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Abstract

A Temporal Approach to Defining Place Types

based on User-Contributed Geosocial Content

Grant Donald McKenzie

Place is one of the foundational concepts on which the field of Geography

has been built. Traditionally, GIScience research into place has been approached

from a spatial perspective. While space is an integral feature of place, it rep-

resents only a single dimension (or a combination of three dimensions to be ex-

act), in the complex, multidimensional concept that is place. Though existing

research has shown that both spatial and thematic dimensions are valuable, time

has historically been under-utilized in its ability to describe and define places and

their types. The recent availability and access to user-generated geosocial content

has allowed for a much deeper investigation of the temporal dimension of place.

Multi-resolution temporal signatures are constructed based on these data permit-

ting both place instances and place types to be compared through a robust set

of (dis)similarity measures. The primary contribution of this work lies in demon-

strating how places are defined through a better understanding of temporal user

behavior. Furthermore, the results of this research present the argument that the

temporal dimension is the most indicative placial dimension for classifying places

by type.

xiv
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Chapter 1

Introduction

1.1 Context & Motivation

When Martin Cooper conceived of the idea for the first handheld mobile phone

in the early 1970s (Cooper et al. 1975), he could not have imagined the immen-

sity of the social impact it would have on society. I doubt that he could have

anticipated how this ground-breaking idea would give rise to a world increas-

ingly reliant on mobile technology. Through this invention emerged many of the

fundamental technological concepts we hold dear: Short Message Service (SMS),

camera-phones, mobile gaming and any of the 1.3 million mobile platform appli-

cations available on Google Play today. Perhaps one of the last possible notions in

Cooper’s mind was that people forty years in the future would rely on a tiny chip

inside their portable mobile devices to trilaterate their geographic position based

on temporal data sent at nanosecond accuracy from satellites orbiting the earth.
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This same handheld device would then use a combination of wireless local area and

cellular technologies to “look-up” the closest restaurant from a digital gazetteer of

over 60 million Points of Interest based on these geographic coordinates, the entire

task completing within seconds and the final result being the purposeful sharing

of this information with millions of strangers around the world. While Cooper

most likely has never met the young entrepreneur Dennis Crowley, Cooper’s work

was most certainly crucial to establishing a platform that does exactly that.

In the late 1990s, Crowley and colleagues redefined a concept that, until then,

was used solely in the transportation domain, checking in, to describe the social

process of “self-reporting one’s position.” While the idea of sharing one’s loca-

tion was not new, Crowley’s belief in the concept of geosocial check-ins led to the

founding of numerous companies, most notably Foursquare. Foursquare succeeded

as a company because it was established at just the right time. Location-aware

technology was just beginning to make its way onto mobile devices and online

social networking services, such as Facebook, were very much in the public eye.

The idea of not only being able to share photos and textual updates with friends,

but also share your location struck a chord with many technologically aware in-

dividuals and lead to the evolution of Location-based Social Networking (LBSN)

or what is now being referred to as Geosocial Networking (GeoSN).
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From a research perspective, the ubiquitous adoption of GeoSN technology

offers a new and exciting look at human activity and placial1 behavior. At last

count, 55 million users (Foursquare 2015a) contributed over 5 billion (Foursquare

2015c) check-ins to over 60 million Points of Interest around the world (Foursquare

2015b). These check-ins represent actual visiting behavior of real people to real

Points of Interest.2 Though the motivation and bias of this check-in behavior must

be addressed, this is the first time in history that researchers have had access to

this type of information at such a high level of spatial and temporal resolution

and at such a large quantity. In many ways, GeoSN data is a ripple in the tidal

wave of data and analytics that gave rise to a new paradigm of science, namely

the Fourth Paradigm.

In early 2007, Jim Gray gave a presentation in which he proposed that a new

paradigm of science has arisen, one of data-intensive scientific discovery. Through-

out this presentation as well as in a book on the subject (Hey et al. 2009) the idea

is presented that we now live in a world that is creating massive amounts of data

containing a plethora of information related to everything from the eating habits

of insects to political ideologies and even geosocial check-ins. Recent advances

in computational capabilities have brought us to a tipping point in research. In

1The term placial in this case parallels the term spatial but specifically for places rather than
spaces.

2With acknowledgement of the fact that this is user-generated content and that POI, check-
ins and users may be manufactured.
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addition to these massive datasets, we now have the analytic tools and the com-

puter processing power to mine, analyze and study the informational content that

is presented through these data. The research presented in this dissertation is

founded in this new paradigm of science in which we now have the ability to

study the temporal aspects of placial human behavior.

It is important to note that the primary focus of this work is on the relationship

between place types and the human temporal behavior that defines them, not on

the value of geosocial networking data. While the data employed for much of

this work is novel, it is critical that the reader understand that the methods and

findings of this research are not specific to geosocial networking data but that

these data form the basis from which to start the discussion.

1.2 The Dimensionality of Place

“Place is not only a fact to be explained in the broader frame of space,
but it is also a reality to be clarified and understood from the perspec-
tives of the people who have given it meaning.” (Tuan 1979)

Place is a difficult concept to define. Places are not items of substance in the

physical sense but rather psychological constructs that mean different things to

different people. Extensive research from a wide variety of disciplines has gone

into defining and understanding place (Relph 1976, Tuan 1977a,b, Shamai 1991,

Cresswell 2013) but to the uninitiated, the terms space and place are often used
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interchangeably. In fact Dictionary.com defines place as “a particular portion of

space, whether of definite or indefinite extent.” While these two concepts may

be synonymous to some, a considerable amount of research has been dedicated to

the dependencies between Place and Space. In the field of geographic information

science, research into place has almost exclusively been approached from a spatial

perspective (Winter et al. 2009). In other words, GIScientists have historically

asked the question What does space have to say about place? While this is an inter-

esting question, it has been researched and discussed extensively in the geospatial

science literature (Agnew 2011, Goodchild et al. 2000, Kwan et al. 2003).

While space is a fundamentally defining feature of place, it is only a single

dimension, or a combination of three dimensions to be exact. Other dimensions

of place have been shown to have significant influence on our understanding of

places and place types. For example, recent research has explored the role of the-

matic space on defining the places in our environment. A thematic dimension of

place can be constructed out of user-generated unstructured natural language text

with the purpose of showing similarity between places (Adams & McKenzie 2013)

and the indicativeness of terms and phrases (Adams & Janowicz 2012, Adams &

McKenzie 2012). Further work has explored thematic space for defining neigh-

borhood boundaries (Cranshaw & Yano 2010, Joseph et al. 2012, Ferrari et al.

2011) and location-based recommendation models (Hu & Ester 2013, Kurashima
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et al. 2010). The research presented in Chapter 3 touches on the relationship

between the thematic dimension and temporal dimensions of place, taking a the-

matic approach to modeling user similarity through the use of geosocial check-in

data.

1.2.1 The Temporal Dimension

Though existing research has shown that both space and theme are important

dimensions of place, research into the ability of the temporal dimension to describe

place has been lacking. Work has been done in areas such as Time Geography

(Pred 1984, Miller 1991, Raper 2000), but the recent availability of user-generated

online geo-content, geosocial check-ins for example, has allowed for a much deeper

investigation of the temporal dimension of place. Time is a powerful source of

information contributing not only to a better understanding of the activities in

which people partake, but also the places at which these activities occur. The

mobility patterns of human beings are shown to be quite repetitive (Song et al.

2010, Lu et al. 2013); We are creatures of habit. Our daily routine, the activities

we do and the locations at which we do them, are quite predictable. Moreover,

the times at which we conduct activities are predictable as well (Lin et al. 2012,

Noulas et al. 2013). The temporal aspects of our placial visiting behavior are, in
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many ways, more indicative of the activities being conducted than the geospatial

locations at which they occur.

To show the importance of time let us take, for example, the following scenario.

An individual is standing inside of a building in downtown Los Angeles, CA. The

building contains three different types of establishments, a nightclub, a bakery

and an Italian restaurant. In which of these establishments is the individual most

likely to be? Without any information other than the geographic location of the

individual, the probability of her being at any one of these establishments is equal

and not at all helpful in determining her placial location. As humans our initial

reaction to this question is to ask a follow up question, namely, What time is it?

The value of knowing the time that an individual is conducting an activity should

not be underestimated. Given the previous example, it is clear to the reader

that nightclubs tend to be frequented late at night, bakeries in the morning and

Italian restaurants at lunch or dinner time. An overly simplistic example, I admit,

but it very clearly shows the value of the temporal dimension and the need for

placial-temporal research.

1.2.2 Semantic Signatures

The amount of solar radiation reflectance of any given material on the surface

of the earth varies depending on wavelength. While certain features on the earth
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show similar reflectance values at specific wavelengths, research in the domain of

remote sensing has shown that combining these values across different wavelengths

produces unique spectral signatures that can be used to categorize features on the

surface of the earth (Silva et al. 1971, Biehl & Stoner 1985, Hunt 1977). Analo-

gous to this idea is that of semantic signatures : a unique set of semantic bands

that can be used to describe and categorize human-defined geographic features,

namely places in our environment (Mülligann et al. 2011, Janowicz 2012a, Adams

& Janowicz 2012). In the same way that individual wavelengths are grouped into

spectral bands (e.g., visible or infrared bands), so too can semantic wavelengths

(e.g., spatial or temporal bands) be grouped. It is only through the combination

of these bands that we can differentiate certain surfacial features in our envi-

ronment. For example, in order to spectrally separate coniferous and deciduous

vegetation, data from both the visible and infrared spectrums are required. Sim-

ilarly, differentiating place types requires a combination of bands. For example,

Fire Stations and Post Offices show similar spatial distribution patterns in a city

and it is only through the inclusion of thematic and temporal bands that we can

begin to differentiate them.
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1.2.3 Place Types

Types and categories are psychological constructs and types of places are no

different in this way. As humans, we have an innate desire to classify the world

around us (Plato et al. 1995, Evangeliou 1988). It helps us to better organize

and therein, understand the environment and our place in it. Simply stating that

a certain place is a Park clearly brings to mind all the common (and arguably

prototypical) attributes of a Park that went into classifying the place as such (e.g.,

open space, fresh air, sports, etc.). Individuals rely on these attributes to classify

places into different types.

A classical or Aristotelian view on categorization focuses purely on the innate

properties of an object (or place in this case) that are similar between objects.

Concepts are isomorphic with respect to the properties and interrelationships of

what we might call the real world (McCloskey & Glucksberg 1978). In contrast, a

behaviorist approach to categorization would state that the classification of places

into types should be based purely on individuals’ views and behaviors towards

places (Sellars 1963) and that the properties of the places themselves should have

no influence on defining place types. Clearly, this work does not adhere strictly

to either of these approaches (or any of the other theoretical categorization ap-

proaches), but rather sees value in merging different aspects of each view to estab-

lish a more general method for determining place types. Recent work in ontology
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engineering mirrors this argument through merging of top-down and bottom-up

approaches to categorization (Janowicz 2012a). Further discussion on this can be

found in Chapter 5.

Throughout this work, places will be discussed in terms of their type. While

the temporal dimension of place at an instance level is of interest, there tends

to be very little difference between the temporal signatures of individual places

within a type (e.g., La Super-Rica Taqueria vs. Lilly’s Tacos). In contrast, the

temporal signatures of Mexican Restaurants and Eastern European Restaurants

are shown to be statistically significant. Furthermore, discussing places at an

instance level only allows for statements to be made about the individual places

themselves, rather than the type of place as a whole. One of the more important

contributions of this research is the temporal inferences that can be made about

a specific place based purely on knowledge of the place type.

1.3 Research Contribution

The primary contribution of this research lies in demonstrating how places are

defined through a better understanding of temporal activity behavior. The times

that we choose to visit certain places are uniquely informative. Through a diverse

set of geocomputational models and data mining techniques this work indicates

10



Chapter 1. Introduction

how temporal data can be employed to differentiate between types of places in our

environment. Furthermore, the results of this research present the argument that

the temporal dimension is the most indicative placial dimension for classifying

places by type.

Research Questions

Each of the individual chapters in this dissertation explore the relationship

between Place and Time from a different perspective. Each chapter asks and

addresses its own distinct set of research questions. In this section, the common

thread or leitmotiv is introduced along with the overarching research questions

that stem from this thread. As this dissertation is formed as a structured cumu-

lation of published works, understanding how the different chapters fit together is

of the utmost importance.

Understanding the relationship between the real-world activities in which in-

dividuals partake and the online actions of these individuals is an important first

step in this work. Before it can be stated that online check-in data is representative

of actual human activities, it must first be shown that there is indeed a correlation

between real-world activities and digital ones. This leads to the following research

question.

R1 What is the strength of the relationship between real-world and on-
line activities? Specifically, what types of real-world activities are men-

11



Chapter 1. Introduction

tioned online, how often are they mentioned and what is the temporal
relationship between an online social post and the real-world event?

Given knowledge of this relationship, it is necessary to look at the places

where these activities occur as well as the people who conduct these activities.

By bringing in the thematic dimension of place it is possible to explore the nuanced

differences between places as well as the (dis)similarities between the place-goers

themselves. The findings of this research suggest that the time at which people

choose to conduct activities has a crucial role in assessing the similarity between

places and people. This fits into the leitmotiv as it shows that time is very much

linked with place type and and the visiting behavior of individuals. The strength

of this link and the influence of time are the focus of this research question.

R2 When determining the similarity of individuals based on the de-
scriptive language of the places that they visit, does the time at which
an individual visits a place significantly influence the accuracy of such
a model?

Keeping in mind that the spatial dimension is a highly defining dimension

of place, what can the temporal dimension add to this? While the previous

research question focused on the intersection between thematic (natural language

descriptions) and temporal dimensions, this question targets the interaction of the

spatial and temporal dimensions.

R3 Can the inclusion of a temporal component enhance existing spatial-
only geolocation methods? Charged with the task of reverse geocoding
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geographic coordinates, can the temporal descriptive aspect of a place
be merged with the spatial layout of a region in order to increase placial
accuracy?

The previous two research questions focused on the relationship between two of

these dimensions, namely Theme & Time and Space & Time. The next step along

the common thread of this research is to explore the value-add of each dimension

in defining place types. It has been shown that each of these dimensions is of

great importance in our understanding of place type, but how do they compare?

R4 How important is time in defining the difference between places
of interest? Typically the dimension of space is taken to be the most
indicative of place types and recent research has shown that theme plays
an important role. What role does the temporal dimension play in
defining place types and how does it compare to the indicativeness of
spatial and thematic attributes?

Last, provided that regionally-aggregated temporal check-in behavior has been

shown to be valuable in defining place types, the regional specificity should be

examined.

R5 Does temporal check-in behavior vary by region? In other words, in
order to be useful for determining place types, should regionally specific
temporal signatures be constructed? Furthermore, do some POI types
vary by region while others do not?
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1.4 Methods

Many methods were used in collecting and analyzing data as part of the re-

search presented in this work. This section outlines a few of the overarching

methods that were employed.

Given the importance of the temporal dimension, how do we model temporal

behavior and show that there are clear differences in temporal behavior at different

places? The striking increase in user-generated geo-content available online has

provided researchers with access to a rich corpus of geosocial check-in data. While

limited by the data-silo nature of many of the location-based social networking

application providers, Application Programming Interfaces (APIs) allow modest

access to much of the content contributed to these platforms.

In this work, one of the primary ways in which temporal behavior is investi-

gated, is through the collection, analysis and reformation of geosocial check-in data

into Temporal Signatures. Drawing on previous research in this area (Ye, Janow-

icz, Mülligann & Lee 2011, Mülligann et al. 2011, Noulas et al. 2011), temporal

signatures fit within the concept of semantic signatures. Temporal signatures were

constructed from hourly check-in data from a variety of regions and categories.

The use of temporal signatures is ubiquitous throughout the work presented in
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this dissertation and necessary for understanding how places differ in the temporal

aspects of their activities.

Rather than simply describing the data, it is often more useful to visually

present this information. For example, these data can be visualized either as

a linear plot of 168 bands (Figure 1.1) or split into Daily and Hourly patterns

(Figure 1.2). Given the inherent cyclical nature of time, visualizing the tempo-

ral signatures linearly may not be the most appropriate method. An important

distinction here is that a linear approach makes the assumption that Sunday and

Saturday are at opposite ends of the temporal spectrum while in reality they are

adjacent to one another. Taking this into consideration, it may be more suitable

to represent a temporal signature as a circular histogram (Figure 6.4).
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Figure 1.1: Linear representation of the temporal signature for Mexican Restaurant.

The signature is constructed out of 168 hourly bands.

In addition to the construction of temporal signatures, numerous other meth-

ods were used in the analysis, visualization and presentation of results. Shannon

(Information) Entropy and the Information Gain associated with the the addi-
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Figure 1.2: Temporal Signature for Mexican Restaurant aggregated by (a) Day of the

Week and (b) Hour of the Day.

tion or removal of temporal/semantic bands were employed extensively in this

research. As the temporal variability and uncertainty of place types is one of the

primary focuses of this work, these approaches proved to be invaluable in both

quantitatively presenting the differences between places, but also permitting the

similarity of place types to be assessed.

(Dis)similarity measures such as the Jensen-Shannon Divergence, Earth Mover’s

Distance and Watson’s U2 Test of Homogeneity, were exploited in this research to

show the differences and similarities between place types and the individuals that

visit those places. Results of these similarity analyses were evaluated through var-

ious rank statistical methods and validated through concordance and correlation

statistics. Further details on the methods are presented in each Chapter.
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Figure 1.3: Circular representation of the temporal signature for Mexican Restaurant.

The signature is constructed out of 168 hourly bands.

1.5 Outline

The remainder of this dissertation is summarized and outlined in the para-

graphs below.

Prior to exploring the power of user-generated content, Chapter 2 first ex-

plores the relationship between online contributions and the real-world activities

that they represent. What types of activity, location and temporal information do

people contribute online and how do these contributions relate to real-world activ-
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ities? This chapter shows that there is a strong correlation between the activities

that people say they will do and the activities the individuals actually complete.

Additionally, it is shown that the time the activity is contributed online and the

time the activity is completed are also related.

In Chapter 3, the role of user-contributed unstructured textual data (tips and

reviews) is examined as a means for calculating similarity between users based on

the places that they visit. While it is shown that textual data analyzed through a

topic modeling approach is able to access the nuanced differences between different

places, it is also shown that time plays a significant role in constructing a user-

similarity model. The time at which a user completes an activity at a given place

is fundamental in the construction of an accurate user-similarity model.

Next, Chapter 4 investigates the relationship between time and space through

explicitly merging spatial and temporal dimensions. Framed by the real-world

problem of geolocation, this work shows that it is possible to augment existing

spatial-only reverse geocoding through the inclusion of a temporal component.

Through a model that (theoretically) distorts space by a factor of time, this work

shows that the ability to correctly identify a place significantly improves through

the inclusion of temporal bands. Multiple methods for combining space and time

are proposed and evaluated.
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Focusing on the greater Los Angeles area as a sample region, Chapter 5 un-

covers the multidimensionality of place in order to describe and categorize Points

of Interest. Various classification and machine learning techniques are used with

semantic bands of space, time and theme to develop an interactive mapping appli-

cation that depicts the pulse of Los Angeles. In combining these three dimensions

of place, it is shown that the temporal dimensions (temporal signatures) rank

much higher in terms of information gain, indicating that time plays a much more

important role in defining the pulse of the city than do other dimensions of place.

The previous chapters have shown that the dimension of time has a significant

role to play in the idea of Place. Up until this point the temporal dimension has

been depicted as a single set of temporal signatures used to describe place types

regardless of their spatial location. In Chapter 6, the regional variability of place

types is investigated through their temporal signatures. It is shown that some

place types are aspatial, (regionally invariant) while others vary quite significantly

with a change in region. In other words, temporally, not all regions are created

equal.

Finally, Chapter 7 presents a general discussion on the findings of this work.

Conclusions are presented as well as a section outlining the limitations of this

research. Last, the Future Work section presents possible directions for future

research and further studies.
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Chapter 2

What, When and Where: The
real-world activities that
contribute to online social
networking posts

In this chapter, the complex relationship between online social networking

contributions and the real-world activities that they represent is investigated.

The research introduced here investigated the types of real-world activities that

are reported online and the spatio-temporal aspects of these posts. The results

show that certain unique activity types are more likely to be shared through

online sources while more common activities are more likely to go unmentioned.

In addition, a temporal link between real-world activities and their related online

contributions is discussed. Given that future chapters rely considerably on data

contributed by users of online geosocial networking applications, this chapter is

essential in that it sets the foundation on which future chapters are based.
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Abstract

Understanding the relationship between online social networking posts and

real-world activities is key for many areas of research including activity prediction

and recommendation engines. This paper presents the results of an exploratory

study conducted with the purpose of extracting the types of an activity that

are reported in an online post. The spatio-temporal components of activities

are explored as well as the categories of the activities being conducted. Results

suggest that activities that occur with less frequency are more likely to contribute

to online action than those that are more routine.

2.1 Introduction

As Online Social Networking (OSN) applications grow in influence and user

base, a multitude of questions have arisen focusing on the relationship between

our real world and the online virtual one. The OSN application Facebook re-

cently reported an average of over 552 million daily active users (Facebook 2012)

with almost as many interacting with the application via a mobile device. These

statistics indicate that OSNs have become fully integrated into our everyday lives,

though questions remain as to the extent of this integration. Given the ubiquity

of OSN applications and our desire to increase social worth, the propensity to
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perform an activity in the real world and then broadcast the accomplishment of

that activity through an OSN must be investigated. A better understanding of

the relationship between our real-world accomplishments and our online social

lives will have significant impacts in research areas ranging from activity behavior

to location prediction systems.

A better understanding of the relationship between online activities and non-

online activities should also direct the studying of the social structures of daily

life. Social factors have been shown to have a significant impact on the activities

we perform in the real world (Ahas et al. 2007, Elliott & Urry 2010, Páez &

Scott 2007), but the question remains as to how that translates to the virtual

world. Current location-based social networks (LBSN) such as Foursquare, Yelp

and even Facebook allow users to broadcast their real-world locations along with

status updates and photos related to the activities they are conducting at these

locations, and with whom. As the users of these applications grow in number,

it becomes more apparent that the desire to share one’s activities is at least

partially socially motivated. Discussions related to social capital and social worth

emerge this notion of activity broadcasting (Pultar et al. 2010). What effect

does publicly announcing your activities have on your social relationships? The

connection between the types of activities that one perceives to increase social

worth and the types of activities that actually do is undoubtedly an area of future
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research. Taking one step at a time, our research offers a first step in exploring

this connection and the activity types.

This paper presents a feasibility study that explores the types, locations and

time frames of real-world activities and the likelihood that these activities are

reported on an online social network. Using activity surveys and online activity

tracking, this research offers an insightful view into the types of daily interac-

tions and events that result in an online announcement. This exploratory study

categorizes real-world activities based on established research guidelines and sta-

tistically determines which categories of activities are most prone to producing an

OSN interaction. Given the spatio-temporal nature of activities (an activity must

occur in space and time), we predict that the location and time of an activity play

important roles in the types of activities that are reported.

The remainder of this paper is organized as follows. Section 2.2 introduces

related work on the relationship between real and online activities. In Section 2.3

we describe the data collection and statistical methods used. Section 2.4 presents

the results of our feasibility study while Section 2.5 and 2.6 discuss a number of

limitations and offer conclusions and next steps for this area of research.
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2.2 Related Work

2.2.1 Activity Categorization

Chapin defines activities as “classified acts or behavior of persons or house-

holds which, used as building blocks, permit us to study the living patterns or

life ways of socially cohesive segments of society” (Chapin 1974). These acts of

behavior may be categorized into a number of different classes. Researchers inves-

tigating time use and activity patterns have produced a plethora of classification

schemes (Axhausen 2008, Parkka et al. 2006) each focused on a specific field. In

addition, guidelines and suggestions have been developed to aid in classification

of activities in endeavors such as activity based travel demand modeling (NCHRP

2008). Activities may be classified based on anything from their frequency, dura-

tion and sequence to social interaction (Golledge 1997). Additionally, the location

at which an activity takes place may also form the framework on which activities

are categorized.

Chapin developed a classification scheme for aggregating activities into two

levels. He categorized activities based on a glossary of approximately 230 activity

codes (Chapin 1974). Szalai et al. (1972) built on Chapin’s classification and pro-

duced a simpler system that they presented in their multinational time-budget

study in 1972. These categories ranged from work to cultural events to trans-
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portation and travel. It is upon much of this work that the categories defined

later are based.

2.2.2 Online Social Networking

In the area of online social networking, it has been shown that interaction

through online social networking applications such as Facebook have a tendency

to increase social capital (Ellison et al. 2007). Not surprisingly, measures and

types of social capital change with the type of online social interaction. Research

in the area of social networks has also explored the role of “friendships” both on-

and offline. While there is definite overlap in “friends” that one has on an online

social networking application and their real-world social network, the research

suggests that online social networks play a role in strengthening different aspects

of offline friendships (Subrahmanyam et al. 2008). This research takes the next

step in understanding the activities that motivate these online interactions.

2.2.3 Activity Prediction

One of the primary motivations for conducting this research is to recognize the

relationship between online posts and real-world activities. An understanding of

this relationship can offer significant insight into activity prediction. A number

of studies have explored the usefulness of social network data in predicting future
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activities (Chang & Sun 2011, Cheng et al. 2011) while others have investigated

the effectiveness of travel trajectories in determining a user’s hometown or place

of residence (Liben-Nowell et al. 2005, Backstrom et al. 2010).

Though most of these studies involve the exploration and use of online com-

munities, surprisingly few have ground-truthed the data with real-world travel or

activity data. While it may be possible to predict an individual’s location based

on her previous location history, was this person at any of the locations previously

reported by the social networking application?

Previous studies have explored the idea of activity-based ground-truthing given

real-world social survey information (Ahas & Mark 2005), but to our knowledge,

very little, if any research has investigated the position of online social network-

ing data in determining an individual’s real-world location (McKenzie & Raubal

2012).

2.3 Methods

This section presents the methods used for data collection and analysis.
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2.3.1 Data Collection

Participants

In order to assess the relationship between Facebook posts and real-world ac-

tivities, a representative sample of online social network users was required. A

total of 30 participants (15 female) between the ages of 20 and 45 (mean = 28.6,

stdev= 5.2) were asked to participate in the research in return for a $20 USD

gift card. These participants were sampled from Facebook using a snowball sam-

pling method (Biernacki & Waldorf 1981). Social acquaintances of the principal

researcher were contacted initially with the offer to participate in the research

study. Additional participants were recruited through word-of-mouth interest

from the initial contacts. The sole requirement for participation was that each

participant have a history (the two weeks before the study) of posting to Facebook

a minimum of once a day on average. This ensured a reasonable amount of data

for analysis and removed bias due to lack of participation.

Collection Methods

The study requested participation over a continuous 3-week period by com-

pletion of two components. First, study participants were asked to record their

activities (to the nearest hour) through a daily activity diary available online. Par-

ticipants were asked to record the start time, end time, location and description
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of the activity performed. Both the location and description fields were presented

as free-text boxes, allowing participants to use their own words when describing

the location and activity. The instructions asked participants to be as detailed as

possible when recording this information since the final goal of the location field

was the ability to geocode.

Second, participants were required to install an application developed by the

research team, allowing access to basic Facebook profile information1 and social

activities. The application gathered profile information on the specific participant

(originally provided to Facebook by the user) as well as posts made by the user

on her own wall (typically only visible to friends). By granting access to this

application, online social network data was downloaded for each participant over

the same 3-week period in which they were completing the daily activity diary.

During the course of data collection, access to 2 of the participant’s Facebook

accounts was interrupted resulting in incomplete datasets, reducing the number of

participants to 28. The study took place over a three-month period from October

to December 2011.

1Profile information consisted of name, gender, birth date, location, email, education, home-
town and username. It is important to note that Facebook considers email as the only required
field.
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2.3.2 Activity Categorization

From the 28 participants in the study, 3,198 activities were recorded to the

daily activity diaries (mean=114, stdev=37.6). As discussed previously, the data

consisted of activity and location descriptions entered as free-text by participants.

In order to include these data in a statistical model, it was necessary to categorize

each of the 3,198 activities recorded by the 28 participants. The two levels of

classes into which each activity was grouped consisted of the type of activity

(What) and the location of the activity (Where). These classes are discussed in

detail in the next sections.

Categorization of activities was achieved through manual processing. The ac-

tivities were anonymized and 3 researchers independently categorized each activity

in both the type and location classes. The principle researcher then reviewed the

results in order to ensure consistency in coding. When a disagreement of activity

categorization was discovered, conflicts among classification were resolved. The

purpose of this multiple-categorization was to remove as much bias as possible

from the categorization process.

Class:What

The What class conveys the type of activity the participant was performing. It

is important to note that an activity can be (and often was) classified in multiple

30



Chapter 2. What, When and Where: The real-world activities that contribute
to online social networking posts

categories. Table 2.1 lists the general categories established based on the data

contributed by users. Example activities are shown as well.

It should be noted that the difference between local and distance travel is

primarily within a city (commute) and between cities respectively.

Category Example activity
Eating Eating Dinner @ Home
Drinking (non-alcoholic beverages) Yumm Coffee @ Starbucks
Drinking (alcoholic beverages) Drinking beer @ OHares
Fitness / Active Bike Ride @ SB Bike Path
Watch TV / Play Video Game / Surf
the Web

Watching Football @ Buddys house

Local Transportation Bus to work
Distance Transportation Catching my flight to Toronto @ YVR

Airport
Shopping Christmas shopping @ Brentwood mall
Errands Dentist Appointment
School Classes, working @ UCSB
Work Sound Design @ Work
Self Maintenance Shower @ Home
Sporting Event Go Canucks @ Rogers Arena
Cultural Entertainment (Concert, Mu-
seum, Play, etc.)

Sounds of Vienna Concert @ Kursalon,
Vienna

Movie Theater Mission Impossible @ South Edmonton
Theaters

Vacation Relaxing Vaca @ Victoria
Party / BBQ Christmas Party @ Work
Other Visiting @ Friends house

Table 2.1: Example activities categorized by What
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Class: Where

The location at which each activity took place was categorized within the

Where class. Unlike the What class, activities were categorized into a single

location type (an activity could not take place at multiple locations). From a

data-entry perspective, participants were asked to enter the name of a single

location for each activity they performed. The example given was a spatial point

described as an intersection of two streets. Actual entries from participants ranged

from residential address to city level precision. For this reason, it was decided to

simply group the Where activity tags into very general categories. Table 2.2 shows

the categories as well as an example activity.

Category Example activity

Home Dinner with Family @ Home
Work/School Working @ Westjest campus, Calgary
Transportation/Trip Bus Home @ Waterfront Station
Other Grocery Shopping @ West 4th & Vine

Table 2.2: Example activities categorized by Where

Class: When

The temporal component of activity posts is also worth exploring. The online

activity diary required that participants enter both a start and an end time to

their activities. The diary allowed participants to specify times to the nearest 30
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minutes. Given the temporal bounds of these real-world activities, we are able to

compare them to the online posts to which they are related.

2.3.3 Facebook Posts

For the purposes of this research, we define Facebook Post as a contribution

of digital content to a user’s social “wall.” To refine it further, our research only

analyzed textual input in the form of a status update made by one participant

on her own wall. The total number of status updates for all users was 352 over

the three-week period (mean=12.6, stdev=9.9). Of the 3,198 activities entered

through the activity diary by the 28 participants, 75 of the activities were linked

to one or more online post. The linking of these activities to posts was again

achieved by manually matching an individual’s online contribution to their real-

world activity.

2.3.4 Analysis

The purpose of this research is to determine what types of activities at which

locations are most likely to result in a post on the online social network Facebook.

In order to achieve this goal, the two classes above were analyzed independently

based on descriptive statistics.
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Analysis of What

In exploring the original categories, we combined a number of the categories

that were often tagged together. These categories roughly follow the Time Bud-

get Classification of Activities framework developed by Szalai et al. (1972) and

built upon Chapin and Logan’s activity classes (Chapin & Logan 1969). Merging

activity types was also a result of the frequency of matched-tags based on the

participant-contributed descriptions.

Eating and drinking (non alcohol related activities) were grouped together as

were common activities often done in sequence at home (sleeping, watching tele-

vision, showering, etc.). Cultural entertainment was also combined ranging from

visits to a museum to concerts and attending sporting events. Lastly, shopping

and running errands were combined as the two are often done together, or could

be synonymous. Table 2.3 lists the number of occurrences categorized from the

self-reported activity diaries as well as the number of Facebook posts in which an

activity of that category was reported.

Analysis of Where

While the categories related to What type of activity were aggregated, the

Where categories were not. This was primarily due to the vagueness of locations

reported in the self-reported activity diaries. As was the case with the categorical
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Category Count
FB
Post

Percentage
reported on FB

Distance
Travel

60 11 18.33

Vacation 30 3 10.00
Entertainment (Concerts, Museum,
Theater, Sporting Events)

41 3 7.32

Drinking
alcohol

96 5 5.21

Party
/ BBQ

70 2 2.86

Fitness 161 4 2.48
Shopping
& Errands

453 9 1.99

Sleeping, watching TV, video games,
browsing internet, self maintenance

969 17 1.75

Eating
& Drinking (non-alcohol)

1017 17 1.67

Local
Travel

240 4 1.67

School
& Work

851 14 1.65

Table 2.3: Activities categorized by What

What data, each location category resulted in a number of online posts. Table 2.4

displays these data in a format mirroring the Where categories.

Analysis of When

Given the temporal bounds of a real-world activity, as provided by a partici-

pant, we are able to evaluate the relationship to the related online post in terms of

time. As mentioned in previous sections, of the 3,198 daily activities, 86 Facebook

posts were judged to be directly related to participants’ real-world activities. It
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Category Count
FB
Post

Percentage
reported on FB

Transportation/Trip 298 14 4.70
Other 1235 38 3.08
Home 1022 16 1.57
Work/School 642 7 1.09

Table 2.4: Activities categorized by Where

is important to note that these 86 posts include duplicate real-world events as a

number of participants posted more than once regarding a specific activity.

In exploring the relationship between real-world activities and online Facebook

posts from a temporal perspective, we ask, how close to an activity does a post

occur in relation to the start of an activity? The data shows that on average a post

occurs approximately 9.31 hours before the start of an activity, with a median of

4.78 and standard deviation of 32.89 hours.

2.4 Results & Discussion

2.4.1 What

Both Distance Travel and Vacation show the highest percentage of posts re-

lated to real-world activities. Activities categorized as Drinking Alcohol and Cul-

tural Entertainment presented lower percentages indicating that they only slightly

influence the likelihood of an OSN user posting online. Not surprisingly, the more
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mundane activities such as Sleeping, watching TV and Self Maintenance are the

least influential in contributing to an online post, along with Shopping & Errands.

More surprising is the fact that activities related to BBQs & Party had little to

no sway on online posts. This could be largely due to the small sample size upon

which this model was built.

The categories that demonstrated the highest influence on Facebook posts

both related to events that occur less frequently than most other categorized oc-

currences. It follows that OSN users feel some increased sense of social value from

traveling, perhaps as it presents a divergence from their average routine. Travel

as it relates to vacation (and work for that matter) symbolizes financial stability,

recreational activities and freedom from our daily routine that most cultures de-

sire. This is slightly mirrored in the activities related to Cultural Entertainment

such as concerts and sporting events.

2.4.2 Where

Again, we explore these data based simply on the number of online posts

stemming from each location category. In looking at table 4, we see that the vast

majority of activities is categorized as either Home or Other with both Transporta-

tion and Work producing less. Given the shear number of activities categorized

as Other (occurring outside of home, work or travel), it is not surprising to see it
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resulting in the most number of online posts. However, it is interesting to note

that the percentage of influence is much higher for Other and Transportation than

Home or Work. Again, as with the What categorization, this increased influence

on online contributions reflects a divergence from the routine activities that most

likely occur at home and work. The Transportation category echoes the results

from the What categorization showing that Distance Travel has a large influence

on posts. This fits with our preconceived notions that activities done at work,

school and home are not as interesting as those completed at other locations and

therefore less worthy of being broadcast to our social circle.

2.4.3 When

The analysis of the temporal relationship between posts and activities indicates

that on average, posts occur 9.31 hours before the start of an activity. In total,

79% of posts were written before the activity, ranging from approximately 9 days

prior to the activity, to the exact start time of an activity (remember we are

dealing with 30 minute resolution). In fact, the vast majority (91%) of posts

in our sample set are within 24 hours of the start of an activity. These results

suggest that access to an individual’s online activity may offer insight into that

individual’s future real-world activities. These results imply significant value to

research in the areas of activity prediction and recommendation engines.
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2.5 Limitations & Next Steps

The method and results presented in this paper have a number of limitations.

Given that this research presents an exploratory study, the number of both partic-

ipants and Facebook posts made by those participants is small. This small sample

size should be taken into account when interpreting the results. For example, the

category Party & BBQ shows 70 occurrences and only 2 posts tagged to this cat-

egory. The first step in expanding this to a full study would be to increase the

number of participants as well as the duration of the study. Moving from a partic-

ipant pool of 30 individuals to 300 (for example) would allow for further statistical

exploration using existing as well as new and more robust methods. Given this

increased sample size, next steps would involve evaluating variable correlations

and employing a binary choice model (Lee 1979) to explore the influence of the

different categories. It is expected that an increased number of participants would

act to strength the results presented in this paper.

The self-reported activity survey should also be enhanced to include some level

of participant tracking (e.g., GPS enabled mobile phones) along with strongly

typed category choices for activities and locations. The free-text entry method

undertaken in this research required considerable manual classification that could

be avoided with standardized drop-down lists, or multiple-choice with an open
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ended “other” category. A more extensive, formalized list of categories combined

with the increased number of participant activities would offer more insight into

types of activities broadcast through an OSN. Alternatively, natural language

processing approaches could potentially be employed to extract location informa-

tion from the updates themselves. Machine learning techniques and geographic

information retrieval methods could both be of considerable value to this area of

research.

Additionally, a wider range of social networking applications will provide more

breadth to the study and enable the generalization of results on a larger scale.

Facebook is by far the most ubiquitous online social network today and the perfect

source for a preliminary study such as this, but future research in this area can

make use of the abundance of online applications surfacing every day.

2.6 Conclusions

This paper presented methods and results from an exploratory study inves-

tigating the relationship between daily activity schedules and online social net-

working posts. This first step showed that it is possible to conduct a study that

explores the interaction between the real world and the virtual one. While this

is an introductory stride in the much larger research agenda of ground-truthing
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online social networking data, the methods produced encouraging results. This

study suggests that activities that occur with less frequency are more likely to con-

tribute to online action than more routine activities. These results also intimate

that users place high social value on activities that diverge from the norm such

as vacations and travel. In summary, this exploratory study offers encouraging

results for understanding the relationship between the real and the online social

world.
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Chapter 3

A Thematic Approach to User
Similarity Built on Geosocial
Check-ins

In this chapter, a model for assessing user similarity based on placial visiting

behavior is constructed. Through the use of geosocial check-in trajectories, the

similarity between individuals is measured based on the topics that are extracted

from unstructured textual reviews contributed online to the places that they visit.

The model can be adjusted to establish similarity based on common or variable

topics. The temporal dimension is featured in this work through the order and

time of places within a person’s daily trajectory. Ultimately, the time at which

someone chooses to visit a place is crucial to the effectiveness of a user similarity

model based on placial behavior.
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Abstract

Computing user similarity is key for personalized location-based recommender

systems and geographic information retrieval. So far, most existing work has

focused on structured or semi-structured data to establish such measures. In

this work, we propose topic modeling to exploit sparse, unstructured data, e.g.,

tips and reviews, as an additional feature to compute user similarity. Our model

employs diagnosticity weighting based on the entropy of topics in order to assess

the role of commonalities and variabilities between similar users. Finally, we

offer a validation technique and results using data from the location-based social

network Foursquare.

3.1 Introduction

Online social networking (OSN) offers new sources of rich geosocial data that

can be exploited to improve geographic information retrieval and recommender

systems. OSN platforms such as Foursquare, Twitter, and Facebook have taken

advantage of the popularity of GPS-enabled mobile devices, allowing users to

geotag their contributions, thus adding spatiotemporal context to their social

interactions.
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This increase in social networking through portable devices has resulted in a

shift from location-static updates to location-dynamic interactions, freeing online

communication from the clutches of the desktop and immersing it in our mobile

lives. Social network users post updates on the go from anywhere in the world, be

it from a restaurant, mountain top, or airplane. These data are having a profound

impact in the study areas of human mobility behavior, recommendation engines,

and location-based similarity measurements.

The abundance of data published through online sources provides an excep-

tional foundation from which to investigate user similarity. To many users of these

OSNs, the benefits of allowing access to this personal information is worth the

cost of privacy. From a research perspective, these data offer an unprecedented

opportunity to observe human behavior and design new methods for exploring

the similarity between individuals. Studying similarity is important for several

reasons. First, it can be used to suggest new contacts and thus, enrich the social

network of a user. Second, as similar users are more likely to share similar inter-

ests, user similarities play a key role in recommender systems (Matyas & Schlieder

2009) and geographic information retrieval (Jones & Purves 2008). For instance,

the Last.fm music platform offers social networking functions by which users can

explore their musical compatibility with others and listen to their personalized

radio stations. Third, and of most importance for our work, the information

45



Chapter 3. A Thematic Approach to User Similarity Built on Geosocial Check-ins

available about users, their locations, and activities is still sparse. User similari-

ties can be exploited to predict types of activities and places preferred by a user

based on those of users with similar preferences.

So far, most work on user similarity has mainly focused on structured, e.g.,

geographic coordinates, or semi-structured, e.g., tags and place categories, data.

Unfortunately, these data are often unable to uncover nuanced differences and

similarities. For instance, two users may frequently visit places tagged as bar and

rated with a Yelp price range of $$. However, unstructured, textual descriptions

reveal that only one of these users constantly visits places that offer pub quizzes.

In this paper we suggest exploring location-based social networking (LBSN) data

to enhance current user similarity measures by focusing on unstructured data,

namely tips provided by users. This approach explicitly focuses on the non-

spatial components of user-contributed data, utilizing topic modeling together

with diagnosticity weights determined by the entropy of different topics. The

temporal properties of a user’s trajectory are also included when calculating user

similarity. Our initial results show that the similarity between individuals is not

uniform throughout the day. Thus, instead of generalizing similarity simply to

the user level, we propose a method for assessing similarity on an activity-by-

activity basis, exploiting the temporal as well as the spatial attributes of a user’s

trajectory.
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The remainder of the paper is organized as follows. In Section 3.2, we discuss

related work on user similarity and location-based social networks. Section 3.3

focuses on data mining and the methods used for defining user similarity. In

Section 3.4, we present results based on actual user data. Section 3.5 discusses a

few of the limitations we faced in conducting this research and Section 3.6 presents

our conclusions and points out directions for future work.

3.2 Related Work

Assessing user similarity has become an important topic in information re-

trieval and recommender systems over the past few years. The motivations for

developing user similarity measures range considerably, from recommendation sys-

tems (Guy et al. 2009, Horozov et al. 2006) and dating sites (Hitsch et al. 2010)

to location and activity prediction (Lima & Musolesi 2012, Noulas et al. 2012).

A number of recent studies have focused on measuring user similarity through

trajectory comparison (Lee et al. 2007, Li et al. 2008, Ying et al. 2010). Lee et al.

(2007), explore a geometric approach to trajectory similarity by exploiting three

types of distance measures in order to group trajectories. While their Partition-

and-Group framework is unique, it is limited to the geospatial realm, overlooking

the types of activities and social information related to the activity locations.
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Similarly, Li et al. (2008) focused on the spatial components of user trajectories.

Their method employs hierarchical trajectory sequence matching to determine

similar users. Making use of GPS tracks, Li et al. extract stay points at which a

user’s activity is determined based on the affordances of a specific location.

While the above methods measure user similarity based on geospatial aspects

of user trajectories, we argue that an understanding of the semantics of an activity

space are essential. Ye, Shou, Lee, Yin & Janowicz (2011) investigate the con-

cept of semantic annotations for venue categorization. In developing a semantic

signature for a categorized place based on check-in behavior, similar, uncatego-

rized places could be discovered. This concept of semantic signatures may also

be applied to assessing user similarity through semantic trajectories. In this vein,

Ying et al. (2010) measured semantic similarity between user trajectories in order

to developed a friend recommendation system. This work focuses on the type of

activities completed by each user and the sequence in which these activities take

place. Akin to the stay point work presented by Li et al. (2008), the authors

focus on stay cells and obtaining a semantic understanding of the types of activ-

ities conducted within the cells. From there, a semantic trajectory is formed and

patterns are assessed and compared between users.

Activity prediction research can also benefit from exploring user similarity.

Based on check-in data gathered through Foursquare, Noulas et al. (2012) exploit
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factors such as transition between types of places, mobility flows between venues

and spatial-temporal characteristics of user check-in patterns to build a supervised

model for predicting a user’s next check-in. This method, while exploring previous

check-ins across users, does not assess similarity between users in predicting future

locations, an aspect that our research suggests is beneficial. Traditional work

in collaborative filtering (e.g., Amazon recommendations) has also focused on

measuring user similarity, but typically concentrates on ”structured” data such as

numerical (star) ratings (Linden et al. 2003, Herlocker et al. 2004).

Recently, Lee & Chung (2011) presented a method for determining user similar-

ity based on LBSN data. While the authors also made use of check-in information,

they concentrated on the hierarchy location categories supplied by Foursquare in

conjunction with the frequency of check-ins to determine a measure of similarity.

By comparison, our approach is novel in that it makes use of an abundance of

unstructured descriptive text (tips) provided by visitors of specific venues rather

than a single categorical value.

3.3 Methodology

In this section, we describe the data collection, topic extraction, and method-

ology used for developing our user similarity measures.
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3.3.1 Data Source

The location-based social networking platform,Foursquare, was used as our

primary source of modeling data based on the shear number of crowdsourced

venues as well as its ubiquity as a location-based application. As the application

defines it, a venue is a user-contributed “physical location, such as a place of

business or personal residence.”1 and as of publication, Foursquare boasts over

9 million venues in the continental United States alone. This platform allows

users to check in to a specific venue, sharing their location with anyone they

have authorized as well as other OSNs such as Facebook or Twitter. Built with a

gamification strategy, users are rewarded for checking in to locations with badges,

in-game points, and discounts from advertisers. This game-play encourages users

to revisit the application, compete against their friends and contribute check-ins,

photos and tips.

Venue Tips

An additional feature of Foursquare, is the ability for a user to contribute

text-based tips to a venue. Tips consist of user input on a specific venue and

can range from a restaurant review to a hiking recommendation. Lacking any

official descriptive text for venues on Foursquare, these unstructured tips describe

1https://foursquare.com/
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and define the venue and location. As with most crowdsourced data, the length,

content, and number of tips vary significantly throughout the Foursquare venue

data set. Of the 9 million Foursquare venues available in the continental United

States, approximately 22.8% included at least one tip. Taking only venues that

have had more than ten unique user check-ins, this value jumps to 54.0%. Of the

venues to which our sample population checked in, 77.0% include at least one tip

with the mean length of a single tip being 74 characters (stdev = 49.3). Table 3.1

shows a few examples of tips left at different venues.

Order your tacos with flour tortilla and use their amaz-
ing green salsa!
Free wifi & power outlets outside work. Let’s support
and make sure they’ll be there a long time
I just bought some leather chairs and I love them, great
quality furniture

Table 3.1: Example tips

3.3.2 Data Collection

Publicly geotagged Foursquare check-ins were accessed via the Twitter API

for 6000 users over a period of 128 days. Check-ins to venues with less than ten

tips were removed as well as users with an overall check-in count less than 16.

This resulted in a dataset totaling 24,788 check-ins over 11,915 venues for 797

users (mean of 31.1 check-ins per user). From a geosocial perspective, we define
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an individual’s activity identity as an amalgamation of the venues to which she

checks in.

3.3.3 Themes

In this work, we use a Latent Dirichlet Allocation (LDA) topic model to extract

a finite number of descriptive themes (topics) from the user-generated tips assigned

to venues in our Foursquare dataset. While numerous topic models are discussed

in the literature, LDA is a state-of-the art generative probabilistic topic model that

can be used to infer the latent topics in a large textual corpus in an unsupervised

manner (Blei et al. 2003). A topic is a multinomial distribution over terms, where

the distribution describes the probabilities that a topic will generate a specific

word. LDA models each document as a mixture of these topics based on a Dirichlet

distribution. Several mature implementations of LDA with improvements exist;

for this work we employ the implementation in the MALLET toolkit (McCallum

2002).

A topic model is run across all Foursquare venues in the continental United

States containing ten or more tips (approximately 125,265 venues). Tips are

grouped by unique venue ID and all stop-words, symbols, and punctuation are

removed as well as the 30 most common words.
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High Entropy Low Entropy

Table 3.2: Sample topics derived from Tip text represented as word clouds, where

larger words are higher probability words for the topic.

Venue Themes

Using this model we are able to express each venue as a mixture of a given

number of topics. The model was tested with 40 topics at 2000 iterations. Future

work could involve running similarity models with a varied number of topics. A

few of the topics are concerned with a specific type of food, while others are

focused on tourism and even baseball. Table 3.2 shows four examples of topics,

based on top terms, extracted using LDA.
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Temporal Themes

The daily trajectories for each of the 797 users in our dataset are grouped

by user and aggregated to a single day. Given the limited number of check-ins,

aggregating user activities to a single day was deemed appropriate. Over the 128

days of data collection, this produced a sparse average of 31.1 check-ins per user.

This would not be sufficient for any prediction and additionally highlights the need

to select similar users as proxies. Selecting one user as our base-line or focal user,

each check-in in her trajectory is buffered by 1.5 hours. This so-called 3 hour time

window is used as the temporal bounds from which all additional users’ activities

are collected. From there we calculate the topic signature for all users within this

same time window. This produces an aggregate venue topic distribution for every

user over a 3-hour time window around each of the focal user’s check-ins; 1.5 hour

before and 1.5 hour after the check-in. Given these distinctive topic signatures, it

is feasible to compare users temporally, across these topics in order to produce a

user similarity measure.

A topic signature is computed for each of the collections via Equation 3.1 where

Ti is one topic in the collective topic distribution, n is the number of venues in the

collection, #Vj is the number of times the same venue appears in the collection

and tV j
i is a single topic probability of Venue j. It is important to note that this

method takes the frequency of check-ins to a unique venue into consideration.
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This ensures that multiple check-ins to a single location do not over-influence the

topic distribution.

Ti =
n∑

j=1

(log10#Vj + 1)tV j
i (3.1)

3.3.4 Variability vs. Commonality Weighting

This approach to calculating the topic signature for a collection of venues puts

an equal amount of emphasis on all topics. This is not ideal when measuring the

similarity between signatures as some topics are more prevalent across all venues

than others. In order to augment the similarity model, we compute the entropy for

each topic across all venues. In Table 3.2, two of the word clouds are examples of

topics showing high entropy while the other two represent topics with low entropy.

Let ti be the weight of topic t for venue i. A new discrete variable is defined

for topics over venues by normalizing each ti to t′i by setting t′i = ti∑N
j=1 tj

, where

n is the number of venues. The topic’s entropy over all venues, ET , is defined in

Equation 3.2.

ET = −
n∑

j=1

t′j log2 t
′
j. (3.2)

Given this set of entropy values, a method for incorporating them as weights

in a user similarity model must be assessed. This leads to questioning the role

of topic prevalence in constructing a model for assessing user similarity. The

approaches we present in the following subsections are influenced by literature in
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the cognitive sciences that examined the role of context (or framing) in human

similarity assessments. Tversky (1977) found that when two objects are compared

for similarity, the set of objects from which the two objects are selected has the

effect of making some properties more or less salient in the similarity judgment.

The properties that are more salient are termed to be more ‘diagnostic’. Tversky

argued that two factors contribute to the diagnosticity of a property. The first

is variability, which finds that the properties that vary across the elements of the

context set are used more to determine the similarity (or dissimilarity) of two

objects. The second factor commonality, is the opposite, that properties that are

shared by most elements of the context set are the important properties, because

they help explain what is important in the domain of discourse.

Although this context effect is well-studied in the cognitive sciences most com-

puter science similarity measurements are without context in this sense. A notable

exception is the Matching-Distance Similarity Measure (MDSM), created to com-

pare similarity of spatial entity classes (Rodriguez & Egenhofer 2004). MDSM

defines commonality and variability metrics for feature-based classes. In the fol-

lowing sections we adopt these notions to the venue topic signatures.
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Variability

One approach postulates that though the commonality topics remain critical in

defining the venue (or user), they are less valuable in determining the similarities

between two users. For example, if all venues in a dataset are high in a topic

related to coffee, this topic does little in determining which two users are most

similar. It is the less ubiquitous topics which are more diagnostic in the similarity

model. Based on the literature on similarity (Tversky 1977), we call this type of

diagnosticity, the variability weight.

In order to add weight to these more diagnostic topics, we build our similar-

ity model based on a subset of ten topics with the highest entropy. Given the

reduction in the number of topics, the collective topic distribution must then be

normalized (n=10) to sum to 1 in order to compare distributions.

Commonality

It may be argued that the inverse effect of variability, commonality is more

applicable. A commonality weight implies that more prevalent topics should be

more influential in measuring user similarity. In essence, the more coffee shops

one visits, the more similar they are to other coffee shop visitors.

The influence of entropy on topics using this commonality method involves

taking the top ten topics with the lowest entropy and building our similarity
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model based purely on those topics. Again, the collective topic distribution is

normalized in order to sum to 1.

3.3.5 Comparing Users

Since each aggregate venue signatures consist of a distribution over an equal

number of topics, a divergence metric may be used to measure the similarity

between our focal user and all other users at at any given activity. Using the

Jensen-Shannon divergence (JSD) (Equation 3.3), we compute a dissimilarity

metric between each user’s topic distribution and the focal user’s respective topic

signature. U1 and U2 represent the topic signatures for User 1 and User 2 respec-

tively, M = 1
2
(U1 + U2) and KLD(U1 ‖ M) and KLD(U2 ‖ M) are Kullback-

Leibler divergences as shown in Equation 3.4.

JSD(U1 ‖ U2) =
1

2
KLD(U1 ‖M) +

1

2
KLD(U2 ‖M) (3.3)

KLD(P ‖ Q) =
∑
i

P (i) log2

P (i)

Q(i)
(3.4)

The JSD metric is calculated by taking the square root of the value resulting

from the equation. Given the inclusion of the logarithm base 2, the resulting

metric is bound between 0 and 1 with 0 indicating that the two users’ topic

signatures are identical and 1 representing complete dissimilarity.
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3.4 Results & Discussion

Selecting a focal user at random from the 797 users, we first run the basic

JSD dissimilarity model without including an entropy weight. In order to keep

the number of topics uniform across all models, a set of ten topics are randomly

selected for comparison. Figure 3.1 shows the dissimilarity metrics at activity

level resolution for 3 individuals compared to the focal user. As one can see,

User A’s similarity to the focal user generally decreases as the day progresses,

with late evening proving to be the most similar time of day, User B is similar

around lunchtime and quite dissimilar in the morning. Lastly, User C mirrors the

average for most of the day with a small bump in the morning and a sharp peak

of similarity at around 16:30.

In comparison, Figure 3.2 shows the effect of including the entropy measure

with the purpose of emphasizing more diagnostic topics within the venue dis-

tributions. The same three users are compared to our focal user, but this time

the venue distribution is composed of topics high in variability. The most visible

outcome of the variability weight inclusion is an increase in range of similarity

measures across users. Each of the three users is completely dissimilar to our focal

user at some point during the day and the average dissimilarity across all users

has increased.
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Figure 3.1: Similarity of User A, B & C to Focal User (randomly selected topics)

Interestingly enough, each of the sampled users increased their similarity to

the focal user at least once throughout the day. Given that these topics offer the

largest variability within the dataset, it is not surprising that a measure of similar-

ity between users based purely on these topics will decrease overall in comparison

to the non-entropy selection. This variability model will return specific peaks of

similarity between users given that it is emphasizing the topics not as common

across all venues. User A and User B show dramatic increases in similarity in the

morning, with User C peaking around dinnertime. As this figure makes appar-

ent, the change in user similarity is not uniform across all activities or users, it

is dependent on the prevalence of a given topic (or combination of topics) within

the aggregated distribution of an activity venue.
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Figure 3.2: Similarity of User A, B & C to Focal User (topics with highest entropy)

The commonality model offers a very different perspective. Figure 3.3 shows

that on average, the similarity between all users and the focal user increased.

While some semblance of the random-topics figure still exists, the users appear

more uniform in their similarity to our focal user.

3.4.1 Validating the model

This section presents the methods used to validate the similarity model as well

as the results of the validation. Both of the entropy-based similarity models are

evaluated along with the non-entropy model. The methods below are applied to

each model.
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Figure 3.3: Similarity of User A, B & C to Focal User (topics with lowest entropy)

To start, the topic distributions for the top-k most similar users for each check-

in are combined using Equation 3.5. The influence of each user on the combined

topic distribution (HV ) is calculated by multiplying the topic by the similarity

value sim where sim = 1 − dissimilarity. This ensures that more similar users

have a larger impact on the overall topic signature.

HVTi
=

n∑
j=1

((simj) ∗ T j
i )/

m∑
i=1

Ti (3.5)

The resulting topic distribution represents a hypothetical venue (HV) that is

the most similar to the focal user’s check-in location as possible based on the

model. In order to evaluate this hypothetical venue, we extract the 29 nearest

(physically) venues (along with their topic distributions) for each of the focal

62



Chapter 3. A Thematic Approach to User Similarity Built on Geosocial Check-ins

user’s check-ins. This collection of venues, along with the actual check-in venue,

form the test set from which the similarity model is assessed.

The 30 sample venues are ranked in order of similarity to the hypothetical venue

and the position of the real check-in venue within this ranked set is recorded.

Figure 3.4 shows an example with graduated symbol markers representing the

dissimilarity of each venue (large dark color = low dissimilarity). In this example,

the top 5 most similar venues are labeled with the actual check-in venue resulting

in 1 (the most similar venue to the hypothetical venue). This process is run across

Figure 3.4: Map fragment showing graduated symbols for the 30 nearest venues
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all check-ins for all users with the three levels of weighting. Table 3.3 shows an

ordered-position table based on 3188 sampled check-ins over the 797 users in our

dataset (4 randomly sampled check-ins per user). Both the 40 Topic model and

the 30 Topic model are present in this table, showing the results for the Variability,

Commonality and No weight models.

The Commonality weighted model produced the best results with over 77% of

the hypothetical venues contributing to a correct estimation of the actual venue.

In fact, the Commonality weighted model placed the actual check-in venue within

the first 3 most similar venues 95% of the time. By comparison, the Variability

weighted model was significantly less accurate, correctly estimating the actual

check-in venue 45% of the time. While this performance is not as strong as the

commonality weighted model, it is to be expected as the purpose of exploiting the

variability topics within the topic distribution is to find the nuanced differences

between venues rather than the overall commonality between them. Lastly, the

results of the non-weighted , randomly-sampled topic model are presented. As a

base-line, we see that even without the inclusion of entropy weighting, this simi-

larity model produces excellent results with 65% of actual venues being correctly

estimated. In all cases, these results suggest that the model performs quite well

in estimating an actual check-in based purely on the check-ins of similar users.
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Placement Commonality (%) Variability (%) Random (%)
1 77.02 45.04 65.85
2 14.16 17.17 18.05
3 4.30 9.38 7.22
4 1.98 5.65 4.02
5 1.16 2.86 2.23
6 0.53 2.17 1.04
7 0.28 1.88 0.56
8 0.16 1.22 0.25
9 0.09 1.16 0.25
10 0.03 0.97 0.16
11 0.03 0.50 0.03
12 0.06 0.88 0.06
13 0.00 0.53 0.03
14 0.03 0.35 0.00
15 0.03 0.16 0.00
16 0.00 0.22 0.06
17 0.00 0.97 0.03
18 0.00 0.63 0.00
19 0.00 0.44 0.03
20 0.00 0.50 0.00
21 0.00 0.09 0.03
22 0.06 0.31 0.03
23 0.00 0.19 0.00
24 0.03 0.22 0.00
25 0.00 0.53 0.03
26 0.00 0.82 0.03
27 0.00 1.10 0.00
28 0.00 1.29 0.00
29 0.03 1.69 0.00
30 0.00 1.07 0.00

Table 3.3: Placement of actual venue based on similarity to Hypothetical Venue
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3.5 Limitations

While the methods presented in this paper offer a promising approach to assess-

ing user similarity through unstructured data, there are a number of limitations.

Since the topic models are built on crowdsourced data (tips) from users of the

application, the standard bias and errors of crowdsourcing are present. There is

no way to ensure that a user submitting a tip has ever been to the venue or is

offering a truthful tip. Additionally, since all tips for a single venue are combined

in order to run the LDA model, those tips with more content have a large impact

on the overall generation of topics. While there has been an increase in the num-

ber of people using LBSN applications, it should be noted that one’s Foursquare

check-in history does not account for every single activity that the user conducts

throughout her day; the average user does not check in to every venue that she vis-

its. It is more likely that a user checks in to locations that are unique or different

from those to which she normally checks in. To some users, one venue might offer

more social capital (Pultar et al. 2010) than another (e.g., nightclub vs. hospital)

and user’s opinions range on what is unique. However, the limitations discussed

here also hold for most other methods designed based on volunteered geographic

information and are a research challenge.
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3.6 Conclusion and Future Work

The work presented in this paper offers an overview of an innovative approach

to assessing user similarity across sparse, unstructured geosocial check-ins. In this

paper, we explicitly extract the non-spatial components from the spatial data by

focusing purely on the textual descriptions of locations. Given the amorphous

nature of online social networking data, topic modeling has allowed us to extract

themes from crowdsourced social data. These themes are merged across venues

to produce a unique signature that defines an individual’s geosocial activities at

any given point in time. Through exploration of variability and commonality

measures, based on the entropy calculated across these themes, we have shown

two opposing methods for evaluating user similarity through publicly available

check-in data. A model based on Commonality within the data produces the

best results when estimating real check-ins from a set of nearby locations. The

Variability within the venue topics allows us to explore the nuanced similarities

between users and the venues they frequent. In all, these methods demonstrate

value in their ability to enhance existing user similarity models.

Future work in this area will flow in a number of directions. With an increase in

the amount of user check-ins, the data will allow for further temporal factoring to

reflect day of the week and month. It is expected that a user’s activity patterns
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are not limited to hours within a day, but also reflects days of the week. The

addition of temporal components will further enhance the ability of the model to

discover similar users. Exploring the factors that contribute to this measure of user

similarity will be a next step in this area of research as well. Analysis involving

the correlation between location types and similarity measurements should be

examined as well as outside factors that may contribute to similarity between

users (e.g., demographic data, climate, etc).

Additional sources of unstructured geosocial content will be explored with the

goal of enhancing the extraction of topics for venues. An incredible amount of

unstructured geo-tagged content is available online and the addition of this data

to our model will dramatically increase its accuracy. Lastly, while the sparsity

of the data and the results gathered from such data is a novelty of this research,

more precise activity information for a population of individuals (through a GPS

enabled mobile device for example) will be tested order to assess the robustness

of the model.
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Chapter 4

Where is also about time: A
location-distortion model to
improve reverse geocoding using
behavior-driven temporal
signatures

This chapter takes the current spatial distance-only approach to reverse geocod-

ing as a baseline and presents a novel method for enhancing this approach through

the inclusion of temporal behavior data. Reverse geocoding (or place search) is a

task that researchers and developers continually face when attempting to deter-

mine a person’s placial location based on their geospatial coordinates. Current

ranked spatial proximity methods perform this task with a moderate level of accu-

racy. In this chapter it shown that spatial distance can be distorted by a factor of

temporal check-in probability to produce a reverse geocoding method that signif-

icantly outperforms the baseline. This chapter fits in to the overall theme of this

dissertation through its combining of the temporal dimension with the spatial di-
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mension to show one of the ways in which temporally-based place type definitions

can augment an existing and currently spatial-only geolocation task.
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Abstract

While geocoding returns coordinates for a full or partial address, the converse

process of reverse geocoding maps coordinates to a set of candidate place identifiers

such as addresses or toponyms. For example, numerous Web APIs map geographic

point coordinates, e.g., from a user’s smartphone, to an ordered set of nearby

Places Of Interest (POI). Typically, these services return the k nearest POI within

a certain radius and use distance to order the results. Reverse geocoding is a

crucial task for many applications and research questions as it translates between

spatial and platial views on geographic location. What makes this process difficult

is the uncertainty of the queried location and of the point features used to represent

places. Even if both could be determined with a high level of accuracy, it would

still be unclear how to map a smartphone’s GPS fix to one of many possible places

in a multi-story building or a shopping mall, for example. In this work, we break

up the dependency on space alone by introducing time as a second variable for

reverse geocoding. We mine the geo-social behavior of users of online location-

based social networks to extract temporal semantic signatures. In analogy to

the notion of scale distortion in cartography, we present a model that uses these

signatures to distort the location of POI relative to the query location and time,

thereby reordering the set of potentially matching places. We demonstrate the
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strengths of our method by evaluating it against a purely spatial baseline by

determining the mean reciprocal rank and the normalized discounted cumulative

gain.

4.1 Introduction and Motivation

Translating back and forth between spatial and placial representations of lo-

cation is a crucial task underlying many research questions, applications, and

systems. Geocoding, for instance, is the process of assigning corresponding ge-

ographic coordinates to other types of structured geographic identifiers such as

addresses. The converse process, called reverse geocoding, assigns place identifiers,

such as toponyms, to geographic coordinates. More specifically, it maps a geom-

etry in the sense of OGC’s Simple Feature model to an ordered set of candidate

place identifiers. Typically, the Euclidean distance between the query coordinates

and the point-feature representation of the candidate places is used to establish

a ranking. To successfully match a user’s location to a visited place, new geoso-

cial approaches also consider popularity, e.g., how many users checked-in or wrote

reviews about a place. Additionally, many (reverse) geocoding systems consider

place hierarchies and granularity.
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The following queries nicely illustrate the difference between a spatial and

placial perspective as well as the arbitrariness of relying on point coordinates for

the query and the candidate places alone. While not a reverse geocoder in the

strict sense, the Flickr flickr.places.findByLatLon API call (Flickr 2014) returns

place IDs given a lat/lon coordinate and accuracy value. This allows users to find

photos for particular places. The API rounds up to the nearest place type, i.e.,

it returns a city ID for street-level coordinates rather than returning a street or

building. Latitudes and longitudes are truncate to three decimal points. In each

case, the query coordinates represent the same fix at the Griffith Observatory in

Los Angeles. However, the query is run with different accuracy levels where 16

corresponds to the street level, 11 to the city level, and 7 to the county level. The

respective responses from the Flickr API are as follows.

<places latitude="34.118341" longitude="-118.300458" accuracy="16" total="1">

<place place_id="HqDLYDJTUb8XihsYDg" woeid="23511984" latitude="34.125"

longitude="-118.306" [...] place_type="neighbourhood" place_type_id="22"

timezone="America/Los_Angeles" name="Hollywood United, Los Angeles, CA, US,

United States" woe_name="Hollywood United" />

</places>

<places latitude="34.118341" longitude="-118.300458" accuracy="11" total="1">

[...] latitude="34.146" longitude="-118.248" [...]

place_type="locality" place_type_id="7" name="Glendale, California,

United States" [...]" /> [...]

<places latitude="34.118341" longitude="-118.300458" accuracy="6" total="1">

[...] place_type="county" place_type_id="9" [...] name="Los Angeles County,

California, United States" [...] /> [...]

The fact that even small differences in spatial accuracy may have strong impacts,

e.g., on routing choices, has been demonstrated in the literature before (Bowling

& Shortridge 2010). What makes the example above interesting is the place hi-
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erarchy. Hollywood is a district of Los Angeles, while Glendale is a city in Los

Angeles County. From a human-centered placial perspective, one would assume

the queries to return Hollywood (in fact, it should be the Los Feliz neighborhood),

Los Angeles, and finally Los Angeles County. Instead the neighboring city of Glen-

dale is returned for the city-level accuracy query, thereby breaking the expected

hierarchical composition of places. From a computation-centric spatial perspec-

tive Glendale is selected simply because its centroid representation it closer to the

query location than the centroid of Los Angeles.

The arbitrariness and imprecision of point-feature representations as well as

the effect of missing topological relations also strikes on the level of small-scale

features such as Places Of Interest (POI).1 Figure 4.1 illustrates a common issue.

First, the resort marker (A) is placed at the entrance to the parking lot. While

this may be acceptable, other POI databases place it at the center of the building

which is nearly 150m away. Second, the lounge is inside the resort but its marker

(B) is shown over 100m away from the resorts marker. As most reverse geocoders

rely on distance alone, such differences will lead to substantially different and

often misleading results, e.g., when proposing a user’s check-in location.

As the omnipresence of location-enabled mobile devices increases, more robust,

accurate, context-aware, and data-rich geolocation services are required. Today,

1Frequently also referred to as Points Of Interest.
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Figure 4.1: Point-feature distance between a resort and the lounge located inside of it
(screenshot from Google Maps).

the ability to link spatial coordinates to an actual place has become essential in

many aspects of our everyday lives including navigation applications, place recom-

mendation, location-based advertising, and critical infrastructure. It is interesting

to note that the challenge is not one of more accurate GNSS and Wi-Fi-based po-

sitioning systems (WPS) alone. The information that a person checked-in or is

present at a place is semantically richer than the spatial data alone. To give a

concrete example, the fact that a person is standing in front of a food truck is

substantially different from the fact that a person checked-in to the food truck

and is likely to order something. Platial information is richer than just spatial

proximity.

Commercial companies such as Google as well as open source platforms like

GeoNames have made names for themselves offering application programming
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interfaces (APIs) and web services that allow both developers and consumers

to query gazetteers and POI databases using geographic coordinates as input.

With the increase in user-generated geo-content, new services such as Foursquare

and Yelp have emerged allowing anyone with a location-enabled mobile device

to contribute or update the location of an entity in a crowd-sourced system. It

is important to note that while these systems involve the contribution of geo-

content from individual users, there is still some discussion as to whether or not

they fit in to the category of Volunteered Geographic Information (Harvey 2014,

McKenzie & Janowicz 2014). Previous work on POI matching has shown that the

median distance of a single POI between different geolocation service providers

is 62.8 meters apart and can reach up to several hundreds meters under extreme

circumstances (e.g., for a golf course) (McKenzie et al. 2014). Figure 4.2 illustrates

this fact by showing the position of markers from five major services. While this

offset may not be a substantial issue in rural areas due to their low POI density,

it will cause substantial problems for geolocation services (e.g., check-in services)

in a high-density urban areas.

The task of determining the place an individual is visiting based on coordinates

gathered from their mobile device becomes more difficult given the uncertainty

associated with each POI in the dataset. That is, selecting the nearest POI to a

user’s location becomes an artifact of the arbitrary point-coordinate representation
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Figure 4.2: Left: Different services list different locations for The French Press Café
in Santa Barbara, CA. Google Maps (G), OpenStreetMap (O), Foursquare (F), Yelp
(Y), Bing Maps (B). Right: Uncertainty in POI location and user location. French
Press Café (1) and Los Arroyos Mexican Restaurant (14). The red pin marks the user’s
most probable location. Note that the circles of uncertainty are not drawn to scale; in
actuality they would appear larger.

of nearby POI. Leaving the actual POI locations aside, another facet of uncer-

tainty plagues traditional geolocation services, namely the positional accuracy of

a location-enabled device. While most devices make use of a range of positioning

technologies (e.g., GNSS, WPS, Cellular Network), each of these technologies has

its own issues related to accuracy, imparting a level of uncertainty on any device

location. Therein lies one of the problem facing traditional geolocation services

such as reverse geocoders. Given all of this uncertainty, how can a geolocation

service be expected to accurately predict a POI given geographic coordinates? An

example of this challenge is shown in Figure 4.2. A number of POI are shown on
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the map along with their associated uncertainty. Additionally, the red pin shows

the most probable location of a mobile device and it’s two-dimensional depiction

of uncertainty.

4.2 Research Contribution and Example Scenario

Clearly, relying on geographic coordinates alone to infer a place based on a

user’s mobile device position is not sufficient. However, there are other contextual

clues that can be taken into account. Time is one such clue and in contrast to

many other contextual information it is readily available with every position fix.

Current reverse geocoding services solely exploit geographic location while in real-

ity human behavior dictates that approximately the same location in geographic

space can serve a variety of purposes at different times of the day or days of the

week. The motivation for visiting a specific city block on a Tuesday morning is

considerably different than visiting that same block on a Saturday night. While

the geographic coordinates determined by one’s location-enabled mobile device

may be temporally-agnostic, the probability of conducting an activity at a nearby

place is not.

In fact, place categories are implicitly defined by time. For instance, the like-

lihood of being at the Department of Motor Vehicles on a Sunday at 1 AM is
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negligibly low. Not only is this likelihood driven by socio-institutional constraints

(Raubal et al. 2004), but also by observable human-placial behavior patterns.

Existing research in this area has shown that categories of places (e.g., Hospital,

Restaurant, Bar) can be uniquely identified by the temporal patterns of their

visitors (Ye, Janowicz, Mülligann & Lee 2011, McKenzie et al. In Press, Noulas

et al. 2011). In this work, we make the case for time being an additional read-

ily available clue for reverse geocoding and geosocial check-ins in specific. We

demonstrate that given a time-stamp of a mobile device location fix, these unique

temporal signatures (McKenzie et al. In Press) can be incorporated with exist-

ing distance-only based methods to substantially enhance the accuracy of place

estimations.

The research contributions of this work are as follows:

• In analogy to the notion of scale distortion in cartography, we present a

model that uses temporal signatures to distort the location of POI relative

to the query location and time, thereby reordering the set of potentially

matching places. Using the check-in frequency of a POI category at a specific

time, geographic space is distorted by a factor of the temporal probability.

Places that show a high check-in frequency at the provided time are shifted

closer to the queried geographic coordinates of the user while those with low

probabilities are pushed further away. Intuitively, given a user’s location fix
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at 10pm, a nearby cinema is preferred over a closer bakery as the temporal

signature of the place type Bakery indicates that people rarely visit bakeries

during the night.

• We explore and report on multiple models for this temporal distortion anal-

ogy including linear, non-linear, symmetric and non-symmetric functions.

Our study indicates that a non-linear, non-symmetric rational function pro-

duces the best results.

• We demonstrate the strengths of our method by evaluating it against a

purely spatial baseline (used by most currently available services) by de-

termining the Mean Reciprocal Rank and the normalized Discounted Cu-

mulative Gain.2 Our enhanced method increases the estimated accuracy of

an individual’s location Mean Reciprocal Rank from 0.359 to 0.453 and the

normalized Discounted Cumulative Gain from 0.583 to 0.711. Additionally,

we demonstrate that our model can also be used to improve the prediction

accuracy of geosocial systems such as Foursquare which is noteworthy given

their detailed ground-truth data.

• Many potential contextual clues are available to improve the quality of lo-

cation services. Examples include weather information, mode of transporta-

2These statistical rank approaches will be further explained in Section 4.2.
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tion, previously visited location, user preferences, and so forth. Many of

them, however, are not available outside of commercial data silos, are diffi-

cult to mine, require different index schemes, or substantially increase the

complexity of (pre-)computing candidate places. While time is readily avail-

able with every position fix and we provide signatures for each hour of the

week, some use cases require pre-computed results. By computing informa-

tion gain, we show that the temporal signatures vary greatly with respect to

their indicativeness. Consequently, a few selected time-frames can already

improve place estimation.

• Finally, we present an outlook on user-location distortion models. Our cur-

rent work uses default behavior to compute the temporal probability of POI

categories for different times. People (and places), however, do not always

follow such established patterns. For instance, there might be an event at

a location that would be closed otherwise. By enriching the default mode

with a dynamic real-time model, we can adjust for such circumstances. We

discuss the role of Instagram photos and Tweets to determine trending areas

in real-time. We propose an inverse-distance weighed method to alter the

user’s query location, pulling it closer to areas of high online-social network-

ing popularity.
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Stepping back from the research contributions for a moment, let us explore

a real-world scenario depicting the problem. This scenario will act as running

example throughout the paper. Figure 4.3 shows a query location (red pin) and a

number of nearby POI. A standard distance-based approach would simply calcu-

late the distance between each POI and the query location and return a ranked

set of distances allowing the user to make the assumption that she is currently

at the closest POI. In referencing the temporal signatures for the different POI

types, we find a visit probability value for each category of POI at any given hour

of the day on any day of the week.

Figure 4.3: Coordinates from user’s device (red pin) and nearby POI (blue markers).
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Table 4.1 shows the categories associated with each POI in Figure 4.3, the

geographic distance to the query location, as well as the temporal probabilities

for those POI types at both 10 AM on Monday and 11 PM on Saturday. As one

can see, the popularity of nearby POI change significantly between the two times.

Rather than assuming that there is an equal likelihood of a user visiting a POI,

irrespective of time, it follows that temporal probability should be included in

determining the most likely place.

Marker Category Distance
(m)

Monday
10AM (10−3)

Saturday
11PM (10−3)

A Bakery 39.2 6.28 4.08
B Nightclub 41.4 0.26 44.16
C Nightclub 69.9 0.26 44.16
D American Restau-

rant
62.7 1.61 9.50

E Bakery 73.7 6.28 4.08
F Fast Food 65.0 4.80 5.78
G Apparel Store 85.8 2.51 1.09
H Ice Cream Shop 82.6 0.84 15.88
I Movie Theater 94.2 1.44 11.00
J Pub 88.9 0.53 22.66
K Cosmetics Shop 60.9 3.87 1.57
L Diner 70.0 5.49 7.56
M Italian Restaurant 45.7 1.42 7.96
N Furniture Store 114.9 4.79 5.01
O Grocery Store 147.8 4.53 1.38
P BBQ Joint 82.3 0.43 9.35
Q Burrito Place 88.1 0.54 3.16
R Italian Restaurant 93.6 1.42 7.96

Table 4.1: POI Categories shown on Figure 4.3 with distance to device location and
temporal probabilities (sum of probabilities across all categories sums to 1) on Monday
10 AM and Saturday 11 PM.
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The remainder of the paper is structured as follows. In Section 4.3 we introduce

our temporal signatures-based location-distortion model, the extracted temporal

signatures, and the used data. Next, Section 4.4 discusses the tested functions

and their weights. In Section 4.5 we evaluate our proposed method. We present

an outlook on dealing with real-time information in Section 4.6. In Section 4.7,

we contrast our work to related research and discuss relevant findings. Finally,

Section 4.8 offers conclusions and directions for future work.

4.3 Temporal Signatures-based Location-

distortion Model

In this Section, we discuss the distortion models, the temporal signatures they

use, and the data from which they were derived.

4.3.1 Distortion Models

The majority of current geolocation services take a position fix as input and

return a set of ascending distance-ranked POI based on the geographic coordinates

of those POI. Given a robust set of category-defining temporal probabilities gath-

ered from location-based social networking check-ins, this paper offers a model for

increasing the accuracy of the distance-based approach through the inclusion of
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a temporal component. Different types of POI show fluctuations in visit proba-

bilities throughout the day. Based on check-in behavior, these fluctuations reflect

increases and decreases in POI type popularity. We leverage these probabilities to

enhance distance-based geolocation approaches. To do so, we propose an analogy

to scale distortion in cartography and distort space by a factor of the temporal

probability. That is, we pull or push POI in the users vicinity depending on

their type’s visiting likelihood during a particular time of the day.3 We realize

our models by exploring four types of functions (Figure 4.4) for altering the geo-

graphic distance between the query location and each POI by a weighted temporal

probability.

These four models represent different approaches to combining distance and

time. The linear approach symmetrically adjusts the distance by pushing POI

with low check-in probabilities away from the query location at a linear rate equiv-

alent to the amount that high-probability venues are pulled towards the query

location. Alternatively, one could model a changing, i.e., non-linear, push/pull

rate that changes with the probability. While still symmetrical in its design, the

assumption underlying this model is that highly likely or unlikely places should be

pulled or pushed at a different rate while values close to the mean should approx-

3It is worth noting that all analogies are partial. We mathematically model the relative
impact of distance and time to alter the POI ranking returned to the user but do not actually
modify the underlying base geo-data.
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Figure 4.4: Four possible distortion models and examples of their realization for shift-
ing POI locations based on the temporal probability of their types (e.g., restaurant);
exaggerated.

imate a linear behavior. Here we employ a particular interval of sine functions

for the symmetric non-linear model. We also explore non-linear, non-symmetrical

options. Rational function 1 shown in Figure 4.4 depicts an example of one such

option. In this case, as the probability of a user checking in to a POI increases

the amount by which the distance decreases diminishes. Correspondingly, as the

86



Chapter 4. Where is also about time: A location-distortion model to improve
reverse geocoding using behavior-driven temporal signatures

temporal probability decreases, the amount by which the distance increases grows.

In essence, those POI with low check-in likelihoods are punished at a higher rate

than those with high probabilities are rewarded. The inverse of this function is

also presented in Figure 4.4, Rational 2, decreasing the influence on geographic

distance as temporal probability values move to the left while exponentially in-

creasing the influence on distance as values move to the right. Intuitively, the

rationale behind both non-linear, non-symmetrical models is to study whether

pushes and pulls should be performed at different rates. Each of these four mod-

els is unique in its approach to the data. We compare them, their realizations,

and their parameterization in later sections.

4.3.2 Activity Categories

When a new POI is contributed through the Foursquare mobile application, the

creator is able to assign a category tag by selecting from a pre-defined hierarchical

set of activity categories. Originally generated by user-contributed tags, governors

of the Foursquare application refined the list on multiple occasions, eventually

restricting category assignments to just those provided via the application. While

the set does occasionally undergo minor adjustments, at time of writing, this

category set consists of 421 unique categories divided between three hierarchical

levels (Foursquare 2014a). Contributors to the application are asked to assign
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at least one category to any venue they generate, though this is not enforced

(Foursquare 2014b). A sample4 of 15,731,452 POI from across the United States

showed that 86.19% of venues were assigned one categorical value, 0.07%, 2 or

more and 13.74% had no category.

4.3.3 Geosocial Check-ins

Geosocial check-in data were collected via the Foursquare API with the pur-

pose of constructing temporal signatures for specific venue categories. A total of

908,031 randomly selected Foursquare venues5 were accessed via the application

API, divided amongst 421 categories, with a goal of accessing 240 venues per

category. Unfortunately given a the uniqueness of a number of categories (e.g.,

Molecular Gastronomy Restaurant) it was difficult to achieve this number of POI

for each category. Once the venues were chosen, check-in data were accessed

every hour for four months starting October 2013. Each request for check-in in-

formation returned a value of HereNow which indicates the total number of users

checked-in to the specific venue at any given time. Provided the number of venues

listed above, a total of 3,640,893 check-ins were temporally analyzed. To account

for regional variations, the data was collected from Los Angeles, New York City,

Chicago, and New Orleans.

4Accessed through the public-facing API
5Venue in this case is the Foursquare-specific term for Point of Interest
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It is worth noting that the Foursquare data is biased towards a particular user

population, places, and place types. For instance, the typical Foursquare user is a

30-year-old American male and more likely to check-in at a trendy nightclub than

an airport. We mitigate this problem by aggregating the data to the type level,

i.e., over millions of check-ins, even though some places and place types receive

less check-ins, nightclub still peak during weekend nights, while airports have a

more uniform high-entropy visiting probability throughout the day and week with

dips in the late night/early morning. More importantly, however, our work is

concerned with studying the role of time for reverse geocoding and the different

distortion models, not the particular geosocial dataset. Other data sources, e.g.,

from large-scale transportation surveys, could be used as well. Unfortunately,

to the best of our knowledge, no alternative data sources with a similar spatial,

temporal, and thematic resolution exist. Finally, the majority of geolocation

services target a similar audience to Foursquare. We will revisit the Foursquare

bias in the evaluation (Section 4.5).

4.3.4 Constructing Temporal Semantic Signatures

Provided 720 (30 days x 24 hours) HereNow values for every POI in the venue

set, the values were aggregated by category, hour, and day of the week. The

resulting 168 values for each category span every hour of a week. Normalizing
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this data by the total number of check-ins for each category shows the check-ins

per hour as a percentage of the total week.

Figure 4.5: Daily temporal signatures for four POI categories.

While these check-in data are limited to a four month time-span, the high

resolution allows for temporal signatures to be constructed for each category. In

visualizing the temporal distribution of the check-ins grouped by category, one can

decipher novel temporal patterns for each category in the set. These are called

temporal bands and signatures in analogy to spectral signatures in remote sensing

and follow a semantics-driven social sensing approach proposed in previous work

(Janowicz 2012b). Figures 4.5 and 4.6 show daily and hourly temporal bands

(respectively) for four POI categories that jointly form signatures to uniquely
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identify categories via the spatiotemporal behavior of users of location-based social

networks.

Figure 4.6: Hourly temporal signatures for four POI categories.

Modeling the daily check-in bands separately from the hourly check-in bands

exposes some interesting nuances in the data. Both Wineries and Nightclubs are

social and entertainment venues that serve alcohol, and show very similar temporal

check-in patterns over a week time period with peaks on the weekend. In contrast,

the hourly temporal bands show a very different pattern. These data show Winery

visits peaking in the mid-afternoon while nightclub check-ins peak late at night

(very early morning). This presents a excellent example of why varying temporal

scales are necessary for constructing robust temporal signatures. Figures 4.5 and

4.6 also depict a contrast between activities in which time plays a defining role,
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e.g., American football games on Sunday afternoons, and those where temporal

aspects are less indicative of a POI type, e.g., Airports.

4.3.5 Indicativeness of Temporal Bands

This leads to the interesting question of which hours and days are most in-

dicative and whether it is possible to compress the bands instead of storing all

potentially relevant 168 values per POI type. To investigate this question, we

look at the signatures from a classification perspective and consider each band as

a discretized feature (attribute) of a class-labeled set of training tuples. Here, we

use the entropy-based information gain as indicativeness measure. Equation 4.1

shows the computation of Shannon’s information entropy for a distribution D,

where pi is the probability of band i and Equation 4.2 computes the information

gain (∆(bt)) for a temporal band with
|Dj |
|D| being the weight of the jth partition

of the training set according to this band. Table 4.2 shows the 10 most indicative

hours as well as the 10 least indicative hours. Intuitively, the typical lunchtime

hours (11am-12pm), close of business hours (4-5pm), and dinner/nightlife hours

(10-11pm) are most indicative of a POI type, as is the distinction between work-

days and weekends. In contrast, the early morning hours, e.g., Monday 5am, are

significantly less-indicative. Consequently, visiting probabilities at these times
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Band Hour Info. Gain Band Hour Info. Gain
143 Friday 11pm 0.772 101 Thursday 3am 0.112
59 Monday 11am 0.750 150 Saturday 6 am 0.097
107 Thursday 11am 0.744 124 Friday 4am 0.093
60 Monday 12pm 0.725 26 Monday 2am 0.082
35 Sunday 11am 0.712 27 Monday 3am 0.079
161 Saturday 5pm 0.695 125 Friday 5am 0.063
88 Wednesday 4pm 0.693 28 Monday 4am 0.052
167 Saturday 11pm 0.69 100 Thursday 4am 0.046
142 Friday 10pm 0.688 149 Saturday 5am 0.045
131 Friday 11am 0.687 29 Monday 5am 0.034

Table 4.2: The 10 overall most indicative hours according to their information gain
and the 10 least indicative hours.

will not differ substantially between POI type and thus can be pruned without

impacting the signatures to save storage or optimize indexing.

H(D) = −
n∑

i=1

pilog2(pi) (4.1)

∆(bt) = H(D)−
n∑

j=v

| Dj |
| D |

×H(Dj) (4.2)

4.4 Distortion Functions and Weights

In this section we discuss the concrete distortion functions that realize the

models presented above as well as the parametrization of these functions.
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4.4.1 Spatiotemporal Distortion Functions

In order to combine the temporal signatures with the existing spatial distance-

based ranking, we introduce a new ranking distance attribute (dt) for each POI.

This attribute is a distortion of the existing geospatial distance (between the

POI and the query coordinates) by a factor of the temporal probability. To

determine the value of this new distance attribute, two variables need exploration;

the function by which time and distance are combined and the ratio of influence

(weight) that both distance and time should have on the new attribute.

A number of methods for combining space and time were explored, the most

significant of which are shown in Figure 4.4. As described in the previous sections,

initially a linear method was employed. First, t̃′ is defined as the actual temporal

probability of the POI, t′, subtracted from the mean temporal value, t′m (Equation

4.3) then a weighted combination of the normalized distance and normalized tem-

poral probability is taken (Equation linear-type) where w is the assigned weight

and d′ is normalized geographic distance. This method adjusts the geographical

coordinates of the POI by increasing or decreasing the distance between each POI

and the query location linearly and symmetrically by the POI’s normalized tempo-

ral probability subtracted from the mean of the normalized temporal probabilities

for all POI in the result set.
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t̃′ = t′m − t′ Where t′ ∈ [−1, 1] (4.3)

dt = d′ · w + t̃′ · (1− w) (linear-type)

While effective, this linear distortion approach is restrictive in that it pushes

and pulls all POI at the same rate, regardless of their distance from the temporal

mean. Another approach is to use a non-linear function, e.g., a sine function.

It approximates the linear approach as t̃′ approaches zero, but will decrease in

magnitude as the values move away from zero. An example of the distortive

effects is shown in Figure 4.4. We compute dt as follows (Equation sine-type).

dt = d′ − sin(t̃′) · w (sine-type)

While appropriate for the data, the sine function still assumes that POI on ei-

ther side of the temporal mean should be distorted symmetrically. Non-symmetric

models are explored as well, to decrease the adjustment of the temporal proba-

bility on the positive side of the mean at a greater rate than those values on the

negative side of the mean (for instance). We model this by employing a weight-

adjusted rational function (Equation rational-type 1) We also study the inverse

effect by using Equation rational-type 2. Relaxing the symmetry requirement is

a logical approach to distorting geospatial distance as those POI that are less
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probable (of being visited at the given time of the day/week) should arguably be

pushed further away from the query location at a higher rate than those being

pulled closer.

dt = d′ −
(

1− w

t̃′ + w

)
(rational-type 1)

dt = d′ −
(

w

−t̃′ + w
− 1

)
(rational-type 2)

4.4.2 Weights

In the next step we determined the most suitable weight ratio between the

normalized distance and the normalized temporal probabilities by using a set of

geosocial check-in test data.

Using the Twitter Streaming API (Twitter 2014), 3,500 geolocated Foursquare

check-ins were sampled from within the Greater Los Angeles region between 01:00

on November 1st and 23:59 on November 20th, 2013. The geographic coordinates

as well as the category of the POI in which the Twitter user checked in were

accessed. The number of check-ins (and the associated POI) were reduced to

2,800 to ensure that only those POI that showed at least 15 other POI within a

100 meter radius were included in the sample. This restriction ensured that the
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results were not biased due to a lack of available POI from which the model could

make a selection.

The geographic coordinates of these 2,800 check-ins/POI were employed as the

base user locations from which the geolocation model would be built. In order to

mimic the accuracy of a GPS enabled mobile device and arbitrariness in point-

feature placement, an location-uncertainty component was introduced. New test

locations were drawn from a normal distribution with a mean of 30 meters and

standard deviation of 10 meters from the POI’s real geographic location. The

directional (angular) offset was randomly assigned for each set of coordinates.

These coordinate values were taken as individual user locations which then formed

the basis on which the geolocation model could be trained. As discussed in the

introduction this is a conservative estimate of the involved uncertainties.

Provided these test user locations, a baseline test was developed. Each of the

2,800 test locations were queried against a comprehensive set of 15,729 POI and

all POI within a 100 meter radius of each queried test user location were returned

and ranked by geographic distance from shortest to longest. The ranked position

of the POI known to be the user’s true check-in location was recorded for each

scenario and the Mean Reciprocal Rank (MRR) was then calculated for the overall

test results. MRR, shown in Equation 4.4, is a statistical measure for evaluating

the results of a ranked set of N (Number of POI in this case) responses.
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MRR =
1

|N |

|N |∑
i=1

1

ranki
(4.4)

Using the distance-only MRR as a baseline, we tested which combination of

weight and function maximized the MRR value, i.e., we quantified the relative

importance of time for reverse geocoding as well as the particular distortion model

that would yield the best results. Four other sets of MRR values were calculated

based on the combination of temporal probability with geographic distance using

each of the four functions depicted earlier (Figure 4.4). Each model was tested

multiple times with a weight value increasing from zero at increments of 0.1.

Figure 4.7 shows that all of the weighted functions out-perform the distance-only

method at some point.

To validate this finding and ensure that the selected functions and weights are

not merely an artifact of using MRR as the measure, additional rank compari-

son measures were computed. A sum of the reciprocal rank (SRR) method was

explored as well as counting the number of correctly identified POI (rank posi-

tion 1). Finally, the popular normalized Discounted Cumulative Gain (Equation

4.5) measure was computed for each of the functions where DCG is defined by

Equation 4.6 and POIcount is the number of POI identified at the specified ith

ranked position. IDCG is the ideal discounted cumulative gain which in this

case is 2,800 given that an ideal result would correctly identify all POI in the
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Figure 4.7: Mean Reciprocal Rank for Four Equation and associated weight values
compared to Distance-only.

first ranked position. The maximum MMR values, SSR, nDCG and first ranked

position count along with their associated weights for each function are shown in

Table 4.3 indicating that the Rational 1 based model produces the best overall

results with a weight of 2.8.

nDCG =
DCG

IDCG
(4.5)

DCG = POIcount1 +
N∑
i=2

POIcounti
log2(i)

(4.6)
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Function Max
MRR

Max
SRR

nDCG First
Pos.

Weight

Distance
Only

0.392 1095 0.621 485 NA

Linear 0.444 1245 0.665 661 0.7
Sine 0.395 1154 0.642 539 0.1
Rational 1 0.446 1250 0.669 665 2.8
Rational 2 0.442 1239 0.662 657 2.7

Table 4.3: Maximum Mean Reciprocal Rank (MRR), Maximum Sum of the Reciprocal
Rank (Max SRR), normalized Discounted Cumulative Gain (nDCG), Number of POI
ranked in the first position and associated weight for each Equation.

Taking this result, we revisited our running example introduced in Section 4.2

and distorted the query location and the POI locations by shifting them closer

or further away. Figure 4.8 depicts this adjustment given a query time of 10 AM

on Monday morning. The original distance from the query location to each POI

is shown in the table and the original locations are shown as faded markers on

the map. The new distorted distances are listed in the table as well as shown on

the map via the bright blue markers. By comparison, Figure 4.9 shows the same

process for 11 PM on Saturday night. Note that in the original distance-only

scenario (see Figure 4.3), the distance to the Bakery (A), the Nightclub (B), and

the Italian Restaurant (M) are similar where the distorted cases lists very different

distances with the Bakery (A) being nearest in Figure 4.8 and the Nightclub (B)

being closest in Figure 4.9. The marker colors of these POI switch from red to

green and vice versa between the two figures indicating a pull (green) or push
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Marker Actual
Dist.(m)

Distorted
Dist.(m)

A 39.2 25.8
B 41.4 71.4
C 69.9 99.9
D 62.7 79.8
E 73.7 60.3
F 65.0 59.5
G 85.8 95.6
H 82.6 106.7
I 94.2 112.8
J 88.9 116.1
K 60.9 61.1
L 70.0 60.6
M 45.7 64.5
N 114.9 109.5
O 147.8 143.9
P 82.3 110.5
Q 88.1 115.2
R 93.6 112.4

Figure 4.8: Nearby POI locations (dark blue markers) adjusted by temporal probability
at 10AM on Monday. Original POI locations visible as light blue markers. Three
example locations (A, B, M) are shown in red, indicating pushed further away and
green, indicating pulled closer to the assumed user location.

(red) from the query location. Additionally, note that the Italian Restaurant (M)

remains red between both figures indicating that it is not a very probable location

at either time.

4.5 Evaluation and Discussion

In order to test the validity of the temporally weighted geolocation approach,

we designed an experiment with geosocial user data that tests the selected non-

linear non-symmetric model with a weight of 2.8 against a distance-only based

approach for a new test set of known locations and check-ins.
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Marker Actual
Dist.(m)

Distorted
Dist.(m)

A 39.2 74.7
B 41.4 32.8
C 69.9 61.3
D 62.7 90.1
E 73.7 109.2
F 65.0 97.8
G 85.8 126.2
H 82.6 101.5
I 94.2 119.5
J 88.9 99.9
K 60.9 100.5
L 70.0 100.2
M 45.7 75.3
N 114.9 148.9
O 147.8 187.7
P 82.3 109.9
Q 88.1 125.1
R 93.6 123.2

Figure 4.9: Nearby POI locations adjusted by temporal probability at 11PM on Satur-
day. Original POI locations visible as light blue markers. Three example locations (A,
B, M) are shown in red, indicating pushed further away and green, indicating pulled
closer to the assumed user location.

Specifying the Greater Los Angeles region as the boundary, the Twitter

Streaming API was used to collect tweets that shared a Foursquare check-in.

When a user of the Foursquare application decides to check-in to a place, they

are given the option of sharing this data on their Twitter Feed. While Foursquare

check-in data itself is not publicly available, the majority of Twitter feeds are.

Using this method, 1,663 unique check-ins were accessed over a 24 hour period.

Immediately on receipt of the check-in data, the geographic coordinates of

the POI were randomized using the method described in Section 4.4.2 to reflect

standard GPS inaccuracy and a new set of geographic coordinates were established

for the user. These user coordinates were queried against the Foursquare Venues
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API (with the Intent parameter set to Browse6) and a set of 30 nearby POI were

returned containing the distance from the query coordinates, HereNow (number

of Foursquare users currently checked in to the POI), and TotalCheckins (total

number of all-time check-ins to a specific POI).

Additionally, a separate query was made to the Foursquare Venues API with

the Intent parameter set to Checkin. According to the Foursquare documentation

Browse takes a distance-only approach to querying the gazetteer returning a set

of nearby POI ordered by distance from query location, shortest to longest. The

Checkin approach is not full explained in the documentation and simply states

that the returned set of POI are ordered based on where a typical user is likely to

check-in to at the provided latitude and longitude at the current moment in time.

This option is most likely based on the company’s internal popularity counts.

In addition to the Intent parameter, each query was executed with additional

parameters that specified a radius of 100 meters and minimum of 20 and maximum

of 30 nearby POI. This limited bias due to a lack of nearby places.

Provided the set of nearby POI returned for each of the 1,663 queried user

locations, the distance-only method can be compared against our new temporal

signatures enhanced method. Since the actual POI to which the user checked in is

known, it is possible to calculate a number of different measures for each approach.

6Foursquare offers four methods for querying their gazetteer: browse, checkin, global and
match.
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Table 4.4 presents the difference between these two methods across MRR, SRR,

nDCG and First positions measures. The table shows that the inclusion of the

temporal signatures model with a weight of 2.8, substantially outperforms the

distance only method over all measures. In fact, the mean reciprocal rank (MRR)

values rise from 0.359 to 0.453, an increase of 26.34% and the nDCG values

increase by 21.96%.

Method MRR SRR nDCG First Pos.
Distance Only 0.359 443.8 0.583 211
Temporally Adjusted 0.453 793.5 0.711 423

Table 4.4: Comparing the results of the Distance Only method to our method which
includes temporal signatures.

Ranking the POI based purely on TotalCheckins produces a MRR of 0.678.

Such a large discrepancy in numbers between distance-only and TotalCheckins

method is an important reminder of how biased the Foursquare data and its users

are, i.e., a very high percentage of the total user base predictably visits a small

number of establishments. While TotalCheckins works well for an application

such as Foursquare, the majority of geolocation services do not rely on a closed

community and explicit check-ins from their users, but have to estimate the place

based on space (and time) alone. Interestingly, adding our temporal distortion

method to TotalCheckins can further improve Foursquare’s results. If we use the

TotalCheckins values in lieu of geographic distance, first normalizing the values
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and then subtracting them from 1. This resulted in an MRR value of 0.692 a

2.1% increase over TotalCheckins alone.

POI ID Distance(m) TotCheckins HereNow
4bba348c53649c746bc248fb 16 1398 1
4d14fbb981cea35d9e80d7ec 16 705 0
4a52bc1cf964a520f7b11fe3 22 479 0
4af22b13f964a5204be621e3 24 877 0
4acbf6abf964a52077c820e3 29 900 0
51301edfe4b01507da6114f2 37 675 1
516327d7e4b063c6e8320956 41 8 0
4a12b3baf964a5208e771fe3 43 3282 0
4e01174b1f6ef39c29422260 45 2560 0
4cd19cf9f6378cfa8e8abcd6 45 59 0

Table 4.5: Example of Foursquare Search API query results ordered by distance and
limited to 10. Known check-in location in bold face.

The HereNow approach (ranking POI by the number of users currently checked

in) to determining a user’s placial location is self fulfilling. Note that this valida-

tion model is based on real check-in data and ranking a set of nearby POI based

on the number of users currently checked in will always involve a high degree of

bias. The correct POI will always have at least one current check-in. Examining

Table 4.5, the influence of this bias becomes immediately apparent. The vast

majority of POI do not show a single current check-in with a limited few listing

1. Were this example scenario to be run multiple times, one would expect the

known POI to be correctly identified half of the time and the POI ranked 6th

in the list (also showing a HereNow value of 1) to be identified half of the time.
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This tie, so to speak, can be broken through the inclusion of temporal signatures.

Again, replacing the d′ variable with the normalized HereNow value subtracted

from 1, Equation rational-type 1 is applied resulting in a 3.1% increase and MRR

measure of 0.872.

Lastly, Foursquare’s closed check-in method is examined. It must be reiterated

that while the Foursquare method does produce a very high MRR value (0.733)

it relies on data not available to most geolocation services and involves a signif-

icant amount of user bias which is likely exploited by this method (Shaw et al.

2013). Though its performance is strong, it may be further enhanced through

our temporally-enhanced method. In this case, the nearby POI returned from the

search query are assigned a rank value based on their order within the set. This

ranked value is normalized and assigned to the d′ variable in the rational-type 1

equation. The resulting MRR of 0.747 is 2% higher than the proprietary-only

approach showing that even a calibrated, in-house built method can be improved

upon through the inclusion of temporal signatures.
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4.6 The Next Step: Geosocially Distorting the

User’s location

The previous sections outline a method for distorting the geographic location

of POI based on the temporal probability of an individual visiting these POI as

determined by their type. In this section we outline, instead, a model that focuses

on distorting the geographic location of the user’s device location based on the

presence of geosocial activity nearby. The geosocial activity referred to in this

case pertains to online activities such as geotagged tweets and geotagged Insta-

gram photographs that do not include placial tags but are tagged with geographic

coordinates. Since these posts cannot be directly assigned to POI, they cannot

influence the amount and direction by which a POI location is distorted. Instead,

these activities impact the ability to geolocate an individual through distorting

the actual query coordinates themselves.

Figure 4.10 presents an example scenario. The blue markers on the map indi-

cate the location of POI, similar to figures shown previously. Instagram (camera

icon) and Twitter (t icon) markers are shown on the map as well. These geosocial

activities are collected over a one hour time period. In looking at this map, it

is apparent that an event is occurring at the plaza (green region) given the high

number of tweet and photo activity in the past hour. Combining this informa-
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Figure 4.10: Example visualization of a user’s actual location (faded red pin), adjusted
location (bright red pin), location uncertainty (large blue circle), Foursquare POI (blue
markers) and Twitter and Instagram activity markers.

tion with the knowledge that the user’s query location is subject to uncertainty,

adjusting the query location closer to the plaza is a reasonable proposal.

Using vector addition, a new vector is calculated from which distortion direc-

tion is ascertained. The amount by which the query location is adjusted is based

on two factors. An inverse distance weight is calculated for each geo-social activ-

ity, assigning a greater weight to nearby activities than those occurring further

away. Note that actual content of the tweet or Instagram caption is irrelevant in

this approach. While some individual’s may prefer one source of social content

over another, for our purposes, all geo-social activities are of equal value, their
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influence on the query coordinates are based solely on distance and direction. The

second factor influencing the distortion is the global weight value with which the

combination of these activities influence the query location. This global weight

is the focus of future research and will involve additional training in order to

establish an optimal value.

It is worth noting that we do not assume that the presence of a Tweet or

Instagram photo in a specific region indicate that this is the only area where an

activity is occurring. This approach takes the presence of geosocial data as an

additional and readily viable variable that can be employed to better geolocate

an individual based on places that are currently trending. This method makes

the assumption that the presence of a tweet or photo represents an increase in

probability that some activity is taking place at this location.

4.7 Related Work

Existing research on user and mobile device specific geolocation services can

be split in to two roughly defined groups. One approach focuses on the techni-

cal aspects associated with determining one’s location, increasing the accuracy

of location-based technologies (Tawk et al. 2014, Fallah et al. 2013) as well as

enhancing the efficiency of location services on mobile devices (Schilit et al. 2003,
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Paek et al. 2010). For better or worse, these advances are reflected in a number of

patents filed recently (Zeto III et al. 2013, Brewington et al. 2013). While useful,

these approaches do not consider non-technical sources of geolocation informa-

tion, but instead focus on reducing the uncertainty associated with a device’s

geographic coordinates.

The second approach has arisen from place recommendation research. Many

of these approaches take advantage of the rise in geosocial check-ins and posts

to explore user-similarity, (McKenzie et al. 2013, Cheng et al. 2013, Xiao et al.

2010) as well as user’s home locations (Backstrom et al. 2010, Hecht et al. 2011).

Additionally, recent work has begun to explore temporal patterns in user behavior

through online social networking check-ins (Gao et al. 2013a, Cheng et al. 2011)

as well as human mobility patterns through mobile device tracking (Yuan et al.

2012, Palmer et al. 2013). Shaw et al. (2013) explored the use of check-in data for

enhancing venue search results in the Foursquare application. While the authors

did investigate both the temporal and spatial components of check-ins, they did

so without exploiting category types. Additionally, their methodology for merging

spatial and temporal data is sparse and clearly does not consider distorting space

by a function of time. Lastly, though their work does produce promising results,

these results are specific to the Foursquare application and founded on a level
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of data-access restricted to Foursquare employees and thus of limited use to the

reverse geocoding community outside of the company.

From a temporal signatures perspective, early work by Ye, Janowicz,

Mülligann & Lee (2011) extracted check-in behavior from the online location-

based social network Whrrl to determine daily and hourly default temporal pat-

terns for a number of Whrrl place types. Yuan et al. (2013) took this a step

further using these temporal patterns to recommend points of interest based on

the time of day. Furthermore, Wu et al. (2014) show how social media check-in

data can be used for combining a movement-based approach with activity-based

analysis in studying human mobility patterns. In exploring Flickr data, Hauff

(2013) recently found that the popularity of venues plays an important role (or-

ders of magnitude) in the accuracy of geotagged Flickr photos. Additionally, a

large study on mobile phone usage by Yuan et al. (2012) found unique activity

patterns based on age and gender indicating that temporal signatures may differ

not only by POI category, but also by visitor demographics.

While much of this work has focused on extracting user behavior from social-

sharing platforms, it has been used to estimate, predict or make recommendations

on places an individual may have visited (past) or should/may visit (future). To

the authors’ knowledge, very little research has focused on using existing public,

place-based check-in behavior to enhance existing technical approaches to geolo-
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cation in real-time. Additionally, no published work can be found that distorts

geographic distance by a factor of temporal probability.

4.8 Conclusions & Future Work

The striking increase in location-based mobile applications in recent years is

driving the need for better and more accurate geolocation services to the fore-

front of geo-computational research. Compounded by the inaccuracies of user-

generated geo-content, the need for geolocation methods built on more than mere

Euclidean distance are a necessity. Online geosocial networking solutions now of-

fer researchers the ability to monitor human activity behavior which supply the

foundation for categorically unique check-in signatures. By incorporating these

semantic signatures with existing distance-only based geolocation services, more

accurate results can be ascertained.

In this paper we demonstrate a novel technique for incorporating temporal sig-

natures with geographic distance by virtually distorting (pushing and pulling) the

geographic coordinates of nearby Places of Interest. In order to achieve the highest

accuracy, a non-linear, non-symmetric approach was employed significantly out-

performing the distance-only based geolocation service. Additionally, this same

method was used to enhance existing state-of-the-art check-in and proprietary
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methods offered by top mobile applications on the market today. Finally, we out-

line a method for the enhancement of this method through the use of geotagged

social content such as tweets and Instagram photographs.

Future work in this area will include the continued enhancement and fine-

tuning of the existing temporal signature weight and function as well as the in-

clusion of geosocial activities outlined in Section 4.6. A limitation of this work

is evident in the three month span of data collection. An increase in the tem-

poral extent of the data will allow further research into seasonal effects, holidays

and climate fluctuation to name a few. Additional work aims to investigate re-

gional variance in categorical-temporal signatures (e.g., Nightclubs in New York

vs. Nightclubs in Los Angeles) as well as the influence of local weather patterns

and daylight effects. The enhancement of the existing dataset will server to in-

crease the accuracy and robustness of the temporal signatures-based approach.

Finally, an online service is in development that will allow interested parties to

increase the accuracy of existing services in real-time and over large datasets.
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Chapter 5

POI Pulse: A Multi-Granular,
Semantic Signatures-Based
Information Observatory for the
Interactive Visualization of Big
Geosocial Data

While the previous chapters primarily focus on a combination of two placial

dimensions, namely Thematic & Spatial and Temporal & Spatial, this chapter

employs all three dimensions of place in defining and differentiating place types.

Using Points of Interest from the Greater Los Angeles Area, this work takes a top

down and bottom up approach to defining place types based on their spatial, the-

matic and temporal signatures. Through an interactive web mapping application,

the temporal and spatial dimension of the data are displayed, in essence showing

the pulse of the city. An important finding to take away from this chapter (linking

to the overarching theme of the dissertation) is that, of the three dimensions, time

is the most indicative in defining place types.
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Abstract

The volume, velocity, and variety at which data are now becoming available

allow us to study urban environments based on human behavior at a spatial,

temporal, and thematic granularity that was not achievable until now. Such

data-driven approaches opens up additional, complementary perspectives on how

urban systems function, especially if they are based on User-Generated Content

(UGC). While the data sources, e.g., social media, introduce specific biases, they

also open up new possibilities for scientists and the broader public. For instance,

they provide answers to questions that previously could only be addressed by com-

plex simulations or extensive human participant surveys. Unfortunately, many of

the required datasets are locked in data silos that are only accessible via restricted

APIs. Even if these data could be fully accessed, their näıve processing and visu-

alization would surpass the abilities of modern computer architectures. Finally,

the established place schemata used to study urban spaces differ substantially

from UGC-based Point of Interest (POI) schemata. In this work, we present a

multi-granular, data-driven, and theory-informed approach that addressed the key

issues outlined above by introducing the theoretical and technical framework to

interactively explore the pulse of a city based on social media.
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5.1 Introduction and Motivation

Today’s data universe offers access to a plethora of data at a spatial, temporal,

and thematic resolution unthinkable just a few years ago. This data revolution is

accompanied by the emerging 4th paradigm of science (Hey et al. 2009, Elwood

et al. 2013) in which synthesis is the new analysis. Those changed realities cast

off visions of information observatories (Tiropanis et al. 2013) in which complex

systems, such as urban spaces1, could be observed and better understood based on

exploiting the variety, volume, and velocity of Big Data (MacEachren et al. 2011,

Leetaru et al. 2013). Those, however, who tried to explore these new possibilities

often encountered equally big challenges. First, major parts of Big Data still

reside in closed proprietary silos with limited API access. Second, the metadata,

e.g., provenance, and conceptual schemata required for any serious use by scholars

are often not present, intransparent, or differ substantially to those established

in science. Finally, the sheer volume and velocity makes interacting with or even

just visualizing the data difficult to say the least.

For many of us, an information observatory for urban spaces in which user-

generated real-time content reveals spatial, temporal, and thematic patterns and

traits of human behavior, is a tempting idea as it aligns well with the Digital Earth

1See http://www.urbanobservatory.org/compare/index.html for an early example.
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(a) Screenshot from Foursquare video (b) POI Pulse interactive visualization

Figure 5.1: The pre-generated video (a) and the interactive POI Pulse system (b).

vision. Consequently, a posting2 on Foursquare’s infographics blog in October

2013 raised a lot of attention. It linked to a series of videos showing the pulse

of different cities such as San Francisco. The animations were entirely derived

from mining massive amounts of user check-ins to the Foursquare Location-based

Social Network and were aggregated to a single virtual day; see Figure 5.1a.

While the visualization itself is quite stunning, the Foursquare videos have

several shortcomings: (I) The videos are not interactive, e.g., one cannot click at

any of the check-in events or places to gain additional insights.3 (II) The videos

are rendered based on a fixed geographic scale and focused on a particular part

of the city. Thus, one cannot pan or zoom. (III) The millions of check-ins are

2https://foursquare.com/infographics/pulse
3Interested readers may try to find an explanation for the moving Food cluster in San Fran-

cisco at 4am; see https://foursquare.com/infographics/pulse#san-francisco.
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aggregated to a single non-specific day, thus hiding well known patterns, e.g.,

weekdays versus weekends. (IV) Foursquare’s POI taxonomy consists of more

than 400 POI types grouped into 9 top-level classes (see Figure 5.1a). While

such generalized classes are necessary and useful, it is not clear how they were

derived nor why certain POI types are categorized in specific ways. Furthermore, a

binary class membership on such a coarse level will necessarily introduce arbitrary

decisions and thus will significantly alter the observed temporal pulse of the city.

For instance, Cemeteries are categorized under the Great Outdoors category. (V)

Similar to other UGC, Foursquare contains data of widely varying quality. For

instance, users often classify their own houses as Castle or check-in to features of

types Road, Trail, or Taxi. While this is a consequence of UGC, it is important

to clean the data before doing any serious analysis.

Inspired by Foursquare’s pulse videos and the theoretical and technical limi-

tations of interacting and visualizing Big Data, we decided to address the afore-

mentioned restrictions by designing a POI Pulse information observatory for Los

Angeles;4 see Figure 5.1b. Naturally, as scientists we are more interested in those

theoretical and technical aspects than the application as such, but we will use

it as the joint leitmotiv that connects the following research questions which

make up the scientific contribution of this work:

4Explore the portal at http://www.poipulse.com
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R1: Given the >400 POI type defined by Foursquare users, is it possible to

derive an alternative top-level classification that is informed by existing and well

established POI schemata (e.g., defined by Ordnance Survey) and still true to the

original Foursquare data and user-behavior?

R2: Most likely, the reason for showing a pre-rendered video is the fact that

even the most modern Web bowser using HTML5, CSS3, and effective JavaScript

engines, cannot render the hundreds of thousands of POI as vectors thus making

interaction cumbersome. Is it possible to use a scale-dependent, seamless com-

bination of raster and vector tiles to render approximately 200,000 POI for Los

Angeles, and still make the interface interactive and responsive? What is the

tipping point from which vector tiles will be faster than raster tiles?

R3: Given the legal API limits of closed data silos such as Foursquare, can we

generalize check-ins, individual POI, and their attributes, e.g., tips, to a type-level

default behavior that allows us to model the pulse of a city with minimal data

requirement? Is it possible to seamlessly switch to a real-time, burst mode at

zoom scales that do not exceed the daily API limits and thus also give access to

real time data?

R4: Can we improve on the Foursquare baseline by offering a pulse for all

hours of the full week instead of a single day? Can we show binary upper-level
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categories but seamlessly switch to a more nuanced view at a reduced zoom level

to show a probabilistic category membership?

In the following, we present a multi-granular, data-driven, and theory-

informed5 approach that addresses these research questions by introducing the

theoretical and technical framework to interactively explore the pulse of a city

based on social media.

5.2 A Data-Driven and Theory-Informed POI

Taxonomy

In this section, we discuss how to derive a POI taxonomy by combining data-

driven techniques with existing top-down classification schema. Many different

POI vocabularies, taxonomies, and schemata have been defined in the past few

years, e.g., schema.org, the Ordnance Survey POI classification system, the Open-

StreetMap map features, OpenCyc, the Linked Geo Data ontology, the GeoNames

ontology, or even WordNet, to name a few. Unfortunately, most of these are not

suitable for our purpose. Sources such as WordNet are not specific enough, while

platforms, such as OpenCyc, introduce distinctions (e.g., man-made structure)

that are interesting from an ontological perspective but hinder the task at hand.

5I.e., including existing top-down schemata from the research literature and industry.
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OpenStreetMap is notorious for its flat key-value pair classification and also in-

troduces many feature types that are not POI specific. Similarly, the GeoNames

feature classes are not suitable, since all POI types defined in Foursquare would

end up in the same class (S spot, building, farm).

Schema.org is a data markup ontology jointly constructed by Google, Ya-

hoo, Microsoft, Yandex, and the W3C. Intuitively, one would assume that such

an ontology is most suitable to provide an upper-level abstraction for the >400

Foursquare types and should be able to replace the 9 top-level classes. One may

also expect that schema.org was developed with datasets such as Foursquare,

Yelp, etc, in mind. Surprisingly, however, that turned out not to be the case.

For instance, schema.org distinguishes between Places and Organization as one

of its top-level distinctions. While this is not wrong, the fact that Internet cafes

are considered organizations but movie theaters are places is surprising.6 Due to

many similar cases and ontological decisions taken by schema.org, it became clear

that we needed another classification.

Eventually, we selected the Ordnance Survey (OS) POI classification system

(v. 2.3) (OrdanceSurvey 2014). In contrast to Web and data-driven resources, the

OS classification is an administrative and UK-specific resource. The OS system

6Via: Thing >Organization >LocalBusiness >InternetCafe (see http://schema.org/

InternetCafe) and Thing >Place >CivicStructure >MovieTheater (see http://schema.org/

MovieTheater).
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consists of 9 classes at the 1st level, 49 classes at the 2nd level, and 600 POI types

at the 3rd level. We are only interested in the first level here (OS1). It consists

of the following classes: 01 Accommodation, eating and drinking, 02 Commercial

Services, 03 Attractions, 04 Sport and entertainment, 05 Education and health,

06 Public infrastructure, 07 Manufacturing and production, 09 Retail, and 10

Transport. We will use this classification as our top-down, theory-informed POI

schema and in the following section describe how to use data-driven techniques to

semi-automatically align the Foursquare types to this schema.7

5.2.1 Multi-dimensional Characterization of POI Types

The variety of big data presents new possibilities to understand POI from

different perspectives. In previous work, we proposed the concept of semantic

signatures to characterize a place using spatial, temporal, and thematic patterns

(Janowicz 2012a). As an analogy to spectral signatures in remote sensing, semantic

signatures differentiate types of places based on multiple bands. In this work, we

employ semantic signatures and extract a number of descriptive dimensions from

the Foursquare data to characterize POI by social sensing.

7To improve readability, we will refer to the Foursquare classes as POI types and to the OS1
classes as upper-level classes.
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Temporal Bands

The temporal bands are derived from 3,640,893 check-ins to 938,031 venues

from 421 Foursquare categories in Los Angeles, New York City, Chicago, and New

Orleans. These check-ins have been collected for 4 months starting October 1st,

2013. Consequently, we cannot use them to understand seasonal effects but focus

on the 168 hours of the week. The temporal resolution of the data is 2 hours, i.e.,

while we have hourly check-in times, the duration of check-ins is unknown and

users are automatically checked out after 2 hours. In our work, we are neither

interested in the particular venues, check-ins, nor users,8 but in studying the

temporal default behavior of users towards types of POI. In other words, we

are interested in the fact that bars are visited in the evenings and especially during

weekends, while universities are mostly visited during the workdays between 7am-

5pm. Figure 5.2, depicts 168 bands that jointly form the temporal signature

for four POI types. The data represents probability values for check-ins to the

given type (by hour bins), i.e., the 168 bands sum up to 1. Despite the large

sample, we had to remove outliers as some of the POI types, e.g., Molecular

Gastronomy Restaurant, have fewer venues than others. We used 4 standard

deviations from the mean as cutoff. While we have not used these temporal bands

before, we applied a coarser and more limited temporal signature to predict types

8Even more, due to API restrictions these data should not be stored for more than 24 hours.
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for untagged POI successful (Ye, Shou, Lee, Yin & Janowicz 2011). Thus, we

expect the temporal bands to play a major role in the derivation of the POI

taxonomy.

Figure 5.2: The weekly temporal bands for selected POI types by hour.

Thematic Bands

A representative subset of the venues (274,404) from the 421 Foursquare cat-

egories (POI types) have been used to derive another, yet very different set of

bands that will jointly form the thematic signature; cf. (Tanasescu et al. 2013).

We collected all user-contributed tips for those venues, stemmed all words, gen-

erated venue-specific documents out of them, grouped these documents by POI

type, and then used Latent Dirichlet Allocation (LDA) (Blei et al. 2003)9 to ex-

9Due to the API restrictions, we are only storing the derived latent topics per POI type.
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tract topics. LDA is an unsupervised, generative probabilistic model used to infer

latent topics in a textual corpus. We trained LDA by treating the tips associated

with all venues of a given type as single documents. LDA uses a bag-of-words

approach to uncover topics that are represented as multinomial distributions over

words. Each topic is composed of multiple words and their relative importance

for this topic. Figure 5.3 uses word clouds to visualize the top 18 words in three

topics by scaling them according to their probability. It is important to note that

each stemmed word extracted from the tips appears in each topic with a different

probability. LDA topics do not necessarily correspond to themes typically formed

by humans.

(a) Topic 39 (b) Topic 26 (c) Topic 53

Figure 5.3: Words that make up LDA topics scaled by their relative probability.

Topic 53, for example, is interesting as it prominently contains Spanish terms,

while topic 26 is related to terms about markets, flowers, plants, and so forth.

We are not interested in the specific terms but only their indicativeness, i.e., how

diagnostic they are in predicting the type of place. For instance, topic 53 is more
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likely to appear in relation to POI types such as Mexican Restaurant than within

tips contributed to Yoga Studios.

Spatial Bands

The spatial distribution patterns of POI types in urban areas differ. To achieve

a more holistic signature of the POI, we also introduce 14 spatial bands. The first

set of bands is derived from the average of nearest-neighbor distances (ANND)

among all POI types. The values have been normalized to [0-1] such that larger

value indicates dispersion while the smaller value represents clustering. The next

set of bands are derived from Ripley’s K which offers the potential for detecting

both different types and scales of spatial patterns. The K measure computes the

average number of neighboring venues (of the same type) associated with each

POI within a given distance and then compares them to the expected value under

completely spatial randomness. We chose 10 distance thresholds and calculated

the corresponding Ripley’s K measures as 10 spatial bands for all POI types.

Figure 5.4 shows that the K measure helps to evaluate how the spatial clustering

or dispersion pattern of each POI type changes when the neighborhood distance

changes. For instance, The values of ANND Police Station (0.721) and Night

Club (0.702) are very close, while their spatial clustering patterns are different

at multi-distance bands (scales). Both ANND and Ripley’s K measures only
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consider the distance or the number of neighboring venues but ignore the POI

type information for spatial point pattern analysis. In urban areas many POI

types (such as nightclubs and bars) often clustered together. The different types

of spatial mixture patterns should also be taken in to consideration. To address

this issue, we introduce a third family of bands called the J Measure. The J

Measure involves generating a Delaunay triangulation between all POI of the same

type, counting the number of other distinct POI types within each triangle and

dividing it by the total number of POI types. We computed the mean, median, and

standard deviations for the J Measure for all POI types. For instance, the mean

J Measure for Police Station (0.257) is larger than that of Night Club (0.176),

which indicates a larger POI type diversity between adjacent police stations.

5.2.2 Data Cleaning

As a next step we cleaned the dataset by removing all POI types that either

refer to clearly linear features or were overly generic. Examples include types

such as Road and Trail, and non-descriptive types such as Building or City. We

also removed types that are a pure artifact of UGC and that we know have no

instances in the Greater Los Angeles, e.g., Volcano. Similarly, we removed the

type Castle, assuming that the 77 POI within the dataset are from user’s that

took the “my home is my castle” motto too literally. Finally, we removed clearly
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Figure 5.4: Ripley’s K for 10 types (The y-axis value represents the difference between
the observed value of K-measure at a given distance and the expected value under the
CSR simulation process.)

non-stationary POI such as Plane and Taxi, while leaving the Food Truck type in

the dataset. This reduced the number of Foursquare POI types from 421 to 387

and the LA POI dataset from 178,814 POI to 164,902.10

5.2.3 Information Gain

Given the 246 different bands that jointly form our semantic signatures, it

is interesting to discover which of these bands are most diagnostic in terms of

their ability to estimate the membership of a particular POI type with respect

to an upper-level class. This is for two reasons: First, it allows us to reduce the

high-dimensional space by excluding dimensions/features that do not contribute

10Our original dataset contained 191,998 POI but this included uncategorized POI as well.
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(much) to the classification; Second, it provides intuition about the expected bias,

and, thus, the limits of data-driven classification. For instance, if most of the

thematic bands were not diagnostic, it would be difficult to tell apart the Airport

type from the Emergency Room type as the two share similar temporal signature,

i.e., people visit them during all hours and days of the week. Hence, both types

would more likely be classified as belonging to the same class, e.g., Education and

Health, while they should belong to two distinct classes namely Transport and

Education and Health.

Information gain is a measure of the expected decrease in entropy (Russell &

Norvig 2010). It provides an assessment of the contribution of a particular feature

(i.e., a specific band) for predicting the dependent variable, i.e., the upper-level

class. To compute the information gain of the 246 bands, we jointly agreed on a

set of POI types considered as clear matches for the respective OS1 classes. For

instance, German Restaurant was manually classified as being a subtype of Accom-

modation, Eating and Drinking. Next, the information gain for all (discretized)

bands was computed using this training set and the median and arithmetic mean

scores were determined. Assuming that simpler models can better capture the

underlying structures (Russell & Norvig 2010), all bands with information gains

scores below the mean were removed, leaving 159 bands that were considered

diagnostic.
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Band Information Gain Band Information Gain
temp143 0.772 temp161 0.695
temp59 0.750 temp88 0.693
temp107 0.744 theme39 0.519
temp60 0.725 spatial4 0.234
temp35 0.712 temp29 0.034

Table 5.1: The 7 overall most diagnostic bands according to their information
gain, the most diagnostic thematic and spatial bands, and the least diagnostic
band.

Table 5.1 shows some of the results. It is interesting to note that all top

bands are temporal. In fact, the first non-temporal band (theme39) is ranked

56th. This thematic band is graphically represented in Figure 5.3a. The first

spatial bands (spatial4) is ranked 134th. Examining the top temporal bands

shows that the typical lunchtime hours (11am-12pm), close of business hours (4-

5pm), and dinner/nightlife hours (10-11pm) are most relevant, as is the distinction

between workdays and weekends. Band temp143, for instance, corresponds to

Friday 11pm while the least diagnostic band (temp29) corresponds to Monday

5am. Consequently, while all 159 bands will contribute to the classification, we

can expect the classifier to have more difficulties in learning the membership for

classes such as Public Infrastructure that consist of POI types with widely varying

temporal bands, e.g., Police Station versus City Hall. This will result in lower

precision and recall values for such upper-level classes and will be discussed in the

following sections. One could, of course, consider and extract additional bands.
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However, this is out of scope for the paper at hand and significantly restricted by

the availability of attribute data from typical POI data sources.

5.2.4 Interactive Classification

The creation of bands and their reduction via information gain set the stage

for classifying the POI types from Foursquare using the Ordnance Survey level 1

classes. To do so we used a combination of machine learning-based classification

and manual corrections in two different runs.

First, we selected the previously generated training set of POI types and

trained a Support Vector Machine (SVM) (Cortes & Vapnik 1995) with a poly-

nomial kernel. Next, we predicted the OS1 classes of all POI types using the

same training set. We check all cases where the assigned and the predicted classes

varied and decided manually which class to use. Interesting examples where we

changed our initial decision include Bagel Shop that we initially classified as Re-

tail while they are rather a breakfast place (thus, Accommodation, eating and

drinking) in the US. Similar cases included Brewery, Nail Salon, and other POI

type that could be categorized as belonging to different classes. Another good

example are all college buildings. For instance, should College Football Field be

categorized as Education and Health, Sports and Entertainment, or Attractions?

From the point of view of a social check-in application such as Foursquare, the
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number of users that view a football field as an attraction is orders of magnitude

above the actual players (for which the football fields should belong to the sports

class). We will address this multi-class nature of many POI types from a visual

perspective in section 4.

Finally, we trained the SVM with the new training set and subsequently with

all POI types. We computed the recall and precision for this run and manually

inspected all mismatching class predictions. This led to some interesting findings

about the bias in the Foursquare data, its crowd-sourcing nature in contrast to

the administrative OS level 1 classes, as well as socio-political differences between

the US-based type data and the UK-based schema. For instance, according to the

OS classification Recycling Facility should be categorized as Public Infrastructure

while they are Commercial Services in the US. Other interesting cases included

Public Art that SVM successfully categorized as Attraction, or Tailor Shop that

was predicted to belong to Retail (but could also have been a Commercial Service).

After inspecting the predicted class membership probabilities for each single

type, we realized that based on the nature of the Foursquare POI types as well as

the previously mentioned bias in our 159 most diagnostic bands, we would need to

change some of the OS level 1 classes. We decided to remove the Manufacturing

and production class as it only has three subtypes in our dataset, renamed Public

infrastructure to Public Infrastructure and Community to also include religious
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Target Class F1 Precision Recall
Accommodation, eating and drinking 0.8343 0.869 0.8022
Attractions 0.6479 0.561 0.7667
Commercial Services 0.5882 0.6667 0.5263
Education and health 0.7792 0.7692 0.7895
Entertainment and Nightlife 0.8235 1 0.7
Public Infrastructure and Community 0.5946 0.6471 0.55
Retail 0.8611 0.8267 0.8986
Sports and Recreation 0.7568 0.6774 0.8571
Transport 0.6957 0.7273 0.6667

Table 5.2: F-score, Precision, and Recall for upper-level classes after the 2nd run.

places, and finally split Sport and entertainment into two distinct classes: Sport

and Recreation as well as Entertainment and Nightlife. As the temporal bands

were found to be the most diagnostic features in our dataset and as we wanted

to show the pulse of a city by hours and days, a joint class for POI types such as

Basketball stadium, Martial Arts Dojo, and Strip Club was not feasible.

Target Class A.E.D. Attr. Comm. Edu. Entert. Public Retail Sports Trans. #

Accommodation,
Eat, Drink

73 6 0 1 0 0 6 5 0 91

Attractions 0 23 0 0 0 0 4 3 0 30

Comm. Services 0 4 20 5 0 3 1 2 3 38

Education, Health 0 0 3 30 0 3 0 2 0 38

Entertainment,
Nightlife

10 0 0 1 28 0 0 1 0 40

Public Infrastructure,
Community

0 2 1 1 0 11 1 4 0 20

Retail 0 3 1 0 0 0 62 3 0 69

Sports, Recreation 1 1 3 1 0 0 1 42 0 49

Transport 0 2 2 0 0 0 0 0 8 12

# 84 41 30 39 28 17 75 62 11 387

Table 5.3: Confusion Matrix after final class predictions.
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The second run consisted of a new training set based on the new upper-level

classes and the lessons learned from the first run. We trained a SVM and pre-

dicted class membership for the training set as well as all other POI. The F-score,

precision, and recall for this 2nd run are listed in Table 5.2. While the results

for the new Entertainment and Nightlife class or the OS1 class Accommodation,

eating and drinking are very high, other classes are more difficult to predict. This

is largely due to the heterogeneity within such classes as well as the fact that

some POI types cannot be distinguished based on the temporal, thematic, and

spatial signatures. The class Public Infrastructure and Community offers good

examples of this, and thus, has a relatively low F-score. The class includes POI

types such as Police Station, City Hall, and Mosque, that vary substantially with

respect to all bands. Finally, some POI types would require very different bands

for their successful classification, e.g., sentiment analysis could be used to better

distinguish police from fire stations. Table 5.3 shows a confusion matrix to give

an overview of the varying classification success.

Figure 5.5 shows a fragment of a Multi-Dimensional Scaling plot. Each node

corresponds to a types, while colors indicate class membership. The lines represent

the top 20 % most similar pairs, while the node sizes indicate Kruskal stress.

Classes such as Accommodation, eating and drinking (blue) and Entertainment

and Nightlife (yellow) form densely connected clusters while other classes, e.g.,
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Figure 5.5: Fragment of a Multi-Dimensional Scaling plot showing the upper-level
classes as colors; Kruskal stress: 0.258.

Public Infrastructure and Community (pink) are less coherent. This essentially

confirms our findings visually.

Summing up, we derived a new upper-level classification schema based on an

existing top-down schema as well as a data-driven way in which we let the data

speak for itself to inform (and in most cases decide on) our final classification.

5.3 Interaction and Visualization – Rasters vs.

Vectors

Once the upper-level classes were established and the POI types were success-

fully classified, the focus shifted to the challenge of visually rendering the over

165,000 individual POI. One of the primary issues that continues to plague web
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mapping and cartography, is the speed at which data can be displayed. Recent

advances in browser technology have allowed for dramatic changes in the way data

can be processed and visualized. From a web mapping perspective, this increased

reliance on browsers allows for improved interaction with data, reducing the need

for continual client-server requests. Given the large amount of data and interactiv-

ity needs of this project, optimization of the web mapping component is essential.

This section presents an efficient method for visualizing this big geosocial data.

Since a true city pulse requires equal contribution from all POI, an early de-

cision was made not to cluster or reduce the POI when constructing the visual-

ization. This created a challenge in determining an efficient means for visualizing

approximately 165,000 points through a web browser. The state-of-the-art for

many years has been to serve a collection of static image tiles pre-rendered by a

mapping toolkit. The structure of these tiles typically follows a simple coordinate

system. Each tiles has a Z (map scale) coordinate and an X and Y coordinate

that describe its position within a square grid. For every Z-level increase, the

number of tiles required increases by a factor of four, leading to extremely large

tilecaches, depending on the number of zoom levels and extent of the area of in-

terest. For reasons of practicality, most mapping applications restrict the number

of tiled zoom levels to 20. Zoom level 0 represents the entire world in a single

tile while level 19 projects the Earth at a map scale of 1:1,000. The power of the
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image tiling scheme is that the size of the image file transmitted to the client is

minimally influenced by the size of the data.

Recent W3C standards, such as HTML5 11 and Scalable Vector Graphics

(SVG)12, combined with powerful modern web browsers continue to push the

boundaries of what can be done in web cartography. While image tiles allow

cartographers to solely display content via the web, Vector Tiles offer users the

enhanced ability to interact directly with the content. Vector tiles take a similar

approach as image tiles in that they divide data in to smaller sizes in order to

enable faster loading times leveraging modern browser parallelization and asyn-

chronous data requests. Unfortunately, the enhancement of offering direct data

interaction also increases the burden on the client side as data rendering is now

being executed locally. Thus, it is important to study the tipping point at which

a web mapping framework should switch between raster and vector tiles.

5.3.1 The Tipping Point

Ideally, vector tile representations of POI should be displayed at all map scales

allowing for maximum interaction with the data. An experiment was run on three

different networks in which both Vector and Raster representations of the POI

dataset were loaded. Each tile format was loaded 200 times at each of the zoom

11http://www.w3.org/TR/html5/
12http://www.w3.org/TR/SVG11/
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levels between 10 and 16. The loading times (in milliseconds) were recorded and

averaged and the results are shown in Figure 5.6. As one can see, the loading time

required to display all POI (Zoom level 10) in vector format is simply not practical.

With each increase in zoom level, the transfer/rendering time for the vector tiles

decreases. Only those tiles that intersect with the view-port are transferred to

the browser and rendered. This means that fewer and fewer points are displayed,

reducing the amount of data to be transmit and rendered.
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Figure 5.6: Raster vs. Vector tile loading times (in ms).

Comparatively, the loading times for image tiles (PNG-8) increase between

zoom levels 10 and 12 and steadily decrease thereafter. This initial increase can

be explained by the number of rendered tiles. If a given view-port requires 32 tiles

to cover the entire map display, for example, only 10 of these tiles will contain
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data at zoom level 10. This means that 22 tiles do not need to be transferred from

the server or rendered by the client. As zoom levels approach 12, the number of

tiles that render content increases until all 32 visible tiles contain some POI. The

reduction in loading times between zoom levels 12 and 16 can then be explained

by the amount of data rendered in each PNG. As the map scale increases, the

total number of POI visible in the view-port decreases, indicating that the average

number of POI rendered in each PNG approaches zero.

Given the significant disparity in loading times, the POI can clearly not be

rendered solely in vector format. With the purpose of reducing loading time and

maximizing user-data interaction, the switch in tile formats should occur between

zoom levels 12 and 13. While loading time is a key contributor to this decision,

the total number of POI is also relevant. Interacting with POI data at a map scale

smaller than 1:70,000 is simply not possible as the ability to select an individual

POI at this scale is arduous.

5.3.2 Technology

Adopting this idea of switching between vector and raster representation, the

POI Pulse application is implemented. This platform is built using a novel com-

bination of web technologies. Based in HTML5 and Javascript, the Leaflet v0.7

Javascript framework is employed for map display and interaction. The Data-
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Driven Documents (D3)(Bostock et al. 2011) v3.4 library is used for manipulating

and rendering data in Scalable Vector Graphics format through Javascript. On

the back-end, TileStache v1.49 extracts the data from a PostGreSQL 9.2/PostGIS

2.0 spatially enable database, and organizes the POI in the file structure required

by Leaflet. TileMill and CartoCSS are employed for cartographic styling exported

as XML. MapNik v2.2 reads these style documents and renders image tiles while

TopoJSON (Bostock & Davies 2013) v1.4.2 vector tiles are generated through

TileStache and rendered on-the-fly with D3 and cascading style sheets (CSS). On

page load, the map shows all POI in white with an opacity value used to indicate

popularity for each hour of the week. For zoom levels 11 and 12, diverging colors,

selected through the ColorBrewer application (Harrower & Brewer 2003), were

assigned to the ten upper-level classes. In order to allow visibility control for each

class, ten separate image tile caches were created.

Respectively, vector tiles are not pre-rendered and thus do not require nu-

merous tile caches. Since vector tiles contain the raw geographic location and

attributes, these data can be rendered on the client. Toggling the visibility of

classes within the vector tiles is handled by iterating through the vectors and

changing the visibility parameter for the appropriate SVG element. Restricting

the zoom levels at which these tiles are rendered means that a limited number of

POI require real-time rendering, but this feature requires the generation of a large
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number of vector tiles. Remember that the number of tiles required at each zoom

level increases by a factor of four as the zoom level increases. Excluding empty

tiles, this means that level 13 requires 704 vector tiles while level 14 requires 2,666.

5.3.3 Pre-loading Map Tiles

Once the image and vector tiles have been generated, implementing them in

the user experience becomes the next challenge. The temporal nature of these

data require that a new set of tiles be displayed to the viewer with each click

of the hour-advancement button; see Figure 5.1b. Regardless of the number of

tiles or tile size, the process of adding tiles to the map always takes the web

mapping framework a split second to organize the tiles and display them. The

most common technique in viewing time series data is to procedurally remove one

set of tiles from the map and add another set. In theory, this makes sense, but

in practice, this process produces a moment where neither the previous tiles nor

the new tiles are visible on the map. This creates what psychologists refer to as

a mask between experiment tasks, removing any link between the previous image

and the next. Unfortunately this has a negative impact on the application’s user

experience. Since the changes in activity are quite small from one hour to the next,

this masking effect overpowers the visual effect of the minute changes necessary

to understand the urban pulse. In order to circumvent this issue, we pre-render
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tiles on the client and set the opacity value of zero. Initially an array of four hours

of data are loaded on to the map with only the first hour being visible. As the

user clicks the button to advance through time, the appropriate tiles are made

visible while the previous hour’s tiles are removed from the map. The process of

changing the visibility of layer is computationally minimal compared to the task

of adding the tiles. When the number of map tile layers proceeding the currently

visible layer reaches two, the next four hours of tiles are invisibly added to the

map. This process ensures that a seamless flow of visual information is presented

to the user.

5.4 Default Behavior vs. Real-time Bursts

This section presents two contrasting views of the POI-driven city pulse. First,

the default behavior view aims at representing the constant and steady changes

in activities conducted in the city. Temporally, the city goes through changes

in activity dominance. This implies that specific activities, and the POI (types)

at which these activities take place vary in intensity through out the day/week.

This leads one to describe Coffee Shops as being mostly visited during the morning
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while Nightclubs are most active at night. We call this the Foursquare population’s

Default Behavior (towards POI).13

While humans are often described as creatures of habit (and the temporal

bands support this), on an individual level, our behavior is often quite sponta-

neous and unpredictable. Analysis and visualization of these phenomena cannot

be explored by focusing at the POI ecosystem as a whole, but rather at a large

scale or neighborhood level. It is virtually impossible to view an overview of a

city and attempt to understand the individual activities and behaviors of every

inhabitant. Existing research by Cranshaw et al. (2012), explored this phenom-

ena of UGC-driven neighborhoods previously, but in a very different way. The

authors show that a city can be split into subregions based on the social media

contents generated by its residents. Our work takes a very different approach

focusing at real-time information presented in subregions rather than individual

neighborhoods. For this reason, we developed the Social Burst View.

5.4.1 Default Behavior

From a systems architecture standpoint, the default behavior is accessible by

zooming and panning through all map zoom levels. Visual exploration of default

temporal behavior and spatial patterns is also encouraged by panning through

13We are well aware of the fact that Foursquare is a biased data sources and thus our POI
Pulse is biased (but this is not the focus of this paper).
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time (clicking the Next Hour button) or jumping to a selected time (clicking the

clock button and selecting from a drop down list of hours and days). This shows

how the POI-driven urban system changes over time. At the initial map scale,

a single color value is used to represent all user-contributed POI in the Greater

Los Angeles area. Advancing through time while visualizing the POI in this way

provides the user with a better understanding of the flow of the city as a whole.

This view is essential to understanding which regions of the city are dynamic and

the overall variability in activity level for the entire region. Increasing the map

scale by one zoom-level, the user is presented with new upper-level classes. Again,

panning through both space and time, the viewer gains a better understanding of

the distinction between classes. As the opacity value of each POI marker changes,

the user is made aware that the level of activity is changing both between and

within classes. For example, the class of Entertainment and Nightlife is very

prominent at 12am on Sunday while it is completely overshadowed by categories

such as Commercial Services on Monday at 9am.

Zooming in further, the data format switches from image to vector tiles. While

the color scheme, marker size, and opacity do not change between zoom levels,

the capabilities of the vector data format allow for much greater user interaction.

Hovering one’s mouse over any POI between zoom levels 13 and 16 results in the

Foursqure POI type name appearing beside the POI as well as a donut-pie chart
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surrounding the marker. The donut-pie chart is a technique employed to visually

explain the OS class probabilities determined for each POI type in section 2.4

thus going beyond binary classification.

The value of being able to interact with the map through mouse events, for

example, is that one can visually explore the probability distribution of classes

for each individual POI. The standard marker visualization forces each POI to be

assigned a single color representing a single class, but in actuality, the POI may

exhibit high probabilities in more than one class and the primary marker color

could be ascertained by a very small margin. When the user hovers over a POI,

the donut-pie chart is displayed, demonstrating the multi-class characteristics of

the venue. Each portion of the donut represents a category that contributes to

this venue, and the color of each portion reflects the class. The size of each portion

is defined by the percentage of this contribution based on the learned SVM model.

Figure 5.7 shows mouse-over interaction with two different POI. The central

marker in Figure 5.7a is styled blue indicating that the primary OS class for this

POI is Accommodation, Eating and Drinking. The accompanying donut-pie chart

clearly shows that the highest probable classification for this POI type is indeed

Accommodation, Eating and Drinking followed by small fractions of Entertain-

ment and Nightlife and so forth. Comparatively, Figure 5.7b shows the prominent

class for Water Park to be Sports and Recreation which makes sense given that
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(a) Chinese Restaurant (b) Water Park

Figure 5.7: Donut-pie charts showing OS category probabilities for two different POI.

users of the geosocial application are likely to visit a water park to engage in phys-

ical activities and recreation. The second highest class, as shown by the donut-pie

char is Attraction and it is the second highest probability by only a few percentage

points. It is this ability to explore the discrepancies between classes, to dig into

the underlying data, that is the true power of such an application.

5.4.2 Real-time Burst Mode

Understanding the pulse of a city involves not only looking at the city as

a whole, but exploring the individual subregions or neighborhoods. What are

people talking about in this part of the city? What places are popular right now?

These are questions that should be asked, not at a city-wides scale, but rather

at a local scale where the contents can be understood. Recent work by Purves

et al. (2011) explored this notion of describing place based on data contributed
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to geosocial applications such as Flickr and Geograph. In addition, the LIVE

Singapore! project (Kloeckl et al. 2012) allows individuals to access a range of

real-time information from a variety of sources as well as contribute back to the

system. While it does not include default temporal behavior as a foundation, it

does offer real-time access to an assortment of city sensors.

Microblogging applications such as Twitter offer users the ability to geo-tag

their content before publishing it. By accessing the streaming API,14 these tweets

can be added to the map immediately after they are published, providing the

user with (near) real-time information on what is happening in a certain region.

Additionally, Foursquare provides current check-in counts for any venue in their

dataset through their rate-limited API.15 This information is valuable in that it

shows the true popularity of both Foursquare as a service, and the POI at which

its users choose to check-in. Clicking the Burst Mode button immediately changes

the temporal state of the map to the current hour of the day and week and be-

gins to show real-time tweets and check-in counts based on the map view-port.

Adding the real-time behavior on top of the default behavior is only possible at

zoom levels that ensure that the necessary queries do not exceed the rate-limit of

the used APIs.

14https://dev.twitter.com/docs/streaming-apis
15https://developer.foursquare.com/docs
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Figure 5.8: Real-time Check-in counts for Santa Monica at 7pm on a Wednesday

Real-time tweets

The Twitter streaming API offers users the ability to filter public streaming

tweets by a specific geographic region. A listener service provides bounding box

coordinates of the study area and all tweets geotagged within the region are in-

serted in to a PostGIS database table. Individual tweets older than one minute are

purged from the database complying with Twitter’s terms of service.16 Though

twitter claims to restrict all tweets accessed through the filter streaming API to

1% of the real-time data, the influence of adding a geographic filter is not fully

16https://dev.twitter.com/terms/api-terms
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known. The average rate of tweets over a 24 hour period filtered to within the

Greater Los Angeles area is approximately 113 per minute.

On the client/browser side, an asynchronous JavaScript (AJAX) request is

made every 1000ms to a server side handler. The JavaScript request provides the

view-port extent of the browser in geographic coordinates in order to restrict the

returned tweets to only those within the user’s view extent. In addition, only

those tweets published within the last 2 minutes are requested. Upon return, the

tweets are added to the map via a D3 vector layer which produces an animation

that mimics water droplets (Figure 5.9). The animation lasts for 1000ms while

another request is made to the server.

Given the shear number of tweets, it is not technically prudent nor cognitively

reasonable to display tweets on a small scale map. Recognizing this, users are

given the option to view live tweets only within specific regions. The factor that

determines the size and zoom scale of these regions is the number of POI within

the view-port. A threshold of 1000 POI inside a view-port is the value at which

users are given the option to view live tweets. Statistically, POI density is a

good indication of neighborhood popularity, as the original POI were generated

through crowd-sourcing means. It is important to note that this threshold is set

independent of zoom level. As Figure 5.9 indicates, in some cases (Santa Monica

Pier for example) the map scale will need to be quite large in order to fit less than
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1000 POI in a view-port. Alternatively, parts of South-East Los Angeles reveal a

lower POI density and therefore do not necessitate as large a map scale in order

to visualize tweets.

Figure 5.9: Tweets in Santa Monica (red circles with semi-transparent white fill)

Real-time POI popularity

While live geotagged-tweets offer insight into region-specific themes, the real-

time geosocial popularity of POI in the region can also be determined. The

Foursquare API permits requests to specific venues in order to determine the

number of Foursquare users currently checked-in. Given API rate limits17, a 500

POI view-port restriction ensures that any request made to a region returns only

valid responses. From an system architecture perspective, when a user clicks the

17API limitations require that a user request data through OAuth. Requests are limited to
500 per hour.
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Burst Mode button, an AJAX request is made to the API which includes the

geographic extent of the map view-port. The response from this request is then

returned to the browser and check-in count values are added to the map for 500

POI, overlaid on top of the existing POI markers.

5.5 Conclusions and Future Work

Inspired by Foursquare’s city pulse videos, 5 major shortcomings were iden-

tified that must be addressed to make the POI pulse useful from a scientific

perspective and to contribute to the vision of information observatories for urban

systems. Based on those shortcomings, we derived 4 theoretical and technical re-

search questions that have to be successfully addressed to implement an improved

urban pulse. In this work we addressed those questions by a combination of data-

driven and theory-informed techniques to arrive at a semantics signatures-based

POI taxonomy. We investigated how to seamlessly switch between multi-buffered

image and vector tiles to implement a responsive Web portal that can handle about

165,000 POI, thus pushing the envelope of state of the art Web cartography. We

studied the tipping point between those cached image and vector tiles, and finally

proposed a method to seamlessly switch between a default mode of human behav-
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ior derived from empirical probabilities and streaming real-time geosocial data.

We implemented the POI Pulse system as showcase for our proposed solution.

In the future, we would like to add more services to the real-time burst mode.

We are especially interested in a combination of platial, e.g., current check-ins, and

spatial, e.g., Instagram pictures, data. As a proof-of-concept, we have discussed

how to classify the human-generated content POI types to an administrative POI

classification schema based on semantic signatures. However, we have only done

so for level 1 and plan to add the second OS level in the future. Additionally,

integration of POI and attribute data from alternative sources (McKenzie et al.

2014) would increase the variety and robustness of the proposed classification

model. We also plan to add more bands, e.g., based on the place personalities

proposed by Tanasescu et al. (2013). Next steps will also involve other methods

of delineating class types, e.g., using a combination of color ramps to visually

represent combinations of class probabilities and uncertainty.
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Chapter 6

How Where Is When? On the
Regional Variability and
Resolution of Geosocial Temporal
Signatures Mined from Point Of
Interest Check-ins

The previous chapters have shown that the temporal behavior of individuals

is crucial to defining the types of places that they visit. Until this point this work

has taken an aspatial approach to constructing temporal signatures by aggregating

check-ins from all across the United States. In this chapter, the regional variability

and resolution of temporal signatures are the subject of investigation. Temporal

check-in patterns from three cities across the U.S. as well as one city in China

are compared. The results show that there is regional variability at it pertains

to some place types and a lack of regional variability in others. This work takes
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the next logical step in discussing the role of time in determining place types by

investigating the placial indicativeness of temporal signatures.
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Abstract

The temporal characteristics of human behavior towards Points of Interest

(POI) differ significantly with place type. Intuitively, we are more likely to visit a

restaurant during typical lunch and dinner times than at midnight. Aggregating

geosocial check-ins of millions of users to the place type level leads to powerful

temporal signatures. In previous work these signatures have been used to estimate

the place being visited based purely on the check-in time, to label uncategorized

places based on their individual signature’s similarity to a type signature, and to

mine POI categories and their hierarchical structure from the bottom-up. How-

ever, not all hours of the day and days of the week are equally indicative of the

place type, i.e., the information gain between temporal bands that jointly form

a place type signature differs. To give a concrete example, places can be more

easily categorized into weekend and weekday places than into Monday and Tues-

day places. Nonetheless, the regional variability of temporal signatures has not

been studied so far. Intuitively, one would assume that certain types of places are

more prone to regional differences with respect to the temporal check-in behavior

than others. This variability will impact the predictive power of the signatures

and reduce the number of POI types that can be distinguished. In this work, we

address the regional variability hypothesis by trying to prove that all place types
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are born equal with respect to their temporal signatures, i.e., temporal check-in

behavior is aspatial. We reject this hypothesis by comparing the inter-signature

similarity of 321 place types in three major cities in the USA (Los Angeles, New

York, and Chicago). Next, we identify a common core of least varying place types

and compare it against signatures extracted from the city of Shanghai, China for

cross-culture comparison. Finally, we discuss the impact of our findings on POI

categorization and the reliability of temporal signatures for check-in behavior in

general.

6.1 Introduction

Points of Interest (POI)1 are inextricably linked to modern (mobile) search,

recommender systems, location-based social networks, transportation studies,

navigation and tourism systems, urban planning, predictive geo-analytics such

as crime forecasting, and so forth. In terms of their computational represen-

tation, POI can be described and categorized in many different ways. Typical

approaches are either based on features or functionality. The former describe POI

based on attributes/properties such as price range, Wi-Fi availability, wheelchair

1We use the term Point of Interest here to keep in line with related work in research and
industry and because these places are typically represented by point geometries. On the long
term and due to the increase in richer geometric representations, Place of Interest seems to be
the more appropriate name.
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access, ambience, noise level, room size, customer satisfaction, and so forth. Leav-

ing pre-defined types such as Restaurant, Hotel, or National park, aside, POI can

be grouped into ad-hoc categories (Barsalou 1983) based on their common fea-

tures such as “expensive places” or “attractions that offer wheelchair access.” A

functionality-centric view describes and categorizes POI based on what they af-

ford, e.g., dining, travel, trade, or shelter (Jordan et al. 1998, Winter & Freksa

2014). While both approaches can be combined to account for their distinct

strengths and weaknesses, they are typically realized in a schema-first manner in

which features or functionalities are defined top-down and then populated with

data (Glushko 2014). An example of such a schema is shown in Figure 6.1 which

depicts properties defined for museum as well as the higher-level types from which

these properties were inherited.

Alternatively, and assuming that meaning emerges from social structure

(Gärdenfors 1993), POI types can be described and categorized by aggregating

how people behave towards places, e.g., when they visit them, what they say/write

about them, and so forth. In addition to top-down schemata, such an approach

reveals meaningful patterns suitable for a bottom-up, observations-first character-

ization of POI (types). To give a few concrete examples, certain types of places are

visited mostly during the weekends, while others are visited primarily during the

workweek. Similarly, some types have their visitation peaks during the evenings
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Figure 6.1: A fragment of the Museum type from Schema.org.

while others peak during typical business hours from 9am-5pm. Even the lack of

such distinct peaks is indicative (e.g. of major airports). Textual descriptions and

other sources of observations can be used accordingly. For instance, mining latent

topics from social media such as textual user reviews of places from Los Angeles

reveals very characteristic Spanish-language topics (McKenzie et al. In Press).
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As an analogy to spectral signatures and bands in remote sensing, we have

proposed semantic signatures that support the categorization of POI based on

a multitude of spatial, temporal, and thematic bands (Janowicz 2012a). Simply

put, in the domain of remote sensing, geographic entities on the surface of the

Earth are classified via their unique reflection and absorption patterns in different

wavelengths of electromagnetic energy called bands (Schowengerdt 2006). In some

cases a particular band is sufficiently indicative to distinguish entity types (e.g.,

paved concrete from bare red brick), while in other cases a combination of multiple

bands is required to form a unique spectral signature (e.g., deciduous and conifer

trees cannot be distinguished via the visible light band alone).

Temporal semantic signatures and bands are of particular interest as they are

relatively easy to mine and at the same time are strongly indicative for a variety of

POI types (Shaw et al. 2013, Ye, Janowicz, Mülligann & Lee 2011). Consequently,

they have been successfully used for the labeling of uncategorized places, for data

cleansing and deduplication, for the construction of bottom-up POI hierarchies,

for geolocation tasks such as estimating which place a user visited based on GPS

fixes, and further tasks that benefit from this kind of social sensing. Recognizing

the role of time has also lead to new fields of study such as time-aware POI

recommendation (Yuan et al. 2013). Some POI types require additional (non-
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temporal) bands for their more fine-grained classifications (McKenzie et al. In

Press). However, we will exclusively focus on temporal signatures in this work.

Interestingly, not all hours of the day and days of the week are equally indica-

tive for the classification of POI types, i.e., the information gain of temporal bands

differs. Intuitively, places can be more easily categorized into evening and morning

place types (e.g., bars versus bakeries) than into early morning and late afternoon

places. To further exploit the analogy to spectral signatures, it is interesting to

note that the resolution of temporal bands is characterized and bounded by hu-

man behavior. While hourly, daily, and seasonal bands have predictive power,

second or minute-based bands do not (at least not for POI). This leads to the

question of whether temporal signatures also have a placial resolution. Note that

we use the term placial (or regional) instead of spatial here as the variation is

expected to be non-linear2. For example, San Diego, CA and Tijuana, Mexico are

neighboring cities, yet we expect them to vary more with regards to the tempo-

ral signatures than San Diego, CA and San Francisco, CA which are over 700km

apart. Conversely, aspatial implies placial (regional) invariance.

Clearly, as temporal signatures are mined from human behavior, certain POI

types will be affected by cultural differences. For instance, the peak dinner time

for restaurants in Italy is around 8pm while it is approximately 6pm in the United

2In the literature, ‘placial’ and ‘platial’ are used in parallel, we prefer placial here as it more
readily points to the term’s origin, namely ‘place-based’.
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States. We may even expect differences between the West and East Coasts of the

U.S. In contrast, meaningful differences between the neighboring cities of New

York, NY and Newark, NJ are less likely. Understanding such regional variations,

their resolution, and magnitude, is important as they will effect the indicativeness

of the signatures and thus their contribution to the aforementioned tasks; cf. (Gao

et al. 2013a). In other words and referring back to the wordplay in the title, we

will ask how much the where, i.e., regional-effects, impacts the when, i.e., the time

people tend to visit certain types of venues. We will put this placial resolution

research question to the test by hypothesizing that all place types are born equal

with respect to their temporal signatures, i.e., that the temporal check-in behavior

is aspatial.

The remainder of the paper is structured as follows. Section 6.2 outlines

our research contributions. Section 6.3 introduces the data and the temporal

signatures mined from these data. Next, in Section 6.4, methods, results and

discussion on placial variation are presented. Section 6.5 discusses a small subset

of the results in further detail, while Section 6.6 compares these results to another

dataset from Shanghai, China. We discuss related work in Section 6.7 and finish

with a discussion of the overall results and the conclusions in Section 6.8.
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6.2 Research Contribution

The regional variability hypothesis can be illustrated using the following intu-

itive example. Given a user location derived from a positioning fix of a mobile

device and a set of Points Of Interest in the vicinity of this fix; can we match the

user’s spatial location (lat/long coordinate) to a placial location (venue)? In other

words, can we estimate which place a user visited, e.g., the Hollywood Palladium,

based on the spatial location, e.g., the GPS fix 34.0981,-118.3249. Intuitively, the

probability of checking-in at a particular place is inversely proportional to the

distance between the spatial footprint of the POI and the user’s location fix. As

argued previously, check-in times can be aggregated to type-indicative temporal

signatures. Now, given the example above, if the GPS fix was recorded at 8am,

the user is more likely to be at the nearby Waffle eatery than the spatially closer

Hollywood Palladium since the check-in probability for a concert venue is negligi-

bly low in the morning. In contrast, the same fix recorded on Friday at 7pm most

likely indicates a visit to the Palladium.

In fact, performing such an experiment with real data from over 2,800 check-

ins in Los Angeles, CA shows that incorporating temporal signatures (aggregated

from multiple cities) improves the geolocation estimation as measured by the Mean

Reciprocal Rank (MRR) from 0.359 to 0.453, i.e., by about 26%. Simplifying,
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the check-in probability for a given place depends on the distance of its spatial

footprint to the user’s location as well as the temporal check-in likelihood at this

type of place. Now, if the temporal signatures for POI types would be aspatial,

i.e., there would be no regional variability, then the geolocation estimation quality

would not differ based on the origin of those signatures. Temporal signatures

derives from New York or Chicago check-in data would lead to the same increase

in MRR over the distance-only baseline as signatures derived from Los Angeles

(or signatures aggregated over multiple cities). However, performing such an

experiment shows that using New York signatures for the geolocation estimation

in Los Angeles leads to an MRR of 0.425. This is lower than the performance

of the aggregated signatures (0.453) but higher than the distance-only method

commonly used to date (0.359). Consequently, while the New York signatures

still outperform the baseline, there must be a regional variation in the check-in

behavior. Alternatively, we can hypothesize that the signature differences are

explainable by random variations.

This raises several interesting research questions; three will be ex-

plored in the following sections:

RQ1 Are POI types regionally invariant and the observed differences described

above due to random fluctuations? We will try to reject this null hypothesis

using the circular Watson’s Two-Sample test.
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RQ2 Are regional signature variations equally strong across all POI types, i.e., are

there types that are affected more or less by such variations? Furthermore,

given a POI type hierarchy, do certain supertypes form around more or

less varying subtypes? We will address these questions by comparing the

inter-signature similarity of POI types from three major cities in the USA

(Los Angeles, New York, and Chicago). To ensure that these similarities are

not merely artifacts of the used measure, we will use the Gini Coefficient,

Jensen-Shannon Divergence, and Earth Mover’s Distance, and study the

concordance of the resulting similarities by computing Kendall’s W.

RQ3 Given a common core of least varying POI types determined by their signa-

tures from major US cities, how do these signatures hold up when compared

against data from a very different cultural region, e.g., against signatures

extracted for Shanghai, China? To approach this research question, we will

select POI types that can be aligned between the U.S. and Chinese POI

schemata and then divide them into two groups, those that vary clearly

within the U.S. and those that do not. Next, we will use Earth Mover’s

Distance to test whether these groups remain stable when using the Chinese

signatures, i.e., whether POI types in the regionally invariant group remain

in this group and vice versa.
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6.3 Raw Data and Temporal Signatures

Check-in information was accessed hourly via the public Foursquare API to

collect a total of 3,640,893 check-ins to 938,031 venues from 421 POI types across

three regions: Los Angeles (LA), New York City (NY), Chicago (CHI), and New

Orleans (NOLA).3 The Foursquare POI type schema groups these 421 POI types

in to 9 top-level classes. To gain a better understanding of the data, Figure 6.2

shows the percentage of user check-ins divide by those 9 classes and split by region.

Travel & Transport is by far the most prominent POI class followed by Arts &

Entertainment which is more pronounced in Los Angeles than in either New York

City or Chicago. In contrast, both New York City and Chicago show a higher

percentage of check-ins at Outdoors & Recreation POI types.

For the purposes of this research, these check-in data were accessed during

the fall/winter of 2013. The goal was to access check-ins to 60 venues in each

city from each of the 421 POI types.4 Given the limited number of venues of

some POI types in the selected cities (e.g., Belarusian Restaurant), this was not

always possible. The hourly check-in data were aggregated by POI type, region,

hour, and day of the week. Given 24 hours over 7 days, this resulted in 168

hourly bands used to construct a temporal signature normalized and aggregated

3Region boundaries are based on the 2010 Census Urban Areas boundaries.
4https://developer.foursquare.com/categorytree
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Figure 6.2: Stacked bar plots showing amount of check-ins to each parent class as a
percentage of overall check-ins. Check-ins have been split in to regions.

to a single week. In order to ensure the robustness of the temporal signatures, any

type whose venues appeared less than 30 times in a given region was removed from

analysis. This reduced the number of POI types from 421 to 321. Additionally,

the New Orleans dataset was dropped from analysis due to the limited availability

of certain types which would have considerably restricted the categories available

for comparison. The remaining 321 POI types in the three regions, Los Angeles,

New York City and Chicago form the basis of the analysis to be discussed in

the remained of the paper. Lastly, the signatures were cleaned by removing data

errors and outliers. Note that due to the usage restrictions of the Foursquare

API, no individual check-ins or venues were stored for this research but merely

type-level aggregates.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(a) Temporal Signature binned by hour

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(b) Smoothed Temporal Signature

Figure 6.3: Check-in data represented as (a) a binned temporal signature by hour of the
day and (b) a smoothed temporal signature. Both temporal signatures show averaged
check-in behavior over 24 hours (a typical Tuesday) at a Mexican Restaurant.

Before using these signatures, it is important to understand their temporal res-

olution (Jensen & Cowen 1999), in this case, the smallest change in quantity (i.e.,

check-ins counts) that can be observed via a sensor (i.e., the check-in Apps and

API ). Reporting and using data below such a resolution may lead to erroneous

results. For this reason, it is common practice to round data to their signifi-

cant digits. While some Location-based Social Networking (LBSN) APIs return

the check-in timestamp, others return check-in counts per venue and have to be

scanned repeatedly at an interval that corresponds to the temporal resolution.

More importantly, timestamps do not represent the time a user entered a place.

For instance, a user would most likely enter a coffee shop, ordered an espresso, sit

down, and then use his/her smartphone to check-in. Other systems, however, may

check-in users automatically; see (Malmi et al. 2012) for the resulting differences

between manual and automatic check-ins. Additionally, most LSBN platforms

do not provide an option for checking out of a place and therefore, many ser-
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vices will typically check their users out automatically after a certain time, e.g., 2

hours. Consequently, reporting temporal signatures on the level of minutes (even

for large aggregates of data) or trying to draw conclusions from check-out times

invites misunderstanding. This is of particular importance for the research at

hand as we will compare signatures aggregated via Foursquare with those from

Jiepang, a leading Chinese LBSN services (Jiepang) whose APIs return different

temporal resolutions of data.

Consequently, we report the data at an hour-resolution as depicted in Figure

6.3a. If appropriate and necessary, the signatures can be smoothed via a kernel

function; see Figure 6.3b.

6.4 Regional Variation

In this section, a number of methods for analyzing regional variations between

POI types are presented. First, the question of whether or not types are aspatial is

examined followed by an analysis of how much individual POI types vary region-

ally. Finally, POI hierarchies are examined in terms of their temporal signature

homogeneity. We will define the terms and introduce the used measures in the

corresponding subsection.
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6.4.1 Significance of Placial Variations

Before we can explore the regional differences between particular POI type, we

have to exclude the possibility that the temporal signature variations are merely a

sampling artifact or produced through random fluctuations (RQ1). In order to do

so, we start with the hypothesis that all types of POI are regionally equal, in other

words they are placially invariant. Using Watson’s Non-parametric Two Sample

U2 Test Of Homogeneity (Watson 1961, Zar 1976) we can test this hypothesis.

The Watson’s U2 test (Equation 6.1) starts with the assumption that all samples

(temporal signatures) are drawn from the same population (region). The variable

N is the sum of the number of values in each sample (n1, n2) and dk is the difference

between the two cumulative signatures.

U2 =
n1n2

N2

[∑
d2
k −

(
∑
dk)2

N

]
(6.1)

The test also assumes that the temporal signatures are circular in nature (e.g,

Monday is equally as close to Sunday in temporal distance as Sunday is to Satur-

day). Figure 6.4 visually depicts circular representations of temporal signatures

for the POI types of Theme Park and Drugstore. Clearly, temporal signatures for

Theme Park tend to vary stronger with place than those for Drugstore.
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(a) Los Angeles (b) Chicago (c) New York

(d) Los Angeles (e) Chicago (f) New York

Figure 6.4: Circular histograms depicting temporal signatures for Theme Park (a,b,c)
and Drugstore (d,e,f).

Altering the significance level5, the categorical circular distributions of 168

temporal bands are compared between each pair of regions (e.g., NY & LA). The

results shown in Table 6.1 present the percentage of POI types that are signif-

icantly different between regions based on the provided significance level. For

example, a significance value of 0.05 shows that in 52% of the cases, the hypoth-

esis is rejected for the pair of LA & NY meaning that 167 out of 321 POI types

differ significantly between the two regions. Similarly, LA & CHI and NY & CHI

pairs reject the hypothesis for 50% and 48% of POI types respectively. Provided

this information, arguments can be made that (1) measurable and meaningful re-

5alpha parameter in the watson.two.test function in R.
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gional variability does exist between POI types and (2) some types are regionally

dependent while others are not.

0.01 0.05 0.1

NY & CHI 33% 48% 57%

LA & CHI 37% 50% 59%

LA & NY 36% 52% 63%

Table 6.1: Percentage of POI types that are statistically different between regions as
determined by the Watson’s non-parametric two sample U2 test of homogeneity. The
results for three significance values (0.01, 0.05, 0.1) are reported.

These results confirm our intuition and reject the null hypothesis (RQ1). On

the one hand, temporal signatures for POI types or check-in times in general have

been successfully used in the literature (Ye, Janowicz, Mülligann & Lee 2011, Yuan

et al. 2013, Shaw et al. 2013, Gao et al. 2013a, McKenzie et al. In Press, Yuan

et al. 2014) because they are stable and generalizable over individual samples.

On the other hand, even when applying the very conservative 0.01 alpha level,

at least 106 POI types differ significantly between regions. Thus, understanding

and quantifying these differences opens up new ways to substantially improve POI

recommendation, classification, and so forth.

The question remains as to which POI types are placially variant and by what

amount? This will be answered in the following subsections.

172



Chapter 6. How Where Is When? On the Regional Variability and Resolution of
Geosocial Temporal Signatures Mined from Point Of Interest Check-ins

6.4.2 Variability Between Categories

In considering RQ2 it is necessary to explore how temporal signatures of

different POI types change based on region. In order to determine the amount by

which some POI types are regionally dependent, we analyzed the variability using

three dissimilarity measures.

Difference in Gini Coefficients

The Gini coefficient is a measure of the inequality of a given distribution.

Originally intended to represent the income distribution of a country’s residents

(Gini 1912), a distribution of P is said to be equal (all values are the same) if G(P )

results in 0 and be completely unequal should G(P ) be 1. As shown in Equation

6.2, this coefficient provides a rough value used to describe any given distribution.

In comparing two distributions, the Gini coefficient of one distribution can be

subtracted from the other (which we refer to as the difference in Gini Coefficients

or DGC) to give a broad indication of the (dis)similarity of two distributions.

G(P ) =

∑n
i=1

∑n
j=1|xi − xj|

2n2µ
(6.2)

Table 6.2 lists the five most dissimilar POI types as well as the five most

similar types based on the difference in Gini coefficients. The types are split

based on region pairs. The value shown in parenthesis beside each type is the
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difference in Gini coefficient value normalized by the most dissimilar type (Theme

Park) and the most similar type (American Restaurant). Normalization allows

for comparison between POI type as well as between dissimilarity measures (cf.

Table 6.3 and Table 6.4).

NY & LA NY & CHI LA & CHI

Dissimilar POI Types

Theme Park (0.844) Recycling Facility (0.825) Theme Park (1)

Real Estate Office (0.739) Resort (0.797) Resort (0.802)

E. European Restaurant (0.68) Farm (0.703) Baseball Stad. (0.74)

Recycling Facility (0.586) Historic Site (0.702) Donut Shop (0.711)

Farm (0.582) Basketball Stad. (0.686) Garden Cntr (0.704)

Similar POI Types

Drugstore / Pharmacy (0.004) Furniture / Home Store (0.003) Monument / Landmark (0.005)

Gym (0.001) Harbor / Marina (0.002) Men’s Store (0.003)

Community College (0.001) Yoga Studio (0.002) Gym (0.002)

Pet Store (0.001) Laboratory (0.001) Community College (0.001)

Art Museum (0.001) Wings Joint (0.001) American Restaurant (0.000)

Table 6.2: Top five and bottom five dissimilar POI types based on normalized difference
in Gini coefficient and split by region pairs.

Jensen-Shannon Distance

While informative, the difference in Gini coefficient approach primarily focuses

on the minima and maxima of a distribution. The Jensen-Shannon Divergence

(JSD) is a method for measuring dissimilarity between two probability distribu-

tions (P,Q) (Lin 1991). In this case, comparison between distributions is done

through a one-to-one bin approach. The distance metric is calculated by tak-

ing the square root of the value resulting from the divergence and is bounded

between 0 (identical distributions) and 1 (complete dissimilarity). The JSD cal-
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culation is shown in Equation 6.3 where M = 1
2
(P + Q) and KLD represents

the Kullback-Leibler Divergence specified in Equation 6.4. While useful as a dis-

similarity metric, JSD’s one-to-one bin comparison does not take in to account

neighboring bins.

JSD(P ‖ Q) =
1

2
KLD(P ‖M) +

1

2
KLD(Q ‖M) (6.3)

KLD(P‖Q) =
∑
i

P (i) ln
P (i)

Q(i)
(6.4)

Table 6.3 shows to the top five and bottom five dissimilar POI types split by

region pair. As we saw with the difference in Gini coefficent approach (Table 6.2),

the most dissimilar POI types are often Theme Parks or Stadiums. Interestingly,

the most similar POI types are shown to be a variety of Stores (e.g., Grocery

Store).

NY & LA NY & CHI CHI & LA

Dissimilar POI Types

Football Stadium (1.000) Theme Park (0.863) Football Stadium (0.843 )

Baseball Stadium (0.687 ) Recycling Facility (0.677) Theme Park (0.835)

Theme Park (0.603) Food Truck (0.651) Recycling Facility (0.733)

Basketball Stadium (0.594) Funeral Home (0.627 ) Skate Park (0.710 )

Campground (0.584) Basketball Stadium (0.586) Food Truck (0.707)

Similar POI Types

Electronics Store (0.021) Grocery Store (0.000) University (0.021)

Furniture / Home Store (0.039) Residential Building (0.037) Electronics Store (0.035)

Hospital (0.035) Home (private) (0.023) Hardware Store (0.030)

Grocery Store (0.032) Department Store (0.021) Drugstore / Pharmacy (0.024)

Department Store (0.031) Mall (0.018) Gym (0.022)

Table 6.3: Top five and bottom five dissimilar POI types based on normalized Jensen-
Shannon Distance and split by region pairs.
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Earth Mover’s Distance

Given JSD’s reliance on a one-to-one bin comparison, the Earth Mover’s Dis-

tance (EMD) is utilized as well. Originally introduced by the computer vision

community (Rubner et al. 1998, 2000), EMD compares each bin in a distribution

(P ) to all bins in a second distribution (Q) assigning a cost value based on bin

distance. Simply put, EMD is the minimum amount of work it takes to convert

one distribution into the other, where Fi,j is a flow matrix (amount of earth to

move between bins) and Ci,j is the cost matrix representing the cost of moving

the flow. The total cost is then shown in Equation 6.5.

EMD(P,Q) =
n∑

i=1

n∑
j=1

Fi,jCi,j (6.5)

As with both DGC and JSD, calculating the EMD across all types for all pairs

of regions allows us to rank POI types by their regional similarity with high values

indicating high dissimilarity. Table 6.4 lists the five most and five least dissimilar

types split by region. The normalized EMD values are shown in parenthesis

next to the type name. Similarities between the regional pairs are apparent in

both the highly dissimilar and similar (shaded gray) groups with Theme Parks

and Stadiums again, showing to be the most dissimilar POI type and Stores and

Residences proving to be the most similar.
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NY & LA NY & CHI LA & CHI

Dissimilar POI Types

Theme Park (0.789) Theme Park (0.710) Theme Park (1.000)

Football Stad. (0.686) Resort (0.614) Resort (0.600)

Real Estate Office (0.471) Basketball Stad. (0.549) Baseball Stad. (0.575)

East Euro Restaurant (0.416) Winery (0.506) Garden Center (0.442)

Farm (0.402) Recycling Facility (0.453) Donut Shop (0.423)

Similar POI Types

College Residence Hall (0.013) Home (0.005) Monument / Landmark (0.015)

Shoe Store (0.011) Hardware Store (0.005) University (0.009)

Military Base (0.010) Doctor’s Office 0.003 Drugstore/ Pharmacy (0.006)

Convenience Store (0.001) Comm. College (0.002) Home (0.004)

Drugstore/ Pharmacy (0.000) Airport Gate (0.000) Convenience Store (0.002)

Table 6.4: Top five and bottom five dissimilar POI types based on normalized Earth
Mover’s Distance and split by region pairs.

Summing up, with respect to RQ2, these three dissimilarity measures show

that there are clear differences between POI types. Some, e.g., Theme Park, show

a strong regional variability, while others, e.g., Convenience Store, do not.

6.4.3 Concordance Between Dissimilarity Measures

While these three statistical dissimilarity measures yield individual results for

inter-signature comparison, the real value of these measures is shown in their

agreement. Here Kendall’s coefficient of concordance is employed (Kendall &

Smith 1939). Each of the three regions is compared to each other region using

Earth Mover’s Distance, Jensen-Shannon distance and difference in Gini coeffi-

cient. These produce a single dissimilarity value from each region pair for each

POI type. Kendall’s W is then used to calculate the measure of concordance

between each dissimilarity measure across all POI types.
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Measures NY & LA LA & CHI NY & CHI

EMD & JSD 0.80 0.82 0.78

EMD & GINI 0.91 0.91 0.88

GINI & JSD 0.74 0.73 0.74

Table 6.5: Kendall’s coefficients of concordance W for pairs of regions and combinations
of dissimilarity measures (p < 0.01 in all cases).

A Kendall’s W value of 1 indicates complete concordance where a value of

0 represents no concordance at all. As shown in Table 6.5, all W values are

greater than random with the values for EMD & GINI producing the highest

coefficient of concordance followed closely by EMD & JSD and GINI & JSD. This

indicates a high level of agreement between dissimilarity measures, thus excluding

the possibility that the observed similarities are merely artifacts of choosing a

specific measure. We will focus on EMD for the remaining analysis.

6.4.4 Hierarchy Homogeneity

Typically, POI types are not flat but form a hierarchy consisting of one or more

root types followed by multiple type-levels. Figure 6.1 shows such a hierarchy from

schema.org with Thing as the root type. The subsumption relation is transitive,

i.e., as Place is a supertype of CivicStructure and CivicStructure is a supertype

of Museum, Museum is also a subtype of Place. Such hierarchies are not only

important means for knowledge engineering but also key for various information

retrieval techniques such as query expansion.
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The second part of RQ2 poses the interesting question of whether supertypes,

e.g., Retail, in a POI hierarchy are homogeneous with respect to the temporal

signature variability of their subtypes, e.g., Hardware store. To address this ques-

tion, we grouped the top 100 most and top 100 least varying subtypes and then

compared their distribution with respect to the supertypes. Intuitively, homoge-

neous supertypes should mainly contain subtypes from one group but not from

both.

Figure 6.5 depicts the results of our analysis for the supertypes provided by

Foursquare. By necessity, hierarchies introduce some arbitrariness by highlight-

ing certain perspectives and hiding others. The Foursquare POI hierarchy is an

interesting case as its supertypes seem like mixed bags, e.g., grouping Cemeteries

under the Outdoors & Recreation root type and even introducing a Professional

& Other Places “catch-all” type. While some POI types such as Nightlife Spot

and Travel & Transport are homogeneous, the majority do not show a clear trend.

This confirms our intuition. In fact, this very problem has been addressed before,

combining spatial, thematic, and temporal signatures to construct a more appro-

priate POI type hierarchy for Foursquare from the bottom-up (McKenzie et al. In

Press). We can now use this hierarchy to compare it to the original Foursquare

categorization. Intuitively, the bottom-up version should be more homogeneous,

i.e., supertypes predominantly contain either similar or dissimilar subtypes (with
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regards to their temporal signatures between U.S. cities). Figure 6.6 confirms this

assumption, the Accommodation, Eating & Drinking and Attractions types being

particularly clear examples. It is interesting to note that in both hierarchies the

transportation-centric types contain mostly similar POI types, while the service

types consist of subtypes too diverse to show a clear picture.

Figure 6.5: Original Foursquare POI hierarchy supertypes by prevalence of the 100
most similar subtypes and the 100 most dissimilar subtypes.

Summing up, to answer the second part of RQ2, POI hierarchies are not

generally homogeneous with respect to the regional variability of the temporal

signatures of their types. Nonetheless, some supertypes show clear patterns even

across different POI hierarchies.
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Figure 6.6: Bottom-up signature-bases POI hierarchy supertypes by prevalence of the
100 most similar subtypes and the 100 most dissimilar subtypes.

6.5 Cross-Cultural Comparison: Shanghai, CN

The next step in examining regional variation in POI types is to investigate

how cultural differences influence placial variation in temporal signatures. With

respect to research question RQ3, it is appropriate to examine the temporal sig-

natures of POI in a city outside of the United States. In filling this role we

chose to compare U.S. temporal signatures based on Foursquare data with tem-

poral signatures constructed from Jiepang6 check-ins, which is one of the largest

location-based social networking platforms in China.

6http://jiepang.com
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6.5.1 Chinese Check-in Dataset

The Jiepang dataset on which this section is based contains more than 20

million location-based social check-in records from a one year period starting in

September of 2011. All check-in data is from the Shanghai region of China and has

been used to explore inter-urban mobility in previous work (Liu et al. 2014, Lian

et al. 2014). Approximately 75,000 venues from 156 POI types grouped within

8 root-level types were extracted from user check-ins. Note that the predefined

classification system of the Chinese check-in dataset is different from the type

schema used in Foursquare. For example, the (American) football stadium type is

popular in the United States while it does not exist in the Jiepang POI hierarchy.

Furthermore, Doctor’s Office, Hospital and Medical Center types from Foursquare

are merged into a single Chinese LBSN POI type. Interestingly, and confirming

our results from Section 4, the POI types that show clear regional differences

within the U.S. are among those that are most difficult to align to the Chinese

dataset, e.g., Theme Park, various types of sports facilities, and Donut Shop.

In contrast, it was easier to find corresponding Jiepang POI types for the top

regionally invariant types. As a sample comparison, 10 highly regionally invariant

and 10 highly varying POI types were selected and manually matched between

both datasets (see Table 6.6).

182



Chapter 6. How Where Is When? On the Regional Variability and Resolution of
Geosocial Temporal Signatures Mined from Point Of Interest Check-ins

6.5.2 POI Type Similarity Comparisons

The 20 sample POI types were selected based on dissimilarity analysis within

the three U.S. cities presented in the previous sections. Similar to the methodology

discussed in Section 6.4.2, we applied the Earth Mover’s Distance to calculate the

dissimilarity of these POI types between the averaged temporal signatures for U.S.

cities and the city of Shanghai.

Table 6.6 lists the 20 most and least dissimilar POI types along with the nor-

malized EMD values for within the United States and between the United States

and Shanghai. Please note that the Mean EMD Within U.S. is calculated by tak-

ing the mean of the EMDs reported from each regional pair while the Shanghai vs.

U.S. Mean EMD is calculated as the EMD between the regionally averaged U.S.

temporal signature and the Jiepang temporal signature. While the average EMD

of temporal signatures between the Shanghai vs. U.S. Mean for all POI types is

higher than that of Within U.S., the magnitude difference between highly dissim-

ilar POI types and highly similar POI types remains the same across cultures. In

other words, POI types that are highly variable in the U.S. are also highly variable

in Shanghai China (means of 0.62 & 0.68 respectively) while the most stable POI

types remain stable across cultures (means of 0.07 and 0.23 respectively). The

Spearman correlation coefficient of these sets of normalized EMD values is 0.64

(Pearson = 0.70) indicating above average similarities between the two.
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POI Type Shanghai vs. U.S.
Mean nEMD

Mean nEMD Within
U.S.

Dissimilar POI Types

Theme Park 0.89 1.00

Farm 0.89 0.82

Historic Site 0.43 0.69

Zoo 0.42 0.59

Cemetery 1.00 0.58

Gaming Cafe 0.63 0.58

Pool Hall 0.25 0.54

Burger Joint 0.89 0.53

Gas Station/Garage 0.42 0.46

Public Art 0.98 0.36

Similar POI Types

Toy/Game Store 0.00 0.15

Furniture/Home Store 0.45 0.13

College Library 0.05 0.13

Shoe Store 0.28 0.11

Mall 0.19 0.10

Grocery Store 0.09 0.04

Hotel 0.37 0.01

University 0.35 0.01

Home (private) 0.10 0.00

Drugstore / Pharmacy 0.23 0.00

Table 6.6: Ten highly dissimilar POI types and ten highly similar POI types selected
from the U.S. Foursquare dataset. The Earth Mover’s Distance was calculated between
each Foursquare POI type its Chinese Jiepang counterpart. The values were normalized
between the most dissimilar and most similar POI type.

In response to RQ3, this section shows that the most regionally invariant

types in the U.S. show reasonable stability when compared to Shanghai, China,

but that highly variable types within the U.S. are also high variable in the Chinese
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dataset. This is a very valuable insight as it indicates that some POI type may

be represented by signatures with potentially global coverage.

6.6 Exemplary Investigation of Temporal Signa-

ture Differences

The analysis presented in the previous sections shows that POI types do in

fact vary regionally with some showing significant changes between the regions

of Los Angeles, New York City, Chicago, and Shanghai, and others displaying no

significant difference in their temporal signatures. In this section, we discuss a few

select examples of these POI types with the purpose of illustrating why regional

variability exists for some types but not others.

The POI type that shows the highest level of dissimilarity across all pairs of re-

gions and all dissimilarity measures is Theme Park. While this POI type may not

immediately come to mind when thinking about regional differences, the reason

is apparent when one examines the discretized temporal signatures (168 hourly

bands of the week) shown in Figure 6.7. Check-in probabilities remain quite con-

stant throughout the week for Los Angeles, while weekend peaks are much more

pronounced for both New York and Chicago. These differences in temporal signa-

tures can be explained through a better understanding of the regions themselves.
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While a number of Theme parks exist in the Greater Los Angeles area, the pre-

dominant amusement park in the area is Disneyland Resort. In 2013, the park

hosted approximately 16.2 million guests making it the third most visited park in

the world that year (TEA 2014). Given the “holiday destination” nature of Dis-

neyland Resort, it is not surprising that the temporal signature displays very little

difference between weekend and weekdays. Moreover, a strong argument can be

made for the impact of weather on theme park visits. As stated in Section 3, data

collection took place through the seasons of Fall and Winter. Weather variability

in Southern California is minimal relative to the seasonal variability experienced

in both Chicago and New York. In actuality, many Theme parks in New York and

Chicago close completely for the winter months (November - March) and a limited

few remain open on the weekends for special events. Interestingly, check-in data

from Shanghai shows similar weekend behavior but additionally we see a tendency

toward a peak in the morning during the weekdays. This indicates the need for

seasonal temporal signature bands, which we plan to addressed in the future.

Based on the variability analysis done in Section 4, Football Stadium are shown

to be another POI type high in dissimilarity between regions. Since professional

American football is traditionally played on Sundays, one might expect temporal

signatures to be quite similar between regions in the United States. Upon further

examination we find a number of different factors contributing to this dissimilarity
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Figure 6.7: Temporal Signatures for the POI type Theme Park in Los Angeles, New
York City and Chicago, United States and Shanghai, China.

Figure 6.8: Temporal Signatures for the POI type Football Stadium in three cities in the
United States. Note that data from Shanghai China is not shown here as no matching
POI type was found.

ranking. First, while professional football is played on Sundays, College football is

often played on Saturdays and High School football is typically played on Friday

nights. It is important to know that Los Angeles does not have a professional

football team which means that the peak one would expect on Sunday afternoon

(which is seen in Chicago and New York City) is not found in the Los Angeles
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Figure 6.9: Temporal Signatures for the POI type Drug Store / Pharmacy in Los
Angeles, New York City and Chicago, United States and Shanghai, China.

signature (Figure 6.8). Instead, we see the influence of both College and High

School Football with peaks on Friday night and Saturday afternoon. Furthermore,

football stadiums as with other types of stadiums, routinely host events other

than just football matches. Major music concerts, trade fairs, and other sporting

events often take place in large football stadiums which would also contribute to

the regional difference in temporal signatures.

Lastly, we will look at the category of Drug Store / Pharmacy which presents

the highest regional similarity across all POI types. From a conceptual perspec-

tive, one often thinks of a drug store or pharmacy as being an atemporal type

of category. One would be hard-pressed to list the typical times of day that an

individual would choose to visit a drug store as drug stores offer a wide range of

products. Found on many street corners in the United States and China, drug
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stores are often the “closest” place to pick up anything from sunscreen to birth-

day cards. Figure 6.9 shows the atemporal nature of drug stores with check-in

values shown for most of the daylight hours and less check-ins late at night when

many drug stores may be closed. Furthermore, Figure 6.9 shows the lack of re-

gional variability in the temporal signatures between Los Angeles, New York City,

Chicago and Shanghai.

In summary, while statistical methods applied to temporal signatures show

that there are regional differences in POI types, a better understanding of the

data behind these variations can be gained through a detailed examination of a

subset of POI types.

6.7 Related Work

Previous studies have explored the role of LBSN data in analyzing human be-

haviors and urban dynamics. For instance, Cheng et al. (2011) found that users

follow the “Lévy Flight” mobility pattern and adopt periodic behaviors in check-

ins, which were bounded with their social ties as well as geographic and economic

constraints. Wu et al. (2014) further analyzed the temporal transition probability

of different activities (e.g., working, dining and entertainment) using social me-

dia check-in data. In work by Noulas et al. (2011), the authors reveal different
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temporal rhythms in the top 10 most popular Foursquare categories (e.g., home,

café, highway, and bar) between weekdays and weekends. The distinct temporal

bands of POI types can be useful for data cleaning, place recommendation and

decision making in LBSN (Ye, Janowicz, Mülligann & Lee 2011). From the urban

informatics perspective, the POI data mined from user-generated content provides

a fresh and updated view on the city-in-use versus the city-in-plan. Thus, it can

help study neighborhood variations and monitor land-use changes (Quercia & Saez

2014). Cranshaw et al. (2012) spatially clustered POI as urban neighborhoods and

studied how multiple factors shape urban dynamics. Recently, McKenzie et al.

(In Press) introduced a multi-granular, semantic signatures-based approach for

the interactive visualization of the city pulse using millions of POI data in the

Greater Los Angeles area. A data-driven and theory-informed POI classification

approach has also been introduced in this work focusing on the multi-dimensional

(spatial, temporal and thematic) characteristics of POI types. Although there is a

large volume of literature studying POI location recommendation based on users’

historical check-in records and spatio-temporal patterns (Bao et al. 2012, Wang

et al. 2013, Zhang & Chow 2013, Gao et al. 2013b, Yuan et al. 2013), to the best

of our knowledge, no existing research has addressed the placial perspective and

the role of regional variability in categorically defined temporal signatures.
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6.8 Conclusions and Future Work

In this work we have discussed the regional variability and resolution of tempo-

ral signatures for Points of Interest. To study the variability, we assumed that POI

type signatures are regionally invariant and hypothesized that the observed differ-

ences are merely random fluctuation. We rejected this hypothesis using Watson’s

Two-Sample test. Consequently, there are measurable and meaningful regional

differences between POI types. This is an important finding as temporal signa-

tures are a valuable social sensing methodology for various tasks including data

cleansing, geolocation, POI recommendation, and categorization.

Next, we discussed the magnitude and the distribution of these differences

within the U.S. by comparing major cities. To ensure that the comparison is

not driven by the choice of similarity measure, we tested three measures and de-

termined the concordance between them. The results confirm that the regional

temporal signature variation is not homogeneous across POI types. A POI type

that does not show regional variations when comparing New York to Los Angeles

data, is also likely to show no substantial variation when comparing any of these

cities to Chicago. Interestingly, the picture is more difficult for types that display

strong regional variability. These types differ in unique ways, so to speak, inde-

pendent of the compared cities. Finally, we compared U.S.-based signatures to
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those from Shanghai, China to test whether types that show less variance would

also remain stable when compared to data from a very different culture. Our first

results indicate that this is the case.

Summing up, temporal signatures built from social media data, user check-ins

in this case, are not aspatial. They vary to a degree where methods and ap-

plications would benefit from region-specific signatures. However, this does not

mean that one would have to generate and store a multitude of local signatures.

First, as the geolocation example in Section 2 demonstrates, aggregated signatures

are very powerful and second, not all types vary to a degree that would justify

the additional overhead. The suitable placial resolution for regionally varying

signatures depends on the concrete application needs and the expected benefits.

Defining country-wide signatures may be an appropriate resolution for some tasks

but not for others. However, using the same signatures world-wide will only prove

useful for a certain subset of relatively invariant types. Once again, this high-

lights the local nature of information and the role of space and place in studying

Physical-Cyber-Social relations in general (Sheth et al. 2013). Our findings are

important as today’s research applies temporal POI and check-in data uniformly

across space.

Future work in this area will involve expanding the dataset to include ad-

ditional regions from major cities around the world. We will also explore the
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difference between rural and urban settings as well as the influence of weather

and seasonal effects on certain types of POI. Along the same lines, we focused on

regional differences here while demographic differences may also be key drivers.

Finally, the work at hand is part of a long-term project (Janowicz 2012a) to

publish an openly available library of semantic signatures with the hope that it

will be equally as transformative as spectral signature libraries have been to the

field of remote sensing. Signatures are difficult and time consuming to mine; the

research community will benefit from having common access to well described and

documented spatial, temporal, and thematic signatures for Points Of Interest and

other features.
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Conclusions

In this dissertation, temporal human behavior is shown to be a valuable dimen-

sion for defining place types. In fact the temporal check-in patterns of individuals

are more indicative than what has traditionally been seen as the most important

dimension of place, namely space. The methods presented in previous chapters

show that the activities that individuals conduct at places in their environment

are highly temporally descriptive. In order to complete this research, data was ac-

cessed through voluntary activity surveys as well as user-contributed placial data

collected through online geosocial networking platforms (e.g., Foursquare, Twit-

ter, Yelp). The results of the research presented in this dissertation were evaluated

through the construction of varied temporal probability models and rank statis-

tical methods. The findings are chapter specific and are summarized within the

respective chapters. This chapter will synthesize the findings and present the

overall theoretical contribution of this work as well as the practical implications.
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Limitations of this work are also presented along with directions for future areas

of research.

7.1 Discussion

The increased availability of user-generated geo-content represents new op-

portunities for human behavior, activity and place-based geoinformatics research.

Through the analysis of these rich sources of information we are able to better

quantify the dimensionality of place. While place is in many ways still very much

an abstract concept, analysis of data contributed by millions of visitors to these

places offers new and unique insights into understanding and defining place. The

research presented in this dissertation explores the concept of place, and more

specifically place types through a multidimensional lens. Spatial, Thematic and

Temporal components of place are three such dimensions and form the basis for

this placial exploration. Of particular interest is the role that time plays in defining

place types. Each Chapter of this work took a different approach to determining

the value of the human behavior-driven temporal dimension, all stemming from

the common thread that time is essential to understanding place.

195



Chapter 7. Conclusions

7.1.1 Theoretical Contribution

Previous work on the topic of Place, from a geographic information science

standpoint, has traditionally approached place from a spatial perspective (Agnew

2011, Goodchild et al. 2000, Kwan et al. 2003). This is not surprisingly, given

that the study of Geography as a discipline is founded on the notion that spatial

location matters. It must be realized though, that space is only a single dimension

in the multifaceted definition of place. While other research has demonstrated the

utility of the thematic dimension (Adams et al. 2015, Cranshaw & Yano 2010),

research into the role of the temporal dimension on understanding places has

been lacking. The research presented in this dissertation demonstrates the value

of time in defining the place types. The statements below outline the theoretical

contributions of this work, filling a gap that currently exists in place-based research

and in doing so, advancing the field of geographic information science.

• While there is a correlation between online contributions and real-world

activities, unique activities (those that exist outside one’s daily routine) are

more likely to be the subject of online social networking contributions. This

indicates that inferences about the real world can be made via data collected

from online actions (e.g., geosocial check-ins).
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• People can be assessed as more similar or less similar to one another based

on the places they choose to visit. While the place types that they visit are

important, so is the time at which the places are visited.

• While multiple dimensions contribute to differentiating place types, the tem-

poral component of visiting behavior is the most indicative dimension con-

tributing to the delineation of place types.

• Combining the spatial components of place with human visiting patterns

(temporal data) enhances the accuracy of positively identifying a place

within a region.

• Temporal activity behavior varies with place type and region. In other

words, human behavior as it pertains to frequenting places, differs between

regions.

7.1.2 Practical Implications

One of the questions that is often asked of this research is Why is a better

understanding of place necessary? and in that same vein Why should we care

about the temporal component of place? In answering these questions, let us take

a scenario from the domain of Urban Planning. In contributing to the design

and plan of a city, it is important to not only understand the spatial dispersion
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of a city’s inhabitants, but also understand the ways in which these individuals

interact with places in their environment. Since it has been shown that time is an

important dimension and defining contributor to place, it follows that this tem-

poral dimension would play a significant role in contributing to the development

of a city. This temporal component of place allows urban planners to better un-

derstand the activities behavior of individuals as well as how places are connected

via the temporal visiting behavior of people. In doing so, it allows for the city

to be designed not only spatially, but also temporally, accounting for interaction

between people through the appropriate application of land-use and zoning laws.

Aside from the theoretical contributions of this research, there are clear prac-

tical implications of this work in a wide variety of domains. The remainder of this

section outlines many of the ways in which place and the temporal dimension of

place are important.

Recommender Systems & Activity Prediction

The results of this research, as hinted at in Chapter 3, can greatly benefit the

field of recommender systems. Current work in this area primarily makes use of

top-down schemata for defining place types. For example, some systems make the

suggestions that since you visited a bar previously, you would most likely like to

visit a bar in the future. Few of these systems actually pull apart the dimension
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of the individual bars that you visited to see what it was about those places that

enticed you to attend them. Rather than taking an authoritative view on place

types, this research investigates place types from the bottom up, mining the data

of users that actually went to places and exploring the user behavior at these

places (both thematically and temporally). This step contributes to both a better

match between the instance of the place and the place type assigned to it, as well

as a recommender system that makes use of these nuanced differences between

places. This work clearly has implications on three types of recommender systems:

• Local Place recommender systems take data based on places that you have

been previously and recommends new places for you to try. The results of

this research would allow users of current recommender systems to adjust

the variability parameters of the model to suggest more or less common

types of places based on where they have gone previously.

• Itinerary recommender systems are responsible for designing an out-of-

town trip itinerary based on one’s interests. Such a recommender system

would make use of this user-similarity work to find users in the region in

which one plans to visit (proxies) that have similar activity interests as the

focal user and then recommend places to her based on the places the proxy

user visits.
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• Friend/Partner recommender systems currently focus on the textual de-

scriptions of the activities that people like to do as well as personal interest,

etc. As has been shown throughout this and previous work (Scellato et al.

2011, Cho et al. 2011, Silva et al. 2014), the places that people choose to visit

say a lot about them as individuals. Current friendship/partner recommen-

dation services could use the work presented in the user-similarity model to

propose possible friendships and relationships based on this information.

The flip side of activity recommendation is activity prediction. A good rec-

ommender system should be able to recommend a place to you that you would

like to visit. Using this same approach, an activity prediction model would be

able to predict the places you would likely go based on the data and place-type

information.

Reverse Geocoding / Place Search

As shown in Chapter 4, the results of this research have significant implications

for current state-of-the-art reverse geocoding services. Currently, top place search-

ing services take a distance-only approach to determining one’s placial location

based on their spatial coordinates. This work shows that through the inclusion of

temporal check-in data, specifically temporal signatures, the accuracy of existing

place search approaches can be increased by over 26%. Ongoing work in this area
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is currently focused on developing an enhanced reverse geocoding service that

makes use of these findings.

Data-driven classification and hierarchy construction

Current efforts to categorize and organize place types into hierarchies are typ-

ically driven by top-down processes. Vocabularies such as Schema.org, The Ord-

nance Survey and even Foursquare’s internal venue tree are all constructed by

groups of people discussing how these types should be organized. The data-driven

aspect of the research presented in this dissertation approaches the construction of

place-type hierarchies from the bottom-up. Instead of organizing the data based

on what we think are place-type delineations, this research proposes that we in-

stead look at the actual data and investigate how humans interact with places.

Categorization and schematization should be driven by real placial behavior. This

is not to say that the two approaches are mutually exclusive, but rather that this

work suggests that both options offer value and should be involved in the gener-

ation of place-type hierarchies.

Point of interest matching and conflation

Much of the appeal of so called Big data lies in the variety of data that is

available to the average consumer. The recent increase in Point of Interest data
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fits into this discussion through the emergence of numerous applications that

provide POI data and platforms that assist in the user-generation of POI. The

value of all of these platforms is that there is a wide range of data accessible for

POI, everything from user check-ins to the ambience or even the presence of Wi-Fi

are offered through these platforms. Access to rich content about a specific place

through these various services is useful. The difficulty is that while many of these

services offer attribute information for the same instance of a place, matching and

conflating these places are difficult tasks. Initially one might think that given

the geographic location of these POI, it would be possible to match them purely

based on geographic coordinates. In actuality, these platform-specific POI have

been shown to be over 62.8 meters apart on average (McKenzie et al. 2014). This

is where the multidimensionality of place comes in. Both the thematic attributes

of the space (e.g., textual reviews) as well as the temporal patterns (e.g., check-

in behavior) can be included in the spatial dimension to offer a robust, multi-

attribute method for matching points of interest.
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7.2 Limitations

This research is not without its limitations. It is important to expose the issues

and limitations that were present in this work as well as the steps that were taken

to mitigate or minimize their impact.

7.2.1 Data

Bias

The majority of the data collected for this research was collected from online

geosocial networking platforms. It has been widely recognized that use of these

platforms is restricted in its demographics. The average Foursquare user is a single

white young adult male with an annual income between $25,000 and $50,000.

The reality of conducting research with this type of data is that any inferences

can only be made for the population that the data represents. That being said,

geosocial networking services such as Foursquare do represent over 50 million

people worldwide. While restrictive in its demographic representation, analysis

of the data does offer significant insights into the behavior of the individuals

producing the data. For example, this data can be used in urban planning to

see how people interact with the city and to determine roughly the burden being

placed on the transportation system.
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The bias towards certain types of POI is also recognized. The social saliency

of a place should not be underestimated. Visits to place types such as Hospitals

or Jails are most likely under-represented in check-in data as there is very little,

if any, social capital to be gained from checking in to these places. Alternatively,

a visit to a trendy Nightclub or Ski Resort is much more likely to be reflected in

a check-in due to the increase in social value associated with “having it known”

that you were there.

Much of the data on which this research is founded comes from a single data

provider, namely Foursquare. While the argument can be made that in fact the

data comes from over 50 million data providers, the fact remains that one service

is responsible for validating, cleaning and other unknown practices on the data

before serving it back to the public. The unfortunate reality is that at the time

of conducting this research, Foursquare is the only provider to offer a large and

robust enough dataset on which to conduct this research. As geospatial technology

gains traction in social networking applications, more and more of this data will

be made available, increasing the variety and richness of data for constructing

temporal signatures.
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Access to Data

Virtually all of the data used in conducting this research was ascertained via a

public facing application program interface (API). Most large data providers offer

restricted access to a limited amount of their data through an API. The purpose

is to allow users of these API to gain a sample of the data on which to build third

party applications which will in turn increase the revenue of the original data

provider. While smart from a business standpoint, it severely limits one’s ability

to access data for research purposes. Given access to more data over a larger

timespan, research into the influence of seasons and weather on check-ins would

be feasible as well as large-scale studies on regional check-in variation. Unfortu-

nately private data silos have become commonplace in today’s user-generated data

market and this has negatively impacted the ability to do large scale, data-driven

behavioral research.

7.2.2 Methods

Dealing with Circular Data

One of the features that makes working with temporal data so unique is its

circularity. In aggregating data to a certain temporal resolution, the day of the

week or hour of the day for example, acknowledging this circularity is impor-
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tant. It is imperative that the methods used to analyze circular data reflect this

importance. For example, a similarity method that takes a linear approach to

determining similarity would might make the erroneous assumption that Sunday

and Saturday are at opposite ends of a linear scale, where in reality Sunday is as

close to Saturday as Friday is to Saturday. This becomes important when using

methods that assign a transportation cost for comparing two distributions (e.g.

Earth Mover’s Distance).

Real-world Activities vs. Online Posts

In Chapter 2 a preliminary study was shown that asked users to complete a

diary of their daily activities. At the same time a Facebook application monitored

their online posts. While this proved to be a good first step, asking individuals

to track their own activities could prove to be problematic. A mobile application

that automatically determines an individual’s location as well as estimates their

activities would be more suitable for this type of study.

7.2.3 Conceptual

A conceptual limitation of this work is found in the fact that for much of this

research, place must be represented on a cartographic display. Since the concept of

place is either unique for each individual or shared socially, justifying a boundary
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on a map is difficult. In much of this research, places are represented as Points

of Interest on a map. It should be noted that the deceptions of places as points

is not a statement of their geometry, but rather a necessity of geocomputational

research.

In addition to the visual and geometric depictions of place, the need to define

the dimensionality of place is a limitation of placial research. The number of

possible dimensions which places occupy is restricted to three in this work. This

is not to say that there are not additional dimensions of place, but rather that

for the purposes of this dissertation, working with primarily one dimension but

discussion three was sufficient.

7.3 Future Research

The different paths by which future research on this topic may extend are

plentiful. While not an exhaustive list, a number of these are outlined below.

7.3.1 Point of interest Matching, Conflation & Alignment

As stated in Section 7.1.2, additional effort can be made towards point of

interest matching and conflation. This research has been done at a very interesting

time for user-generated geo-content. Numerous data providers exist all offering
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their own unique set of points of interest. Many of these places are referencing the

same real-world instance of a place, but offer different details and attributes about

the place. The difficulty is determining that the place in set A is the same as the

place in set B. Additional work needs to be done in this area to not only match

POI between providers, but also conflate these POI. The research community

as a whole will benefit greatly from a robust set of POI in which multiple data

platforms have contributed attribute information. Inclusion of information from

multiple datasets will also reduce the bias inherent in information provided by a

single application.

In addition to this, alignments need to be made between place type vocabu-

laries. Currently Google, Microsoft and others use the Schema.org vocabulary for

structuring the world while Facebook and Foursquare, for example, use their own

internal vocabularies. In order to know that Middle-Eastern European Restaurant

in one vocabulary is the same as Persian Food Establishment in another requires

some form of alignment between the two vocabularies. The work presented in

Chapter 5 presents a first step towards aligning the numerous vocabularies avail-

able today.
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7.3.2 Geoprivacy

One of the top concerns of both producers and consumers of online user-

generated content is the privacy of the data. As more and more of our lives

are based online this concern for privacy is justified. The work presented in this

dissertation touches on a number of the ways that an individual’s publicly shared

data can be used to expose their personal activity behavior. While this is not the

purpose of this work, I can clearly lead in that direction. The unfortunate reality

of many of the geosocial applications in the market today is that the benefits of

the services that they offer are often gained at the cost of one’s private location

information (Duckham & Kulik 2005, Vicente et al. 2011, Kwan et al. 2004).

For example, searching for a good restaurant nearby means sharing your current

geolocation with services such as Yelp or Google, services that most likely already

have additional personal information about you, such as your personal interests,

communications, etc. While one concern in all of this is the amount of private

location information we are willing to share with commercial companies, another

is concern over how aware contributers are of what can be done with this data.

An informed application user choosing to share this information is one thing,

but an uninformed, naive user coerced into sharing this information is something

else entirely. Much of these concerns have been discussed in a recent publication
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(McKenzie & Janowicz 2014), though this is an area of user-generated geo-content

that requires a lot more research.

7.3.3 Real-world Activities

In Chapter 2, the interaction between online social networking posts and the

real-world activities they represent is discussed. This work presents a first step in

a much needed exploration of the relationship between these two worlds. Specif-

ically, the correlation between online geosocial content and real-world temporal

activity space should be investigated in greater detail. As the use of geosocial

applications become ubiquitous, the availability of data will continue to entice

researchers into using these online sources to make inferences about real-world

activity behavior. As this research states, it is important to make sure the rela-

tionship between online contributions and real-world activities is well understood

in order to substantiate these inferences.
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