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The origin of chirality induced spin selectivity in photo-induced electron transfer
Thomas P. Fay1, a) and David T. Limmer1, 2, 3, 4
1)Department of Chemistry, University of California, Berkeley, CA 94720, USA
2)Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA 94720, USA
3)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4)Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Here we propose a mechanism by which spin polarization can be generated dynamically in chiral molecular systems
undergoing photo-induced electron transfer. The proposed mechanism explains how spin polarization emerges in
systems where charge transport is dominated by incoherent hopping, mediated by spin orbit and electronic exchange
couplings through an intermediate charge transfer state. We derive a simple expression for the spin polarization that
predicts a non-monotonic temperature dependence consistent with recent experiments. We validate this theory using
approximate quantum master equations and the numerically exact hierarchical equations of motion. The proposed
mechanism of chirality induced spin selectivity should apply to many chiral systems, and the ideas presented here have
implications for the study of spin transport at temperatures relevant to biology, and provide simple principles for the
molecular control of spins in fluctuating environments.

Chirality induced spin selectivity (CISS), in which molec-
ular chirality controls spin polarization of electrons, has been
observed in a wide variety of systems,1–3 including in photo-
induced electron transfer in artificial systems,4 such as quan-
tum dots,5 and biological molecules, such as photosystem I6
andDNA.7,8 Based on this, it has been suggested thatCISSmay
serve some biological functions9 and that it could be exploited
in nano- and molecular-scale spintronics technologies.1,10
Here we focus on the CISS effect in photo-induced molec-
ular electron transfer.6 This effect is particularly puzzling, as
it goes against the conventional notion that the initial singlet
spin state of the system is preserved in this process.11
Theoretical descriptions of CISS have primarily been con-

fined to either the coherent regime,12–16 where electron trans-
port is treated as a coherent tunneling process through a chiral
molecular junction between leads, or static spin polarizations
produced by spin-orbit coupling in the ground state of chi-
ral molecules.17–19 However photo-induced electron transfer
in molecules like photosystem I, where electrons incoherently
hop between a discrete set of donor and acceptor sites, can-
not be described by either of these theories.20 In such sys-
tems coupling of the electron transfers to molecular vibrations
is strong,21 and electronic exchange interactions can also be
significant.11 This necessitates the development of a theory of
CISS that is appropriate for this incoherent regime of electron
transport. Fortunately such techniques have been developed,
primarily for understanding rates and dynamics of electron
transfer reactions,22,23 and through the tools of quantum mas-
ter equations such theories can be adapted to describe spin
transport.24,25 These techniques have recently been used to
show that spin coherence, but no spin polarization, arises in a
single electron transfer step in a chiral environment mediated
by spin-orbit coupling.25 Here we expand on this theory, and
show how the interplay of chirality induced spin coherence,
electron hopping, and electronic exchange coupling can dy-
namically produce large spin polarizations in electron transfer
reactions. The theory presented here will be shown to explain
the observed temperature dependence of CISS in photosystem

a)Electronic mail: tom.patrick.fay@gmail.com

I, and it also provides a framework for engineering molecules
to maximize the CISS effect.
Let us start by reviewing howphoto-initiated charge transfer,

between a donor D and acceptor A, in chiral molecules gen-
erates spin coherence in charge transfer states, as described
in Ref. 25. This process generally proceeds via an electron
transfer reaction from a bright locally excited singlet state, S1
= D* –A, to a charge transfer state, CT = D•+ –A•– , which
can exist in either a singlet or triplet spin state,

S1 −−−→ CT.

As discussed in Ref. 25 direct diabatic coupling generates the
CT state in a singlet |S〉 = ( |↑D↓A〉 − |↓D↑A〉)/

√
2 spin state,

whereas spin-orbit coupling (SOC) generates the CT state in
the 𝑖 |T0〉 = 𝑖(|↑D↓A〉 + |↓D↑A〉)/

√
2 (taking the 𝑧 axis to be

defined by the spin-orbit coupling vector).26 So overall this
electron transfer, mediated by spin-orbit coupling in a chiral
molecule, generates the CT state in a coherent superposition
of singlet and |T0〉 triplet spin states, and its initial spin density
operator, �̂�CT (𝑡), is given by

�̂�CT (0) = |𝜓𝜃 〉〈𝜓𝜃 | , (1)

where |𝜓𝜃 〉 = cos 𝜃 |S〉 + 𝑖 sin 𝜃 |T0〉. The mixing angle 𝜃,
is determined by the relative strength of the spin-preserving
diabatic coupling 𝑉DA and the spin-orbit coupling ΛDA, as 𝜃 =

arctan(ΛDA/(2𝑉DA)), and because the sign of ΛDA depends
on the chirality of the molecule, the sign of 𝜃 also depends
on chirality. The spin polarization of the CT state is defined
as the difference in the 𝑧 component of the spins between
D and A. This is given by the expectation value of Δ�̂�𝑧 =

𝑆D𝑧 − 𝑆A𝑧 = |S〉〈T0 | + |T0〉〈S|, so the spin polarization is
proportional to the real part of the singlet-triplet coherence,
〈S|�̂�CT |T0〉. However the CT state is generated with purely
imaginary singlet-triplet coherence, so no spin polarization is
formed directly by the electron transfer.25
Now let us consider how the spin state �̂�CT evolves when

there exists an exchange coupling between the donor and accep-
tor electron spins in the CT state. In this case the spin Hamil-
tonian for the CT state can be taken to be �̂�CT = −2𝐽�̂�T (�̂�T
is a triplet spin projection operator),27 and the time-evolution
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FIG. 1. Schematic of the photo-induced charge transfer mechanism
by which spin polarization can be generated. S1 = D∗−A1−A2,
CT1 = D•+−A•−1 −A2 and CT2 = D•+−A1−A•−2 . Singlet states are
shown as solid lines and triplet states as dashed lines. Note the
non-negligible S-T gap in CT1, and the negligible S-T gap in CT2.

of the spin state is given by

𝑒−𝑖�̂�CT𝑡/ℏ |𝜓𝜃 〉 = cos 𝜃 |S〉 + 𝑖 sin 𝜃𝑒2𝑖𝐽 𝑡/ℏ |T0〉 . (2)

We see that exchange coupling generates a complex-valued
oscillating singlet-triplet coherence in the CT spin density
operator, and thus the CT state now has an oscillating real part
of its singlet-triplet coherence. This means that the exchange
coupling produces an oscillating spin polarization in the CT
state which is given by,

〈Δ𝑃𝑧 (𝑡)〉 = − sin(2𝜃) sin
(
2𝐽𝑡
ℏ

)
. (3)

Overall the presence of exchange coupling effects a chirality-
dependent transient oscillating spin polarization in the CT
state. However this spin polarization clearly averages over
time to zero. This naturally raises the question of how a static
spin polarization can be generated in a photo-induced charge
transfer reaction. The answer lies in the fact that many photo-
generated CT states are not formed by a simple direct electron
transfer, but rather the final CT state is often formed via a
sequence of downhill electron transfers via intermediate CT
states.11,20,21 Thefinal CT state is often awell-separated radical
ion pair state. In this state the exchange coupling between
donor and acceptor spins is very weak, but the intermediate
CT states often have a significantly larger exchange coupling,
due to the closer proximity of the unpaired electrons.11 In
this way, imaginary-valued singlet-triplet coherence created
through spin-orbit coupled charge transfer can be transiently
converted into a net spin polarization between the donor and
acceptor electrons in an intermediate CT state with a large
exchange coupling. This spin polarization can be transferred
to the final CT state via a subsequent incoherent spin state
preserving electron transfer. The spin polarization transferred
to the final CT no longer oscillates due to the weak exchange
coupling in this state, thus a net static spin polarization is
generated. This is the basic mechanism by which static spin

polarization can be generated in multi-step electron transfer
reactions in chiral molecules.
Wewill now explore this further, by considering the simplest

multi-state model including only one intermediate CT state in
the chiral system (i.e. a three state model),

S1
𝑘ET1−−−→ CT1

𝑘ET2−−−→ CT2.

We take the precursor state to be an excited donor state,
S1 = D∗−A1−A2, the intermediate charge transfer state corre-
sponds to an electron transfer from D to a primary acceptor
A1, so CT1 = D•+−A•−

1 −A2, and the final charge transfer state
CT2 is taken as the state formed by electron transfer from
the primary acceptor A1 to the secondary acceptor A2, so
CT2 = D•+−A1−A•−

2 . The CT states can exist in either singlet
or triplet spin states but the S1 state only exists in the singlet
spin state. A schematic of this system is shown in Fig. 1. To
start with, for simplicity we will assume these downhill elec-
tron transfers occur irreversibly, and we will also assume that
only the first electron transfer is spin-dependent, and occurs
via chiral spin-orbit coupled charge transfer.
In this model, the spin density operators for each state obey

the following set of equations,24,25

d
d𝑡
�̂�S1 (𝑡) = −𝑘ET1�̂�S1 (𝑡) (4a)

d
d𝑡
�̂�CT1 (𝑡) = − 𝑖

ℏ
[�̂�CT1 + 𝛿𝜖 |𝜓𝜃 〉〈𝜓𝜃 | , �̂�CT1 (𝑡)]

+𝑘ET1 |𝜓𝜃 〉〈S| �̂�S1 (𝑡) |S〉〈𝜓𝜃 | − 𝑘ET2�̂�CT1 (𝑡)
(4b)

d
d𝑡
�̂�CT2 (𝑡) = − 𝑖

ℏ
[�̂�CT2 , �̂�CT2 (𝑡)] + 𝑘ET2�̂�CT1 (𝑡) (4c)

Here �̂�CT1 and �̂�CT2 are the spin Hamiltonians for the CT1
and CT2 states, describing all the spin interactions in these
states. Here the spin Hamiltonians are simplified to just in-
clude the exchange couplings, so �̂�CT1 = −2𝐽�̂�T and �̂�CT2 = 0
(the energy differences between different CT states enter into
the master equations via the rate constants). This set of cou-
pled equations can be obtained straightforwardly using pertur-
bative Nakajima-Zwanzig theory,28,29 as has been described
previously (a summary of the approximations in Refs. 24 and
25 will be discussed shortly). The shift term 𝛿𝜖 naturally
emerges from the master equation theory, and its value will
depend on the details of the electron transfer process. For a
large downhill driving force, Δ𝐺ET1, it can be estimated as
𝛿𝜖 ≈ −(𝑉2DA1 + (ΛDA1/2)2)/(𝜆ET1 − Δ𝐺ET1), where 𝜆ET1 is
the reorganization energy for the first electron transfer. We
can also understand the 𝛿𝜖 term as a net chiral superexchange
spin-orbit coupling term, which couples S and T0 states via
the S1 state.
One can then solve these Eq. (4) analytically for an initial

state where only S1 is populated, with �̂�S1 (0) = |S〉〈S|, from
which the final spin polarization in CT2, given by 〈Δ𝑃𝑧〉 =

lim𝑡→∞ tr
[
(𝑆D𝑧 − 𝑆A𝑧)�̂�CT2 (𝑡)

]
, is found to be

〈Δ𝑃𝑧〉 = − 𝑘ET2 (2𝐽/ℏ) sin(2𝜃)
𝑘2ET2 +Ω2

, (5)
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where ℏΩ =
√︁
4𝐽2 + 𝛿𝜖2 + 4𝐽𝛿𝜖 cos(2𝜃). Simultaneously a

zero quantum coherence (which depends on the imaginary
part of the S-T0 coherence) is produced〈
𝑆D𝑥𝑆A𝑦−𝑆D𝑦𝑆A𝑥

〉
=sin(2𝜃)

(
1− 2(𝐽/ℏ)2

𝑘2ET2 +Ω2
− 𝐽𝛿𝜖 cos(2𝜃)

(ℏΩ)2

)
.

(6)

This zero quantum coherence is produced directly by the initial
SOC mediated electron transfer from S1, and modified by
the spin dynamics in CT1.25 Lastly, we find the final singlet
population is given by

〈𝜌S〉 = cos2 𝜃
(
1 + 2𝐽𝛿𝜖/ℏ

2

𝑘2ET2 +Ω2
− 2𝐽𝛿𝜖 cos(2𝜃)

(ℏΩ)2

)
(7)

and theT0 population is given by 〈𝜌T0〉 = 1− 〈𝜌S〉. We see the
final spin density operator for the CT2 is a combination of the
phenomenological theory in Ref. 30 and the theory obtained
from the one-step transfer model in Ref. 25.
Let us now discuss a few points of interest on the expression

for the spin polarization in Eq. (5). Firstly, this expression is an
odd function of 𝜃 = arctan

(
ΛDA1/2𝑉DA1

)
, so on changing the

chirality of the system the sign of this polarization is reversed,
because the sign of ΛDA1 changes, which confirms that this
corresponds to a CISS effect. Secondly, in the absence of the
shift term 𝛿𝜖 the spin polarization is bounded by | 〈Δ𝑃𝑧〉 | ≤
| sin(2𝜃) | as 𝑘ET1/(2𝐽) is varied. In the limit of weak spin-
orbit coupling, this bound is simply |ΛDA1/𝑉DA1 |, which is
the ratio of the spin orbit coupling to the diabatic coupling
for the first electron transfer. However when the shift term is
included it is possible forΩ2 < (2𝐽)2. For example if 𝐽 and 𝛿𝜖
have opposite signs and cos(2𝜃) > 0, the polarization can be
enhanced significantly beyond the maximum that one predicts
in the absence of 𝛿𝜖 .
As a final point, we note that the magnitude of the spin

polarization | 〈𝑃𝑧〉 | goes through a maximumwhen 𝑘ET2 = Ω.
This can be understood simply as follows. When 𝑘ET2 is very
high compared to the frequency at which polarization in CT1
oscillates, Ω, then there is no time for spin polarization to
build up in CT1 before this state decays to CT2. Conversely
when 𝑘ET2 is very low compared to Ω, the spin polarization
is averaged to zero by the oscillations as it is transferred, so
no net spin polarization in CT2 is observed. This observation
has important implications for the temperature dependence of
〈Δ𝑃𝑧〉, as we will discuss shortly.
In order to further explore this theory, and to demonstrate the

validity of the perturbative quantummaster equations (QMEs)
and additional approximations used to obtain the expressions
above, we performed simulations of the three state condensed
phase electron transfer process illustrated in Fig. 1. We employ
both numerically exact quantum dynamics and the approxi-
mate QMEs, with the nuclear degrees of freedom treated as a
harmonic bath. The total Hamiltonian in this model is a sum
of nuclear (bath) kinetic energy, potential energy terms for the
different states, and a diabatic/SOC term (further details are
given in the SI, Eq. (S.1)). Using the Hierarchical Equations
ofMotion (HEOM), we can compute the exact dynamics when
the potentials are harmonic.31

For comparison, we also perform simulations of this model
with the full perturbative QMEs, Eq. (4), modified to include
back reaction terms.25 To briefly summarise the approxima-
tions used in Refs. 24 and 25 to obtain these, in these QMEs
we assume the coherences between different electron transfer
states, e.g. |S1〉〈CT1, S|, are short-lived and small (due to the
large differences between potential energy surfaces), so these
coherences are projected out using Nakajima-Zwanzig theory
(but spin coherences are retained). The Nakajima-Zwanzig
kernel is then expanded at lowest order in the diabatic cou-
plings, with spin Hamiltonian terms in the kernel ignored (due
to the large separation in energy scale between the nuclear
motion and spin dynamics), and the population transfer dy-
namics are treated asMarkovian. For the harmonic bath model
given above, the second order QME parameters (rate constants
and 𝛿𝜖) can be computed exactly from the spectral density,24
details of which are given in the SI. In the high temperature
limit, these rates can bewell approximatedwithMarcus theory,
𝑘ET = (1/ℏ)Γ2DA (𝜋/𝜆ET𝑘B𝑇)

1/2𝑒−(Δ𝐺ET+𝜆ET)
2/4𝜆ET𝑘B𝑇 , where

ΓDA = (𝑉2DA + Λ2DA/4)
1/2 is the combined diabatic/SOC cou-

pling for the electron transfer.22 Although we only consider
harmonic potential energy surfaces here, the QMEs apply
to general potential energy surfaces for the electron transfer
states.
We set the free energy changes of the electron transfers to be

Δ𝐺ET1 = −0.1 eV andΔ𝐺ET2 = −0.25 eV, with reorganisation
energies of 𝜆ET1 = 0.1 eV and 𝜆ET2 = 0.2 eV. Diabatic state
couplings are taken as ΓDA1 = (𝑉2DA1 + Λ2DA1/4)

1/2 = 0.5 meV
(S1-CT1 coupling) and ΓA1A2 = 𝑉A1A2 = 0.25 meV (CT1-
CT2 coupling), and 𝜃 = 𝜋/16, which corresponds to ∼ 4%
of CT1 molecules being formed in the triplet state.32–34 In
these models we treat the intramolecular vibrational modes
and solvent bath as a single harmonic bath with a Debye spec-
tral density,31 J (𝜔) = 2𝜆D𝛾D𝜔/(𝛾2D + 𝜔2),with a cut-off fre-
quency of ℏ𝛾D = 0.05𝑘B𝑇 , at 𝑇 = 300 K, and with 𝜆D = 𝜆ET1.
These parameters are chosen to be representative of electron
transfers in typical organic donor-acceptor systems,21,35 whilst
being computationally tractable with the HEOM method.
Figure 2 shows the results of these simulations for a range of

values of the 𝐽 coupling (decreasing from top to bottom) in the
intermediate state for populations (left) and spin polarizations
(right). The population dynamics clearly show that hopping
dominates the ET process in these examples, with a significant
transient population of the CT1 appearing on a time-scale of
∼ 0.25 ns and decaying on a time-scale of ∼ 1 ns. We see
the final spin polarization in CT2 increases and then decreases
with decreasing 𝐽 (note the different 〈Δ𝑃𝑧 (𝑡)〉 scales from top
to bottom), as predicted by the simple theory in Eq. (5). Large
spin polarizations, on the order of 40%, can be observed even
with a small fraction of triplet states formed in ET1. The
second order QMEs in this example are very accurate for both
population and spin polarization dynamics, which validates the
approximations of Markovian dynamics and spin-independent
rate constants invoked to derive these. The prediction from
Eq. (5) for the final spin polarization (shown as a black dashed
line in the left panels of Fig. 2), provides an accurate estimate
in these examples, with small deviations due to back reactions.
In the above examples we have only considered a regime
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FIG. 2. Population and spin polarization dynamics for a three CT state model of electron transfer calculated with HEOM (solid lines) and the
second order QME (dashed lines). Left column: total populations of S1 (grey), CT1 (orange) and CT2 (purple) as a function of time. Right
column: spin polarization in CT1 (orange) and CT2 (purple) as a function of time, with the value predicted by Eq. (5) indicated by the black
dashed line. From top to bottom the value of the exchange coupling in the CT1 state is varied with 𝐽/𝑔e𝜇B = 100 mT (top), 10 mT (middle)
and 1 mT (bottom), where 𝜇B is the Bohr magneton and 𝑔e is the 𝑔 factor for the free electron spin.

where second order perturbation theory is valid for the
rate constants and 𝛿𝜖 . The general form of the mas-
ter equation presented above is only slightly altered on in-
cluding higher order effects in the electronic coupling24,25;
specifically we should add a decoherence term of the form

FIG. 3. HEOM dynamics of the three state model with larger diabatic
state couplings. Populations (top panel), and spin polarization 𝑂 =

Δ𝑃𝑧 and zero quantum coherences 𝑂 = 𝑆D𝑥𝑆A𝑦 − 𝑆D𝑦𝑆A𝑥 (bottom
panel) with the same colour scheme as Fig. 2. Other ET parameters
are the same as in Fig. 2.

−(𝑘D/2) [|𝜓𝜃 〉〈𝜓𝜃 | , [|𝜓𝜃 〉〈𝜓𝜃 | , �̂�CT1 (𝑡)]] to the equation for
�̂�CT1 (𝑡) .25 This causes the spin polarization in the intermedi-
ate state to decay, but for sufficiently large 2𝐽 significant spin
polarization can still emerge and subsequently be transferred
to the final CT state. This is demonstrated in Fig. 3 where
we show the population dynamics (top panel), spin polariza-
tion (bottom panel, solid lines), and zero quantum coherence
(bottom panel, dashed lines) for the three state model with
ΓDA1 = 10 meV, 𝑉A1A2 = 5 meV and 𝐽/𝑔𝑒𝜇B = 2 T. In this
limit the second order rate constant for the first electron trans-
fers are approximately a factor of 5 too large compared to those
obtained by fitting the population dynamics, so this example
is clearly outside of the limits of second order perturbation
theory. However, we still clearly see the emergence of a large
static spin polarization (∼ 30%) in the CT2 state, as well as
significant zero quantum coherence. This demonstrates that
thismechanism can produce significant spin polarizations even
outside the second order limit.

Having validated the general theory on a model condensed
phase electron transfer, let us consider how this hopping mech-
anism predicts a temperature dependent spin polarization in
chiral systems. Returning to Eq. (5) for 〈Δ𝑃𝑧〉, we can see
how this temperature dependence emerges. Typically the ex-
change coupling, and energy shift terms are, to a good approx-
imation, independent of temperature,24 whereas if the electron
transfer is activated, 𝑘ET2 will have an exponential dependence
on inverse temperature.21 Therefore increasing 𝑇 will gener-
ally increase the ratio 𝑘ET2/Ω, so the spin polarization will
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FIG. 4. Experimental data from Ref. 6 for the corrected spin-
polarization in photosystem I (left), and a model based on Eq. (5)
for the spin polarization relative to its maximum value (right),
〈Δ𝑃𝑧〉 /〈Δ𝑃𝑧〉max = 2𝑎𝑇−1/2𝑒−𝐸𝑎/𝑘B𝑇 [1+(𝑎𝑇−1/2𝑒−𝐸𝑎/𝑘B𝑇 )2]−1.
The fitted parameters are 𝑎 = 8.346 × 106 K1/2 and 𝐸𝑎 = 0.32 eV.

go through a maximum at a particular temperature, where
𝑘ET2/Ω = 1. Interestingly this temperature dependence of
the spin polarization has been observed in the experiments of
Carmeli et al. on CISS in electron transfer in photosystem I,6
which is known to proceed via several electron hopping steps.20
We have fitted the experimental temperature dependent spin
polarization, relative to its maximum value, for photosystem
I to a model based on Eq. (5) assuming Marcus theory36 can
be applied to describe the temperature dependence of the rate
constants. The experimental data and model are shown in
Fig. 4, where we see this model is consistent with the avail-
able experimental data, and the fitted activation energy of
𝐸𝑎 = 0.32 eV is in line with the activation energies of the
electron transfers in photosystem I.35 It should be noted that
the spin-polarization reported in these experiments exceeds the
theoretical maximum predicted by Eq. (5) of 50%. We believe
this is due to the error in the correction procedure employed
in Ref. 6 for obtaining the spin polarizations, which, as dis-
cussed by the authors, introduces a large error in the corrected
spin polarization. The “uncorrected” experimental spin po-
larizations, which have a maximum value of <10%, still have
a non-monotonic dependence on temperature,6 which is still
consistent with our proposed mechanism of CISS.
To conclude, in thisworkwe have shown howphoto-induced

spin-orbit coupled charge transport in chiral systems, together
with multistep charge transport via CT states with significant
exchange couplings, generates the CISS spin polarization ef-
fect. We also see that a zero quantum coherence in the final
CT state emerges. The CISS effect described here depends
strongly on electron transfer parameters, in particular the rate
constant for downhill electron transfer for intermediate CT
states. This predicts a specific form for the temperature de-
pendence of the spin polarization, which is consistent with the
experiments of Carmeli et al. in Ref. 6.
This theory of the CISS effect in molecular systems opens

the door to many potential avenues of research. With a the-
ory for the ZQCs and spin polarizations generated in chi-
ral molecules, well-established principles for synthetically
tuning electronic properties of donor-acceptor systems11,37
could be applied to engineer systems displaying large CISS
effects, which can be probed using a variety of possi-

ble experiments.3,4,25,30,38 In fact the first examples of such
molecules have already been synthesised.39 These systems
could find an array of uses in single molecule-scale quan-
tum computing and quantum information applications.1,37 It
is also known that electron hopping occurs in many impor-
tant biological electron transfer systems,21 such as in pho-
tosynthesis in photosystem I20 and in cryptochromes, which
are involved in signalling and potentially magnetoreception.40
What role role could molecular CISS play in these systems?9
For example, could biological systems have evolved to inhibit
singlet-selective electron recombination reactions usingCISS?
Equipped with a microscopic theory of chirality induced spin
effects in electron transfer reactions, it may be possible to
answer such questions.
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SUPPORTING INFORMATION

Further details of the HEOM and QME calculations, a brief
analysis of the effects of competing back reactions and singlet-
triplet dephasing on spin polarization, and a discussion of
the connection between SOC mediated CISS and chemically
induced dynamic electron polarization (CIDEP).
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