cost of US$0.048 kWh−1 (equivalent to US$538 t−1); in the 
near-future scenario, HFO costs of US$840 t−1 (representing a US$100 per tonne tax on CO2e), battery costs of US$50 kWh−1, battery energy density of 
1,200 Wh l−1, and a charging infrastructure utilization rate of 70% lead to a battery-electric TCP that is US$52 km−1 lower than the ICE TCP. Accounting for 
environmental damages increases the TCP advantage of the battery-electric ship dramatically.
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NOx, SO2 and CO2 are considered, the cost-effective range increases 
to 5,000 km across all size classes given the high emissions rates of 
HFO relative to the emissions intensity of the US grid.

Under the near-future scenario, the TCP of battery-electric 
shipping is lower than that of the incumbent ICE ship at ranges 
around 3,000 km for all ship classes. Including environmental costs, 
this range expands to 6,500 km for smaller-capacity ships and up 
to 12,000 km for the largest ship classes. However, although these 
longer ranges are cost-effective, the weight of the batteries drives 
vessel draught beyond safe operating parameters and thus they are 
unlikely to be candidates for full electrification without substantial 
changes in ship design. The fact that bulk carriers such as iron ore 
carriers have much higher weight and draught limits than contain-
erships points to the possibility of accommodating the additional 
weight and draught by changing the ship design.

Figure 2 presents the TCP analysis in the baseline and near-future 
scenarios for a 7,650 TEU small neo-Panamax vessel, representing 

an average vessel in the global fleet across a 1,565 km voyage from 
Hong Kong to Shanghai. Figure 3 depicts the relationship between 
the TCP and voyage length for a small neo-Panamax vessel. The 
results show improvements in TCP and gains in achievable range by 
improving charging infrastructure utilization, battery pack cost, and 
battery energy density from baseline to near-future values. Figure 
4 displays the difference in TCP between ICE and battery-electric 
vessels for all vessel size classes across all modelled voyage lengths, 
exclusive of environmental costs.

The primary constraint for cost parity of battery-electric ships 
with ICE ships over longer ranges is the battery cost. Battery prices 
need to reach US$20 kWh−1 for a 10,000 km range battery-electric 
ship capable of crossing the Atlantic or Pacific Ocean to be 
cost-effective without recharging. Current commercial lithium bat-
tery technologies, and emerging technologies such as solid-state 
batteries, are not projected to decline to this extent given the cost of 
the materials used in these batteries51. However, battery technolo-
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gies designed for long duration storage applications from low-cost 
materials are under development. Iron–air batteries, for example, 
offer comparable energy density at a fraction of the cost of current 
lithium-ion batteries and may offer pathways for cost-competitive 
long-range shipping52.

Deployment potential of battery-electric shipping
An estimated 42.3 trillion TEUs (40% of global trade) traversed 
intraregional routes in 201953. However, this proportion is prob-
ably an underestimate owing to recent trends in containership 
logistics and the regionalization of trade54, including an 1,100% 
increase in average containership capacity between 1968 and 
201555. The sector’s trend towards containership gigantism has 
promoted a hub-and-spoke model of trade, whereby high-capacity 
mega-containerships transport goods over long distances from one 
hub to another54. From the destination hub, a host of smaller feeder 
ships transport the containers to their final destinations in smaller 
regional ports. Nearly all of these feeder ships traverse short routes 
that could be electrified, which would increase battery-electric con-
tainership adoption well beyond the potential suggested by intrare-
gional trade figures. Figure 5 depicts the ten best-connected ports 
in the world, all of which are intraregional routes less than 5,000 km 
in length2. Moreover, feeder ships are older on average than their 
larger-capacity counterparts, and many are reaching the end of 
their useful service lives56. The 2020 IMO regulation limiting sul-
fur content will probably lead to the premature scrapping of these 
fuel-inefficient ships, creating an opportunity for battery-electric 
models to enter the fleet57.

Although containerships, with their standardized cargo and 
volume dependency, are useful for understanding the technoeco-
nomics of battery-electric shipping, they represent only 23% of 
total maritime shipping emissions58. Achieving larger emissions 
reductions will require electrifying additional ship types, including 
oil tankers, bulk carriers, general cargo ships and cruise liners. Of 
those, bulk carriers and oil tankers seem to have the largest emis-
sion footprint. Unlike containerships, some of these ship types are 

primarily constrained by weight rather than volume41. Energy den-
sity by weight is therefore the critical technical parameter for the 
batteries that would power these ships. At the same time, some bulk 
carriers and oil tankers are designed to carry up to 400,000 t—more 
than twice the weight of the largest containerships59.

For a 5,000 km range dry bulk carrier, we estimate that the battery 
system will constitute 5–6% of the ship weight with current battery 
technology and 3–4% with projected increases in energy density by 
203028,41,60. Factors such as the extent to which ships operate at their 
weight limit, opportunity cost of foregone weight carrying capacity, 
and the cost of modest increases to weight carrying capacity of the 
ships will determine the impact of battery weight on the economics 
of these ship types.

emissions reduction potential of battery electrification
Battery-electric container shipping would eliminate all direct com-
bustion emissions and considerably ameliorate localized air pol-
lution and related health impacts in communities near ports and 
global trade lanes61. However, lifecycle emissions reductions depend 
on the pollution intensity of the electricity source as well as trans-
mission, distribution and charging losses. We compare the CO2, 
NOx and SO2 emissions intensities of a small neo-Panamax contain-
ership with a slow-speed diesel engine running on HFO or VLSFO 
to a battery-electric vessel across a range of realistic well-to-wake 
emissions intensities (Fig. 6). The input tank-to-wake emissions 
factors (g kWh−1) include downstream losses attributable to trans-
mission, power conversion, shore-side storage and electric motor 
losses. Battery-electric vessels would also eliminate direct emissions 
of black carbon, which is a particular concern for the sizeable per-
centage of vessels operating in Arctic waters given its demonstrated 
role in reducing snow albedo and accelerating ice melt62.

Reductions in carbon emissions and air pollutants are highly 
dependent on the generation matrix of the grid where the vessel 
is charged. Assuming an average grid carbon intensity of 535 g 
CO2 kWh−1 (inclusive of transmission, conversion and motor inef-
ficiency losses), a battery-electric containership charged in a US 
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port generates approximately 0.78 g CO2 km−1 (ref. 63). This is a 16% 
reduction from HFO and VLSFO, which produce approximately 
0.93 and 0.91 CO2 km−1, respectively. Battery electrification yields an 
86% reduction over VLSFO in per-kilometre SO2 emissions in the 
US but only a 4% reduction in China64. NOx emissions are reduced 
approximately 83% and 42% over VLSFO for vessels charged at US 
and Chinese ports, respectively. These findings point to the need 
to couple charging infrastructure with collocated renewable energy 
generation to fully capitalize on the emissions reduction potential of 
battery electrification65.

Discussion
We show that battery-electric ships powered by renewable electric-
ity offer a near-term pathway to cut shipping emissions over intra-
regional and inland routes. At battery prices of US$100 kWh−1, the 
TCP of a battery-electric containership is lower than that of an ICE 
equivalent over routes of less than 1,000 km—without considering 
the costs of environmental and health damages. With policy sup-
port to internalize the environmental costs of HFO and near-future 
battery prices of US$50 kWh−1, routes upwards of 5,000 km can be 
electrified cost-effectively. Future research should consider how 
opportunities for intermediate recharging affect the overall eco-
nomics of battery electrification. If vessels were able to recharge at 
distinct points en route, the battery cost, forfeited TEUs and addi-
tional energy requirements from battery weight will each decrease, 
potentially making longer-range trips economically feasible.

A direct electrification pathway can leverage higher efficiency 
compared with e-fuels as well as future cost reductions and improve-
ments in battery technology driven by wide-scale battery deployment 
in road transport and stationary storage66. Strategic adjustments to 
container shipping logistics could provide a partial solution to the 
range challenges facing battery-electric vessels and facilitate the 
electrification of long-distance transoceanic routes. Major mari-
time chokepoints—such as the Suez Canal, Strait of Gibraltar, Strait 
of Malacca and Cape of Good Hope—present an opportunity for 
long-range vessels to recharge offshore while queuing for passage. 
Breaking the longest voyages into segments could facilitate elec-
trification of a much larger percentage of global maritime trade. 
Offshore charging in ports and along shipping trade routes could 
facilitate collocation of charging stations with renewable generation 
sources, eliminate direct emissions and alleviate range constraints. 
Two-thirds of global ship traffic occurs within 370 km of the shore, 
where wind potential is highest67,68. Furthermore, the cost of off-
shore wind is expected to decline 37–49% by 2050, beating 2015 
predictions69 by 50%.

Electrification provides several benefits over e-fuel alternatives 
in addition to global availability and cost-competitiveness. For the 
same power rating, the capital cost and volume of electric motors 
are typically smaller than the capital cost and volume of ICEs29,70. 
Hence, retrofitting or hybridizing existing ships with electric 
drivetrains during propulsion system overhauls is technically and 
economically viable and could accelerate the electrification of the 
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global fleet. One advantage of having dual-fuel capabilities is that 
these battery-electric ships could serve as large emergency back-up 
power plants during increasingly common extreme events leading 
to power supply disruptions. For example, battery-electric ships 
modelled in this paper will have 5–10 GWh of storage capacity. In 
comparison, the generation deficit that caused the 2020 California 
blackouts, leaving more than 800,000 customers without power 
during an extreme heatwave, was less71 than 5 GWh.

Our analysis suggests that rapidly improving battery technology 
may enable direct electrification to play a key role in decarbonizing 
the shipping industry. Although direct electrification has become 
a technically feasible and cost-effective pathway for zero-emission 
shipping, several challenges need to be addressed for commer-
cial deployment. The operating costs of battery-electric ships are 
much lower than those of conventional ships, but their upfront 
costs will be much higher primarily due to the cost of the batteries. 
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Innovative financing and business models are required to address 
higher upfront costs. Transmission-connected charging stations 
with capacities of hundreds of megawats—similar to large scale grid 
connected storage facilities—will have to be built to support ship 
charging. Given that environmental damages from conventional 
ships are an order of magnitude higher than the propulsion costs of 
these ships, policies such as financial incentives for demonstrations 
and regulations will play a critical role in supporting the transition 
to zero-emissions shipping.

Methods
Modelling approach. The energetic requirements of an ICE containership and its 
battery-electric analogue depend on the ship size and voyage distance. Past studies 
have approached this analysis by studying specific real-life ships along their usual 
routes28–30. Although this approach has strengths in terms of data availability, an 
important limitation is the generalizability of the results to similar ships of different 
route length and carrying capacity. To improve modelling sensitivity to ship size 
class and route length, we specify eight containership size classes and model 
their energy needs, emissions and economics across 13 major world trade routes, 
ranging from a 911 km voyage from Shanghai, China, to Busan, South Korea, to a 
20,476 km inter-Atlantic voyage from Shanghai, China, to Santos, Brazil.

We define two technoeconomic scenarios. The baseline scenario considers 
the state of technology in the near future with a volumetric battery energy density 
of 470 Wh l−1, battery cost of US$100 kWh−1, HFO cost of US$0.048 kWh−1, 
charging infrastructure utilization of 50% equivalent to US$0.029 kWh−1, and 
electricity price of US$0.035 kWh−1. The near-future scenario assumes a battery 
cost of US$50 kWh−1, volumetric energy density of 1,200 Wh l−1 and charging 
infrastructure utilization of 70%, or a US$0.021 kWh−1 levelized cost of charging 
infrastructure

Modelling containership technical parameters. The rated energy of the  
battery must be large enough to supply power for the entirety of each one-way 
voyage, assuming the ship can be charged at both its port of origin and its 
destination. Each marine engine is designed with a SMCR, which describes  
its maximum power output during continuous operation. The average power 
output is lower than the SMCR, as the engine seldom runs at its maximum  
power output even while cruising. The engine load factor describes the ratio  
of the ship’s average power output during normal operations to its SMCR and  
can be estimated as the cubed ratio of the ship’s average speed to its maximum 
design speed. The marine engine manufacturer MAN Diesel Turbo publishes 
SMCR and maximum design speed values for containerships based on Holtrop 
and Mennen’s power prediction calculation method72. Additional energy 
requirements during manoeuvreing and hoteling, as well as energy savings 
through slow steaming practices, are neglected. The voyage time varies  
depending on the route length and the average speed. The average speed is fixed 
at 80% of the design speed, which equates to 37 km h−1 (20 knots) for any ship 
7,650 TEUs or larger. Auxiliary engine power needs are assumed to be 22% of 
propulsion engine power per port emission inventory best practices73. We use 
the Admiralty Law load factor to account for resistance created by additional 
displacement from the weight of the BES system for the battery-electric vessels 
per equation (2)38. Design draught, maximum draught, vessel length and vessel 
breadth are taken from MAN Diesel Turbo and used to convert from battery 
weight to change in draught based on the Archimedes principle, which states that 
the weight of the displaced water is equal to the weight of the ship72. We assume 
an ICE tank-to-wake efficiency of 50% and electric motor and inverter efficiencies 
of 95% each28. Batteries yield an 80% efficiency improvement compared to their 
ICE counterparts, which translates to a 30% decrease in total energy needs for the 
battery-electric ship.

Daily HFO fuel consumption is derived from an empirical study of 
containership fuel consumption74. We assume a containership carries enough  
fuel for a day’s voyage; in reality, this figure is probably higher, because ships often 
carry fuel for several days after bunkering. The mass and volume of BES and 
propulsion systems are the total energetic needs of the battery system (including 
efficiency gains from electric propulsion) multiplied by the assumed volumetric 
or specific energy of the battery, depending on the scenario, with a 0.76 battery 
packing fraction and 80% depth of discharge. We calculate TEU forfeiture by 
converting BES system volume in excess of the existing mechanical and fuel storage 
space to standard 2.6 m × 2.4 m × 6.1 m TEUs. The net change in weight used to 
correct the power estimates for the battery-electric vessels is the weight of the 
battery system and electric propulsion system (assumed to weigh 50% that of the 
ICE propulsion system), less the weight of the fuel storage and ICE engine, less 
the weight of TEUs forfeited to the battery energy system assuming an average 
loaded TEU weight of 28.2 t (ref. 75). ICE system weights and volumes are based on 
correlations developed by29.

TCP analysis. We quantify economic feasibility through a TCP framework, 
whereby a battery-electric containership is compared to a reference ship with a 

two-stroke ICE fuelled by HFO with an onboard scrubber system for compliance 
with IMO sulfur emissions regulations. Cost drivers for the traditional ship 
include HFO costs, which vary by scenario as described above, and operations and 
maintenance costs, including periodic repairs, regular maintenance, and operation 
of a scrubber system to comply with recent IMO sulfur emissions standards 
(estimated at US$5 MWh−1), and excluding other shipping operational expenses 
such as labour, insurance, and port charges76. These expenses are developed from 
industry benchmarks and academic research77,78.

The battery-electric TCP model accounts for the cost of electricity, TEU 
forfeiture, additional capital costs of the original and replacement of BES systems, 
operations and maintenance, and the levelized cost of charging infrastructure. 
Battery costs are defined as the uniform annual payment for upfront battery capital 
costs plus replacement costs over the service lifetime of the ship (25 years)79. 
LFP batteries are assumed to need replacement after 5,000 cycles or 20 years, 
whichever comes first39,40. Battery decommissioning costs are neglected based on 
the assumption that batteries will have a second life application80. Battery capital 
costs are assumed to be additional to ship newbuild capital costs, allowing us to 
neglect the inclusion of newbuild costs for both battery-electric and ICE ship 
types. Given the relatively low cost of marine engines compared to the total ship 
newbuild capital cost, this assumption is reasonable and conservative. This study 
assumes the case of a newbuild only and does not consider retrofit costs, although 
the economics of battery electrification through vessel retrofits are an important 
area of future research.

We assume the operations and maintenance cost of the battery-electric 
vessel is 50% of the ICE equivalent, commensurate with savings on electric 
vehicles and exclusive of the operating expenses of an onboard scrubber81. An 
economic penalty or credit, characterized as TEU forfeiture, is included in the 
TCP analysis to account for carrying capacity gained or lost based on the volume 
requirements of the battery system relative to the ICE ship baseline. The volume 
differential quantified in TEUs is multiplied by the freight rate for the trade lane, 
divided by half to account for the inequality in global trade flows that results in 
underutilization in carrying capacity for at least one leg of a roundtrip voyage56,82. 
Supplementary Table 2 summarizes the data inputs to the TCP model.

We adapt previous research on electric trains40 and trucking47 to estimate 
the levelized cost of megawatt-scale charging infrastructure and electricity costs. 
We use an electricity cost of US$0.035 kWh−1 in line with historical real-time 
prices published by the California Independent System Operator (CAISO) for 
2017 through 201983. This price is inclusive of the cost of generation, compliance 
with California’s renewable portfolio standards, applicable CAISO fees for a 
direct-access customer, demand charges, and applicable delivery charges. The 
charging infrastructure cost includes hardware costs, grid connection fees, 
operations and maintenance expenses, and the cost of installation. Supplementary 
Fig. 1 provides a summary of the components that comprise the total levelized 
charging infrastructure costs.

Where environmental costs are presented, we assume a marginal cost of 
NOx and SO2 of US$13,000 t−1 and US$24,000 t−1, respectively84, and a social cost 
of carbon of US$43 t−1 in line with the US Environmental Protection Agency’s 
regulatory guidelines85. Notably, this value is about one-third that considered 
sufficient to remain below a 1.5 degree Celsius86.

Environmental impacts. To quantify the potential environmental impacts of 
battery-electric container shipping, we use published tank-to-wake CO2, NOx 
and SO2 emissions factors for a slow-speed, two-stroke ICE ship, as described 
in Supplementary Table 3. Emissions intensities are converted to per-kilometre 
intensities by multiplying by the energy consumption in kilowatt hours of a 
battery-electric small neo-Panamax containership87,88.

To estimate the emissions of a battery-electric vessel, we calculate a 
tank-to-wake emissions intensity across a range of real-life grid emission factors 
sourced from multiple countries63. To convert from grid intensities to tank-to-wake 
emissions intensities, we apply 5% transmission and distribution losses, 10% AC/
DC power conversion losses89, 5% DC/AC conversion losses28 and 5% electric 
motor efficiency losses28. Calculated tank-to-wake carbon emissions for each 
country are presented in Supplementary Table 4. We exclude emissions from 
battery production owing to the wide variation in estimates, which depend 
on where primary materials are extracted and potential end-of-life recycling 
opportunities90. To ensure a direct comparison with alternative fuels, we use 
tank-to-wake emissions factors rather than well-to-wake emissions factors91.

Data availability
All data and assumptions necessary to replicate this study’s analysis are included in 
this published article and its Supplementary information.

Code availability
The source code and data underlying the figures presented in this manuscript is 
available at https://doi.org/10.5281/zenodo.6594089.
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