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On Thermodynamic and Microscopic Reversibility

Abstract. The word “reversible” has two (apparently) distinct applications in
statistical thermodynamics. A thermodynamically reversible process indicates an
experimental protocol for which the entropy change is zero, whereas the principle
of microscopic reversibility asserts that the probability of any trajectory of a
system through phase space equals that of the time reversed trajectory. However,
these two terms are actually synonymous: a thermodynamically reversible process
is microscopically reversible, and vice versa. ‡
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Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley,
CA 94720
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Thermodynamic reversibility

The concept of a thermodynamically reversible process was crucial to the 19th century
development of thermodynamics [1, 2]. A reversible thermodynamic process is one
that can proceed equally well either forward or backward, which can occur only if the
dissipation, the total entropy change, is zero.

We need to consider a system driven from one thermodynamic equilibrium
to another by a changing external perturbation. We can denote the controllable
parameters of the system as λ(t) for t ∈ [a, b], and the overall experimental protocol,
describing the time course of the control, as Λ. We assume that the control parameters
are unchanging outside the time interval [a, b], so that the system starts at equilibrium
at time a and relaxes back to equilibrium at some time τ ≫ b. Every protocol also has
a conjugate, time-reversed protocol Λ̃ where the system begins in thermal equilibrium
at λ(b) and the control parameters retrace the same series of changes, in reverse, back
to λ(a).

The second law, the central tenet of thermodynamics, states that the mean total
entropy change for any such protocol is non-negative,⟨

∆Stotal
⟩
Λ
≥ 0 . (1)

The total entropy change includes the entropy change of the system and any
concomitant entropy change of the environment, for instance due to exchange of energy
in the form of heat. The average is taken over many realizations of the experiment.
The second law defines the directionality of time [3, 4], and appears to be the only
physical law that breaks time symmetry in a non-trivial manner. The direction of
time we call the future is that in which the entropy increases (on average).

A thermodynamically reversibly process is one with zero net entropy change.
Because there is no time directionality in this case, both the forward and reversed
protocol can be performed without any dissipation. In practice, this can only be
achieved with a quasi-static process, where the active perturbation of the system is
spread over a long time span, so that the system is always very close to equilibrium [5].

Microscopic reversibility

In the early decades of the 20th century, it became apparent, from considerations
of chemical kinetics and quantum mechanics, that a type of dynamic, stochastic
reversibility must hold on the microscopic level [6–11]. For instance, in 1924 G. N.
Lewis stated [8]:

Corresponding to every individual process there is a reverse process, and in a
state of equilibrium the average rate of every process is equal to the average
rate of its reverse process.

Expressed another way, this Principle of Microscopic Reversibility at Equilib-
rium [10, 11] states that the probability of observing any trajectory at equilibrium is
equal to that of observing the time reversed trajectory, under the same conditions,

P
[
X

∣∣ λ ]
= P

[
X̃

∣∣ λ ]
. (2)

Here, X denotes a trajectory of the system through phase space, X̃ denotes the
conjugate, time reversed trajectory, λ denotes the fixed external constraints of the
system and P

[
X

∣∣ λ ]
is the probability of observing the given trajectory.
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A related dynamic property is that of Detailed Balance [6, 11, 12], which states
that at thermodynamic equilibrium the probability of starting in a state x and
transitioning to state x′ is equal to the reversed transition.

P (x|λ)P (x′|x, λ) = P (x′|λ)P (x|x′, λ) (3)

Detailed balance is a statement about the flow of probability between states, whereas
microscopic reversibility is a statement about the relative probability of trajectories.
Howsoever, since any state transition must proceed via a collection of trajectories,
and any trajectory is simple a sequence of states, the two principles are essentially
equivalent [11], and the terms are often used interchangeable in modern discourse.

Dynamic irreversibility

We can connect the principles of thermodynamic and microscopic reversibility through
the more general principle of dynamic irreversibility [13–17]. In a driven, non-
equilibrium process, the probability ratio of a trajectory under the forward protocol,
and the reversed trajectory under the conjugate protocol is not unity, but is instead
given by the exponential of the total change in entropy along the forward process,

P
[
X

∣∣ Λ ]
P
[
X̃

∣∣ Λ̃ ] = e∆Stotal

. (4)

We require that the system starts at thermodynamic equilibrium, is connected to an
equilibrium thermal environment, and eventually relaxes back to equilibrium after the
active perturbation of the system ceases. The total entropy change is a quantitative
measure of the breaking of time-reversal symmetry at the level of trajectories.

We can make the connection between thermodynamic and microscopic
reversibility by noting that the relative entropy D(p∥q) =

∑
i pi ln

pi

qi
between the

forward and reverse trajectory ensembles is equal to the average total entropy
change [18–27]:

D
(
P
[
X

∣∣ Λ ]∥∥∥P [
X̃

∣∣ Λ̃ ])
=

∑
X

P
[
X

∣∣ Λ ]
ln

P
[
X

∣∣ Λ ]
P
[
X̃

∣∣ Λ̃ ]
=

∑
X

P
[
X

∣∣ Λ ]
∆Stotal

=
⟨
∆Stotal

⟩
Λ

(5)

We can recover the Second Law (1) by noting that relative entropy is non-negative,
D(p; q) ≥ 0, due to Jensens inequality [28]. Moreover, the relative entropy is equal
to zero if, and only if, the two distributions are identical [28]. It follows that the
dissipation is zero (and the process is thermodynamically reversible) only if the
conjugate forward and reverse trajectories have identical probabilities, and vice versa,

P
[
X

∣∣ Λ ]
= P

[
X̃

∣∣ Λ̃ ]
⇐⇒

⟨
∆Stotal

⟩
= 0 . (6)

Note that essentially we have generalized microscopic reversibility (2) from stationary,
equilibrium ensembles to quasi-static processes. Thermodynamic reversibility and
microscopic reversibility are equivalent statements about the behavior of a system [17],
the first couched in terms of the average behavior of the system, the second in terms
of individual trajectories.
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