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Abstract

We report a series of experiments on connectionist learning that addresses a particularly pressing
set of objections to the plausibility of conncctionist learning as a model of human learning. Con-
nectionist models have typically suffered from rather severe problems of inadequate generalization
(where generalizations are significantly fewer than training inputs) and interference of newly
learned items with previously leamned items. Taking a cue from the domains in which human leam-
ing dramatically overcomes such problems, we sec that indeed connectionist learning can escape
these problems in combinatorially structured domains. In the simple combinatorial domain of
letter sequences, we find that a basic connectionist learning model trained on 50 6-letter sequences
can correctly generalize to about 10,000 novel sequences. We also discover that the model exhibits
over 1,000,000 virtual memories: new items which, although not correctly generalized, can be
learned in a few presentations while leaving performance on the previously leamed items intact.
We conclude that connectionist learning is not as hanmful to the empiricist position as previously
reported experiments might suggest.

1. Introduction

Two important capabilities of human learning that connectionist models have until now seemingly
failed to share are these: Acquiring competence from a small set of examples, as children do when they
learn their native language by being cxposed to only a very small fraction of what they are ultimately com-
petent with, and fast leaming of new items with no interference, as when we learn new fact from a single
presentation. More specifically, connectionism has until now suffered from the following two problems:

The connectionist generalization problem: Generalizations are few, and do not outnumber training
examples. Current models suggests that in order to obtain correct performance on a target set of
inputs, a network nceds to be trained on a sizable fraction (between 25% and 75%) of the learning
set. (While the amount of information that is available during training is still an open issue in the
ongoing debate between empiricists and nativists, it would be hard to find anyone even remotely
comfortable with the idea that children are exposcd 0 25%-75% of their ultimate competence).

The connectionist interference problem: New itcms 1o be learned are in current practice intermin-
gled with all the previously trained inputs and subjected again to the lengthy and rather laborious
training algorithm. Several experiments have shown that if a network successfully trained on one
set of items is then trained on another, the network will unlearn the first set. In McCloskey &
Cohen (1988), this is referrcd as "catastrophic interference.”

There is no doubt that connectionism would fail in its claim to be a plausible model for human learn-
ing if catastrophic interfercnce and weak generalization were invariably prevailing in all domains. We have
hypothesized, however, that conncctionist networks will not suffer from the two problems mentioned
above in combinatorial domains. In this paper we will further define this hypothesis, and report on a series
of experiments supporting it
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2. Hypothesis

Taking a cue from the domains in which human lcarning dramatically overcomes the problems of
slow and interferential learning, likc language and facts, we have hypothesized that connectionist models
will not suffer from the generalization and interference problems in combinatorial domains. More
specifically, we hypothesize that in such domains, we will sce:

Massive generalization: To lcarn a set of inputs, only a fraction of the set will nced to be trained
upon.

Fast, interference-free learning. Once a network has learned a subset of inputs, to learn a new
input which shares in the structure of previously trained inputs, the new input will only need to be
presented a few times and there will be no interference with the previously trained inputs although
they are not be trained again.

We will take a domain to be combinatorial if the elements in the domain are constructed by combin-
ing smaller elements, and if the correct processing of larger elements can be generalized from correct pro-
cessing of smaller elements of which they are composed, taking due consideration of the means of compo-
sition.

3. Experiments

To test our hypothesis, we have chosen one of the simplest combinatorial domains possible: Carte-

sian products of sets. X; are sets, fori = 1, ..., n, and our combinatorial domain is
X=X1xX2x% ++ xXp={(x1,x2, ... %) I x; € X;}

X is the domain consisting of sequences of n elements, the ith element in each sequence being some
member of X;. In our experiments, all X; have the same number of elements. We train an auto-associative
network on a randomly selected subset of the chosen domain, and then test and train for correct association
each of the remaining items of the domain, onc by one. The auto-associative network, associating each
item with itself, can be interpreted as a graded recognizer of whether an input shares in the regularities of
the training set.

In our connectionist experiments, each clement of cach set was represented in the network as some
pattern of activities. It is these patterns, of course, that matter, and not whatever name we find convenient
to give to the clements. In this paper we will usc letters as convenient labels for these clements. As a
further convenience we will use the same set of labels for each set X; in the Cartesian product, but again
this is of no consequence. (In particular the network is not charged in any way with discovering that we
like to use the same letter to label an clement in X; and an clement in X5.) Thus if n = 4, a typical clement
of X could be written (A, B, A, C) or, more simply, as the string ABAC. We call the number of elements in
X; A, the alphabet size.

Architecture and training technique

The connectionist leamning technique we used is a standard one: auto-association using back-
propagation learning.

Figure 1: Architecture of the networks used in these experiments

The network is a three-layer feed-forward network in which the input layer and output layer have N units
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and the hidden layer has / units. The architecture is shown in Figure 1. Each training input (onc of the ele-
ments of X) is represented as a pattern of activity on the N input units according Lo a mapping described
below. The target output on the N output units is identical to the input pattern: the network must associate
each element of X with itself. The network was trained with standard back-propagation, the units of the
nctwork being semi-lincar units as in Rumelhart, Hinton and Williams (1986),

Representation

Each of the n elements in X were coded using tensor product representation as defined in Smolensky
(1987). Random binary vectors were gencrated to represent each x; € X; (fillers) while the associated roles
were a vector representing the set X; it belonged to. In all the experiments we will report on, the role vec-
tors were simply the vectors of null activities with the exception of the ith coordinate of X; which had
activity 1. The representations were thus semi-local, as dcfined in Smolensky (1987), and amounted to a
simple concatenation of the represcntations of the x;’s. Thus, in the case n = 3, if the random binary vec-
tors of activities representing x; € X, x;€ X and x3€ X3 were (1,0, 1, 1,0),(0,0,1,0,0) and (1, 1, 1,
0, 0), respectively, then the vector of activities representing (x1, x2, x3) was simply (1,0, 1,1,0,0,0, 1,0,
0,1,1,1,0,0)=(1,0,1,1,0) * (1,0,0) + (0,0, 1,0,0) * (0, 1,0) + (1, 1, 1,0, 0) * (0, O, 1), where *
denotes the tensor product operation.

Performance measures

Our basic measure of the network's performance on a particular input was the number of output units
that were "correct": within a certain error criterion € of the correct value. In all experiments reported in this
paper, we used € = 0.4. For each cxperiment, the network was initialized with a random sct of small
weights, and the back-propagation algorithm was applied to each pattern of the training set, in a random
order, weight updates being performed after each pattern presentation. Application of the learning algo-
rithm to the training set was repeatcd until all inputs were correctly associated according to the perfor-
mance measure mentioned above. The reader can refer 1o the appendix for further information on the
training procedure and the values of the experimental parameters. In many experiments the "control
group" against which performance was tested was the set of all possible inputs with activities in {0, 1). We
called patterns belonging to this set "random bil patterns”.

4. Results

4.1. Regularity detection: English 4-letter words

We report here on early experiments designed to test the basic assumption that a feed-forward auto-
associator is capable of lcarning through back-propagation to recognize whether an unfamiliar sequence
shares in the combinatorial regularitics characterizing some domain.

— MNovel 4-letter English Words
Rondom 4-—letlter Strings =
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Figure 2: Generalizations; Network trained on 100 English 4-letter
words. The nctwork generalizes best on novel English words, then
on 4-letter strings, then on random bit pattemns.
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We took the domain X 1o be a set of 1100 4-lctter English words, and trained a network (here and hen-
ceforth, a back-propagation feed-forward auto-associator) on 100 randomly selected such words. We then
tested its generalization ability on the 1000 remaining untrained words, on 1000 randomly selected 4-letter
strings, and 1000 random bit patterns. If the network can recognize the degree to which new patterns share
in the regularities with the training set, it should generalize best with English words, then 4-letter strings,
then random-bit patterns. This is confirmed experimentally in Figure 2, where 87% English words have less
that 5 incorrect bits, versus 45% for random strings and 22% for random bit patterns.
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Figure 3: Number of weight updates to leam a new input, after
training on 100 4-leuer English words. The network leams novel
English words the fastest, then 4-letter strings, then random bit pat-
tems.

Not only do new inputs that share in the regularitics of the training set produce fewer erroncous output bits,
but they are also easier to learn, as shown in Figure 3.

Virlugl Memaries
Ceneralizolions

i

Rondom Potterns

Figure 4: The number of generalizations and virtual memories for
the network trained on 100 English 4-letter words.

In the following experiments we will summarize information on generalization and ease of learning
of a new input by reporting just the number of gencralizations (the number of novel patterns with zero
incorrect bits) and the number of virtual memories. We define a virtual memory to be a novel input which
can be trained to criterion while leaving performance on the training set error-free. Figurc 4 shows both
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the generalizations and virtual memories for 1000 untrained words, 1000 randomly sclected 4-letter strings,
and 1000 random bit patterns. (For computational time rcasons, we restricted the number of lcarning trials
when testing for a virtual memory to 5. All our rcsults concerning their number arc thus lower bounds
only: The use of lower learning ratcs and/or larger number of trials could yield higher numbers. We will
henceforth mean virtual memories that can be lcarned in less than 5 trials when we refer to virtual
memories.) We observe that the number of generalizations and virtual memories is the biggest for the set of
English words, then for the set of random 4-letter strings. For the random selection of 1000 random bit pat-
terns, there were simply no generalizations.

4.2. Learning in the Cartesian product domain

In this section we describe the results of our main experiments, addressing Icarning in Cartesian pro-
duct domains X =X, XXX -+ XX, for various values of n and sets X;.

Generalization: The number of gencralizations in networks trained on 50 inputs in the case A = IIX;ll = 26
and n = 2,3, ..., 6 is shown in Figure 5, in a semi-logarithmic plot. For the cases n = 2 and n = 3, it was
possible to test the entire set of untrained inputs;
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Figure 5: The number of gencralizations for networks trained on
sets of size 50, with A = 26, as n varies from 2 to 6.
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Figure 6: The number of generalizations for networks trained on
sets of sizes 50, with n =4, and A = 16, 21, 26, 31, 36.

The number of generalizations for these two cases is thus exact. For the cases n =4, 5, 6, complete testing
was not feasible for computational time rcasons. We thercfore tested a sample of T randomly-generated
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inputs (with replacement). The number of generalizations plotted (and later, the number of virtual
memories) is thus an cstimate, assuming unbiased samples. For each value of the varying parameter (in
this case n), we repeated our experiments S times (as in all subsequent experiments), each time starting
with new random initial weights, a new randomly selected Lraining set, and a new randomly selected testing
set of T patterns in the cascs n =4, 5,6, Forn =4 and 5, T was 10,000. For n = 6, T was 100,000 for
generalizations and 10,000 for virtual memorics. Figure § displays the number of generalizations obtained
for each experiment, as well as the median number of gencralizations obtained. Figure 6 shows the number
of gencralizations as the size of X;’s vary.

Virtual memories: Figure 7 shows the number of virtual memories in the case of a network trained on 50
input patterns, forn =2, 3, ..., 6.
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Figure 7: The number of virtual memories for networks trained on
sets of size 50, with A = 26, as n varies from 210 6.

As the combinalorial complexity of the domain increases, we see that large numbers of virtual memories
are obtained. For n = 6, for instance, we estimate that about 2.8 million virtual memories exist,
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Figure 8: The number of virtual memories for networks trained on
sets of sizes 50, with n =4, and A = 16, 21, 26, 31, 36.

Figure 8 shows the number of virtual memories for networks trained on sets of size 50, withn =4 and A =
16, 21, 26, 31, 36.
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Discrimination tests: To scc how well our networks were doing at discriminating clements from non-
elements of X, we conducted a number of tests using random bit patterns. Although in all our cxperiments
the number of hidden units was always smaller than the number of input and output units, thus preventing
the network from computing the identity function, we needed 10 make sure that it was not computing even
an approximation of it. This is confirmed in table 1, where the first row shows the ratio of the number of
generalizations in a sample of 10,000 members of X (with A =26 and n =4) to the number of generaliza-
tions obtained by testing the same nctworks with 10,000 random bit patterns. The second row shows the
ratios of the number of virtual memorics in a sample of 10,000 members of X (with A = 26 and n = 4) and
the number of virtual memories obtained by testing the same networks with 10,000 random bit pattems.
We sce that the networks generalize poorly for random bit patterns, about 1/35th as well as for elements of
X . Similarly, there are about 1/10th as many random bit vectors which are virtual memorics as elements of
X . Statistical analyses, along with results of additional experiments on discrimination, can be found in
Smolensky, Brousse & Mozer (forthcoming).

Experiments 1 2 3 4 5
Discrimination Ratio for Generalizations 4699 | 2299 | 51.86 | 3522 | 31.46
Discrimination Ratio for Virtual Memories 6.81 10.40 | 10.41 12.19 7.26

Table 1: Ratios of gencralizations for members of X and random-
bit vectors, and ratios of vitual memories for members of X and
random-bit vectors.

5. Conclusion

Further experiments and analyses to illucidate these results are in progress, but computational costs
arc a limiting factor, The data points alone displayed here represent the multiprocessor equivalent of
roughly 5,400 hours of Sun3 time. The experiments reported above give optimistic results with respect to
the generalization and interference problems for connectionist learning. A fuller discussion of these experi-
mcnts may be found in Smolensky, Brousse & Mozer, forthcoming. While training a network from scratch
may be a lengthy process, we have scen that once a network has acquired some knowledge of the combina-
torial domain on which the training is performed, subsequent learning of members of the domain is much
easicr and less prone to interference than was previously thought. Although we do not provide evidence
that connectionist induction algorithms are stronger than previously available inductive techniques, we do
believe that we have provided evidence that connectionism is more compatible with an empiricist position
on human learning than previous results would suggest—at least within combinatorial domains.
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Appendix: Experimental parameters

In all our experiments, the momentum was 0.9 and the error criterion € was (0.4 both for training and
for testing of virtual memories. The learning rate was 0.01 for training and 0.2 for virtual memory leaming,
except for n = 2 where the training Icamning rate was 0.005. The vectors representing X; were random
binary vectors of length 8. //, the number of hidden units, was lincarly increased as n increased according
to h =5 X n, resulting in a constant compression factor of 8:5 from input to hidden units. Initial weights
were generated pseudo-randomly, with equal probability in the interval [-0.5, 0.5]. Patterns in the training
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set were presented to the network in a random order during an epoch, and weights were updated after each
pattern. Because gradient descent suffers from the problem of local minima, some training sets could not be
learned in a reasonable time. When that happened we simply started the experiment over. When the error
for all inputs of the training scts rcached 0, we trained again for 10 epochs to ensure stability. (Since
weights are changed after each pattern presentation, a total error of O at the end of one epoch does not
guarantee that the next will still contain error-free pattens.) All networks were standard three-layer feed-
forward back-propagation nctworks, with bias on all hidden and output units.

The following table shows other relevant parameters. We only show minima and maxima for the

number of epochs during training displayed in the rightmost columm, The column labeled "Training set”
refers to the number of input patterns in the training sets used.

Figure | Domain X: A Domain X: n | X: Constraint | Hidden Units | Training Set | Epochs
2 26 4 English 20 100 255
3 26 4 English 20 100 255
4 26 4 English 20 100 555
5 26 Varies none Varies (5n) 50 119-486
6 Varies 4 none 20 50 164-259
7 26 Varies none Varies (5n) 50 119-486
8 26 4 none 20 50 164-259
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