
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Names to Conjure With: Measuring and Combating Online Adversaries by Examining Their
Use of Naming Systems

Permalink
https://escholarship.org/uc/item/0dp0x8r4

Author
Randall, Audrey

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dp0x8r4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Names to Conjure With: Measuring and Combating Online Adversaries
by Examining Their Use of Naming Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Audrey Randall

Committee in charge:

Professor Aaron Schulman, Chair
Professor Stefan Savage, Co-Chair
Professor Geoffrey M. Voelker, Co-Chair
Professor Kimberly Claffy
Professor Margaret E. Roberts

2023

Copyright

Audrey Randall, 2023

All rights reserved.

The Dissertation of Audrey Randall is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

This dissertation is dedicated to the San Diego Bisikleta Club, the UCSD Race Condition
running club, and the unofficial CSE swim crew. You never failed to support, challenge, and
rejuvenate me during difficult times, and without you, both my PhD and my races would have
been completed much more slowly! May the wind be at your backs, the sun be out of your eyes,
your recoveries swift and your injuries few; and in particular, may you never lose the joy we
share in the sports we love.

iv

EPIGRAPH

“Words are pale shadows of forgotten names. As names have power, words have power. Words
can light fires in the minds of men. Words can wring tears from the hardest hearts. There are
seven words that will make a person love you. There are ten words that will break a strong

man’s will. But a word is nothing but a painting of a fire. A name is the fire itself.”

– Patrick Rothfuss, The Name of the Wind

“All things are defined by names. Change the name, and you change the thing.”

– Sir Terry Pratchett, Pyramids

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1

Chapter 2 Background . 8
2.1 Naming systems in the abstract . 10
2.2 Implementation details of naming systems . 11

Chapter 3 Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers 14
3.1 Overview . 14
3.2 Background . 16

3.2.1 A variety of users query public resolvers . 16
3.2.2 Complex caching can reveal many active users . 18
3.2.3 Public DNS cache snooping challenges . 21

3.3 Snooping Public DNS Caches . 22
3.3.1 OpenDNS and Quad9 . 24
3.3.2 Cloudflare DNS . 26
3.3.3 Google Public DNS (GPDNS) . 28

3.4 Methodology . 30
3.4.1 Probing multiple PoPs . 30
3.4.2 Finding unique TTL lines using cache probing . 32

3.5 Evaluation . 35
3.5.1 Simulating users with RIPE Atlas probes . 36
3.5.2 Measuring cache fills from Ark nodes . 37

3.6 Case Studies . 39
3.6.1 Limits on observed users . 41
3.6.2 Stalkerware . 42
3.6.3 Contract cheating services . 46

vi

3.6.4 Typo squatting domains . 47
3.7 Related Work . 48
3.8 Ethics . 49
3.9 Summary . 50

Chapter 4 Home is Where the Hijacking is: Understanding DNS Interception by
Residential Routers . 51

4.1 Overview . 52
4.2 Background and Terminology . 54
4.3 Methodology . 55

4.3.1 Identifying query interception . 55
4.3.2 Identifying query interception by the CPE . 56
4.3.3 Query interception by the ISP . 57
4.3.4 Example of technique in practice . 57

4.4 Why version.bind is necessary to detect CPE interception 59
4.5 Ethical Considerations . 60
4.6 Pilot Study on RIPE Atlas . 60

4.6.1 Which probes experience interception? . 61
4.6.2 Is the interception performed by the CPE? . 63
4.6.3 Is the interception within the client’s ISP? . 64

4.7 Case Study: XB6 Router . 65
4.8 Limitations and Future Work . 65
4.9 Related Work . 67
4.10 Summary . 68

Chapter 5 Challenges of Blockchain-Based Naming Systems for Malware Defenders 70
5.1 Overview . 70
5.2 Background . 71

5.2.1 Tradeoffs of DNS-based C2 names . 72
5.2.2 Blockchain-based domain names . 74

5.3 Overview of Blockchain Naming Systems . 75
5.3.1 Naming-specific blockchains . 77
5.3.2 Naming systems on general purpose blockchains . 79

5.4 Intervention Locations . 84
5.4.1 Reaching the resolver . 85
5.4.2 Interventions at the name resolver . 85
5.4.3 Skipping the proxy: the rise of light clients . 88
5.4.4 Interventions at the database locator . 89
5.4.5 Interventions at the database . 91
5.4.6 Interventions after the name record is acquired . 92
5.4.7 Intervening with name modification or purchase . 93

5.5 Measurements of Name Resolution Queries . 94
5.5.1 Frequently accessed names . 96
5.5.2 Unregistered ENS and Unstoppable Domains names 97

vii

5.5.3 Requests for registered names from ENS and Unstoppable Domains . . . 98
5.6 Discussion . 99
5.7 Related Work . 101
5.8 Summary . 102

Chapter 6 Measuring UID Smuggling in the Wild . 104
6.1 Overview . 105
6.2 Background . 107
6.3 Methodology . 110

6.3.1 Crawling the Web . 111
6.3.2 Detecting potential UID smuggling . 112
6.3.3 Synchronizing multiple crawlers . 113
6.3.4 Impersonating different browsers . 115
6.3.5 Impersonating different users . 116
6.3.6 Identifying potential UID smuggling . 117
6.3.7 Identifying UIDs . 118
6.3.8 Implementation . 120

6.4 Ethics . 121
6.5 Results . 122

6.5.1 Redirectors . 124
6.5.2 Originators and destinations . 125
6.5.3 Navigation paths . 129

6.6 Limitations . 130
6.7 Countermeasures . 132

6.7.1 Existing mitigations . 132
6.7.2 Proposed mitigations . 133

6.8 Related Work . 134
6.8.1 Prior work on differentiating UIDs . 135
6.8.2 Related work on cookie syncing . 136
6.8.3 Other related work . 137

6.9 Summary . 137

Chapter 7 Conclusion . 142

Bibliography . 145

viii

LIST OF FIGURES

Figure 2.1. Physical architecture of a naming system in the general case. 9

Figure 3.1. A user’s DNS query is handled by a set of load-balanced front-end caches
that are backed by a set of load-balanced backend resolvers. 19

Figure 3.2. Examples of DNS responses for a cache miss and cache hit. The cache hit
has a TTL in the reply, the cache miss does not. 20

Figure 3.3. Inferred cache architectures of the four largest public DNS services (50
secs after filled with 600 sec maximum TTL) . 22

Figure 3.4. OpenDNS and Quad9 caching behavior . 25

Figure 3.5. Cloudflare DNS shared caching behavior . 26

Figure 3.6. GPDNS’s dynamic caching behavior. 27

Figure 3.7. Errors matching cache probes to TTL lines . 33

Figure 3.8. Cache estimation error . 34

Figure 3.9. Maximum caches observed per PoP per resolver . 40

Figure 3.10. Stalkerware targets visible per TTL epoch . 43

Figure 3.11. Web requests per TTL epoch for stalkerware dashboards. Note that not all
stalkerware apps have dashboards. 43

Figure 3.12. Web requests per day of contract cheating services. 45

Figure 3.13. Web requests per day for typo-squatting domains on GPDNS 47

Figure 4.1. Locations where interception can occur. 52

Figure 4.2. Three-part technique to determine if and where a DNS query is being
intercepted. 53

Figure 4.3. Intercepted probes per top 15 organizations. 62

Figure 4.4. Interception location for the 15 countries and organizations with the most
intercepted probes. 63

Figure 5.1. Records stored by ENS names. *key within “text” record 82

Figure 5.2. Records stored by Unstoppable Domains names. 83

ix

Figure 5.3. Potential locations of interventions for blocking access to DNS-based and
blockchain-based C2 server names. 84

Figure 6.1. Flat storage versus partitioned storage. 108

Figure 6.2. How UID smuggling allows trackers to circumvent partitioned storage. . . . 109

Figure 6.3. A single step of the ten-step random walk that CrumbCruncher performs
for each seeder domain. 110

Figure 6.4. Most common entities involved in UID smuggling as originators or
destinations. 123

Figure 6.5. Categories of websites that participate in UID smuggling as originators or
destinations. 127

Figure 6.6. Most common domains of third party web requests sent from the destination
site. 140

Figure 6.7. Distribution of types of redirectors in URL paths. 141

Figure 6.8. Counts of UIDs that traversed each portion of a URL path. 141

x

LIST OF TABLES

Table 2.1. Keys and values in different naming systems. 9

Table 2.2. Participants in the layers of each naming system I study. 11

Table 4.1. Location queries and examples of expected responses from each resolver. . 55

Table 4.2. Example responses to IPv4 location queries. 58

Table 4.3. Example responses to IPv4 version.bind queries. 58

Table 4.4. Number of intercepted probes per public resolver. 61

Table 4.5. Strings sent in response to version.bind. 64

Table 5.1. Non-exhaustive selection of proxies, browsers, and extensions that can be
used to access blockchain-based naming systems. 76

Table 5.2. Record types in the Handshake namespace. 78

Table 5.3. The ENS resolvers from which we collected a sample of names and records. 81

Table 5.4. Examples of malicious Namecoin and Emercoin domains in the October
sample of B-root queries. 95

Table 6.1. Crawler combinations where UIDs appeared. 119

Table 6.2. Summary of the navigation paths and their participants measured by Crumb-
Cruncher. 122

Table 6.3. The most common redirectors observed in unique domain paths. Here,
“count” refers to the number of unique navigation paths the domain appeared
in. *Multi-purpose smuggler. 139

xi

ACKNOWLEDGEMENTS

I would first like to acknowledge my advisers, Aaron Schulman, Stefan Savage, and

Geoffrey M. Voelker. Having no fewer than three advisers is a graduate school superpower, and

having three such excellent advisers is a stroke of unimaginable good fortune that I certainly did

not deserve. Quite apart from their technical prowess, research chops, and unfailing support, the

amount of laughter they brought to the last five years cannot be overvalued. Thank you for the

4 A.M. nights and the pun wars in group meetings, the department hikes and the holiday party

skits, and for everything else that made going to grad school the best decision I ever made.

Second, my undying gratitude goes to Robert Ariniello, who went through this process

before I did and kept me cheerful and sane along the way. I also want to thank my family, who

endured long-winded and excited explanations in excruciating technical detail for five years, and

never tired of attempting to understand them.

Third, I want to thank all of my co-authors: Enze “Alex” Liu, Gautam Akiwate,

Ramakrishna Padmanabhan, Alisha Ukani, Peter Snyder, Alex C. Snoeren, and Wes Hardaker,

and of course also Geoff, Stefan, and Aaron. This work would have been impossible without

you, especially as I can’t claim to have come up with the breakthroughs that made my first two

papers possible on my own. Credit for those goes to Rama and Aaron, respectively.

Finally, I wish to thank all of the students, coworkers, and friends who have helped me

along my journey — whether through giving advice, racing me on bikes, sharing their snacks,

belaying me on very tall cliffs, or lending an ear when I needed one. To all the occupants of

office 3140, and also or especially to Ben Du, Amanda Tomlinson, Alisha Ukani, Ariana Mirian,

Chris Ye, and Zac Blanco, my everlasting gratitude for your help and support.

xii

VITA

2018 Bachelor of Science, University of Colorado Boulder

2021 Master of Science, University of California San Diego

2023 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

Audrey Randall, Wes Hardaker, Stefan Savage, Geoffrey M. Voelker, and Aaron Schulman. 2022.
The Challenges of Blockchain-Based Naming Systems for Malware Defenders. In Proceedings of
the APWG eCrime Conference (eCrime ’22).

Audrey Randall, Peter Snyder, Alisha Ukani, Alex C. Snoeren, Geoffrey M. Voelker, Stefan
Savage, and Aaron Schulman. 2022. Measuring UID Smuggling in the Wild. In Proceedings of
the ACM Internet Measurement Conference (IMC ’22).

Audrey Randall, Enze Liu, Ramakrishna Padmanabhan, Gautam Akiwate, Geoffrey M. Voelker,
Stefan Savage, and Aaron Schulman. 2021. Home is Where the Hijacking is: Understanding
DNS Interception by Residential Routers. In Proceedings of the ACM Internet Measurement
Conference (IMC ’21).

Audrey Randall, Enze Liu, Gautam Akiwate, Ramakrishna Padmanabhan, Geoffrey M. Voelker,
Stefan Savage, and Aaron Schulman. 2020. Trufflehunter: Cache Snooping Rare Domains at
Large Public DNS Resolvers. In Proceedings of the ACM Internet Measurement Conference
(IMC ’20).

Louis F. DeKoven, Audrey Randall, Ariana Mirian, Gautam Akiwate, Ansel Blume, Lawrence
K. Saul, Aaron Schulman, Geoffrey M. Voelker, and Stefan Savage. 2019. Measuring Security
Practices and How they Impact Security. In Proceedings of the ACM Internet Measurement
Conference (IMC ’19).

xiii

ABSTRACT OF THE DISSERTATION

Names to Conjure With: Measuring and Combating Online Adversaries
by Examining Their Use of Naming Systems

by

Audrey Randall

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Aaron Schulman, Chair
Professor Stefan Savage, Co-Chair

Professor Geoffrey M. Voelker, Co-Chair

Defenders combat online adversaries by understanding their behavior, the resources they

depend on, and their strategies and tactics. However, measuring adversarial activity directly

is often challenging, because adversaries take steps to obfuscate their behavior and evade

detection by defenders. To overcome this challenge, defenders may leverage the knowledge

that adversaries rely on licit, external resources, whose business models do not require secrecy.

These resources may therefore leak valuable information, including the prevalence of threats, the

relative effectiveness of competing adversaries, the strategies adversaries use, or the resources

xiv

and infrastructure they rely upon. Such information can help defenders prioritize threats and

decide which components of an ecosystem to target for interventions. This dissertation presents

a new framework for designing measurement techniques and interventions for online adversaries:

I leverage the information leaked by naming systems. I show that because naming systems

are both lists of an adversary’s resources and critical resources themselves, observing them

enables defenders to measure adversaries’ prevalence, compare their harmfulness, analyze their

infrastructure, and more, thus improving interventions by identifying the most effective resources

to target and prioritizing the most dangerous threats.

I present four studies that each leverage some aspect of a naming system to measure

an adversary’s behavior and inform defenses against it. First, I measure the prevalence of

overt stalkerware in the wild, by using privacy-preserving DNS cache snooping on four public

DNS resolvers. Second, I determine the location in the network of DNS redirection attacks,

by exploiting the format of certain special DNS responses. Third, I investigate the abuse of

blockchain-based naming systems (BNSes) by malware operators, and design interventions

leveraging BNS components to disrupt malware campaigns. Finally, I measure an emerging

web privacy threat, UID smuggling, by participating in the naming system built by trackers to

link user identifiers with behavioral data. In each case, I measure or design defenses against an

adversary that would be difficult to study without examining the information leaked by a naming

system.

xv

Chapter 1

Introduction

Staging effective interventions against online adversaries — such as stalkers, trackers,

malware operators, and perpetrators of fraud — requires a thorough understanding of all aspects

of their behavior. An intervention is an action taken against an adversary to disrupt or curtail their

activities by denying them some resource. However, not all interventions are equally effective.

An intervention is most likely to be successful if the resource it targets is both indispensable

and difficult for the adversary to replace. To identify such critical resources, a defender must

understand the ecosystem the adversary operates in, their targets, and the details of their attacks.

Adversaries, however, have no interest in allowing defenders to study their behavior, and

often take steps to conceal their activities. They are thus difficult to measure using straightforward

techniques that work on similar but non-adversarial systems. For example, if a researcher wished

to enumerate the users of a benign class of mobile applications, she might use download statistics

from app marketplaces such as the Google Play or Apple store. If she wished to understand

user experiences, she might find volunteers willing to respond to a survey. If she needed to

reverse-engineer a distributed system (e.g., a blockchain), she might examine open source code,

become a member of the system, or contact the maintainers to ask questions.

In contrast, studying adversarial applications and systems is more difficult. Malicious

apps might disguise their presence on app marketplaces or require their users to side-load

them. Their installers may be unlikely to admit their activities when questioned. Unlike benign

1

distributed systems, adversarial systems like botnets are unlikely to make their source code,

membership in their systems, or their developers available to researchers. Thus, some creativity

is required to develop novel techniques to measure adversarial systems.

However, no system, benign or otherwise, operates in a vacuum. Even the most stealthy

of adversaries requires certain external resources to make their application work correctly. For

example, a botnet operator might rely on an external hosting provider to host the botnet’s

command and control (C2) servers, public or ISP-run DNS resolvers to resolve the C2 server’s

name, and public network infrastructure to route botnet commands. While an adversary might

choose to do without any of these external resources, implementing an alternative is often

prohibitively expensive. For instance, if a botnet operator chooses to bypass a hosting provider

and host their C2 servers on their own infrastructure, defenders could seize those servers and

force the adversary to replace potentially costly hardware. In contrast, by using a bulletproof

hosting provider, an adversary can take advantage of the economies of scale that allow bulletproof

providers to run numerous machines, and easily swap their C2 server to another machine if

defenders interfere with the original. Similarly, a malware operator could avoid using DNS to

contact their C2 servers, perhaps by hard-coding the servers’ IP addresses into deployed malware,

to prevent defenders from taking down the domain. However, this strategy risks losing control of

infected devices: if a defender seizes the C2 server or blocks its IP address, infected devices can

no longer discover any new server’s address, because they cannot contact the old one. In general,

even if an adversary can eliminate one or more external resources, attempting to remove all of

them is usually not cost-effective. Any remaining external resources present opportunities for

defenders to glean more information about an adversary’s behaviors and attack vectors.

In this dissertation, I focus on one specific type of resource: naming systems. I define a

naming system as any system that maps names or identifiers to other information, such as IP

addresses or metadata about entities within the system. I argue that out of all the components in

an ecosystem, naming systems are often the most critical resource for defenders to understand,

for two reasons:

2

• First, at a fundamental level, a naming system is a list of the resources an adversary

controls.

• Second, the naming system itself may be one of the indispensable and scarce resources the

adversary relies on, that a defender could intervene with to disrupt the adversary.

In this dissertation, I study naming systems in two ways: by analyzing their recorded

names and records, and by observing the get and set requests that update those records in real

time. The former approach can reveal how much physical infrastructure an adversary controls,

how important certain servers are (which might tell defenders how to prioritize takedowns), the

adversary’s location or country of origin, and so forth. Additionally, dissecting how an adversary

generated some of its names might allow a researcher to identify the rest from the set of all

names, and seize them all simultaneously. Enumerating all recorded names in a system may

also reveal how many are abused by adversaries versus used by benign actors, which might help

defenders design interventions with lower collateral damage.

In contrast, observing which names are actually requested, as opposed to stored but

potentially never accessed, can reveal both the popularity of the resources they represent and

the utility of those resources to the adversary. Measuring the frequency at which resources are

accessed can reveal which of several competing adversaries is most successful, which helps

defenders decide which to prioritize. Additionally, observing which resources are requested

over time can reveal how agile an adversary might be in evading any particular intervention.

For example, if defenders learn that an adversary is capable of quickly recycling resources,

they can avoid seizing names or infrastructure that will soon be replaced regardless of their

efforts. Observing small details of request formats can also reveal valuable information about an

adversary’s tactics, such as their location in the network or clues about their identity.

In the following chapters, I will demonstrate why naming systems are such valuable

resources for defenders and how I used them to study and combat specific adversaries. I will

show that because naming systems are both lists of an adversary’s resources and critical resources

3

themselves, observing them enables defenders to measure adversaries’ prevalence, compare their

harmfulness, analyze their infrastructure, and more, thus improving interventions by identifying

the most effective resources to target and prioritizing the most dangerous threats.

To that end, I first performed a study that leveraged DNS requests to measure the

prevalence of stalkerware. Stalkerware is a class of applications that exfiltrate a target’s

communications, location, or other sensitive personal information. Stalkerware is challenging to

measure in the wild because it is intentionally extremely difficult to detect on a target’s device. I

pioneered a technique to measure its prevalence by leveraging DNS cache snooping on public

resolvers. I reverse-engineered the caching architecture of four large public resolvers to detect

when stalkerware apps “phone home.” I demonstrated that despite their complex and opaque

caching structures, public resolvers can be used to measure the prevalence of rare, harmful

applications such as stalkerware. I also derived the first estimate of overt stalkerware prevalence

in the wild: I measured a lower bound of nearly 6,000 simultaneous targets of stalkerware in the

U.S.

While performing this study, I discovered that some of my DNS requests were getting

transparently redirected to resolvers I had not intended to contact. The responses’ origins were

spoofed: they appeared to be the destination resolver I had specified, rather than the resolver

that had truly answered the query. I discovered that some network operators were redirecting

DNS queries to their own resolvers, presumably either to track the presence of malware on

their networks or to snoop on user browsing habits. To gain insight into which entities might

be responsible for DNS redirection, I pioneered a distributed measurement technique to detect

where in the network redirection occurs. I used DNS CHAOS queries and queries to bogon IP

addresses to determine whether redirection occurred at the Customer Premises Equipment (CPE),

within the ISP’s network, or at an indeterminate location.

While DNS is often the naming system used by malware operators, it has a significant

disadvantage from a miscreant’s point of view: DNS domains can be taken down (“sinkholed”)

by the registrars that sold them, rendering them inaccessible and useless. Domain takedowns

4

are a crucial type of intervention for defenders, who in the past have taken down entire botnets

by sinkholing the domains of their C2 servers. Some malware operators have responded to this

threat by adopting blockchain-based naming systems (BNSes), which are purportedly much more

difficult to intervene with than DNS. My next study examined the ecosystem of blockchain-based

naming systems to determine how impervious they truly are to the interventions that are possible

with DNS. First, I studied the resources required for an infected host to access a blockchain-

based naming system, and identified potential locations where defenders could intervene. Next, I

performed a study of how existing BNSes are used in the wild to quantify the amount of existing

abuse. I determined that while some types of BNSes are already heavily abused, others have

surprisingly little detectable malicious activity. Finally, I enumerated the BNS names that leaked

to a DNS root server over the course of several days, to determine not only which names are

registered, but which names are actively requested in BNS systems. I concluded that defenders

still have viable options for intervening with BNSes and that more modern, general-purpose

BNSes are unlikely to become a threat until their cost-of-use decreases significantly.

My final study focused on the naming system built by web trackers to record user

behavior across websites by linking it to global user identifiers (UIDs). Until recently, advertisers

could build a database of user information where UIDs belonged to a single, global namespace.

However, in the past few years, browsers have deployed defenses that effectively partition the

namespace that trackers may use by partitioning the storage they are allowed to access. Instead

of building a global namespace of UIDs by accessing global storage, trackers are restricted

to accessing a different storage area for each website the tracker appears on. In theory, this

defense should prevent trackers from assigning the same UID to a user across different websites,

thus disabling their ability to connect information about a user’s behavior across those sites. In

practice, I find that a non-trivial number of trackers have simply started sharing UIDs across

supposedly partitioned namespaces, linking them together to form an approximation of a global

namespace and regaining their ability to track users across sites. I labeled this practice “UID

smuggling,” and measured its occurrence by designing a web crawler. I found that UID smuggling

5

was present on approximately 10% of the random navigations made by my crawler while visiting

approximately 50K popular websites.

The remainder of this dissertation is structured as follows. Chapter 2 presents a high-level

model of naming systems that describes how they can be used to measure adversaries and inform

interventions. Chapter 3 describes my work on reverse-engineering the DNS caching architecture

of large public resolvers, and my use of those caching models to estimate the prevalence of

stalkerware and other rare forms of abuse. Chapter 4 presents my technique for identifying the

network location of DNS redirection attacks, which can yield clues to the perpetrator’s identity.

Chapter 5 describes the ecosystem of blockchain-based naming systems and presents possible

defenses against malware that abuses those systems. Chapter 6 documents my measurement

of web trackers’ attempts to reconnect the partitioned namespace they use to map IDs to user

behavior information. Finally, Chapter 7 summarizes this dissertation, presents key takeaways

from my work, and describes directions for future research.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of the

Internet Measurement Conference 2020. Audrey Randall, Enze “Alex” Liu, Gautam Akiwate,

Ramakrishna Padmanabhan, Stefan Savage, Geoffrey M. Voelker, and Aaron Schulman. The

dissertation author was the primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of the Internet

Measurement Conference 2021. Audrey Randall, Enze “Alex” Liu, Ramakrishna Padmanabhan,

Gautam Akiwate, Stefan Savage, Geoffrey M. Voelker, and Aaron Schulman. The dissertation

author was the primary investigator and author of this paper.

Chapter 5, in part, is a reprint of the material as it appears in Proceedings of the APWG

Symposium on Electronic Crime Research (eCrime) 2022. Audrey Randall, Wes Hardaker, Stefan

Savage, Geoffrey M. Voelker, and Aaron Schulman. The dissertation author was the primary

investigator and author of this paper.

Chapter 6, in part, is a reprint of the material as it appears in Proceedings of the Internet

Measurement Conference 2022. Audrey Randall, Peter Snyder, Alisha Ukani, Stefan Savage,

6

Geoffrey M. Voelker, and Aaron Schulman. The dissertation author was the primary investigator

and author of this paper.

7

Chapter 2

Background

The primary goal of my work is to understand adversaries by examining their use of

naming systems, and use that understanding as the basis for improving defenses against them.

To that end, I must understand in great detail how each naming system works from both a

logical and implementation-based perspective. This understanding is crucial for two reasons.

First, when my goal is to measure an adversary’s behavior, I must thoroughly model all of a

naming system’s components to determine which ones are the most likely to leak information.

Second, although naming systems can be effective locations to stage interventions against some

adversaries, performing such interventions requires overcoming various logistical, technical,

and even political challenges. Specifically, interventions must be enacted by entities within the

naming system that have the capability and motivation to do so, such as DNS registrars or proxies

in BNSes. Identifying which entities can be convinced or legally compelled to aid defenders

requires understanding the organization of the system. Interventions may also cause collateral

damage to licit users of the naming system if not carefully designed. For example, taking down a

proxy that serves both malicious and benign traffic can cause unexpected harm if defenders are

unaware that many licit users utilize it as well.

While many aspects of naming systems are well-documented and well-understood, real-

world complexities and constraints often lead these systems to work differently in practice than

they do in theory. For example, when a query is redirected and answered by a different entity

8

Clients/Participants Intermediaries Database

DNS rootDNS resolver

Blockchain
Proxy

CPE

Browser Mobile App

Measurement
Network

Blockchain
Light Client

Authoritative
Nameserver

Blockchain

Web Tracker’s
Servers

CacheCache
Cache

Figure 2.1. Physical architecture of a naming system in the general case.

Table 2.1. Keys and values in different naming systems.

Naming
System

Hierar-
chical? Key Selected Values Example of (key: value)

DNS ✓ Domain IP address (example.com: 93.184.216.34)
Text (id.server: res721.burr.rrdns.pch.net)

BNSes ✓ Name Wallet address (alice.eth: 0x2805A...)
Website URL (john.crypto: https://ipfs.io/...)
Text string (weedlocator: “hello fx-wallet”)
IP address (namecoin.bit: 91.219.237.223)

UID
Namespace × User ID User profile (D55FCE51...: [behavior profile])

than the intended destination, the misformatted response may reveal both the presence of the

redirection and the identity of the redirector (Chapter 4). Furthermore, there may be no public

documentation describing a naming system in sufficient detail to reveal where information about

adversary behavior might leak, which forces defenders to perform measurement studies instead.

However, defenders are aided in designing these measurement studies by the similar logical

structure that many naming systems share, despite the differences in their implementation details.

This chapter describes how naming systems work from both an abstracted, high-level view and

from a detailed, implementation-based perspective.

9

2.1 Naming systems in the abstract

Naming systems are frequently designed to abstract away complexities from their end

users, which allows clients to view them semantically as simple databases of key/value pairs.

Depending on the naming system’s purpose, keys (names) may map to small amounts of

information, such as IP addresses, or larger amounts, such as collections of user behavior traits.

Taking terminology from DNS, I refer to a key/value pair in any naming system as a “record” in

this dissertation. End users interact with the naming system by making get and set requests.

While only certain users (usually the owners of names) have the authority to set records, any

participant may generally make get requests. Table 2.1 shows examples of keys and values in

each of the naming systems I study. In DNS, keys are domain names; in each of the BNSes, keys

are simply names, and in the UID-based naming system, keys are UIDs. Keys in each naming

system may have different types of records: some of these are detailed in Table 2.1.

However, the user must first know which names to request, and many naming systems do

not make their full databases publicly available. For example, database records in DNS (called

“zone files”) are generally obtainable for Top Level Domains (TLDs), but not for Second-Level

Domains (SLDs), which are usually proprietary. A critical challenge therefore lies in discovering

which names adversaries are using without access to the entire database. While this is not trivial,

a defender may often reduce the scope of this problem by leveraging a certain property of some

naming systems: hierarchical structure. The records in a naming system form a namespace,

which may be either flat or hierarchical. Hierarchical namespaces provide a specific advantage

for a researcher: if she identifies one name that an adversary uses, all of that name’s “subordinate

names” (names whose parent in the hierarchy is the name of interest) likely belong to the

adversary as well. The majority of the namespaces I cover in this dissertation are hierarchical;

only one is flat (Table 2.1).

10

Table 2.2. Participants in the layers of each naming system I study.

Naming System Clients Intermediaries Database
DNS Stalkerware, Public resolvers, Authoritative nameservers

browsers, root servers
mobile apps

BNSes dApps, browsers Proxies, Blockchains
bootstrap nodes

UID Namespace Tracking scripts n/a Trackers’ servers

2.2 Implementation details of naming systems

Defenders can obtain valuable insights by requesting and analyzing the information in

the database, such as which physical resources the adversary is using, which adversaries may be

colluding or controlled by the same operators, and more. However, using this technique alone, a

defender cannot tell which names are used frequently in the wild or how often they are requested;

for this purpose, a defender must observe the adversary’s workload that uses the database. These

metrics can reveal further information that is valuable to defenders, such as how widespread an

adversary’s attack is or which of several competing adversaries has the most widespread attacks.

Answering these questions is not often possible unless the defender can observe the adversary’s

get or set requests, which is usually not straightforward. Observing requests directly often

requires controlling naming system infrastructure or having access to a multitude of vantage

points within the system. My work demonstrates that it is possible to instead leverage leaked

information: information that is not intended to be public, that nevertheless reveals aspects of

an adversary’s behavior. I reverse-engineer each naming system in detail to discover which

components or implementation aspects inadvertently reveal valuable data.

Reverse-engineering a naming system may sound simple in principle, because from

the perspective of its users, it is often a simple key/value store. However, the implementation

details of these systems are by necessity more complex. Considerations such as scalability,

performance, resource constraints, and federated management strongly influence naming system

11

implementations. In this dissertation, I show how a defender can exploit these design decisions

to infer how an adversary (or any participant) uses the system.

In this dissertation, I represent the implementation and deployment of a naming system

in the general case using three layers (Figure 2.1): (1) the clients or participants of the naming

system, (2) zero or more intermediaries (e.g., resolvers, proxies, etc.), and (3) the database.

Concrete examples of the participants in each layer are detailed in Table 2.2. Clients originate

get and set requests to the database. I observe and imitate the clients of adversaries to gather

the set of names they use. By observing clients directly, I can establish that the requested names

truly belong to that adversary. For example, when I participated in the naming systems used

by web trackers to gather user information, I was able to record the UIDs (names) that were

set by tracking scripts (the clients of that system). In a separate project, I recorded the DNS

requests of stalkerware apps to gather the names of their servers. I also acted as a client myself,

by making DNS requests and observing how they were redirected in transit, and by requesting

blockchain names and recording the resolution process on various blockchain-based naming

systems. However, while studying clients is often easier than gaining access to intermediaries

or databases, each client offers only one vantage point into the system. Thus, certain questions

centered around workload (such as how often a particular name is used) are better answered by

studying other naming system components.

Intermediaries in a naming system can play several roles: they might cache information

to reduce request time, know which piece of a distributed database contains a particular record,

translate web protocols to the naming system’s own protocol, and more. From a measurement

standpoint, an intermediary is a centralized vantage point that observes requests from many

different clients. Intermediaries are often distributed geographically to reduce the latency of

client requests. Consequently, a defender may leverage this distribution to gain insight into

the behavior of an adversary in particular locations, because each instance of an intermediary

communicates with the clients “closest” to itself (either geographically or in terms of network

topology). Observing the frequency of requests at intermediaries may reveal the prevalence of

12

an attack, for example by allowing a researcher to enumerate infected devices. Intermediaries

may also inadvertently leak information through details of their implementations. For example,

the format of responses to certain DNS queries may reveal who controls the DNS resolver that

answered the query, and thus which entity is meddling with DNS requests. Finally, from the

perspective of a defender planning an intervention, intermediaries are bottlenecks that may be

willing and able to filter an adversary’s requests. For example, in the case of BNSes, I observe

that certain intermediaries (such as proxies) are the only entities in the system that have the

ability to stage interventions.

The database stores the naming system’s records. Analyzing the set of all records can

reveal how participants plan to use the system in the future, what resources (e.g., servers) they

control, who controls which resources, or which adversaries are colluding. Some databases, such

as those stored by BNSes, are public, but many others are not. When the database is public,

an observer can simply search through it and attempt to identify names owned by adversaries.

When it is private, the names of interest must be identified using other means. I present several

techniques for finding adversaries’ names, including examining names that “leak” outside a

naming system (Chapter 5), running and analyzing adversarial applications (Chapter 3), and

posing as an adversary’s target to observe its behavior (Chapter 6).

13

Chapter 3

Trufflehunter: Cache Snooping Rare
Domains at Large Public DNS Resolvers

3.1 Overview

The goal of this study is to measure the prevalence of stalkerware, because at the time of

writing, no comprehensive estimates existed of how many people are targeted by stalkerware in

the wild. To complicate the issue, the term “stalkerware” is an umbrella that encompasses two

classes of application: dual-use stalkerware is nominally benign software that can be repurposed

for stalking, such as “find my phone” or anti-theft apps, while overt stalkerware is advertised

and designed specifically for tracking a target. Dual-use stalkerware has been found to be far

more common than overt stalkerware, but prior work in this space has primarily been limited to

clinical settings [105, 95, 61]. By the time survivors seek help at a clinic, they have often taken

steps to remove potential stalkerware such as performing a factory reset on their devices. While

the efficacy of this strategy in general has not been studied, all of the overt stalkerware that we

examined will indeed be removed by a factory reset. Thus, clinics may be unable to determine

whether overt stalkerware was ever installed on a survivor’s device.

To measure the prevalence of overt stalkerware in the wild, we leverage stalkerware’s

use of a naming system — DNS — to exfiltrate target data to centralized servers. We examine

information leaked by an intermediary: in this case, public DNS resolvers. In the process,

we expanded our technique to cover other types of rare abuse that are difficult to measure or

14

under-studied. While there is a range of approaches to measure the prevalence of widespread

abuse (e.g., spam [174]), characterizing the amount of rare abuse—where a small number of

users experience or cause a significant amount of harm—has remained elusive. While harmful

Internet behavior manifests in many different forms, using different protocols and on different

platforms, virtually all depends on DNS.

While in most cases, it is not possible as a third party to directly measure the number of

global DNS queries for a given name, we can infer them indirectly using DNS cache snooping: a

technique that probes DNS resolvers to observe if a domain is in the cache, therefore implying

that a user must have previously accessed it.

In this work, we focus on techniques for cache snooping large public DNS resolvers.

Due to their scale, public resolvers both provide large-scale measurement opportunities and, due

to their aggregation, sidestep some of the traditional privacy concerns of cache snooping. For

example, as of May 2020, APNIC’s DNS service popularity measurements indicate that ∼10%

of web users appear to use Google Public DNS (GPDNS) as their primary DNS resolver [140],

while Cloudflare and OpenDNS each serve ∼1% of web users.

However, public DNS resolvers consist of many independent caches operating in

independent Points-of-Presence (PoPs), which makes them among the most challenging DNS

resolvers to cache snoop. Through controlled experiments, we infer the load-balanced multi-layer

distributed caching architectures of the four most popular resolvers. To the best of our knowledge,

we are the first to model the behavior of these caching architectures and how they relate to user

accesses. Building on these models, we demonstrate that it is possible to snoop public DNS PoPs

and estimate how many caches contain a specific domain. Surprisingly, we found that GPDNS

appears to dynamically scale the number of caches that contain a particular domain name based

on the number of users accessing it; we observed up to several thousand uniquely identifiable

caches for one domain name (Section 3.5). This behavior is a likely explanation for the unusual

caching behavior of GPDNS that was reported, but not explained, in prior work [184, 189].

We present Trufflehunter, a tool to snoop the caches of public DNS resolvers. We

15

evaluate the accuracy of Trufflehunter’s cache behavior modeling with a large-scale controlled

experiment. Our relative error in estimating the number of filled caches for each resolver varies

from 10% to −50%, with the exception of one unusual Cloudflare location where our error is

75% (Section 3.5). Trufflehunter’s error varies depending on the caching architecture of the

resolver: it can estimate the cache occupancy of OpenDNS and Cloudflare more accurately

than Quad9 and GPDNS. This error may seem large, but because Trufflehunter consistently

underestimates cache occupancy, it can provide a lower-bounded estimate of the prevalence of

rare user behaviors (Section 3.6).

We demonstrate Trufflehunter with several case studies on abusive Internet phenomena.

We found that some of the most concerning smartphone stalkerware apps have a minimum of

thousands of simultaneous active users. We also found academic contract cheating of the services

were significantly more popular than the others, and their popularity wanes during the summer.

Trufflehunter is open source and available at:

https://github.com/ucsdsysnet/trufflehunter

3.2 Background

In this section, we describe how we can measure the prevalence of rare Internet user

activity by probing the caches of public DNS resolvers. We begin by describing why public DNS

services have become a key vantage point for observing uncommon behavior of Internet users.

Then, we describe how the complex caching architecture of these services makes it possible

to externally measure the minimum number of simultaneous users that have queried for a

domain name. Finally, we outline how this complex caching architecture makes it challenging to

accurately estimate the number of users that accessed a domain with cache snooping techniques.

3.2.1 A variety of users query public resolvers

Initially, the set of users that adopted public DNS were Internet power users who were

privacy and security conscious. However, public DNS is now becoming a popular default

16

https://github.com/ucsdsysnet/trufflehunter

configuration on networks and in software. This trend has caused a wide variety of users to adopt

these services; indeed, many public DNS users today did not explicitly configure their devices to

use public DNS. The adoption of these services is largely driven by two factors: (1) network

operators and equipment vendors configuring networks and devices so that users default to using

public DNS services as their primary or secondary resolver, and (2) developers hard-coding

public DNS resolution into their software.

Enterprise network administrators have switched from running their own DNS resolvers

to pushing users to public DNS resolvers because that can improve reliability [108]. Small-

scale ISPs have also switched to public DNS to avoid the operation and maintenance cost of

providing their own DNS resolver. For instance, GPDNS has a formal vetting process where

ISPs can request to remove GPDNS’s rate limits so they can have their entire customer base use

GPDNS as their primary resolver [98]. Also, public DNS is often adopted by administrators

and ISPs because it provides additional security measures for their users. For example, Quad9

and OpenDNS both block DNS requests for domains that are reported to be malicious on threat

intelligence feeds [145, 178]. This security feature was reported to be the primary reason the

NYC city-run public WiFi network switched to using Quad9 as its default DNS resolver [177].

Security is also cited as the primary reason that enterprises and schools have switched to using

OpenDNS [165]. Public DNS resolvers have also been set as the default resolver in networking

equipment as a means of improving performance. The most notable example of this trend is

the “Google Home” WiFi router, which ships with its default configuration to resolve all DNS

queries with GPDNS [91].

Software developers have also increased public DNS adoption by hard-coding their

software to send DNS requests to public resolvers. The most notable instances are because

public DNS services offer the latest DNS security features. For example, when Firefox deployed

the privacy protections provided by DNS-over-HTTPS, it hard-coded Cloudflare’s public DNS

resolver as the default resolver for all of their U.S. users [74]. Additionally, the reliability, and

wide availability, of public DNS makes it a common choice as a hard-coded backup resolver.

17

For example, in 2017 Linux distributions started shipping with GPDNS hard-coded as a backup

resolver in SYSTEMD [153, 196], and in 2019 added Cloudflare as well [133].

3.2.2 Complex caching can reveal many active users

We now describe how cache snooping public DNS resolvers can provide a lower bound

on the number of users accessing domain names—without revealing who has accessed these

domain names. Public DNS resolvers do not operate as a large contiguous cache with global

coverage. Rather, they operate many fragmented DNS caches [30, 217, 158] and load-balance

queries across many caching resolver instances [129, 192].1 This architecture can have a negative

effect on their performance: even if a user recently resolved a domain name with a public DNS

resolver, subsequent requests to that domain may not be serviced from a cache. However, this

performance limitation is also an opportunity for establishing a non-trivial lower-bound on the

number of users accessing a domain.

To demonstrate how cache snooping public DNS services can reveal a non-trivial number

of users, we start by explaining how a typical query is cached in a public DNS resolver’s hierarchy

(Figure 3.1). In particular, we focus on the three steps used to resolve a query on a public resolver,

where the response to the query can be cached in one of many independent caches. This cache

architecture is a generalization of how all of the large public DNS resolver caches that we study

operate. Section 3.3 later describes the details of how caching works in each of the resolvers.

1 Users direct their query to one of the public DNS service’s PoPs by sending the

request to one of the service’s anycast IP addresses [158]. These addresses are announced by

routers in PoPs distributed geographically around the globe.2 This anycast DNS architecture

is similar to the anycast load balancing that the root DNS servers use [185, 155, 50, 57]. In

our experiments we found that, for large resolvers, PoPs operate their caches independently

(Section 3.5).
1GPDNS served 400 billion responses per day in 2015 [100].
2As of May 2020, GPDNS has 33 PoPs worldwide, Cloudflare has 46 PoPs in the U.S., Quad9 has 27 PoPs in

the U.S., and OpenDNS has 11 PoPs in the U.S. & Canada.

18

 Query

User

IP
Anycast

Cache

Public DNS PoPs

1 Route query
to a PoP

Cache

Cache

Cache

Cache

Cache

Cache

3 Pick
resolver

Frontend
caches

2 Pick
cache

Backend
resolvers

Figure 3.1. A user’s DNS query is handled by a set of load-balanced front-end caches that are
backed by a set of load-balanced backend resolvers.

2 Then, within a PoP, a query is load-balanced to a pool of frontend caches for the

backend caching DNS resolvers [73]. The load balancer selects from the pool of frontend caches

based on a policy that distributes the load across these caches. These frontend caches can be

isolated, creating the possibility of having more independent locations users’ query responses

can be cached.

3 If the selected frontend cache does not have an entry for the domain name, the query

will be forwarded to one of a pool of backend resolvers via a second load balancer. Backend

resolvers operate independent caches, introducing yet another opportunity for multiple users to

have their queries cached independently.

After the backend resolves the domain name, all of the caches along the path in the

hierarchy are filled with the response. First, the backend resolver fills its cache, and in some

cases responds directly to the user. Then the frontend resolver fills its cache, and finally the

response is sent to the user, which fills its local cache. The presence of user-local caches makes it

easier to count the number of users accessing a rarely-used domain name: it effectively limits the

number of cache entries that can be created in a public DNS resolver to one per user at a point in

19

Domain name

www.example.com

TTL (s)

60

Result

93.184.216.34Cache hit

www.example.comCache miss

Recurse?

No

No

Timestamp (s)

1591002798

1591002825

Figure 3.2. Examples of DNS responses for a cache miss and cache hit. The cache hit has a TTL
in the reply, the cache miss does not.

time. All major operating systems operate have DNS caches [35, 128, 149, 31, 161], including

MacOS, Windows, and Linux. Additionally, many browsers operate their own local cache such

as Safari, Chrome, and Firefox. Some home networks and organizations also run a caching

forwarding resolver for all users on their entire network. These local caches will effectively limit

a household or organization to filling only one cache in a public resolver, per domain, at any

point in time.

Snooping Public DNS caches can provide a lower-bound on the number of active users

If we can estimate how many of these caches hold a particular domain at any point

in time, we can obtain a lower-bound on the number of simultaneously active users of that

domain. However, this estimate is strictly a lower-bound on the number of users that may have

requested this domain—we cannot observe how many users had their query serviced by one of

the caches. As we are limited to counting only one user per cache, snooping will be most useful

for estimating the popularity of rare domains. It will not provide any new information about the

prevalence of domains that are already known to be popular.

Does DNS security limit counting users with cache snooping?

DNS security and privacy technologies, such as DNS-over-HTTPs, DNS-over-TLS, as

well as DNSSEC, do not change the cache model for DNS described above. All queries made

with these protections enabled will be served out of the same caches as insecure queries.

20

3.2.3 Public DNS cache snooping challenges

The complex multi-level caching hierarchy makes it feasible to estimate a non-trivial

number of active users of a domain name. Unfortunately, it also makes it challenging to accurately

estimate the number of caches that have been filled. Cache snooping a resolver with a single

cache—as has been investigated in prior work—is straightforward. The most direct way of

snooping a cache is to “probe” it by making a query for a particular domain name with the

Recursion Desired (RD) flag unset. Unsetting Recursion Desired prevents the backend resolver

from doing a recursive query to get the uncached answer, causing it instead to report a cache miss

by not including a result in the answer. The DNS response from a cache probe contains limited

information (Figure 3.2) that answers the following questions: is the domain name currently

cached (indicated by the existence of a DNS Answer section having a nonzero TTL), and how

long has it been cached (as inferred from the response timestamp and the remaining TTL in

the response)? Cache snooping a large public DNS service to measure how many caches are

occupied is significantly more difficult because each probe (non-recursive DNS query) returns

information about only a single cache in the resolver.

From the limited information available in these single-cache responses, we somehow

need to determine how many independent caches have been filled at the resolver. Note that each

cache probe will provide the status of only one cache, in one PoP: we do not know what cache,

nor do we know what PoP, the response came from. Additionally, we cannot tell if the response

came from a frontend cache, a backend cache, or both (if they are synchronized). We also need

to consider what happens when a cache entry is shared between caches. For instance, is the same

TTL value stored in the frontend cache when copying from a backend resolver? What about

when cache entries are shared between frontend resolvers? We will show in the next section that

the data in the simple cache probes described above (Figure 3.2) is sufficient to estimate how

many caches a domain is in at one time.

21

Google Public DNSOpenDNS and Quad9

556

552
554

560
562
570
573

550

575

550

597

575

564

551

x16

Cloudflare

550

550

549

550

548

550

556

552
554

558
560
570
573

550

575

Frontend Backend Shared frontend
Backend

Dynamic frontend
Backend

Figure 3.3. Inferred cache architectures of the four largest public DNS services (50 secs after
filled with 600 sec maximum TTL)

3.3 Snooping Public DNS Caches

Cache snooping public DNS resolvers with Trufflehunter is possible because it

can interpret the multi-level caching architecture’s behavior by observing DNS responses.

Specifically, it sends a collection of cache snooping probes (non-recursive DNS queries) for

a domain name towards a resolver and deduces what the responses reveal about how many

caches are occupied by that domain name. Different resolvers can use widely different

architectures, however, introducing resolver-specific challenges in interpreting responses to

cache snooping probes. In this section, we describe how we analyzed and modeled resolvers’

caching architectures. We also show how Trufflehunter’s inference technique will be tailored to

each resolver’s architecture.

In this section, we describe the cache inference logic we built in Trufflehunter based

on our observations about how the caching architecture operates for the four largest public

DNS resolvers. We explain how we inferred their behavior with a combination of controlled

experiments—where we intentionally put a domain name in as many caches as possible in each

resolver—and public information released by the resolvers. Each of the architectures presents

their own opportunities or limitations for observing a non-trivial number of independent caches

that have the same domain. We discovered that some resolvers employ caching strategies that

allow us to measure a large number of user accesses, but others employ strategies that impose

22

significant limitations on the number of caches we can observe. They also all present unique

challenges that make it difficult to estimate the number of occupied caches with cache snooping.

Inferring behavior of DNS cache architectures

We infer the caching architecture of public resolvers by inserting DNS responses into as

many caches as possible, and observing how often new cache entries appear to be made.

Cache-filling experiment

We send recursive queries for a unique domain name to one PoP of each public resolver

once every two seconds. These queries were made by a single machine in AS 7922 (Comcast).

Since our goal is to fill as many caches as possible, including the backend recursive resolver

caches, we issue these queries with the Recursion Desired (RD) flag enabled. We controlled the

domain name used in the experiment, allowing us to verify that certain responses were serviced

by a backend recursive resolver. The behavior of the resolvers during this experiment will be

similar to how the resolver’s caches will look when a resolver has a constant stream of users

requesting a domain name.

The data collected during this experiment are DNS responses from the resolvers. When

resolvers operate independent caches, the primary indicator that a response is coming from a

particular cache is the TTL in the response. We know that one of our queries caused a cache to be

filled when the response contains the maximum TTL (i.e., the TTL returned by the authoritative

nameserver). We know that a query was serviced from a cache—and therefore did not fill a new

cache—if the TTL in the response is lower than the maximum TTL.3 The TTL also reveals which

cache the query was serviced from because TTLs of cached responses decrement one second per

second: responses that were received N seconds apart, and also have a difference in their TTLs

of N seconds, can be assumed to come from the same cache. Our observations of the pattern of

TTLs in the responses form the basis for our technique (described in Section 3.4) to measure

3Most DNS resolvers age the TTLs of cached DNS responses once every second.

23

the number of filled caches with DNS cache snooping probes (i.e., repeated non-recursive DNS

queries).

TTL Line

Responses that originate from the same cache should fall on a line with a slope of −1

(since TTLs decrease once per second) on a graph of TTLs over time. We use the term “TTL

line” to refer to this line. TTL lines originate from a point in time where we infer that a cache

was filled because we observe a response with the maximum TTL (600 seconds in our controlled

experiment).

Visualizing DNS resolver caching behavior

The results of this experiment are presented as follows. For each resolver, we plot a

point for every DNS response we receive during the experiment. The x-value is the time the

response was received, and the y-value is the TTL contained in the response. We also draw a

TTL line each time we observe a response with the maximum TTL. We only plot the first 50

seconds of each experiment because that is sufficient to show the general caching behavior. To

make it easier to understand what cache architecture is producing this behavior, and to provide

a visual comparison between the architectures, we show the states of the three different cache

architectures at the end of the 50-second period in Figure 3.3.

3.3.1 OpenDNS and Quad9

OpenDNS and Quad9 presented the most intuitive caching behavior of the public

resolvers. They both appear to be operating independent frontend caches (Figure 3.3). This

architecture means that Trufflehunter can observe at most Nb simultaneous active users of domain

names, where Nb is the number of backend resolvers operating at a PoP.

Figure 3.4 depicts the results of the cache-filling experiment that demonstrates this

behavior (we omit the plot for Quad9 because its behavior is similar). As OpenDNS received

repeated queries over time, we observed nine responses with the maximum TTL (indicated by

24

573
575

570
562
560
556
554
552
550

550

560

570

580

590

600

0 10 20 30 40 50

TT
L
(s
ec
s)

Time (secs)

Figure 3.4. OpenDNS and Quad9 caching behavior

the vertical dotted lines). For each of these responses, we observed a query to the authoritative

resolver. Therefore, we can conclude that a frontend cache did not have the entry cached, and

the query was resolved by a backend resolver. All of the other responses that we received

from OpenDNS had a TTL that fell on one of the TTL lines that originate from these nine

responses with the maximum TTL (there is an inherent error of +1,−1 seconds that we address

in Section 3.4.2). This behavior indicates that when a frontend cache does not have an entry, it

copies the TTL from the response it gets from forwarding the query to a backend resolver, even

if the backend resolver answers the query from its cache.

Estimating OpenDNS and Quad9 cache occupancy

Estimating the number of domain users active on Quad9 and OpenDNS requires

estimating the number of independent backend resolvers that have the domain cached at any

point in time. Recall that each TTL line in the recursive responses corresponds to one backend

resolver having the domain name cached. Therefore, Trufflehunter can estimate this quantity by

sending repeated cache probes for the domain, and counting the number of unique TTL lines it

observes.

25

550550

560

570

580

590

600

0 10 20 30 40 50

TT
L
(s
ec
s)

Time (secs)

Figure 3.5. Cloudflare DNS shared caching behavior

3.3.2 Cloudflare DNS

Cloudflare’s DNS service is the only DNS resolver we evaluated that operates a shared

frontend cache architecture, as shown in Figure 3.3. Specifically, it uses knotDNS’s resolver,

which has a shared backing database for its frontend caches (e.g., memcached) [101]. This

architecture means that, unfortunately, the lower-bound of number of users accessing a domain on

Cloudflare will be very conservative—at most one user within a TTL interval at a PoP. However,

for domain names that are infrequently used, such as the ones we design Trufflehunter to observe,

this limitation is not significant. Additionally, domains often have short TTLs and Cloudflare

operates its resolvers from numerous PoPs, allowing us to provide meaningful lower-bound

estimates.

Figure 3.5 shows the results of the cache-filling experiment for Cloudflare DNS. The

recursive queries to Cloudflare all produce responses that fall on one TTL line that originates

from the time the first query was made. However, this one TTL line is not perfect: it slowly

deviates from a slope of -1. We believe this deviation is due to the errors in the TTL that

accumulate as the frontend resolvers copy the cached response from the shared cache into their

26

549

597

575

564

551550

560

570

580

590

600

0 10 20 30 40 50

TT
L
(s
ec
s)

Time (secs)

Figure 3.6. GPDNS’s dynamic caching behavior.

local cache.

Estimating Cloudflare cache occupancy

All Cloudflare resolvers in a PoP share one cache. They also slowly drift away from the

“true” TTL line. As a result, it is not sufficient to simply send cache probes and count how many

individual TTL lines we observe. Drift in TTL of cache responses will effectively extend the

amount of time that a result resides in the cache, ultimately longer than the maximum TTL. If we

only sample the cache infrequently, and at irregular intervals, we may conclude there are more

user requests than there truly are.

Instead, Trufflehunter counts how many times the cache was filled by applying a peak-

finding algorithm that will find the points where all caches were empty and then filled again

(details in Section 3.4.2). It also only allows one of these peaks per maximum TTL of the domain

name to account for any spurious peaks that may be due to errors from cache sharing.

27

3.3.3 Google Public DNS (GPDNS)

Google’s public DNS resolver has a unique caching behavior that enables counting a

large number of users that are actively requesting a domain name. Like other services, Google

describes their caching architecture as load-balanced frontend caches and backend resolvers [97].

However, when a query hits a frontend cache that does not contain the domain name, GPDNS

appears to create a new, independent frontend cache. This behavior means that it may be possible

to count nearly all accesses to a domain name by cache snooping GPDNS’s frontend caches.

We suspect the presence of so many frontend caches is a design choice to scale the caching

infrastructure dynamically based on the number of requests to a particular domain—and may be

a reasonable way of protecting their infrastructure from DDoS attacks. The cloned caches are

deleted when their “parent” backend cache expires.

Figure 3.6 shows the unique results of the cache-filling experiment for GPDNS. The

initial query is recursively resolved by a backend resolver, and several future responses appear to

be serviced from the same cache because they follow the same TTL line. Strangely, several of

the responses contain a TTL that does not correspond with that initial TTL line, and they also do

not have the maximum TTL (indicating a new cache has been filled). These caches also do not

appear to be backend resolvers because we only see one request to our authoritative server per

maximum TTL epoch. Previous work also noticed these caches,4 but could not explain where

they came from [184, 189].

This behavior appears to be a result of the unique way that Google shares query results

from backend resolvers with frontend caches. When a query is load balanced to a frontend cache

that does not have the domain name in cache, it will forward the query to a backend resolver.

The backend resolver will then do the same thing as other public DNS resolvers: namely, send

the response to the query to the user, then it will fill the frontend cache that was empty. The

exact way that they fill the cache, however, is unique: the backend cache will fill the maximum

4One paper referred to them as “ghost caches” [184].

28

TTL (T T Lmax −1 in the case of GPDNS [75]) in the frontend cache, rather than filling it with the

current TTL of the cached entry at the backend cache. Therefore, each cache miss to a frontend

cache fills a uniquely identifiable new frontend cache. We depict this behavior in Figure 3.6.

Each cache hit to the backend resolver is marked with a vertical dotted line that marks that

a frontend cache was filled at that time instant with the maximum TTL. When we draw TTL

lines starting at these lines, we see that indeed four of them intersect the points that came from

previously unexplained caches.

These cache entries may seem problematic because they effectively lengthen the duration

that a domain entry is cached past the maximum TTL from the authoritative server. Fortunately,

we observed that these cache entries are deleted as soon as the cache entry expires at the backend

resolver.

Estimating GPDNS cache occupancy

While this cache-filling strategy creates an opportunity to count as many users as there

are frontend caches, it also makes it difficult to cache snoop. The problem is that GPDNS fills a

new frontend cache regardless of if the query is from a user (i.e., recursive) or a cache probe

(i.e., non-recursive). Fortunately, it is possible to distinguish the caches created by cache probes

from caches filled by users. Essentially, we account for all TTL lines that would be created by

Trufflehunter’s cache probes. When we observe a probe response that has a TTL on one of these

lines, we simply discard it. Note that a consequence of this approach is that the more frequently

we probe, the more frontend caches we may fill, and therefore the fewer users we can observe. To

address this problem, we probe infrequently (i.e., five times per minute) relative to the duration

of the maximum TTL (e.g., ten minutes), rather than probing as fast as possible.

Summary

This experiment demonstrates that public DNS resolvers often operate more than one

independent cache in each PoP, creating the opportunity to estimate the number of users resolving

a domain. We also describe how, by analyzing the TTLs obtained in DNS cache snooping, it is

29

possible to count the number of occupied caches. In Section 3.5, we evaluate how well these

cache snooping techniques work with a controlled experiment across most of the U.S. PoPs of

these providers.

3.4 Methodology

In this section, we describe the details of the probing and analysis methodology

Trufflehunter uses to observe all unique TTL lines for a specific domain. First, we describe how

Trufflehunter probes public resolvers at multiple PoPs using CAIDA’s distributed Archipelago

infrastructure [53]. Then, we describe the technique Trufflehunter uses to count unique TTL

lines from these probe responses. Combined with the cache behavior models described in the

previous section, Trufflehunter produces estimates of the number of cached copies of a domain

across many of the PoPs of a public DNS resolver.

3.4.1 Probing multiple PoPs

Since DNS queries to public resolvers are routed using anycast [54], we have multiple

opportunities to improve our estimates of the users of a domain. As each PoP implements

multiple levels of caching, and each of these caches in turn can be probed for a domain of interest,

each additional PoP we probe can significantly increase the lower bound on the number of users

Trufflehunter can observe.

Ark enables Trufflehunter measurements across many PoPs

Measuring many domains over multiple PoPs requires a geographically distributed

measurement infrastructure that offers considerable flexibility in the number and type of DNS

measurements that it can make. In this study, we focus on the U.S. due to the diversity of

PoPs used by public resolvers in the country. We considered three choices from which we

could host Trufflehunter—RIPE Atlas [198], public clouds such as Amazon AWS, and CAIDA’s

Archipelago (Ark) project [53]—and chose the Ark network to run our measurements since it

30

offers diverse vantage points and the flexibility to implement and run continuous, longitudinal

measurements. Though RIPE Atlas probes are more numerous and can contact more PoPs than

the Ark nodes, more restrictions apply to their use; consequently we used Atlas probes only as

controlled users for the smaller-scale experiments described in Section 3.5. We also considered

using AWS, Google Public Cloud, and Microsoft Azure, but found that the Ark nodes have

considerably wider coverage of PoPs. We deployed Trufflehunter on 43 Ark nodes distributed

across the U.S.

DNS location requests identify which PoPs probes route to

While the existence of multiple PoPs per resolver enables improved measurement

capabilities, it also introduces a layer of complexity: we need to identify to which PoP Ark nodes’

DNS queries are routed. Doing so enables our analyses of filled caches for a domain at the

per-PoP level (Section 3.5) and subsequent aggregation per resolver (Section 3.6). Fortunately,

all four of the largest public resolvers provide ways to determine to which PoP requests are

routed. Google makes the locations of GPDNS resolvers available in the form of a TXT

record for the domain “locations.publicdns.goog.” Querying this record gives a map of

resolver IP addresses to three-letter location codes. Another TXT record available at domain

“o-o.myaddr.l.google.com” returns the non-anycast IP address of the resolver answering the

query, which can then be looked up in the map. Similarly, TXT queries to “debug.opendns.com”

return the three-letter airport code of the PoP that the query routed to in the answer. Quad9

and Cloudflare similarly make their locations available via CHAOS TXT queries to the domain

“id.server” [118, 186]. For all experiments in the remainder of the paper, we identify PoPs by

the three-letter code of a nearby airport.

Data collection

Our deployment of Trufflehunter on Ark nodes continuously runs two sets of DNS

measurements from each node:

31

1. Given a list of domains to search for, Trufflehunter performs a DNS request for each domain

five times per minute towards each public resolver we study. These requests are made with the

RD flag unset (non-recursive). We looked for evidence of rate limiting from our chosen resolvers

to ensure we were not generating too onerous a load, but saw no instances of failures related to

rate limiting (e.g., many SERVFAIL responses or query timeouts).

2. Trufflehunter makes a DNS location request once per minute to determine the PoP towards

which it is currently routing queries, for each public resolver. While the Ark nodes usually only

change PoPs on the scale of days, they do go through occasional periods of “fluttering,” where

the PoP they are routed toward changes more frequently (on the order of minutes).

3.4.2 Finding unique TTL lines using cache probing

Recall from Section 3.3 that estimating cache occupancy for the four public resolvers

we study requires counting the number of unique TTL lines observed from cache probes of a

domain at each PoP. We now describe potential errors that can affect our estimate of unique TTL

lines and our methods to mitigate these errors. Trufflehunter uses these methods in conjunction

with the methods described in Section 3.3 to estimate cache occupancy of a domain at each PoP.

Together, these methods yield a lower bounded estimate of the number of caches that contain a

domain at a PoP within a TTL epoch.5

Error correction method for GPDNS, Quad9, and OpenDNS

Intuitively, counting the number of unique TTL lines (as defined in Section 3.3) will yield

the number of caches that contain a domain. However, correctly identifying TTL lines using

cache probing is challenging since DNS TTLs only have precision to one second. This lack of

precision can introduce off-by-one errors when comparing TTLs in responses originating from

the same cache. This situation may lead to significant overestimates of the number of TTL lines,

and therefore also active users. Our goal, however, is to present lower-bounds on the number of

5TTL epoch is another term for the time period of the maximum TTL.

32

500

Predicted
TTL Line

(Probe clock)

Actual TTL
(Cache clock)

1 No error 2 Latency error 3 Offset error

499

500 499

500 499

500 499

500 499

500 499

Figure 3.7. Errors matching cache probes to TTL lines

active users. We will now describe the nature of this problem in detail and describe the technique

we developed to avoid overestimating the count of unique TTL lines.

To determine if a TTL returned by a cache probe lies on a particular TTL line,

Trufflehunter needs two pieces of information: a sample of the actual TTL in the cache obtained

by probing it, and a predicted TTL based on the probe clock’s estimate of how much time has

passed on the TTL line. Naively, one can determine if a TTL sample returned from the cache lies

on the TTL line by checking if the predicted and actual TTLs are equal. However, TTLs in DNS

responses only have precision to one second. Therefore, there can be sub-second measurement

uncertainty. This uncertainty will lead to cases where Trufflehunter may overestimate the number

of caches because TTLs do not lie on their predicted TTL line. Specifically, three cases can

occur: the actual TTL matches the predicted TTL, the actual TTL is below the predicted TTL, or

the actual TTL can be above the predicted TTL. The sources of uncertainty are as follows: the

resolver’s clock may not be synchronized with the probe clock, and there can be latency between

when a resolver copies the TTL from its cache into a response, and when that response reaches

the probing host. The effects of these sources of uncertainty are depicted in Figure 3.7.

First, consider the case where the resolver’s clock is nearly synchronized with the cache

probe’s clock. In this case, TTL line prediction error will be due to the latency associated with

cache probing.

33

CB
F

DL
S

IA
D

LA
X

TU
L

-80%

-60%

-40%

-20%

0%

20%
Re

la
tiv

e
Er

ro
r

GPDNS

AS
H

CH
I

DE
N1

DF
W

LA
X

NY
C

PA
O

SE
A

OpenDNS

BO
S

DE
N

DF
W

EW
R

IA
D

IN
D

LA
X

M
SP

OR
D

SE
A

SJ
C

Cloudflare

BU
R

DF
W IA
D

LG
A

M
IA

OR
D

PA
O

SE
A

SF
O

Quad9

Figure 3.8. Cache estimation error

1 There is no error when the TTL of the probe and cache stays the same between the time when

a resolver generates its response and when the response arrives at the probing host.

2 The TTL will be underestimated by one second when the probe TTL is decremented between

the time when the resolver cache generates its response, and when it is received by the probing

host.

Next, we consider the case where the clocks are not synchronized. 3 The actual TTL

can be either overestimated, or underestimated, by one second. The error’s direction depends on

whether the probe clock is a fraction of a second ahead, or behind, the resolver’s clock.

Trufflehunter uses the following heuristics to avoid overestimating the count of unique

TTL lines due to TTL line prediction errors. If TTLs from cache probes lie on a single TTL

line—with no probe TTLs falling on neighboring TTL lines (one second below or one second

above)—we assume there are no errors. If we see a group of TTLs that lie on two neighboring

TTL lines (one second apart), we assume there was an error, and we remove one line. If TTLs lie

on a group of three or more neighboring TTL lines that are each one second apart, we remove the

first and last lines in the group. Our rationale is that TTLs on the first TTL line may have been due

to TTL overestimation, and the last line may have been due to TTL underestimation, but the TTLs

on lines in the middle are likely composed of at least one correct measurement. This method

can sometimes underestimate the count of TTL lines when lines that are one second above or

below the predicted TTL line arise from other filled caches; however, this trade-off is consistent

34

with our goal of presenting lower-bounds on the number of active users. We have found that this

technique is reasonably accurate on resolvers with no confounding factors, such as OpenDNS. In

Section 3.5, we evaluate the effectiveness of this technique using controlled experiments. We

found it allows us to estimate the number of caches (TTL lines) within approximately 10% of

the true value on the resolver with the least confounding variables (OpenDNS).

Error correction method for Cloudflare

Because Cloudflare only has one shared, distributed cache per PoP, we do not apply the

above error method to estimate how many caches each PoP contains. Instead, Cloudflare presents

a different problem: its single externally visible cache is composed of many physical caches

that all share the same record. The TTLs in this distributed cache drift away from the true TTL

line over time, as the many individual caches that make up the single distributed cache share the

record between themselves. As a result, TTLs from this cache get further away from the true

TTL the longer the record is cached. Although it is easy to see visually that a group of DNS

responses came from the same distributed cache, it is not trivial for an algorithm to do so: the

drift allows a single cached entry to persist past the end of its TTL epoch. We use a peak-finding

algorithm to find clusters of TTL lines that are near the true TTL line, essentially combining

those TTL lines into one per TTL epoch.

3.5 Evaluation

In this section, we describe experiments to evaluate how accurately Trufflehunter

estimates how many caches in a PoP contain a particular domain. In these controlled experiments,

we use RIPE Atlas probes to mimic the behavior of many geographically distributed users

querying for a domain from their local PoP. This allows us to quantify Trufflehunter’s error in

estimating how many caches in a PoP contain a domain within a TTL epoch, and therefore its

error in estimating a lower-bound on the number of users that have queried for a domain within

a TTL epoch. However, it does not reveal Trufflehunter’s accuracy in estimating the number of

35

users over multiple TTL epochs (Section 3.6.1). The results of these experiments demonstrate

that our estimates are consistent with Trufflehunter’s goal of providing lower-bounded estimates

of a domain’s prevalence.

3.5.1 Simulating users with RIPE Atlas probes

Our goal in this experiment was to emulate users from multiple geographic locations

requesting a domain from various public resolvers at diverse PoPs. Since Trufflehunter is

deployed from the Ark infrastructure, we sought an orthogonal infrastructure that could provide

this ability. RIPE Atlas probes are deployed in diverse locations; moreover, since this experiment

did not have to be performed longitudinally, the restrictions with RIPE Atlas probes that prevented

us from using the platform to run Trufflehunter long-term did not apply (such as low rate-limits

towards destinations, low availability of RIPE Atlas credits etc.).

Choosing Atlas probes

We initially considered 956 RIPE Atlas probes located in the U.S. for this experiment,

but realized that some showed evidence of having DNS requests hijacked by ISPs. If a request

was hijacked, a request would arrive at the authoritative nameserver for the domain, but the

cache that got filled as a result would not belong to the resolvers we were trying to measure

and would therefore be invisible to Trufflehunter. We therefore designed an experiment to filter

probes whose requests are hijacked.

We first asked each RIPE Atlas probe to request a subdomain, which contained its probe

ID and its targeted resolver’s name, from each of the four public resolvers. When we examined

the IPs that requested these domains from our authoritative nameserver, we identified those that

came from ASes that do not belong to the four public resolvers. We determined that the RIPE

Atlas probes fell into three categories: some never had their requests hijacked (reliable probes),

some always had their queries hijacked (unreliable probes), and some, to our surprise, seemed

to have some of their queries hijacked but not others (suspicious probes). Further investigation

36

revealed that the suspicious probes were in small ASes that had multiple Internet providers. Our

hypothesis is that one of these providers hijacks DNS queries and the other does not. Changes

in routing could lead the probe’s queries to switch between the hijacking provider and the

non-hijacking provider. Another possibility might be that some ISPs hijack only a sample of

DNS queries, not all of them.

We filtered 40 probes in this step, leaving 916 probes that could participate in the

experiment.

3.5.2 Measuring cache fills from Ark nodes

We used the RIPE Atlas probes chosen from the previous step to repeatedly place a

domain (whose authoritative nameserver is controlled by us) in the caches of the public resolvers.

We simultaneously attempted to detect the presence of the domain with Trufflehunter. The RIPE

Atlas probes placed the domain in cache by making recursive queries in bursts of ten minutes.

These bursts were repeated at three hour intervals for a total of 48 hours. Note that this allows

every individual cache to be filled up to sixteen times. Trufflehunter began searching for the

domain several hours before the experiment began, when it was not yet expected to be in cache,

and did not stop searching until many hours afterward. We did not detect the domain in any

cache outside the duration of the experiment.

Figure 3.8 shows the accuracy of our estimate of the number of filled caches per PoP

for each resolver. We calculate our error by calculating the percentage of the caches filled by

Ripe probes that were missed by Trufflehunter. Missed caches are the caches filled by Ripe

probes minus the caches observed by Trufflehunter. We count the caches filled by Ripe probes by

enumerating the responses that have the maximum TTL for that domain. Both Trufflehunter nodes

and the Ripe probes identify the PoP they are currently routed to by using the location queries

from Section 3.4. Our error ranges from underestimating by approximately 10% on average on

OpenDNS, to approximately 50% on average on Quad9. The difference in underestimation rate

depends on the caching architecture of the resolver: some resolvers are easier to measure than

37

others. We note several interesting points from the results.

First, on OpenDNS, our method for eliminating error caused by measurements that have

a granularity of one second appears to be reasonably successful. Recall that we eliminate the

first and last TTL lines from each group, since we predict that they are likely to be composed

only of measurements that are one second off from the true values (Section 3.4.2). We speculate

that the remaining error is due to the fact that our error-removing technique is only a heuristic:

there are a few lines that we remove that are not erroneous, and a few that we allow to remain

that are erroneous.

We use the same technique on Quad9, but get very different results. Upon further

investigation, it turns out that although Quad9 uses one DNS load-balancer called “dns-dist” for

its frontend caches, they use two different software packages, Unbound and PowerDNS, for their

backend resolvers. Unbound defaults to not answering queries with the Recursion Desired flag

disabled; it returns a status of REFUSED [163]. Therefore, when a RIPE Atlas probe places its

domain into the cache of a backend resolver that does not answer non-recursive queries, that

record becomes invisible to Trufflehunter. We therefore underestimate the true number of filled

caches at Quad9 PoPs. On most PoPs we underestimated by ∼50%, except for the BUR PoP,

where our controlled users’ queries appear to have coincidentally hit PowerDNS more than

Unbound resolvers. Quad9’s use of two backend resolver implementations is an interesting

challenge, and one that limits the accuracy of our current technique.

On GPDNS, we appear to underestimate the number of filled caches by up to 45%, but

this result may be due to the fact that the true number of filled caches is very hard to determine.

Any request that missed in a frontend cache and hit in a backend cache presumably filled the

frontend cache. Unfortunately, since it would not have caused a request to the authoritative

nameserver, we cannot count the true number of filled caches with perfect certainty. We appear to

have observed more caches than either RIPE Atlas’s or Trufflehunter’s queries would account for.

However, since our estimate is consistently lower than the probable true value, this outcome is

consistent with Trufflehunter’s goal of providing a lower-bounded estimate of domain prevalence.

38

On most Cloudflare PoPs, Trufflehunter’s error varies from 15% to −5%. Although

each PoP’s shared cache can only be filled once during a single TTL epoch, Trufflehunter

cannot differentiate TTL epochs with perfect accuracy because the TTLs of the records drift

over time (Section 3.4.2). IAD is the exception with significantly higher error (75%). For

IAD, Trufflehunter only observed only the final four out of sixteen times the Atlas probes filled

the cache. We suspect that there may have been a problem with the DNS location queries

(Section 3.4) during this experiment. While both Trufflehunter and the Atlas probes recorded

that they were using IAD, they may have been routed to different PoPs during the first twelve

cache fills.

We also tested if any of a resolvers’ PoPs appeared to use significantly different caching

strategies compared to the resolver-specific strategies we identified in Section 3.3. We did not

observe strong evidence of PoP-level inconsistencies.

In summary, Trufflehunter’s cache enumerations underestimate by approximately 10-50%

(excluding Cloudflare’s IAD) depending on the resolver’s cache architecture. Furthermore,

since Trufflehunter consistently underestimates, our error does not prevent us from providing

a lower-bounded estimate of cache occupancy. This allows Trufflehunter to fulfill its aim of

enabling relative comparisons of rare domain popularity.

3.6 Case Studies

In this section, we apply our cache snooping technique to examine the use of three

categories of abusive Internet phenomena: stalkerware, contract cheating services, and typo-

squatting domains.

Our goal in this section is to provide lower-bounded estimates on the number of users of

various domains using our estimates of the number of caches filled with these domains. During

a single TTL epoch, local caches prevent a user from filling more than one resolver cache

(Section 3.2), so every filled cache represents at minimum a single user. But when attempting

39

AT
L

CB
F

DL
S

IA
D

LA
X

M
RN TU

L

0

2000

4000

6000

8000

M
ax

 C
ac

he
s

GPDNS

AS
H

AT
L1 CH

I
DE

N1
DF

W
LA

X
M

IA
NY

C
PA

O
SE

A
YV

R

0

20

40

60

80
OpenDNS

AM
S

AT
L

BU
R

CD
G

DE
N

DF
W IA
D

LG
A

M
IA

OR
D

PA
O

PD
X

SE
A

SF
O

0

20

40

60

80
Quad9

Figure 3.9. Maximum caches observed per PoP per resolver

to enumerate users, we would like to present estimates across multiple TTL epochs (such as

the number of users in a day). This is more challenging—it is hard to distinguish between one

user making multiple queries in distinct epochs and multiple users making individual queries.

If the rate at which users make requests can be determined, it is possible to deduce the number

of individual users from the observed filled caches [179]. Unfortunately, the intervals at which

a user visits a website are not usually deterministic. Without a vantage point that can grant

insight into user behavior, estimating the number of unique visitors to a site is difficult. It is

reasonable to assume that a user will not make multiple requests for a domain within a single

TTL epoch, because of the caching behavior of operating systems and browsers (Section 3.2).

But the number of unique website visitors cannot be estimated at time scales larger than a TTL

epoch. We therefore present our estimates of website traffic in the form of web requests per day,

summed over all resolvers and PoPs.

However, domains that are associated with applications instead of websites are often

accessed automatically, without user interaction, at regular time intervals. Such regularity

provides the opportunity to estimate the number of unique application users with better accuracy

than we can estimate unique website visitors. Unfortunately, this insight still does not allow us

to distinguish between unique users in multiple TTL epochs. As a result, we use the maximum

number of users ever observed during a single TTL epoch as a conservative lower bound estimate

of the number of users of a given application. This “maximum users per epoch” metric sums

40

users observed across all PoPs and resolvers during that epoch. We assume that an individual

user is unlikely to make DNS requests to either multiple PoPs or multiple resolvers during one

TTL epoch.

3.6.1 Limits on observed users

Recall that our lower bound estimates of the number of users of a domain depend upon

the number of caches at each PoP that can potentially contain a domain. If there is only a single

shared cache at a PoP (as in Cloudflare’s case, for example), we can only estimate at most one

user per TTL epoch at that PoP. However, as the number of available caches increases, so does

the opportunity to observe more users filling caches.

Trufflehunter can observe at most one user or web request per cache per TTL epoch. We

can quantify our error in estimating how many caches have been filled over time (Section 3.4.2),

but we cannot estimate how many more users have accessed a cache after it has been filled by

the first user, until the cache expires and is refilled. This is the reason that Trufflehunter can only

provide a lower-bounded estimate of the users of an application or visitors to a domain.

We used the data collected by Trufflehunter between March 6, 2020, and May 30, 2020

(per the methodology described in Section 3.4.1) for the domains in our study to estimate the

number of individual caches that each PoP contains.6 We counted the maximum caches that

Trufflehunter saw during this period filled with any of the domains we studied during any single

TTL epoch. Figure 3.9 shows these results. We do not include Cloudflare in Figure 3.9 since the

maximum number of caches in any PoP is always one due to Cloudflare’s use of a single shared

cache per PoP. We note that GPDNS appears to have thousands of caches, consistent with our

model of GPDNS in Section 3.3. This allows us to observe thousands of users per TTL epoch

at each GPDNS PoP. On the other end of the scale, Cloudflare only has one cache per PoP. We

do note, however, that although Cloudflare has the fewest caches per PoP, it has the most PoPs

6We elided a handful of days from our data because a small number of Ark nodes constructed some queries
incorrectly on these scattered days, and may have poisoned the resolvers’ caches by placing domains in them.

41

in the U.S. out of the resolvers we studied (46). This allows us to observe a non-trivial number

of Cloudflare users across the U.S., and Cloudflare users do contribute to our total estimates of

users (Figure 3.10). We also observe that across resolvers, larger PoPs like IAD and NYC have

more caches, as might be expected.

3.6.2 Stalkerware

We first apply Trufflehunter to estimate the prevalence of stalkerware. The term

“stalkerware” covers a wide range of software used in the context of intimate partner violence

(IPV). It is installed by the abuser onto the target’s device, usually a cell phone. Apps vary

widely in their range of capabilities, which can include tracking location, recording messages

sent by text or other messaging apps, recording audio of phone calls and ambient sound, spoofing

texts to the target, and more. The abuser then accesses the target’s information by visiting an

online dashboard, which is updated regularly by the app. Stalkerware broadly falls into two

categories: “dual-use” apps, designed for a benign purpose and repurposed as spyware, and

“overt” apps, which hide their presence on the target device and often have more dangerous

capabilities than dual-use apps. Some are explicitly marketed for catching an unfaithful partner

or spouse, although this messaging recently appears to have become more subtle or disappeared

entirely [146, 147]. Since even overt applications are now advertised for legal or legitimate uses

such as parental control, it must be noted that we have no way to tell whether Trufflehunter is

observing stalkerware used in the context of IPV, or stalkerware installed for other reasons.

In the context of IPV, previous research has taken a clinical approach to studying

stalkerware, and has uncovered little evidence of the use of overt applications. Most

digital surveillance previously uncovered appears to be facilitated by either dual-use apps

or misconfigured settings [61, 105].

However, a clinical approach has limited scalability: the researchers were able to speak

with fewer than fifty IPV survivors. In contrast with clinical studies, a quick Google search

reveals dozens of overt stalkerware applications, as well as anecdotes and articles describing

42

0 250 500 750 1000 1250 1500 1750
Maximum targets observed per TTL epoch

Zoemob
Senior Safety App

Life360
ACR

Find My Kids
Geozilla FGL
Sap4Mobile

HelloSpy
SMS Tracker

PhoneMonitor
Hoverwatch

TheTruthSpy
mSpy

Spyzie
Call/SMS Tracker
Track My Phones

Flexispy
Spy Phone App

SpyMyFone
WebWatcher

Spy2Mobile
MTF

AppType
Overt Apps
Dual-Use Apps

Resolver
GPDNS
Quad9
Cloudflare
OpenDNS

Figure 3.10. Stalkerware targets visible per TTL epoch

0 10 20 30 40
Maximum requests per TTL epoch

SpyMyFone
Spy2Mobile

WebWatcher
SpyPhoneApp

MSpy
Flexispy

TheTruthSpy
MTF

GPDNS
Quad9
Cloudflare
OpenDNS

Figure 3.11. Web requests per TTL epoch for stalkerware dashboards. Note that not all
stalkerware apps have dashboards.

what targets of the overt applications’ capabilities have gone through. The contrast begs the

question: how many people have overt stalkerware installed on their phones? Even if overt

stalkerware is not the most common vector for digital stalking, it is a dangerous phenomenon

worth understanding in more detail.

Our application user measurement technique is uniquely suited to measuring stalkerware

because it leverages the knowledge that some apps make requests automatically at well-defined

intervals. Stalkerware apps often exhibit this behavior, without requiring any user interaction.

In fact, since they are installed on devices whose owners are unaware of their presence, this

behavior is a necessity.

43

Profiling Stalkerware Applications

To model stalkerware request behavior, we examined the network traces of approximately

60 stalkerware apps on an Android Pixel phone. We found these stalkerware apps using a

combination of searching the Google Play store and Google search results: previous work [61]

indicates that spyware is surprisingly easy to find this way. We discarded around 40 apps that

did not function correctly or were not usable as spyware. The remainder are a combination of

dual-use and overt apps.

We then installed each application one at a time and recorded its network trace for a

few hours. During each recording, we occasionally sent messages, made calls, installed apps,

and simulated other behavior that the stalkerware claimed to track. We identified most of the

domains that each app requested in this manner. We then installed all of the applications at

once and recorded the phone’s network activity during specific activities, such as sending a text,

making a phone call, or rebooting the phone. The goal was to determine if any apps reacted

to the target’s activity on the phone by making network requests, or if the apps simply send

information at regular intervals regardless of target behavior. We found that most apps did not

appear to respond to target actions, with the exception of reboots: most apps made network

requests directly after the phone was restarted. Finally, we recorded the phone’s network traffic

for a total of eighteen days, while attempting to use the phone like a normal device. Using this

data, we determined which apps make requests at regular intervals. For the apps that do not, we

make the most conservative assumption: that they make requests at most once per TTL epoch.

We make the simplifying assumption that targets have one device with stalkerware

installed. We also assume that an individual device will not access more than one PoP or more

than one resolver during a single TTL epoch. Therefore, for each domain used by an app, we

first calculate the sum of all the caches we observed to be filled with that domain across all PoPs

and resolvers for every TTL epoch. We then divide this sum of filled caches for every TTL epoch

by the app request rate we calculated with our network traces. This yields the number of targets

44

Ma
y-
13

Ma
y-
15

Ma
y-
17

Ma
y-
19

Ma
y-
21

Ma
y-
23

Ma
y-
25

Ma
y-
27

Ma
y-
29

0

50

100

150

200

250

300

Re
qu

es
ts
/D
ay

OpenDNS

Ma
y-
13

Ma
y-
15

Ma
y-
17

Ma
y-
19

Ma
y-
21

Ma
y-
23

Ma
y-
25

Ma
y-
27

Ma
y-
29

0

1000

2000

3000

4000

5000

6000

Google Public DNS

evolutionwriters.com expertwriting.org handmadewriting.com powerwritings.com www.paperhelp.org

Figure 3.12. Web requests per day of contract cheating services.

visible during each epoch. Finally, we calculate the maximum number of targets ever visible

during one TTL epoch as a lower-bounded estimate of how many targets of stalkerware exist in

the U.S.

Estimates

Figure 3.10 shows the maximum targets ever observed in a single epoch for 22 stalkerware

apps between March 6, 2020, and May 29, 2020. Overt apps are shown as solid colors and

dual-use apps have hatches. Each app is broken down by the resolver at which the targets were

observed. Most targets are observed in GPDNS’s caches, since GPDNS has the most caches per

PoP. Interestingly, during the particular TTL epoch when the maximum users were observed,

some apps, such as WebWatcher, SpyPhoneApp, and others, were not present in Quad9’s caches.

We speculate that this could be due to Quad9’s use of Unbound resolver software, which prevents

Trufflehunter from observing some filled caches.

We estimate that a minimum of 5,758 people are targeted by overt stalkerware in the

U.S. today. The most popular overt app, Mobile Tracker Free, accounts for a third of observed

targets (1,750). In contrast to most subscription-based overt stalkerware, Mobile Tracker Free

and Spy2Mobile (the second most frequently observed app) are both free, which likely accounts

45

for their high popularity. Additionally, Spy2Mobile is one of only two overt apps we studied that

is available on the Google Play store (the other is Call/SMS Tracker). All other overt apps must

be downloaded from third-party websites.

We also used Trufflehunter to observe web requests for the dashboard websites that

attackers use to view targets’ information. Because web requests made by attackers do not

exhibit periodic behavior, Figure 3.11 shows the maximum number of web requests ever visible

during one epoch. We note that the popularity of app dashboards does not always correspond

to the prevalence of the app, likely due to the features the app provides. For example, abusers

might check Spy2Mobile’s dashboard less frequently than MTF’s because Spy2Mobile primarily

provides location data, while MTF also records messages, phone calls, and more.

3.6.3 Contract cheating services

We next use Trufflehunter to examine users visiting “contract cheating” domains. Contract

cheating services offer to complete students’ homework assignments, projects, and in some cases

entire classes for a fee. It is an increasingly popular method of cheating since it does not rely

on plagiarism and is therefore more difficult to detect [66, 214]. The specific services provided

include essay-writing services, “agency sites” that use auction models to match students to

contractors who can complete assignments, copy-edit services, and more [136]. Since cheating

is by its nature something that students are reluctant to admit to, it is difficult to measure using

indirect means such as surveys.

We identified a set of ten popular contract cheating websites based upon search results

and online discussions and recommendations. From May 3–29, 2020, we used Trufflehunter to

track activity to these sites. Figure 3.12 shows the daily sum of web requests observed over time

across the two resolvers with the most activity. Interestingly, we note a decrease in some services

towards the end of May, perhaps because schools and universities that use semester systems were

transitioning to summer break.

46

Ma
y-
14

Ma
y-
16

Ma
y-
18

Ma
y-
20

Ma
y-
22

Ma
y-
24

Ma
y-
26

Ma
y-
28

0

20

40

60

80

Re
qu

es
ts
/D
ay

dropbox-com.com ggoogle.in go-uberfreight.com googlw.it you5ube.com

Figure 3.13. Web requests per day for typo-squatting domains on GPDNS

3.6.4 Typo squatting domains

Finally, we use Trufflehunter to estimate users visiting typo-squatting domains. Typo-

squatting is the abusive practice of registering a domain similar to a popular domain so that users

will be tricked into mistyping or clicking on it. Some forms of typo-squatting simply seek to

show unwanted advertisements to the user, which is irritating but not generally harmful. Others

distribute malware, or imitate children’s websites and redirect to adult websites, or trick users

into entering credentials which are then stolen [216].

To find typo-squatting domains that were likely to be active, we first tried to resolve the

typo squatting domains listed in Tian et al.’s study [205]. We attempted to remove domains

that did not appear malicious at the time of the study, such as paypal-cash.com, which is now

an apparently legitimate domain owned by PayPal. Figure 3.13 shows the snooping results for

the five most-accessed typo-squatting domains from May 3–29, 2020, on GPDNS, the resolver

that showed the most activity. Given that these domains were in use two years before our study,

it would not be surprising if all were on blacklists. We found that some domains were still

surprisingly active, with dozens of resolutions per day.

We also looked for several domains used by hack-for-hire services in spear phishing

attempts [154]. Of all of these, 18 still resolved to an IP address as of May 2020, and only one

made an infrequent appearance in any resolver’s cache.

47

3.7 Related Work

Various aspects of recursive DNS resolver behavior, including caching [122, 121, 157],

client proximity [150, 166, 62, 34], and vulnerabilities [197, 190, 106] have been studied. We

focus our attention on studies that investigated caching behavior in public DNS resolvers and

prior applications of cache snooping.

With public DNS recursive resolvers increasing in popularity [55], their caching and

load-balancing behavior has received attention from the community. Callejo et. al. observed that

public DNS resolvers including GPDNS, OpenDNS, Level3, and Cloudflare are responsible for

13% of the DNS requests in their online-advertising-based measurement campaign [55]. Public

DNS resolvers use anycast [158] and can be present at multiple PoPs [73]. Some studies have

observed that public resolvers have multiple caches for load-balancing [129, 192], which can be

fragmented [30, 217, 158]. While these studies have investigated different aspects of the caching

behavior of public resolvers, ours is the first to enable DNS cache snooping on them.

Several studies have used DNS cache snooping to measure various domains. Wills et

al. used this technique in 2003 to measure the popularity of various web domains [226] and

in 2008, two other studies used DNS cache snooping for similar purposes [179, 32]. Rajab

et al. measured the relative footprints of various botnet domains [28, 180], and Kührer et al.

used cache snooping to analyze which “open” resolvers found in an Internet-wide scan were

actively providing service to clients [126]. All these studies assume that the resolvers they are

probing have a single cache; our work has demonstrated that this assumption is no longer valid,

especially for public DNS resolvers. Since these efforts did not focus upon potentially sensitive

domains, they were able to probe the caches of arbitrary “open” resolvers. However, recent

work has shown that millions of open resolvers are misconfigured residential devices that are

unintentionally open [190, 189, 71, 33, 126], and are therefore not suitable for use in our study.

More recently, Farnan et al. used cache snooping on recursive resolvers belonging to

VPN providers to analyze which domains are accessed through VPNs [90]. They target recursive

48

resolvers belonging to VPN providers, which do not appear to have the complex caching

architectures we observed in public resolvers.

Our work is the first to successfully demonstrate that public DNS resolvers can yield

meaningful estimates of active users in a privacy-conscious way due to their underlying caching

properties.

3.8 Ethics

Since DNS cache snooping can reveal if a domain was recently accessed by the users of

a DNS resolver, some ethical questions arise that we address below.

First, if a DNS resolver is used only by a few users, cache snooping may identify with

fine granularity which domains these users accessed, impinging upon their privacy [99]. We

avoid this issue by targeting our measurements only at large, public resolvers with thousands of

users. Doing so allows us to measure how often anonymous users access rare domains and yet

learn little that could aid in deanonymizing individual users. We refrain from probing caches

of other “open” resolvers, since these are often misconfigured residential devices that may be

serving only a few users [190, 189].

Second, domain names could contain user identifiers that potentially enable identifying

a user’s activity in a resolver. For example, a service may embed usernames into a unique

service subdomain that may be periodically requested from a user’s device. While a potential

side channel for a resolver of any size, in our work we do not probe any domain that contains

user-specific identifiers, and no individual user’s information is exposed by our measurements.

Third, some users may be motivated to use large public resolvers because of the increased

resilience to cache snooping they seemingly provide. Since the technique we describe in this

paper identifies a side channel using the combination of rare applications and the caching

architecture of large resolvers, we will be notifying the public resolvers of our findings.

Finally, the applications that we use in our case studies are by their nature sensitive. Since

49

we are not able to identify individual users, though, we cannot associate the use of sensitive

applications with any particular user. At most we can identify that these applications are in use

at the coarse granularity of a large geographic region served by a PoP.

3.9 Summary

This chapter introduces Trufflehunter, a privacy-preserving DNS cache snooping that

models the caching architecture of public resolvers to provide lower-bounded estimates of cache

occupancy. Applied to four large public DNS resolvers, Trufflehunter achieves a 10% to -50%

error. Trufflehunter may be applicable to more distributed public DNS resolvers than the four we

studied in the paper. Indeed, we observed the same caching strategy in Quad9 and OpenDNS.

Trufflehunter provides lower-bounded estimates of domain usage, therefore it is best suited for

relative comparisons of rare domain popularity, rather than for estimating an absolute number of

users per domain. To demonstrate this capability, we showed how to estimate the prevalence of

rare and sensitive applications on the Internet, which are otherwise difficult to measure from a

third-party perspective.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of the

Internet Measurement Conference 2020. Audrey Randall, Enze “Alex” Liu, Gautam Akiwate,

Ramakrishna Padmanabhan, Stefan Savage, Geoffrey M. Voelker, and Aaron Schulman. The

dissertation author was the primary investigator and author of this paper.

50

Chapter 4

Home is Where the Hijacking is:
Understanding DNS Interception by
Residential Routers

While performing the experiments in the last chapter, we discovered that some of our

DNS queries were returning misformatted responses. We eventually determined that the queries

were getting transparently intercepted and redirected to a different resolver than the one we

had specified. This phenomenon underscores two key takeaways. First, no matter what the

documentation of a naming system says, there is always a possibility that the system works

differently in practice than it does in theory. Naming systems can have unexpected components

and participants. If a defender attempts to determine which component of a system is most

impactful to deny to an adversary, they must be certain which ones are actually getting used.

Second, the presence of unexpected actors within a system presents an opportunity. When

multiple entities in a naming system share a role (for example, multiple intermediaries resolving

queries), the details of their implementations may differ. A researcher can exploit these subtle

implementation differences, such as the format of query responses, to create “fingerprints” for

each entity that plays a role in a naming system. Identifying the participants in a naming system

can inform interventions by accurately enumerating the resources an adversary requires. Thus,

the goal of this next study is to determine if the presence of unexpected actors in naming systems

can be observed by their users, by determining the location in the network where DNS redirection

51

Host’s ISP
Target DNS

Resolver
Host

Original query
Intercepted query
(Spoofed) response

CPE
ISP

middlebox
Non-ISP

middlebox

Alternate
DNS Resolver

Figure 4.1. Locations where interception can occur.

occurs.

4.1 Overview

In principle, devices are free to direct their DNS queries to the recursive resolver of their

choosing. Indeed, it is this freedom that has enabled the growth of public resolvers such as those

offered by Google, Cloudflare, and others. However, a key underlying assumption is that DNS

queries are faithfully forwarded as they are addressed. Unfortunately, this is not always so.

DNS queries sent by a user’s device can be intercepted en route to a target resolver and

forwarded to an alternate resolver. Furthermore, this interception can be transparent, where

the interceptor spoofs responses so they appear to have been sent by the intended resolver.

Transparent interception is difficult to detect because the alternate resolver does not have to

modify the response. Even if the reason for the interception is benign — such as to prevent

malware from evading DNS filtering — the interception of requests and misrepresentation of

responses raise serious ethical concerns [211, 68] and can also interfere with the correct operation

of protocols such as DNSSEC [142, 68].

While prior work has identified the broad prevalence of transparent interception [142, 120,

222], there are no established techniques for establishing where the interception is implemented.

Indeed, there are a range of different points in the network where such interception might take

place.

DNS redirection, another form of DNS manipulation, has also been found to occur in

several parts of the network. DNS redirection occurs when a DNS resolver returns an altered

response for specific queries and may occur with or without DNS interception. DNS redirection

52

Are debugging responses from
public resolvers formatted

incorrectly?

Are queries to bogon
addresses answered?

Do debugging responses
from the CPE’s address share
the same incorrect format?

Is probe intercepted? Interceptor is within ISP?Interceptor is the CPE?

Yes No No

Not Intercepted Intercepted by CPE
Intercepted
within ISP

Intercepted
at unknown

location
1 2 3

No Yes Yes

Figure 4.2. Three-part technique to determine if and where a DNS query is being intercepted.

has been discovered in Customer Premises Equipment (CPE) to block resolution of specific

domain names [83], in ISPs to replace NXDOMAIN responses with advertisements [218, 135]

or enhance security and performance [39], and outside of ISPs to implement country-level

censorship [41, 81, 43, 126]. Transparent interception has been far less extensively studied,

although we are aware of anecdotal reports suggesting that, in some cases, the DNS forwarder in

CPE [104] may be implicated [92, 67, 64].

In this chapter, we develop a technique that can isolate where in the network transparent

interception is occurring. In particular, we make the following contributions:

• Identifying Where Transparent Interception Occurs. We demonstrate how targeted use

of standard DNS debugging queries—such as id.server and version.bind [227]—can

identify not only the presence of transparent interception but to systematically infer if

the source of that interception is the CPE or middle-boxes in the ISP (Figure 4.1). Our

technique can be implemented on any device that can make DNS queries, without requiring

root access or external measurement tools such as an authoritative nameserver.

• Pilot Study of Transparent Interception on RIPE Atlas. We demonstrate our technique

on RIPE Atlas infrastructure as a pilot study. We identify over 200 occurrences of such

transparent interception. Of these, we further show that CPE-based transparent interception

constitutes a significant fraction.

• Case Study: CPE-based Transparent Interception. We highlight a particular case that

more precisely explains the nature of the DNS interception mechanism. Specifically, we

illustrate how the common XB6/XB7 home router (used by many ISPs) use Destination

53

Network Address Translation (DNAT) to transparently intercept queries and forward them

to the ISP’s resolver.

We believe that techniques such as these, that discover how and where DNS manipulation

takes place, are especially important in light of the ongoing public controversy concerning the

value and implementation of privacy-enhancing DNS transport [107, 110].

4.2 Background and Terminology

During normal DNS resolution, a user device sends DNS request(s) to a target resolver

(the user’s ISP’s resolver, a public resolver such as Google, Cloudflare, etc.). The target resolver

recursively resolves the request and returns the response to the user device. Adopting terminology

from Liu et al. [142], we refer to instances where DNS queries to a target resolver are intercepted

and forwarded to an alternate resolver as DNS interception. DNS responses arriving at the

user device from these alternate resolvers arrive with the source address spoofed to be that of

the target resolver [142]; if not, the response would be rejected by the user device. When DNS

responses are spoofed in this manner, the interception is transparent to the user device, and is

difficult to detect. We refer to transparent interception as simply “interception” in the rest of the

paper.

DNS redirection is a related but different form of DNS manipulation, where DNS

responses — often NXDOMAIN responses [135, 65] — are altered, resulting in users getting

redirected towards a different resource from the one in the unaltered response. It is often

performed by the target resolver, rather than by forwarding a query to an alternate resolver. The

insight that the response received by the user is different from the correct response during DNS

redirection has been used to study this phenomenon in detail [218, 135, 39].

DNS interception, in contrast, has received less attention, and is the focus of our paper. In

2018, Liu et al. measured the prevalence of DNS interception [142], but did not measure where

in the network their queries were intercepted. We present a technique that can both determine

54

Table 4.1. Location queries and examples of expected responses from each resolver.

Public Resolver Type Location Query Example Responses

Cloudflare DNS CHAOS TXT id.server IAD

Google DNS TXT o-o.myaddr.l.google.com 172.253.226.35

Quad9 CHAOS TXT id.server res100.iad.rrdns.pch.net

OpenDNS TXT debug.opendns.com server m84.iad

whether a DNS query is intercepted, as well as if it was intercepted by the client’s own CPE or

ISP.

4.3 Methodology

In this section, we present our methodology for detecting where DNS interception

occurs. Figure 4.2 illustrates the three steps of the technique and the information used to make

determinations at each step. We next describe each step in more detail, and present a concrete

example of the technique in practice.

4.3.1 Identifying query interception

We show that it is sufficient to use a few select location queries — for which it is difficult

to spoof the correct response — to detect query interception. Public anycast resolvers implement

these queries to aid debugging, by revealing the location of the specific server that answers the

query [88]. Our technique issues location queries to four public resolvers (on both primary and

secondary IP addresses) and tests for “non-standard” responses to discover query interception.

This technique is similar to the one used by Jones et al. to detect DNS root manipulation using

hostname.bind queries [120]. Moreover, since each public resolver has both IPv4 and IPv6

addresses, we can detect interception in both protocols.

Each of the four public resolvers that we study implements its own version of a location

query. Table 4.1 lists the queries and an example expected response. Each resolver uses a different

format for its responses, and these formats are consistent around the world. We determined

55

“standard” responses for each resolver by making requests from a network that we knew did

not experience interception, and later confirmed that these responses were the expected ones

in conversations with public resolver operators. When testing for interception, we compare

responses to location queries issued from the device under study against these standard responses;

when a response does not match the standard response, we conclude that the query has been

intercepted.

We note that if a query is dropped entirely, it will appear to the client as a timeout. While

timeouts can potentially reveal interesting behavior, such as censorship, for the purposes of our

study we conservatively assume that timeouts are not due to transparent interception. We also

note that prior work has observed query replication, where two responses are sent to the client:

one from the intended recipient, and one from the interceptor’s chosen resolver [142]. However,

the interceptor’s response nearly always arrives first and is accepted by the client, so interception

and replication are indistinguishable for our purposes.

4.3.2 Identifying query interception by the CPE

After we determine that interception is occurring using location queries, we then find

where the query is first diverted away from its intended destination. We begin by using a novel

technique to determine if the client’s CPE is responsible for the interception.

First, we issue a version.bind query to the CPE’s own public IP address. By usual

IP routing rules, this query cannot travel beyond the CPE because the CPE is its destination.

However, if the CPE is the interceptor, it will switch roles at this point: rather than acting as a

packet forwarder following IP rules, the CPE will take on the role of a DNS forwarder instead.

This role switch occurs because the most common method of implementing interception is DNAT.

DNAT rewrites all query destinations to be the CPE’s own private IP address, so that the CPE’s

DNS forwarder (e.g., Dnsmasq) can send them to its own pre-configured resolver. If the CPE’s

DNS forwarder supports the version.bind request, it will not forward the query any further,

and will directly return a response.

56

However, this result alone is insufficient to demonstrate that the CPE is the interceptor,

because there is another circumstance that could allow the CPE to forward the query: if the CPE’s

port 53 is open, it will act as a DNS forwarder even if it is not an interceptor. To distinguish

between these cases, we next issue version.bind queries to each of the public resolvers we

study. While only one resolver (Quad9) answers version.bind, it is immaterial — if the CPE

is the interceptor, it will answer the query instead, and produce the same response as the query

sent to the CPE’s public IP address. We then compare the response strings from the query to the

CPE with the responses from the queries to the public resolvers. If they are identical, we may

conclude that the CPE is using DNAT to intercept queries to that resolver. (For more details on

why we use version.bind for this technique, please see Chapter 4.4.)

4.3.3 Query interception by the ISP

If the interception is not being performed by the CPE, we next check whether it is

occurring within the ISP. We can identify interception within the ISP by using another novel

technique: making DNS requests to bogon IP addresses (“bogon queries”). Bogon IPs are

unroutable, so bogon queries should not be able to leave the AS in which they originated. We

chose one IPv4 and one IPv6 bogon address, confirmed that queries to these IPs were not routable,

and directed queries for a generic domain we control to both IP addresses. If we received a

response, we concluded that the request must have been intercepted before it could leave the AS.

If we did not receive a response, two possibilities exist: either the interceptor was outside the

AS, or the interceptor discards queries to unroutable addresses. Thus, if we received no response,

we cannot determine where the interceptor was located. We found that most interception in most

countries occurs before the query exits the AS (Figure 4.4).

4.3.4 Example of technique in practice

Tables 4.2 and 4.3 illustrate the technique using three RIPE Atlas probes and their

responses. The first step tests if any of the probes are being intercepted. Table 4.2 shows the

57

Table 4.2. Example responses to IPv4 location queries.

ProbeID Cloudflare DNS Google DNS

1053 SFO 172.253.211.15
11992 NOTIMP 62.183.62.69
21823 routing.v2.pw 185.194.112.32

Table 4.3. Example responses to IPv4 version.bind queries.

ProbeID Cloudflare DNS Google DNS CPE Public IP

1053 - - -
11992 NOTIMP NOTIMP NXDOMAIN
21823 unbound 1.9.0 unbound 1.9.0 unbound 1.9.0

location queries to the IPv4 addresses of Cloudflare DNS and Google DNS. Probe 1053 receives

an expected response, hence the queries are not intercepted: Cloudflare returns a three letter

IATA airport code, and the Google responses map to Google IP addresses. On the other hand,

probes 11992 and 21823 have non-standard responses, so their queries were intercepted.

Next, we issue version.bind queries for the two probes that were intercepted. Table 4.3

shows the responses. For probe 21823 the responses from Cloudflare DNS, Google DNS, and

the CPE’s public IP address are all the same, which indicates that the CPE is the interceptor

(Section 4.3.2). For probe 11992 the responses are a mix of NOTIMP and NXDOMAIN responses,

so the CPE was not the interceptor in this case.

Finally, we determine if probe 11992 was intercepted within the ISP by issuing a query

to a bogon IP address. Because bogon IP addresses are not routable, the ISP should drop the

queries. However, if the responses are valid and match the responses purportedly from the public

resolvers in Table 4.3, then we can conclude that the interception happened within the ISP. If not,

we cannot draw a conclusion about where the interceptor is located within the network. In the

case of 11992, we received a NOTIMP response to the bogon query, and thus concluded that

11992’s interceptor was within its ISP.

58

4.4 Why version.bind is necessary to detect CPE
interception

We identify cases where the CPE is the interceptor by sending a specific CHAOS TXT

query for version.bind to the public address of the CPE. Under ordinary routing rules, the

CPE should not forward this packet to any other destinations, so if we receive a response to

this query, we know the CPE has not obeyed usual routing rules and might be the interceptor.

A reader might ask why it is necessary to send version.bind, which some resolvers are not

configured to answer, rather than any DNS request for an ordinary A record: if we receive an

answer for an ordinary A record request, does this indicate that the CPE is the interceptor?

Our reasoning is that it does not, and our logic is as follows. When a DNS request for an A

record is sent to the CPE’s public IP address, if the CPE’s port 53 is open, even a non-intercepting

CPE will return a response. This behavior is even true for version.bind queries. Therefore,

the result of a single query to the CPE’s public IP address is not sufficient to determine if the

CPE is the interceptor. Our method relies on comparing the version.bind query sent to the

CPE’s public IP address with the version.bind query sent to the public resolver. The answer

to a version.bind query is a string that is much more unique than an ordinary DNS response,

and this property is necessary for determining if the CPE is the interceptor.

Consider the following scenario if an ordinary DNS query were used to determine the

interceptor, leading to an incorrect conclusion. Let us assume the CPE is not the interceptor, but

it does have port 53 open. If we were to send a query for example.com to the CPE’s public IP

address, the CPE would forward that query to its DNS resolver (for example, Comcast DNS)

because its port 53 is open. We would receive the IP address of example.com, for example,

“1.2.3.4.” Next, we send a query for example.com to a public DNS resolver like Google DNS.

The CPE is not the interceptor, so it sends the query towards Google DNS as intended. The

query is intercepted further along the path, but no matter which resolver eventually answers it,

the response is “1.2.3.4.”

59

Now consider the case where the CPE is the interceptor. Both queries for example.com

would be forwarded to the CPE’s resolver, and both answers would come back as “1.2.3.4.” We

cannot tell whether the CPE was the interceptor because all answers to our queries are identical.

The advantage of using version.bind is that it returns a more unique string. If the CPE is

not the interceptor, but does have port 53 open, the query to the CPE’s public IP address will

return its own answer to version.bind (e.g., “Dnsmasq 2.7.”). The query to a public resolver

such as Google DNS will arrive at some non-CPE resolver further along the path, and will

return that resolver’s answer to version.bind (e.g., “PowerDNS”). The CPE’s response to a

version.bind query is unlikely to be identical to the intercepting resolver’s response. But if

the CPE is the interceptor, both version.bind queries will be handled by the CPE’s resolver,

and they will return identical answers. We can therefore determine with high confidence when

the CPE is the interceptor.

4.5 Ethical Considerations

Our work does not raise ethical concerns as we issue standard DNS queries towards

major public DNS resolvers from a platform with volunteer-consent for such measurements.

4.6 Pilot Study on RIPE Atlas

We use the RIPE Atlas platform to perform a pilot study that confirms our technique

works in the wild. With RIPE Atlas we can launch DNS measurements from roughly 10,000

probes around the world [198]. However, RIPE Atlas is not representative of the Internet as a

whole: it has significantly more probes in Europe and North America than anywhere else, and

also has a “geek bias” due to its volunteer-driven deployment. These biases should be taken into

account before generalizing our findings on DNS interception to ISPs around the world. However,

we emphasize that our technique is broadly transferable. With a handful of DNS queries, we can

determine not only if queries are being intercepted, but also where the interception is occurring.

60

Table 4.4. Number of intercepted probes per public resolver.

Resolver IPv4 Resolver IPv6
Intercepted Total Intercepted Total

Cloudflare DNS 165 9619 11 3730
Google DNS 160 9655 15 3726
Quad9 156 9616 11 3732
OpenDNS 156 9666 11 3727

All Intercepted 108 9537 0 3691

We therefore believe our technique can be easily deployed on other measurement platforms as

well.

4.6.1 Which probes experience interception?

As described in Section 4.3.1, the first step of our technique identifies which probes

experience interception. We do so by sending location queries from every RIPE Atlas probe

worldwide that would respond to our measurement requests. Over 9,600 probes responded to at

least one experiment (Table 4.4). We identified 220 RIPE Atlas probes that experience the type

of interception we were looking for, which we now break down by their location and behavior.

Which public resolvers were subject to interception?

We test interception with four public resolvers: Google DNS, Cloudflare DNS, Quad9,

and OpenDNS. Table 4.4 shows that the majority of intercepted nodes experienced interception

for all four public resolvers. If fewer than four resolvers experienced interception, the most

common pattern was either that only one resolver was intercepted, or only one resolver was

allowed. In the former case, Google DNS and Cloudflare DNS were intercepted more often than

Quad9 and OpenDNS, perhaps because of their popularity and market share. In the latter case,

we hypothesize that the interceptor is deliberately using a single public resolver, perhaps for

malware filtering purposes or ease of implementation.

We note that most interceptors that act on IPv4 queries for a public resolver do not

61

0 1 2 3 4 5 6 7
Intercepted Probes by Organization

ShenZhen TVC
TTK-Svyaz

Telecom Malagasy
Telefonica (ES)

Ucom
Vodafone (NL)

Zen Internet
Andrews & Arnold

Charter
Telefonica (DE)
TransTeleCom

Orange (ES)
Vodafone (DE)
Vodafone (IT)

Comcast

Transparent
Status Modified
Both

Figure 4.3. Intercepted probes per top 15 organizations.

intercept queries for that resolver’s IPv6 addresses. Table 4.4 shows that only a handful of

probes experience both IPv4 and IPv6 interception. Because IPv6 interception is infrequent, we

consider IPv4 and IPv6 jointly for all subsequent analyses.

Is interception transparent?

If an interceptor intends to be transparent, we assume it will correctly resolve most DNS

queries. If it did not, it would be obvious to the client that something was wrong. To test this

hypothesis, we sent a request for whoami.akamai.com [134] to all four public resolvers from

each intercepted probe. We do not expect this domain to be blocklisted.

The answers to this query let us confirm (a) that interception is indeed occurring (if the

returned IP address is not one of the egress addresses of the target resolver) and (b) that the

interception is transparent (if we do not receive an error in the response).

Figure 4.3 categorizes the responses. The “Transparent” bar indicates that queries to all

intercepted resolvers were unchanged, “Status Modified” indicates that queries to all intercepted

resolvers returned DNS error statuses, and “Both” indicates that requests to some resolvers were

transparently intercepted while requests to others received modified status codes. The majority of

queries across countries and ISPs return a valid response, which indicates that even intercepted

queries are resolved correctly—just not by the targeted public resolver. However, some queries

62

0 5 10 15 20 25 30
Intercepted Probes per Country

CN
SE
SK
FR
ID
IN
PL
GB
CZ
UA
IT

DE
ES
RU
US

Unknown
Redirected within ISP
Redirected by CPE

0 1 2 3 4 5 6 7
Intercepted Probes per Organization

ShenZhen TVC
TTK-Svyaz

Telecom Malagasy
Telefonica (ES)

Ucom
Vodafone (NL)

Zen Internet
Andrews & Arnold

Charter
Telefonica (DE)
TransTeleCom

Orange (ES)
Vodafone (DE)
Vodafone (IT)

Comcast

Unknown
Redirected within ISP
Redirected by CPE

Figure 4.4. Interception location for the 15 countries and organizations with the most intercepted
probes.

return a DNS error status for at least one resolver, such as SERVFAIL (server failure), NOTIMP (not

implemented), or REFUSED. Because these status codes are not timeouts, they have likely been

sent deliberately by the alternate resolver, and are not transient errors. We therefore conclude

that some interceptors may block certain public resolvers.

Figure 4.3 shows that Comcast (AS7922) has the highest number of intercepted probes

of any organization. Although RIPE Atlas has a high proportion of probes in the U.S., and in

Comcast’s AS in particular, this finding is consistent with prior work that showed significant

DNS interception occurring in Comcast’s networks [142]. Not all probes in Comcast’s AS (or

any AS) are intercepted: we found that this is because specific models of CPE perform the

interception. For details in Comcast’s case, see Section 4.7.

4.6.2 Is the interception performed by the CPE?

As we described in Section 4.3.2, once we identify intercepted probes, we use

version.bind queries to determine whether the interceptor was the probe’s CPE. Figure 4.4

shows the number of probes that were intercepted by their CPE per country and organization. To

our surprise, a sizable fraction of the interception we observed was attributable to CPE: the CPE

was the interceptor for 49 out of the 220 intercepted probes. Furthermore, we found such probes

in countries around the world: these results are not due to an individual network’s behavior.

63

Table 4.5. Strings sent in response to version.bind.

version.bind Response # Probes

dnsmasq-* 23
dnsmasq-pi-hole-* 8
unbound* 6
-RedHat 2
PowerDNS Recursor*, Q9-*, 9.16.15, 1 each
-Debian, Windows NS, Microsoft,
new, unknown, none, huuh ? ... ,
* indicates version number

We grouped the version.bind responses from these 49 CPE-intercepted probes by the

strings they returned, as shown in Table 4.5. The majority were various versions of Dnsmasq,

software that is explicitly designed to run on CPE [77]. We consider Dnsmasq’s presence to

be confirmation that the interceptor answering the version.bind query is the CPE. We also

saw Dnsmasq strings on eight probes that indicated the device was a PiHole, suggesting that the

owner deliberately intercepted DNS (presumably to avoid advertisements).

4.6.3 Is the interception within the client’s ISP?

If we are unable to confirm that the probe’s CPE is the interceptor, we then check whether

the interceptor is within the probe’s ISP using bogon queries (Section 4.3.3). Figure 4.4 shows

the number of probes that are intercepted by their CPE, intercepted within their ISP, and the

probes whose interception location is (potentially) beyond the ISP. For the RIPE Atlas nodes at

least, this technique finds that when DNS queries are intercepted, they are intercepted close to the

client (at the CPE or ISP) in a majority of cases. Moreover, in many of the countries, interception

more often than not happens within the ISP, matching prior work’s findings [120, 142] that DNS

interception is often a result of ISP policy.

64

4.7 Case Study: XB6 Router

We first started to investigate CPE-based interception when it began interfering with

our previous DNS experiments. We first experienced interception when we discovered that one

author could not contact public resolvers from her residence. Upon investigation, we were able

to identify the router model that performed the interception: the Arris/Technicolor XB6 [200].

The XB6 is manufactured by both Arris and Technicolor, but its hardware was designed

by Comcast [46]. It uses a firmware package called RDK-B (Reference Design Kit), which is

in use by more than 80 million devices around the world [59]. Other ISPs also license RDK-B

and rent XB6 routers to their customers, including Shaw Communications, Vodafone, Liberty

Global, and many others [59].

Notably, RDK-B includes a DNS resolver called XDNS, which stands for Xfinity

DNS [58]. XDNS can redirect DNS queries using DNAT, which Comcast uses to implement

malware filtering services [60]. XDNS also implements a response to version.bind.

The XDNS filtering service is intended to be opt-in. However, it appears that a bug in

some XB6 routers is causing them to direct all queries to the ISP’s resolver, without giving users

any indication that their choice has been curtailed. This problem is not limited to Comcast: we

have observed very similar behavior in other networks where the XB6 is deployed, including

Shaw Communications and Vodafone. However, the bug appears to be uncommon.

We have reached out to ISPs about these discoveries. Their responses have been

supportive and we are working to identify the source of the bug.

4.8 Limitations and Future Work

This section describes our work’s limitations and identifies directions for future work.

Our method is designed to measure the systematic interception of all DNS queries sent to a

target resolver. We looked for systematic interception since we had observed DNAT-based

transport/network-layer interception in the wild (Section 4.7). However, if only some queries

65

are intercepted and others (such as our location queries) are not, our method will not determine

interception.

Another limitation of our approach is that it relies upon the CPE answering version.bind

queries. We do not expect this requirement to be a major limitation, however, since the BIND-

like interface is now supported by many resolvers—even ones that do not use BIND.

Our approach also assumes that the DNS infrastructure of the client’s ISP is located

within the client’s AS. If the ISP’s resolver is located outside the client’s AS, our approach will

classify the interception’s location as “unknown” instead of “within the ISP.”

Additionally, our methodology may misclassify a non-intercepting CPE as an interceptor

in a specific case: when the CPE has port 53 open, the CPE is a DNS forwarder, and the CPE

does not respond to version.bind but instead forwards the query to a resolver.

We also note that RIPE Atlas is not a representative measurement platform and we

therefore do not expect our results on the prevalence of DNS interception to generalize; we refer

interested readers instead to recent work by Liu et al., who investigated the prevalence of DNS

interception [142]. Our goal in using RIPE Atlas is primarily to conduct a pilot study to show

that our technique can detect interception and identify where it occurs.

While our approach should theoretically detect DNS interception in DNS over TLS

(DoT) [110], we did not evaluate it on RIPE Atlas. DNS over HTTP (DoH) [107] and some

configurations of DoT will prevent interception from occurring altogether, but the “opportunistic

privacy profile” of DoT disables client certificate validation, so this configuration could allow

interception. We leave evaluation of our method for detecting DoT interception for future work.

Techniques based on increasing the TTL of the IP header have the potential to identify

which hop intercepted a query. The RIPE Atlas platform does not currently offer the ability

to adjust the TTL of DNS requests, but we briefly explored using the VPNGate measurement

platform [212] for this purpose. Unfortunately, we found that their VPN rewrites IP TTLs,

rendering this experiment impossible. However, changing non-ICMP packet TTLs requires root

or SUID root on most systems, whereas our approach only requires the ability to send DNS

66

queries.

4.9 Related Work

Due to the vital role of recursive DNS resolvers in Internet interactions, many of their

properties have been studied, including their proximity to clients [30, 150, 166, 62, 34], their

caching behavior [122, 121, 157, 129], and home gateway behavior [104]. Prior work has also

studied vulnerabilities affecting DNS resolvers [197, 190, 106] and DNS cache snooping side

channels that can reveal the popularity of web domains, as discussed in Chapter 3 and several

other studies [226, 179, 180, 151]. We focus our discussion on work that has studied DNS

interception and DNS redirection.

Most prior work has studied DNS redirection, where (some) DNS responses received by

user devices are altered (Section 4.2). DNS redirection is often employed to implement country-

level or ISP-level policies. Researchers have reported that DNS requests sent from within

China to third-party resolvers outside the country face DNS injection [41] (likely to implement

censorship measures), and that even DNS requests that originate outside China but transit the

country can be redirected due to collateral damage [40]. In a similar vein, studies have leveraged

open recursive resolvers to investigate DNS manipulation whose likely purpose is to restrict user

access to content [171, 126]. Chung et al. reported on NXDOMAIN wildcarding—the practice

of rewriting NXDOMAIN errors with A records that point to a web server—and show that this

form of DNS redirection may be occurring at the ISP’s DNS server, public DNS servers, and

ISP middleboxes [65]. Using data from Netalyzr, Kreibich et al. showed that NXDOMAIN

wildcarding practices were prevalent among several ISPs [135, 217, 218]. Complementing these

findings, our study shows that some instances of DNS interception occur due to potentially

misconfigured CPE infrastructure; replacing these CPE devices sometimes suffices to prevent

DNS interception. Our study also differs from previous work on NXDOMAIN wildcarding in

that we study transparent interception rather than interception that is detectable by the client.

67

Also using RIPE Atlas probes, Jones et al. and Wei et al. measure how frequently DNS

debugging queries (specifically hostname.bind) towards root servers are redirected [120, 222].

Their discovery of DNS redirection in existing RIPE Atlas datasets encouraged us to use the

platform for our pilot study on DNS interception, although our work found version.bind to be

better suited for our purposes.

Vallina-Rodriguez et al. measure the prevalence of DNS proxies in cellular networks by

sending queries to their own authoritative nameserver [39]. Our work differs since we focus on

where in the network interception is happening instead of its prevalence.

Liu et al. measured the prevalence of DNS interception in a recent study [142]. They

performed DNS requests over both a commercial proxy network and from several Chinese

mobile networks to estimate how common DNS interception is, but did not investigate where in

the network interception takes place.

To the best of our knowledge, we are the first to investigate DNS interception over IPv6.

Our results on RIPE Atlas suggest that DNS interception occurs far less frequently in IPv6 than

in IPv4.

4.10 Summary

This chapter provides a methodology for identifying the location of a DNS interceptor,

whether the interceptor is the host’s CPE device, a device in the host’s AS, or elsewhere. Being

able to empirically determine such information — that would otherwise be invisible to the user

— is particularly relevant now when concerns about privacy and integrity have led to multiple

proposed standards for embedding DNS traffic within encrypted tunnels: DNS over HTTPS and

DNS over TLS. While the complex and many-sided nature of the debate around the deployment

of such protocols is beyond the scope of this short paper, it is motivated by precisely the kinds of

DNS interception that we observe and that can be more closely monitored by using our work.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of the Internet

68

Measurement Conference 2021. Audrey Randall, Enze “Alex” Liu, Ramakrishna Padmanabhan,

Gautam Akiwate, Stefan Savage, Geoffrey M. Voelker, and Aaron Schulman. The dissertation

author was the primary investigator and author of this paper.

69

Chapter 5

Challenges of Blockchain-Based Naming
Systems for Malware Defenders

5.1 Overview

This chapter describes how we use a naming system to not only measure an adversary’s

behavior, but also design effective interventions against that adversary. We also introduce the

second type of naming system that we examine in this work: blockchain-based naming systems,

or BNSes. The adversaries we study in this chapter are are malware operators. Malware that is

distributed across multiple hosts needs a way to distribute commands, upload stolen data, and

coordinate between infected machines. Most malware, such as botnets or ransomware, uses a

central command and control (C2) server for this task. However, as a single point of failure, a

central C2 server presents an obvious weak link for defenders to target [125]. Malware authors

must therefore be able to easily relocate and replace a C2 server after a defender takedown.

Furthermore, all previously infected hosts must be able to find the new server at its new address,

without outside coordination — if they cannot, they become useless. Malware authors avoid

this “sunk cost” problem by providing a layer of indirection — a naming layer — instead of

hard-coding a fixed address directly into deployed malware. This naming layer must be resilient

to takedown efforts.

Until recently, the naming layer used most frequently by malware was ordinary DNS,

which is rarely blocked at the protocol level, universally supported, and easy to configure.

70

Malware authors use various strategies, such as DGAs (domain generation algorithms), to

cycle through domains and complicate defense efforts. However, DNS domains are subject

to centralized authorities such as registrars, who may be compelled to seize or deny access to

abused domains. Malware authors have recently come up with an innovative solution to this risk:

they have started to use blockchain-based naming systems.

Blockchain naming systems present several potential challenges for defenders. First,

because they have no central authority to carry out legal takedown requests, they are immune to

one of the most effective tools in malware defenders’ arsenals. Second, some blockchain naming

systems have high transaction costs to register and manage domains, which renders some existing

defense strategies ineffective. For example, registering all the domains that a DGA can generate

is impractical in expensive blockchain naming systems. However, blockchain naming systems

present challenges to malware authors as well, such as the difficulty of stealthily accessing the

blockchain.

We study five blockchain naming systems and the challenges and advantages that each

present to malware authors and defenders. We argue that defender interventions are still possible

for each of these systems, because name resolution requests must pass through centralized or

partially centralized infrastructure to access any blockchain naming system. These centralized

“chokepoints” still present viable locations for defenders to stage interventions. We also perform

a measurement study of how malware is currently using these naming systems, and conclude that

while some systems have seen significant abuse, others are currently much less likely to attract

malware due to their high cost. We conclude that while blockchain naming systems present a

significant threat, defenders still have viable options for enacting C2 takedowns.

5.2 Background

From a malware author’s perspective, an ideal naming system for C2 addresses should

have two properties: it should be difficult to censor specific individual names, and it should also

71

be costly to take down or block the system as a whole. Typically, this first property, per-name

takedown-resistance, is directly tied to the existence of a central authority with the ability to take

down an individual record. System-wide takedown-resistance, on the other hand, is commonly a

byproduct of a system’s overall utility to legitimate users; potential collateral damage to benign

users can create strong pressures against such takedowns.

To some extent, a trade-off exists between these features. For example, protocols such as

Tor provide high resistance to the censorship of specific names, but because Tor traffic is both

easily identified and represents a small volume of users, some defenders will simply block Tor

altogether (i.e., under the assumption that any damage to benign users will be minor). On the

other side of the spectrum, malware has repurposed ubiquitous systems such as social media to

store C2 addresses, because such traffic does not stand out and blanket bans on social media

URLs are practically untenable. However, social media companies such as Facebook and Twitter

have the capability, motivation, and (at times) legal obligation to remove abusive posts used to

coordinate C2 activity. Thus, malware authors are incentivized to find naming systems that are

neither vulnerable to censorship of individual records nor likely to be blocked or taken down

entirely.

5.2.1 Tradeoffs of DNS-based C2 names

In part due to its ubiquity, DNS has been one of the most widely used naming systems

for malware C2 servers. Because of its central role in the Internet’s function, DNS naturally

satisfies the system-wide takedown-resistance requirement; completely blocking DNS would

be unthinkable for any modern enterprise or ISP. However, DNS is subject to a hierarchy of

defined authorities, each of which may disable individual domain names, either voluntarily or

in response to legal compulsion. For example, the registrar that sold a domain can delete it, or

sinkhole it (i.e., divert its traffic) and prevent it from being subsequently updated or transferred.

Similarly, the registry responsible for a domain name’s top-level domain (TLD) can also take

such actions.

72

Key to all these actions is that there is a singular legal entity with the capability to

intervene. In some cases, they may do so voluntarily (e.g., such as when a registrar is notified

of a violation of their terms of service.1) but they may also be compelled to take action by a

court order. For example, US law enforcement may obtain a warrant to seize control of a domain

name (subject to a showing of probable cause that it is involved in a criminal act), so long as the

controlling registrar or registry is within US jurisdiction.2 Typically such names are not then

deleted (which would allow the malware author to re-register them), but instead the registrar (or

registry) is compelled to redirect traffic to a benign site (aka a sinkhole) and block any attempts

to change or transfer the domain by the registrant. Civil litigants can obtain similar effects via

Temporary Restraining Orders (TRO) typically based on a showing that their intellectual property

rights are being violated [125]. Microsoft, in particular, has made innovative use of trademark

protection laws, such as the Lanham Act, to drive expansive private-sector botnet takedown

efforts [138].

Today such legal takedowns are a critical tool for defenders to disable botnets. However,

the effectiveness of this tool has led malware authors to respond by developing Domain

Generation Algorithms (DGAs) which minimize the impact of any given takedown. When

an infected host uses a DGA, it can randomly generate a large number of domains that its C2

server might be found at. DGAs usually use the current date as an input, which allows them to be

kept in sync and changed on whatever time scale is convenient for the malware operators. Only a

few of these domains will be registered at a time, to prevent defenders from preemptively taking

them down. If a domain that is currently used to contact the C2 server is seized, the malware

operators simply register a new one. Upon failing to reach the old C2 domain, every infected

host will begin trying to resolve the rest of the names generated by the DGA until they discover

the new, working C2 domain. Thus, to truly take down such a C2, defenders must register all of

1Registrars and hosting providers all typically specify a “Acceptable Use Policy” (AUP) in their contracts with
third-parties. The details of these AUPs vary between providers, but it is common that they prohibit activity that is
criminal, that violates intellectual property interests, or is highly disruptive.

2This process is described in considerable detail by Knight [130].

73

the domains (or otherwise prevent them from being registered) that the DGA can generate [42].

This intervention is costly in effort, but has been used successfully in the past [173].

To summarize, DNS-based C2 represent the status quo for modern botnets, but are

vulnerable to concerted legal takedown efforts. What makes these takedowns possible is the

existence of singular entities with the capability to unilaterally assert control over individual

names and that those same entities are subject to legal jurisdictions available to defenders.

Malware authors are thus incentivized to find naming systems that are not vulnerable to such

efforts, either because the authority that can control the names is not in a takedown-amenable

jurisdiction, or because no such authority exists.

5.2.2 Blockchain-based domain names

Blockchain-based naming systems present a potential threat because they claim to be

immune to takedowns. This supposed immunity stems from several factors. First, no central

authority controls blockchain domains in the same way that registrars control traditional DNS

names. Unlike a DNS record, it is not generally possible to modify or delete a record on a

blockchain without controlling the record’s private key. Once a domain has been registered,

its ownership is passed to the purchaser, after which point even the company that sold it

cannot modify it.3 Second, the machines running a blockchain are often distributed across so

many countries and jurisdictions that seizing or taking down the entire system is prohibitively

impractical. Third, once created, name records are stored immutably on the blockchain for as

long as that blockchain exists, even if the owner later modifies or deletes them. With sufficient

resources, and assuming all data is stored on-chain, it is possible to reconstruct the value of a

blockchain-based naming record at any point in time, by parsing the transactions that modified

the record’s state up to that point.

These censorship-resistant properties are generally true under the assumption that an

3This is true except in the case where the seller provides a domain parking service - we discuss this case in
Section 5.4.6.

74

adversary has not found a way to compromise the entire blockchain, e.g. by gaining control of

more than half of the blockchain’s computational power. Such attacks are generally extremely

difficult to execute. We focus instead on the common case where the blockchain underlying

a naming system is not compromised, in which case the naming system as a whole is highly

resistant to takedown efforts. Furthermore, some blockchains have become popular enough that

even blocking access to them at a network level would cause collateral damage to licit users.

Blockchains such as Bitcoin and Ethereum have recently skyrocketed in popularity as investors

became interested in cryptocurrency as an asset class. As far as we are aware, cryptocurrencies

and the blockchains they rely on are the first examples of strongly censorship-resistant systems

that have gained a substantial community of legitimate users around the world.

Blockchain-based naming systems therefore provide both desirable properties of naming

systems for C2 servers: it is difficult to take down the whole system as well as to take

over individual records. Unfortunately, some malware is already aware of these advantages.

BazarLoader uses Emercoin to record the domains of its C2 servers [52]. Namecoin is

used by the Necurs botnet [18], the Chthonic banking trojan [21], Smoke Loader/Dofoil,

Backdoor.Teamviewer, Shifu, and TinyNuke [1, 148]. Cerber ransomware has even used

blockchain wallet addresses as names for its C2 servers [175].

5.3 Overview of Blockchain Naming Systems

In this section we present an overview of five blockchain-based naming systems, to

provide background on how such systems work in detail. We select these systems based on their

apparent popularity, as well as prior reports and literature that indicate some of them have already

been abused by malware. These naming systems fall into two categories: systems built on naming-

specific blockchains like Namecoin and Emercoin, whose purpose is primarily to store names and

records, and systems built on general-purpose blockchains such as Ethereum, that are designed

for purposes beyond naming systems. These systems also fall into two “generations:” Namecoin

75

Table 5.1. Non-exhaustive selection of proxies, browsers, and extensions that can be used to
access blockchain-based naming systems.

Name system TLDs Proxies

Namecoin .bit BDNS (defunct),
PeerName

Emercoin .lib, friGate,
.bazar, PeerName,
.coin, OpenNIC
.emc

Handshake any string hns.to,
NextDNS,
HDNS.io,
BobWallet extension,
LinkFrame extension

ENS .eth eth.link,
eth.limo

Unstoppable .crypto, Brave browser,
.blockchain, Opera browser,
.bitcoin, Unstoppable browser,
.coin, Unstoppable extension,
.nft, Infura
.wallet,
.888,
.dao,
.x,
.zil

76

and Emercoin have existed since 2011 and 2013 respectively [10, 12], while the Ethereum Name

Service (ENS), Handshake, and Unstoppable Domains are more recent inventions (2017, 2018,

and 2019, respectively [6, 8, 87]).

All of the blockchain-based naming systems we study differentiate their names from

DNS domains by creating alternate top level domains, which we refer to as alt-TLDs for brevity.

A summary of the alt-TLDs used by each naming system is presented in Table 5.1. Handshake

names are slightly different, since the goal of the Handshake project is to replace the DNS root

zone and make any alt-TLD available for purchase — see Section 5.3.1 for more details.

5.3.1 Naming-specific blockchains

We study three naming systems that are built on naming-specific and eponymous

blockchains: Namecoin, Emercoin, and Handshake. All of these blockchains are primarily

designed to support their naming systems, rather than to create new cryptocurrencies or support

arbitrary blockchain-native programs (“smart contracts”). Because these blockchains have such

specific purposes, they differ from blockchains like Ethereum in two ways: they have fewer

participants and users, and their transaction fees are much less expensive. Both properties have

implications for defenders — see Section 5.4 for more details.

Namecoin and Emercoin

Namecoin and Emercoin, which are both modified copies of Bitcoin, are the oldest

blockchain-based naming systems. Both were intended as additions to traditional DNS: users

registered domains that resolved to IP addresses, using records very similar to DNS records.

Unfortunately, Namecoin and Emercoin have been subject to a large amount of abuse. Four

years after Namecoin’s launch, Kalodner et al. found that only 28 of the 120,000 domains

registered in Namecoin had meaningful web content, and most domain registrations appeared to

be squatting [123]. In 2021, Casino et al. collected all of the IP addresses stored by Emercoin

and Namecoin records, and submitted them to threat intelligence services including VirusTotal,

77

Table 5.2. Record types in the Handshake namespace.

Record Names with Record

Default NS and GLUE4 records 102,386
No A records 102,285
A 44.235.163.135 94
A 52.43.158.89 4
A 144.91.114.245 2
A 1.1.1.1 1

Invalid name 98,068
No record (null) 845
TXT record 138

“hello fx-wallet” 110
Other 28

Non-default NS record 32
Non-default GLUE4 record 11
Distributed storage address 7

Total unique names 201,458
Total records 201,487

Hybrid Analysis, Abuse.ch, and Pydnsbl (an aggregator of blocklists). They found that over

50% of the IPs in Namecoin and Emercoin records had been flagged as malicious by at least one

threat intelligence service [56]. Furthermore, Casino et al. used a “poisoning” approach to find

IP addresses associated with malicious IPs, either because the two addresses were stored in the

same wallet, a name resolved to both addresses at different times, or the same email was recorded

in their records. This “poisoning” approach revealed that the vast majority of IP addresses in

Namecoin and Emercoin records are connected in some way to malicious IPs [56]. Our own

findings support the conclusion that these naming systems are still rife with abuse (Section 5.5).

Handshake

Handshake is a blockchain-based naming system that aims to replace the root DNS zone.

It offers its users the ability to purchase nearly any string to use as an alt-TLD. Rather than

selling second-level domains itself, Handshake allows its users to act as registrars who can

sell their own domains. Handshake records are designed to store the NS records of traditional

78

authoritative nameservers, rather than to replace DNS A, AAAA, or similar records. Handshake

also allows users to store TXT records, which can contain the addresses for decentralized web

hosting systems like Skynet [5] or IPFS [9]. Malware operators could potentially use Handshake

as a naming system to find C2 content stored in these distributed storage systems. Additionally,

Handshake advertises themselves as “the only naming blockchain with a lightweight recursive

DNS resolver, which you can easily embed into browsers, apps, and devices” [2]. This lightweight

resolver may be attractive to malware operators because it is small enough to be part of a malware

payload.

To get a sense for how people use Handshake, we collected a sample of approximately

201,000 recently registered Handshake names by scraping a Handshake block explorer.4 We

attempted to scrape these names directly from the Handshake blockchain, but were unsuccessful

because the RPC provided by the Handshake client to collect registered names from a Handshake

node is no longer functional [11]. Table 5.2 summarizes our findings. At the moment, Handshake

names appear to be overwhelmingly utilized as speculative assets. Only 0.14% of names in

our sample had NS records that differed from the default. Of the names that kept the default

nameserver and glue records, only 101 (0.05%) eventually resolved to A records, 94 of which

were for the same IP address (a nameserver run by Namebase). Nearly half of registered

Handshake domains in our sample cannot be resolved by the HNS client, since they contain

illegal characters like emojis or are solely composed of numbers: these names are nevertheless

allowed to be created on the Handshake blockchain. We concluded that the Handshake system

has not yet seen significant adoption by either licit users or malicious actors.

5.3.2 Naming systems on general purpose blockchains

Two naming systems based on the Ethereum blockchain have arrived since 2017: the

Ethereum Name Service (ENS) and Unstoppable Domains. These naming systems are possible

because of Ethereum’s innovation in the blockchain space: smart contracts. Smart contracts

4https://e.hnsfans.com/names

79

are code that is embedded into the Ethereum blockchain. Any machine that runs an Ethereum

“full node” can execute any smart contract. Each contract is identified by a 20-byte address,

and makes its functions available through its Application Binary Interface (ABI). Thus, asking

a smart contract to execute one of its functions is similar to making an RPC call, except that

instead of one machine executing the code, every machine that receives the transaction must do

so.

Smart contracts can be used to implement key-value stores, which means they are well

suited to act as naming systems. For example, in a simplified system, a user might wish to set

the name “foo.crypto” to resolve to the IP address 1.2.3.4. The user would create an Ethereum

transaction that asks the key-value store’s smart contract to call its “set record” function, with

“foo.crypto” and “1.2.3.4” as function inputs. This transaction is then broadcast to the Ethereum

network, and every Ethereum node that receives it updates its own copy of the key-value store to

include the new record. Reading from the key-value store works similarly to writing to it: any

Ethereum node can return a correct response. Notably, any transaction that causes a write costs a

“gas fee” of Ethereum cryptocurrency. Gas fees are dependent on network congestion as well as

other factors: they incentivize Ethereum node operators to execute smart contract code, which

uses computing resources. In contrast, reading a smart contract’s data does not cost a gas fee and

does not create a transaction.

Interestingly, ENS and Unstoppable Domains are structured like DNS, but they are not

necessarily being used as DNS replacements. The language and structure of both systems’ smart

contracts implies that they were modeled after DNS: for example, both systems use certain

smart contracts as registries, and ENS even uses others as resolvers and registrars. However,

users are primarily using these systems to map human-readable names to cryptocurrency wallet

addresses instead of IP addresses. While users can still store IP addresses, traditional domains,

TXT records, or distributed storage system (DS) addresses, very few choose to do so. This may

imply that C2 records containing IP addresses or DNS domains will stand out and be easier for

defenders to detect.

80

Table 5.3. The ENS resolvers from which we collected a sample of names and records.

Resolver Name Txns Setting Resolver Address

Public Resolver 2 33,304 0x4976fb...

Public Resolver 1 2,736 0xDaaF96...

OpenSea ENS resolver 482 0x9C4e9C...

ENS Old Public Resolver 2 440 0x226159...

Umbra: Stealth Resolver 409 0xB37671...

unnamed PublicResolver #1 126 0xD3ddcC...

unnamed PublicResolver #2 103 0x5FfC01...

ENS Old Public Resolver 1 29 0x1da022...

ENS

ENS names are registered (and resolved) in two steps involving two different smart

contracts. First, a name must be registered using the “ENS Registrar Controller” smart contract,

which accepts the human-readable name and the address of a contract to use as a “resolver.”

Second, the resolver contract must be updated with the name’s records. To complicate matters,

names are not handled in their human-readable forms after they are registered: instead, they

are referred to by their keccak256 hash. Furthermore, the ENS Registrar Controller contract

allows users to specify a hash instead of a human-readable name, without ever performing a

transaction that reveals the name itself. Therefore, to enumerate most of the names in ENS,

we had to parse all of the transactions in the ENS Registrar Controller contract that recorded

new hashes of names. We then queried the associated resolvers to discover the human-readable

names. At the time of writing, at least 504 smart contracts had been set as resolvers for at least

one name hash. We chose to take a sample of names from the eight resolver contracts that were

set by the most names as their default resolver. The distribution of resolvers is long-tailed: the

majority of resolvers resolve only a few names, while the eight most popular resolvers resolve

the majority of names. We excluded addresses that were set as resolvers by many names but did

not implement the ENS resolver specification, under the assumption that these were mistakes.

Such misconfigured resolver addresses include the null address, 0x0, as well as unrelated smart

81

0 5000 10000 15000 20000 25000 30000
Number of domains that store this record

dns_wire_format
Snapshot*

gundb_public_key*
gundb_username*

name*
org.telegram*

com.github*
vnd.github*

keywords*
SNAPSHOT*

notice*
vnd.stealth-v0-signature*

com.discord*
vnd.twitter*

eth.ens.delegate*
name

description*
email*

url*
com.twitter*

snapshot*
avatar*

text
other_coin_address

address

Figure 5.1. Records stored by ENS names. *key within “text” record

contracts used by the ENS ecosystem. The resolvers we chose are detailed in Table 5.3. This

approach yielded a sample of 667,369 ENS names that were registered through the ENS Registrar

Controller contract. Prior work has found that even after collecting all transactions from the ENS

Registrar Controller and its historical predecessors, some hashes appear in the system but have

never been seen to resolve to names [228]. It is unclear how these hashes came to exist, so we

note that our sample does not contain all of the names in ENS, just the majority.

Figure 5.1 shows the distribution of the types of records stored in ENS for our sample

of names. The majority resolve to wallet addresses or text records, not IP addresses, traditional

domains, or DS addresses. We broke down the text records, which are key/value pairs, by the

most common key names: these keys are marked with an asterisk. Only the most common 25

82

0 1000 2000 3000
Number of domains that store this record

zatoshi.wallet

Ipfs.html.value
spells

dns.CNAME
PAY_ID

browser.redirect_url
dns.MX

social.image.value
social.textile.pubkey

dweb.ipfs.hash
username
public_key

social.picture.value
social.twitter.username

validation.social.twitter.username
whois.for_sale.value (false)

social.payid.name
gundb.public_key.value
gundb.username.value

whois.email.value
ipfs.redirect_domain.value

ipfs.html.value
whois.for_sale.value (true)

Non-Ethereum wallet address
Ethereum wallet address

Figure 5.2. Records stored by Unstoppable Domains names.

keys are shown. We note that only 17 names had dns_wire_format records, which are intended

to store traditional DNS records, and all 17 are malformed as far as we can tell.

Unstoppable Domains

Like ENS, Unstoppable Domains uses Ethereum smart contracts as registrars.

Unstoppable Domains names are divided into two systems. CNS (the Crypto Name System)

contains all names with .crypto alt-TLDs, and has separate registry and resolver contracts. Later,

Unstoppable added UNS (the Unstoppable Name System), which simplified name resolution by

combining the resolver and registry contracts, and added several new alt-TLDs. Unstoppable

Domains names never have to be renewed; they are purchased once and then owned indefinitely.

Like ENS names, Unstoppable Domains names are referenced by their hashes. We

extracted all hashes from the UNS and CNS registry contracts by searching all of their

transactions, and then found each hash’s name and records by querying Unstoppable Domains’

metadata endpoint.5 This approach yielded a sample of 16,026 names. As with ENS, some names

appear to exist in Unstoppable Domains that cannot be found by collecting transactions from

5https://metadata.unstoppabledomains.com/metadata/

83

Figure 5.3. Potential locations of interventions for blocking access to DNS-based and blockchain-
based C2 server names.

these registry contracts. For example, it appears to be possible to store Unstoppable Domains

names on the Polygon blockchain instead of Ethereum. We therefore note that our sample does

not contain all of the names present in Unstoppable Domains.

Figure 5.2 shows the distribution of record types found in the Unstoppable Domains

names. As in ENS, the majority of names have wallet records rather than records that point to

websites in any way. The second most common type of record is “whois.for_sale.value,” showing

that many names are seen as speculative assets. Unstoppable Domains also provides an easy way

for users to link to IPFS records.

We performed a web crawl of all of the Unstoppable names that had records pointing

to websites, whether IPFS records, traditional IP addresses, or traditional domains. We took

screenshots of the 367 websites we arrived at, inspected them manually, and did not find any

evidence of malware use. Most websites were personal sites, Web3-based business sites, or

related to the sale or collection of NFTs.

5.4 Intervention Locations

Accessing any naming system, whether blockchain-based or DNS-based, requires a

number of steps, each of which presents an opportunity for defenders to stage an intervention.

Figure 5.3 compares the steps an infected host takes to resolve a DNS C2 domain (shown

in orange) to the steps required to resolve a blockchain name (shown in green). While these

84

steps involve different participants, parallels exist between the blockchain and DNS ecosystems.

Figure 5.3 also details the interventions that can be staged by defenders at each step of the process.

We now describe each step and its potential interventions in detail. For certain interventions at

certain steps, we also present a case study of an attempt to stage the intervention in the wild, its

results, and the lessons it provides for defenders.

5.4.1 Reaching the resolver

Regardless of whether a request is destined for DNS or a blockchain naming system,

it must first reach the machine that acts as a resolver: either the DNS resolver or the proxy

in Figure 5.3. Defenders may be able to intervene before this point by placing middleboxes

with filter lists in the network. Some networks already have such defenses: for example, some

ISP networks redirect all DNS requests to the ISP’s own resolver, which can implement a filter

list. This defense is probably not currently intended to block blockchain names, but it has

that effect nevertheless in some cases. For example, some malware uses ordinary DNS rather

than DNS-over-HTTPS to request blockchain domains, under the assumption that the proxy

the query is intended for will redirect it to the blockchain naming system in the correct format.

When ISPs perform DNS redirection to their own resolvers, these queries get redirected to the

DNS root, which cannot resolve the alt-TLDs used by blockchain naming systems and return

“NXDOMAIN.” We present our study of this phenomenon in Section 5.5. We observe that filter

lists are only a partial defense against malware, because malware may utilize DGAs to evade

them: as soon as a C2 name is added to the blocklist, the malware operators may register and

begin using a new one.

5.4.2 Interventions at the name resolver

When resolving DNS domains, the entity that first attempts to respond to the request is a

DNS resolver. When using blockchain naming systems, this entity is a proxy instead, shown in

Figure 5.3 under “Name Resolvers.” The proxy may expect queries in the form of DNS-over-

85

HTTPS, unencrypted DNS, or in an arbitrary format. Instead of querying the DNS root zone, the

TLD resolver, and eventually the authoritative nameserver to resolve a name, the proxy must

connect to the blockchain and retrieve the record from one of the participants. Defenders may

intervene at a traditional DNS resolver by requesting that the resolver implement a filter list, or

the resolver operators may elect to implement one voluntarily. However, proxies that resolve

blockchain names may be resistant to such voluntary efforts, because the blockchain ecosystem

is often organized around principles of independence and self-governance, and resistance exists

to the idea of censoring any content.

Proxies are currently the most common method for resolving blockchain names. Table 5.1

shows a selection of the proxies and tools that resolve names from each of the systems we study.

The list of proxies is not exhaustive, but represents a subset of the best-known proxies in use

at the time of writing. While most large browsers, such as Safari, Chrome, and Firefox, do

not support any blockchain naming systems natively, some naming systems provide browser

extensions that redirect blockchain name queries to proxies using DoH. A few browsers do

resolve blockchain names without requiring extensions, such as Brave, which partners with a

proxy called Infura [16]. Some naming systems have partnerships with existing DNS resolvers.

For example, NextDNS’s DNS resolvers can act as proxies to resolve Handshake names. Finally,

some naming systems, such as Handshake, also provide stub resolver implementations that run

locally on a user’s computer. These stub resolvers also work by routing blockchain name queries

to proxies.

Almost all of these proxies are centralized, in that they are controlled by a single authority.

This is good news for defenders: similarly to traditional registrars, they are vulnerable to legal

takedowns. They can be served with TROs or warrants and compelled to stop giving access

to abused domains, as long as they operate within a jurisdiction amenable to such efforts. A

centralized proxy could also be neutralized by serving a takedown order to its hosting provider,

although this approach would produce varying amounts of the collateral damage depending

on how many licit users utilize the proxy. While these interventions are not foolproof, they

86

are subject to the same advantages and disadvantages as interventions on traditional registrars.

Thus, centralized proxies return the distributed naming ecosystem to a state similar to the DNS

ecosystem, from a defender’s point of view.

Case Study #1 — OpenNIC ceasing support of .bit

OpenNIC is one of the few decentralized proxy services for blockchain names. It

resolves names from several alternative naming systems, including Namecoin and Emercoin [13].

OpenNIC’s resolvers are run by a small community of volunteers [14]. In June 2019, this

community voted of their own volition to remove support for Namecoin’s .bit alt-TLD, because

providers were beginning to block OpenNIC resolvers that were used by malware to resolve

Namecoin names [17].

OpenNIC’s decision to cease supporting Namecoin was not the result of a direct

intervention by defenders, but it still yields an important lesson. Even a decentralized proxy

service may be composed of few enough individuals that it is possible to cajole or compel them

to stop resolving names used by malware. Furthermore, OpenNIC’s community held this vote in

response to pressure from Spamhaus, Malwarebytes, and other providers, who began blocklisting

OpenNIC resolver domains: even if a proxy’s operators cannot be contacted directly, it is still

possible to pressure them to cease resolving names used by malware.

Case Study #2 — BDNS takedown

In April 2021, various defenders attempted to take down a proxy known as “Blockchain-

DNS.info” or BDNS. BDNS reported on their website soon after the takedown attempt that

seven of their domain names had been “un-delegated” and one of their API servers was

shut down without warning [23]. For example, one endpoint, bdns.io, was apparently

sinkholed by ShadowServer [19]. bdns.io’s NS records now point to variants of the name

sinkhole.shadowserver.org.6 We confirmed that these NS records were changed to

6sinkhole-0[0-4].shadowserver.org and sinkhole-[a-b].shadowserver.org.

87

ShadowServer’s domains on March 26, 2021, using the pDNS database [78]. BDNS received

a message from Spamhaus shortly after noticing the takedown, stating that several of BDNS’s

endpoint domains had been added to Spamhaus’s blocklist. BDNS claimed that their browser

extensions continued to resolve blockchain names using other endpoints, and directed users

to a list of endpoints that were still working [24]. BDNS also stated that they had moved

some infrastructure to a friendlier hosting provider, PRQ, which states on its website that “If

[content] is legal in Sweden, we will host it, and will keep it up regardless of any pressure to

take it down” [26]. However, as of August 2022, all of the endpoints listed in BDNS’s Github

repository [24] are either failing to resolve or resolving but failing to load content, and the proxy

appears to be nonfunctional.

This takedown effort provides several lessons for defenders. First, defenders must take

care when choosing a takedown strategy for a proxy. In this case, defenders tried two tactics:

adding the proxy’s endpoints to a widely used blocklist and taking down some domains and a

hosting server entirely. The former tactic appeared to work well in locations where ISPs use

Spamhaus’s blocklist: BDNS stated that their proxy “may be still unreachable in those parts of

the world.” However, the domain takedown appeared to be only partially effective, since BDNS

could still resolve blockchain names for a time using unaffected endpoints. We conclude that

care must be taken to enumerate all of a proxy’s endpoints and shut them down simultaneously.

5.4.3 Skipping the proxy: the rise of light clients

While proxies greatly simplify the process of connecting to a blockchain, they are not

strictly necessary, which is bad news for defenders. We initially assumed that no infected host

would be able to skip the proxy and participate directly in the blockchain, because acting as

a blockchain node requires too many resources. However, this assumption turned out to be

incorrect, because of the rise of light clients. When blockchains were first envisioned, most

assumed that every participant in the network would be a “full” implementation of a node: it

would contain enough state to reconstruct the entire history of the chain, all the way back to the

88

first transaction. Additionally, each node would contribute to the blockchain by verifying every

transaction it heard about. As blockchains grow over time, they become too resource-intensive to

run on anything other than a dedicated, powerful machine. Two resources serve as the constraints:

first, CPU power, which is obviously necessary to perform mining but now is even a bottleneck

for transaction verification, because so many transactions happen per second. Second, disk space

and speed: for example, a full Ethereum node cannot be run on a machine with a hard disk drive

anymore, because nothing slower than a solid state drive can keep up with the reads and writes

required [7]. These resource constraints make it very unlikely that malware could run “full”

blockchain nodes on infected hosts. However, these constraints have also given rise to the concept

of a “light client,” a blockchain node with limited functionality that can fetch transactions from

the chain but does not contribute by verifying transactions, mining, or broadcasting. Light clients

are designed to run on laptops and mobile devices. As such, they use few enough resources to

reasonably be included in malware.

5.4.4 Interventions at the database locator

Light clients enable malware to act as a first-class member of a blockchain, and discover

other members of the chain using the chain’s peer-to-peer discovery protocol without using a

centralized proxy. In this case, defenders are left with a harder location to stage an intervention:

the blockchain’s bootstrap nodes, which is the blockchain equivalent of a service that locates the

database of naming records. We show this path in Figure 5.3 with the dotted line between the

middlebox and the bootstrap nodes.

In traditional DNS, the resolver must locate the database that contains a record by first

querying the hierarchy of DNS servers: first the root and then the TLD resolver. The TLD

resolver’s role is to tell the DNS resolver which machine stores the database that ultimately

contains a name’s records. In a blockchain system, this role is filled by the bootstrap nodes. The

purpose of the bootstrap nodes is to provide a gateway to the blockchain for new participants:

new blockchain nodes find their initial list of potential peers by connecting to the bootstrap nodes.

89

Blockchains use various methods to publish bootstrap node addresses for their users. For example,

Ethereum uses a list of bootstrap nodes that are hard-coded into client implementations [27].

Bitcoin stores lists of bootstrap nodes in DNS TXT records maintained by volunteers, as well as

hard-coded lists [15].

When defenders perform interventions by putting legal pressure on registrars, the

intervention takes effect at the TLD resolver, which implements the changes to the zone file that

affect the malware’s domains. These changes can include “sinkholing” the domain by causing it

resolve to an IP controlled by defenders or “freezing” it so that its records cannot be modified.

This intervention does not translate well to blockchain naming systems for several reasons.

First, while bootstrap nodes are responsible for finding the entire naming database, they

do not allow defenders to specify which blockchain systems a client may access and which it

may not. This means that seizing a specific naming record, or even the entire naming system, is

not possible at the bootstrap nodes. Consequently, disabling or seizing bootstrap nodes prevents

all new clients from accessing any functionality provided by the blockchain, including the

blockchain’s cryptocurrencies and any services it offers unrelated to naming. This approach

therefore carries the potential for a lot of collateral damage. Second, bootstrap nodes may be

widely distributed across the globe, leading to jurisdictional challenges in bringing legal pressure

to bear on their operators. Bootstrap nodes may also be difficult to find, since they may not be

run by hosting providers but rather by anonymous individual volunteers. Third, bootstrap nodes

may be numerous enough that finding and seizing them all may be prohibitively difficult. Finally,

while the default bootstrap node lists are published for each blockchain, users may choose to

substitute their own. A malware author could design a payload that contains an extensive list of

machines that participate in a blockchain naming system, which would complicate a defender’s

efforts to take down all the potential participants. Because interventions at the bootstrap nodes

are more challenging than interventions at the proxy, we show the intervention icons in gray in

Figure 5.3.

However, defenders could fall back to using blocklists at network middleboxes to deny

90

access to bootstrap nodes. For example, IDSes, enterprise firewalls, or ISP routers can drop

traffic intended for bootstrap nodes. This approach is very similar to blocking any other malicious

IP addresses, and is subject to the usual challenges. Defenders must keep blocklists up-to-date as

malware authors update the IPs they connect to. To the advantage of defenders, any time malware

authors are forced to update the IP addresses that bootstrap nodes may be found at, they run afoul

of the “sunk cost” problem where infected machines that cannot be updated become useless. A

similar argument applies if malware chooses to access bootstrap nodes using hard-coded DNS

domain names instead of hard-coded IP addresses. Additionally, traditional interventions against

domain names apply in that situation as well. Thus, while intervening at bootstrap nodes poses

more of a challenge than intervening at centralized proxies, defenders still have viable options to

choose from.

5.4.5 Interventions at the database

In traditional DNS, defenders can sinkhole the domain of an authoritative nameserver or

seize the server itself to prevent malware accessing a C2 domain record. This intervention is

impractical for blockchain names, because instead of a single machine acting as the authoritative

nameserver, every blockchain node has a copy of the database. Seizing the database would

require either taking down every machine in the blockchain, or executing a successful “51%”

attack by taking control of more than half of the computing power in the blockchain. Blockchains

are generally highly robust against attacks like these, which makes them unlikely to be the most

practical intervention for defenders to attempt. However, small naming-specific blockchains with

few participants may be more vulnerable.

Case Study #3 — Namecoin’s vulnerability to 51% attacks

Like all of the naming-specific blockchains that we study, the Namecoin blockchain has

many fewer participants than blockchains like Ethereum. This makes Namecoin more vulnerable

than larger blockchains to a “51%” attack. A 51% attack can be executed when an attacker

91

controls more than half of the computational power of the blockchain, allowing them to rewrite

historical transactions or add invalid ones. Gaining control of more than half of a blockchain’s

computational power is much easier on blockchains with few participants.

Namecoin has already experienced problems in this area. As of 2014, one mining pool

known as “DiscusFish” or “F2Pool” consistently controlled more than 60% of the computational

power of Namecoin, and on occasion controlled up to 75% [36]. While we did not find any

reports that F2Pool had attacked Namecoin, they had the capability to do so. This vulnerability

suggests two potential interventions. First, because Namecoin apparently has few licit users [56],

interventions that render the entire naming system inoperable are more feasible than they would

be on more popular general-purpose blockchains. Therefore, defenders could attempt to take

over the entire blockchain and sinkhole all abused names by seizing control of F2Pool. Second,

defenders could potentially apply legal pressure to the operators of F2Pool to coerce them

to sinkhole certain specific names. This intervention would rely on defenders’ ability to find

F2Pool’s operators and apply legal pressure in the jurisdiction the operators reside in. We

predict that such an intervention would be challenging, but the fact that it appears possible at all

contradicts the received wisdom that blockchains cannot be taken over directly.

5.4.6 Interventions after the name record is acquired

If an infected host successfully retrieves its C2 record, that record might take several

forms. The three that we observed in existing blockchain naming systems that might be useful

to malware were IP addresses, traditional DNS domains, and addresses for distributed storage

systems like IPFS and SkyNet. Some naming systems also allow users to store arbitrary text as

records, which would let malware operators store nonstandard record types like links to social

media posts.

Each of these record types are subject to all of the traditional interventions that have

already been described, except one: DS addresses. Distributed storage systems provide a form

of “bulletproof” hosting, under the limitation that all hosted content must be static files and not

92

dynamic websites. Any C2 server implemented entirely on such a system must be a simple file

with no dynamic content. Infected hosts that wish to contact a distributed storage system must

pass through the same steps shown in Figure 5.3 for accessing a blockchain, which means they

are subject to the same interventions. For example, a strain of malware called “IPStorm” has

already been discovered using IPFS for its C2 server in the wild. IPStorm connects to IPFS using

bootstrap nodes [4, 20], which may be seized or blocked.

Another advantage for defenders is that some distributed storage systems, such as IPFS,

do not have redundancy: only a single machine hosts each piece of a file. This raises the

possibility of discovering the particular machine responsible for hosting a C2 server and seizing

it.

A final possibility for intervening with the name record may be to seize names stored in

“hosted” or “custodial” wallets. Some businesses, such as cryptocurrency exchanges, provide

custodial wallets for users who wish to let the company handle their blockchain-based assets. This

service is designed to make blockchain interaction easier for customers, but as a consequence,

the business knows the custodial wallet’s private key. If a name is stored in a custodial wallet,

the business that runs the wallet could seize it [172]. However, a successful intervention must

be difficult for malware operators to evade, and we note that malware operators with good

operational practices can simply choose not to use custodial wallets.

5.4.7 Intervening with name modification or purchase

Generally speaking, DNS domains are cheaper, easier to modify, and easier to replace

than IP addresses, because each IP address represents a compromised machine while new

domains can be purchased inexpensively. Blockchain-based domains on general-purpose chains,

such as Bitcoin and Ethereum, change this norm. While resolving a name is free, malware

operators must pay transaction fees (known as gas fees on Ethereum) to register or modify names.

These transaction fees can be quite expensive. For example, we found that registering a new

name on the Unstoppable Domains service cost nearly $80 in gas fees during a period of high

93

fees. In contrast, the cost of the name itself was $10. While licit users may wait for fees to be

low at times of low network congestion, malware operators may not have that choice if they

wish to avoid downtime in their campaign. High transaction costs poses challenges for defenders

as well. For example, to combat DNS-based DGAs, defenders have the option of registering

every domain the DGA will ever generate. This intervention would be much less practical if

each registration was nearly an order of magnitude more expensive.

Naming-specific blockchains, such as Namecoin, Emercoin, and Handshake, present a

different set of tradeoffs for defenders and malware operators. These blockchains are created

with the sole intention of hosting a naming system. With fewer users and correspondingly less

demand, these systems’ names are usually much less expensive than names in Ethereum-based

systems. This enables malware authors to use fast flux or DGA-based strategies, and also may

enable defenders to pre-register domains generated by DGAs.

5.5 Measurements of Name Resolution Queries

Our analysis of the registered names in each blockchain naming system (Section 5.3)

indicated that malware is not yet utilizing ENS and Unstoppable Domains. In contrast, recent

work on the records stored in Emercoin and Namecoin found that these systems were heavily

used by malware as recently as 2020 [56]. However, to test whether malware is still using

Namecoin and Emercoin and is not using ENS and Unstoppable Domains, it is necessary to

analyze not only which names are registered in each system, but also which ones are heavily used.

This is challenging because name resolutions are not transactions: they are read-only operations

that do not leave a record on the blockchain. We cannot directly measure usage of blockchain

names, but we observed that a side channel might exist to estimate name usage: “leakage” to the

DNS. We predicted that since blockchain names require configuring alternate resolution systems,

some requests might “leak” into the DNS when misconfigured machines attempt to resolve them

as ordinary DNS domains. These leaked names would be visible at the root DNS servers, but

94

Table 5.4. Examples of malicious Namecoin and Emercoin domains in the October sample of
B-root queries.

Malware Domain Lookups Source

Gandcrab malwarehunterteam.bit 348 [207]
politiaromana.bit 341 [207]

gdcb.bit 316 [207]
zonealarm.bit 628 [206]

ransomware.bit 1,039 [206]
CHESSYLITE leomoon.bit 935 [84]

lookstat.bit 710 [84]
sysmonitor.bit 519 [84]

volstat.bit 455 [84]
xoonday.bit 573 [84]

Dofoil vrubl.bit 988 [202]
levashov.bit 1,059 [202]

vinik.bit 6,265 [202]
KPOT Stealer kpotuvorot10.bit 1,951 [127]

star-fox.bit 351 [143]
Team9 Loader bestgame.bazar 942 [167]

forgame.bazar 865 [167]
zirabuo.bazar 51 [167]

tallcareful.bazar 146 [167]
coastdeny.bazar 139 [167]

BazarLoader acegikbcggin.bazar 546 [22]
acegilbcggio.bazar 467 [22]

Trojan RTM stat-counter-[0-9]-[0-9].bit 10,498 [25]
Necurs jfbbrj3bbbd.bit 1,505 [204]

qcmbartuop.bit 1,316 [18]

95

would not be forwarded to any other DNS servers, because the roots would respond that the

alt-TLDs do not exist. An observer who could see which names were requested at a DNS root

server with alt-TLDs corresponding to blockchain naming systems could get a sense for which

names are in use.

We therefore took two samples of the names that were requested at the DNS B-root

servers over the course of several days. The first sample consisted of names and how many

requests were made for each on October 19, 2021. The second sample consisted of names,

numbers of requests, and the ASes the requests were made from. It spanned two weeks in April

2022, from April 16 to April 30.

Another advantage of using B-root as a vantage point was that it let us observe requests

for unregistered names that might indicate the presence of malware. DGAs work by generating

a vast number of names, but only a few are ever registered and functional at any given time.

These unregistered names do not, of course, appear in our samples of the registered names in

each blockchain naming system. An infected host determines which names are registered by

simply attempting to resolve them. If an infected host’s queries were leaking into the DNS, we

theorized that these queries would be very obvious, because the infected host would always

receive NXDOMAIN responses from the root. These responses would cause the infected host to

assume it has not found the correct C2 name for today and keep trying new names. The flood of

nonexistent names with blockchain-based alt-TLDs would be visible when examining queries

arriving at B-root.

5.5.1 Frequently accessed names

We first investigated how many days each name was requested on, and found that the vast

majority of names are only requested once, on a single day. There were two notable exceptions:

a small group (67) of .bit names that received a high volume of requests on every day of the

sample, and a large group (39,000) of unique .bazar names that were each requested on most

or all days of the sample. These names belong to the Namecoin and Emercoin naming systems,

96

respectively.

We analyzed the group of .bit names that were requested on all 14 days of our sample

and had more total requests than any name requested on fewer than 14 days. 66 names fit

this criteria. We submitted them to VirusTotal and found that only 18 names were not labeled

malicious by any engine, while 48 were labeled malicious by at least one.

The .bazar names that were requested on most (more than 10) days for our sample fell

into two categories. The first contained names that appear to be generated by concatenating

four lowercase-letter bigrams consisting of a consonant and a vowel (e.g., acbaelek.bazar,

acbaelel.bazar, acbaelid.bazar). These names appear to be generated by the malware

BazarLoader [45]. The second category contains 38 names that do not appear to be randomly

generated. We uploaded these to VirusTotal and determined that 23 were labeled as malicious by

at least one threat intelligence service, three were not indexed by VirusTotal, and the remainder

were not labeled as malicious. Six of the names were themed around Australian tourism, of

which four were labeled malicious and two were not: these names may also be associated with

BazarLoader [3].

We note that the most popular Emercoin and Namecoin names each day were largely

known to be associated with malware, which we determined by manually searching the Internet.

We present a sample of the most popular malware-related names in Table 5.4. These names

were taken from the October sample; the days in April had a similarly high number of malicious

names that received high volumes of requests.

5.5.2 Unregistered ENS and Unstoppable Domains names

We observed a large number of names, mostly randomly generated names, with alt-TLDs

that are used by ENS and Unstoppable Domains. However, we found that these names are

actually unrelated to blockchain naming systems and are likely not part of malware campaigns.

We drew this conclusion for two reasons. First, the randomly generated names only had one

lookup each, and all of these lookups originated from a single AS (AS15169, Google). This is in

97

contrast to lookups for randomly generated names in Emercoin and Namecoin that are known

to be part of malware campaigns: these requests originate from many different ASes and some

names receive many more than just one request. Second, not a single randomly generated domain

with an ENS or Unstoppable Domains alt-TLD was registered in a blockchain naming system.

If these names had been part of a malware campaign, at least one should have resolved to the

address of a C2 server at some point. It is possible that B-root only received failed requests from

a single misconfigured machine, but this does not match the behavior we observe for malware

campaigns that abuse Namecoin and Emercoin.

We predict that rather than being intended for use in a blockchain naming system, these

randomly generated names were leaked from local networks, and were never intended to be

resolved by either a blockchain naming system or the DNS root. A prior study on root DNS

queries found that some networks use non-ICANN TLDs internally, under the assumption

that queries for those names will never reach external DNS resolvers. However, these queries

frequently leak to external networks [63]. We predict that some internal networks use alt-TLDs

that coincidentally overlap with the blockchain naming systems’ alt-TLDs. We concluded that

these names were unlikely to be part of DGA-based malware campaigns, and were also likely

unrelated to blockchain naming systems at all.

5.5.3 Requests for registered names from ENS and Unstoppable
Domains

Very few registered names from ENS or Unstoppable Domains leaked to B-root: we

observed fewer than 400 unique ENS names per day and fewer than 300 unique daily names

from Unstoppable Domains. These names also received few requests per day compared to the

names from Namecoin and Emercoin. No name received more than approximately 350 lookups,

in contrast with the most popular domains in Namecoin, which received an order of magnitude

more requests per day. We submitted every ENS and Unstoppable Domains name that received

more than ten daily requests to VirusTotal. None were in VirusTotal’s database, in contrast with

98

names from Emercoin and Namecoin, which were largely present and flagged as malicious.

Each of these findings regarding names that leak to B-root support our conclusion that

malware still heavily utilizes older systems like Namecoin and Emercoin, but has not yet adopted

new systems like ENS or Unstoppable Domains. We predict that this is due to two factors. First,

the monetary cost of creating and modifying names in ENS and Unstoppable Domains is much

higher than in naming-specific systems like Namecoin and Emercoin. Second, defenders have

apparently not yet been able to exert enough pressure on Namecoin and Emercoin to make these

systems unattractive to malware operators, because we still see high malware usage of those

systems. We hope that the findings in this work will aid defenders in exerting more effective

pressure against malware operators.

5.6 Discussion

Out of the five naming systems we examine, we find none so far that present an entirely

intractable problem for defenders. For a naming system to present a threat, it must be both easily

usable by malware authors and popular enough that blocking its bootstrap nodes, or blocking

access to it entirely, will cause significant collateral damage to licit users. For a system to be

widely adopted by licit users, it must have three necessary characteristics.

First, the system’s name management must be as easy or easier than name management

on traditional DNS domains. Users must not be required to write code themselves to interact

with smart contracts, as is currently the case with each of the systems we study if the user does

not use a custodial wallet. Users also must not be required to run a blockchain node in order to

manage their names, as Handshake currently requires to the best of our knowledge.

Second, the transactions that are required to register and update names must be affordable.

Transactions on Ethereum, in our experience, cost anywhere between $60 and $140 during the

course of our experiments, although we discovered that we were attempting to make transactions

during periods of high network congestion and fees were unusually high. Even transaction fees as

99

low as ten dollars per transaction are far less affordable than transaction fees on naming-specific

chains, which can be as low as a few cents. This dynamic may make ordinary users more likely

to embrace naming systems built on naming-specific chains, rather than general-purpose chains.

However, general-purpose chains may be better known, and therefore more likely to be trusted

by users even if transaction fees are higher than on naming-specific chains. A trade-off may

therefore exist between affordability and perceived trustworthiness and name recognition.

Third, licit users are unlikely to embrace any naming system that does not have

widespread browser adoption. Browser adoption is hindered by naming systems’ lack of

coordination, which currently leads to name collisions: for example, the alt-TLDs .wallet,

.coin, and .x are currently used by multiple blockchain naming systems. Some newly created

ICANN TLDs also collide with Handshake TLDs, such as .music. Naming collisions present

a barrier to browser adoption because the browser would either have to enforce some sort of

precedence for systems that include colliding names, or users would have to choose which

naming system to use for each name with collisions. Either option will confuse and frustrate

users who are unfamiliar with the concepts of namespaces. So far, only browsers that focus on

privacy as one of their primary features have chosen to resolve alternate naming systems, and

none have chosen to resolve systems that might collide with either each other or ICANN TLDs.

Until browsers can resolve an alternate naming system natively, users are unlikely to adopt that

naming system.

We conclude that the higher ease of use of purchasing, modifying, and resolving

traditional DNS domains is a very high barrier for blockchain-based naming systems to overcome.

As long as blockchain naming systems are not widely adopted, we predict they will not become

entirely intractable problems for defenders.

100

5.7 Related Work

Kalodner et al. performed the first study to our knowledge of Namecoin in 2015 [123].

They conclude that the Namecoin ecosystem was “dysfunctional:” only 28 out of 120,000

registered names were valid, not squatted, and had nontrivial content.

Patsakis et al. present an analysis of potential weaknesses and user risks of Namecoin and

Emercoin, including the risks of squatting, 51% attacks, phishing, and abuse by malware [170].

The authors also provide an overview of the names stored in these systems, and found that many

names registered in the Alexa Top 1K were also registered under Namecoin and Emercoin’s

alt-TLDs. Most of these squatted names redirected to pornographic websites.

Casino et al. analyzed the IP addresses in Namecoin and Emercoin records [56]. They

first identified malicious IP addresses using several threat intelligence databases, and then

clustered all the IPs into “malicious,” “suspicious” and “benign” categories with a “poisoning”

approach. An IP was labeled “malicious” if a threat intelligence database categorized it as such.

It was labeled “suspicious” if it appeared in the same wallet, was resolved to by the same domain,

or shared the same email TXT record as a malicious IP, and “benign” if it had no connection

to a malicious IP. Casino et al. discovered that only 8% of the IPs in Emercoin and 28% of

those in Namecoin had no association with malicious IP addresses. While this paper mentioned

the existence of more recent blockchain naming systems, it did not perform an analysis of any

system except Namecoin and Emercoin.

Numerous other blockchain-based naming systems have been proposed, including the

Blockstack Naming System [36], Bitforest/Conifer [79, 80], BlockDNS [181], and Nebulis [124].

To our knowledge, only Blockstack has evolved into a commercial product. We excluded the

Blockstack Naming System from this work because it does not appear to be as popular as the

other systems we study.

Other work has analyzed the ways in which blockchain technologies in general might

be abused by malware. Pletinckx et al. analyzed Cerber ransomware and found that it used

101

blockchain wallet addresses as domains [176]. Hassan et al. point out that blockchain nodes

reside in so many different legal jurisdictions, it will be difficult for regulators to control what

information gets passed across country borders [103]. Moubarak et al. present a theoretical

design for malware to store pieces of its payload on Bitcoin [156].

Relatively little work has been done on defenses against malware that uses blockchain

naming systems. Huang et al. developed a machine learning-based detection method for

distinguishing malicious blockchain-based names from benign names in DNS traffic [112]. Hu

et al. presented a brief comparison of DNS and Bitcoin-based naming systems, and noted that

small, naming-specific blockchains like Namecoin were vulnerable to 51% attacks [109].

Prior work has evaluated the effectiveness of interventions that target DNS domains.

Kesari et al. provide an overview of legal intervention methods and cites their use in a number

of malware takedowns [125]. Wang et al. studied the use of TROs to seize storefronts run by

spammers [215]. Liu et al. analyzed the effectiveness of two interventions that were initiated by

registrars and designed to stop spammers from registering domains [141]. Prior literature has

also analyzed interventions based on taking down hosting providers, and concluded that these

interventions have modest or mixed effectiveness [51, 131, 164, 38].

5.8 Summary

While decentralized naming and hosting systems pose challenges, they cannot entirely

eliminate their reliance on systems with centralized authority. Whenever malware uses a

centralized resource to enable its use of decentralized ones, defenders can intervene. Defenders

cannot serve legal takedown orders to a centralized registrar to take down a blockchain domain,

but they can prevent malware from accessing the blockchain in the first place, or target the DNS

domain or IP address that the blockchain domain resolves to. We examined existing blockchain-

based naming systems and found that naming systems on general purpose blockchains are not

currenly attractive to malware because of their high cost. In contrast, systems on naming-specific

102

blockchains present an ongoing threat, but these systems are susceptible to defenses such as

blocklisting every IP address stored in the name records, blocking the proxies that resolve the

names, or blocking the system entirely, because so little licit content exists on those blockchains.

We conclude that for a naming system to be truly more dangerous than DNS, it must achieve

widespread adoption as well as inexpensive transactions and high ease-of-use, and no existing

naming systems have yet achieved all three characteristics.

Chapter 5, in part, is a reprint of the material as it appears in Proceedings of the APWG

Symposium on Electronic Crime Research (eCrime) 2022. Audrey Randall, Wes Hardaker, Stefan

Savage, Geoffrey M. Voelker, and Aaron Schulman. The dissertation author was the primary

investigator and author of this paper.

103

Chapter 6

Measuring UID Smuggling in the Wild

The final naming system examined in this dissertation is not a formal, named system like

the DNS, Namecoin, or the Ethereum Name Service. Instead, it is the collection of user data,

mapped to unique user identifiers, that is maintained by web trackers. By viewing this collection

of data as a naming system, we were able to apply the same insights as described in previous

chapters: specifically, that participating in the naming system would allow us to measure the

prevalence of an adversary’s attack. The attack in this case is a privacy-invasive web tracking

technique that we label “UID smuggling;” the adversaries are third-party web trackers. Web

trackers collect user behavior data and organize it in their own databases by assigning each user

a user identifier (UID). Seen through the lens of a naming system, this UID is a name, and its

record contains a user’s browsing habits and interests. Trackers wish to collect user data from as

many websites as possible, to build the most complete profile of a user. A tracker must therefore

be able to link any new data it collects for a user to that user’s unique UID. Ideally, then, a tracker

must maintain a global namespace of UIDs, so that it can know a user’s UID no matter which

tracker-containing website the user visits.

However, browsers have begun to implement a privacy defense called “partitioned storage”

that breaks this global namespace into much smaller per-website namespaces. When patitioned

storage is in place, trackers can no longer read or write a global UID for each user: they must in

theory assign a new UID to a user for each website the user visits. The goal of this defense is

104

to prevent trackers from knowing that user data collected from different websites all belongs to

the same user, thus making trackers’ user profiles much less privacy-invasive. Unfortunately,

to evade partitioned storage defenses and rebuild their global namespaces, trackers have begun

to use UID smuggling. UID smuggling allows trackers to pass UIDs between websites as a

user navigates between them, thus building an approximation of a global namespace by linking

identifiers from the per-website partitioned namespaces.

In this chapter, we estimate the prevalence of UID smuggling by acting as participants in

trackers’ naming systems. By posing as users navigating between websites, we observe tracker’s

get and set requests to the naming system. We are thus able to estimate the frequency at which

a real user would encounter this attack in the wild. We now present the details of this attack and

our method of studying it in more depth.

6.1 Overview

Over the past few years, tensions have deepened between those collecting detailed user

behavior data for advertising purposes and privacy-conscious users who do not want to be

monitored. While there are some efforts to find a compromise between these positions (e.g.,

allowing the collection of aggregated, anonymized data [48, 96]), none have yet managed to

satisfy advertisers or privacy advocates [70, 187, 213]. In the absence of such a solution, privacy-

focused browsers (i.e., browsers for which privacy is seen as a competitive advantage) have rolled

out changes that block one of the core mechanisms used by third-party trackers to aggregate

information about a user across different websites, thereby building a profile of that user.

Previously, third-party trackers could build user profiles across websites because

information stored by the tracker was accessible to that tracker across all websites that include

it. Trackers commonly used third-party cookies for this purpose, although any type of browser

storage could be used. Trackers could use this shared storage to build shared state for each user

across every website that included the tracker. However, several browsers are now employing

105

an anti-tracking defense called “partitioned storage,” which removes this sharing ability. By

partitioning all browser storage by the domain of the top-level website, browsers intended to

prevent trackers from linking user information across sites.

However, trackers have responded by implementing a new class of tracking technique

that we call UID smuggling. UID smuggling allows trackers to share a user’s information across

websites by modifying the user’s navigation requests. The tracker accomplishes this style of

tracking by decorating users’ navigation requests with identifying information, which will then

be shared across first-party boundaries. The tracker may also choose to momentarily redirect the

user to its own domain, where it can record this smuggled information as a first party itself. In

each case, trackers use UID smuggling to regain the ability to link user identifiers across sites,

circumventing the browser’s attempt to partition such information.

This work presents the first systematic measurement of UID smuggling in the wild. We

make the following contributions:

1. We perform the first systematic measurement of UID smuggling in the wild.

2. We construct a multi-stage analysis pipeline, nicknamed CrumbCruncher, to crawl the

Web and measure how frequently UID smuggling occurs.

3. We improve on prior techniques for differentiating user identifiers from other values and

synchronizing multiple crawlers.

4. We categorize the behaviors of trackers, including which categories of sites are more

likely to include UID smuggling.

5. We contribute to countermeasures against UID smuggling, both by sharing our hand-edited

dataset, and by publishing our tool for finding new instances, CrumbCruncher.

The remainder of our work is organized as follows. Section 6.2 covers the background

of navigational tracking and related work. Section 6.3 describes the design of our crawler,

106

CrumbCruncher, and its capabilities and limitations. Section 6.4 discusses ethical ramifications.

Section 6.5 presents our findings, including the most common participants in navigational

tracking and a summary of their behaviors and categories. Section 6.6 describes the limitations

of our work. Section 6.7 details our contribution to the countermeasures that various entities

have taken against navigational tracking. Section 6.8 discusses related work, and Section 6.9

concludes.

6.2 Background

Advertisers want to track user activity across sites for a variety of purposes, including

performing identity resolution and supporting affiliate marketing, but such capabilities represent

a significant threat to user privacy.

For over a decade, browsers allowed advertisers to perform cross-site tracking functions

with third-party cookies. But because this capability presents a threat to privacy, several popular

browsers have implemented partitioned storage to isolate third-party cookies so they cannot

be used for cross-site tracking. At the time of writing, three browsers — Firefox, Safari, and

Brave [119, 219, 111] — all use partitioned storage by default. Partitioned storage uses a

hierarchical namespace, where the hierarchy is based on the domain of the frame that contains

the cookie-storing element. Figure 6.1 shows the difference between flat and partitioned storage

from a tracker’s perspective. When flat storage is in use, the tracker can read from or write

to the same storage area regardless of which website it is on, but when partitioned storage is

implemented, the tracker accesses a different storage area on each website that loads the tracker.

This prevents trackers from assigning the same user-identifying cookie (represented by the

gingerbread man icon) to users across sites. A similar system is used for other browser storage

locations, such as local storage.

To circumvent the protections that partitioned storage provides, advertisers are

increasingly using UID smuggling. UID smuggling modifies a user’s navigation requests by

107

Figure 6.1. Flat storage versus partitioned storage.

adding information to the navigation URLs in the form of query parameters. UID smuggling

may also redirect the user to one or more third-party trackers before redirecting to the intended

destination.

Figure 6.2 shows this process in detail. In UID smuggling, the user is sent through a

navigation path. This path begins at the originator website, where the user clicks a link (step

1). When the link is clicked, the page itself or a tracker on the page decorates the URL by

adding the originator’s user identifier (UID) as a query parameter. The link may be either a first

party or a third party link, because any script on a webpage may modify any link within its frame.

Third party scripts are often loaded within the top level frame of the page, so they may modify

any link within the top level frame. After the user clicks the link, the navigation path passes

through zero or more redirectors, which are invisible to the user but are permitted to store first

party cookies (step 2). Each of these redirectors has the ability to store the UID from the query

parameter as a cookie or local storage value under the redirector’s domain. Finally, the user is

sent to the destination, the website the link originally pointed to (step 3). The destination may

108

Figure 6.2. How UID smuggling allows trackers to circumvent partitioned storage.

also store the UID under its own domain. If there are no redirectors in the navigation path, the

threat to users is simply that the UID gets passed between the originator and the destination.

This may occur when the tracker that performs the UID smuggling is confident that its scripts

will be present on both the originator and destination page, to decorate the link and collect the

UID respectively. Thus, trackers using UID smuggling regain the ability to share UIDs across

websites with different domains, in defiance of the browser’s partitioned storage protections.

UID smuggling is related to, but more powerful than, two previously studied tracking

techniques: bounce tracking and cookie syncing. Bounce tracking also modifies a user’s

navigation path by redirecting them through tracking sites that can store first-party cookies.

Bounce tracking allows a tracker to record which originator and destination websites a user has

visited, but not to aggregate any information about a user’s behavior on those websites (the links

the user clicks, purchases the user makes, etc.). This is the case because no link decoration

is used to insert UIDs into the navigation path: if such link decoration is used, the technique

becomes UID smuggling. A bounce tracker thus cannot link together the different UIDs it has

assigned to a user across different websites. Both UID smuggling and bounce tracking are part

of a class of tracking techniques known as “navigational tracking.”

Cookie syncing allows multiple third parties on a single first-party site to share UIDs

with each other. However, if partitioned storage is in place, third parties cannot share information

109

Figure 6.3. A single step of the ten-step random walk that CrumbCruncher performs for each
seeder domain.

across first-party websites using cookie syncing. When partitioned storage is in use, the storage

available to trackers on the destination site is partitioned away from their storage on the originator.

Thus, all trackers on the originator can share their UIDs with each other, and all trackers on the

destination can do likewise, but trackers on the originator cannot share UIDs with trackers on the

destination.

6.3 Methodology

In this section, we describe CrumbCruncher, a web crawling system based on Puppeteer

that measures the prevalence of UID smuggling in the wild. CrumbCruncher’s goal is to collect

as many potential cases of UID smuggling as possible, and then distinguish the benign cases

from true UID smuggling by determining which smuggled values are truly UIDs. To collect

potential UID smuggling, CrumbCruncher employs multiple synchronized crawlers that simulate

a set of users, with an additional, trailing crawler that simulates a user returning to each site.

CrumbCruncher must then identify which potential UIDs are truly UIDs by comparing them

across each crawl: values that vary across the set of different users but remain static for the

repeat visitor are likely to be UIDs.

The canonical approach for identifying UIDs in prior work is to use only two crawlers

to compare potential UID values across users. Unfortunately, these studies have been forced

110

to discard a large number of potential UIDs from their analyses under two circumstances: first,

when the potential UID only appeared on one crawler instead of both, and second, when the

potential UID might be a session ID instead. Because we expect UID smuggling to be rare

and difficult to find in the wild, we require CrumbCruncher to discard as few UIDs as possible.

CrumbCruncher achieves this goal in three ways. First, it distinguishes UIDs from session IDs

more accurately than prior studies, which allows it to retain UIDs that would have been discarded

by previous common strategies [132, 86, 85, 29]. Second, when potential UID smuggling does

not appear on all crawlers, CrumbCruncher applies programmatic and manual heuristics to

identify UIDs, rather than discarding the cases entirely as prior work does [93, 86, 85, 132, 29].

Finally, CrumbCruncher introduces a novel method for synchronizing web crawlers that click

iframes, which allows it to collect data from the elements that are most likely to contain UID

smuggling. CrumbCruncher also uses four synchronized crawlers, rather than two, giving it

multiple chances to observe each potential UID across two crawlers. Each of these improvements

allows CrumbCruncher to collect or retain more data than previous systems.1

6.3.1 Crawling the Web

CrumbCruncher collects a sample of websites that contain UID smuggling by performing

ten-step random walks. Each random walk begins at a “seeder domain” taken from the Tranco

list of the globally most-popular 10,000 domains [137].2 Each of CrumbCruncher’s multiple

crawlers follows the same walk.

At each step of a walk, CrumbCruncher records all first-party cookies, local storage

values, and web requests on the originator page. Next, it chooses either a frame (<iframe>) or

anchor (<a>) element to click on, in an attempt to trigger navigation. CrumbCruncher selects

iframes because we expect them to contain advertisements which might use UID smuggling.

CrumbCruncher also follows anchors because many webpages do not contain iframe elements.

1For more details on how prior work identified UIDs, please see Section 6.8.
2We choose 10,000 seeder domains because several prior studies also used that number [93, 76, 182].

111

Regardless of element type, CrumbCruncher preferentially chooses elements that navigate to

a URL with a different registered domain than the current page. If such an element does

not exist, CrumbCruncher selects one at random. For each click that triggers a navigation,

CrumbCruncher’s browser extension collects all navigation web requests by implementing a

handler for the chrome.webRequest.onBeforeRequest event. Upon arriving at the destination

page, CrumbCruncher again records all first-party cookies, local storage values, and web requests

for ten seconds.

CrumbCruncher repeats this navigation process, starting at each new page loaded by

the click in the previous step, nine times. It then selects a new seeder domain to start the next

random walk. CrumbCruncher retains browser state (including cookies and storage values)

for the duration of each walk and discards it when beginning a new walk. CrumbCruncher

proceeds in this depth-first manner to maximize the number of distinct pages visited, rather

than maximizing the elements visited per page, to distribute the sites it performs clicks on as

widely as possible. This strategy minimizes CrumbCruncher’s potential impact on advertisers

(see Section 6.4 for more details). It also allows CrumbCruncher to observe websites that range

in popularity, rather than staying within the ecosystem of popular websites.

6.3.2 Detecting potential UID smuggling

The goal of CrumbCruncher’s is to identify cases where a UID has been smuggled —

i.e., passed across sites in defiance of browser protections — which requires differentiating UIDs

from non-tracking tokens. We use the term “token” to refer to any potential UID found inside

the value of a name-value pair, whether that pair is a first-party cookie, a local storage object, or

a query parameter. CrumbCruncher builds on prior work that identifies UIDs by comparing the

tokens that are passed by two different users access a particular website [29, 86, 85, 132, 93, 208].

However, instead of using two crawlers, CrumbCruncher uses four.

Three of the four crawlers — named Safari-1, Safari-2, and Chrome-3 — each simulate a

different user on a Safari or Chrome browser. These three crawlers, which run in parallel, allow

112

CrumbCruncher to discard tokens that are the same across users and are thus unlikely to be

UIDs. We explain how CrumbCruncher spoofs browsers and why we simulate both Safari and

Chrome in Section 6.3.4 and how we impersonate different users in Section 6.3.5. The fourth

crawler, Safari-1R, simulates the same user as Safari-1. Safari-1R checks whether the same

token is observed when a webpage is accessed twice by the same user: specifically, Safari-1R

repeats each crawl step immediately after Safari-1 finishes it. Safari-1R allows CrumbCruncher

to discard tokens that differ when observed repeatedly by the same user, and thus are probably

session IDs, not UIDs; Section 6.3.7 provides more details on this process.

6.3.3 Synchronizing multiple crawlers

One underlying assumption behind the multi-crawler methodology is that all browsers

are accessing the same version of a particular webpage: the four crawlers must visit the same

URL and click the same elements on each page. Figure 6.3 illustrates this process. However, we

find that keeping the crawlers synchronized presents a significant challenge due to the dynamic

nature of the web. Determining which elements are the same on different instances of the same

webpage is not straightforward. Even when accessed in parallel, websites often load dynamic

content: elements that appear on one crawler’s page might not appear on the others’. We also

find that even when elements are the same (e.g., iframes that load the same content), they might

not appear in the same locations or with the same size. Additionally, CrumbCruncher clicks

iframe elements, which often do not have any attribute that identifies where a user will navigate

when they click the iframe. Determining which iframe elements are equivalent across different

instances of a webpage is more challenging than comparing anchor elements, which almost

always have an easily comparable <href> attribute.

To mitigate this issue, CrumbCruncher uses a central controller (a local HTTP server)

to choose the element that Safari-1, Safari-2 and Chrome-3 click in parallel. Upon loading a

page, each crawler sends a list of all anchor and iframe elements on that page to the central

controller. These lists contain the elements’ properties, location, bounding boxes, and x-paths.

113

The controller compares the three lists to find elements that are the same across all three instances

of the page. We consider elements to be the same if any of three heuristics are met:

1. They are anchors and their href values are the same (not including query parameters).

2. They have the same HTML attribute names (the values may differ) and similar bounding

boxes (the y-coordinate may differ, to allow for elements that render at different heights on

the page).

3. They have the same HTML attribute names and x-path.

These heuristics are imperfect: they may incorrectly label elements as the same when

they are not, or incorrectly discard elements. To mitigate these possibilities, CrumbCruncher

compares the fully qualified domain name (FQDN) of the site each crawler has landed on at the

end of every crawl step. If all three FQDNs are not the same, CrumbCruncher terminates the

walk. We still include data from this unsynchronized step in our analyses, because this situation

often occurs when CrumbCruncher has clicked on different advertisements that each exhibit a

separate instance of UID smuggling.

We evaluate the effectiveness of these heuristics and find 7.6% of all crawl steps fail

because CrumbCruncher is unable to find an element that is the same across all three synchronized

crawls: this type of failure occurs at step 3 in Figure 6.3. A further 1.8% of crawl steps fail at

step 6 because the clicked elements were not actually the same, and led to different destination

websites. The only other significant reason why a crawl step might fail is if CrumbCruncher

fails to connect to the website because of a network error (ECONNREFUSED, ECONNRESET, etc.) at

step 1 , which occurred on 3.3% of the sites it attempted to visit. We expect the probability of

any of these failures occurring to be independent of the step of the random walk CrumbCruncher

was on.

114

6.3.4 Impersonating different browsers

All four crawlers use Chrome (version 95 or 92) because our chosen crawling framework,

Puppeteer, is designed for that browser. However, CrumbCruncher impersonates Safari on three

of our four crawlers by spoofing the User-Agent string.3 We chose to test Safari and Chrome

because at the time of writing, Safari implemented partitioned storage by default, while Chrome’s

own defenses against third-party cookies were optional (we enabled them for our study). Our

hypothesis was that trackers might use UID smuggling more frequently on Safari to evade its

ubiquitous partitioned storage protections. Our Chrome-3 crawler was originally intended to test

this hypothesis, but we were unable to use it for this purpose: UID smuggling cases quite often

appeared on only one crawler, regardless of whether that crawler was one of the three Safari

crawlers or the Chrome crawler (see Section 6.3.7). Differentiating cases where content that

performed UID smuggling was loaded dynamically from cases where UID smuggling occurred

deliberately on Safari and not Chrome proved to be impossible, so we simply use Chrome-3 as

another distinct user to identify UIDs.

We note that while spoofing the User-Agent string does change the value of

window.navigator, which is commonly used as a proxy for identifying the browser, it is

not a foolproof method of impersonating a browser. Websites may use more sophisticated

methods to identify a browser, such as comparing the codecs it supports [210]. However, we do

not believe this is a significant problem for our study, because relatively few websites go to such

lengths: Vastel et al. crawled the Alexa top 10,000 websites and found that only 93 appeared to

use sophisticated fingerprinting techniques to identify the browser that was loading them [210].

We therefore consider the risk of sites misidentifying our browser to be small, given how few

websites appear to use fingerprinting to identify browsers.

3We use the Safari User-Agent string Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)

AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15.

115

6.3.5 Impersonating different users

The Chrome browser differentiates users by storing profiles in a folder called the “user

data directory” [183]. To simulate a new user at the start of each random walk, each crawler

starts with a new user data directory. This folder is modified from the default in two ways: first,

third-party cookies are disabled, and second, a Chrome extension is installed that records web

requests.

One potential limitation of our user simulation method is that websites may generate

UIDs using fingerprinting, i.e., by examining factors like User-Agent string, supported fonts,

hardware, and more.4 Many of these inputs are identical across all four crawlers since they are

run on one machine. If a tracker generated its UIDs using fingerprinting, assigned the same

UID across multiple crawlers, and then performed UID smuggling, CrumbCruncher would

erroneously discard those cases. However, we find that this rarely occurs by performing the

following experiment.

We observe that CrumbCruncher will not discard potential instances of UID smuggling

that only appear on a single crawler: only instances that appear on multiple crawlers and have

identical UIDs will be discarded. If CrumbCruncher is erroneously discarding instances of UID

smuggling, we would expect to see very few cases that both occur on multiple crawlers and

originate on sites that perform fingerprinting.

To test this hypothesis, we separate cases of UID smuggling into two groups: the cases

that originate on sites that are known to employ fingerprinting, and cases that originate on other

sites. To determine which sites use fingerprinting, we use the list of fingerprinters found by Iqbal

et al. [117]. Only 13% of UID smuggling in our data originates on pages hosted by one of Iqbal

et al.’s fingerprinters. We then divide both groups again, into the instances that occur on a single

crawler and the instances that occur on multiple crawlers. Next, we compare the proportion of

single-crawler to multiple-crawler instances in the fingerprinting group to the non-fingerprinting

4IP address is generally too variable to be used as an input by fingerprinters [82].

116

group. In the fingerprinting group, 44% of UID smuggling cases occur on multiple crawlers,

whereas in the non-fingerprinting group, 52% of cases occur on multiple crawlers. While the

two-proportion Z test suggests that this difference is statistically significant — and, therefore,

that CrumbCruncher likely missed some cases of UID smuggling due to fingerprinting — the

difference is small. The relative difference between populations suggests CrumbCruncher may

have missed on the order of 13 cases of UID smuggling on sites that employ fingerprinting.

6.3.6 Identifying potential UID smuggling

Once CrumbCruncher has finished collecting data, we search for potential UID tokens

that were transferred across first-party contexts. We define “different first-party contexts” as the

case when the site the token was originally found on has a different registered domain than any

of the sites that eventually received the token, whether those sites are redirectors or the ultimate

destination.

We extract potential UID tokens from cookies, local storage, and query parameters by

recursively attempting to parse the value of each name-value pair5 as JSON or URL-encoded

values. For example, if a query parameter contains a JSON string that itself contains several

URL-encoded tokens, we extract each URL-encoded token individually.

We then discard all of the tokens that were not passed across at least one first-party

context as a query parameter. For example, if the same token was found on both the originator

site and the destination, but was not passed from the originator to the destination as a query

parameter, we discard it. We find that the vast majority of these particular tokens are not used

in UID smuggling, but rather false positives that happen to appear on both websites, such as

location or language specifiers.

However, we keep tokens that only get passed across part of a navigation path. For

example, if a token appears as a query parameter in the URL of a redirector, then gets passed

5We do not look for tokens in the names of name-value pairs because Fouad et al. found that storing UIDs as
names rather than values was a very uncommon practice [93].

117

to the destination, we keep it even if it did not appear on the original URL of that navigation

path. We note that while we cannot tell whether a site that received a UID did anything harmful

with it, the fact that the site received the UID at all represents a privacy risk. Tokens are also

not required to appear as cookies or local storage values: they can appear on the originator and

destination as query parameters in third-party web requests.

6.3.7 Identifying UIDs

After collecting all potential cases of UID smuggling, we identify and discard all of

the cases that transfer harmless values rather than UIDs. Examples of harmless values include

timestamps, language specifiers, session IDs, and so on. While performing this analysis, we

discovered that cases of potential UID smuggling fell into two categories: we labeled these

categories “static” and “dynamic.” Static UID smuggling occurs on elements that are always the

same on every visit to the page. Consequently, cases of static UID smuggling appear on all four

crawlers. Dynamic UID smuggling occurs on elements that load different content on different

page visits. Cases of dynamic UID smuggling appear on fewer than all four crawlers, despite our

efforts to keep the crawlers synchronized. Identifying UIDs in static UID smuggling is simpler

than in dynamic UID smuggling, and we describe our procedure for the static case first.

Identifying UIDs in the static case

To track an individual user, a UID must be the same across all website visits by the same

user and different across visits to the same website by different users. Consequently, we discard

any token that is the same across our crawlers that simulate different users, since these cannot

be UIDs. However, it is also necessary to discard tokens that differ across a single user, since

these tokens are likely to be session IDs that are not used for user tracking. Prior work discarded

session IDs by discarding all tokens whose lifetime was less than a specific time, such as 90

days [132, 86, 85] or a month [29]. CrumbCruncher improves on prior work by comparing

potential session IDs across Safari-1 and Safari-1R, which simulate the same user visiting the

118

Table 6.1. Crawler combinations where UIDs appeared.

User Profiles # Tokens

2 identical plus 1 or more different profiles 325
2 or more different profiles only 171
2 identical profiles only 20
1 profile only 445

same website twice, and discarding the tokens that differ across these crawlers. A sampling of

data collected from one of our crawler machines indicates that 16% of the UIDs we identify have

a lifetime of less than 90 days, and 9% have a lifetime shorter than a month. These UIDs would

have been missed by prior work that uses lifetime to determine whether a token is a session ID.

Identifying UIDs in the dynamic case

Unfortunately, we found that the majority of potential UID smuggling instances were

dynamic and thus did not occur on all four crawlers: in fact, many instances occurred on only a

single crawler. For example, we encountered many cases where each crawler loaded the same

originator website and clicked the same iframe element, but the iframes contained different

advertisements, so each advertisement presented a different navigation path and arrived at a

different destination. We classify tokens that appear on fewer than four crawlers in the following

manner:

1. If a token is present in any two crawls with different user profiles, and its value is the same

across those crawls, we discard it.

2. If a token’s name is present in Safari-1 and Safari-1R, which have the same user profile,

and its value differs, we discard the token.

We are left with two classes of tokens: tokens that are present in only a single crawl, and tokens

that only appear in crawls with different profiles (and have different values across each crawler).

For these tokens, we employ both the programmatic heuristics used by previous work and manual

sorting.

119

We base our programmatic heuristics on those of prior studies [86, 85, 132]. We remove

tokens that appear to be dates or timestamps, tokens that appear to be URLs, and tokens

that are less than eight characters long. We do not impose any restrictions based on cookie

expirations. However, even after we applied these filters, manual inspection of the remaining

tokens revealed a high number of obvious false positives. These included natural language

strings separated by delimiters (such as “Dental_internal_whitepaper_topic,” “share_button”),

concatenated words with no delimiter (“sweetmagnolias,” “trustpilot”), semi-abbreviated words

(“navimail”), acronyms (“en-US”), and more. Filtering most of these out programmatically

presented a significant challenge.

We therefore concluded that programmatic heuristics would be insufficient to distinguish

UIDs from other tokens, and resorted to removing obvious false positives by hand. Our final,

conservative strategy is to remove tokens that are composed of any combination of natural

language words, coordinates, domains, or obvious acronyms like “en-US.” Table 6.1 shows how

many of the final set of UIDs were present on various combinations of crawlers.

In the end, we manually removed 577 out of 1,581 tokens because our programmatic

filters failed to recognize them as non-UIDs. This number is significantly higher than we expected

and underscores the value of attempting to observe UIDs across as many crawlers as possible.

6.3.8 Implementation

We implemented CrumbCruncher using both Puppeteer, to automate site visits and record

cookies and local storage, and a custom Chrome extension, to record web requests. We use

Puppeteer in “headful” mode, using the monitor emulator XVFB [223], to reduce the chance

that CrumbCruncher will be identified as a bot. While Puppeteer is capable of recording most

web requests, it cannot guarantee that it can attach request handlers before any requests on a

page have been sent [44, 47]. We found during initial testing that this led to a significant number

of missed requests; hence, CrumbCruncher records requests using a browser extension instead.

CrumbCruncher runs on twelve Amazon EC2 t2.large instances. Each EC2 instance has a

120

different set of 834 seeder domains. The full crawl of 10,000 seeder domains takes approximately

three days to complete.

6.4 Ethics

CrumbCruncher’s mechanical measurements do not reflect the interests or intentions of

individual consumers. Because CrumbCruncher cannot be influenced to make a purchase after

clicking an ad, there exists a view that our measurements represent potential economic harms

against the profits of the advertising industry and its clients, and that such economic harms may

represent ethical considerations.

Unfortunately, it is difficult to precisely quantify this potential economic harm for a variety

of reasons. First, different ad placements can have different payment triggers, such as cost-per-

mille (CPM), cost-per-click (CPC), or cost-per-action (CPA). Second, different advertisements

are priced differently for each publisher. For example, CrumbCruncher predominantly engages

with display ads, which are commonly placed via real-time auctions. The prices of these

ads fluctuates continuously based on a variety of factors, including conversion rates. Finally,

advertising platforms commonly refund expenditures on ad clicks that they deem to be “bots.”

To establish an upper bound on the economic impact of our study, we estimate that our study

involved fewer than 50,000 ad clicks. If we assume that all of these ads were placed on a top-tier

network (e.g., Google Display Ads, with average CPC of $0.67 and average CPM of $3.12 [203]),

and that none of our clicks were identified as bots, the total cost would be somewhere between

$152 (all CPM ads) and $33,000 (all CPC ads). This expenditure in turn would be spread across

the range of advertising networks and advertisers found in our random walks (a number that is

also hard to estimate, but likely represents an average cost of a dollar or less for each).

Based on this assessment, we argue that the actual costs borne by the advertising

ecosystem due to our experiments are modest. However, even if they were not, we would

still argue that measurements such as those described in this paper are ethical and should

121

Table 6.2. Summary of the navigation paths and their participants measured by CrumbCruncher.

Unique URL Paths 10,814
Unique URL Paths w/ UID Smuggling 850
Unique Domain Paths w/ UID smuggling 321

Unique Redirectors 214
Dedicated Smugglers 27
Multi-Purpose Smugglers 187

Unique Originators 265
Unique Destinations 224

continue to reflect a norm of research practice (as they have for over a decade). The digital

advertising market today stands at close to $400B [199] in annual revenue and increasingly

profits based on its ability to target ads based on detailed profiles of each user. The incentives

to provide ever better targeting are enormous and there is scant evidence that the advertising

industry, on its own, is likely to limit such targeting for the benefit of those users who prefer

to maintain greater privacy. Thus, one of the only mechanisms for monitoring the evolution

in advertising targeting technology — including techniques such as UID smuggling which

are designed to bypass privacy protections — is to have researchers engage directly with the

advertising ecosystem and measure it. Such efforts are critical to inform consumers, regulators

and those technology developers providing improved privacy protections. We believe that such

benefits vastly outweigh any modest losses to advertisers.

6.5 Results

We consider two forms of navigation paths in our evaluation. “URL paths” consist of

the full URLs of the originator, any redirectors, and the destination (e.g., a.com/x/y?UID=0→

b.com/x/y?UID=0). Domain paths consist only of the domains at each step of the path (e.g.,

a.com→ b.com).

In total, we observed 10,814 unique URL paths in the data set we gathered using

CrumbCruncher. We consider unique URL paths, rather than total URL paths including duplicate

122

0 2 4 6 8 10 12 14 16 18 20
Number of Appearances

The Irish Times
The Tennessean

Times Internet
USA Today

Upornia
VIVA Networks
VerizonMedia

au Commerce & Life
Dalfak

DesiPorn
Google

J.D. Power
Red Ventures

SMI2
Slickdeals

Yandex
United Internet

Facebook
Sports Reference

Or
ig

in
at

or
 O

rg
an

iza
tio

n
Originators

0 2 4 6 8 10 12 14 16 18 20
Number of Appearances

Discovery, Inc
FriendFinder Networks

Macy's Inc
Pinterest

Red Ventures
Samsung

TRUSTe
Yandex
AdFox

Amazon.com
Apple

DeepSwap AI
Microsoft

Ask Media Group
Hearst Corp.

USA Today
Facebook

Sports Reference
Google

De
st

in
at

io
n

Or
ga

ni
za

tio
n

Destinations

Figure 6.4. Most common entities involved in UID smuggling as originators or destinations.

paths, because this metric gives a better estimate of how many websites participate in UID

smuggling.

Using our method for identifying UIDs, we found UID smuggling on 8.11% of the

unique URL paths taken by CrumbCruncher. It is interesting that such a non-trivial percentage of

advertisers have implemented UID smuggling, especially given that Chrome — the most widely

used web browser — still permits tracking with third-party cookies by default.

We speculate that the affiliate advertising market may be driving the adoption of UID

smuggling. An affiliate advertising model is one where a company that wishes to publish

advertisements, such as a retailer, hires “affiliates” to distribute the advertisements on their

behalf. The retailer runs an “affiliate program” which creates the advertisements and gives them

to affiliates to distribute. The affiliates earn a commission on every clicked ad that leads to a

purchase, known as a “conversion” [139]. Affiliate programs have reportedly been failing to

attribute conversions because of browsers’ third party cookie blocking [102], and link decoration

allows conversions to be attributed correctly.

In the rest of this section we examine the UID smuggling we discovered in detail to

understand who is implementing it, how they implement it, and why they implement it.

123

6.5.1 Redirectors

We start by identifying the trackers involved as redirectors in the navigation paths that

include UID smuggling. Again, a redirector is an entity that lies in the middle of a navigation

path between the originator and the destination. A smuggler can be any entity along the path that

sends or receives a UID, including a redirector, an originator, or a destination. We use unique

domain paths instead of URL paths for this analysis, because this metric better captures how

widely a redirector is spread across the web, without over-counting repeated instances of UID

smuggling by the same entity.

We classify redirectors into two groups: “dedicated smugglers” and “multi-purpose

smugglers.” We use a conservative heuristic to identify dedicated smugglers that appear to have

no purpose in the navigation path besides UID smuggling.6 Dedicated smugglers exist because

they have the right to set first-party cookies, since they are visited in a first-party context, even

when partitioned storage is in place. They provide an easy way for trackers to aggregate all the

UIDs they collect from different sites into a first-party storage bucket. We consider a redirector a

dedicated smuggler if it meets three requirements:

• The redirector appears in navigation paths whose originators have multiple different

registered domains,

• The redirector appears in navigation paths that end in destinations with multiple registered

domain names,

• The redirector’s FQDN is never observed as an originator or destination.

If a redirector does not meet this criteria, we classify it as a multi-purpose smuggler.

We separate out dedicated smugglers because we are confident that these domains have no

purpose besides UID smuggling, and their sole intent is therefore likely to be enabling trackers

6For example, site-specific redirection services (e.g., Twitter’s t.co) are not considered dedicated smugglers
using this classification.

124

to aggregate users’ information across websites. We also predicted that dedicated smugglers

might be particularly underrepresented in filter lists that block trackers, because UID smuggling

is such a recent technique. Indeed, when we compared the dedicated smugglers that we found to

the Disconnect list of trackers [116], 41% of them (11 out of 27) were not yet present in the list.

However, our heuristic is conservative. The less often CrumbCruncher sees a redirector,

the less likely it is to observe multiple originators and destinations for that redirector, in which

case the redirector would not be classified as a dedicated smuggler. Consequently, some dedicated

smugglers might appear in the “multi-purpose smugglers” category.

Table 6.3 shows the 30 most commonly-occurring redirectors in the navigation paths

we measured. From this list, 16 of the 30 most common redirectors are dedicated smugglers

and 14 are multi-purpose (the multi-purpose smugglers are marked with an asterisk). Of the 16

dedicated smugglers, 14 are owned by advertisers, while the other two (btds.zog.link and

secure.jbs.elsevierhealth.com) have unclear owners or purposes. The most commonly

used dedicated smuggler is DoubleClick, which appears in more than 20% of all cases of UID

smuggling.

The multi-purpose trackers appear to fill a variety of roles: while all of them perform

UID smuggling, some have a separate purpose as well. Some redirect to sign-in pages (e.g.,

signin.lexisnexis.com), host user-facing websites (e.g., www.facebook.com), redirect to

the English-language version of a site by appending “/en/” (e.g., www.getfeedback.com), or

upgrade or downgrade HTTP/HTTPS connections (e.g., kuwosm.world.tmall.com). Some

multi-purpose smugglers are owned by advertising companies, just as the dedicated smugglers

are. Two redirectors, swallowcrockerybless.com and d.agkn.com, appear to be associated

with Potentially Unwanted Programs (PUPs) such as adware.

6.5.2 Originators and destinations

Next, we identify the organizations that acted as originators or destinations during

UID smuggling. We began with the Disconnect entity list [115], which recorded an owning

125

organization for 45 out of the 436 unique registered domains of the originators and destinations.

We then identified the owners of a further 235 registered domains manually (all of the domains

that appeared multiple times, plus as many of the long tail as we could). To manually attribute a

hostname to an organization, we use a combination of WHOIS records, copyright ownership

information published by the company, and visiting the hostname in a browser. We found that

WHOIS was not a reliable method for finding this information as many websites use WHOIS

privacy services, so we relied more frequently on copyright information and other publicly

available information found via searching the Web. An organization is counted once per unique

domain path: if multiple domains owned by a single organization appear more than once in a

domain path, the owning organization is only counted once for that path.

Figure 6.4 shows the originators and destinations observed most frequently in our

measurements. We present the entities as organizations rather than hostnames because some

organizations own multiple hostnames that appeared in our results. We note that many originators

might be expected to publish affiliate advertisements, such as sports websites, news organizations,

and adult websites, while many destinations might have affiliate advertising programs, such as

retailers or technology companies. While we cannot guarantee that these entities participate in

UID smuggling as part of affiliate advertising campaigns, many of these organizations are the

types of organizations that usually participate in affiliate advertising programs as affiliates and

advertisers.

Figure 6.4 also illustrates one particular case of UID smuggling between unexpected

organizations. One of the most common cases of UID smuggling in our measurements was

a navigation path that led from the originator instagram.com, owned by Facebook, to the

Google Play Store. This path existed because the button on instagram.com advertising the

Instagram mobile app always appended instagram.com’s UID cookie to the navigation request

for play.google.com. We were surprised to see that two large advertising companies, that

might be expected to be competitors, were apparently sharing UIDs with each other.

Figure 6.4 also contains an example of UID smuggling that was not initiated by an

126

0 10 20 30 40
Number of Registered Domains

Religion & Spirituality
Family & Parenting

Content Server
Food & Drink

Careers
Dating/Personals

Adult Content
Illegal Content

Under Construction
Streaming Media

Science
Travel

Law Government & Politics
Home & Garden

Social Networking
Automotive

Style & Fashion
Health & Fitness

Arts & Entertainment
Personal Finance

Hobbies & Interests
Shopping
Education

Sports
Business

News/Weather/Information
Technology & Computing

W
eb

sit
e

Ca
te

go
ry

Originators
Destinations

Figure 6.5. Categories of websites that participate in UID smuggling as originators or
destinations.

advertiser, but rather used to synchronize information between multiple domains owned by a

single company. The most common originator in Figure 6.4 is Sports Reference, an organization

that maintains several websites with statistics for popular American sports. This company

owns several sports-themed domains whose websites link frequently to each other, such

as hockey-reference.com, stathead.com, baseball-reference.com, and others [144].

CrumbCruncher spent several random walks in this ecosystem of websites. We hypothesize that

rather than using UID smuggling for advertising, Sports Reference uses it to share information

between its own affiliated sites.

Content categories

We further break down the originators and destinations by categorizing them by the

topic of their site content. We use the categorization defined by the IAB Tech Lab Content

127

Taxonomy [113] as provided by Webshrinker [221], whose data set contains 404 domain

categories [220]. Out of 339 unique registered domains, 307 had a useful category and 32

were categorized as unknown.

Figure 6.5 shows the most common categories of websites that participate in UID

smuggling in our dataset. The counts of websites per category reflect the number of unique

registered domains in that category, so that each registered domain is represented only once

even if CrumbCruncher encountered it multiple times. For example, even though Facebook’s

domains are common originators as seen in Figure 6.4, they only appear twice as originators

in Figure 6.5: once for facebook.com and once for instagram.com, both in the “Social

Networking” category.

Notably, “News/Weather/Information” is the most common category for originators, and

the second most common category overall. This result is consistent with previous studies

that found news websites to have an above-average amount of more traditional tracking

mechanisms, such as fingerprinting and tracking pixels [85, 117]. Our impression, based

on manual inspection of a few of these originators, is that news websites have an above-average

number of advertisements in iframes that perform UID smuggling when they are clicked.

Third parties

After a UID has been transferred through the entire navigation path, it may not have

finished its journey: third parties on the destination site may also send the UID back to their own

servers. Figure 6.6 shows the 20 most common registered domains of the targets of web requests

sent from destination sites that included UIDs.

The third-party trackers listed in this figure include trackers that did not appear to use

UID smuggling. We note that many requests to third party trackers passed the UID only because

the request included the entire URL of the destination site, suggesting that the UID may have

been “leaked” to these entities accidentally. This unintended consequence of UID smuggling

may present a further privacy harm, in that trackers that do not participate in UID smuggling are

128

nevertheless gaining access to UIDs that they would otherwise be unable to observe.

6.5.3 Navigation paths

In this section, we examine the characteristics of navigation paths used for UID smuggling,

including the features that differentiate them from benign navigation paths.

Figure 6.7 shows the number of redirectors in the middle of each URL path that was

used for UID smuggling. The first bar, with zero redirectors, shows the cases where a UID was

transferred directly from the originator to the destination without passing through any redirectors

in between.

The higher the number of redirectors in a path, the greater the proportion of those paths

that contain dedicated smugglers, and the greater the number of dedicated smugglers in each path.

We conclude that shorter navigation paths are more likely to have a benign purpose, whereas

longer navigation paths are more likely to be used for UID smuggling.

Long navigation paths give multiple trackers the ability to share UIDs with each other.

For example, one navigation path started at a coupon-collecting website (couponfollow.com),

passed through a partner site owned by the same entity, then passed through four different

trackers before arriving at the final destination (a retailer). Each of these trackers had the ability

to record information about the ad the user had clicked and their apparent interest in the retailer’s

products.

Long navigation paths can also allow a single tracker to coordinate multiple domains

that it controls. If those domains are connected to separate infrastructure (as might be the case

if one advertising company acquired another and inherited the acquisition’s infrastructure), the

company might wish to synchronize the UIDs stored as first party cookies by redirectors. For

example, the most common pair of redirectors we observed (where the first domain in the pair

immediately redirects to the second domain) is awin1.com→ zenaps.com. Both domains are

owned by the advertiser AWIN.

UIDs do not always begin at the originator and pass through each redirector before

129

arriving at the destination: they may appear at any step of the path and cease their journey at any

number of hops further along. Each navigation path can also contain multiple UIDs. Figure 6.8

shows how many UIDs traverse each portion of the navigation path. We divide the UIDs that

traverse each partial path into two groups: the UIDs that passed through a dedicated smuggler,

and the UIDs that passed through either multi-purpose smugglers only or no redirectors at all.

For example, the second bar, “Originator to Destination,” shows the number of UIDs that were

passed through navigation paths with no redirectors.

We observe that the majority of UIDs are transferred across the entire path from the

originator, through any redirectors if they exist, to the destination. A tracker might wish to do

this when it is reasonably confident that the destination will include one of its scripts, which

is capable of storing the UID under the destination’s domain. If a tracker is present on the

originator and capable of initiating UID smuggling, but is not confident that the destination will

contain one of its scripts, it might choose to transfer the UID through only part of the navigation

path. These “partial transfer” cases involve a higher proportion of dedicated smugglers, which

is further confirmation that the redirectors we label “dedicated” have no other purpose in the

navigation path than UID smuggling. We hypothesize that trackers who only send a UID through

a part of the navigation path might be less widely used, since they are apparently not confident

that the destination will contain one of their scripts.

6.6 Limitations

CrumbCruncher has several limitations. First, we only look for UIDs that are transferred

in the query parameters of URLs, and not by other methods. For example, trackers reportedly

sometimes decorate the link in the document.referrer header with the UID, instead of the

link to the destination page [224]. Our initial reasoning was that there are a wide variety

of ways to transfer UIDs, so we could simply check once a crawl was complete for UIDs

that had mysteriously appeared on different websites without being passed through a URL. In

130

practice, this turned out to be difficult: dynamic instances of UID smuggling had to be detected

using heuristics, which gave large numbers of false positives when used without the additional

information provided by multiple crawlers. It turned out that when the same value appeared

on two different websites, the most common reason was that the value was not a UID and had

simply happened to be generated on both sites. To reduce our false positive rate and therefore

the number of identifiers we had to remove by hand, we chose to consider only values that we

had observed get transferred across at least two first party contexts.

Second, if a website uses browser fingerprinting to generate UIDs, our methodology

may not fool the site into believing that our crawlers represent different users. As detailed in

Section 6.3.5, the effect of browser fingerprinting on our results is very small.

Third, if a tracker uses fingerprinting to identify the browser loading the site, as opposed

to the user, it may be able to tell that CrumbCruncher uses Chrome, not Safari. If a tracker only

uses UID smuggling on Safari, it may choose not to perform it and CrumbCruncher may miss

cases. We expect this to be very uncommon (see Section 6.3.4).

Fourth, our proposed solution to UID smuggling is to strip out the query parameters that

contain UIDs. This may cause pages to break, especially in cases where the UID in the URL is

used for a benign purpose, such as in a login page. Some login pages send UIDs to the server

to determine if a user is already signed in. To test this limitation, we selected ten login pages

from our dataset that CrumbCruncher had classified as performing UID smuggling. We manually

removed the query parameter that contained the UID from the URL, reloaded the page, and

evaluated whether the page changed or broke. We found that seven of the ten sites showed no

change. One showed minor visual changes: the <body> element of the page moved down by

20 pixels. The final two pages showed more significant changes: one failed to auto-fill a field

in a form and the other took the user to a homepage rather than to a specific subpage. These

breakages are a limitation of our proposed mitigation.

Another minor limitation is that the Tranco list of websites includes non-user-facing

websites [188]; however, we note that we only failed to connect to websites on the Tranco list in

131

3.3% of cases. Additionally, our manual heuristic for identifying UIDs may miss UIDs that are

generated by concatenating natural language words; we expect this case to be so rare as to be

almost nonexistent.

6.7 Countermeasures

6.7.1 Existing mitigations

Defending against UID smuggling is not straightforward. Given the difficulty of designing

defenses that do not degrade user experience, most defenders (whether browsers or browser

extensions) have so far opted for either heuristic-based or blocklist-based approaches.

Safari

Safari uses heuristics: the browser will delete cookies and website data set by a redirector

unless the user also interacts with the redirector as a first-party website [114]. Safari labels

an originator as performing UID smuggling if 1) it automatically redirects the user to another

site, and 2) it did not receive a user activation [194, 225]. Safari also classifies a site as a UID

smuggler if it participates in a navigation path that contains another known UID smuggler.

Firefox

In contrast, Firefox defends against UID smugglers using the Disconnect Tracker

Protection blocklist [116, 159]. Firefox clears all storage from sites on the Disconnect tracking

list after 24 hours, unless the user has loaded the site as a first party in the previous 45 days [194].

Unfortunately, we found that many UID smugglers are not yet present on the Disconnect list.

Brave

The Brave browser has multiple approaches for preventing UID smuggling. First, if the

browser is navigating to a link with a query parameter for another destination URL, Brave will

simply redirect to the URL in the query parameter [193]. If the browser cannot detect the final

destination of the navigation, it allows the navigation to proceed, but inserts an interstitial that

132

warns users they will be tracked if they continue. Brave also maintains a list of UID smuggling

URLs created from crowd-sourced and open-source information, as well as a blocklist of query

parameter names that are commonly used for UID smuggling [195, 201]. Finally, Brave clears

the storage areas associated with any sites it classifies as UID smugglers as soon as the user

closes the tab that loaded them.

Chrome

While Chrome is in the process of deprecating third-party cookies [191], it does not

appear to implement any features to defend against UID smuggling yet.

Extensions

Some browser extensions have begun to implement protections against UID smuggling

as well. For example, Privacy Badger [94] — a browser extension by the Electronic Frontier

Foundation that blocks cross-site tracking — identifies when a tracker inserts a redirector into a

navigation path, and extracts the destination link from the query parameter in the redirector’s

URL [69]. Another extension, uBlock Origin, implements an interstitial-based approach similar

to Brave’s [160]. Many browser extensions, such as Adblock, Adblock Plus, and uBlock Origin,

use the EasyList and EasyPrivacy filter lists [89]. We tested the URLs that CrumbCruncher found

to participate in UID smuggling against the EasyList and EasyPrivacy lists, and unfortunately

only 6% of the unique URLs we found would have been blocked. This result is likely because

UID smuggling is such a new technique that filter lists have not yet caught up and begun blocking

the URLs that participate. Additionally, EasyList and EasyPrivacy do not yet implement filters

for specific query parameters. Stripping query parameters rather than blocking entire URLs is

likely to result in fewer broken pages and therefore less inconvenience to users.

6.7.2 Proposed mitigations

CrumbCruncher’s data can help augment the blocklists used by privacy tools and browsers

to defend against UID smuggling. We provide two contributions: first, we publish our list of

133

token names and trackers. This list contains the query parameter names that were used to

transfer UIDs across websites, as well as the list of entities that participate in UID smuggling

as redirectors. Our second contribution is the code for CrumbCruncher itself, which can be

run as an almost entirely automated pipeline to continuously update blocklists of navigational

trackers. A major challenge of blocklist-based defenses lies in keeping those blocklists up to date:

CrumbCruncher can help perform that task with much less human intervention than systems

that rely on user reports of UID smuggling. The code and list of token names and trackers is

available at https://github.com/ucsdsysnet/crumbcruncher. We also observe that while

CrumbCruncher requires far less human effort than a manually created blocklist would, it still

requires some manual intervention. We suggest that an approach based on machine learning for

distinguishing UIDs would be a good avenue of future work, and would allow CrumbCruncher

to perform its tasks in an entirely automated manner.

6.8 Related Work

The work that is most closely related to our own is Koop et al.’s study of bounce

tracking [132]. Bounce tracking is similar to UID smuggling in that users’ navigation paths are

modified to insert redirectors that can store values as first parties, but differs in that no UIDs are

transferred across contexts. Koop et al. study bounce tracking only, and do not measure whether

UIDs are transferred across contexts. CrumbCruncher also clicks both iframes and anchors,

whereas Koop et al.’s crawler clicks only anchors. As a result, CrumbCruncher can detect UID

smuggling used by advertisements in iframes.

To verify that CrumbCruncher crawled a reasonable sample of the Web and successfully

detected modified navigation paths, we measured the instances of bounce tracking that Crumb-

Cruncher observed while it searched for UID smuggling, and compared our findings to the

instances found by Koop et al. We found that bounce tracking that did not also involve UID

smuggling was present on 2.7% of the navigation paths we studied (UID smuggling was present

134

on 8.1%). Because Koop et al. did not measure whether UIDs were transferred across contexts,

their study labeled all UID smuggling that involved one or more redirectors as bounce tracking.

Koop et al. found that “11.6% of the websites in the Alexa top 50,000 had at least one link leading

to one of the top 100 redirectors” [132]. This finding seems consistent with our measurement that

either UID smuggling or bounce tracking is present on a total of 10.8% (8.1% UID smuggling

and 2.7% bounce tracking) of the unique navigation paths we followed.

6.8.1 Prior work on differentiating UIDs

Multiple groups have attempted to differentiate between identifiers that are capable of

tracking users (UIDs) and identifiers that are not. To be a UID, a value must differ across different

users, remain the same for the same user (i.e., it must not be a session ID), and contain sufficient

entropy. Techniques for making these three determinations vary.

Prior work, which focused on cookies that might be UIDs, determined whether a cookie

varied across users by directly or indirectly simulating different users across different crawls.

Some work used two crawlers that visited the same sites simultaneously [85, 86, 93], while others

simulated multiple users sequentially using a single crawler [132] or multiple crawlers [208].

Simulating multiple users sequentially enables a crawler to simulate more different users, because

keeping multiple crawlers synchronized becomes more difficult as the number of crawlers

increases, and a single crawler can evade this problem entirely. The disadvantage of sequential

user simulation in prior work is that the crawlers did not guarantee that they visited each website

more than once and thus observed each cookie more than once. Consequently, some of the

cookies measured by the single sequential crawlers could not be compared across multiple users.

In contrast, CrumbCruncher makes a concerted effort to visit every website in each crawl with

four crawlers that represent three different users, which increases the chance that we can compare

cookies and local storage values across users.

Determining whether a token is a UID also requires discarding session IDs. Most past

studies labeled cookies as session IDs if their lifetime was less than a specific time, such as 90

135

days [132, 86, 85] or a month [29]. These works also required that the token not vary during the

crawl. In contrast, Fouad et al. did not put a lifetime limit on cookies, arguing that trackers can

easily link short-lived cookies on their servers [93]. We improve on prior work for discarding

session IDs by immediately repeating every crawl step using a crawler that mimics one previous

user. We only assume a token is a session ID if it differs across these two crawls. As detailed in

Section 6.3.7, This technique allowed us to include the 16% of UID smuggling instances that we

would have discarded if CrumbCruncher had used a 90-day minimum lifetime.

A further difference between CrumbCruncher and prior work is in how we determine

if tokens are “the same” across users. Some previous work used the Ratcliff/Obershelp

algorithm [49] to compare cookie values and allowed those values to differ by 33% [132, 85, 29],

45% [86], or by an unspecified amount [208], while still treating the cookies as “the same.” We

chose to discard tokens as non-UIDs only when they are entirely identical across different users,

because we wished to be unambiguous about why we had discarded a particular potential UID.

Some previous work also required cookie lengths to remain the same across crawls [29, 86, 208]

or to only differ by 25% [132], as well as requiring cookie lengths to be at least eight characters.

We require token lengths to be greater than or equal to eight characters, but we do not place any

restrictions on the similarity of token lengths across users.

6.8.2 Related work on cookie syncing

A related technique to UID smuggling is cookie syncing, which has been investigated by

multiple groups [208, 29, 168, 85, 169, 209]. Cookie syncing is not the same as UID smuggling,

because it does not allow third parties to share a UID across top level sites when partitioned

storage is in use. Instead, cookie syncing allows third parties on the same site to share a UID

with each other.

136

6.8.3 Other related work

Trackers may circumvent partitioned storage protections using techniques that do not rely

on UID smuggling, such as CNAME cloaking [76, 72] or browser fingerprinting [82, 162, 117].

CNAME cloaking is the procedure of mapping a website subdomain to a third party

domain using a DNS CNAME record. This technique allows trackers to share their first party

cookies, because the browser is tricked into attaching cookies from the original website’s

subdomain rather than the third party domain the subdomain redirects to [76]. Trackers can access

session cookies, even those belonging to financial institutions, using this technique [37, 182].

Browser fingerprinting is another technique used by trackers to circumvent partitioned

storage and track users across websites. Browser fingerprinting allows a tracker to use features

of a user’s browser such as window size, installed fonts, supported codecs, and more to create

a unique “fingerprint” of that user that can function as (or generate) a UID [82]. A 2013 study

crawled 20 pages for each of the Alexa top 10,000 sites and found that 40 performed browser

fingerprinting [162]. A more recent study improved detection of fingerprinting code by using

machine learning [117]. They then measured the Alexa top 100,000 sites and found that 10

percent of them perform fingerprinting. They find fingerprinting is more common with popular

sites, as almost 25% of the Alexa top 10,000 sites perform fingerprinting.

6.9 Summary

In this chapter, we present the first systematic study of UID smuggling, a technique

that allows trackers to evade browsers’ protections against cross-website tracking. We find that

UID smuggling is present across 8.1% of the navigations paths we observed. We publish a list

of the entities that participate in UID smuggling, and classify these entities according to their

behavior and purposes. Our findings can be used by browsers to improve protections against

UID smuggling. Understanding the scope of UID smuggling, and the techniques by which it is

conducted, is important to continue improving privacy on the Web. Browsers are increasingly

137

(though not yet universally) trying to protect their users from being tracked. Understanding how

trackers are circumventing new browser privacy protections is important, to make sure privacy

improvements are not lost as quickly as they are gained.

However, our findings indicate that trackers already frequently employ UID smuggling,

even though the defense it is designed to evade (partitioned storage) is relatively recent. We

conclude that partitioned storage may not be an effective intervention against web trackers,

because the resources it targets (global user identifiers) are easily replaceable. If trackers can

simply link per-website partitioned namespaces to approximate a global namespace, browsers

will not be able to prevent trackers from building user profiles across websites.

Chapter 6, in part, is a reprint of the material as it appears in Proceedings of the Internet

Measurement Conference 2022. Audrey Randall, Peter Snyder, Alisha Ukani, Stefan Savage,

Geoffrey M. Voelker, and Aaron Schulman. The dissertation author was the primary investigator

and author of this paper.

138

Table 6.3. The most common redirectors observed in unique domain paths. Here, “count” refers
to the number of unique navigation paths the domain appeared in. *Multi-purpose smuggler.

Redirector Count % Domain Paths

adclick.g.doubleclick.net 36 11.2
googleads.g.doubleclick.net 20 6.2
advance.lexis.com* 10 3.1
d.agkn.com 9 2.8
btds.zog.link 9 2.8
ad.doubleclick.net 8 2.5
gm.demdex.net 8 2.5
www.kinopoisk.ru* 7 2.2
secure.jbs.elsevierhealth.com 6 1.9
t.myvisualiq.net 6 1.9
11173410.searchiqnet.com 6 1.9
optout.hearstmags.com* 6 1.9
signin.lexisnexis.com* 6 1.9
trc.taboola.com 5 1.6
l.instagram.com* 5 1.6
ads.adfox.ru* 5 1.6
www.facebook.com* 5 1.6
reseau.umontreal.ca* 5 1.6
l.facebook.com 4 1.2
rtb-use.mfadsrvr.com 4 1.2
www.campaignmonitor.com* 4 1.2
6102.xg4ken.com* 4 1.2
swallowcrockerybless.com* 4 1.2
montreal.imodules.com* 4 1.2
www.getfeedback.com* 4 1.2
kuwosm.world.tmall.com* 4 1.2
www.awin1.com 3 0.9
www.zenaps.com 3 0.9
pr.ybp.yahoo.com 3 0.9
go.dgdp.net 3 0.9
other redirectors 45 14.0

139

0 50 100 150 200 250 300
Number of Requests to Website

6sc.co
hubspot.com

scorecardresearch.com
twitter.com

t.co
bing.com

taboola.com
adroll.com

youtube.com
adsrvr.org

pinterest.com
yotpo.com

moatads.com
linkedin.com

yandex.ru
doubleclick.net

google.com
polarcdn-engine.com

facebook.com
google-analytics.com

Th
ird

 P
ar

ty
 W

eb
sit

es

Figure 6.6. Most common domains of third party web requests sent from the destination site.

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of redirectors in navigation path

0

50

100

150

200
Nu

m
be

r o
f u

ni
qu

e
na

vi
ga

tio
n

pa
th

s

2+ dedicated smugglers in path
1+ dedicated smugglers in path
No dedicated smuggler in path

Figure 6.7. Distribution of types of redirectors in URL paths.

0 100 200 300 400
Number of User Identifiers

Redirector to Redirector

Originator to Redirector

Redirector to Destination

Originator to Destination

Originator to Redirector to Destination

Po
rti

on
 o

f N
av

ig
at

io
n

Pa
th

No dedicated smuggler in path
Dedicated smuggler in path

Figure 6.8. Counts of UIDs that traversed each portion of a URL path.

141

Chapter 7

Conclusion

This dissertation has outlined a number of methods for measuring the behavior of

adversaries by studying their use of naming systems. This strategy in general — and the tools I

have presented in particular — give defenders several advantages. Studying information leaked

by naming systems can often provide insights even when all traditional measurement techniques

are impossible. Better yet, the techniques I propose rarely require access to any proprietary

resources. Both of these properties are valuable for defenders who must use limited resources to

counter adversaries that hide their behavior. But even further than simply developing tools that

each only work in one specific situation, I present a new strategy for measuring and combating

adversaries. The steps that I took to use naming systems to measure adversary behavior and

design effective interventions can be applied to new problems, new adversaries, and new naming

systems in the future.

I design my measurement techniques by performing a thorough study of a naming system

and looking for locations where information might leak. I and future defenders can use the

same process with hitherto unexplored aspects of naming system protocols. For example, EDNS

Client Subnet (ECS) is an extension of the DNS protocol that allows resolvers to give different

answers based on the subnet of the requesting client’s IP address. It is conceivable — perhaps

even likely — that ECS might leak information about the locations of adversaries. As another

example, some web services generate unique, per-user domains for various purposes, such as

142

“magic links” for authentication. Enumerating these unique subdomains would give a strong

signal about how many people are using a service.

Similarly, my techniques can be applied to new adversaries as well as new naming systems

and protocols. The list of adversaries I have not had time to study in five short years is extensive,

but near the top are ransomware operators. Ransomware operators use cryptocurrencies as a

payment medium, and cryptocurrencies are often vulnerable to de-anonymization attacks [152].

While ransomware operators are constantly improving their attempts to tumble their ill-gotten

gains and obscure the traces of their use of blockchains, defenders are also improving their

attempts to cluster wallet addresses and identify address owners. The challenging process

of clustering wallet addresses may be aided by the rise of blockchain-based naming systems.

As naming systems like ENS and Unstoppable Domains become more widely used to label

blockchain wallets, defenders can use that signal as a clue to identify more blockchain users. The

more blockchain users can be identified, the more ransomware operators and other bad actors

will stand out, and the easier it will be for defenders to identify them as well.

During the course of my studies, I have also identified areas where further improvements

could be made to make my work more effective and efficient. In particular, one challenge that

was common to several of the studies I performed lay in distributing measurement queries from a

wide variety of locations. I used two existing distributed measurement platforms for this purpose:

CAIDA’s Archipelago (Ark) Project [53] and RIPE’s Atlas nodes [198]. Both systems were

invaluable, but each has specific strengths and weaknesses. The Ark monitors allow users to run

arbitrary code, but there are very few of them compared to the RIPE Atlas probes. RIPE Atlas

probes, while much more numerous than Ark monitors, limit the queries that participants may

make, and are primarily deployed in residential networks. A greater diversity of networks and

number of participants would be useful for many measurement studies, such as the one I outline

in Chapter 4.

In this dissertation, I have described how I measured the prevalence of overt stalkerware

using DNS cache snooping, located DNS redirection attacks by comparing the results of CHAOS

143

and bogon queries, designed interventions against malware that abuses blockchains, and measured

the prevalence of UID smuggling using web crawling. I have made progress both towards

measuring and combating specific adversaries, and developing techniques that can be applied to

future threats. As with all doctoral research, much remains to be done, but I hope that my work

has aided defenders and researchers in studying and battling online attackers. I leave you, dear

reader, with heartfelt thanks for making it to this page, and also a healthy skepticism that it was

the best use of your time, but that is not for me to decide. Go forth, be free, enjoy some fresh air,

and move on to whatever is next: just as I am now about to do, and not without regret, because I

leave behind a wonderful, worthwhile, and fulfilling five years of my life.

144

Bibliography

[1] abuse.ch | .bit - The Next Generation of Bulletproof Hosting. https://abuse.ch/blog/
dot-bit-the-next-generation-of-bulletproof-hosting/.

[2] Access Handshake names. https://learn.namebase.io/starting-from-zero/
how-to-access-handshake-sites.

[3] AlienVault - Open Threat Exchange. https://otx.alienvault.com/pulse/
60fd3f0d396edd67255e401f.

[4] Anomali Blog: The InterPlanetary Storm: New Malware in Wild Using InterPlanetary
File System’s (IPFS) p2p network. https://tinyurl.com/3tkrxnr9.

[5] Decentralized Internet for a Free Future | Skynet Labs. https://skynetlabs.com/.

[6] Ethereum Name Service. https://ens.domains.

[7] FAQ | Go Ethereum. https://geth.ethereum.org/docs/faq#
wait-so-i-cant-use-fast-sync-on-an-hdd.

[8] Handshake. https://handshake.org.

[9] IPFS Powers the Distributed Web. https://ipfs.io.

[10] Namecoin. https://www.namecoin.org/.

[11] Node RPC getnames Response Exceeds Limit · Issue #447 · handshake-org/hsd. https:
//github.com/handshake-org/hsd/issues/447.

[12] Official website of Emercoin. https://emercoin.com/en/.

[13] OpenNIC Project. https://www.opennic.org/.

[14] OpenNIC Public Servers. https://servers.opennicproject.org/.

[15] P2P Network — Bitcoin. https://developer.bitcoin.org/devguide/p2p_network.html.

[16] Resolve Methods for Unstoppable Domains brave/brave-browser Wiki. https://github.
com/brave/brave-browser.

145

https://abuse.ch/blog/dot-bit-the-next-generation-of-bulletproof-hosting/
https://abuse.ch/blog/dot-bit-the-next-generation-of-bulletproof-hosting/
https://learn.namebase.io/starting-from-zero/how-to-access-handshake-sites
https://learn.namebase.io/starting-from-zero/how-to-access-handshake-sites
https://otx.alienvault.com/pulse/60fd3f0d396edd67255e401f
https://otx.alienvault.com/pulse/60fd3f0d396edd67255e401f
https://tinyurl.com/3tkrxnr9
https://skynetlabs.com/
https://ens.domains
https://geth.ethereum.org/docs/faq#wait-so-i-cant-use-fast-sync-on-an-hdd
https://geth.ethereum.org/docs/faq#wait-so-i-cant-use-fast-sync-on-an-hdd
https://handshake.org
https://ipfs.io
https://www.namecoin.org/
https://github.com/handshake-org/hsd/issues/447
https://github.com/handshake-org/hsd/issues/447
https://emercoin.com/en/
https://www.opennic.org/
https://servers.opennicproject.org/
https://developer.bitcoin.org/devguide/p2p_network.html
https://github.com/brave/brave-browser
https://github.com/brave/brave-browser

[17] Should OpenNIC drop support for NameCoin [OpenNIC Wiki]. https://wiki.opennic.org/
votings/drop_namecoin.

[18] The DGAs of Necurs. https://bin.re/blog/the-dgas-of-necurs/.

[19] The Shadowserver Foundation. https://www.shadowserver.org/.

[20] This unusual Windows malware is controlled via a P2P network. https://www.zdnet.com/
article/this-unusual-windows-malware-is-controlled-via-a-p2p-network/.

[21] Malware-Traffic-Analysis.net - 2016-12-27 - EITest Rig-E from 185.156.173.99 sends
Chthonic banking Trojan, December 2016. https://www.malware-traffic-analysis.net/
2016/12/27/index.html.

[22] A Baza Valentine’s Day | Proofpoint US, February 2021. https://www.proofpoint.com/us/
blog/threat-insight/baza-valentines-day.

[23] Blockchain-DNS.info – Blockchain Name Resolver, June 2021. https://web.archive.org/
web/20210621223622/https://blockchain-dns.info/#laghaus.

[24] GitHub - B-DNS/Resolver: Resolver implementation, February 2021. https://web.archive.
org/web/20210228044252/https://github.com/B-DNS/Resolver/.

[25] Own research, what can open source tell us? / Sudo Null IT News,
June 2021. https://web.archive.org/web/20210625041125/https://sudonull.com/post/
3301-Own-research-what-can-open-source-tell-us.

[26] PRQ - Colocation, Dedicated Servers, Web hosting, VPN Tunnels, Privacy services., June
2021. https://web.archive.org/web/20210623012111/https://prq.se/.

[27] ethereum/go-ethereum, September 2022. https://github.com/ethereum/go-ethereum/blob/
511bf8f18801520bf4e0c7e4d098a17d0665bc89/params/bootnodes.go.

[28] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A Multifaceted
Approach to Understanding the Botnet Phenomenon. In Proceedings of the ACM Internet
Measurement Conference (IMC), 2006.

[29] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan, and
Claudia Diaz. The Web Never Forgets: Persistent Tracking Mechanisms in the Wild. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security
(CCS), pages 674–689, 2014.

[30] Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, and Steve Uhlig. Comparing
DNS Resolvers in the Wild. In Proceedings of the ACM Internet Measurement Conference
(IMC), 2010.

[31] Ron Aitchison. Pro Dns and BIND 10. Apress, 2011.

146

https://wiki.opennic.org/votings/drop_namecoin
https://wiki.opennic.org/votings/drop_namecoin
https://bin.re/blog/the-dgas-of-necurs/
https://www.shadowserver.org/
https://www.zdnet.com/article/this-unusual-windows-malware-is-controlled-via-a-p2p-network/
https://www.zdnet.com/article/this-unusual-windows-malware-is-controlled-via-a-p2p-network/
https://www.malware-traffic-analysis.net/2016/12/27/index.html
https://www.malware-traffic-analysis.net/2016/12/27/index.html
https://www.proofpoint.com/us/blog/threat-insight/baza-valentines-day
https://www.proofpoint.com/us/blog/threat-insight/baza-valentines-day
https://web.archive.org/web/20210621223622/https://blockchain-dns.info/#laghaus
https://web.archive.org/web/20210621223622/https://blockchain-dns.info/#laghaus
https://web.archive.org/web/20210228044252/https://github.com/B-DNS/Resolver/
https://web.archive.org/web/20210228044252/https://github.com/B-DNS/Resolver/
https://web.archive.org/web/20210625041125/https://sudonull.com/post/3301-Own-research-what-can-open-source-tell-us
https://web.archive.org/web/20210625041125/https://sudonull.com/post/3301-Own-research-what-can-open-source-tell-us
https://web.archive.org/web/20210623012111/https://prq.se/
https://github.com/ethereum/go-ethereum/blob/511bf8f18801520bf4e0c7e4d098a17d0665bc89/params/bootnodes.go
https://github.com/ethereum/go-ethereum/blob/511bf8f18801520bf4e0c7e4d098a17d0665bc89/params/bootnodes.go

[32] Hüseyin Akcan, Torsten Suel, and Hervé Brönnimann. Geographic Web Usage Estimation
By Monitoring DNS Caches. In Proceedings of the International Workshop on Location
and the Web (LOCWEB), 2008.

[33] Rami Al-Dalky, Michael Rabinovich, and Kyle Schomp. A Look at the ECS Behavior of
DNS Resolvers. In Proceedings of the ACM Internet Measurement Conference (IMC),
2019.

[34] Rami Al-Dalky and Kyle Schomp. Characterization of Collaborative Resolution in
Recursive DNS Resolvers. In Proceedings of the Passive and Active Measurement
Conference (PAM), 2018.

[35] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian, Zhiyun Qian, and Nael B. Abu-
Ghazaleh. Collaborative Client-Side DNS Cache Poisoning Attack. In Proceedings of the
IEEE Conference on Computer Communications (INFOCOM), 2019.

[36] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J Freedman. Blockstack: A global
naming and storage system secured by blockchains. In 2016 USENIX annual technical
conference (USENIX ATC 16), pages 181–194, 2016.

[37] Assel Aliyeva and Manuel Egele. Oversharing Is Not Caring: How CNAME Cloaking
Can Expose Your Session Cookies. In Proceedings of the ACM Asia Conference on
Computer and Communications Security (ASIA CCS), pages 123–134, 2021.

[38] S. Alrwais, X. Liao, X. Mi, P. Wang, X. Wang, F. Qian, R. Beyah, and D. McCoy. Under
the Shadow of Sunshine: Understanding and Detecting Bulletproof Hosting on Legitimate
Service Provider Networks. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 805–823, 2017.

[39] Narseo Vallina-Rodriguez andSrikanth Sundaresan andChristian Kreibich andNicholas
Weaver andVern Paxson. Beyond the Radio: Illuminating the Higher Layers of Mobile
Networks. In Proceedings of the ACM Conference on Mobile Systems, Applications, and
Services (MobiSys), pages 375–387, Florence, Italy, 2015.

[40] Anonymous. The Collateral Damage of Internet Censorship by DNS Injection. In
Proceedings of the ACM SIGCOMM, pages 21–27, Helsinki, Finland, June 2012.

[41] Anonymous. Towards a Comprehensive Picture of the Great Firewall’s DNS Censorship.
In Proceedings of the USENIX Workshop on Free and Open Communications on the
Internet (FOCI), San Diego, CA, USA, 2014.

[42] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed Abu-
Nimeh, Wenke Lee, and David Dagon. From Throw-Away Traffic to Bots: Detecting the
Rise of DGA-Based Malware. USENIX Security, page 16, 2012.

[43] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. Internet Censorship in Iran: A
First Look. In Proceedings of the USENIX Workshop on Free and Open Communications
on the Internet (FOCI), Washington, D.C., USA, 2013.

147

[44] aslushnikov. Intercept target creation: Issue #3667, December 2018. https://github.com/
puppeteer/puppeteer/issues/3667.

[45] Johannes Bader. Yet Another Bazar Loader DGA, January 2021. https://bin.re/blog/
yet-another-bazarloader-dga/.

[46] Jeff Baumgartner. Comcast Taps Arris, Technicolor for ’XB6’ Gateways: Sources. https:
//www.nexttv.com/news/comcast-taps-arris-technicolor-xb6-gateways-sources-409944,
May 2021.

[47] berstend. Target creation event listeners are sometimes not executed early enough: Issue
#2669, June 2018. https://github.com/puppeteer/puppeteer/issues/2669.

[48] Chetna Bindra. Building a privacy-first future for web advertising, January 2021. https:
//blog.google/products/ads-commerce/2021-01-privacy-sandbox/.

[49] Paul E. Black. Ratcliff/Obershelp pattern recognition, January 2021. https://www.nist.
gov/dads/HTML/ratcliffObershelp.html.

[50] Marc Blanchet and Lars-Johan Liman. RFC 7720: DNS Root Name Service Protocol and
Deployment Requirements, 2015.

[51] Danny Bradbury. Testing the defences of bulletproof hosting companies. Network Security,
2014(6):8–12, 2014.

[52] Andrew Brandt. BazarLoader deploys a pair of novel spam vectors, April 2021. https:
//news.sophos.com/en-us/2021/04/15/bazarloader/.

[53] CAIDA. Archipelago (ark) Measurement Infrastructure, 06 2020. https://www.caida.org/
projects/ark/.

[54] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra Padhye.
Analyzing the Performance of an Anycast CDN. In Proceedings of the ACM Internet
Measurement Conference (IMC), 2015.

[55] Patricia Callejo, Rubén Cuevas, Narseo Vallina-Rodriguez, and Ángel Cuevas. Measuring
the Global Recursive DNS Infrastructure: A View From the Edge. In Proceedings of the
IEEE Access, 2019.

[56] Fran Casino, Nikolaos Lykousas, Vasilios Katos, and Constantinos Patsakis. Unearthing
malicious campaigns and actors from the blockchain DNS ecosystem. Computer
Communications, pages 217–230.

[57] Sebastian Castro, Duane Wessels, Marina Fomenkov, and Kimberly Claffy. A Day at the
Root of the Internet. ACM Computer Communication Review (CCR), pages 41–46, 2008.

[58] RDK Central. CcspXDNS, 04 2021. https://wiki.rdkcentral.com/display/RDK/
CcspXDNS.

148

https://github.com/puppeteer/puppeteer/issues/3667
https://github.com/puppeteer/puppeteer/issues/3667
https://bin.re/blog/yet-another-bazarloader-dga/
https://bin.re/blog/yet-another-bazarloader-dga/
https://www.nexttv.com/news/comcast-taps-arris-technicolor-xb6-gateways-sources-409944
https://www.nexttv.com/news/comcast-taps-arris-technicolor-xb6-gateways-sources-409944
https://github.com/puppeteer/puppeteer/issues/2669
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://www.nist.gov/dads/HTML/ratcliffObershelp.html
https://www.nist.gov/dads/HTML/ratcliffObershelp.html
https://news.sophos.com/en-us/2021/04/15/bazarloader/
https://news.sophos.com/en-us/2021/04/15/bazarloader/
https://www.caida.org/projects/ark/
https://www.caida.org/projects/ark/
https://wiki.rdkcentral.com/display/RDK/CcspXDNS
https://wiki.rdkcentral.com/display/RDK/CcspXDNS

[59] RDK Central. RDK Surpasses 80 Million Device Deployments Across Leading Video and
Broadband Service Providers. https://rdkcentral.com/rdk-surpasses-80-million-device-
deployments-across- leading-video-and-broadband-service-providers/, May 2021.

[60] RDK Central. Source code for RDK-B, 05 2021. https://code.
rdkcentral.com/r/plugins/gitiles/rdkb/components/opensource/ccsp/Utopia/+/
7afe5aba7c8e9b89a182cdcffe16159c3b431b16/source/firewall/firewall.c.

[61] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad, Sam Havron, Jackeline Palmer,
Diana Freed, Karen Levy, Nicola Dell, Damien McCoy, and Thomas Ristenpart. The
Spyware Used in Intimate Partner Violence. In Proceedings of the IEEE Symposium on
Security and Privacy (SP), pages 441–458, 2018.

[62] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-User Mapping: Next
Generation Request Routing for Content Delivery. In Proceedings of the ACM SIGCOMM,
2015.

[63] Qi Alfred Chen, Eric Osterweil, Matthew Thomas, and Z. Morley Mao. MitM Attack by
Name Collision: Cause Analysis and Vulnerability Assessment in the New gTLD Era. In
2016 IEEE Symposium on Security and Privacy (SP), pages 675–690, May 2016. ISSN:
2375-1207.

[64] Chuck. “listen on 5353 too?”, 2011. https://groups.google.com/g/public-dns-discuss/c/
MfpyYHcqzjI.

[65] Taejoong Chung, David Choffnes, and Alan Mislove. Tunneling for Transparency: A
Large-Scale Analysis of End-to-End Violations in the Internet. In Proceedings of the
ACM Internet Measurement Conference (IMC), pages 199–213, Santa Monica California
USA, November 2016.

[66] Robert Clarke and Thomas Lancaster. Eliminating the successor to plagiarism? Identifying
the usage of contract cheating sites. In Proceedings of the International Plagiarism
Conference, 2006.

[67] Hacker Codex. How to Stop Your ISP from Hijacking Your DNS Servers, 2012. https:
//hackercodex.com/guide/how-to-stop-isp-dns-server-hijacking/.

[68] Tom Creighton, Chris Griffiths, Jason Livingood, and Ralf Weber. DNS Redirect Use by
Service Providers. Internet Draft: draft-livingood-dns-redirect-03, October 2010.

[69] Bennett Cyphers. Privacy Badger Rolls Out New Ways to Fight
Facebook Tracking, May 2018. https://www.eff.org/deeplinks/2018/05/
privacy-badger-rolls-out-new-ways-fight-facebook-tracking.

[70] Bennett Cyphers. Google’s FLoC Is a Terrible Idea, March 2021. https://www.eff.org/
deeplinks/2021/03/googles-floc-terrible-idea.

149

https://code.rdkcentral.com/r/plugins/gitiles/rdkb/components/opensource/ccsp/Utopia/+/7afe5aba7c8e9b89a182cdcffe16159c3b431b16/source/firewall/firewall.c
https://code.rdkcentral.com/r/plugins/gitiles/rdkb/components/opensource/ccsp/Utopia/+/7afe5aba7c8e9b89a182cdcffe16159c3b431b16/source/firewall/firewall.c
https://code.rdkcentral.com/r/plugins/gitiles/rdkb/components/opensource/ccsp/Utopia/+/7afe5aba7c8e9b89a182cdcffe16159c3b431b16/source/firewall/firewall.c
https://groups.google.com/g/public-dns-discuss/c/MfpyYHcqzjI
https://groups.google.com/g/public-dns-discuss/c/MfpyYHcqzjI
https://hackercodex.com/guide/how-to-stop-isp-dns-server-hijacking/
https://hackercodex.com/guide/how-to-stop-isp-dns-server-hijacking/
https://www.eff.org/deeplinks/2018/05/privacy-badger-rolls-out-new-ways-fight-facebook-tracking
https://www.eff.org/deeplinks/2018/05/privacy-badger-rolls-out-new-ways-fight-facebook-tracking
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea

[71] David Dagon, Niels Provos, Christopher P. Lee, and Wenke Lee. Corrupted DNS
Resolution Paths: The Rise of a Malicious Resolution Authority. In Proceedings of
the Network and Distributed Systems Security (NDSS) Symposium, 2008.

[72] Ha Dao, Johan Mazel, and Kensuke Fukuda. Characterizing CNAME cloaking-based
tracking on the web. In Proceedings of the IFIP/IEEE Traffic Measurement Analysis
Conference (TMA), 2020.

[73] Wouter B. de Vries, Roland van Rijswijk-Deij, Pieter-Tjerk de Boer, and Aiko Pras.
Passive Observations of a Large DNS Service: 2.5 Years in the Life of Google. pages
190–200, 2019.

[74] Selena Deckelmann. Firefox continues push to bring DNS over HTTPS
by default for US users. 2020. https://blog.mozilla.org/blog/2020/02/25/
firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/.

[75] Frank Denis. Performance: How Long Does a Second Actually Last?, 2012. https:
//dzone.com/articles/performance-how-long-does.

[76] Yana Dimova, Gunes Acar, Lukasz Olejnik, Wouter Joosen, and Tom Van Goethem.
The CNAME of the Game: Large-scale Analysis of DNS-based Tracking Evasion. In
Proceedings of the Privacy Enhancing Technologies Symposium (PETS), pages 394–412,
2021.

[77] Dnsmasq. Dnsmasq - network services for small networks., 05 2021. https://thekelleys.
org.uk/dnsmasq/doc.html.

[78] DomainTools. Iris Investigation Platform - Passive DNS, January 2022. https://www.
domaintools.com/products/iris.

[79] Yuhao Dong, Woojung Kim, and Raouf Boutaba. Bitforest: a portable and efficient
blockchain-based naming system. In 2018 14th International Conference on Network and
Service Management (CNSM), pages 226–232. IEEE, 2018.

[80] Yuhao Dong, Woojung Kim, and Raouf Boutaba. Conifer: centrally-managed PKI with
blockchain-rooted trust. In 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages
1092–1099. IEEE, 2018.

[81] Haixin Duan, Nicholas Weaver, Zongxu Zhao, Meng Hu, Jinjin Liang, Jian Jiang, Kang Li,
and Vern Paxson. Hold-On: Protecting Against On-Path DNS Poisoning. In Proceedings
of the Workshop on Securing and Trusting Internet Names (SATIN), London, United
Kingdom, 2012.

[82] Peter Eckersley. How Unique is Your Web Browser? In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS), page 1–18, 2010.

150

https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://dzone.com/articles/performance-how-long-does
https://dzone.com/articles/performance-how-long-does
https://thekelleys.org.uk/dnsmasq/doc.html
https://thekelleys.org.uk/dnsmasq/doc.html
https://www.domaintools.com/products/iris
https://www.domaintools.com/products/iris

[83] The Economist. France v Google, 2013. https://www.economist.com/business/2013/01/
12/france-v-google.

[84] RANDI EITZMAN, KIMBERLY GOODY, and JESSA VALDEZ. How
the Rise of Cryptocurrencies Is Shaping the Cyber Crime Landscape:
Blockchain Infrastructure Use. https://www.mandiant.com/resources/blog/
how-rise-cryptocurrencies-shaping-cyber-crime-landscape-blockchain-infrastructure-use.

[85] Steven Englehardt and Arvind Narayanan. Online Tracking: A 1-million-site Measurement
and Analysis. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 1388–1401, 2016.

[86] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman, Jonathan Mayer,
Arvind Narayanan, and Edward W Felten. Cookies That Give You Away: The Surveillance
Implications of Web Tracking. In Proceedings of the International Conference on World
Wide Web (WWW), pages 289–299, 2015.

[87] etherscan.io. Ethereum Transaction Hash (Txhash) Details | Etherscan. http://etherscan.
io/tx/0x66d1300ef612ec633ede2f26fca4a17d5321ee4c0642d111b5092ec2efae90ba.

[88] Xun Fan, John Heidemann, and Ramesh Govindan. Evaluating Anycast in the Domain
Name System. In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), 2013.

[89] Fanboy, MonztA, Famlam, and Khrin. EasyList - Overview, September 2022. https:
//easylist.to/.

[90] Oliver Farnan, Alexander Darer, and Joss Wright. Analysing Censorship Circumvention
with VPNs Via DNS Cache Snooping. In Proceedings of the IEEE Security and Privacy
Workshops (SPW), 2019.

[91] Rom Feria. Hiding from Data Collectors. https://rom.feria.name/
hiding-from-data-collectors-9485dcb93b22.

[92] Xfinity Community Forum. Changing the DNS on my machine
didn’t work..., 2019. https://forums.xfinity.com/t5/Your-Home-Network/
Changing-the-DNS-on-my-machine-didn-t-work/m-p/3268054#M309013.

[93] Imane Fouad, Nataliia Bielova, Arnaud Legout, and Natasa Sarafijanovic-Djukic. Missed
by Filter Lists: Detecting Unknown Third-Party Trackers with Invisible Pixels. In
Proceedings of the Privacy Enhancing Technologies Symposium (PETS), pages 499–518,
2020.

[94] Electronic Frontier Foundation. Privacy Badger, February 2022. https://privacybadger.
org/.

151

https://www.economist.com/business/2013/01/12/france-v-google
https://www.economist.com/business/2013/01/12/france-v-google
https://www.mandiant.com/resources/blog/how-rise-cryptocurrencies-shaping-cyber-crime-landscape-blockchain-infrastructure-use
https://www.mandiant.com/resources/blog/how-rise-cryptocurrencies-shaping-cyber-crime-landscape-blockchain-infrastructure-use
http://etherscan.io/tx/0x66d1300ef612ec633ede2f26fca4a17d5321ee4c0642d111b5092ec2efae90ba
http://etherscan.io/tx/0x66d1300ef612ec633ede2f26fca4a17d5321ee4c0642d111b5092ec2efae90ba
https://easylist.to/
https://easylist.to/
https://rom.feria.name/hiding-from-data-collectors-9485dcb93b22
https://rom.feria.name/hiding-from-data-collectors-9485dcb93b22
https://forums.xfinity.com/t5/Your-Home-Network/Changing-the-DNS-on-my-machine-didn-t-work/m-p/3268054#M309013
https://forums.xfinity.com/t5/Your-Home-Network/Changing-the-DNS-on-my-machine-didn-t-work/m-p/3268054#M309013
https://privacybadger.org/
https://privacybadger.org/

[95] Diana Freed, Sam Havron, Emily Tseng, Andrea Gallardo, Rahul Chatterjee, Thomas
Ristenpart, and Nicola Dell. “is my phone hacked?” Analyzing Clinical Computer
Security Interventions with Survivors of Intimate Partner Violence. In Proceedings of the
ACM Conference on Human-Computer Interaction, 2019.

[96] Vinay Goel. Get to know the new Topics API for Privacy Sandbox, January 2022.
https://blog.google/products/chrome/get-know-new-topics-api-privacy-sandbox/.

[97] Google. Google Public DNS: Performance Benefits, 2018. https://developers.google.com/
speed/public-dns/docs/performance?hl=zh-cn.

[98] Google. Google Public DNS FAQ. 2020. https://developers.google.com/speed/public-dns/
faq#isp.

[99] Luis Grangeia. DNS Cache Snooping or Snooping the Cache for Fun and Profit. Technical
report, Securi Team-Beyond Security, 2004.

[100] Yunhong Gu. Google Public DNS and Location-Sensitive DNS Responses. https://
webmasters.googleblog.com/2014/12/google-public-dns-and-location.html, 2014.

[101] Ólafur Guðmundsson. Introducing DNS Resolver, 1.1.1.1 (not a joke). https://blog.
cloudflare.com/dns-resolver-1-1-1-1/.

[102] Peter Hamilton. Server-to-Server Tracking Basics (Web-Based Affiliate Marketing), April
2012. https://www.tune.com/blog/server-side-tracking-basics/.

[103] Fakhar ul Hassan, Anwaar Ali, Mohamed Rahouti, Siddique Latif, Salil Kanhere, Jatinder
Singh, AlaAl-Fuqaha, Umar Janjua, Adnan Noor Mian, Junaid Qadir, and Jon Crowcroft.
Blockchain And The Future of the Internet: A Comprehensive Review, November 2020.
http://arxiv.org/abs/1904.00733.

[104] Seppo Hätönen, Aki Nyrhinen, Lars Eggert, Stephen Strowes, Pasi Sarolahti, and Markku
Kojo. An Experimental Study of Home Gateway Characteristics. In Proceedings of the
ACM Internet Measurement Conference (IMC), 2010.

[105] Sam Havron, Diana Freed, Rahul Chatterjee, Damon McCoy, Nicola Dell, and Thomas
Ristenpart. Clinical Computer Security for Victims of Intimate Partner Violence. In
Proceedings of the USENIX Security, 2019.

[106] Amir Herzberg and Haya Shulman. Fragmentation Considered Poisonous, or: one-
domain-to-rule-them-all.org. In IEEE Conference on Communications and Network
Security (CNS), 2013.

[107] Paul Hoffman and Patrick McManus. DNS Queries over HTTPS (DoH). RFC 9494,
October 2018. https://tools.ietf.org/html/rfc8484.

[108] Michael Horowitz. OpenDNS provides added safety for free, 12 2007. https://www.cnet.
com/news/opendns-provides-added-safety-for-free/.

152

https://blog.google/products/chrome/get-know-new-topics-api-privacy-sandbox/
https://developers.google.com/speed/public-dns/docs/performance?hl=zh-cn
https://developers.google.com/speed/public-dns/docs/performance?hl=zh-cn
https://developers.google.com/speed/public-dns/faq#isp
https://developers.google.com/speed/public-dns/faq#isp
https://webmasters.googleblog.com/2014/12/google-public-dns-and-location.html
https://webmasters.googleblog.com/2014/12/google-public-dns-and-location.html
https://blog.cloudflare.com/dns-resolver-1-1-1-1/
https://blog.cloudflare.com/dns-resolver-1-1-1-1/
https://www.tune.com/blog/server-side-tracking-basics/
http://arxiv.org/abs/1904.00733
https://tools.ietf.org/html/rfc8484
https://www.cnet.com/news/opendns-provides-added-safety-for-free/
https://www.cnet.com/news/opendns-provides-added-safety-for-free/

[109] Wei-hong Hu, Meng Ao, Lin Shi, Jia-gui Xie, and Yang Liu. Review of blockchain-based
DNS alternatives. Chinese Journal of Network and Information Security, 3(3):71–77.

[110] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul Hoffman.
Specification for DNS over Transport Layer Security (TLS). RFC 7858, May 2016.
https://tools.ietf.org/html/rfc7858.

[111] Tim Huang, Johann Hofmann, and Arthur Edelstein. Firefox 86 Introduces Total
Cookie Protection, February 2022. https://blog.mozilla.org/security/2021/02/23/
total-cookie-protection.

[112] Zhangrong Huang, Ji Huang, and Tianning Zang. Leopard: Understanding the threat of
blockchain domain name based malware. In International Conference on Passive and
Active Network Measurement, pages 55–70. Springer, 2020.

[113] IAB. IAB Tech Lab Content Taxonomy, February 2022. https://www.iab.com/guidelines/
iab-tech-lab-content-taxonomy/.

[114] Apple Inc. Prevent cross-site tracking in Safari on Mac, 2022. https://support.apple.com/
guide/safari/prevent-cross-site-tracking-sfri40732/mac.

[115] Disconnect Inc. Entity List, 2022. https://github.com/mozilla-services/shavar-prod-lists/
blob/master/disconnect-entitylist.json.

[116] Disconnect Inc. Tracker Protection Lists, 2022. https://github.com/disconnectme/
disconnect-tracking-protection.

[117] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the Fingerprinters:
Learning to Detect Browser Fingerprinting Behaviors. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), pages 1143–1161, 2021.

[118] joenathanone. Hacker News forum: Quad9 location request, 11 2017. https://news.
ycombinator.com/item?id=15712940.

[119] Brian Johnson, Ivan Efremov, and Peter Snyder. Ephemeral Third-party Site Storage,
February 2021. https://brave.com/privacy-updates/7-ephemeral-storage/.

[120] Ben Jones, Nick Feamster, Vern Paxson, Nicholas Weaver, and Mark Allman. Detecting
DNS Root Manipulation. In Proceedings of the Passive and Active Measurement
Conference (PAM), 2016.

[121] Jaeyeon Jung, Arthur W. Berger, and Hari Balakrishnan. Modelling TTL-based
Internet Caches. In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), 2003.

[122] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS Performance and the
Effectiveness of Caching. In Proceedings of the IEEE/ACM Transactions on Networking,
2002.

153

https://tools.ietf.org/html/rfc7858
https://blog.mozilla.org/security/2021/02/23/total-cookie-protection
https://blog.mozilla.org/security/2021/02/23/total-cookie-protection
https://www.iab.com/guidelines/iab-tech-lab-content-taxonomy/
https://www.iab.com/guidelines/iab-tech-lab-content-taxonomy/
https://support.apple.com/guide/safari/prevent-cross-site-tracking-sfri40732/mac
https://support.apple.com/guide/safari/prevent-cross-site-tracking-sfri40732/mac
https://github.com/mozilla-services/shavar-prod-lists/blob/master/disconnect-entitylist.json
https://github.com/mozilla-services/shavar-prod-lists/blob/master/disconnect-entitylist.json
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/disconnectme/disconnect-tracking-protection
https://news.ycombinator.com/item?id=15712940
https://news.ycombinator.com/item?id=15712940
https://brave.com/privacy-updates/7-ephemeral-storage/

[123] Harry Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and Arvind Narayanan.
An empirical study of Namecoin and lessons for decentralized namespace design.

[124] Richard Kastelein. Blockchain Startup Nebulis Set to Solve Problem of DDoS
Attacks On DNS Servers, December 2016. https://www.the-blockchain.com/2016/12/06/
blockchain-startup-nebulis-set-prevent-ddos-attacks-dns-servers/.

[125] Aniket Kesari, Chris Hoofnagle, and Damon McCoy. Deterring Cybercrime: Focus
on Intermediaries. Berkeley Technology Law Journal, 32(3):1093–1134, 2017. https:
//heinonline.org/HOL/P?h=hein.journals/berktech32&i=1137.

[126] Marc Kührer, Thomas Hupperich, Jonas Bushart, Christian Rossow, and Thorsten Holz.
Going Wild: Large-Scale Classification of Open DNS Resolvers. In Proceedings of the
ACM Internet Measurement Conference (IMC), 2015.

[127] Seunghoe Kim. Deep analysis of KPOT Stealer, July 2021. https://medium.com/s2wblog/
deep-analysis-of-kpot-stealer-fb1d2be9c5dd.

[128] Amit Klein and Benny Pinkas. DNS Cache-Based User Tracking. In Proceedings of the
Network and Distributed Systems Security (NDSS) Symposium, 2019.

[129] Amit Klein, Haya Shulman, and Michael Waidner. Counting in the Dark: DNS Caches
Discovery and Enumeration in the Internet. In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2017.

[130] Jason Knight. Domain Takedowns A Step by Step Analysis for Law Enforcement.
February 2015.

[131] Maria Konte, Roberto Perdisci, and Nick Feamster. Aswatch: An as reputation system to
expose bulletproof hosting ases. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 625–638, 2015.

[132] Martin Koop, Erik Tews, and Stefan Katzenbeisser. In-Depth Evaluation of Redirect
Tracking and Link Usage. In Proceedings of the Privacy Enhancing Technologies
Symposium (PETS), pages 394–413, 2020.

[133] Ignat Korchagin and Lennart Poettering. Git commit: resolved: use Cloudflare public
DNS server as a default fallback, 02 2019. https://github.com/systemd/systemd/commit/
def3c7c791e7918a889c2b93dee039ab77b3a523.

[134] Mario Korf and Barb Strom. Introducing a New whoami Tool for DNS
Resolver Information, 2018. https://developer.akamai.com/blog/2018/05/10/
introducing-new-whoami-tool-dns-resolver-information.

[135] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson. Netalyzr:
Illuminating the Edge Network. In Proceedings of the ACM Internet Measurement
Conference (IMC), 2010.

154

https://www.the-blockchain.com/2016/12/06/blockchain-startup-nebulis-set-prevent-ddos-attacks-dns-servers/
https://www.the-blockchain.com/2016/12/06/blockchain-startup-nebulis-set-prevent-ddos-attacks-dns-servers/
https://heinonline.org/HOL/P?h=hein.journals/berktech32&i=1137
https://heinonline.org/HOL/P?h=hein.journals/berktech32&i=1137
https://medium.com/s2wblog/deep-analysis-of-kpot-stealer-fb1d2be9c5dd
https://medium.com/s2wblog/deep-analysis-of-kpot-stealer-fb1d2be9c5dd
https://github.com/systemd/systemd/commit/def3c7c791e7918a889c2b93dee039ab77b3a523
https://github.com/systemd/systemd/commit/def3c7c791e7918a889c2b93dee039ab77b3a523
https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information
https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information

[136] Thomas Lancaster and Robert Clarke. Contract Cheating: The Outsourcing of Assessed
Student Work. 2015.

[137] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyński,
and Wouter Joosen. A research-oriented top sites ranking hardened against manipulation -
Tranco, 2021. https://tranco-list.eu/.

[138] Zach Lerner. MICROSOFT THE BOTNET HUNTER: THE ROLE OF PUBLIC-
PRIVATE PARTNERSHIPS IN MITIGATING BOTNETS. Harvard Journal of Law
and Technology, 28(1):26, 2014.

[139] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Mark Felegyhazi,
Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich, He Liu, Damon
McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M. Voelker, and Stefan Savage. Click
Trajectories: End-to-End Analysis of the Spam Value Chain. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), pages 431–446, 2011.

[140] Abner Li. Google’s Public DNS turns ‘8.8.8.8 years old,’ teases
‘exciting’ future announcements. https://9to5google.com/2018/08/13/
google-public-dns-8-8-8-8-years-future-announcements/, 2018.

[141] He (Lonnie) Liu, Kirill Levchenko, Márk Félegyházi, Christian Kreibich, Gregor Maier,
Geoffrey M Voelker, and Stefan Savage. On the Effects of Registrar-level Intervention.
page 8.

[142] Liu, Baojun and Lu, Chaoyi and Duan, Haixin and Liu, Ying and Li, Zhou and Hao,
Shuang and Yang, Min. Who is Answering My Queries: Understanding and Characterizing
Interception of the DNS Resolution Path. In Proceedings of the USENIX Security, page
1113–1128, Baltimore, MD, USA, 2018.

[143] Joe Security LLC. Automated Malware Analysis Report for bz.arm-20211111-0250
- Generated by Joe Sandbox, November 2021. https://www.joesandbox.com/analysis/
519713/0/pdf.

[144] Sports Reference LLC. Sports Reference | Sports Stats, fast, easy, and up-to-date,
September 2022. https://www.sports-reference.com/.

[145] Owen Lystrup. OpenDNS Enforces Threat Intelligence at the
Speed of Automatic, 04 2020. https://umbrella.cisco.com/blog/
opendns-custom-api-operationalizes-threat-intelligence.

[146] Internet Archive Wayback Machine. Mobile Spy App for Personal Catch Cheating
Spouses, February 2018. https://web.archive.org/web/20180216084527/http://hellospy.
com/hellospy-for-personal-catch-cheating-spouses.aspx?lang=en-US.

[147] Internet Archive Wayback Machine. Catch Cheating Spouses With TheTruthSpy,
May 2020. https://web.archive.org/web/20200523174940/https://thetruthspy.com/
catch-cheating-spouses-with-thetruthspy/.

155

https://tranco-list.eu/
https://9to5google.com/2018/08/13/google-public-dns-8-8-8-8-years-future-announcements/
https://9to5google.com/2018/08/13/google-public-dns-8-8-8-8-years-future-announcements/
https://www.joesandbox.com/analysis/519713/0/pdf
https://www.joesandbox.com/analysis/519713/0/pdf
https://www.sports-reference.com/
https://umbrella.cisco.com/blog/opendns-custom-api-operationalizes-threat-intelligence
https://umbrella.cisco.com/blog/opendns-custom-api-operationalizes-threat-intelligence
https://web.archive.org/web/20180216084527/http://hellospy.com/hellospy-for-personal-catch-cheating-spouses.aspx?lang=en-US
https://web.archive.org/web/20180216084527/http://hellospy.com/hellospy-for-personal-catch-cheating-spouses.aspx?lang=en-US
https://web.archive.org/web/20200523174940/https://thetruthspy.com/catch-cheating-spouses-with-thetruthspy/
https://web.archive.org/web/20200523174940/https://thetruthspy.com/catch-cheating-spouses-with-thetruthspy/

[148] Matthew Mackie. CryptoDNS–Should We Worry? https://insights.sei.cmu.edu/blog/
cryptodns-should-we-worry/.

[149] Linux Programmer’s Manual. GetHostByName – Linux manual page, 06 2020. https:
//www.man7.org/linux/man-pages/man3/gethostbyname_r.3.html.

[150] Zhuoqing Morley Mao, Charles D. Cranor, Fred Douglis, Michael Rabinovich, Oliver
Spatscheck, and Jia Wang. A Precise and Efficient Evaluation of the Proximity Between
Web Clients and Their Local DNS Servers. In Proceedings of the USENIX Annual
Technical Conference, 2002.

[151] Andrew McGregor, Phillipa Gill, and Nicholas Weaver. Cache Me Outside: A New
Look at DNS Cache Probing. In Proceedings of the Passive and Active Measurement
Conference (PAM), pages 427–443, Virtual, 2021.

[152] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy,
Geoffrey M Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013 conference on Internet
measurement conference, pages 127–140, 2013.

[153] Xavier Mertens. Systemd Could Fallback to Google DNS?, 06 2017. https://isc.sans.edu/
forums/diary/Systemd+Could+Fallback+to+Google+DNS/22516/.

[154] Ariana Mirian, Joe DeBlasio, Stefan Savage, Geoffrey M. Voelker, and Kurt Thomas.
Hack for Hire: Exploring the Emerging Market for Account Hijacking. In Proceedings of
the International World Wide Web Conference (WWW), 2019.

[155] Paul V. Mockapetris. Domain Names - Implementation and Specification, 2020. https:
//tools.ietf.org/html/rfc1035.

[156] Joanna Moubarak, Maroun Chamoun, and Eric Filiol. Developing a K-ary malware using
blockchain. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, pages 1–4, April 2018. ISSN: 2374-9709.

[157] Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes Hardaker.
Cache Me If You Can: Effects of DNS Time-to-Live. In Proceedings of the ACM Internet
Measurement Conference (IMC), 2019.

[158] Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt, and
Marco Davids. When the Dike Breaks: Dissecting DNS Defenses During DDoS. In
Proceedings of the ACM Internet Measurement Conference (IMC), 2018.

[159] Mozilla. Enhanced Tracking Protection in Firefox for desktop, 2022. https://support.
mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop.

[160] Jared Newman. The incredibly sneaky way websites sidestep privacy tools
to spy on you, August 2021. https://www.fastcompany.com/90663878/
bounce-tracking-privacy-browsers-brave-firefox-safari-edge.

156

https://insights.sei.cmu.edu/blog/cryptodns-should-we-worry/
https://insights.sei.cmu.edu/blog/cryptodns-should-we-worry/
https://www.man7.org/linux/man-pages/man3/gethostbyname_r.3.html
https://www.man7.org/linux/man-pages/man3/gethostbyname_r.3.html
https://isc.sans.edu/forums/diary/Systemd+Could+Fallback+to+Google+DNS/22516/
https://isc.sans.edu/forums/diary/Systemd+Could+Fallback+to+Google+DNS/22516/
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://www.fastcompany.com/90663878/bounce-tracking-privacy-browsers-brave-firefox-safari-edge
https://www.fastcompany.com/90663878/bounce-tracking-privacy-browsers-brave-firefox-safari-edge

[161] Yu Ng. In the World of DNS, Cache is King, 07 2014. https://blog.catchpoint.com/2014/
07/15/world-dns-cache-king/.

[162] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna. Cookieless Monster: Exploring the Ecosystem of Web-
Based Device Fingerprinting. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), pages 541–555, 2013.

[163] NLNet Labs. Unbound configuration file, 2020. https://nlnetlabs.nl/documentation/
unbound/unbound.conf/.

[164] Arman Noroozian, Jan Koenders, Eelco van Veldhuizen, Carlos H. Ganan, Sumayah
Alrwais, Damon McCoy, and Michel van Eeten. Platforms in Everything: Analyzing
Ground-Truth Data on the Anatomy and Economics of Bullet-Proof Hosting. pages 1341–
1356, 2019. https://www.usenix.org/conference/usenixsecurity19/presentation/noroozian.

[165] OpenDNS. FAQ: Why did Cisco buy OpenDNS?, 2015. https://www.opendns.com/
cisco-opendns/.

[166] John S. Otto, Mario A. Sánchez, John P. Rula, and Fabián E. Bustamante. Content
Delivery and the Natural Evolution of DNS: Remote DNS Trends, Performance Issues
and Alternative Solutions. In Proceedings of the ACM Internet Measurement Conference
(IMC), 2012.

[167] Nikolaos Pantazopoulos and Stefano Antenucci. In-depth analysis of the
new Team9 malware family, June 2020. https://blog.fox-it.com/2020/06/02/
in-depth-analysis-of-the-new-team9-malware-family/.

[168] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos. Cookie
Synchronization: Everything You Always Wanted to Know But Were Afraid to Ask.
In Proceedings of the World Wide Web Conference (WWW), pages 1432–1442, 2019.

[169] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos. Exclusive: How
the (synced) Cookie Monster breached my encrypted VPN session. In Proceedings of the
European Workshop on Systems Security (EuroSec), pages 1–6, April 2018.

[170] Constantinos Patsakis, Fran Casino, Nikolaos Lykousas, and Vasilios Katos. Unravelling
Ariadne’s Thread: Exploring the Threats of Decentralised DNS. IEEE Access, 8:118559–
118571, 2020. Conference Name: IEEE Access.

[171] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver, and Vern
Paxson. Global Measurement of DNS Manipulation. In Proceedings of the USENIX
Security, Vancouver, BC, Canada, 2017.

[172] Rob Pegoraro. The blockchain is making domain names more private—for
good or bad, October 2021. https://www.fastcompany.com/90686579/
blockchain-domains-bit-microsoft.

157

https://blog.catchpoint.com/2014/07/15/world-dns-cache-king/
https://blog.catchpoint.com/2014/07/15/world-dns-cache-king/
https://nlnetlabs.nl/documentation/unbound/unbound.conf/
https://nlnetlabs.nl/documentation/unbound/unbound.conf/
https://www.usenix.org/conference/usenixsecurity19/presentation/noroozian
https://www.opendns.com/cisco-opendns/
https://www.opendns.com/cisco-opendns/
https://blog.fox-it.com/2020/06/02/in-depth-analysis-of-the-new-team9-malware-family/
https://blog.fox-it.com/2020/06/02/in-depth-analysis-of-the-new-team9-malware-family/
https://www.fastcompany.com/90686579/blockchain-domains-bit-microsoft
https://www.fastcompany.com/90686579/blockchain-domains-bit-microsoft

[173] Dave Piscitello. ConfickerSummaryandReview20100507. page 18.

[174] Andreas Pitsillidis, Chris Kanich, Geoffrey M. Voelker, Kirill Levchenko, and Stefan
Savage. Taster’s Choice: A Comparative Analysis of Spam Feeds. In Proceedings of the
ACM Internet Measurement Conference (IMC), 2012.

[175] Stijn Pletinckx, Cyril Trap, and Christian Doerr. Malware Coordination using the
Blockchain: An Analysis of the Cerber Ransomware. In 2018 IEEE Conference on
Communications and Network Security (CNS), pages 1–9, May 2018.

[176] Stijn Pletinckx, Cyril Trap, and Christian Doerr. Malware Coordination using the
Blockchain: An Analysis of the Cerber Ransomware. In 2018 IEEE Conference on
Communications and Network Security (CNS), pages 1–9, 2018.

[177] Quad9. Quad9 Enabled Across New York City Guest and Public WiFi, 03 2018. https:
//www.quad9.net/quad9-enabled-across-new-york-city-guest-and-public-wifi/.

[178] Quad9. Quad9: Internet Security And Privacy In a Few Easy Steps, 06 2020. https:
//www.quad9.net.

[179] Moheeb Abu Rajab, Fabian Monrose, Andreas Terzis, and Niels Provos. Peeking Through
the Cloud: DNS-Based Estimation and Its Applications. In Proceedings of the Applied
Cryptography and Network Security Conference (ACNS), 2008.

[180] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. My Botnet Is
Bigger Than Yours (maybe, Better Than Yours): Why Size Estimates Remain Challenging.
In Proceedings of the USENIX Workshop on Hot Topics in Understanding Botnets, 2007.

[181] Shoushou Ren, Bingyang Liu, Fei Yang, Xinpeng Wei, Xue Yang, and Chuang Wang.
BlockDNS: Enhancing Domain Name Ownership and Data Authenticity with Blockchain.
In 2019 IEEE Global Communications Conference (GLOBECOM), pages 1–6, 2019.

[182] Tongwei Ren, Alexander Wittman, Lorenzo De Carli, and Drew Davidson. An Analysis
of First-Party Cookie Exfiltration due to CNAME Redirections. In Proceedings of the
Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb), 2021.

[183] Chromium Git repository. User Data Directory, 2022. https://chromium.googlesource.
com/chromium/src.git/+/HEAD/docs/user_data_dir.md.

[184] Tarcan Turgut Rohprimardho and Roland M. van Rijswijk-Deij. Peeling the Google DNS
Onion. Technical report, 2015.

[185] root-servers.org. Root Server Technical Operations Association homepage, 2020. https:
//root-servers.org/.

[186] Chris Scharff. Have problems with 1.1.1.1? *read Me First*, 2018. https://community.
cloudflare.com/t/have-problems-with-1-1-1-1-read-me-first/15902.

158

https://www.quad9.net/quad9-enabled-across-new-york-city-guest-and-public-wifi/
https://www.quad9.net/quad9-enabled-across-new-york-city-guest-and-public-wifi/
https://www.quad9.net
https://www.quad9.net
https://chromium.googlesource.com/chromium/src.git/+/HEAD/docs/user_data_dir.md
https://chromium.googlesource.com/chromium/src.git/+/HEAD/docs/user_data_dir.md
https://root-servers.org/
https://root-servers.org/
https://community.cloudflare.com/t/have-problems-with-1-1-1-1-read-me-first/15902
https://community.cloudflare.com/t/have-problems-with-1-1-1-1-read-me-first/15902

[187] Sam Schechner, Patience Haggin, and Tripp Mickle. Google
Overhauls Cookie Replacement Plan After Privacy Critiques
- WSJ, January 2022. https://www.wsj.com/articles/
google-overhauls-cookie-replacement-plan-after-privacy-critiques-11643115603.

[188] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmermann,
Stephen D Strowes, and Narseo Vallina-Rodriguez. A Long Way to the Top: Significance,
Structure, and Stability of Internet Top Lists. In Proceedings of the ACM Internet
Measurement Conference (IMC), pages 478–493, 2018.

[189] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. On Measuring
the Client-Side DNS Infrastructure. In Proceedings of the ACM Internet Measurement
Conference (IMC), 2013.

[190] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. Assessing DNS
Vulnerability to Record Injection. In Proceedings of the Passive and Active Measurement
Conference (PAM), 2014.

[191] Justin Schuh. Building a more private web: A path towards making
third partycookies obsolete, January 2020. https://blog.chromium.org/2020/01/
building-more-private-web-path-towards.html.

[192] Lior Shafir, Yehuda Afek, Anat Bremler-Barr, Neta Peleg, and Matan Sabag. DNS
Negative Caching in the Wild. In Proceedings of the ACM SIGCOMM Conference Posters
and Demos, 2019.

[193] Peter Snyder. Debouncing, October 2021. https://brave.com/privacy-updates/
11-debouncing/.

[194] Peter Snyder and Jeffrey Yasskin. Navigational-Tracking Mitigations, May 2022. https:
//privacycg.github.io/nav-tracking-mitigations/.

[195] Brave Software. adblock-lists/brave-lists/debounce.json, September 2022. https:
//github.com/brave/adblock-lists/blob/1453e599881854f970ab9164a104104ea9ec139f/
brave-lists/debounce.json.

[196] Redhat Customer Solutions. systemd-resolved falls back to Google public DNS servers,
06 2017. https://access.redhat.com/solutions/3083631.

[197] Sooel Son and Vitaly Shmatikov. The Hitchhiker’s Guide to DNS Cache Poisoning. In
Proceedings of the International Conference on Security and Privacy in Communication
Systems (SECURECOMM), 2010.

[198] RIPE NCC Staff. Ripe Atlas: A Global Internet Measurement Network. Internet Protocol
Journal, 2015.

[199] Statista. Digital advertising spending worldwide from 2021 to 2026, 2022. https://www.
statista.com/statistics/237974/online-advertising-spending-worldwide/.

159

https://www.wsj.com/articles/google-overhauls-cookie-replacement-plan-after-privacy-critiques-11643115603
https://www.wsj.com/articles/google-overhauls-cookie-replacement-plan-after-privacy-critiques-11643115603
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://brave.com/privacy-updates/11-debouncing/
https://brave.com/privacy-updates/11-debouncing/
https://privacycg.github.io/nav-tracking-mitigations/
https://privacycg.github.io/nav-tracking-mitigations/
https://github.com/brave/adblock-lists/blob/1453e599881854f970ab9164a104104ea9ec139f/brave-lists/debounce.json
https://github.com/brave/adblock-lists/blob/1453e599881854f970ab9164a104104ea9ec139f/brave-lists/debounce.json
https://github.com/brave/adblock-lists/blob/1453e599881854f970ab9164a104104ea9ec139f/brave-lists/debounce.json
https://access.redhat.com/solutions/3083631
https://www.statista.com/statistics/237974/online-advertising-spending-worldwide/
https://www.statista.com/statistics/237974/online-advertising-spending-worldwide/

[200] Xfinity Help & Support. Overview of Xfinity Gateways, 2020. https://www.xfinity.com/
support/articles/broadband-gateways-userguides.

[201] Brave Privacy Team. "Unlinkable Bouncing" for More Protection Against Bounce
Tracking, March 2022. https://brave.com/privacy-updates/16-unlinkable-bouncing/.

[202] Microsoft Defender Security Research Team. Hunting down Dofoil with Windows
Defender ATP, April 2018. https://www.microsoft.com/security/blog/2018/04/04/
hunting-down-dofoil-with-windows-defender-atp/.

[203] Top Draw Team. Online Advertising Costs In 2021 | Top Draw, March 2021. https:
//www.topdraw.com/insights/is-online-advertising-expensive/.

[204] Threatcrowd.org. Malware: Win32.Trojan-dropper.Necurs. https://www.threatcrowd.org/
listMalware.php?antivirus=Win32.Trojan-dropper.Necurs.Dzts.

[205] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang Wang. Needle in a Haystack:
Tracking Down Elite Phishing Domains in the Wild. In Proceedings of the ACM Internet
Measurement Conference (IMC), October 2018.

[206] Ravikant Tiwari. Evolution of GandCrab Ransomware, August 2018. https://www.acronis.
com/en-us/blog/posts/gandcrab/.

[207] Trellix. Trellix Insights: GandCrab ransomware version 2 released with new .crab
extension and other changes, August 2022. https://kcm.trellix.com/corporate/index?page=
content&id=KB93103&locale=en_US.

[208] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert Pohlmann.
The Unwanted Sharing Economy: An Analysis of Cookie Syncing and User Transparency
under GDPR. In arXiv preprint arXiv:1811.08660, 2018.

[209] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert Pohlmann.
Measuring the Impact of the GDPR on Data Sharing in Ad Networks. In Proceedings of
the ACM Asia Conference on Computer and Communications Security (ASIA CCS), pages
222–235, October 2020.

[210] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. FP-Crawlers:
Studying the Resilience of Browser Fingerprinting to Block Crawlers. In Proceedings
of the Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb), San
Diego, CA, 2020.

[211] Paul Vixie. What DNS is not. Communications of the ACM, 52(12):43–47, 2009.

[212] SoftEther VPN. VPNGate: Public VPN Relay Servers, 2021. https://vpngate.net.

[213] Jane Wakefield. Google slammed over ad-cookie replacement flip-flop. BBC News,
January 2022. https://www.bbc.com/news/technology-60138876.

160

https://www.xfinity.com/support/articles/broadband-gateways-userguides
https://www.xfinity.com/support/articles/broadband-gateways-userguides
https://brave.com/privacy-updates/16-unlinkable-bouncing/
https://www.microsoft.com/security/blog/2018/04/04/hunting-down-dofoil-with-windows-defender-atp/
https://www.microsoft.com/security/blog/2018/04/04/hunting-down-dofoil-with-windows-defender-atp/
https://www.topdraw.com/insights/is-online-advertising-expensive/
https://www.topdraw.com/insights/is-online-advertising-expensive/
https://www.threatcrowd.org/listMalware.php?antivirus=Win32.Trojan-dropper.Necurs.Dzts
https://www.threatcrowd.org/listMalware.php?antivirus=Win32.Trojan-dropper.Necurs.Dzts
https://www.acronis.com/en-us/blog/posts/gandcrab/
https://www.acronis.com/en-us/blog/posts/gandcrab/
https://kcm.trellix.com/corporate/index?page=content&id=KB93103&locale=en_US
https://kcm.trellix.com/corporate/index?page=content&id=KB93103&locale=en_US
https://vpngate.net
https://www.bbc.com/news/technology-60138876

[214] Mary Walker and Cynthia Townley. Contract cheating: a new challenge for academic
honesty? Journal of Academic Ethics, 10(1):27–44, March 2012.

[215] David Y. Wang, Matthew Der, Mohammad Karami, Lawrence Saul, Damon McCoy, Stefan
Savage, and Geoffrey M. Voelker. Search + Seizure: The Effectiveness of Interventions
on SEO Campaigns. In Proceedings of the ACM Internet Measurement Conference (IMC),
pages 359–372, Vancouver, BC, Canada, 2014. ACM Press. http://dl.acm.org/citation.
cfm?doid=2663716.2663738.

[216] Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad Daniels. Strider
Typo-Patrol: Discovery and Analysis of Systematic Typo-Squatting. In Proceedings of the
USENIX Workshop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI), 2006.

[217] Nicholas Weaver, Christian Kreibich, Boris Nechaev, and Vern Paxson. Implications of
Netalyzr’s DNS Measurements. In Proceedings of the Workshop on Securing and Trusting
Internet Names (SATIN), 2011.

[218] Nicholas Weaver, Christian Kreibich, and Vern Paxson. Redirecting DNS for Ads and
Profit. In Proceedings of the USENIX Workshop on Free and Open Communications on
the Internet (FOCI), San Francisco, CA, USA, 2011.

[219] WebKit. Tracking Prevention Policy, August 2019. https://webkit.org/
tracking-prevention-policy/.

[220] Webshrinker. IAB Categories, 2022. https://docs.webshrinker.com/v3/
iab-website-categories.html#iab-categories.

[221] Webshrinker. Webshrinker Website, 2022. https://www.webshrinker.com/.

[222] Lan Wei and John S. Heidemann. Whac-A-Mole: Six Years of DNS Spoofing. arXiv,
2020. https://arxiv.org/abs/2011.12978.

[223] David P. Wiggins. Xvfb—virtual framebuffer X server for X Version 11, May 2022.
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml.

[224] John Wilander. Intelligent Tracking Prevention 2.3, September 2019. https://webkit.org/
blog/9521/intelligent-tracking-prevention-2-3/.

[225] John Wilander. Bounce Tracking Protection · Issue #6 · privacycg/proposals, February
2020. https://github.com/privacycg/proposals/issues/6.

[226] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. Inferring Relative Popularity of
Internet Applications by Actively Querying DNS Caches. In Proceedings of the ACM
Internet Measurement Conference (IMC), 2003.

[227] Suzanne Woolf and David Conrad. Requirements for a Mechanism Identifying a Name
Server Instance. RFC 4892, June 2007. https://tools.ietf.org/html/rfc4892.

161

http://dl.acm.org/citation.cfm?doid=2663716.2663738
http://dl.acm.org/citation.cfm?doid=2663716.2663738
https://webkit.org/tracking-prevention-policy/
https://webkit.org/tracking-prevention-policy/
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://www.webshrinker.com/
https://arxiv.org/abs/2011.12978
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://github.com/privacycg/proposals/issues/6
https://tools.ietf.org/html/rfc4892

[228] Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu, Xiapu Luo, Guoai Xu, and Gareth
Tyson. Challenges in Decentralized Name Management: The Case of ENS. In Proceedings
of the 2013 Internet Measurement Conference (IMC), 2022.

162

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Naming systems in the abstract
	Implementation details of naming systems

	Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers
	Overview
	Background
	A variety of users query public resolvers
	Complex caching can reveal many active users
	Public DNS cache snooping challenges

	Snooping Public DNS Caches
	OpenDNS and Quad9
	Cloudflare DNS
	Google Public DNS (GPDNS)

	Methodology
	Probing multiple PoPs
	Finding unique TTL lines using cache probing

	Evaluation
	Simulating users with RIPE Atlas probes
	Measuring cache fills from Ark nodes

	Case Studies
	Limits on observed users
	Stalkerware
	Contract cheating services
	Typo squatting domains

	Related Work
	Ethics
	Summary

	Home is Where the Hijacking is: Understanding DNS Interception by Residential Routers
	Overview
	Background and Terminology
	Methodology
	Identifying query interception
	Identifying query interception by the CPE
	Query interception by the ISP
	Example of technique in practice

	Why version.bind is necessary to detect CPE interception
	Ethical Considerations
	Pilot Study on RIPE Atlas
	Which probes experience interception?
	Is the interception performed by the CPE?
	Is the interception within the client's ISP?

	Case Study: XB6 Router
	Limitations and Future Work
	Related Work
	Summary

	Challenges of Blockchain-Based Naming Systems for Malware Defenders
	Overview
	Background
	Tradeoffs of DNS-based C2 names
	Blockchain-based domain names

	Overview of Blockchain Naming Systems
	Naming-specific blockchains
	Naming systems on general purpose blockchains

	Intervention Locations
	Reaching the resolver
	Interventions at the name resolver
	Skipping the proxy: the rise of light clients
	Interventions at the database locator
	Interventions at the database
	Interventions after the name record is acquired
	Intervening with name modification or purchase

	Measurements of Name Resolution Queries
	Frequently accessed names
	Unregistered ENS and Unstoppable Domains names
	Requests for registered names from ENS and Unstoppable Domains

	Discussion
	Related Work
	Summary

	Measuring UID Smuggling in the Wild
	Overview
	Background
	Methodology
	Crawling the Web
	Detecting potential UID smuggling
	Synchronizing multiple crawlers
	Impersonating different browsers
	Impersonating different users
	Identifying potential UID smuggling
	Identifying UIDs
	Implementation

	Ethics
	Results
	Redirectors
	Originators and destinations
	Navigation paths

	Limitations
	Countermeasures
	Existing mitigations
	Proposed mitigations

	Related Work
	Prior work on differentiating UIDs
	Related work on cookie syncing
	Other related work

	Summary

	Conclusion
	Bibliography

