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The pursuit of secure computation has always featured a tension between

performance and security. Security mitigations often come with a high performance

cost that can be manifested in serious environmental and economic impacts if they

are employed, and in disastrous security and privacy breaches, if not. In the context

of processor architectures, the security-performance tension is only growing as new

attacks appear, each exploiting a crucial performance optimization, threatening to

unwind decades of architectural gains. These hosts of attacks on microarchitectural

optimizations painfully coincide with an era in which those performance optimizations
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are needed most – an era when Moore’s law is fading and Denard’s scaling is gone.

In this dissertation we strive to defuse this security-performance tension by

deepening our understanding of vulnerabilities in modern processors, providing effi-

cient hardware support to enable security, and designing new high-performance secure

architectures. We first show how performance optimizations can have devastating

security implications by introducing a novel microarchitectural side-channel attack

that targets Data Direct IO, a network packet processing optimization implemented by

Intel (Chapter 1). Then, we propose Context-Sensitive Decoding (CSD), a framework

that takes advantage of the instruction-to-micro-op translation that exists in most

modern processors to provide security features (Chapter 2). Finally, we propose novel

secure and fast architectures to mitigate vulnerabilities in two of the most crucial

performance optimizations in modern processors: Speculative Execution (Chapter 3)

and Simultaneous Multithreading (Chapter 4).
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Introduction

Security and performance are two fundamental goals in the design of modern

computing systems. These two, unfortunately, have often conflicting demands. For

example, isolation, an intrinsic security property, is fundamentally at odds with

sharing, an often desired performance property [155]. Therefore, as we progress

towards systems with higher performance, security becomes more challenging [155].

Modern high-performance processors share a plethora of resources (e.g., caches, branch

predictors, functional units, etc.) potentially between different security domains. The

security implications of this sharing, however, remained historically overlooked until

the 2000s, when Percival [212] showed a cache-based side-channel attack capable of

successfully breaking the AES encryption. In addition, software security and isolation

mechanisms are built upon a a set of assumptions that are often violated by complex

performance optimizations in modern processors. As a result, any break in those

assumptions can break the whole system. Notable examples of such a break are

the first two transient execution attacks, i.e., Spectre [148] and Meltdown [165], that

were disclosed in early 2018. These attacks can break fundamental software security

mechanisms such as memory isolation and leak important information of different

kinds – from cryptography keys to saved passwords in the browsers.

Additionally, in order to be widely adopted, security solutions in most cases

need to incur acceptably low performance costs. The security community has observed

many security mechanisms that have been proposed, even implemented, but that are

often disabled by users unwilling to bear the performance burden [3, 41]. Although
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low performance cost is a requirement for many security solutions, it is particularly

challenging for security defenses that mitigate attacks on important performance

features (e.g., attacks on speculative execution or shared caches) as simply disabling

those features will have a direct hit on performance.

At the microarchitecture level, this performance-security tension is becoming

particularly apparent. Followed by the disclosure of the first transient execution attacks,

we saw a host of new attacks appear [26, 146, 177, 230, 270], each exploiting a crucial

performance optimization in modern processors, threatening to unwind decades of

architectural gains. Unfortunately, these attacks coincide with an era in which those

performance optimizations are needed most – an era when Moore’s law is fading and

Denard’s scaling is gone. Therefore, the computer architecture and computer security

communities have started to seek new architectures and techniques to continue to

enable these optimizations but with higher levels of protection.

This dissertation is a step forward in this direction. More specifically, it ad-

dresses the question of can we disentangle the inherent tension between security and

performance? This dissertation shows that, at the microarchitecture level, where the

sources of these vulnerabilities reside, it is possible to ease this tension with secure

microarchitectural techniques. This dissertation proposes techniques that allow us to

flexibly reach desirable points in the security-performance space.

Particularly, this dissertation eases the tension in three complementary ways:

First, it provides new insights and a deeper understanding of the ways that microarchi-

tectural optimizations can be exploited in practical attacks. This not only leads to more

secure and more efficient defenses but also allows us to provide timely mitigations. We

expose the security side effects of a sophisticated, high performance microarchitectural

technique – Intel Data Direct I/O (DDIO) implemented in most server-grade Intel

processors to accelerate network packet processing. Second, it designs new secure

architectures that thwart microarchitectural attacks without disabling our performance
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optimizations. We propose secure designs for two of the most critical performance

optimizations in today’s processors: speculative execution and simultaneous multi-

threading. Finally, in addition to high-performance mitigation for microarchitectural

vulnerabilities, this dissertation utilizes microarchitectural techniques to improve the

performance of other security mitigations (software-based or hardware-based). We

propose a framework that utilizes the internal translation of instructions to micro-ops

in the processor, offering on-demand security protection for various vulnerabilities.

1 Novel Microarchitectural Attacks

Attention to, concerns over, mitigations for, and research focused on microar-

chitectural security vulnerabilities have all increased significantly in recent years. It is

clear that we face real dangers while these vulnerabilities remain. Of course, to defuse

the security-performance tension and to create secure, vulnerability-free architectures,

we first need to ferret out these vulnerabilities.

Modern processors employ increasingly complex microarchitectural techniques

that are carefully optimized to deliver high performance. However, this complexity can

sometimes breed security vulnerabilities. In this dissertation we develop an entirely

new, powerful, and evasive microarchitectural attack dubbed Packet Chasing. Packet

Chasing is an attack on the network that does not require access to the network, and

works regardless of the privilege level of the process receiving the packets.

On a DDIO host, incoming network packets from a remote client contend for

the shared last-level cache with application data structures from processes on the

local host. We show that such contention provides significant leakage, allowing cache

side channel attacks to perform covert communication and/or infer network behavior,

even when given zero access to the network stack. This dissertation shows that the

domain of impact of microarchitectural vulnerabilities is much larger than previously

3



understood. The impacts are not isolated to the microarchitecture, to the processor, or

to the server. Microarchitectural vulnerabilities expose the entire reach of the network.

With packet chasing, we present a test case for understanding the risk of introducing

a new performance feature without a careful evaluation of the security implications.

This dissertation also proposes and evaluates a hardware-based high-performance

defense against this vulnerability, shifting our security-performance trade-off towards

high-performance, secure systems.

2 Architecture Support for Security

Microarchitectural security techniques should not be limited to mitigating

microarchitectural vulnerabilities. Sometimes, with a small investment in hardware/ar-

chitecture we can provide huge improvement in performance of a software-based, or

even another hardware-based, mitigation. Guided by our goal of easing the security-

performance tension, this dissertation designs schemes that provide architectural

support for new security defenses.

Most modern processors employ translated ISAs. The Intel and AMD x86

processors feature translation from the native instruction set into internal micro-ops

that enter the pipeline for execution. These architectures enjoy the dual benefits of a

versatile backward-compatible CISC front-end and a simple cost-effective RISC back-

end. However, for those architectures the translation has been always static, changing

at most once per generation. To unlock the full potential of translated ISAs, this

dissertation proposes context-sensitive decoding (CSD), a technique that allows native

instructions to be decoded/translated into a different set of custom micro-ops based

on their current execution context. This can be easily done because the processor

performs the translation via table lookup. As a result, we can make that translation

dynamic simply by incorportating a flag or set of flags into the lookup hash function.
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This presents operating systems and runtime systems with the unique op-

portunity of triggering different custom translation modes, at microsecond or finer

granularity, by simply configuring a set of model-specific registers. In this way,

for example, an insecure executable can instantly become a secure executable, or

performance-optimized code can become energy-optimized, without recompilation or

binary translation. This feature is particularly useful for fast and efficient deployment

of hardware security defenses in response to new attacks.

Via CSD, this dissertation introduces a simple, yet powerful change to modern

architecture pipelines, exploiting the existing decoupling of the internal and external

ISAs, which now enables the OS, hardware, or even users to add a suite of dynamic spe-

cialization capabilities including on-demand security, performance, energy-conserving,

usability, and/or diagnostic features to existing code, without the need to wait for

software changes or hardware changes.

3 Secure Speculative Execution

Spectre and related attacks have exposed new dimensions of the security-

performance tension by exploiting a performance optimization integral to modern

high-performance architectures: speculative execution. These transient execution

attacks bypass existing isolation mechanisms because they exploit instructions that

execute only on speculative paths, not on the committed path. Mitigating most variants

of Spectre requires highly intrusive changes to existing out-of-order processors, severely

limiting performance. Although Intel has announced microcode updates to mitigate

certain variants of the attack, a majority of the high impact vulnerabilities still largely

rely on software patching. Software mitigations rely on fence instructions that mute

specific effects of speculative execution by constraining the order of certain memory

operations, or in some cases by completely serializing a portion of the dynamic
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instruction stream, but doing so severely hurts performance. We propose Context-

Sensitive Fencing (CSF) [255, 257], a high-performance microcode-level defense against

Spectre. CSF secures modern processors against Spectre attacks while maintaining

high levels of performance, flexibility, and programmability.

Additionally, we comprehensively study and evaluate existing fences in the

context of security applications. None of the fences in Intel processors were designed

for security. Several were designed for synchronization, and thus with different

priorities. Others are just unintentional side effects of various other instructions.

In this dissertation, we find ample opportunity to significantly shift and reduce

the aforementioned tension between performance and security – identifying and re-

architecting several key dimensions of these fences that restrict performance with no

actual benefit for security.

CSF is also one of the first defenses to examine the rich body of work on

Dynamic Information Flow Tracking (DIFT) in the context of speculative execution.

A classic taint tracking mechanism operates in the backend of the pipeline–usually

at the execute and commit stages. However, execute- or commit-based taint tracking

comes too late in the pipeline for any speculation-based attack, and is of little use.

We designed a novel architecture that makes DIFT work in the decode stage of the

pipeline. With this, we further established the viability of speculative information flow

tracking as an effective attack detection mechanism in the Spectre era.

4 Secure Multi-Threading Architectures

Simultaneous Multithreading (SMT) is a performance optimization that enables

a processor core to issue instructions from multiple threads to the execution units in

the same core in the same cycle [193,265,266]. The substantial benefits of SMT have led

to its widespread adoption by virtually all the major players in the high-performance
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processor market, i.e., Intel, AMD, IBM, and ARM. In an SMT processor, virtually

every part of the pipeline is potentially shared and contended for in some way. This

creates a performance coupling between threads that is an enormous challenge for

security. That’s why, despite all the performance benefits, after the wave of speculative

execution attacks, Google (in Chrome OS), OpenBSD, and Red Hat, among others, have

suggested turning off SMT altogether. This dissertation addresses SMT’s sharing-based

security challenges while retaining its performance benefits.

Naturally, the first step is to understand to what extent modern SMT processors

suffer from information leakage – i.e., to understand how vulnerable they are. Thus,

we conduct the first comprehensive and exhaustive analysis of resource contention

across the entire pipeline for recent offerings from both Intel and AMD. We design

a covert-channel discovery framework that deconstructs how the processor manages

resource sharing between the SMT threads and measures the potential information

leakage resulting from sharing of each of these pipeline resources.

In this dissertation, then, we design and develop secure approaches to mul-

tithreading. In particular, we design two novel partitioning approaches that can be

applied to all contended resources with slight variation: Adaptive Partitioning provides

a temporary, hard partition between threads for a particular resource, but that partition

can move at regular intervals to adapt to long-term program behavior. Asymmetric

SMT enables the system to prevent leakage to an untrusted thread, but without sac-

rificing the performance of the trusted thread. Just one example where this is useful

is sandboxing in web browsers. While it is not secure to leak information from the

browser thread to the sandbox thread, it is safe to leak information from the sandbox

to the browser. Asymmetric SMT recovers the lost resource utilization due to partition-

ing and uses that to accelerate the execution of the trusted thread. This dissertation

addresses contention-based side channels in all pipeline structures, enabling continued

use of these performance-critical structures while executing securely. We show that
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SMT contention-based vulnerabilities can be reduced below the level of other known

vulnerabilities, making SMT execution a viable alternative for high-performance secure

execution.

5 Outline

Chapter 1 presents a novel microarchitectural side-channel attack that can leak

important information from receiving network packets without having access to the

network. This chapter also presents novel mitigations for the discovered vulnerability.

Chapter 2 introduces a new architectural framework that enables customization

of the micro-op translation based on the current execution context. While there are

many potential applications, this chapter demonstrates two use cases: a novel high-

performance security defense to thwart instruction/data cache-based side-channel

attacks; and a power management technique that performs selective devectorization to

enable efficient unit-level power gating.

Chapter 3 presents a high-performance mitigation against multiple Spectre

variants. This chapter describes multiple architectural techniques including speculative

information flow tracking and new security-oriented fence prmitives, that collectively

reduce performance overhead of software-based mitigations by a factor of 6.

Chapter 4 describes our novel secure and high-performance multithreading

architectures.

Finally, Chapter 5 concludes the dissertation and discusses possible future

directions.
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Chapter 1

Packet Chasing

Modern processors employ increasingly complex microarchitectural techniques

that are carefully optimized to deliver high performance. However, this complexity

often breeds security vulnerabilities, as evidenced recently by Meltdown [165] and

Spectre [148]. This chapter explores the vulnerable side effects of another sophisticated

high performance microarchitectural technique – Intel® Data Direct I/O (DDIO) [127]

implemented in most server-grade Intel processors to accelerate network packet pro-

cessing. Further, it presents new high resolution covert and side channel attacks on

the network I/O traffic, which while possible without DDIO, are considerably more

effective in the presence of DDIO.

The widespread adoption of multi-gigabit Ethernet and other high-speed net-

work I/O technology such as Infiniband has highlighted the critical importance of

processing network packets at high speed in order to sustain this newly available

network throughput, and further improve the performance of bandwidth-intensive

datacenter workloads. Consequently, most Intel server-class processors today employ

DDIO technology that allows the injection and subsequent processing of network

packets directly in the processor’s last level cache (LLC), bypassing the traditional

DMA (Direct Memory Access) interface. DDIO is invisible to software, including OS

drivers, and is always enabled by default.
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The key motivation behind DDIO is the fact that modern server-class processors

employ large LLCs (∼20MB in size), thereby allowing the network stack to host hot

data structures and network packets in-process completely within the LLC, reducing

trips to main memory. By eliminating redundant memory transfers, DDIO has been

shown to provide substantial improvements in I/O bandwidth and overall power

consumption [22,127,163,180]. Although Intel restricts allocating more than 10% of the

LLC for DDIO to prevent cache pollution, it neither statically reserves nor dynamically

partitions a dedicated portion of the cache for DDIO.

However, despite its good intention to accelerate network packet processing,

DDIO has a previously unknown vulnerable side effect that this chapter exposes. On

a DDIO host, incoming network packets from a remote client and application data

structures from processes on the local host contend for the shared LLC, potentially

evicting each other in the event of a cache conflict. In this chapter, we show that such

contention provides significant leakage, allowing cache side channel attacks to perform

covert communication and/or infer network behavior, with virtually zero access to the

network stack. In particular, we describe a new class of covert- and side-channel cache

attacks, called packet chasing, that exploit this contention by creating arbitrary conflicts

in the LLC using carefully constructed memory access patterns and/or network packet

streams.

We further show that the location (in cache) of packet buffers used by the

network driver, and the order in which they are filled, are easily discovered by an attacker,

greatly minimizing the amount of probing necessary to follow the sequence of packets

being chased.

The packet chasing-based covert channel we describe in this chapter allows a

spy process running covertly alongside a server daemon on the local DDIO host to

receive secret messages from a trojan process running on a remote client across the

network, by causing deterministic contention in the last-level cache. We show that such
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a covert means of communication is feasible, and is achievable at a high bandwidth,

despite the fact that the trojan process only sends broadcast packets and that the spy

process is completely isolated from the network-facing server daemon (potentially

cross-container and cross-VM), and further lacks any access to the network stack.

In addition to the covert channel, we describe a novel packet chasing based

side-channel attack that leverages a local spy process running alongside (or, within) a

web browser. In our experiments, the spy is on the client side alongside of a browser

like Mozilla Firefox, enabling it to fingerprint a remote victim’s website accesses

without having access to the network. In particular, this attack enables an attacker to

recognize the web activity of the victim based on packet size patterns. This type of

web fingerprinting could be used by an oppressive government to identify accesses to

a banned site, or an attacker could identify members of a secure organization (to then

target more directed attacks) simply by fingerprinting a successful login session.

Further, this chapter describes a software-based short-term mitigation, called

ring buffer randomization, as well as a hardware defense mechanism that adaptively

partitions the LLC into I/O and CPU partitions, preventing I/O packets from evicting

CPU/adversary cache blocks. The adaptive partitioning defense that we describe in

this chapter has a performance overhead of less than 2.7% compared to the vulnerable

DDIO baseline.

1.1 Background and Related Work

This section provides background on network packet handling, DDIO and

related network optimizations, network and I/O based attacks, and cache attacks.

1.1.1 Journey of a Network Packet

When an application sends data through the network, it usually sends a stream

of data; and it is the responsibility of the transfer layer to break large messages into
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Figure 1.1. The shared ring buffers (FIFO) between NIC and the device driver.

smaller pieces that the network layer can handle. The Maximum Transferable Unit

(MTU) is the largest contiguous block of data which can be sent across a transmission

medium. For example, the Ethernet MTU is 1500 bytes, which means the largest IP

packet (or some other payload) an Ethernet frame can carry is 1500 bytes. Adding 26

bytes for the Ethernet header results in a maximum frame of 1526 bytes.

When the NIC driver initializes, it first allocates a buffer for receiving packets

and then creates a descriptor which includes the receive buffer size and its physical

memory address. It then adds the receive descriptor to the receive ring (rx ring), a

circular buffer shared between the driver and the NIC to store the incoming packets

until they can be processed by the driver. The driver then notifies the NIC that it placed

a new descriptor in the rx ring. The NIC reads the content of the new descriptor and

copies the size and the physical address of the buffer into its internal memory. At this

step, the initialization is done and the NIC is ready to receive packets.

As shown in Figure 1.1, upon receiving incoming packets, the NIC, using Direct

Memory Access (DMA), copies packets to the physical addresses provided in the

rx ring, and then sends an interrupt to notify the driver. The driver drains the new

packets from the rx ring and places each of them in a kernel data structure called a

socket buffer (skb) to begin their journey through the kernel networking stack up to the

application which owns the relevant socket. Finally, the driver puts the receive buffer

back in the rx ring to be used for future packets.
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1.1.2 Direct Cache Access and Data Direct I/O

Modern processors and operating systems employ a number of network I/O

performance enhancements that address packet processing bottlenecks in the memory

subsystem [116, 127]. Huggahalli, et al. [116], present Direct Cache Access (DCA),

which enables the NIC to provide prefetch hints to the processor’s hardware prefetcher.

DCA requires that memory writes go to the host memory and then the processor

prefetches the cache lines specified by the memory write. The Intel Sandy-Bridge-EP

microarchitecture introduced the Data Direct I/O (DDIO) technology [127] which

transparently pushes the data from the NIC or other I/O devices directly into the

last level cache. Before DDIO, I/O data was always sent through the main memory;

inbound data is written by the I/O device into memory, and then the data is either

prefetched before access or demand fetched into the cache upon access by the processor.

With DDIO, however, DMA transactions for an I/O region go directly to the last level

cache, and they will be in dirty mode and will get written back to memory only upon

eviction [81, 137].

While DCA and DDIO have been shown to improve packet processing speeds

by reducing the cache miss rates in many scenarios [116, 127], if the device has large

descriptor rings, they could potentially degrade performance by evicting useful data

out of the LLC [251]. In addition, as we show in this chapter, these technologies

potentially open up new vulnerabilities since the packets are brought directly into the

LLC, which is shared by all cores in the processor.

1.1.3 Network-Based Covert-Channels

The literature abounds with network-based covert channels that leverage net-

work protocols as carriers by encoding the data into a protocol feature [2, 89, 107, 174,

232, 310]. For example, covert channels can be constructed by encoding data in unused

or reserved bits of the frame or packet headers [104, 107, 151, 174], such as the TCP
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Urgent Pointer which is used to indicate high priority data [107]. In the TCP protocol,

Initial Sequence Number (ISN) is the first sequence number and is selected arbitrarily

by the client. Rowland [226] proposed shifting each covert byte by 26 bits to the left

and directly using it as the TCP ISN. Abad [2] shows that the IP header checksum

field can also be exploited for covert communication, and further proposes encoding

the secret information into the checksum field and adding the content of an IP header

extension to compensate the checksum modification, chosen such that the modified

checksum will be correct. Other header fields such as address fields [89] and packet

length [174] are also exploited to build covert channels. In addition to the header field,

packet rate and timing [89, 151], packet loss rate [232], and packet sorting [37] are also

used to build covert channels.

Many of these covert channels are based on non-standard or abnormal behaviour

of the protocol and can be detected and prevented by simple anomaly detection

methods [310]. In addition, all of these network-based covert channels require the

receiver to have access to the network and be able to receive packets, while the receiver

in our packet chasing attack does not need any access or permission to the network.

1.1.4 Cache Attacks

Cache-Based side-channel attacks are the most common class of architectural

timing channel attacks, that leverage the cache as their sole medium of covert com-

munication [23, 167, 207, 297]. These attacks have the potential to reveal sensitive

information such as cryptographic keys [61, 70, 98, 167, 191, 304], keystrokes [99, 282],

and web browsing data [205, 237], by exploiting timing variations that arise as a result

of a victim process and a spy process contending for a shared cache. For example, in

the Prime+Probe [167, 205] attack, the spy process infers the secret by learning the

temporal secret-dependent cache access patterns of a victim, by contending for the

same cache sets as the victim and measuring the timing variations that arise due to
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Figure 1.2. Intel’s complex indexing of modern last level cache.

such contention. In the Prime step, the attacker fills one or more cache sets with its

own cache blocks, simply by accessing its data. Then, in the Idle step, the attacker

waits for a time interval and lets the victim execute and use the cache, possibly evicting

the attacker’s blocks. Finally, in the Probe step, the attacker measures the time it takes

to load each set of cache blocks. If it is noticeably slow, she can infer that the victim

has accessed a block in that set, replacing the attacker’s block.

To perform these attacks in a fine time granularity, the attacker has to target

specific sets in the last level cache. As such, she has to know how the addresses map into

the sets in the LLC. However, starting with the Sandy Bridge microarchitecture [124],

Intel has employed a new LLC design, in which the LLC is split into multiple slices,

one for each core (See figure 1.2), with an unpublished hash function mapping physical

addresses to slices, supposedly distributing the physical addresses uniformly among

the cores. This hash function has since been successfully reverse-engineered for many

different processors, including Intels Sandy Bridge [140, 183, 305], Ivy Bridge [120, 183],

and Haswell [130, 183] architectures.

In addition to Prime+Probe, multiple other variants of cache attacks are also

proposed [70, 98, 304]. Flush+Reload [304] uses Intels CLFLUSH instruction to

flush a target address out of the cache, and then, at the measurement phase, the

attacker reloads the target address and measure its access time. However, it relies on

shared memory between the spy and the victim, and requires access to precise timers.

Prime+Abort [70] exploits Intel’s transactional memory extension (TSX) hardware to
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mount a timer-free last level cache attack.

Several defenses have been proposed in the literature to mitigate cache timing

channels [139, 145, 164, 166, 179, 201, 202, 217, 229, 253–255, 283, 284, 287, 312]. These

mitigation strategies include identifying the leakage in software [283], observing ana-

malous cache behavior [252, 312], closing channels at hardware design time [139, 164,

179, 201, 284], dynamic cache partitioning [145, 284, 287], strictly reserving physical

cores to security-sensitive threads [202], randomization [287], memory trace oblivious-

ness [166, 217], and cache state obfuscation using decoy load micro-ops [253, 254].

1.1.5 Security of I/O Devices and Drivers

A number of security attacks have been published that target device drivers [92,

181,314]. Thunderclap [181] describes an attack that subverts the Input-Output Memory

Management Unit (IOMMU) protections to expose the shared memory available to

DMA-enabled I/O peripherals. Zhu, et al. [315] demonstrate another attack that

bypasses IOMMU and compromises the GPU driver to exploit GPU microcode to gain

full access to CPU physical memory. To address these vulnerabilities, researchers focus

on isolating device drivers, and to make operating systems secure when a device driver

is buggy or has code which is intentionally malicious [32, 250]. Tiwari, et al. [259]

propose a full system which includes an I/O subsystem and a micro-kernel that enable

isolation and secure communication by monitoring and controlling the information

flow of the system.

NetCat [152] is a concurrent work to our Packet Chasing attack. It describes an

attack that exploits a similar underlying vulnerability. However, this work differs in

many important ways. First, NetCat only detects the arrival time of packets, whereas

Packet Chasing has the ability to detect both arrival time and size of each packet –

the latter is more reliable and less noisy. This gives Packet Chasing-based attacks the

opportunity to mount more powerful attacks such as the web fingerprinting attack
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that we describe in this chapter (Section 1.4). Second, unlike Packet Chasing, NetCat

requires DDIO and RDMA technologies to be present, limiting its generality. Therefore,

to mitigate NetCat, it is sufficient to disable DDIO or RDMA. However, as we show

in this chapter, the Packet Chasing attack is practical even in the absence of those

technologies. Therefore, we also present a more sophisticated yet high-performance

defense that mitigates the attacks.

1.2 Packet Chasing: Setting up the Attack

We perform our analysis and attack on Intel’s Gigabit Ethernet (IGB) driver

version 5.3.5.22 [129] loaded into Linux Kernel version 4.4.0-142. We run the attack on

a Dell PowerEdge T620 [65] server which uses Intel I350 network adapter [128] and is

operated by two Intel Xeon CPU E5-2660 processors. Each processor has a 20 MB last

level cache with 16384 sets. To perform Prime+Probe on the last level cache, we use

the Mastik Micro-Architectural Side-Channel Toolkit Version 0.02 [303]

Our attack consists of two phases. One is an offline phase where the attacker

recovers the sequence of the buffers and an online phase where the attacker uses that

information to monitor the incoming packets.

1.2.1 Deconstruction of the NIC Driver

While the code samples of this subsection are specific to Intel’s Gigabit Ethernet

(IGB) driver, we note that the insights are generalizable. The original Ethernet IEEE

802.3 standard defines the minimum Ethernet frame size as 64 bytes and the maximum

as 1518 bytes, with the maximum being later increased to 1522 bytes to allow for

VLAN tagging. Since the driver and the NIC don’t know the size of incoming packets

beforehand, the NIC has to allocate a buffer that can accommodate any size. The IGB

driver allocates a 2048 byte buffer for each frame and packs up to two buffers into one

4096 byte page which will be synchronized with the network adapter. For compatibility,

17



it is recommended [30] that when the device drivers map a memory region for DMA,

they only map memory regions that begin and end on page boundaries, which are

guaranteed also to be cache line boundaries. Further, the rx ring buffer is used

to temporarily hold packets while the host is processing them. While employing

more buffers in the ring could reduce the packet drop rate, it could also increase the

host memory usage and the cache footprint. Therefore, although the maximum size

supported by Intel’s I350 adapter is 4096 buffers, the default value in the IGB driver is

set to 256.

The linux kernel, in the DMA API, provides two different types of DMA memory

allocation for device drivers. Coherent (or consistent) memory and streaming DMA

mappings. Coherent memory is a type of DMA memory mapping for which a write

by either the device or the processor can be visible and read by the processor or

device without the need to explicitly synchronize and having to worry about caching

effects. However, the processor has to flush the write buffers before notifying devices

to read that memory [30]. Therefore, consistent memory can be expensive on some

platforms as it invariably entails a wait due to write barriers and flushing of buffers [30].

While the buffers themselves are mapped using streaming DMA mapping, the ring

descriptors are mapped using coherent memory. Thus, the device and the driver have

the same view of the ring descriptors. Also, this makes the writes to the rx descriptor

ring expensive. Therefore, in order to avoid changing the content of rx descriptors,

drivers after receiving packets usually reuse the buffers instead of allocating new

buffers. So the drivers usually allocate the buffers once and reuse them throughout the

life cycle of the driver.

Figure 1.3 shows the part of the IGB driver code that is called upon receiving

packets and whose job is to add the contents of the rx buffer to the socket buffer which

will be passed to the IP layer. If the size of the packet is less than a predefined threshold

(256 by default), then the driver copies the contents of the buffer and then tries to
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static bool igb_add_rx_frag(rx_buffer, skb){

...

size = rx_buffer->size;

page = rx_buffer->page;

if (likely(size <= IGB_RX_HDR_LEN)) {

memcpy(__skb_put(skb, size), page, size);

/* we can reuse buffer as-is,

just make sure it is local */

if (likely(page_to_nid(page) == numa_node_id()))

return true;

/* this is a remote page and cannot be reused*/

put_page(page);

return false;

}

/* only if packet is large */

skb_add_rx_frag(skb, page);

return igb_can_reuse_rx_page(rx_buffer, page);

}

Figure 1.3. The IGB driver function that adds the contents of an incoming buffer to a
socket buffer which will be passed to the higher levels of networking stack. The function
returns true if the buffer can be reused by the NIC.

bool igb_can_reuse_rx_page(rx_buffer, page){

/* avoid re-using remote pages */

if (unlikely(page_to_nid(page) != numa_node_id()))

return false;

/* if we are only owner of page we can reuse it */

if (unlikely(page_count(page) != 1))

return false;

/* flip page offset to other buffer */

rx_buffer->page_offset ^= IGB_RX_BUFSZ;

/* bump page refcount before it's given to stack */

get_page(page);

return true;

}

Figure 1.4. The IGB driver function that checks if the driver can reuse a page and put it
back into the rx ring buffer.
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recycle the same buffer for future packets. If the buffer is allocated on a remote NUMA

node, then the access time to that buffer is much more than if the buffer was allocated

in a local NUMA node. Therefore, to improve performance, the driver deallocates the

remote buffer and re-allocates a new buffer for that rx ring descriptor. If the packet

size is larger than 256, then instead of the direct copy, the IGB driver attaches the page

as a fragment to the socket buffer. It then calls the igb can reuse page function shown in

Figure 1.4. This function checks for two conditions that are unlikely to be met. The

first condition is that the buffer is allocated on a remote NUMA node. The second

condition is that the kernel is still preparing the packet in the other half and that the

driver is not the sole owner of the page. If neither condition is met, the driver flips the

page offset field, so that the device only uses the second half of the page.

To summarize, in the common scenarios, the driver uses a small number of ring

buffers (256) on 256 distinct pages, each of them half-page aligned and it continually

reuses these buffers typically until the next system reboot or networking restart. In

addition, to maintain high (and consistent) packet processing speeds, the order of

the ring descriptors does not change throughout the execution of the driver code.

Therefore, as long as the driver reuses the buffers for descriptors, the order of the

buffers remains constant.

1.2.2 Recovering the Cache Footprint of the Ring Buffer

The ultimate goal of the Packet Chasing attacker is to gain size and temporal

information about incoming packets by spying on the last level cache. To this end,

we mount a Prime+Probe attack on the last-level cache. However, blindly probing

all cache sets doesn’t give us much information. This is because the probe time is

limited by the time it takes to access the entire cache, which in this case is about 12

million CPU cycles, too long to gain any useful information about incoming packets.

Long probe time also makes the attack more susceptible to background noise, as the
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Figure 1.5. An example of how the NIC ring buffers are mapped to to the page-aligned
cache sets.

probability of observing irrelevant activity on the cache line increases.

However, from the previous subsection, we know that the buffers that store

packets in kernel memory are page-aligned. That means we only need to probe the

sets that the page-aligned addresses are mapped to. Having 4KB page size implies

that the lowest 12 bits of the starting addresses are zero. So the lowest 6 bits of the set

indices are zero (also see Figure 1.2). That limits us to 32 sets in each slice for a total of

256 possible sets. Using the Mastik toolkit, we find these sets and construct eviction

sets for them, which are essentially a stream of addresses guaranteed to replace all

other data from all the cache blocks in a set. With these, we have the ability to monitor

all 256 cache sets that are potential candidates for buffer locations.

While all the NIC rx buffers map to one of the page-aligned cache sets that we

obtain, the distribution of this mapping is not uniform, which means that some of the

rx buffers are mapped to the same cache set. To show an example of such conflict in

the cache sets, we instrument the driver code to print the physical addresses of the ring

buffers, which we then map to cache set indices. Figure 1.5 shows this non-uniform

mapping for just one instance of the buffer allocation in the NIC. Horizontal axes

shows one of the page-aligned cache sets and on the Y axis, we show the number of

NIC buffers that map to each page-aligned cache set. In this example, we see that 5

NIC buffers are mapped to cache set number 165 while none of the NIC buffers are

mapped to cache block 65.

Figure 1.6 further analyzes this mapping which shows the result of performing
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Figure 1.7. Monitoring all the page-aligned sets while receiving packets. A white dot shows
at least one miss (activity) on a cache set in a sample interval

the same experiment across multiple instances of driver initialization. For around

35% of the page-aligned sets, there is no co-mapped NIC buffer, while there are only

5 out of 1000 instances in which we see more than 4 buffers mapped to the same

page-aligned cache set.

By narrowing down the number of monitored cache sets to only the 256 possible

buffer starting locations, we are able to see a clear footprint in the cache when the

NIC device is receiving packets, as shown in Figure 1.7. In this experiment, we rely

on a remote sender who is on the same network with the spy and constantly sends

broadcast Ethernet frames to the network. To this end, we use Linux raw socket [141]

which generates broadcast Ethernet frames with arbitrary sizes. These frames get

discarded in the driver since the protocol field is unknown. Thus, the effect that we
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Figure 1.8. Cache footprint of packets with different sizes while probing the addresses that
map to the location of the first three blocks in the packet buffer page. A white dot indicates
at least a miss in a set.

see is only caused by the driver/adaptor accessing the buffers, without any activity of

the kernel networking stack. At around sample 25k, the sender starts sending packets

and it continues to do so until sample 100k. In some cache sets, e.g., cache set number

53, we don’t see any activity and that is because none of the NIC buffers are mapped

to those sets.

The packet chasing attacker, with the ability to distinguish between an idle

system vs. when there are incoming packets, establishes a leaking channel that can

be exploited to covertly communicate secret data over the network. We can further

increase the bandwidth of this channel by differentiating the receiving streams based

on frame sizes. Since the incoming packets are stored in contiguous rx buffers, using

the same way that we construct the eviction sets for the page-aligned cache sets, we

construct eviction sets for the second cache blocks in the page. All the second cache

blocks in the pages are mapped to one of these 256 cache sets. Similarly we find the

sets for the third and fourth cache blocks of the pages. This now allows us to recognize

not just the presence of a packet, but also the size of the packet.

Figure 1.8 shows the result of a simple experiment where we send packets of

different sizes and test our ability to detect packet size. On the columns, we have four

different runs with constant packet sizes being sent, from one cache block (64 bytes)
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to four cache blocks (256 bytes). On the rows we show detection on four different

cache eviction sets, block 0 to block 3 which are targeting the first to fourth blocks

in the page-aligned buffers. As expected, we see clear activity on the diagonal and

above, and no activity below the diagonal. The only exception is 1-block packets

which exhibit activity on block 1 as well as on block 0. This is because there is a

performance optimization in the driver code that prefetches the second block of the

packet regardless of the packet sizes. The reason for this optimization is that most

Ethernet packets have at least two blocks, and 64-byte packets (0-Block Packet) are

only common in control packets that don’t have payloads such as TCP acknowledge

packets.

The attack distinguishes a stream of packets with different sizes from each other,

and that could be used to construct a remote covert channel (more details in Sec 1.3)

with 1950 bytes-per-second bandwidth by only detecting a stream of small packets

vs. a stream of large packets (essentially, a binary signal). However, we can turn this

to a more powerful channel if we differentiate sizes with finer granularity, essentially

sending multiple bits of information per packet. The following subsection describes

the method that we use to further narrow down the monitored sets while we perform

Prime+Probe.

1.2.3 Chasing Packets over the Cache

The attacker has to probe all 256 page-aligned sets at once to detect incoming

packets only because she doesn’t know which buffers get filled first, and then probe

more sets to detect packet size. However, if we know the order in which the buffers

get filled in the driver, then we can actually chase the packets over the cache by only

probing the cache sets corresponding to the next expected buffer, building a powerful

high-resolution attack. We show that it is possible to almost fully recover the sequence

of the buffers, in a one-time statistical analysis phase. Since the buffers are always
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Figure 1.9. Pruning and sequencing of the set graph to get the order of ring buffers. Each
node represents a set in the attacker address space. Numbers in squares are the sequence
number of the associated ring buffers that map to same set.

recycled and then returned to the ring, the order of the buffers in the ring is maintained

during the lifetime of the driver.

Algorithm 1 describes the sequencer procedure that we use to recover the

sequence. It consists of three steps. First, in the Get Clean Samples step, we gather

cache probe samples for Nsets cache sets. To this end, we start with constructing

the eviction sets for the page-aligned NIC buffers. However, sometimes we have

always-miss scenarios on some sets, which is easily observed a priori. For those sets,

we simply use the second cache block of a page-aligned buffer instead of the first one.

After that, we start building a complete weighted graph with the nodes being

the monitored cache sets and the weights on the edge that connect node x to node y

are the number of times that we observe an activity on set y which was immediately

followed by an activity on set x, as illustrated in the leftmost graph in Figure 1.9. To

deal with the problem that multiple buffers can map to the same cache set, when

we build the graph, we maintain one node history for each edge. This allows the

algorithm to distinguish between the activity on two or more different buffers that

map to the same cache set by their successor cache sets. So, for example in Figure 1.9,

two different buffers are mapped to cache set number 2. These buffers occupy location

numbers 93 and 193 in the ring buffer. Therefore, in the final sequence, we have two

different instances of cache set number 2, one that is followed by cache set 3 and the

other that is followed by cache set 1.

The final step, Make Sequence, is to traverse the graph we build in the previous
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steps, starting from a random node, and continuing to move forward until we reach the

same node. Note that since the final sequence is a ring in which the in-degree and the

out-degree of each node is exactly one, the choice of the starting node doesn’t change

the outcome.

While this procedure can recover the sequence of the buffers that are mapped

into Nset, it can only do so if we monitor a limited portion of the page-aligned cache

sets (we were successful up to 64 cache sets). This is because the probe time gets longer

than what is required to detect the order of the incoming packets, if we include more

sets in our monitor list. So we first find the sequence for 32 cache sets, then we repeat

the Sequencer procedure with the first 31 nodes (node 0 to node 30) plus a candidate

node (e.g, 32) and we try to find the location of the candidate in the sequence. Then,

we repeat the same procedure, moving through the node sequence, until we find a

place in the sequence for all cache sets.

Sometimes two consecutive buffers are mapped into one set. For example,

consider the case that buffers number 93 and 98 are mapped into the set 2 in Figure 1.9.

With our approach, we don’t capture these cases in the first round, but starting from

the beginning, when we do encounter a buffer that is between the two, we can split the

two in our graph. If they are truly consecutive in the final ring (unlikely), the buffers

are essentially merged, but this has no impact on our mechanism to create a covert

channel, and will have minimal effect on the overall fingerprint we observe in the web

fingerprinting leakage attack.

We measure Levenshtein distance [135] to quantify the distance between the

sequence that we obtain and the ground truth actual sequence that we get from driver

instrumentation. The Levenshtein distance between two sequences is the minimum

number of single-character edits (i.e., insertions, deletions or substitutions) needed to

change one sequence into another. We see the results of this experiment in Table 1.1.

ine-tuning the probe rate is a rather challenging task as it needs to be long enough
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Table 1.1. Summary of experiments for sequence recovery

Results
Measure Value CI
Levenshtein Distance 25.2 [22, 35]
Error Rate (%) 9.8 [8.5, 13.6]
Longest Mismatch 5.2 [3, 9]
Time (Minutes) 159 [153, 167]

Parameters
Parameter Value
Number of Samples 100,000

Number of Monitored Set 32

Packet Rate (packet/s) 0.2M
Probe Rate (probe/s) 8000

that the activity of each incoming packet touches only one sample, and needs to be

small enough to not lose the temporal relation between the incoming consecutive

packets. Otherwise, we see a drop in accuracy of the obtained sequence. However, in

our covert-channel construction, in many of our attack scenarios, we only need to find

buffers that are sufficiently far apart in the ring, so small errors in the sequence are

tolerable.

During the profiling period we rely on a remote sender whose only job is to

constantly send packets. However, the spy can recover the sequence even without the

help of the external sender, as long as the system is receiving packets. In fact, noise

(extra packets not sent by co-operating sender) in this step only helps the spy.

1.3 Packet Chasing: Receiving Packets without Net-
work Access

In this section, we show the effectiveness of the Packet Chasing attack by

constructing a covert channel over the network. We assume a simple threat model

where a remote trojan attempts to send covert messages through the network, to a

spy process located in the same physical network. The spy process can be inside a

container and does not have root privileges, neither in the container nor in the host

OS, and is also not permitted to use the networking stack. The trojan process has the
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ability to send packets to the physical network, but there is no authorized method to

communicate with the spy.

Channel Capacity

To build a framework for quantitatively comparing different encoding and

synchronization schemes, we follow the methodology described by Liu, et al. [167]

to measure our channel bandwidth and error rate, while transferring a long pseudo-

random bit sequence with a period of 215 − 1. The pseudo-random bit sequence is

generated using a 15-bit wide linear feedback shift register (LFSR) that covers all the

215 sequences, except the case that all bits are zeros. This allows us to spot various

errors that might happen during the transmission including bit loss, multiple insertion

of bits, or bit swaps [167].

Data Encoding and Synchronization

The spy first chooses x, one of the page-aligned cache sets that only one of the

ring buffers is mapped to. Finding such a page-aligned cache set is not challenging

using the approaches described in Section 1.2. Then the spy process finds the cache

sets to which the addresses x + 64, x + 2 ∗ 64, and x + 3 ∗ 64 are mapped. In other

words, it finds the cache sets for the second, third, and fourth cache blocks of the

page-aligned buffer. As described in Section 1.2, the spy process knows the set index

bits for these sets, but the outcome of the hash function (slice bits) is not known. To

find out the exact slice, the spy process executes a trial and error procedure in which

it selects one of the eight slices based on the activity on the sets. After this step, the

initialization is done and the spy process constantly monitors the found cache lines.

The spy process, at time frame n, sends 256 (the length of the ring buffer)

packets of size (S + 2) ∗ 64 to transmit the symbol S. Since we operate on the network

and the latency is fluctuating frequently, we cannot use return-to-zero self-clocking

encoding [167], rather we choose to use a synchronized clock encoding scheme in
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which the first block of the buffer acts as a clock to synchronize the spy with the trojan.

We measure the bandwidth and the error rate for two cases. First, we encode one

binary symbol in each packet, i.e., we send either 64-byte packets that encode ”0”, or

we send 256-byte packets that encode ”1”. Second, we send a ternary symbol in each

packet, i.e, we send 64-byte packets to encode ”0”, 192-byte packets to encode ”1”, and

256-byte packets to encode ”2”.

For example, Figure 1.10 shows a part of a sequence that the spy receives in

a real experiment. In this experiment, the trojan transmits sequence ”2012012012...”

and the spy collects one sample from the three cache sets, every 200, 000 cycles. When

decoding, the spy uses a window of three samples to distinguish between different

values. This is because sometimes we see the cache activity of one packet (one symbol)

that spans across two cycles (the wide peaks in the figure). The spy process should not

decode these cases into two different symbols. In addition, having a window helps

if the activity on the sets get skewed because of the delay of arriving packets. The

first set of the buffer is used as a clock to synchronize the parties, and activity on the

other two sets can show the transmitted values. Monitoring the activity of the two sets

only gives us three different symbols because by sending a 3-block packet, we have a

compulsory activity on set 2.

To estimate the error rate, we again use edit Levenshtein distance [135] between

the sent and received data for the pseudo random bit sequence. Figure 1.11 shows the

bandwidth and the error rate of our coding schemes, as well as the effect of varying

the probe rate, i.e., the time we wait between consecutive probes. The bandwidth of

the channel is almost constant with different probe rates. This is because the limitation

here is the line rate. We are using 1 Gb/s Ethernet link and transmitting a collection of

packets whose average size is 192 bytes. The maximum frame rate for the packets with

frame size of 192 is around 500,000 frames per second [204]. Since we are sending one

symbol per 256 packets, our maximum bandwidth is theoretically bounded at 1953
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Figure 1.10. Spy process decodes the transmitted sequence based on the monitored activity
on the probed sets. Set 1 acts as the clock and the activity is one for a set if we find at least
one miss in the blocks in the eviction set of the probed set.
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Figure 1.11. Bandwidth and error rate of the remote covert channel for binary and ternary
encoding and various cache probe rates.

symbols per second. By coding three symbols, this packet chasing covert channel can

reach a bandwidth of 3095 bps. The error rate, however, is reduced as we reduce the

probe time. That is because with a longer wait time between two consecutive probes,

we raise the probability of capturing irrelevant background activity on the sets. When

we use binary encoding, we use the samples from both set 2 and set 3 and if they both

have activity during a window, we decode as ”1”. Therefore, the error rate is slightly

less than the ternary encoding.
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Exploiting Ring Buffer Sequence Information

If we know the ordering of the buffers, this mechanism is easily extended to

send more than one symbol per 256 packets. In this case, the trojan can send one covert

message every 256/n packets by dividing the ring buffer into n sections of similar

sizes by selecting n buffers that are ideally 256/n apart. The selected buffers should be

among the buffers that are mapped to only one of the page-aligned cache sets. Then

the spy starts monitoring the selected sets and their adjacent blocks to detect the size

of the packets that are filling these buffers.

This process can multiply the capacity of the covert channel as shown in

Figures 1.12a and 1.12b. These figures show the bandwidth and the error rate for

the cases that the spy monitors a different number of buffers in the ring. For each of

these buffers the spy probes three cache sets that are associated with the first, third,

and fourth cache blocks of the packets that fill these buffers. For the case that there

is only one monitored buffer, the trojan sends one covert message with 256 packets,

and for the case of 16, the trojan sends a new message every 256/16 = 16 packets. The

bandwidth of the channel almost doubles when we double the number of monitored

buffers and it goes up to 24.5 kbps for the case of 16 monitored buffers. The error rate

remains almost constant until the time between incoming packets gets close to the time

between two consecutive probes. Note that when we have more sets in our monitored

list, each probe takes more time and this decreases the probe rate. Furthermore, with

the increased number of monitored buffers, it becomes harder to find the buffers that

are n buffers apart in the ring and also do not share the cache set with any other buffer

in the ring. For these reasons, we see a jump in the error rate when we monitor 16

buffers of the ring. Note that these and subsequent results also account for inaccuracies

incurred when we deconstruct the ring sequence.

Figures 1.12c and 1.12d show the result of another experiment in which we

actually chase the packets using the sequence. We probe one buffer at a time and as
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soon as we detect an activity on the probed buffer, we move to the next buffer in the

sequence. The out-of-sync rate is the rate by which packet chasing misses one packet,

and therefore it has to wait until completion of the whole ring, or the next time a

packet fills that buffer, to get synchronized again. The bandwidth is controlled by the

rate at which the sender transmits the packets and the error rate is calculated on the

synchronized regions of the transmission. The figure shows that the out-of-sync rate

is almost constant for different packet rates. This is because when we probe just one

set, the resolution of probing is higher than the time between consecutive packets. In

addition, the frequency at which we get out-of-sync is a function of the quality of the

sequence that we obtain. The error rate jumps at 640 kbps because at that speed the

packets start to arrive out-of-order at the receive side.

Detectability and Role of DDIO/DCA

In the presence of DDIO, the packets that carry the covert messages are hard to

detect and filter (e.g., by a firewall system that drops the packets that are sent to the

victim node) as they can be regular broadcast packets, e.g., DHCP and ARP, and they

are not even required to be destined for the machine that hosts the spy. This is because,

with DDIO/DCA, the network adapter directly transfers the packets into the last level

cache of the processor, and only after this will the driver examine the header of each

frame and discard the packets that do not target any protocol that is hosted in that

machine. That is, with DDIO enabled, we can establish a channel between machine A

and B even with A only sending packets to machine C on the same network.

DDIO enables Packet Chasing to get a clearer signal as the cache blocks of the

payload appear in the cache as the same time as the cache blocks that belong to the

header of the packet. This enables the attack to probe the adjacent cache blocks and

quickly detect the size of each packet. However, if DDIO is disabled or not present, the

journey of a packet would be different. First, the NIC stores the header of the packet in
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Figure 1.12. (a) and (b) show the channel capacity for the remote covert channel where the
spy that uses n buffers of the ring’s sequence information. (c) and (d) show the out of sync
rate and error rate for the case where spy uses all the buffers in the sequence information.

the memory, then the driver reads the header and processes the packet according to the

header fields. This brings the cache blocks containing the header into the cache. For

most of the common higher level protocols (e.g., http) the software stack will access

other parts of the packet shortly after the header comes [116].

The latency between I/O writes and driver reads now becomes a factor in the

attack without DDIO. In this scenario, the attacker should set the probe time to be

larger than that latency. When that latency is accounted for, the cache footprint of the

packet remains the same as the DDIO case. However, increasing the probe interval can

result in more noise captured in each interval. But the latency, as characterized in [116],

is less than 20k cycles for almost 100% of the packets. This latency also depends on the

size of the packets. For small packets with less than 5 cache blocks, the payload will

be touched almost immediately after the header, as the driver copies such packets into

another buffer. In this case, the attack without DDIO detects packet sizes for the small

packets as readily as the attack with DDIO.

In short, DDIO makes the attack stealthier, and more reliable (less noise). But

the attack is fully possible without DDIO. As an example, the web fingerprinting attack

presented in the next section is mounted on a system both with and without DDIO.
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(d) Recovered Unsuccessful Login

Figure 1.13. Detecting successful login for hotcrp.com. Shows original packet sizes vs. the
recovered packet sizes by Packet Chasing for the first 100 packets of the responses.

1.4 Packet Chasing: Exploiting Packet Size

In this section, we present a sample application for a Packet Chasing attack, in

which we use the high resolution samples of packet sizes to gain information on the

co-located user’s browsing data. For example, the spy could be waiting for the victim

to enter a particular website before initiating some action such as a password detection

attack.

This simple attack consist of two phases. First is the offline phase in which

the adversary generates traces of packet sizes for different websites of interest, then

processes these traces and calculates a representative trace for each website. This is just

a point-wise average of the packet sizes, resulting in a vector of these points (average

packet size) over time.

In preparation for the attack, the attacker builds the sequence of the ring buffers,

as previously described. After that, the attacker enables spy mode in which she

constantly monitors the first two cache blocks of the first buffer in the sequence until

she finds a window in which there are activities on both block 0 and block 1. This

indicates that a packet is filling that buffer. Then, similar to the receiver in the covert
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channel, on each detected activity the attacker moves to the next buffer in the sequence.

Each time, the attacker monitors the first four blocks of the first half-page of the buffer

as well as the first four blocks of the the second half-page of the buffer. This is because

the driver switches between the halves of the pages when there is a large packet (see

Section 1.2.1). This enables the attacker to distinguish between packets with four level

of sizes. After collecting the samples of packet sizes, the spy feeds the collected vector

into a simple correlation-based classifier which calculates cross-correlation [291] of the

collected samples with the representatives of different targets.

Figure 1.13 shows an example of the signals that we obtain by Packet Chasing

and the actual packet sizes that are captured using the tcpdump [131] packet analyzer.

The websites are accessed using Mozilla Firefox version 68.0.1. The figure shows how

packet size, even in cache block granularity, can be an identifier for the webpages

that are being accessed. The packets are usually congested on the two sides of the

spectrum, they are either carrying a very large message that got fragmented into

MTU-sized frames, or they are small control packets [238]. But the last packet of

the large messages can fall anywhere between 1-block to MTU, giving us a good

indicator of the webpages. In addition, combining packet sizes with the temporal

information that Packet Chasing obtains from the packets, gives us enough information

to distinguish between webpages. We evaluate our fingerprinting attack using a small

closed world dataset with 5 different webpages: facebook.com, twitter.com, google.com,

amazon.com, apple.com. For this experiment, we examined two attack setups, one with

DDIO and one without. In our experimentation with 1000 trials, Packet Chasing with

DDIO detects the correct website with 89.7% accuracy, while disabling DDIO drops

the accuracy to 86.5%. The difference between these two attacks comes from increasing

the probe time (resulting in more noise) and increased probability of missing large

packets if the header-to-payload latency is high.

We use a simple classifier in this experiment, but given the challenges for this
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Table 1.2. Architecture Detail for Baseline Processor

Baseline Processor
Frequency 3.3 GHz Icache 32 KB, 8 way
Fetch width 4 fused uops Dcache 32 KB, 8 way
Issue width 6 unfused uops ROB size 168 entries
INT/FP Regfile 160/144 regs IQ 54 entries
RAS size 8,16, 32 entries BTB size 256 entries
LQ/SQ size 64/36 entries Functional Int ALU(6), Mult(1)

particular attack, a classifier that is tolerant of noise as well as slight compression or

decompression of the vectors would be likely to improve these results. For example,

the results in [221] suggests that using only the network packet sizes and their timing

information (the exact information that Packet Chasing can obtain) can be enough to

build a classifier with up to 95% accuracy.

1.5 Potential Software Mitigation

We consider both long-term (e.g., requiring hardware changes) and short-term

(software only) mitigations. In this section, we discuss potential software mechanisms

that one could employ to help mitigate the attack before a long-term hardware solution

(e.g., our I/O cache isolation) is deployed. These solution each come with some

performance impact.

Disabling DDIO/DCA

DDIO enables these attacks because it ensures the header and the payload

appear in the cache simultaneously, greatly simplifying the detection of packet size.

Without this, however, attacks are still possible. If we can detect the presence of

packets (headers are always accessed immediately and will appear in the cache in

sequence), we can still establish a covert channel with inter-arrival timing. We could

also send types of packets where the reading/processing of the payload is quick and

deterministic, again allowing us to distinguish sizes. Therefore, disabling DDIO can

not fully mitigate the attack.
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Randomizing the Buffers

While Packet Chasing exploits the sequence in which the packets fill the ring

buffers to boost the resolution of the side- and covert-channels, we show that attacks

are still possible, without knowing the sequence of the buffers (Section 1.3). However,

randomization does significantly reduce the channel bandwidth. The cost of random-

ization could be quite high, as the driver and the network adapter would now need

to constantly synchronize on the address of the next buffer. Because our attack setup

takes some time, though, it may only be necessary to permute the buffer order at

semi-regular intervals, thus limiting the overhead.

Increasing the Size of the Ring

In the absence of sequence information, the required probing of the cache scales

with the size of the ring if the attacker wants to catch every packet. Thus a combination

of occasional reshuffling of the ring, and a larger ring, may be effective in making the

probe set large enough to make the attack difficult to mount cleanly without picking

up significant noise.

1.6 Adaptive I/O Cache Partitioning Defense

All the short-term software mitigations that Section 1.5 suggests are either not

fully effective (disabling DDIO), or carry a not-insignificant performance cost. In this

section, we describe a hardware defense that tackles the root of the vulnerability, i.e.,

co-location of I/O and CPU blocks in the last-level cache, in such a way that I/O can

cause evictions of other processes’ lines.

Intel’s DDIO technology improves the memory traffic by introducing a last-level

cache write allocation for the I/O stream. Upon receiving a write request from an I/O

device (e.g., for incoming packets), DDIO allocates cache blocks in the last-level cache

and sets those blocks as the DMA destinations for the incoming I/O traffic. While for
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performance reasons, the allocator does not allocate more than two blocks in a cache

set, these incoming packets can still cause evictions to the CPU’s blocks. This makes

the incoming packets observable from the perspective of an adversary process running

on the CPU.

To circumvent this, we associate a counter for each set (i) to hold the size of the

I/O partition (IO linesi). By treating this as a constant (during a single interval) rather

than a maximum, we ensure that DDIO-filled lines will only displace other DDIO lines.

To adapt to different phases of execution, our partition schemes periodically change

the boundary of CPU and I/O partitions by incrementing or decrementing the counter

(IO linesi). To this end, we associate another set of counters for each set to detect the

I/O activity on each set (IO present counteri). This counter gets incremented if at least

one valid I/O line is present in the set, and initialized to zero at every adaptation

period cycles (p). Note that maintaining these counters does not impose a performance

overhead as these are done in parallel to the miss and hit path of the cache.

At every adaptation period, we also re-evaluate the I/O-CPU boundary in the

last-level cache. For each set (i), if the (IO present counteri) is greater than a high

threshold, Thigh (e.g, Thigh = 0.5p), it implies seti has had significant I/O activity. In

such a case, we increment IO linesi (using a saturating counter), allowing more I/O

blocks in the set. Otherwise if the I/O activity is less than a low threshold, Tlow, we

decrement IO linesi (again, using a saturating counter) to allow more usage for CPU

data. If the boundary of the partitions changes, we invalidate the cache blocks that are

affected and perform any necessary writebacks to the memory.

Our adaptive partitioning ensures that any process running on the CPU will

not see any of its cache lines evicted as the result of an incoming packet or I/O activity.

The only exceptional scenario is at each adaptation period when the boundary changes

and some CPU blocks get evicted. However, we set the adaptation period to be large

enough to prevent the attacker from gleaning any useful information about individual
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packets. At best, it could receive one bit (high or low network activity) every period.

System Setup for the Defense Performance Evaluation

Table 1.2 shows the architectural configuration of our baseline processor in

detail. We model this architecture using the gem5 [28] architectural simulator. We

use the full system simulation mode of gem5 which allows us to boot an Ubuntu

18.04 distribution of Linux with a kernel version of 4.8.13. We set a hard limit on the

minimum and maximum number of blocks in the I/O partition (i.e., IO linesi). As

such, the size of the I/O partition can be one, two, or three. Also, in these experiments

the adaptation period (p) is set to 10k cycles. We set the thresholds Tlow and Thigh to

2k and 5k, respectively. Furthermore, in order to provide realistic estimates regarding

the performance impact of our proposed defense, we select a mix of benchmarks that

exhibit considerable amounts of I/O activity. To this end, we include a disk copy

(using Linux’s dd tool) that copies a 100MB file from disk. In addition, we evaluate the

defense on a program that constantly receives TCP packets that have 8-byte payloads.

Finally, we also evaluate the impact of our defense on the Nginx web server [219] using

the wrk2 [90] framework to generate HTTP requests.

Performance Results of the Defense

Figure 1.14 shows the performance of our adaptive cache partitioning scheme by

comparing the average throughput of the Nginx web server. On average, we observe

less than two percent loss in throughput. This is mainly because the LLC miss rate rises

slightly due to the reduced number of lines in the CPU partitions (also see Figure 1.15).

The figure also shows the sensitivity of the defense to the last-level cache size. The

maximum loss in throughput belongs to the 20 MB case where our approach incurs

2.7% loss. Figure 1.15 further analyzes the performance of the defense by showing the

memory traffic and the LLC miss rate of a baseline without any direct cache access (No

DDIO) vs. DDIO and our adaptive partitioning defense. Both the adaptive partitioning
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Figure 1.14. Performance impact of our adaptive partitioning defense on Nginx web server.
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Figure 1.15. Memory Traffic and LLC miss rate of our adaptive partitioning defense vs.
DDIO.

and DDIO are effective in reducing the memory traffic. The memory traffic of the

adaptive partitioning scheme is within 2% of DDIO.

To compare the adaptive cache partitioning with our proposed software-based

mitigations (Section 1.5), we devise another experiment using the wrk2 tool. In this

experiment we send requests to the Nginx web server on the target host. The wrk2

tool uses eight threads with 1000 open connections and the target throughput is set to

140k requests per second. Figure 1.16 shows the results of this experiment. Besides

the adaptive cache partitioning and the vanilla IGB baseline, we examine three other

proposed schemes: Fully Randomized Ring Buffer scheme that allocates a new buffer in

a random memory location for each incoming packet, and two Partial Randomization

schemes that re-allocate the buffers periodically, after a specified number of packets

received – we randomize after either 1k or 10k packets are received. Note that in

our setup, the Packet Chasing attack currently requires at least 65,536 packets to

fully deconstruct the ring buffers (find cache locations and sequence information)

and another 100 packets to mount a reasonable fingerprinting attack. The adaptive
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Figure 1.16. Comparison of our defenses in terms of response (tail) latency of HTTP re-
quests to the Nginx web server. Randomization period is the interval (measured in number
of packets) that we wait between two ring buffer randomizations.

partitioning method only incurs 3.1% loss in 99
th percentile latency while the fully

randomized method incurs 41.8%. We use One Gigabit Ethernet for this experiment,

but we expect the performance cost of randomization to be exacerbated as the link rate

goes higher.

1.7 Conclusions

This paper presents Packet Chasing, a novel deployment of cache side-channel

attacks that detects the frequency and size of packets sent over the network, by a

spy process that has no access to the network, the kernel, or the process(es) receiving

the packets. This attack is not enabled by the DDIO network optimization, but is

greatly facilitated by it. This work shows that the inner workings of the network

driver are easily deconstructed by the spy process setting up the attack, including

the exact location (in the cache) of each buffer used to receive the packets as well as

the order in which they are accessed. These two pieces of information dramatically

reduce the amount of probing the spy must do to follow the network packet sequence.
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This information enables several covert channels between a remote sender and a spy

anywhere on the network, with varying bandwidth and accuracy tradeoffs. It also

enables a side channel leakage attack that detects the web activity of a victim process.

In addition to the covert- and side-channel attacks, this chapter also describes an

adaptive cache partitioning scheme that mitigates the attack with very low performance

overhead compared to the vulnerable DDIO baseline.
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Algorithm 1. Ring Buffer Sequence Recovery
1: procedure Sequencer

2: samples← get clean samples(Nsets, Nsamples)
3: graph← build graph(samples)
4: sequence← make sequence(graph)
5: return sequence
6: procedure get clean samples(Nsets, Nsamples)
7: monitor list← [0..Nsets]
8: samples← repeated probe(Nsamples, monitor list)
9: for all x ∈ monitor list do

10: if activity(samples[x]) > activity cutoff then
11: replace x in monitor list with the 2

nd block of the page
12: goto: 3
13: return samples
14: procedure build graph(samples)
15: curr← 0, prev← 0
16: for i ∈ {0, ..., SAMPLES} do
17: for all cand ∈ monitor list do
18: if samples[i][cand] < miss threshold then . no activity
19: continue
20: if curr 6= prev then . no self-loop
21: graph[prev][curr][cand]← graph[prev][curr][cand]+1

22: (prev, curr)←(curr, cand)
23: return graph
24: procedure make sequence(graph)
25: root← get root(graph)
26: sequence← [], (prev,curr)← root
27: repeat
28: sequence.push(curr)
29: (next,weight)← get max weight(graph[prev][curr])
30: if weight < weight cutoff then
31: break
32: graph[prev][curr][next]← 0 . mark as visited
33: (prev, curr)← (curr, next)
34: until (prev, curr) 6= root
35: return sequence
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Chapter 2

Context Sensitive Decoding

The post-Dennard scaling era has witnessed an upsurge in the adoption of

specialized processing elements to improve the execution efficiency of domain-specific

workloads. While general-purpose processors continue to gradually add domain-

specific instructions every CPU generation, the technical challenges and market risks

associated with legacy software have significantly limited innovation in the ISA de-

sign space. This work exploits an underutilized feature of modern instruction set

decoders to show that even general-purpose processors can be customized, and in

fact that customization can be seamlessly configured dynamically at an extremely fine

granularity.

The key to this change is the fact that most modern processors employ translated

ISAs, as the Intel and AMD x86 processors and many ARM processors typically

feature translation from the native instruction set into internal micro-ops that enter

the pipeline for execution [19, 126]. These architectures enjoy the dual benefits of a

versatile backward-compatible CISC front-end and a simple cost-effective RISC back-

end. Moreover, the additional level of indirection enables seamless optimization of

the internal micro-op ISA, under the covers, without any change to the programmer

interface. However, for those architectures the translation is static, changing once per

generation. Instead, we propose that translation be dynamic, potentially changing
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frequently within the execution of a single program.

In this chapter, we unlock the full potential of translated ISAs via context-sensitive

decoding (CSD), a technique that allows native instructions to be decoded/translated

into a different set of custom micro-ops based on their current execution context. This

presents operating systems, runtime systems, and antivirus programs with the unique

opportunity of triggering different custom translation modes, at microsecond or finer

granularity, by simply configuring a set of model-specific registers (MSRs). In this

way, for example, an insecure executable can instantly become a secure executable, or

performance-optimized code can become energy-optimized, without recompilation or

binary translation.

By leveraging existing native-to-microcode translation functionality in the de-

coder and exploiting an already well-established microcode update procedure outlined

by Intel [126], we further empower runtime systems and virtual machines (that operate

at a certain privilege level) to push custom translation updates written in native x86

code into the processor. At the decode stage of the pipeline, the CSD framework

intercepts such custom microcode updates, auto-translates and optimizes them into a

compact set of micro-ops, and pushes them into the microcode engine. These custom

updates could potentially enable instrumentation for profiling and performance moni-

toring, profile-guided optimizations, and API-hooks for security updates, among other

applications.

The CSD framework we describe allows custom translation modes to be trig-

gered by hotspot detection [158], unit-criticality predictors [157], thread-criticality

predictors [25], protection-domain crossings [293], interception of a tainted input [112,

199, 245, 277], a watchdog timer event, changes in power or energy availability, or

thermal events – all with no significant changes to the pipeline or the ISA. In fact, a

major contribution of this work is a set of microarchitectural techniques that enable the

seamless integration of the context-sensitive decoding framework into Intel’s legacy
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decode pipeline and micro-op cache design.

Due to its low performance overhead and non-intrusive nature, context-sensitive

decoding has potential applications in areas such as malware detection and preven-

tion [24, 38, 224], dynamic information flow tracking (DIFT) [112, 113, 200, 245], runtime

profiling and performance programming [105, 311], on-demand type-safety [194, 307],

program verification and debugging [95, 96, 281], and runtime phase tracking and

code specialization [100, 236]. This chapter showcases two diverse applications of

context-sensitive decoding – an obfuscation-based security defense against cache-based

side channel attacks, and criticality-aware power gating to improve energy efficiency.

Side-channel attacks have been used to leak secret information by exploiting

the micro-architectural and physical characteristics of a cryptosystem. Many types

of side-channel attacks have been described in the literature to subvert prominent

cryptographic algorithms such as RSA, DES, and AES. These attacks hinge on a spy

program running side-by-side with a victim that leaks timing and other execution

characteristics via shared micro-architectural structures.

By leveraging custom translation modes offered by context-sensitive decoding,

we provide a low-cost, high-performance, and reconfigurable alternative to existing

side-channel mitigations [166, 217, 284]. Owing to its unfettered access to on-chip mi-

croarchitectural structures and an array of hardware control signals, context-sensitive

decoding allows us to inject decoy micro-ops into execution that give the attacker an

illusion of a modified architectural state, by obfuscating micro-architectural character-

istics alone. These decoy micro-ops are unreadable from both user and kernel modes

as they exist within the processor outside any addressable memory. As a result, they

remain invulnerable to spyware, rootkits, and other rogue programs, even if they are

able to execute with the highest privileges. This chapter shows that by causing micro-

architectural perturbations at the decoder level, we can be more performance-efficient

than a software-based obfuscation technique and less intrusive than a system that
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causes anomalies at the gate level.

Aside from security, we also showcase the potential of CSD in efficiently em-

ulating infrequently used feature sets on alternative functional units. This enables

aggressive power gating, even for units that are infrequently but regularly used. In

this case, we scalarize vector instructions via micro-op translation onto the scalar

units, enabling the system to make more global decisions about when to turn on the

vector units, rather than always responding to instruction demand. In summary, the

framework we describe in this chapter offers the following unique capabilities:

• Fine-grained dynamic instruction stream customization of legacy binaries without

recompilation, and without the full overhead of binary translation.

• Seamless integration into a state-of-the-art Intel processor with no significant

changes to the pipeline.

• A flexible auto-translated microcode update procedure that allows runtime systems

to inject custom translation modes into the microcode engine.

• A firmware-based security defense that completely thwarts instruction and data

cache-based side channel attacks on the RSA and AES cryptographic algorithms,

while significantly outperforming state-of-the-art software-only solutions.

• An energy-optimization mechanism that scalarizes vector instructions in order

to power gate vector units during phases of minimal vector activity to save an

average of 12.9% in overall energy.

2.1 Background and Related Work

Translated Instruction Sets. Modern ISAs such as x86 and ARM typically

translate complex native instructions into simpler internal micro-ops [19, 126]. While

this was originally intended to simplify CPU design and allow complex long latency
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instructions to be pipelineable, it has been instrumental in enabling several ISA and

micro-architectural optimizations [109, 110, 143, 144, 225] that improve the front-end

throughput and overall instruction-level parallelism [216]. Speculative decode [143]

exploits the macro-op to micro-op translation in order to enable dynamic optimizations

such as memory reference combining and silent store squashing. While similar in

nature with respect to decode-time instrumentation, CSD offers broader functionalities

such as the ability to be programmed via microcode updates, on-demand customization

at an extremely fine granularity, as well as seamless integration into the modern x86

front end.

Multi-ISA Architectures. Many modern decoders are equipped with multiple

decode units to translate instructions from different feature sets, ISA extensions,

and sometimes completely different ISAs. For example, ARM supports three major

instruction sets (A32, T32, and A64) and several other feature sets such as Jazelle and

NEON. It also allows developers and compilers to take advantage of the ability to

switch between the different instruction sets at exception boundaries (A64 to A32) or

by simply executing a branch and exchange instruction (A32 to T32). Furthermore,

the multi-ISA heterogeneous chip multiprocessor architectures [21, 69, 274, 275] allow

applications to migrate back and forth between different ISAs at basic block boundaries.

While this work offers similar capabilities in terms of seamlessly switching execution

between different custom translations, it does so at a much finer granularity, requires

no re-compilation, and no significant changes to the architecture.

Binary Translators and Code-Morphing Machines. In the software world,

binary translators have long been used to port/emulate legacy binaries on new archi-

tectures [33]. Furthermore, managed runtimes and browsers employ dynamic binary

translation to perform profile-guided optimization [111] of hot code regions, program

sheperding, and JIT hardening [273]. On the hardware front, several binary-translation-

driven processor designs have been proposed. These are typically equipped with a

48



code-morphing software binary translation layer that feeds translated instructions into

the processor’s decoder. IBM’s DAISY [77], Transmeta’s Crusoe and Efficieon [64], and

Nvidia’s Denver processors [29] have sparked further innovation in this space. Clark,

et al. [50] describe a hybrid approach to instruction set customization that involves

statically identifying code regions to offload and dynamically replacing jumps to such

regions by complex custom instructions that trigger an accelerator.

The most related work to this research is DISE (Dynamic Instruction Stream

Editing) [53–55], a macro-engine that exposes the API, allowing programmers to

dynamically reconfigure a stream of instructions in order to perform bounds-checking,

debugging, and prefetching. However, this work differs in many important ways.

First, they require complex patten-matching and user-defined production rules to

be integrated into their decoder framework, whereas context-sensitive decoding can

be triggered by mere reconfiguration of a set of model-specific registers or even

a pipeline event, or a thermal or energy event. Second, while this work is easily

integrated, exploiting existing features of modern processors, DISE adds significant

new complexity to the pipeline. Third, this work fully explores performance, power,

and area implications of incorporating the decoding framework into existing modern

designs, including those that sport a wide variety of micro-op optimizations [126].

Finally, our research builds on works like DISE by introducing new applications – better

protection against several new attack models that have gotten more sophisticated over

the years, and energy-efficient management of vector computation.

Side-channel attacks. Side-channel attacks typically steal secret information

from cryptosystems and other sensitive data from a co-located user on the cloud [222,

288]. Numerous spy programs have demonstrated the full/partial reconstruction

of a victim’s execution behavior by observing its instruction/data cache access pat-

terns [10, 23, 195, 304, 306], branch access patterns [9], differential power consumption

characteristics [27], electromagnetic radiation [85], acoustics [88], and fault behav-
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ior [108].

Several cache-based side channel attacks have been proposed in the literature [98,

205, 304]. Prominent ones include PRIME+PROBE and FLUSH+RELOAD attacks that

can be performed on both a shared private data/instruction cache or on last-level caches.

Notable mitigations to these attacks include secure cache partitioning [284], compiler-

based obfuscation [166, 217], and run-time software diversity [57]. In this chapter, we

leverage context-sensitive decoding to provide stealth-mode custom translations, as

a novel security defense that mitigates such side channel attacks. Context-sensitive

decoding-based security enhancement has no software performance cost when not

in use, minimal software overhead when used, no additional vulnerability, and very

minimal hardware/power cost.

Unit-level Power Management. Many power management techniques have

been proposed in prior work [73, 80, 175, 186] ranging from unit-level [73, 80, 175] to

coarse-grained core-level power management [46, 160], in both cases powering off idle

blocks to reduce overall static leakage. Vector processing units (VPUs) are promising

candidates for power gating since they’re typically not in use during most scalar

phases, and yet account for a significant portion of the core’s peak power. However,

phases of intermittent vector activity create small idle intervals that are below the

break-even time needed to compensate the power gating overhead.

Dynamic devectorization [150] achieve significant energy savings by using a

translation optimization layer to profile and devectorize non-critical vector instructions

while the VPUs are power-gated. Similarly, PowerChop [157] proposes a binary

translation-driven approach that uses a unit-criticality predictor to assist power-gating

of multiple units in the processor (including VPUs). While binary translation can be

an effective tool, it is not ideal for adaptive energy optimizations – in many scenarios

we can hide the considerable startup cost (in performance and energy) of binary

translation; however, when we trigger a new optimization due to an energy event or
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emergency, we bear the entire brunt of the startup cost at the worst possible time.

2.2 Context-Sensitive Decoding

In this section, we provide a brief overview of the x86 front-end, describe

techniques to enable context-sensitive decoding in the x86 architecture, and discuss

potential applications.

2.2.1 Overview of the x86 Front End

The x86 front end in Figure 2.1 has two major components: (a) the legacy decode

pipeline that translates native instructions into micro-ops, and (b) a micro-op cache

that delivers already translated micro-ops into the instruction queue.

The legacy decode pipeline includes an instruction-length decoder that feeds

from a 16-byte fetch buffer and decodes the variable-length x86 instruction byte-by-byte.

The decoded instructions are inserted into an 18-entry macro-op queue, 6 macro-ops

at a time. These macro-ops then feed into one of the four decoders that translate them

into micro-ops. These decoders use a static table-driven approach for the micro-op

translation. In fact, only one of the decoders can translate an instruction to more

than one micro-op, with the other three performing a simple one-to-one mapping

operation. Complex instructions that decompose into more than four micro-ops are

microsequenced by a microcode ROM.

The micro-ops translated by the legacy decode pipeline are cached in an 8-way

set associative micro-op cache that can hold up to 1536 micro-ops. When the micro-op

cache is active, the legacy decode pipeline is disabled to conserve power. The front-end

then streams micro-ops from the micro-op cache into the instruction (micro-op) queue

until a miss occurs, at which point it switches back to the legacy decode pipeline. The

front-end also sports a number of optimization features such as stack-pointer tracking,

micro-op fusion, macro-op fusion, and loop stream detection.
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Figure 2.1. Intel Front End with CSD Support.

2.2.2 Integration with the x86 Front End

This section describes techniques to integrate our architecture into the x86

front end with the legacy decode pipeline and micro-op cache designs, and further

study its synergy/interference with existing front-end optimizations such as micro-

op fusion. Figure 2.1 highlights necessary hardware components required to enable

context-sensitive decoding in the x86 front-end.

Integration with the Legacy Decode Pipeline. To enable context-sensitive

decoding in the x86 front-end, we provision the legacy decode pipeline with one or

more custom decoders that perform custom translations. These decoders continue to

employ a simple static table-driven translation model, like the four native x86 decoders.

However, they can generate more sophisticated micro-op flows by relegating to the

microcode ROM. CSD does not require that micro-ops of an instruction be committed

atomically. This is consistent with the current implementation of Intel processors which

only commit 6 fused micro-ops per cycle while they allow as many as 260 micro-ops
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per one instruction (e.g., FBSTP) [83].

Furthermore, when context-sensitive decoding is turned on, we update the

macro-op dispatch logic to redirect macro-ops that require custom translation to the

custom decoder. In our initial implementation, this logic can be triggered in three

different scenarios. First, software programs such as the operating system can trigger

this logic by configuring a set of model-specific registers (MSRs) [126]. We leverage

the already existing register-tracking optimization in the decoder to track updates to

the MSRs and consequently trigger context-sensitive decoding. Second, we allow a

translation context switch to be triggered by hardware events such as the interception

of a tainted input by information-flow tracking or a power-gating decision by the

unit criticality predictor. Finally, we allow a hardware watchdog timer to periodically

trigger a translation mode switch.

Interactions with the Micro-Op Cache. The micro-op cache is an important

performance and energy optimization that allows certain hot code regions to be com-

pletely serviced from the micro-op cache. The Intel Optimization manual recommends

software to be carefully optimized since frequent switching between the micro-op

cache and the legacy decode pipeline could cause more performance degradation than

running without the micro-op cache [125]. This particularly conflicts with one of the

major goals of context-sensitive decoding – the ability to frequently switch translation

context at a low performance overhead.

Flushing the micro-op cache every translation mode switch could have a major

performance impact. We instead choose to extend the tag bits of the micro-op cache

with an additional set of context bits (one bit per custom translation mode) that

associate a particular micro-op way with the decoder that translated it. While this

could potentially create artificial conflict misses, it allows us to improve the micro-op

cache utilization by co-locating micro-op translations from different custom decoders.

Finally, customization could involve injecting multiple micro-ops at a time. This
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not only clutters the execution stream, but could pollute the micro-op cache. The

x86 micro-op cache design has a check that does not allow 32-byte code regions to

occupy more than 3 ways (amounting to 18 micro-ops) in the micro-op cache. This

is because, unlike a regular cache, the micro-op cache simply allows the front-end

engine to stream instructions from it, to avoid expensive indexing and tag comparison.

Furthermore, it does not allow instructions longer than six fused micro-ops to be

cached. Although we can imagine several options that would allow the architecture to

remove that constraint, to be conservative we assume that it still holds in this chapter,

which does impact many of our translated micro-op sequences.

2.2.3 Microcode Update and Auto-Translation

CSD exploits the already existing Microcode update (MCU) procedure of Intel

processors [126] to empower the runtime system with the ability to inject custom trans-

lations into the processor’s microcode engine, with the API provided to the runtime

being the entire x86 instruction set. The CSD framework further auto-translates such

microcode updates by exploiting Intel’s existing front-end translation and optimization

infrastructure. While this offers significant flexibility to software agents such as the

OS and the runtime system, the chip designer exerts more control over the microcode

engine, potentially allowing custom translations that include non user-visible features

such as a micro-op that can change the state of the branch predictor or the hardware

return address stack. We also note that custom translations injected via microcode

updates should not alter architectural register and memory state, unless explicitly

specified in the MCU header.

Figure 2.2 shows the MCU procedure in more detail. Since microcode update

is performed via a privileged instruction or system call, only trusted entities [18,

244, 246] within the OS/runtime system should have the ability to successfully inject

microcode updates into the processor. The microcode update system call invokes
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Intel’s microcode driver [63] that performs sanity and integrity checks, and further

invokes the processor’s microcode update feature via an MSR update [126]. The MCU

itself is provisioned with a descriptive header prepended by data containing custom

translations injected by the runtime. When the header contains a reserved field that

indicates context-sensitive decoding, the microcode update is assumed to contain only

native x86 instructions, and is further marked for auto-translation. On the processor end,

the MCU header is again verified for sanity and integrity, before extracting the data

part. In the event that the MCU is marked for auto-translation, the native instructions in

the data part of the MCU are further translated into internal micro-ops by leveraging

the existing translation capabilities in the decoder. The translated micro-ops are further

optimized into more compact micro-ops using existing front-end optimizations such as

macro/micro-op fusion, adhering to certain performance guidelines described below.

We further note that virtually all of the building blocks we use to provide this feature

are already well-established mechanisms that appear in mainstream Debian Linux

kernel releases [63].

2.2.4 Performance Guidelines and Optimizations

The micro-op expansion due to customization could potentially have a negative

impact on overall performance if the custom translations are not optimized before they

are injected into the dynamic execution stream. In this chapter, we take advantage of

several existing optimizations in the micro-op engine in order to eliminate bottlenecks

at the front-end and potentially, throughout the pipeline.

Micro-op fusion. To take advantage of the micro-op fusion optimization, we

use load+op and load+br combinations as much as we can in our custom micro-op

sequences. By doing so, we gain 1.6% in performance and eliminate bottlenecks in the

front end stages, and the micro-op cache.
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Figure 2.2. Auto-translation Procedure

Micro-loop Specialization. We attempt to create short and tight loops that

benefit from the improved micro-op cache utilization, and take advantage of the

loop cache when present. The Intel optimization manual [125] recommends loop

fission [185] in case of longer loops. If the custom decoder decides to employ loop

fission on micro-loops, we recommend that these loops don’t occur too close together

in the pipeline as they can potentially knock native instructions in a 32-byte region out

of the micro-op cache, causing severe degradation in performance.

Register Tracking. Finally, customization may potentially involve reusing micro-

registers (e.g., as a loop induction variable). By extending the stack pointer tracker to

perform full register tracking, more compact instances of custom micro-op translations

could be created.
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2.2.5 Potential Applications

Later sections of this chapter focus on particular applications of context-sensitive

decoding including (1) adding security on-demand and (2) selectively moving vector

computation on and off the vector unit to minimize energy. However, other potential

applications (subject of future work) abound.

Programming Languages – To reduce costly time spent on finding and fixing

bugs, developers are increasingly encouraged to employ software practices that ensure

software fault isolation, type safety, and formal verification [159, 194, 307]. While most

type checkers and proof assistants rely on static verification, the dynamic nature of

JavaScript and other JITed code has made it increasingly hard to statically infer and

reason about types. Typed assembly languages [58] and Google’s Portable Native

Client [307] ensure deep sandboxing and type safety of inherently native and/or JITed

code, but at a prohibitively high performance cost for many workloads. With CSD,

we can read metadata at the time of a load to identify type, and pass flags between

instructions to track computation on registers, thereby increasing the coverage for

sensitive code regions where static verification is insufficient.

Debugging – Aside from type checking, breakpoints and watchpoints are

indispensible tools that software developers use to find and fix evasive memory

errors. Modern ISAs with hardware debugging support reserve a small number of

monitor/debug registers to encode breakpoint/watchpoint rules [96, 281]. However,

most debuggers and runtime analyses typically run out of debug registers and resort

to software breakpoints and watchpoints which are extremely inefficient [95]. In

translated ISAs, a context-sensitive decoder can microsequence a performance-efficient

watchpoint implementation since it has direct access to microarchitectural structures

such as the address translation unit.

Performance Counters – Modern processors implement a variety of perfor-
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mance counters, but with several limitations. Only a few can be used at once, and

the actual counters typically change from generation to generation, often dependent

on where the designer had room for a counter and where they did not. However, we

can add many counters in the decoder, with no limit to the number of counters active

at once, and providing compatibility across generations despite different layouts and

space availability.

Profiling – Modern systems typically rely on instrumentation to profile code.

However, intrumentation alters the code, potentially resulting in heisenbugs. That is,

instruction cache, data cache, and even memory interference behavior is altered by the

instrumentation. With CSD, we can add profiling with no change whatsoever to code

layout or data layout.

2.3 Case Study I:Side-Channel Defense

In this section, we demonstrate the security potential of context-sensitive decod-

ing. We first lay out our assumptions and threat model, then describe the stealth-mode

translation feature of context-sensitive decoding. Finally, we leverage this feature to

secure commercial implementations of RSA and AES against the exploitation of the

two major data and instruction cache side channel attacks.

2.3.1 Assumptions and Threat Model

Trusted Computing Base. We assume that the micro-op engine – which in-

cludes both the legacy decode pipeline and the micro-op cache – is tamper-proof and

is a part of the Trusted Computing Base (TCB) [244, 247]. We also further extend

the TCB to include all hardware or software mechanisms that can potentially trigger

context-sensitive decoding. These include register tracking, dynamic information

flow tracking [245], hardware watchdog timers, and anti-virus-driven stealth mode

configuration (e.g., an Intel/McAfee security solution). Moreover, we assume that such
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hardware security mechanisms, including any microcode that enables security, are

formally verified [82]. Note that we only assume that the trigger/injection mechanisms

(e.g., watchdog timer, microcode update kernel module, context-sensitive decoder)

are a part of the TCB, but the instruction stream itself need not be. Finally, since the

API exposed to software only consists of macro-ops, we continue to assume that the

translated micro-ops in the micro-op cache (both native and custom-translated) can

neither be read by software nor be probed via hardware side-channels.

Attacker Environment. We assume an active attacker who can effortlessly

probe, flush, or evict a co-located victim’s cache lines, but does not have direct access

to the contents in the cache. We also assume that the attacker has the ability to make

precise timing measurements and has unlimited access to hardware performance

counters. This allows them to make inferences about the software algorithm being run

by the victim, by observing the micro-architectural (cache) characteristics alone.

2.3.2 Stealth-Mode Translation

Cache-based side channel attacks typically involve probing one or more cache

lines of a co-located victim in order to capture its memory access patterns that could

potentially reveal secret information. For example, an attacker who intends to break a

cryptographic algorithm could compute one or more bits of a secret key by capturing

access patterns of key-dependent loads and branches. The goal of the stealth-mode

translation is to provide an illusion of a modified architectural state by obfuscating the

micro-architectural characteristics alone. In this specific implementation, we obfuscate a

victim’s control path and/or access to sensitive data structures in an attacker-oblivious

way. In particular, we use decoy micro-ops that load data into the caches that would

be touched on all data-dependent paths. These include all cache blocks that contain

T-tables of AES and the multiply functions of RSA. While we intend stealth-mode

to be a security feature to be deployed by the chip manufacturer, trusted software
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Figure 2.3. Context-Sensitive Decoding with stealth mode

MOV_M_R(reg_t src, reg_t dst){
 asm(
  "mov [dst],src     ;real store "
 );
 for (int i=Range.start; i<Range.End; i+=cache_blk_size){

asm (
   "mov ebx,[eax+Range.Start]     ;decoy load"
);

 }
}

(a) Pseudocode

MOV_M_R(reg_t src, reg_t dst){
 mov [dst],src     ;real store 
 mov eax,Range.Size    ;initialize eax 
top: 
 mov ebx,[eax+Range.Start]  ;decoy load
 sub eax, cache_blk_size  ;point to next cache block
 jl top        ;iterate over all cache blocks
}

(b) X86 Instructions
MOV_M_R(reg_t src, reg_t dst){
 st   [dst],src        ;real store 
 mov  t0,Range.Size    ;initialize t0 
top: 
 ld/subi t1,[t0+Range.Start],t0,cache_blk_size;fused ld,sub 
 br_lt top        ;iterate over all cache blocks
}

(c) Micro-ops

Figure 2.4. Translation of MOV instruction in stealth mode

entities [244] with the right privileges can achieve similar effects by leveraging the

auto-translated microcode update feature.

Figure 2.3 shows context-sensitive decoding with stealth-mode translation in

action. Stealth-mode translation is primarily triggered by updates to register-tracked

decoy address-range registers, similar to the already existing Memory Type Range Reg-

isters (MTRR) [126] in x86 that allow system software to control cache policies for

specific address ranges (e.g., write-back vs write-through). The decoy address range
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registers, on the other hand, allow anti-virus and other hardware/software trusted

entities to mark specific data and instruction address ranges in a program’s address

space as sensitive. As soon as the stealth-mode translation is triggered, these decoy

address ranges are copied to the context-sensitive decoder’s internal registers; after

that, the macro-op dispatcher starts redirecting all loads and branches within the PC

range for custom translation.

CSD injects decoy micro-ops into all instructions that use memory operands

and/or attempt control transfer (i.e., all instructions that get translated to load/s-

tore/branch micro-ops) during stealth-mode translation. Figure 2.4, as an example,

shows stealth-mode translation of the MOV instruction for cache-based side-channel

prevention. In this example, CSD injects a micro-loop into the micro-op stream. The

micro-loop effectively obfuscates the architectural state by loading all sensitive cache

blocks whose addresses have been specified by a software agent (e.g., antivirus) in the

MSRRs.

We implement two schemes of translation – one for a software anti-virus-driven

stealth-mode configuration where the tainted program counter (PC) values are known

a priori with the help of binary analysis and configured in specific MSRs, and one for

architectures that implement full information-flow tracking in hardware where the

taint-checking is performed dynamically. In both instances, the decoy micro-ops execute

only for tainted instructions – for the DIFT-enhanced architectures, this decision is

made dynamically at run-time.

We do not need to load the decoy structures constantly, since they will stay

in the cache for a time, or until the attacker removes them. Thus, stealth-mode

translation automatically turns itself off once all the address ranges in the context-

sensitive decoder’s internal copy of the decoy address-range MSRs have been emptied

out (all blocks specified by the range registers are loaded) by the decoy micro-ops.

However, before turning itself off, the context-sensitive decoder starts the hardware
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watchdog timer in order to periodically trigger stealth-mode translation. It is important

to carefully configure the watchdog’s timeout period to a value that is smaller than

the attacker’s best possible probe interval period, but large enough to minimize the

performance degradation caused by the decoy micro-ops now flowing through the

pipeline.

In the next section, we show how stealth-mode translation can be used to

secure the instruction and data caches by defeating both the PRIME+PROBE and

FLUSH+RELOAD variants of cache-based side-channel attacks. We demonstrate these

on two specific instances of known vulnerabilities, but our scheme extends to any

application where the secure-data-dependent code and data access ranges can be

identified.

2.3.3 Securing the Instruction Cache

Instruction cache-based attacks have been able to successfully break prominent

cryptographic algorithms, such as RSA, by being able to capture their key-dependent

instruction access patterns. In this section, we show how RSA is inherently vulnerable

to the I-cache attack and describe how stealth-mode translation can defeat the attack.

The RSA Cryptographic Algorithm. RSA is a popular public-key crypto-

graphic algorithm that uses modular exponentiation for encrypting messages. Most

commercial implementations of the RSA algorithm, including PGP and the open-source

version GnuPG, use the square-and-multiply algorithm that considerably speeds up

modular exponentiation. The algorithm iterates over the binary representation of

the exponent in order to selectively perform exponentiation using three major sub-

operations: square, multiply, and reduce. While square and reduce are performed in each

loop iteration, multiply is invoked only when the exponent bit is 1, which invariably

entails a key-dependent branch.
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I-Cache Side-Channel Attack on RSA. The sub-operations of the square-and-

multiply algorithm are implemented as fairly large functions that span multiple cache

blocks. This implies that the I-cache access patterns captured by a co-located spy

process could potentially reveal several bits of the exponent. A PRIME+PROBE attack

that exploits this side channel [8] fills up the I-cache set for the multiply operation in the

prime phase, and probes for it after a carefully chosen interval to check if the victim

evicted its block. A FLUSH+RELOAD attack on the other hand, leverages shared

libraries and/or page de-duplication in order to flush the cache line that corresponds

to the multiply routine, and further reloads it after a carefully chosen probe interval – a

quick access indicates the victim has accessed the code and brought it into a shared

cache.

Effect of Stealth-Mode Translation. As a defense mechanism against I-cache

based side-channel attacks, we use stealth-mode translation to periodically (poten-

tially, at every probe interval) inject decoy instruction-load micro-ops into the pipeline.

Stealth-mode can seamlessly and instantaneously be enabled for RSA by configur-

ing the instruction decoy address range MSRs with the address-range of the multiply

functions. By periodically loading the right set of cache blocks into the I-cache, stealth-

mode successfully obfuscates the instruction access pattern that is perceived by the

attacker.

2.3.4 Securing the Data Cache

As with instruction cache-based attacks, attackers have also exploited data-cache

side channels to infer secret information by observing a victim’s key-dependent data

access patterns. In this section, we describe a well-known data cache-based side

channel in OpenSSL’s implementation of the AES algorithm and discuss the potential

of stealth-mode translation to thwart these attacks.
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The AES Cryptographic Algorithm. AES Algorithm is a substitution-permutation

block cipher that performs several rounds of simple substitution and permutation dur-

ing encryption. Several software implementations including OpenSSL employ lookup

tables called T-tables in order to speed up the substitution-permutation rounds, which

then consist of several simple table lookup and xor operations. The index computation

for the T-table lookup involves an xor operation between the key bits and the plaintext

bits, thereby entailing a key-dependent load.

D-Cache Side-Channel Attack on AES. The OpenSSL implementation of AES

employs four 256-entry T-tables, which amounts to sixty-four 64-byte cache blocks in

the data cache. A spy process that monitors the access patterns of these blocks during

encryption can significantly reduce the possible key space, and potentially reconstruct

the entire key, by using a large number of carefully chosen plaintext [23]. As with

I-cache attacks, a PRIME+PROBE attack fills up the D-cache sets for one or more of

these T-table blocks in the prime phase, and probes for them after a certain interval

to check if the victim made an access to any of the primed sets. A FLUSH+RELOAD

D-cache attack exploits de-duplication in order to flush one or more of the T-table

blocks, and reload them after a carefully chosen probe interval.

Effect of Stealth-Mode Translation. Similar to the use of stealth-mode transla-

tion to defend against I-cache attacks, by configuring the data decoy address range MSRs

with the appropriate address range of the T-tables, we can successfully obfuscate the

key-dependent data access patterns. Furthermore, by carefully choosing a watchdog

timeout period to enable periodic decoy load injection, we can also defend against

brute-force key extraction attacks [207].

2.3.5 Securing other Side-Channels.

Although the primary focus of this work is to defend against cache-based side-

channel attacks, we note that the stealth-mode translation feature of CSD could be
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Figure 2.5. CSD with Selective Devectorization

exploited in future to defend against other timing and physical attacks. For example,

the decoy micro-ops could alter the branch predictor tables and BTB entries to confuse

branch prediction analysis attacks, or potentially introduce a random stream of NOPs

(and different types of NOPs) to skew timing analysis. Furthermore, owing to its ability

to microsequence instructions using the MSROM, it can add additional noise into

the sensed power by non-deterministically microsequencing instructions that cause

switching activity across different microarchitectural structures.

2.4 Case Study II: Unit-Level Power Gating

In this section we present another use case of context-sensitive decoding, se-

lective devectorization for unit-level power-gating. While similar in functionality to

software-based devectorization approaches proposed in prior work [150,157], we elimi-

nate binary translation costs and related cache effects, add the ability to switch modes

at a finer granularity, allow cheaper and more effective monitoring, and provide more

direct control over power gating and ungating.
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Unit-level power gating is one of our primary tools to reduce leakage power

by disconnecting the supply voltage of an idle unit. However, upon encountering

demand for that unit it must connect back to the supply voltage. Powering a unit on

and off uses power and energy cost but also slows execution, typically stalling until the

unit is activated. We leverage context-sensitive decoding to enable efficient and more

fine-grained power-gating of vector units. CSD alleviates these shortcomings in two

ways: 1) for infrequent vector instructions, it avoids powering on the unit by translating

vector instruction to equivalent scalar micro-ops, and, 2) it hides the power-on delay

by continuing the execution of instructions using scalar mode until the unit is ready.

Figure 2.5 shows our hardware support (beyond the decoder) for dynamic

devectorization. We employ nothing more than a simple counter that tracks a window

of instructions, counting up one for simple vector instructions and more than one

for more complex vector instructions (higher micro-op count). When it goes below a

threshold, it turns on devectorization and powers off the entire vector unit, and when

it goes above a (higher) threshold, it turns the vector unit back on. It also includes a

cycle counter to continue devectorization until the vector unit is fully powered.

When devectorization is enabled, the microcode engine translates the vector

instructions to an equivalent set of scalar micro-ops. As an example, Figure 2.6a shows

the pseudocode that devectorizes the SSE PADDB instruction which performs integer

addition on packed bytes. This code is further compiled and optimized into a set

of native x86 instructions by a runtime system which performs the actual microcode

update. Figure 2.6b shows the equivalent auto-translated micro-op version of such an

update. While it is possible to use a simpler translation with a loop, we find that it is

more efficient to unroll the loop in this case. This is because, by employing suitable

masks, the computation itself can be optimized in a way that allows us to just perform

four adds and accumulate the results. While this optimization holds true for this

particular example, the decision to use micro-loops and other optimizations purely
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PADDB(xmm_t src,  xmm_t dst){
xmm_t masked_src, masked_dst, temp_res;
xmm_t Mask = 0x00000000000000ff;
for(int8_t i = 0; i < 16; i++){

masked_src = src & Mask;
masked_dst = dst & Mask;
temp_res   = masked_src + masked_dst;
temp_res   = temp_res & Mask;
dst    = dst | temp_res;
Mask   = Mask << 8;

}
}

(a) Pseudocode

PADDB(xmm_t src,  xmm_t dst){
    .DEF M1 0x00FF00FF00FF00FF
    .DEF M2 0xFF00FF00FF00FF00
    ;LOW 64-bits , MASK M1
    andi t1, src_l, $M1 ;Mask 1st Op
    andi t2, dst_l, $M1 ;Mask 2nd Op
    add  t3, t1, t2  ;Add Masked Op 
    andi t3, t3, $M1 ;Mask output
    ;HIGH 64-bits, MASK M1
    andi t1, src_h, $M1 
    andi t2, dst_h, $M1
    add  t4, t1, t2
    andi t4, t4, $M1
    ;LOW 64-bits , MASK M2
    andi t1, src_l, $M2
    andi t2, dst_l, $M2
    add  dst_l, t1, t2
    andi dst_l, dst_l, $M2
    or   dst_l, dst_l, t3
    ;HIGH 64-bits, MASK M2
    andi t1, src_h, $M2
    andi t2, dst_h, $M2
    add  dst_h, t1, t2
    andi dst_h, dst_h, $M2
    or   dst_h, dst_h, t4
}

(b) Optimized micro-ops

Figure 2.6. Devectorization of add byte instruction

depends upon the nature and purpose of the custom translation.

Power Modeling and Power Gating Overheads For powering a unit on and

off, power gating uses a header transistor that connects or disconnects the power

source of the unit. A sleep signal is applied to the gate of the header device to control

its operation. Switching the unit off and on comes at the cost of asserting and de-

asserting the sleep signal plus switching on and off the header device. These costs are

responsible for the non negligible timing and energy overhead of power gating. We

use Equation 2.1 from a model proposed by Hu et. al. [114] to account for the energy

overhead of power gating.

EOverhead ≈ 2WH
Es

cyc

α
(2.1)

Where WH is the ratio of the area of the sleep transistor to the area of the unit

and Es
cyc/α is the switching energy of the unit for one cycle when switching factor

α = 1. We use a conservative value of 0.20 for WH, as the literature uses an estimated

range of 0.05 to 0.20 [114, 133, 157, 170], and for Es
cyc/α we use McPAT estimates [162].

Power gating cycles should be made long enough to compensate for the EOverhead. The
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Table 2.1. Architecture detail for the baseline x86 core

Baseline Processor
Frequency 3.3 GHz I cache 32 KB, 8 way
Fetch width 4 fused uops D cache 32 KB, 8 way
Issue width 6 unfused uops ROB size 168 entries
INT/FP Regfile 160/144 regs IQ 54 entries
LQ/SQ size 64/36 entries Functional Int ALU(6), Mult(1),
Branch Predictor LTAGE Units FP ALU/Mult(2), SIMD(2)

break-even time is defined as the number of cycles a unit should stay in power-gated

state so that the aggregate energy savings of power gating (Esaved) matches the energy

of switching the unit on then off (EOverhead). We model the leakage current of the

header transistor itself, using McPAT. We use Laurenzano et. al.’s [157] estimate of 30

cycles for powering on the VPU.

2.5 Methodology

This section details the evaluation methods we use for our two case study

applications of context-sensitive decoding. Since most of the complexity of both is

hidden by the decoder, most of the infrastructure, including simulation, is shared

between the two. However, because the techniques have very different goals, we do

evaluate them in different ways.

2.5.1 Performance Evaluation

We model the x86 pipeline using the gem5 [28] architectural simulator, which

already features micro-op translation. We further extend the gem5 front-end to include

a micro-op cache and support micro-op fusion as described in the Intel Architectures

Optimization Reference Manual [125]. Our baseline processor is based on the Intel

Sandybridge microarchitecture [124], adapted to the instruction queue model of gem5.

Table 2.1 lists the capabilities of our baseline processor in more detail.

To evaluate the performance of the stealth-mode translation technique we
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Figure 2.7. Effect of the cache attacks on AES and RSA with stealth-mode translation
enabled.

describe in this chapter, we need an application that exhibits a cache-based side-

channel vulnerability – due to the context-sensitive nature of this technique, we seldom

deviate from native performance when not in use and incur no overhead on unaffected

code. Therefore, we evaluate the performance of our technique on two commercial

implementations of cryptographic algorithms: OpenSSL’s AES and GnuPG’s RSA.

We also include two additional security benchmarks from the MiBench suite [101]:

Blowfish and Rijndael cryptographic algorithms that are vulnerable to data cache based

side channel attacks. We do not use PGP’s IDEA algorithm and the SHA algorithm

available in MiBench because we could not find any key-dependent loads or branches

that would require our stealth-mode translation mechanism. Each of our included

security applications can be run in two modes (encrypt and decrypt) that each perform

different computations and therefore exhibit different performance characteristics,

giving us 8 performance datapoints.

We use DIFT as a trigger mechanism that detects key-dependent loads and

further enables stealth-mode translation. While DIFT can be implemented via CSD, we

want to separate the micro-op expansion and related effects of stealth-mode (the pri-

mary topic of this chapter) by leveraging a lightweight hardware implementation [245]

which incurs an extra 4-cycle L2-tag access latency. Finally, to enable our antivirus-

driven trigger mechanism, we set aside five scratchpad registers in the context-sensitive

decoder that each contain the addresses of potentially tainted instructions.

To evaluate the selective devectorization mode, we use a wide range of high and
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low ILP applications from the SPEC CPU2006 suite. We model power using McPAT

with a 32nm technology node [162]. Finally, we use SimPoint [235] and Pinplay [211]

to select simulation regions.

2.5.2 Security Evaluation

To evaluate the effectiveness of our security defense, we subject AES and RSA

running on our architecture to the FLUSH+RELOAD variant of cache-based side-

channel attacks, modeled after the AES T-Table attacks by Gruss, et. al. [98]. As

further demonstration, we try the PRIME+PROBE attack on AES and RSA. Our attack

models exploit the I-cache side-channel for RSA and the D-cache side-channel for AES,

demonstrating defense against both side channels. Since we model our stealth-mode

translation on a cycle-accurate simulator, we allow our attack models to benefit from

precise counters and therefore do not require a calibration phase to set thresholds that

distinguish between a hit and a miss, and subsequently determine probe intervals.

2.6 Results

In this section, we evaluate each of our instantiations of CSD, starting first with

our side-channel defense mechanism and following that with selective devectorization.

2.6.1 Stealth Mode

Security Evaluation. Figure 2.7a shows the results of a well-known PRIME+PROBE

attack on AES [263]. The attack repeatedly triggers encryptions with carefully chosen

plaintexts while probing 16 different addresses of the AES T-tables. For each probe,

only one plaintext has a 100% hit rate (steep dips in the curve), revealing 4 bits of

the key. When the stealth-mode translation is not enabled, 64 bits out of the 128 bits

of the key get compromised in a matter of 64000 attempts as shown in the figure.

These bits are sufficient enough to reverse-engineer the rest of key by well-established
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Figure 2.8. The execution time impact of context-sensitive decoding when implementing
secure cache obfuscation normalized to insecure execution mode. The watchdog timer is
set so that secure mode is re-entered every 500 microseconds.

cryptanalysis techniques. However, when stealth-mode translation is enabled, the

attacker-perceived data access patterns are completely obfuscated and always result in

a hit for every probe, almost mimicking the behavior of a constant-time defense [23].

Figure 2.7b shows the results of a FLUSH+RELOAD attack on the RSA algo-

rithm [304]. In the absence of stealth-mode translation, the attacker can almost always

detect when a multiply function has been invoked by measuring hits and misses (shown

as dips and spikes in the figure) to the corresponding reloaded cache line. However,

when stealth-mode translation is in effect, the attacker-perceived instruction access

pattern is completely obfuscated resulting in a perceived I-cache hit at the end of

every probe interval. The PRIME+PROBE attack on RSA (not shown) is also defeated,

recording a miss on the attacker end after every probe interval.

Performance The potential performance overheads of CSD include micro-op

expansion and related side effects (micro-op queue pressure, micro-op cache pressure)

and possible cache effects due to increased cache pressure from decoy loads. Careful

construction of the secure-mode micro-op translation allow us to minimize many of

the side effects of micro-op expansion.
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Figure 2.8 compares the execution time of our pipeline without any optimization

(NoOpt) and with both micro-op cache and micro-op fusion enabled (Opt). In these

results, we see performance loss consistently below 10% and averaging 5.6% when

secure mode is enabled. This is to be compared with the current state of the art

obfuscation techniques, which rely on the compiler (and consequently don’t enjoy

a hardware DIFT), that see performance expansion on the order of 20X [217] for

applications with large memory footprints.

To break down the performance overhead of the context-sensitive decoding,

we first study micro-op expansion relative to unaltered execution. As shown in

figure 2.9, context-sensitive decoding causes a micro-op expansion of 8.0% on average.

Comparing these results together with Figure 2.8 seems to indicate that the primary

cost of context-sensitive decoding is in fact the micro-op expansion. This is somewhat

surprising, because we expect additional overheads from the higher incidence of loads

and greater memory activity.

We investigate this further with several experiments. First, we measure per-

formance in cycles/micro-op, and find that in fact this figure does not increase (and

in some cases decreases), despite the fact that the percentage of load micro-ops has

increased. Second, we see in Figure 2.10 that the number of cache misses per kilo

instruction (MPKI) stays about the same on average. This indicates the vast majority of

additional injected loads are hits. In yet another experiment where we discounted the

cost of micro-op expansion, we saw an overall performance increase on average – this

was due to a prefetching effect from the added micro-ops. Thus, the cache prefetching

effect of the decoy loads is actually muting some of the performance cost of micro-op

expansion.

Another negative side effect of context-sensitive decoding is on the micro-op

cache. Because we introduce translations not allowed in the micro-op cache, or in other

cases expand loops so they no longer fit, we do lose some of the effectiveness of that
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Figure 2.9. Micro-op expansion due to CSD.
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Figure 2.10. Number of cache misses without and with CSD.
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Figure 2.11. Effect of CSD timer on execution time.

cache. However, that effect is small, especially when modeled with micro-op fusion

enabled. Without fusion, the micro-op cache hit rate, on average, drops from 44% to

39% when we introduce CSD, but in the presence of micro-op fusion (which shortens

some of the code sequences we expanded), it is much more stable dropping only from

43% to 42% with CSD-based stealth mode enabled.

In all above experiments, the watchdog timer is set to 1000 cycles (500 microsec-

onds), so the decoy loads are deployed at the first decoded tainted load or branch
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Figure 2.12. Total energy consumption of CSD’s devectorizing mode normalized to that of
power-gating

encountered, then decoding returns to normal mode until the timer fires again. While

re-injecting decoy micro-ops every 1000 cycles provides almost perfect obfuscation

against these cache-based side-channel attacks, based on system characteristic (e.g.,

cache miss/hit delays) and targeted attacks one can tune this parameter to increase

the performance of the defense. Figure 2.11 shows the normalized execution time of

our defense, sweeping the watchdog timer from 1000 to 10000 cycles. The decrease in

execution time is caused by fewer extra micro ops and fewer micro-op cache conflicts.

Overall, we find that obfuscation of secure-data dependent microarchitecture

state can be enabled with context-sensitive decoding with almost no performance cost,

particularly in comparison with prior techniques.

2.6.2 Selective Devectorization

Figure 2.12 shows the breakdown of energy for regular decoding with (1)

conventional power gating and (2) our devectorizing mode using context sensitive

decoding. Energy numbers are normalized to the total energy of conventional power

gating. On average, dynamic devectorization results in a 12.9% improvement of total

energy consumption. This is despite the fact that several of our SPEC benchmarks

make little use of vectorization.
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Figure 2.13. Execution time for different power gating policies, normalized to always on
policy

Figure 2.13 compares the execution time of three different VPU power-gating

polices: (1) Always execute on the vector units (Always On), (2) Context Sensitive

Decoding which scalarizes the instructions based on the unit criticality predictor’s

decisions (CSD), (3) Conventional power gating (Power Gating), and (4) Always translate

instructions to scalar micro-ops to execute on scalar units (Always Off). The always-

devectorize policy and power gating both incur considerable performance overheads

(12% and 5%, on average respectively) while context-sensitive decoding reduces this to

only 1.6% overhead. In general, it keeps performance close to full vectorization even

though the vector units are turned off much of the time. The only exception is namd,

where we are much faster than full devectorization and conventional power gating,

but still incur a high cost.

Figure 2.14 shows the number of dynamic micro-ops for the three VPU power-

gating polices. Here we see that performance scales with micro-op expansion, the

primary performance cost of CSD dynamic devectorization.

Figure 2.15 depicts the percentage of time that the VPU is kept power-gated for

each benchmark. On average, context sensitive decoding can keep the VPU power-

gated more than 70% of the execution time. For benchmarks astar, gcc, gobmk, and

sjeng with low (but not nonexistent) vector activity, we are able to keep the vector unit
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Figure 2.14. Micro-op expansion due to context sensitive decoding normalized to native
mode

turned off just about all the time, not having to turn it on for occasional outliers.

Figure 2.16 shows the breakdown of the SSE instructions in each benchmark.

We categorize instructions into three categories: 1) instructions that are executed on

the VPU (Powered On), 2) instructions that are devectorized and executed on scalar

units because the VPU was in the process of powering on (Powering On), and 3)

instructions that are executed on scalar units because the VPU was in power-gated

state (Power-Gated). We find that bwaves and milc are frequently forced to execute scalar

instructions while waiting for the vector unit to power on. They are still able to slightly

come out ahead in energy, though, due to the performance advantage of not having

to stall to wait for the VPU to turn on. Namd executes the largest number of vector

instructions in gated mode, and is in fact gated 20% of the time despite having a large

amount of vector activity. This implies that the threshold that performed overall was

too aggressive for namd, and a more dynamic threshold or usage predictor would work

better. Omnetpp, on the other hand, has a reasonable number of scalar operations but

executes nearly all of them with the vector unit disabled, resulting in a significant gain

in energy. And gamess is able to judiciously enable power gating, as it is gated nearly

half the time, yet only about 20% of vector instructions are affected.

Overall, for CSD-enabled selective devectorization, we find that we are able
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Figure 2.15. Percentage of time that CSD power gates VPUs.
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Figure 2.16. Breakdown of vector activity

to power gate the vector unit for longer, unbroken periods, resulting in good energy

savings with a small performance cost.

2.7 Conclusion

The paper presents context-sensitive decoding, which enables the decoder to

dynamically alter the decoding of programmer-visible ISA instructions. This allows the

system to change the functionality of the software without programmer or compiler

intervention. We use the technique for stealth mode translation, where the decoder

injects instructions which completely obfuscate the effect of secure-data dependent

branches and data accesses, defending against multiple variants of cache-based side

channel attacks at just 5% performance degradation. This removes the microarchitec-

tural footprint of the secure code from an attacker. Additionally we enable selective

devectorization via CSD, saving 12.9% in energy while simultaneously achieving a

speedup of 3.4% over conventional power gating.
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Chapter 3

Context-Sensitive Fencing

Maximizing performance has been a major driving force in the economics of the

microprocessor industry. Modern processor architectures feature highly complex and

sophisticated performance optimizations. However, scaling performance without con-

sidering security implications could have serious negative consequences, as evidenced

by the recent pile of lawsuits [295] concerning the Meltdown [165] and Spectre [148]

class of microarchitectural attacks. These events have highlighted the need to architect

systems that can not only run at high speed, but can also exhibit high resilience against

security attacks, not just one or the other. The goal of this work is to secure a particular

performance optimization integral to modern processor architectures – speculative

execution – against the Spectre class of microarchitectural attacks, while maintaining

acceptably high levels of performance.

Modern processors employ branch speculation and out-of-order execution

to take advantage of the available instruction-level parallelism beyond control-flow

boundaries, thereby improving the overall CPU resource utilization and sustaining

high throughput. Spectre attacks exploit speculative execution by leaking secret in-

formation along misspeculated paths via cache-based and other timing side channels.

Owing to their ability to mistrain the branch predictor to deliberately steer execution

to an attacker-intended control-flow path [132, 149], these attacks have notably demon-
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strated the potential to break all confidentiality and completely bypass important

hardware/software security mechanisms such as ASLR, even via remotely accessed

covert channels [231].

Mitigating Spectre is a particularly hard problem since it could potentially cause

highly intrusive changes to the existing out-of-order processor design, severely limiting

performance. Although Intel has announced microcode update patches to mitigate

certain variants of the attack, a majority of the high impact vulnerabilities still largely

rely on software patching [122, 209]. State-of-the-art software countermeasures take

advantage of fences that mute specific effects of speculative execution by constraining

the order of certain memory operations, or in some cases by completely serializing

a portion of the dynamic instruction stream. Liberal fence insertion (e.g., at every

bounds check) can mitigate the attacks, but doing so severely hurts performance;

however, spraying fences more strategically at appropriate locations in the code requires

extensive patching of software via recompilation or binary translation – resulting in

significant engineering effort and long delays to deployment. We need hardware

architectures that can more seamlessly react to such attacks via unobtrusive field

updates.

This work proposes context-sensitive fencing (CSF), a novel microcode-level de-

fense against Spectre. The key components of the defense strategy include: (a) a

microcode customization mechanism that allows processors to surgically insert fences

into the dynamic instruction stream to mitigate undesirable side-effects of speculative

execution, (b) a decoder-level information flow tracking (DLIFT) framework that identi-

fies potentially unsafe execution patterns to trigger microcode customization, and (c)

mistraining mitigations that secure the branch predictor and the return address stack.

To perform secure microcode customization with minimal impact on perfor-

mance, this work leverages context-sensitive decoding (CSD) [253], a recently proposed

extension to Intel’s (and others’) micro-op translation mechanism that enables on-
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demand and context-sensitive customization of the dynamic micro-op instruction

stream. In addition, this work also takes advantage of the reconfiguration framework

offered by CSD, allowing the operating system and other trusted entities to dynami-

cally control the frequency, type, and behavior of fences that are surgically inserted

into the micro-op stream to secure speculative execution.

This work analyzes a significantly expanded suite of fences, considering different

possible enforcement stages and enforcement strategies. In particular, we introduce a

new fence that prevents speculative updates to cache state with minimal interference

in the dynamic scheduling of instructions.

Context-sensitive fencing has the ability to automatically identify fence insertion

points via a novel decoder-level information flow tracking-based detection mechanism.

Since the processor front-end typically churns instructions at a much higher rate than

the rest of the pipeline, information-flow tracking at the decoder-level is prone to

frequent overtainting and undertainting scenarios. While overtainting could hurt

performance due to the increased frequency of fence insertion, undertainting could

undermine the security of the system for a brief window. By solving these challenges

through an early and low-overhead mistaint detection and recovery mechanism, this

chapter further establishes the viability of decoder-level information flow tracking as

an effective attack detection mechanism.

This work further proposes novel micro-op flows that protect the branch predic-

tor, the branch target buffer, and the return address stack against mistraining across

different protection domains. While similar in spirit to the proposed Indirect Branch

Predictor Barrier (IBPB) instruction by Intel, these micro-op flows apply more generally

to a broader class of branch predictors and return address stacks, and offer more

fine-grained control.

This research makes the following major contributions:
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• It introduces context-sensitive fencing, a mechanism that leverages a dynamic

decoding architecture to inject fences between control flow and loads, without

recompilation or binary translation.

• It examines several variants of existing fences, and introduces three new fences,

which allow aggressive reordering of loads and stores without exposing any

microarchitectural evidence, in the cache, of speculative accesses that cross the

fence.

• It introduces a decoder-level dynamic information flow tracker, DLIFT, which al-

lows accurate tracking of taints early in the pipeline, giving the pipeline the ability

to identify tainted accesses before the stages that enable speculative execution.

• It introduces a simple dynamic mechanism that eliminates redundant (per basic

block) fences.

• The combination of optimizations introduced in this chapter reduce the cost of a

fence-based Spectre mitigation technique from 48% overhead (for a conservative

scheme) to less than 8%.

• It also introduces a decode-level branch predictor isolation technique that miti-

gates branch mis-training variants of Spectre.

3.1 Background and Related Work

Speculative Execution. Dynamic control speculation is a well-known instruc-

tion throughput optimization technique used, especially in out-of-order processors, to

predict the branch outcome and execute instructions along the predicted path, while

waiting for the actual branch outcome to be evaluated at a later pipeline stage. In the

event of a misprediction, the processor rolls back execution along the misspeculated
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path and redirects control to the right branch target. Although speculative execution is

largely programmer-invisible in terms of committed architectural register and memory

state, in all known instances it leaves some microarchitectural side effects that can be

observed through well-established side channels.

Microarchitectural Attacks. Microarchitectural attacks leak secret informa-

tion of a victim process by observing microarchitectural effects of certain perfor-

mance/power optimizations such as caches, branch speculation, memory disam-

biguation, and even dynamic voltage and frequency scaling (DVFS), through side-

channels such as memory bus activity [11], power consumption characteristics [27],

branch access patterns [9, 79], faults [108, 138], acoustics [87, 88], electromagnetic ef-

fects [85], functional unit timing characteristics [285], and most notably cache access

patterns [10, 86, 167, 195, 297, 304, 306].

Cache-based side-channel attacks have been shown to reveal secret information

such as cryptographic keys [70, 98, 304], keystrokes [99], and browsing activity [205] by

co-locating a spy process alongside a victim in such a way that they share cache memory.

The attack unfolds through a pre-attack step in which a spy process fills/flushes specific

cache sets, so that the victim leaves observable side effects in terms of its cache access

patterns, that can be later inferred by the spy process by timing the access to particular

cache blocks.

Exploiting Speculative Execution. This work tackles a highly evasive class of

microarchitectural attacks called Spectre [148] that leaks information by exploiting

side effects of speculative execution through cache-based side channels. These attacks

not only exploit unintended side effects due to speculation, but have the ability to

deliberately mislead execution into attacker-intended paths by mistraining the branch

predictor and other associated structures. Several variants of the attack have been

described (shown in Table 3.1) that can potentially bypass software security/integrity

protection mechanisms such as bounds checking and ASLR [233].
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Table 3.1. Speculative Attacks Variants

Variant Vulnerability Name
Spectre v1 [132, 148] Bounds Check Bypass (BCB)
Spectre v2 [132, 148] Branch Target Injection (BTI)
Spectre v3 [132, 165] Rogue Data Cache Load (RDCL)
Spectre v3a [19, 182] Rogue System Register Read (RSRD)
Spectre v4 [182] Speculative Store Bypass (SSB)
Spectre-NG [243] Lazy FP State Restore
Spectre v1.1 [146] Bounds Check Bypass Store (BCBS)
Spectre v1.2 [146] Read-only Protection Bypass
Spectre v5 [149, 177] Ret2Spec and SpecRSB
NetSpectre [231] Remote Bounds Check Bypass
Foreshadow [269, 290] L1 Terminal Fault

1 i f ( x < a r r a y 1 s i z e )
2 y = array2 [ array1 [ x ] * 2 5 6 ] ;

Figure 3.1. Example Spectre Variant-1 Gadget

Figure 3.1 shows a vulnerable code target for the variant-1 attack. The code

fragment is composed of a conditional branch that performs a bounds check, and a

Spectre gadget that results in an observable microarchitectural side effect upon execution.

Upon misspeculation, the bounds check is bypassed and the Spectre gadget executes,

leaving an observable cache footprint to the attacker, that remains even after the

processor detects the misprediction and rolls back execution. In the simplest variant of

the attack where the attacker controls both x and array2, the attacker can potentially

leak the entire address space of the victim.

The variant-2 Spectre attack further allows the attacker to hijack speculative

execution by mistraining the branch predictor and associated structures, enabling a

ROP-style attack [223] that stitches together Spectre gadgets. To mount such an attack,

a co-located adversary process that shares the branch predictor (e.g., a browser process

with several user threads) with the victim, first forces an artificial BTB (Branch Target

Buffer) entry collision using a carefully chosen indirect branch address. The attacker
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1 mov eax , a r r 1 s i z e
2 cmp edi , eax
3 jge END LBL
4 mov eax , edi

6 mov eax , [ eax+arr1 ]
7 shl eax , 0 x8

8 mov eax , [ eax+arr2 ]
9 mov [ y ] , eax

10 END LBL :

(a) Vulnerable gadget (x86)

mov eax , a r r 1 s i z e
cmp edi , eax
jge END LBL
mov eax , edi

FENCE
mov eax , [ eax+arr1 ]
shl eax , 0 x8

mov eax , [ eax+arr2 ]
mov [ y ] , eax
END LBL :

(b) Fenced gadget (x86)

Figure 3.2. Mitigating Spectre-v1 using a Fence Instruction

next poisons the value of the colliding BTB entry by repeatedly executing its own

branch whose target is the address of a Spectre gadget. After successful mistraining

of the branch predictor, the processor now predicts the victim’s indirect branch that

collides in the BTB to be the attacker-chosen Spectre gadget and starts speculatively

executing it.

The variant-3 attack (a.k.a. Meltdown) exploits the fact that most out-of-order

processors that employ dynamic speculation supress loads with protection violation at

instruction retirement (i.e., commit stage), rather than during instruction execution.

Therefore, a non-privileged memory access can find its way to the cache and leave a

footprint, allowing an attacker to now effectively read arbitrary memory contents of

another process or even the kernel or the hypervisor, through careful cache-based side

channel analysis.

The literature describes multiple attacks that conform to the above variants, but

exploit different attack targets and/or different side channels. These include SgxPec-

tre [42] that bypasses Intel’s SGX [121] security mechanisms to steal secrets from SGX

enclaves, the MeltdownPrime/SpectrePrime [262] that leverage a PRIME+PROBE [167]

cache attack instead of FLUSH+RELOAD [304] by exploiting the side effects of cache
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line invalidation mechanisms in modern cache coherence protocols, and the NetSpectre

attack that leaks information across independent virtual machines on Google Cloud

via an AVX-based covert channel [231].

The variant-4 Spectre attack exploits microarchitectural side effects of the mem-

ory disambiguation feature employed by most out-of-order processors in order to allow

loads to be speculatively ordered and executed before any outstanding store whose

effective address has not been calculated yet. Upon misspeculation, i.e, if the load

address has a conflict with the outstanding store, the processor flushes the pipeline

and triggers the re-execution of the load and all subsequent instructions [126], while

the microarchitectural side effects of the misspeculation linger, resulting in memory

disclosures similar to variant 1 and 3. Similarly, the NG variant-3 attack [243] leverages

the lazy x87 floating-point restore functionality of Intel CPUs to read floating-point

registers of a victim process.

The Spectre variants 1.1 and 1.2, dubbed Speculative Buffer Overflows [146],

exploit the store-to-load forwarding optimization to stitch together Spectre gadgets.

More specifically, these attacks bypass a stack buffer overflow check similar to variant-1

and execute a Spectre gadget that speculatively stores malicious content (the address of

the next Spectre gadget) into the return address on the stack. Store-to-load forwarding

combined with the fact that most modern processors break down the return instruction

into micro-ops that load the return address from the stack before transferring control,

then result in a ROP-style execution of Spectre gadgets that leave a trail of microar-

chitectural state behind. The variant-5 attack [149] achieves similar effect, by instead

mistraining the return address stack employed by most processors to speculatively

predict the target of a procedure return.

Spectre Mitigations. The current set of mitigations for Spectre range from

simple coding guidelines [39] to proposals that advocate exposing microarchitec-

tural details in the ISA [172]. To mitigate Meltdown, Kernel Page Table Isolation
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(KPTI) [52, 97] has been proposed and recently patched to the Linux kernel, incurring

about 6% in performance. To mitigate Spectre v1, multiple chip manufacturers includ-

ing Intel [122], ARM [19], and AMD [15], have suggested instrumenting code with

serializing instructions or fences to inhibit speculation at specific points in execution.

For example, consider Figure 3.2a that shows the assembly code for the Spectre

variant-1 gadget in Figure 3.1. Figure 3.2b shows a software-patched version that

employs a serializing instruction or a fence to prevent the speculative execution of the

Spectre gadget (i.e., lines 6-9). In most implementations, upon decoding the fence, the

processor stops fetching new instructions until the fence gets committed or squashed,

thereby serializing execution. In our example, if the attacker calls the vulnerable gadget

with out-of-bounds values in the edi register, the processor front-end stalls until the

fence is committed, thereby disallowing the speculative execution of the Spectre gadget

and completely mitigating the attack.

The associated performance overhead with liberal fence insertion, however,

could be as high as 10x [203]. While it is possible to perform compiler-directed

code instrumentation with fences at a lower performance overhead [209], locating the

potential Spectre targets using static analysis is non-trivial and could therefore result

in less than full coverage [147]. Speculative Load Hardening [40] and YSNB (You

Shall Not Bypass) [203] propose to use predicated execution [136, 176, 210] to alleviate

the high overheads for fences by injecting an artificial data dependency between the

conditional branch and the Spectre gadget. These proposals incur 36-60% overhead in

performance.

To cope with variant-2, both Intel and AMD have announced microcode update

patches that introduce new fence instructions [15,122] that prevent instructions preced-

ing the fence from controlling the indirect branch prediction of branches that follow the

fence. The fences also prevent software with lower privileges from influencing the indi-

rect branch prediction of software with higher privileges. Furthermore, these patches
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restrict indirect branch prediction from being controlled by co-located threads via

simultaneous multithreading [265,266]. Furthermore, the use of retpolines [122,123,267]

have been advocated to replace indirect jumps and calls with an equivalent push+ret

instruction sequence, in order to bypass the indirect branch predictor. However, they

could further expand the attack surface in the wake of v5 [149, 177], v1.1, and v1.2

attacks [146].

On the hardware front, SafeSpec [142] and InvisiSpec [302] propose mitigating

side effects of speculative execution by adding new shadow user-invisible structures

for caches and TLBs that store transient results from speculative instructions, and

committing them to main cache/TLB only if the speculation was deemed correct and

the corresponding instructions gracefully retire. Although these techniques make

disruptive changes to the processor/memory architecture and consistency models,

they make significant strides in secure hardware design with minimal performance

impact. Finally, Dong, et al. [71, 72] propose leveraging Virtual Ghost [59] to protect

applications running on a compromised OS kernel from Spectre.

Secure Instruction Stream Customization. Prior work has established that

instruction customization is an effective means to instrument the dynamic execution

stream with security checks, and thereby mitigate several attack vectors at a relatively

low performance overhead. Instruction stream customization has been proposed and

evaluated in various forms and levels, ranging from secure virtual architectures at the

ISA and compiler level [60, 272, 274] to full-blown processor binary translation at the

microcode level [29, 64, 208, 273]. Corliss, et al. [53–55] propose dynamic instruction

stream editing (DISE), a macro-engine that customizes the dynamic instruction stream

at the decoder level, by pattern-matching user-defined production rules pushed into

the decoder. Taram, et al. [253] propose context-sensitive decoding that leverages the

CISC to RISC translation feature of modern instruction set decoders to dynamically

alter the behavior of programmer-visible instructions without recompilation or binary

88



translation [69, 275]. While we leverage these approaches in this research, this work

targets a different class of emerging attacks, and proposes several additional techniques

beyond microcode customization.

Information Flow Tracking. Suh, et al [245] first proposed the idea of dynamic

information flow tracking (DIFT) that tags data from untrusted channels as spurious,

and further tracks the information flow of spurious data, flagging any violation of

an enforced security policy. Multiple hardware information flow tracking techniques

have been described at various levels of the hardware [44, 45, 48, 56, 62, 260, 268, 276]

as a detection mechanism to circumvent code injection [299], cross-site scripting

attacks [62, 279], buffer overflows [62, 299], and SQL injection [62, 102, 103, 154, 308].

This work proposes decoder-level information-flow tracking as a detection mechanism

for Spectre, and addresses several associated challenges.

3.2 Assumptions and Threat Model

Among the Spectre variants, the Bounds Check Bypass (variant-1) is the one

which has had the highest impact in terms of affected platforms and devices. Therefore,

the main focus of this work is to mitigate the variant-1 attack at an acceptable level of

performance. However, owing to the flexibility advantages of microcode customiza-

tion, we also propose new mitigations against other Spectre variants documented in

Table 3.1.

We assume that the goal of the attacker is to read arbitrary memory contents by

exploiting a Spectre gadget. Also, without loss of generality, in this work we defend

against a Spectre attacker that targets the most obvious and the most important victim,

i.e., the OS kernel, but our framework allows us to extend the proposed techniques to

mitigate different targets such as virtual machines and browsers. Our attack model

assumes an adversary with the following capabilities.
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• Information Leakage. We assume that the adversary has the ability and privilege

to probe, flush, or evict any cache line including that of the kernel at any particular

time. Also, they can make precise timing measurements using instructions such

as rdtsc and rdtscp.

• Co-location. We assume that the adversary is colocated with the victim, and

can not only leak information through cache-based side channels, but can also

mistrain shared branch predictor structures including branch target buffers and

return address stacks, and can further influence the branch outcome of the victim,

as described in the variant-2 attack.

• User-Mode Access. We assume that the adversary has standard user-mode

access, and can invoke any system call with arbitrary and carefully chosen

arguments, and can further access devices such as the keyboard or network to

feed the kernel/driver code with carefully chosen data.

Moreover, we assume that the only communication channel between the attacker

and the kernel code is through micro-architectural side channels and the attacker does

not have any other channel, direct or indirect, to leak data. Among all the micro-

architectural side-channels, data caches are the ones that are predominantly used

and are the easiest to exploit. Thus, the mitigation strategies described in this work

primarily focus on those variants of the attack that use the data cache as their covert

channel to leak information. Again, due to the flexiblity and programmability of

the proposed strategy, it is possible to easily extend the approach to mitigate other

side-channels such as functional unit contention and AVX timing channels [231].

3.3 Architectural Overview

Figure 3.3 gives the architectural overview of our defense strategy – context-

sensitive fencing. The central piece of the proposed architecture is an x86 microcode
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Figure 3.3. Architectural Overview

engine that has context-sensitive decoding (CSD) capabilities [253], allowing it to

optionally translate a native x86 instruction into a customizable, alternate set of micro-

ops. In this work, we leverage this capability to perform the surgical insertion of

speculation fences (some existing and some newly proposed) at potentially vulnerable

Spectre code targets. To this end, we introduce new custom micro-op flows and new

configuration mechanisms that trigger such micro-op flows.

The CSD-enabled microcode engine is provisioned with fine-grained recon-

figuration capabilities via a set of model-specific registers (MSRs) that can control

the frequency, type, and enforcement criteria of speculation fences inserted into the

dynamic instruction stream. Such a fine-grained reconfiguration capability is especially

important to this work because speculation fences are particularly expensive, allowing

us to surgically insert fences that impose varying degrees of restrictions on speculative

execution, depending upon the runtime conditions, current level of threat, and the

nature of the code being executed.

Moreover, the context-sensitive fencing framework also benefits from a novel

decoder-level information flow tracking (DLIFT) engine that has the ability to identify

untrusted instructions that are potentially in Spectre gadgets and trigger alternate

micro-op flows that insert speculation fences. Owing to its decoder-level and inher-
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Table 3.2. List of Intel’s Serializing Instructions

Type Instr. Desc.
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ns INVD Invalidate Internal Caches
INVEPT Invalidate Translations from EPT
INVLPG Invalidate TLB Entries
INVVPID Invalidate Translations Based on VPID

LIDT Load Interrupt Descriptor Table Register
LGDT Load Global Descriptor Table Register
LLDT Load Local Descriptor Table Register
LTR Load Task Register

MOV Move to Control Register
MOV Move to Debug Register

WBINVD Write Back and Invalidate Cache
WRMSR Write to Model Specific Register

N
on

Pr
iv

. CPUID CPU Identification
IRET Interrupt Return
RSM Resume from System Management Mode

M
em

.O
rd

er
in

g SFENCE Store Fence

LFENCE Load Fence

MFENCE Memory Fence

ently speculative implementation, DLIFT relies on a mistaint detection and recovery

hardware implemented in the execute stage, to avoid overtainting and undertaint-

ing scenarios. Finally, the proposed defense framework also includes hardware and

microcode-level mechanisms to achieve branch predictor state isolation across protec-

tion domains to mitigate the variant-2 and variant-4 attacks.

3.4 Design and Implementation

In this section, we describe in greater detail the architectural techniques and

building blocks that together constitute the proposed defense strategy – context-sensitive

fencing. First, we describe a microcode customization framework that enables the sur-

gical insertion of fences to secure speculative execution with minimal performance

impact. Second, we examine the full design space of fences to provide the isolation

properties we need without undue obstruction of existing pipeline performance fea-

tures. Third, we propose a decoder-level information flow tracking (DLIFT) technique

to follow potentially malicious execution patterns and trigger secure microcode cus-

tomization. Finally, we propose protection mechanisms that circumvent the mistraining

of the branch predictor and associated structures.
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Figure 3.4. Fence Enforcement Points

3.4.1 Microcode Customization

Speculation fences are a processor’s primary mechanism to override specula-

tive execution. For Spectre variant-1, context-sensitive fencing works with CSD by

providing alternate decodings of all load instructions, with the alternate decoding

always including a fence micro-op that appears before the load micro-op. The alternate

decoding will then be triggered or not based on runtime conditions. The first consider-

ation, then, is what fence instruction to incorporate. Most processors already provide

a variety of fences and serializing instructions. We first study the performance and

security impact of the existing suite of fences and serializing instructions, and then

explore and propose new speculation fences and context-sensitive fencing techniques

that manage the impact on performance. For Spectre variant-2, CSF works with CSD by

providing alternate decodings of some control flow, and possibly insert fences and/or

branch predictor resetting micro-ops – more detail is in Section 3.4.3.
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Serializing Instructions and Memory Fences.

Serializing instructions are the strictest amongst all speculation fences and

completely override speculative execution. Upon decoding a serializing instruction, the

processor stalls fetching any subsequent instruction until all instructions preceding the

serializing instruction retire. Due to the high pipeline depth and issue width of modern

out-of-order superscalars, the usage of serializing instructions could result in long

delays and considerable throughput loss. Memory fences, on the other hand, enforce

a memory serialization point in the program instruction stream. More specifically,

these fences ensure that memory operations that appear in execution after the fence

are stalled until all the outstanding memory requests (including the fence) complete

execution.

Table 3.2 shows a complete list of Intel’s existing serializing instructions and

fences [126]. Most of the serializing instructions need to be run in privileged mode

which restricts their usage in defenses for victims that lack sufficient privileges (e.g.,

browsers). Moreover, a majority of them modify the state or contents of architectural

registers, the program counter, cache, TLB, etc. and only serialize execution as a side

effect, thereby requiring an additional backup/restore step when used for the sole

purpose of serializing execution. An exception to this is the MOV to debug register

instruction that does not corrupt any architectural state, if not actually in debug mode.

The SFENCE instruction does not allow stores to pass through it, but does not

affect loads. That is, it enforces that all stores that precede the SFENCE are executed

to completion before any store that succeeds the SFENCE is fetched. The MFENCE

instruction restricts all memory operations from passing through it. Unlike SFENCE

and MFENCE that are memory ordering operations, LFENCE performs a serializing

operation. In particular, LFENCE does not stop the processor from fetching and

decoding instructions that appear after the LFENCE, but it restricts the dispatch of
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such instructions, until the instructions preceding the LFENCE complete execution.

Since LFENCE serializes execution and yet makes some progress in the front-end,

it has been recommended by Intel as a low-overhead fence that can be inserted at

vulnerable points in execution to defend against Spectre [122]. In other words, while

serializing instructions such as CPUID are enforced at Fetch, LFENCE is enforced at

the instruction queue level. Therefore, in this work, we start with the LFENCE, and

propose new fences that come with fewer restrictions, different enforcement policies,

and/or sport additional optimizations.

Fence Enforcement Policies

It is important to note that none of the existing instructions that provide fence

support were actually created for the purpose we (or the whole industry) need for

Spectre mitigation. Thus, this work will examine existing fences, variants of existing

fences, and also introduce a new fence primitive. To better understand the design

landscape, we examine several possible properties of fences in this section.

Early vs. Late Enforcement. We first categorize fences into early-enforced and

late-enforced fences, based on the pipeline stage at which they are enforced. In particular,

we refer to any serializing instruction, such as an LFENCE, that is enforced at the

instruction queue or earlier in the pipeline as early-enforced. If the fence is enforced at a

later stage such as the reservation station, the load/store queue, or the cache controller,

we refer to it as a late-enforced fence. Late enforcement, in essence, shifts the fence

enforcement point towards the leaking structure (e.g., the cache), reducing the impact

on instructions that do not access that structure, and allowing for the enforcement of

more fine-grained serialization rules (e.g., allow cache hits but not misses). Figure 3.4

shows potential fence enforcement points at various stages in the processor pipeline.

It is important to note that the later a fence is enforced, the fewer the side

channels it protects against. For example, Intel’s LFENCE prevents information
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leakage through all microarchitectural structures that appear after the instruction

queue. However, to prevent information leakage through the instruction cache side

channel, we would have to resort to a regular serializing instruction or an MFENCE,

resulting in prohibitively high performance overheads. Similarly, a fence enforced at

the data cache controller level would only mitigate data cache-based side channels

and will not protect against an FPU-based side-channel. Instead, the FPU-based side-

channel may be mitigated using a different fence that is appropriately configured and

enforced at the reservation station or the FPU.

Strict vs. Relaxed Enforcement. Depending upon how prohibitive they are,

we next classify fences into strict and relaxed. Strict fences are highly prohibitive and

do not allow any instructions to pass through them until the fence retires, whereas

relaxed fences allow certain types of instructions to pass through them. For example,

an SFENCE that is enforced at the load/store queue and allows all instructions to pass

except stores that have a greater sequence number than itself, is a late-enforced and

relaxed fence. On the other hand, all x86 serializing instructions including LFENCE

are early-enforced and strict. Customizing the micro-op stream with early-enforced and

strict fences typically results in slower execution when compared to customization

with late-enforced and relaxed fences. However, with carefully enforced constraints, the

late-enforced and relaxed fences could offer similar, if not better security guarantees.

Early vs. Late Commit. A fence typically remains effective until it gets com-

mitted or squashed. Based on Intel’s manual [125], a serializing instruction is only

allowed to be committed if there is no preceding outstanding store that is waiting to

be written back. While this behavior might be necessary for device synchronization

or memory ordering enforcement, for the purpose of securing speculative execution

against Spectre attacks, there is no need to wait for stores to be written back. This is

because write buffers aren’t committed to the cache until the store reaches retirement,

and therefore the fact that a store is waiting for an outstanding writeback request
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Table 3.3. Characteristics of Different Fence Types

Fence Name Enforcement
Point

Strict/
Relaxed

Instructions
not Allowed

Mitigates
Variants

Existing/
New?

Intel’s SIs (CPUID) Fetch Strict All All Existing
LFENCE IQ Strict All All Existing

LSQ-LFENCE LSQ Relaxed Ld v1 New
LSQ-MFENCE LSQ Relaxed Ld&St v1,v1.1,v1.2 New

CFENCE CC* Relaxed None v1 New

* CC: Cache Controller, RS: Reservation Station

to complete is enough evidence that it did not occur along a misspeculated path.

Allowing a fence to commit early without waiting for preceding outstanding stores

to write back can considerably improve performance because as soon as a fence gets

committed, a stream of instructions can advance further in the pipeline. Therefore,

in this work, we propose and study the effects of a late-commit version of each fence

that does not wait for stores to be written back. However, we note that these versions

should only be limited to the security use case we describe and should not be used for

synchronization.

Newly Proposed Fences. Table 3.3 summarizes the characteristics of different

existing and newly proposed fences. Although the existing set of fences defend

against all variants, they incur prohibitively high costs on performance, due to their

strict enforcement constraints. To better understand the potential for fences beyond

those that already exist, we propose and evaluate three new types of fences. In an

attack scenario, we typically insert one of these fences between a branch instruction

and a load instruction that potentially leaks sensitive information via a cache side-

channel. The proposed fences more effectively and efficiently mitigate the high impact

variant-1 attacks, by preventing information leaks along misspeculated paths through

cache-based side channels. We describe each of them in greater detail below.

The LSQ-LFENCE and the LSQ-MFENCE are relaxed fences enforced at the
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load/store queue. While LSQ-LFENCE fence is in effect, it does not allow any subse-

quent load instruction to be issued out of the load/store queue, thereby preventing the

cache state from being changed by load instructions on misspeculated paths. Thus,

the LSQ-LFENCE mitigates the Spectre variant-1 attack. On the other hand, the more

restrictive LSQ-MFENCE does not allow any subsequent memory instruction (both

loads and stores) to be issued out of the load/store queue, until the fence commits. In

addition to mitigating the variant-1 attack that the LSQ-LFENCE protects against, the

LSQ-MFENCE mitigates the variant-1.1 and variant-1.2 attacks that exploit store-to-load

forwarding between speculative loads and stores.

The CFENCE is a relaxed fence and is enforced at the cache controller level

using the following set of rules. First, like any other fence, it allows all preceding

instructions to proceed. Second, since store instructions do not commit the contents of

the write buffer until the instruction retires, they are unaffected by the CFENCE. Finally,

it labels any subsequent load as a non-modifying load and allows it to pass through

the fence, but the load is restricted from modifying the cache state. In particular, a

non-modifying load that results in a cache hit is allowed to read the contents of the cache,

but is restricted from changing the LRU and other metadata bits. A non-modifying

load that results in a cache miss is marked as uncacheable, allowing the memory read

request to complete without altering the cache state. In this way, we avoid updating

the cache state upon encountering a speculative load and don’t leave any observable

cache footprints along misspeculated paths, thereby mitigating the variant Spectre

variant-1 attack. In addition, due to locality of references, the miss rate of a reasonable

program is typically very low, and therefore, using CFENCE results in considerably

lower performance overhead than other types of fences.

Note that this can be applied recursively at each cache level. For example, an

L2 hit (L1 miss) will bypass the L1 cache and not initiate a fill, then read from the L2

cache without altering the LRU bits.

98



Fence Frequency Optimization

The most naı̈ve yet secure way to insert fences is to liberally instrument every

instruction of a vulnerable type (e.g., load instructions in the case of cache side-

channels) in the program and add the fence micro-op to all of them. In fact not every

instance of a vulnerable instruction type is necessarily vulnerable; for example, all the

loads in the program aren’t vulnerable to speculative attacks via cache side-channels.

Therefore, we can reduce the number of fences inserted. However, since failing to

insert fences, even in one scenario, would enable a Spectre attacker to read the whole

victim’s memory space, it is of crucial importance that fence frequency optimizations

be conducted meticulously. In the following, we introduce two secure optimizations

for reducing the number of fences.

Basic Block-Level Fence Insertion. The source of the Spectre attack is dynamic control

speculation, which implies that the speculation begins with a branch prediction and

the processor starts speculatively executing along the predicted path. To fully mitigate

this attack, we want a fence between each branch and subsequent loads; but if one

branch is followed by four loads, we only need one fence to protect all four. Thus,

in this optimization, we propose to only instrument (provide the alternate decoding

for) the first instance of a vulnerable instruction type (e.g., first load) of each basic

block, and it is safe to leave the rest of the instructions uninstrumented. This is simply

implemented by setting a flag in hardware whenever a branch is decoded, then insert

a micro-op in the alternative load decoding that, along with the fence, also resets the

flag. When the flag is not set, the original decoding is used.

Taint-Based Fence Insertion. However, even one load per basic block is likely still

too conservative. In all known instances of the attacks, the attacker performs some

operations (mostly memory read) based on untrusted data that leads to the information

leak. For example, in Spectre variant-1 the attacker provides an untrusted out-of-
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Figure 3.5. DLIFT integration with a CSD-enabled pipeline

bound index to an array. In this work, we assume any information that comes

from the user address space and input devices (e.g., via the x86 IN instruction) as

untrusted. In addition, we also consider DMA’d pages as untrusted, for which we

rely on the IOMMU [16] to mark DMA’d pages as tainted in the page table. For

the taint-based fence insertion optimization, we propose the insertion of fences for

only vulnerable/tainted loads that operate on untrusted data, by leveraging a novel

decoder-level information flow tracking (DLIFT) strategy described in the following

section.

3.4.2 Decoder-Level Information Flow Tracking

As its name indicates, the distinguishing feature that makes Decoder-Level

Information Flow Tracking (DLIFT) unique from typical hardware taint tracking

systems is that it can provide the taint information at the decoder stage of the pipeline

rather than at commit stage. This is a critical distinction for two reasons. First, of

course, our solution is decoder-based. Second, and perhaps more important, execute-

or commit-based taint tracking comes too late in the pipeline for any speculation-based

attack, and is of little use.

However, commit is still the only stage where taint information is guaranteed
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to be correct, so the design of a decode-based taint tracker is challenging. In particular,

since the front-end of the pipeline typically runs far ahead in execution than the

rest of the pipeline, reading actual taints from register files at the decode stage will

read inaccurate values. Therefore, in the proposed DLIFT framework, we separate

the taint information into four taint structures – (a) a decoder-level taint map that

tracks and maintains the taint information for architectural registers, (b) the physical

register file augmented with taint information that maintains dynamically computed

taint information at execute, (c) the TLB and page tables augmented with a taint

bitmap to track cache block-level taint information, and (d) a commit-level taint map

that maintains verified architectural register taint information. While the latter three

structures are typical of any standard DIFT implementation [245], the first structure

is a new addition proposed by this work. Instruction translation thus depends on

some speculative taint tracking that might not be exact, potentially leaving vulnerable

instructions unfenced (i.e., translating to non-secure micro-ops). For this reason, DLIFT

relies on a mistaint recovery mechanism that, upon detecting a mistaint at the execution

stage, redirects and restarts the execution from the incorrectly tainted instruction.

Figure 3.5 shows the integration of DLIFT with a CSD-enabled pipeline. The

DLIFT engine maintains a taint map that stores a speculative taint bit for each archi-

tectural register. For each incoming instruction (•1 ), the DLIFT engine evaluates the

taint of the destination register(s), based on the speculative taint bits of the source

registers. Taint evaluation follows the standard DIFT procedure [245]. If a source

register is marked as tainted in the speculative taint map, DLIFT propagates this taint

to the destination register and further triggers context-sensitive translation (•2 ) of the

instruction (e.g., with speculative fence insertion), depending upon the configured

levels of performance and security.

Tracking taints at the decoder level is not always straightforward. First, during

speculative execution, the DLIFT engine continues to propagate taints along the
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misspeculated path, potentially leaving the taint map in an inconsistent state upon

recovery from a branch misprediction. To this end, the DLIFT engine rolls back the state

of the taint map to its commit-level counterpart, as part of the branch misprediction

recovery. Second, the effective addresses of load instructions is usually not known

at the decoder stage, due to which the DLIFT engine cannot accurately compute

and propagate taint information. A conservative approach that marks all loads with

unknown effective addresses as tainted could severely degrade performance since

overtainting typically results in a high frequency of fence insertion. Therefore, we

take a more optimistic approach by assuming loads with unknown effective addresses

are untainted, and further rely on our mistaint detection mechanism at the execute

stage to validate the predicted taints against the dynamically evaluated taints (•3 and

•5 ). In the event a mistaint is detected, we update the speculative taint map, flush the

pipeline, and restart the translation and execution of the mistainted instruction. Note

that we only perform mistaint recovery for the undertainting scenario, since it could

potentially leave vulnerable instructions unfenced.

Furthermore, the DLIFT engine is capable of following instruction sequences

and execution patterns such as a tainted load followed by a branch, allowing for

the seamless detection of different Spectre gadget variants. In this way, although

speculative, the DLIFT engine has the potential for fast recovery from misspeculation,

and further allows the microcode customization framework to perform a more targeted

and surgical insertion of fences for particular vulnerable targets.

3.4.3 Mitigations for Control-flow Mistraining

Two Spectre variants (v2 and v5) rely on the mistraining of the branch predictor

and the return stack buffer to influence the victim’s branch outcome across different

protection domains. To mitigate these attacks, we examine several hardening mech-

anisms. In the simplest case, where we are protecting kernel branches from getting
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Table 3.4. Architecture Detail for the Baseline x86 Core

Baseline Processor
Frequency 3.3 GHz I cache 32 KB, 8 way
Fetch width 4 fused uops D cache 32 KB, 8 way
Issue width 6 unfused uops ROB size 168 entries
INT/FP Regfile 160/144 regs IQ 54 entries
RAS size 8,16, 32 entries BTB size 256, 512, 1024 entries
LQ/SQ size 64/36 entries Functional Int ALU(6), Mult(1),
Branch Predictor LTAGE Units FP ALU/Mult(2), SIMD(2)

influenced, we can instrument syscall instructions to enforce branch predictor state

isolation. If we want to protect a wider range of domain crossings, we could rely on a

simple hardware mechanism that identifies control transfer to a domain with a higher

privilege and then sets a flag. The first control flow instruction that decodes after that

flag is set would then trigger an alternate decoding and reset the flag. The alternate

decoding would insert a fence (to protect against this branch being mispredicted),

then execute micro-ops that enforce branch predictor state isolation, and subsequently

resume the original control flow.

This solution, then, is flexible enough that any region of code could be protected

in this way by configuring model specific range registers (MSRRs) to indicate a

protected region that would always reset the branch predictor upon entry; this, then,

even prevents mistraining of sensitive code of different threads within the same process.

To prevent the MSRRs from being tampered by the attacker, we only allow the operating

system to configure MSRRs, and we use speculative fences to guard x86’s WRMSR

instruction. Furthermore, in the case of remapping via mmap(), the operating system

is also responsible for reconfiguring MSRRs.

The easiest and the most heavyweight way to isolate the BP state is to clear all

the states by a series of return/branch micro-ops. However, such a hard reset of the

BP can be more quickly and efficiently performed using a special micro-op that clears

some or all state of the branch predictor, thereby enabling custom solutions to reset
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different structures within the prediction unit, if such a micro-op is available. In this

work, we assume a special micro-op to clear the branch target buffer (BTB) and the

return stack buffer (RSB), the primary targets of the Spectre attack.

It should be noted that while resetting the BTB and the RSB will induce more

mispredictions (something the attacker wants), it does the attacker no good with

respect to these Spectre variants because the attacker can no longer control the target

of the control flow misspeculation.

3.5 Methodology

This section details the experimental methodology for the performance and

security evaluation of the context-sensitive fencing framework.

Our baseline processor is modeled after the Intel Sandybridge microarchitec-

ture [124]. Table 3.4 shows the architectural configuration of our baseline processor in

more detail. Note that we evaluate against three different branch predictor configura-

tions (with different BTB and RAS sizes) to measure the performance impact of our

micro-op flows that perform branch predictor state isolation across protection domains

to defend against variant-2. We model this architecture using the gem5 [28] architec-

tural simulator which already features x86 micro-op translation. Furthermore, gem5

already features a Spectre test infrastructure and a visualization tool that allow us to

validate our claims regarding the security guarantees of context-sensitive fencing [171].

One of the primary goals of this work is to protect kernel memory from being

leaked along misspeculated paths. Therefore, we use the full system simulation mode

of gem5 which allows us to boot an Ubuntu 18.04 distribution of Linux with a kernel

version of 4.8.13. Furthermore, in order to provide realistic estimates regarding attack

coverage and performance impact of our proposed techniques, we select a good mix

of benchmarks that spend different amounts of execution time in kernel mode, touch
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Table 3.5. Benchmarks Description

Benchmark Description Kernel-Time

nginx HTTP Web Server 66%
ps Process information query 75%

ping Sends ICMP ECHO REQUEST to loopback 95%
ls Performs two level directory listing 79%
llu Linked list traversal micro-benchmark 7%

bzip2 Compression 34%
gcc C Language optimizing compiler 11%

omnetpp Discrete event simulation 15%

sjeng Artificial Intelligence (game tree search
and pattern recognition) 22%

different aspects of the operating system, and perform different number of system calls

during execution, as illustrated in Table 3.5. To this end, we include four benchmarks,

bzip2, gcc, sjeng, omnet, from the SPEC CPU2006 suite [106] that exhibit varying degrees

of instruction-level parallelism. Furthermore, we use three commonly used Unix tools

that target different functionalities of the kernel and use different device drivers – (ping)

that sends and receives ICMP packets, (ps aux) that queries process information, and

(ls /*/*) that queries the filesystem in order to list multi-level directory information. In

addition, we also add a memory-intensive program llu that allocates a large amount of

memory for a linked list and traverses the list making random memory accesses [316].

Finally, we also evaluate the impact of our fences on the nginx web server [219] using

the wrk [90] framework to generate HTTP requests.

3.6 Evaluation

In this section, we evaluate both security and performance impacts of the

proposed strategy, starting first with security assessment and following that with

performance evaluation.
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3.6.1 Security Discussion

The proposed defense strategy can mitigate five variants of the Spectre attacks.

We discuss these in detail below.

Variants 1, 1.1, and 1.2. The goal of these variants is to leak memory contents of

a victim along a misspseculated path by bypassing a bounds check and/or further stitch

together such Spectre gadgets via store-to-load forwarding. All variants exploit a data

cache-based side channel to leak information. Context-Sensitive Fencing mitigates these

variants primarily by preventing information from being leaked along misspeculated

paths via fences that are surgically inserted into the instruction stream and strategically

placed between the conditional branch that performs the bounds check and the first

load in the Spectre gadget. This work proposes three new fences – LSQ-LFENCE, LSQ-

MFENCE, and CFENCE that each defend against the variant-1 attack by disallowing

loads along misspeculated paths to modify the data cache state. LSQ-MFENCE

additionally protects against the variants 1.1 and 1.2 by preventing both speculative

loads and stores from being issued out of the load/store queue, effectively avoiding

store-to-load forwarding between speculative loads and stores.

The surgical insertion of these fences is facilitated by the decoder-level infor-

mation flow tracker (DLIFT) that can follow instruction sequences that could serve as

Spectre gadgets, as described in Section 3.4.2. While the DLIFT itself performs specu-

lative tracking of taint information, it has the ability to detect mistaints and recover

within three stages of the pipeline. We further experimentally show later in this section

that the speculative nature of the DLIFT engine may sometimes result in overtainting

(where trusted operands/instructions get marked as tainted), but never results in an

undetected and unrecovered undertainting (where untrusted operands/instructions

remain untainted).

Variants 2 and 5. These variants reverse-engineer and mistrain the branch
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Figure 3.6. Execution Time of Different Fence Enforcement Levels (normalized to insecure
execution)

predictor and the return address stack to influence the branch outcomes of a victim,

which in our case is the Linux kernel. In addition to the surgical fence injection

and speculative taint tracking, context-sensitive fencing further employs mistraining

mitigations that circumvent such attempts. More specifically, we intercept all protection

domain crossings via syscall and int 0x80 instructions and perform a full reset of the

branch target buffer (BTB) and the return stack buffer (RSB), clearing all previous state.

This prevents user code from influencing branch outcomes of the kernel code. We

record no instance of BTB collision between user and kernel branches, and we ensure

that we always start with a clean BTB and RSB upon entering kernel mode.

To show that our different fences and frequency optimizations close Spectre

attacks, we use a proof of concept Spectre implementation and visualization tool [171].

The attacks fail in every case when we use context-sensitive fencing to insert fences,

despite our performance optimizations.

3.6.2 Performance

Figure 3.6 measures the performance impact of three different fences – (a) the

standard x86 LFENCE, (b) the LSQ-MFENCE, and (c) the CFENCE, all enforced with
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Figure 3.7. Execution Time of Early and Late Commit of CFENCE (normalized to insecure
execution)

the standard late commit, pessimistically inserted for every kernel load in the program.

Clearly, from the figure, the CFENCE incurs the lowest performance overhead, since it

is less restrictive than the other two and is enforced at a much later pipeline stage. We

further study the effect of late and early commit policies for the CFENCE, as shown in

Figure 3.7. The early commit version of the CFENCE consistently performs better than

the late commit version, saving about 4% in overall execution time on average.

Overall, the CFENCE reduces the incurred performance overhead due to fencing

by 2.3X, bringing down the execution time overhead from 48% to 21%. Furthermore,

this performance improvement is consistent across all the benchmarks; the only excep-

tion being llu, which performs random memory accesses due to the linked list traversal

and suffers from a very high cache miss rate.

In Figure 3.8, we study the effect of the CFENCE on cache miss rate. Recall that

when a load passes a CFENCE, it gets marked as non-modifying, and as a result, if it

ends up being a miss in the cache, it is deemed uncacheable and therefore the fetched

cache block isn’t brought into cache. If the miss rate of a program is already high, as

in the case of llu, the presence of a CFENCE in the instruction stream could potentially
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Figure 3.8. Effects of injecting CFENCE on Cache Miss Rate

result in under-utilization of the cache since the missed blocks aren’t being filled back

into the cache while the CFENCE is begin enforced. For programs that have unusually

low hit rates, we suggest using the standard LFENCE instead of the CFENCE. However,

in those cases it should be noted that the overhead of the mitigation is low regardless

of the fence used.

Furthermore, it is important to note that the number of non-modifying loads in

the dynamic instruction stream do not necessarily have a negative impact on perfor-

mance, while a CFENCE is being enforced. For example, while the ping program has

the most non-modifying loads, it does not suffer much in terms of overall performance,

because the working set fits well into the cache and most of the non-modifying accesses

end up being hits. In general, we gain more from employing the CFENCE instead of

standard serializing fences when the cache hit rate is low.

Figure 3.9 shows the performance of our proposed fence frequency optimization

techniques. In the first optimization, we inject the CFENCE only for tainted loads and

branches, as indicated by the DLIFT engine. This reduces the performance overhead of

the defense from 21% to 11% on average. We further optimize the number of fences
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inserted by performing basic block-level fence insertion, where we only instrument

the first instance of a vulnerable load in each basic block. This results in an additional

4% improvement in performance. As Figure 3.9 shows the once per basic block

opitimization is successful at improving the performance of all the benchmarks except

llu. That is because CFENCE changes the cache access pattern, usually at some cost,

but occasionally beneficially by bypassing accesses and reducing pressure on the cache.

In such a case, like llu with its large working set, executing fewer fences would then be

slightly less beneficial. Overall, compared to the state-of-the-art fence injection scheme

that pessimistically injects an LFENCE for all kernel loads, our DLIFT-Based CFENCE

injection reduces the performance overhead from 48% to just 7.7% on average.

We next study the accuracy and coverage of our DLIFT implementation. Fig-

ure 3.10 examines overtainting scenarios, where the DLIFT engine conservatively

marks instructions as tainted when they’re actually not. The results are normalized

to the total number of dynamic load instructions executed. Further, we examine two

scenarios – the bars to the left represent DLIFT-based fencing without the basic-block

level fence insertion, and the bars to the right includes the basic-block level fence

insertion optimization. In most cases, the percentage of overtainted loads remains low

in both scenarios.

Figure 3.11 examines undertainting scenarios, where the DLIFT engine opti-

mistically forgoes instrumenting certain instructions that are actually vulnerable, but

recovers from such scenarios later in the pipeline. We observe that the percentage

of undertainted loads is low and consistently below 10%, with the outliers being the

kernel-heavy applications, ping and ps, which have the highest number of tainted

instructions (instructions with at least one tainted source register) as shown in Fig-

ure 3.12.

Note that our DLIFT engine performs explicit information flow tracking mod-

eled after DIFT [245] that tracks copy, load-address, store-address, and computational
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dependencies. However, we also evaluate CSF with a more conservative implicit

information flow tracking model in which we taint the program counter when the

branch outcome depends upon a tainted value, and further track both sides of the

branch. This results in more tainted instructions and incurs 11.8% extra performance

overhead on top of our taint-based CFENCE insertion.

To evaluate the effect of our mistraining mitigations, we measure the impact of

a full micro-op based BTB and RSB reset at every protection domain crossing. We do

this experiment on three separate branch predictor configurations: (a) a small predictor

with 256 BTB and 8 RAS entries, (b) a medium predictor with 512 BTB and 16 RAS

entries, and (c) a large predictor with 1024 BTB and 32 RAS entries. We measure

an average performance degradation of 2.7% on our small predictor, 6.6% on our

medium predictor, and 15.2% on our large predictor. Naturally, the overhead is almost

completely due to the loss of prediction accuracy, rather than the cost of micro-op

expansion.

In summary, the proposed defense strategy introduces a flexible microcode

customization framework that perform the surgical insertion of newly introduced
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speculation fences, that mitigate five variants of the Spectre class of attacks, reducing

the fencing overhead of state-of-the-art fence-based Spectre mitigations by a factor of

6.

3.7 Conclusion

In this work, we propose context-sensitive fencing (CSF), a set of architectural

techniques that provide high-performance defense against Spectre-style attacks. In

particular, we show that we can reduce fencing overhead by a factor of 6 compared to

a conservative fence insertion method.

This is done by injecting fence instructions dynamically, in the decoder, with

no recompilation and binary translation required. This allows us to employ runtime

information to strategically insert fences when needed, using taint information and

avoiding redundant fences after branches. This work also introduces new fence

primitives which protect sensitive structures from speculation-based microarchitectural

effects, with minimal impact on instruction throughput in the pipeline.
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Chapter 4

Secure Simultaneous Multithreading

4.1 Introduction

The pursuit of secure computation has always featured a clear tension between

performance and security. Security mitigations often come with a high performance [31]

impact that can be manifested in serious environmental and economic impacts [134] if

they are employed, and in disastrous security and privacy breaches [20, 47, 187–190]

if they are not. In the context of processor architectures, this security-performance

tension is only growing as new attacks appear, each exploiting a crucial performance

optimization in the processor, threatening to unwind decades of architectural gains.

Microarchitectural attacks exploit different architectural features. Speculative

execution [148], shared caches [98], branch prediction [78], execution units [14], and

I/O throughput optimizations [256] are examples of the features that are exploited in

both well-established attacks and more recent instances [148]. Turning off any of these

features could be crippling to performance, so we typically seek ways to continue to

enable the optimization but with higher levels of protection.

One performance optimization, however, is often switched off in the name of

security, at significant performance cost: Simultaneous Multithreading (SMT) [265,266].

SMT enables a processor core to issue instructions from multiple threads to the

execution units in the same core in the same cycle. With a small investment in
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hardware, the processor can greatly increase the throughput/utilization of the pipeline,

more effectively hiding latencies and stalls of all types. The substantial benefits of

SMT have led to its widespread adoption by virtually all the major players in the

high-performance processor market, i.e., Intel, AMD, IBM, and ARM.

SMT achieves its high level of execution efficiency by dynamically allocating

resources to threads as they are needed, effectively utilizing resources not needed by

one thread to accelerate another. Virtually every part of the pipeline is potentially

shared and contended for in some way. This creates a performance coupling between

co-resident threads that is an enormous challenge for security. Some have suggested

turning off SMT altogether [91]. Google, as a response to MDS attacks, has disabled

SMT by default on Chrome OS 74 and later [91]. OpenBSD takes a similar measure by

disabling SMT by default on version 6.4 and later [156]. Red Hat has announced [218]

kernels with updated controls allowing users to choose whether to disable the feature

or not.

Security researchers and architecture researchers are actively working to pre-

serve many of the optimizations recently under attack (speculative execution, caches,

branch prediction, store-load forwarding, etc.). This chapter makes the case that it is

time to add SMT to the set of features we should preserve even for secure execution.

This research seeks to identify the extent of the vulnerability of current SMT processors,

and to begin to navigate the middle ground – that is, how much of SMT’s performance

benefits can we retain while providing vastly greater performance decoupling?

This chapter seeks to provide an exhaustive evaluation of resource contention

across the entire pipeline for recent offerings from both Intel and AMD. We find

that those two providers already take very different approaches to the security/per-

formance tradeoffs. Both, however, provide a number of high-bandwidth channels

of potential leakage, including several never before identified. By focusing on the

bandwidth of covert channels utilizing the various resources, we are able to perform
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a unified, systematic, and exhaustive study of pipeline resource vulnerabilities.

In a similar way, we also seek to examine more secure approaches to multi-

threading that can be applied in a more holistic and comprehensive manner. We

identify three different approaches to partitioning that can be applied to all contended

resources with slight variation, and evaluate their ability to restore the performance

of a fully dynamically shared SMT processor.

These approaches include full static partitioning (the approach applied already

to several pipeline resources) and two new approaches. Adaptive partitioning provides

a temporary, hard partition between threads for a particular resource, but that partition

can move at regular intervals to adapt to long-term program behavior, preserving some

of SMT’s ability to adapt to changing execution needs with minimal leakage between

threads. Asymmetric SMT enables the system to prevent leakage to an untrusted

thread, but without sacrificing the performance of the trusted thread. Our results

show that these secure multithreading approaches provide high isolation between

threads while retaining most of the performance of a dynamically shared, insecure

SMT implementation.

4.2 Background and Related Work

This section provides background on modern x86 processor architectures, SMT

architectures, and microarchitectural side-channels, with a focus on SMT-enabled

attacks.

4.2.1 The x86 Pipeline Resources/Structures

Figure 4.1a shows a modern x86 processor’s frontend. The frontend is responsi-

ble for fetching, decoding, and delivering operations to the backend. In x86 processors,

this is accomplished using one of the following three methods:

1) The legacy decode pipeline. Each cycle, the frontend reads a 16-byte block from
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the instruction cache into the fetch buffer, which then feeds into the predecoder that

demarcates individual variable-length x86 instructions (also called macro-ops). These

macro-ops are then inserted into a small buffer (the macro-op queue). Instructions

in this queue are then distributed to one of the instruction decoders, which translate

each instruction into internal RISC (Reduced Instruction Set Computing)-like micro-ops.

Modern Intel processors feature one complex decoder that is able to translate the

instructions into up to four micro-ops, plus simple decoders that can only translate

instructions that decompose into a single micro-op. Any instruction that translates to

more than four micro-ops is handled via a Micro Sequencing ROM (MSROM). The

decoded micro-ops then get queued up in a small structure called the micro-op queue

– also called the instruction decode queue – until they get issued into the backend.

2) The micro-op cache. Due to the complexity of the decoding process, the legacy

decode pipeline can be a major performance bottleneck. To alleviate this, most modern

x86 processors cache decoded micro-ops in a special structure called the micro-op cache

or the decoded stream buffer. This cache enables the frontend to bypass the slow

and power-hungry legacy decode pipeline whenever the translated micro-ops of an

address are already available in the micro-op cache. Due to the streaming nature of

the micro-op cache, the processors often impose special placement rules [126]. For

example, in Intel processors, the micro-ops of a 32-byte region of the code can be placed

in the micro-op cache only if the region gets translated into less than 18 micro-ops.

3) The loop stream detector. Intel processors feature another optimization called a

loop stream detector (LSD). The LSD further improves bandwidth and power consump-

tion by bypassing both the legacy decode pipeline and the micro-op cache. The LSD

identifies small loops within the micro-op queue and then locks down the micro-ops in

the queue. It then delivers the micro-ops from the micro-op queue until an unexpected

control flow (i.e., branch misprediction) occurs [126].

Figure 4.1b shows the main components of a modern x86 out-of-order super-
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scalar backend. First, the backend renames the architectural registers of the issued

micro-ops and allocates an entry in the reorder buffer for each. They are then for-

warded to the scheduler, also called reservation stations or the instruction queue, which

is responsible for identifying micro-ops ready for execution (i.e., whose operands are

ready) and dispatching them into available execution units. Intel groups the execution

units into execution ports, and the scheduler can dispatch as many micro-ops per cycle

as allowed by the superscalar width of the processor, with the restriction that only one

micro-op is dispatched to a free port in any given cycle.

4.2.2 Simultaneous Multithreading

Simultaneous Multithreading (SMT) [265, 266] is an architecture that allows for

multiple hardware execution contexts in a single out-of-order superscalar pipeline.

In an SMT processor, instructions from multiple threads can be dispatched on any

cycle. An SMT processor significantly improves the pipeline utilization since it allows

continued forward progress if one thread experiences a temporary stall in the pipeline

due to long latency (e.g., a cache miss), or even several tightly-dependent short latency

operations. Its performance benefit comes from its ability to dynamically assign

resources to the thread that needs them each cycle. But this level of sharing provides

heavy exposure of one thread’s performance to the characteristics of the other.

Contention is possible in various ways throughout the entire pipeline. Consider

the Reservation Stations (RS). Ivy Bridge has 54 entries available for instructions to

wait for their operands to become available before being eligible for execution. The

number of RS entries available to a thread define the window over which the processor

can look for out-of-order parallelism, and significantly impacts performance. This

resource could be shared between threads in various ways, with very different security

implications. RS entries could be duplicated, where each thread would have access to

exactly 27 entries (assuming two thread contexts). The RS could be partitioned, where
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in SMT mode each thread has access to 27, but when only a single context is running,

it has access to 54. In that case, the only effect one thread sees is whether the other

thread is running or not. It could be fully shared (this was the general assumption in

the original SMT literature), where RS entries are allocated to whichever thread asks

for them, with the fetch unit guiding instruction entry so that neither thread would

fill the structure and starve the other [264, 265]. Full sharing typically, but not always,

maximizes performance; however, a thread that put significant pressure on the RS

would have its performance constantly vary according to the RS utilization of the other

thread, and completely saturating the RS could have a dramatic impact on the other

thread’s performance. An intermediate solution is thresholding, where either thread is

allowed to use up to, say 44 entries, ensuring that at least 10 are always available to

the other thread even if it’s not currently using them. In theory, thresholding can leak

just as much information as full sharing, but in practice it is much more difficult to

successfully execute an attack because of the difficulty of keeping resource utilization

right near the edge of the threshold.

In Figure 4.1, we can see examples of shared structures (e.g., Instruction Cache),

duplicated structures (Macro-op Queue), and partitioned structures (Micro-op Queue).

4.2.3 Microarchitectural Covert/ Side Channels

The literature abounds with security attacks that leak information through a

shared microarchitectural structure or feature [148, 213, 239, 242]. Shared caches [35,

183,184,206,278,306], branch predictors [4,36, 51,78,79], store-to-load forwarding [248],

Translation Lookaside Buffers (TLB) [94, 118], I/O throughput optimizations [152,

161, 256], and the processor execution ports [7, 14, 26] are a few examples that are

exploited as a source of side-channel leakage. Most of these attacks leak information

through a timing difference that is caused by contention on a shared resource. The

recent transient execution attacks [148, 165, 269–271] also rely on a microarchitectural

121



side-channel to leak the information to the attacker’s domain. Previous work also uses

timing measurements to infer different processor’s features such as the size of the

ROB [296].

Previous work [66, 119] has used information-theoretic and mathematical ap-

proaches to study information leakage from microarchitectural channels. For example,

Hunger et al. [119] develop an abstract mathematical model for microarchitectural

channels, with the end goal of devising an attack detection mechanism. Our characteri-

zation study, however, targets a different goal. It aims to compare and contrast resource

sharing between threads in different implementations of SMT, to then evaluate the

inherent vulnerability of sharing of each resource, and to guide the design of SMT

security measures.

Previous work has also shown covert and side channels constructed on GPU

resources [76,196,197]. Naghibijouybari et al. [197] exploit contention on GPU resources

to infer victim’s web browsing activities. Dutta et al. [76] target Intels integrated GPU

architectures and present covert channels that put contention on the CPU-GPU bus as

well as the shared last-level cache. Similar to the CPU-based channels, these channels

also leak information through the timing variation caused by resource contention.

However, the list of possible targets for a GPU channel is limited to co-locating kernels

from two different applications on a GPU. In contrast, CPU, and in particular SMT-

based channels can leak more fine-grained information from a vastly larger set of

targets, and thus pose a more imminent threat.

4.2.4 SMT Covert and Side Channels

SMT, with the sheer amount of shared resources, potentially greatly expands the

microarchitectural attack surface, as nearly every structure could be contended for at

some level. However, while SMT facilitates the exploitation of many side channels, not

all of these channels are fundamentally tied to SMT. Cache side-channels [184,207,263],
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which include the vast majority of these attacks, for example, are almost as effective

in a cross-core setting [227]. Some of the SMT-specific attacks are the result of a

design bug [165], not an inherent SMT issue, which can be mitigated without much

performance cost in future generations. Nevertheless, the core principles of SMT have

already been targeted in some of these side-channel attacks.

The SMT execution port timing channels have a long history [7, 286]. But more

recently, PortSmash [14] exploits, in an end-to-end attack, the timing variation caused

by the contention of the SMT threads on specific execution ports to leak the private

key of a TLS server. SmotherSpectre [26] also exploits the contention on the execution

ports but combines it with speculative execution to mount a transient execution attack.

SmotherSpectre uses speculation to steer the execution to a gadget that includes a

data-dependent branch that accesses a specific port based on the value of a secret.

Other attacks target other shared resources in SMT processors. TLBleed [94] ex-

ploits shared TLBs in SMT processors to leak a victim’s memory activity. CacheBleed [306]

uses contention of the sibling SMT threads on the cache banks as the source of the

leakage to break a constant-time RSA implementation. Similarly, MemJam [192] targets

the shared memory-dependency detection unit to leak information about memory

accesses of a victim. Ren, et al. [220] develop multiple attacks exploiting the micro-

op cache of Intel and AMD processors to leak information across different security

domains, including colocated SMT threads. Shared branch predictors are also exten-

sively exploited to leak secret information [5, 6, 78] and also to steer speculation to

attacker-desired addresses [148].

There are also efforts to automatically construct covert channels in SMT pro-

cessors. Covert Shotgun [84] proposes an automated framework to examine possible

pairs of instructions in an ISA for building covert channels. Covert Shotgun compares

the execution time of the instructions in single-threaded and SMT mode to detect if

there is a possible covert channel. More recently, ABSynthe [93] conducts a similar
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study that expands Covert Shotgun to include all instructions in x86 and ARM ISAs

and compares the results for a variety of architectures. While these approaches can

discover covert channels in an SMT processor, the exact source of the leakage for the

discovered covert channels remains unknown. This work, in contrast, characterizes

different covert channels based on the actual source of leakage.

4.2.5 Side-Channel Mitigation

The research community is increasingly active on countermeasures for microar-

chitectural side-channels. Similar to the microachitectural attacks, the defense research

also leans heavily toward mitigations for cache-based side channels [68, 229, 252–254,

301]. A diverse set of strategies has been proposed to mitigate side channels. Partition-

ing [49, 67, 68, 280, 298], randomization [67, 214, 287, 313], detection [283, 298, 300, 312],

oblivious execution [34], and encryption [215] are among frequently suggested high-

level approaches. Many of the more recent defenses focus on a mitigation in the

context of speculative execution vulnerabilities [12, 178, 228, 255, 289, 302, 309].

However, much less attention is given to defenses for non-cache microarchitec-

tural side channels. SMT-COP [261] introduces a temporal and spatial partitioning

scheme for execution ports in SMT. SMT-COP also introduces a selective approach

where it selectively enables and disables functional unit partitioning for some regions

of the code. Unlike this work, SMT-COP’s partitioning, once enabled, is entirely static,

failing to take advantage of the benefits of an SMT architecture. Moreover, our study

is not limited to execution ports, and we examine mitigations on a comprehensive set

of pipeline resources.

Hyperspace [43] secures SGX execution against SMT channels by creating a

trusted shadow SGX thread that runs on the same physical core as the main thread.

Hyperspace verifies the co-location of the main and the shadow threads using a cache

covert channel. The sole purpose of the shadow thread is to prevent any untrusted
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thread being scheduled on the same core as the main thread. Therefore, in terms of

resource utilization this approach is similar to, and in some cases worse than, turning

off SMT.

Xu et al. [298] propose a mitigation strategy for GPU-based covert channels. It

relies on a decision tree classifier to detect a potential attack, and then enables temporal

and spatial partitioning of GPU resources to mitigate the contention.

4.3 Assumptions and Threat Model

The main focus of this work is on covert channels constructed by contention

on the main pipeline structures between the co-located threads on an SMT processor.

These channels are the dominant form of leakage introduced by simultaneous multi-

threading, and until mitigated, will likely dominate other channels. We principally

study covert channels, because the goal of this work is to provide, among other things,

a comprehensive and systematic analysis of the vulnerability of existing SMT proces-

sors. Such an approach would not be possible if we were to try to analyze all specific

side-channel attacks customized to each feature, and would become out of date quickly

as new attacks are devised. By concentrating on covert channels, we can evaluate the

inherent vulnerability of each feature and have some basis for comparing them and

understanding where the greatest vulnerabilities lie.

Furthermore, by closing these covert channels we also close any potential side

channel that exploits them, including those used in speculative execution attacks. To

be successful, most speculative attacks need to effectively perform two tasks: (1) steer

the execution to attacker-desired locations, and (2) leak information to the attacker

domain using a covert channel. To stop such attacks, it is sufficient to prevent the latter,

which we aim to do by denying unauthorized information leakage – speculative or

otherwise – between SMT threads.
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We, then, propose mitigations against the covert channels with the following

assumptions. We assume an SMT processor on which two threads, T1 and T2, can

share the pipeline. We assume T1 and T2 are running on separate processes and

are prohibited from any form of direct communication, but they can run any non-

privileged instruction on the SMT core. Any of the threads are allowed to make

artificial contention on any of the shared pipeline resources to leak information about

the usage of the other thread. We consider multiple scenarios:

• T1 and T2 are mutually untrusted: in such scenarios, any information flow from T1

to T2 and from T2 to T1 should not be allowed.

• The trust is asymmetric, i.e., T1 is untrusted, and T2 is trusted: in such scenarios,

the information flow from T1 to T2 is allowed, while the information flow from T2

to T1 should be blocked.

• The threads are mutually trusted: any covert communication between T1 and T2 is

allowed.

The main focus of this work is on closing timing channels engendered by

resource contention between SMT threads. Therefore, this work does not consider

power, voltage/frequency, and thermal channels.

4.4 Covert Channel Characterization

The goal of this chapter is to make SMT processors more secure against

contention-based side-channel attacks. To that end, we first conduct a rigorous analysis

on current SMT processors to assess the degree to which they share each pipeline

resource between threads, and to also measure the potential information leakage

resulting from sharing each of these pipeline resources. This analysis then guides the

design of SMT security measures (Section 4.5). This study also leads to the discovery
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Table 4.1. Sharing Mechanism of Pipeline Resources

Intel (Skylake) AMD (Zen2)

Resource Sharing BW (bps) Sharing BW (bps)

Front-End

L1 iCache S 742K S 1.27M
Branch Target Buffer S 796K S 478K
Micro-Op Cache P ¡24K S 604K
Fetch Bandwidth S 1.64M S 833K
Decode/Issue Bandwidth S 1.15M S 1.03M
iTLB P ¡24K S 820K
Micro Sequencing ROM M – S 353K
Loop Stream Detector P ¡24K – –

Back-End

Reservation Station T – S 56K
Reorder Buffer P ¡24K P –
Physical Register File P ¡24K S 40K
Execution Port S 1.22M S 715K

Memory

dTLB S 982K S 964K
L1 dCache S 1.13M S 902K
L1 dCache Read Bandwidth S 1.36M S 1.64M
Load Queue P ¡24K S 36K
Store Queue P ¡24K P –

S:Shared, P:Partitioned, T:Thresholded, M: Time Multiplexed
¡:Limited by the maximum switching frequency between single-threaded and SMT modes

of multiple previously unreported and high-bandwidth covert channels.

4.4.1 Overview

The first step in our analysis is to deconstruct how the processor manages

resource sharing between the SMT threads. We go through an exhaustive list of

pipeline resources and reverse-engineer the sharing mechanism that the processor

uses for each of the pipeline resources. We broadly categorize each pipeline resource

into statically partitioned, dynamically shared, and duplicated resources based on our

experimental analysis. We note that partitioned resources can either by spatially shared

(half assigned to each thread in SMT mode) or time-multiplexed (one thread uses all

resources one cycle, the other thread the next). We consider thresholding, where the

partition is dynamic, but neither thread can completely exhaust the resource, as a

special case of dynamically shared.
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To reverse engineer the sharing mechanism of a pipeline resource, we craft a

set of assembly instructions that create artificial contention on that resource. This

set of assembly instructions needs to have four features: (1) it should saturate the

structure-under-test, (2) the amount of saturation should be controllable, (3) it must

not create high contention on any other pipeline resources/structures, and (4) it should

put the contention on the critical path, so the effect of the contention is exposed via

performance. Then we run this test code simultaneously on the sibling threads and

measure the effects.

If increasing the saturation in one thread affects the execution time or the

usage of the other thread, we conclude that the structure is dynamically shared. For

dynamically shared resources, we can typically use the same code to construct a covert

channel by selectively saturating or freeing the resource. Finally, we measure the

bandwidth and error rate of the constructed covert channel.

We also explore the possibility of constructing covert channels on statically

partitioned resources. Table 4.1 shows the list of the pipeline resources that we

examine along with their discovered sharing mechanism and the achieved covert-

channel bandwidth on two different implementations of SMT: AMD Zen2 and Intel

Skylake. The table shows that while AMD allows most of the pipeline resources to

be competitively shared, Intel Skylake employs some kind of partitioning or time

multiplexing for most key pipeline resources.

In addition to Intel Skylake, we also study the sharing mechanism of pipeline re-

sources on Ivy Bridge, an older Intel microarchitecture. Running our microbenchmarks

on these microarchitectures shows that Intel uses similar sharing mechanism across

these different microarchitectures. Similarly, we also examine whether any of our

channels are impacted by different versions of the microcode. In an exhaustive analysis

on the Ivy Bridge processor (because the older processor naturally offers updates

spanning a longer time period), we observe no change in any of the discovered sharing
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mechanisms across all available microcode versions. Details of the methodology are

discussed in Section 4.6. The rest of this section examines key pipeline structures,

moving from front to back of the pipeline.

4.4.2 Instruction Fetch Bandwidth

To reverse-engineer the sharing policy of the instruction fetch unit in an SMT

processor, we develop a microbenchmark that creates artificial contention on the

instruction cache read bandwidth, while ensuring that there is no contention for the

rest of the pipeline resources. To this end, we take advantage of the fact that NOP

instructions have a minimal footprint, as they get eliminated early in the pipeline and

consume few backend resources, if any.

However, the most commonly used x86 NOPs are 1-byte instructions. These do

not suit our purposes because they saturate the decoders long before they saturate

the fetch unit (which can fetch 16 NOPs per cycle). To circumvent this, we leverage

a special 15-byte long NOP [126] instruction that allows us to effectively saturate the

instruction cache read bandwidth, limiting the throughput of the fetch unit to just

one instruction per cycle. Further, we ensure that these NOP15 instructions always

miss in the micro-op cache and actually use the instruction cache read bandwidth, by

using large loops of static NOP15 instructions in our microbenchmark that exceed the

micro-op cache capacity.

Through performance counter measurements, we find that the Intel frontend

sustains a throughput of one NOP per cycle when our microbenchmark is run in single-

threaded mode. AMD Zen2 also provides the same throughput, despite enjoying

an instruction cache bandwidth of 32 bytes per cycle. This is because Zen2 requires

instructions that are larger than 8 bytes to be in the first 16 bytes of the fetch buffer.

When our microbenchmark is run in SMT mode along with a competing SMT thread

that executes the same code, the frontend throughput is exactly halved, delivering one
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SEND_ZERO:

MOV RAX, 100

L0:

NOP8 #8-Byte

...#N<LSD

NOP8 #8-Byte

DEC RAX

JNZ L0

SEND_ONE:

MOV RAX, 100

L1:

NOP #1-Byte

...

NOP #1-Byte

DEC RAX

JNZ L1

RECEIVER:

TIME #Record Time

NOP15 #15-Byte NOP

...

NOP15 #15-Byte NOP

TIME #Record Time

JMP RECEIVER

Listing 1. Fetch Bandwidth Covert Channel on Intel Processors. The total number of micro-
ops in the receiver loop is larger than the size of micro-op cache to ensure a zero percent
hit rate. NOP8 and NOP15 are aliases for multi-byte NOP instructions [126].

instruction every two cycles, for each thread. However, if the code that runs on the

competing thread (T2) delivers its micro-ops through the micro-op cache or the loop

stream detector, T1 gains back its original one NOP per cycle throughput. This shows

that the instruction fetch bandwidth is dynamically shared between the threads as we

observe a direct impact on the execution time of its sibling thread when they contend

for the fetch unit.

Listing 1 shows the sender and receiver routines for a covert channel implemen-

tation that exploits the performance differences that arise due to contention for the

instruction fetch bandwidth in Intel. The sender thread transmits ‘zero’ by executing a

set of NOP instructions that are delivered by the loop stream detector or the micro-op

cache, creating no fetch contention. The sender thread transmits ‘one’ by executing

a set of regular 1-byte NOP instructions, maximizing fetch contention – note that

1-byte NOP instructions will miss in the micro-op cache as the micro-op cache of Intel

processors does not cache the line if there are more than 18 micro-ops in a 32-byte

region of the code [126, 220]. The receiver thread then measures the execution time

of long NOPs that miss in the micro-op cache to detect that contention. The total

number of the micro-ops within the receiver loop is set to be larger than the size of the

micro-op cache, ensuring that every instruction uses the fetch bandwidth. This covert

channel, as Table 4.1 shows, can achieve a bandwidth as high as 1640 kbps on an Intel
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Skylake processor and as high as 833 kbps on Zen2.

4.4.3 Decode/Issue Bandwidth

After fetching instructions into the fetch buffer, the x86 frontend translates

the instructions into micro-ops (decode) and delivers those micro-ops to the backend

(issue).

To contend for these decoders, we choose regular 1-byte NOPs. Not only do

they not consume backend resources, but they also do not saturate the fetch bandwidth

as described above, putting decode/issue bandwidth on the critical path. Thus, when

we run regular NOPs on a single thread, the decode pipeline is able to deliver 4 NOPs

(micro-ops) per cycle to the backend of the processor. However, this throughput is

reduced to 2 NOPs per cycle if we co-locate this thread (T1) with a sibling thread (T2)

that executes the same set of NOPs, thereby contending for the decoder resources.

To construct a covert channel that exploits the decode/issue bandwidth, we need

to identify the conditions upon which the processor assigns more decode bandwidth

to T1. If we switch T2’s instructions to large NOPs (maximum of one instruction

every two cycles), T1 still observes half of its single-thread throughput, suggesting

that on each cycle the instruction decoders are assigned to one thread as a whole, i.e.,

the decode bandwidth is time-multiplexed between the threads, rather than being

statically partitioned. We note that this is consistent with the details laid out in Intel

patents [153].

Further, while one would expect T1 to gain back its single-thread throughput

if T2 does not use the legacy decode pipeline (because it is using the micro-op cache

or the LSD which both bypass the decoder), we observe that even in such cases the

throughput of T1 remains half of its single-threaded throughput, indicating that the

decoders remain time-shared between the threads, regardless of whether the threads

actually contend for them. On the other hand, if T2 is stalled due to a bottleneck in the
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SEND_ZERO:

MOV RAX, 100

CLFLUSH [RCX]

MFENCE

L0:

#Cache Miss:

MOV RCX, [RCX]

DEC RAX

JNZ L0

SEND_ONE:

MOV RAX, 100

L1:

NOP

... #N>LSD

NOP

DEC RAX

JNZ L1

RECEIVER:

TIME #Record Time

NOP

... #N>LSD

NOP

TIME #Record Time

JMP RECEIVER

Listing 2. Decode/Issue Bandwidth Covert Channel on Intel.

backend (full reservation stations, for example), we observe that T2 does give up its

decode slots and T1 goes back to its full original 4 NOPs per cycle.

As Listing 2 shows, to slow the backend, we exploit a data cache miss followed

by a sequence of instructions that are dependent on the long-latency load. This enables

a high-bandwidth covert channel on both the AMD and the Intel architectures with

a bandwidth as high as 1150 kbps on Intel and 1030 kbps on AMD. Exploiting the

frontend covert channels bolsters the adversary’s ability to fingerprint various activities

(e.g., cache misses, micro-op cache usage pattern) of a co-located victim thread, without

any cache accesses, just by measuring the execution time of NOPs.

4.4.4 Register File

Next, we examine the sharing mechanism of physical register files of the Intel

and AMD processors. Our register file characterization microbenchmark, shown in

Listing 3, consists of two memory read instructions that always miss in the caches.

Between these loads, we have a variable number of instructions that each consume a

physical register, i.e., they have a destination register. When a thread’s partition fills,

no more instructions can be renamed, placing a limit on the window for out-of-order

execution. If the second memory read is not renamed, it is then serialized (not renamed

until the former commits). If there is sufficient space to rename it, the loads execute

in parallel and performance is significantly improved. By increasing the number of
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CLFLUSH [RDI]

CLFLUSH [RSI]

MFENCE

MOV RAX, [RSI] #Long-Latency Load

MOV RBX, 88 #Consumes One Phys. Reg

... #Use N Phys Regs

MOV RBX, 88 #Consumes One Phys. Reg

MOV RAX, [RDI] #Long-Latency Load

Listing 3. Microbenchmark for Making Contention on Register Files. When N is larger
than available physical registers the two loads cannot be issued in parallel.

the register-consuming MOVs we can identify the exact point where we exhaust the

renaming registers before the second load instruction arrives.

The impact on the execution time is visible in our results of figure 4.2. These

figures (one for Intel, one for AMD) each show four lines, representing two threads.

This more detailed result is representative of the analysis done for each of the pipeline

resources, although those discussions have mostly been condensed for space reasons.

Here, T1 is varied in the number of registers that are occupied before the second

high-latency load, while T2 is kept constant (at 50). For Intel, when T1 runs in

single-threaded mode, we see that it can use about 128 registers before performance

plummets, while in SMT mode that happens at 64. Further, we see that T2 in SMT

mode (dashed orange line) is relatively unaffected by the size of T1. For AMD, however,

we see that T2 in SMT mode (again, dashed orange) is clearly sensitive to the varying

register pressure of T1. From this, we conclude that Intel’s physical register file is

statically partitioned, and AMD’s is dynamically shared.

We observe a similar pattern when we change the consuming instructions

to instructions that consume vector, vector mask, or floating point registers. That

means the same policy is applied to those register files as well. We are able to exploit

the contention on physical registers in AMD to construct a covert channel with a

bandwidth of 40 kbps with less than 5% error rate.
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Figure 4.2. Reverse Engineering the physical register file sharing mechanism.

4.4.5 Reservation Station (RS)/Scheduler

To contend for reservation stations, we use a microbenchmark similar to the

previous section (Listing 4); however, we use cmp instructions which do not consume a

physical register, but are still dependent on the first load instruction, so the instructions

will consume an RS entry and cannot be issued until the first load completes execution

and makes the result available to dependent instructions, causing them to quickly

release RS entries. If we have enough entries in the reservation station available to the

thread, the second load can be issued an RS entry and then dispatched to execution

in parallel with the first load. Therefore, we see a spike in the execution time when

the length of the dependency chain becomes greater than the number of reservation

CLFLUSH [RDI]

CLFLUSH [RSI]

MFENCE

MOV RAX, [RSI] #Long-Latency Load

CMP RBX, RAX #Waits in RS

... #Consume N RS entries

CMP RBX, RAX

MOV RAX, [RDI] #Long-Latency Load

Listing 4. Microbenchmark for Making Contention on Reservation Station. When N is
larger than available reservation station entries the two loads cannot be issued in parallel.
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Figure 4.3. Reverse Engineering the Reservation Station Sharing Mechanism.

station entries, as the two loads become serialized.

Figure 4.3 shows the results of running Listing 4 in single-thread mode and

in SMT mode on Ivy Bridge. In SMT mode, we observe that Ivy Bridge does not let

one thread use all of the 54 RS entries and it always limits the maximum number of

allocated RS entries to 40, even when the other thread does not consume any RS entries,

e.g., only executes NOPs. We refer to this type of sharing as thresholding. While in

theory it should be possible to construct a covert channel on the 26 shared entries, it

imposes considerable noise and we are not able to construct a reliable channel on the

Intel processor. On the other hand, AMD Zen2 uses a shared reservation station with

which we can construct a covert channel with a bandwidth of 56 kbps.

4.4.6 Reorder Buffer, Load/Store Queues

We use slightly different variations of the microbenchmark shown in Listing 3

to reverse engineer the sharing mechanism of the ROB (lst:microbench:rob) and the

load (lst:microbench:lq) and store queues (lst:microbench:sq). For the ROB, we replace

the register-consuming instructions with NOPs. NOPs serve our purpose to isolate

the ROB because they consume ROB entries, but not reservation stations or physical

registers. For the load and store queues, we leverage load or store instructions that
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always hit in the cache to isolate those queues. These instructions each occupy a

load/store queue entry and cannot be issued until the long-latency load executes.

Therefore, at some point, by increasing the number of load/store instructions, the

dispatch cannot progress due to lack of load/store queue entries. This then forces the

long-latency loads to be serialized.

Figure 4.4 shows the results of running Listing 5 in both single-thread and SMT

modes. This microbenchmark includes a series of stores which are dependent on the

first long-latency load. When the number of store instructions exceeds the size of the

store queue, the processor cannot issue the store instruction for which we do not have

an available SQ entry, nor any of the following instructions. That is because even

in an out-of-order Intel processor, the rename and allocation stages happen in order.

If you run out of out-of-order resources such as physical registers, IQ, ROB, or SQ

entries, the rename and/or allocation will be stalled. It is only after these stages that

the processor can identify the dependencies between the instructions and dispatch

the instructions out of order to the execution units. Thus, if a store instruction cannot

proceed due to lack of SQ entries, the store and all younger instructions–independent

of their type–will be stalled. As a result, in single-thread mode we see a spike in the

execution time at 36 stores, which is precisely the size of the store queue in our Ivy

Bridge processor. We also run the same code in SMT mode, along with another thread

that does not consume any SQ entries, i.e., it only executes NOPs. In that experiment,

we observe that the number of SQ entries available for T1 is exactly half of the SQ,

suggesting a static partitioning scheme for the SQ.

4.4.7 Covert Channel on Partitioned Structures

As shown in Table 4.1, we find that many of the pipeline resources in Intel

processors, and some in AMD processors, are statically partitioned between the threads.

For the sake of completeness, we investigate the potential information leakage via
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Figure 4.4. Reverse Engineering the SQ Sharing Mechanism. In single-thread mode, we
see a spike in the execution time at 36, exactly the size of our SQ. In SMT mode, T2 only
executes NOPs, but still causes T1’s SQ to be halved.

these partitioned resources (even though we know shared resources will be the highest

bandwidth channels). We construct a covert channel where the sender goes in and out

of SMT mode, allowing the receiver to observe the state of the particular resource in

question. The key here is our ability to enter and exit SMT mode as quickly as possible.

To this end, we examine several x86 instructions used for busy waiting.

We first look at the pause instruction, originally introduced in Intel’s Pentium 4

processor to improve the power and performance of the spin-wait loops [126], so that

the spinning thread could free resources while waiting. However, our experiments

CLFLUSH [RDI]

CLFLUSH [RSI]

MFENCE

MOV RAX, [RSI] #Long-Latency Load

MOV [RBX], RAX #Consumes a SQ entry

... #Consume N SQ entries

MOV [RBX], RAX #Consumes a SQ entry

MOV RAX, [RDI] #Long-Latency Load

Listing 5. Microbenchmark for Making Contention on Store Queue. When N is larger than
available store queue entries the two loads cannot be issued in parallel.
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with the pause instruction suggest that the resources remain partitioned even in the

presence of a pause – that is, pause only releases shared resources, not partitioned.

We also consider mwait, which is a privileged instruction that provides a hint

to the processor so it can enter a specified target low-power state [126]. In fact, this

does release partitioned resources, and we are able to successfully create a channel,

but we do not consider this the most useful attack vector since there are so many other

attacks possible for a user with privileged access.

Finally, we examine Linux’s nanosleep system call which is a non-privileged call

that deschedules the caller thread until the time specified by the user has elapsed. We

observe that, on Intel processors, calling nanosleep causes the processor to unpartition

resources, allowing the sibling thread to monopolize them. The nanosleep syscall

causes the Linux kernel to schedule an idle task on the logical core, which then executes

the aforementioned mwait instruction. This enables a covert channel for transmitting

information even via statically partitioned resources. The bandwidth of this covert

channel, however, is limited to the minimum latency of the nanosleep system call. As

shown in Table 4.1, using the nanosleep system call, we can achieve a bandwidth as

high as 24 kbps on the Intel processor. On the AMD processor, however, the nanosleep

syscall does not cause the resources to become unpartitioned.

In Section 4.5, we examine multiple partitioning schemes that provide greatly

CLFLUSH [RDI]

CLFLUSH [RSI]

MFENCE

MOV RAX, [RSI] #Long-Latency Load

MOV RBX, [RAX] #Consumes a LQ entry

... #Consume N LQ entries

MOV RBX, [RAX]

MOV RAX, [RDI] #Long-Latency Load

Listing 6. Microbenchmark for Making Contention on Load Queue. When N is larger than
available load queue entries the two loads cannot be issued in parallel.
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increased thread isolation. However, all are still potentially vulnerable to this channel

(fast enter/exit of SMT mode) if they release all resources to a single thread. Thus,

for the balance of this paper, we assume a simple solution that provides a countdown

timer that limits the frequency at which the pipeline can release partitioned resources,

even upon exiting SMT mode.

4.4.8 Other Pipeline Resources

For completeness, we also measure most of the other pipeline resources that

have been covered extensively in the literature, such as caches [212], TLBs [94], and

execution ports [14]. Those results appear in Table 4.1, but without extensive discussion.

However, there are other well-studied SMT resources such as Pattern History Table

(PHT) [79] that we do not re-measure as we focus more on lesser known channels. Our

mitigations, nevertheless, can be readily applied to these structures as well.

Constructing covert channels on most of the cache-like structures requires some

information about internal structures of these resources such as the indexing function

and associativity. Also, the knowledge of the replacement policy of a cache-like

resource can greatly affect the channel bandwidth as the attacker can exploit that to

minimize the size of the probe set. It is, however, still quite possible to create a high-

bandwidth channel on a cache-like structure without access to detailed information on

CLFLUSH [RDI]

CLFLUSH [RSI]

MFENCE

MOV RAX, [RSI] #Long-Latency Load

NOP #Consume an ROB entry

... #Consume N ROB entries

NOP

MOV RAX, [RDI] #Long-Latency Load

Listing 7. Microbenchmark for Making Contention on Reorder Buffer. When N is larger
than available reorder buffer entries the two loads cannot be issued in parallel.
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the replacement policy, as the attacker only needs to create enough accesses to cause a

single eviction to the other thread’s entries. For example, for any LRU-like structure

(e.g., tree-PLRU, bit-PLRU) with associativity of n, accessing n new entries guarantees

an eviction to the existing entries of a particular set.

4.5 Mitigations

This section introduces a suite of mitigation schemes we examine to eliminate or

reduce the leakage across the SMT pipeline. Prior work has focused on identifying and

solving SMT leaks one at a time [67,261,287]. However, in keeping with our systematic

characterization study of pipeline resources, we will focus on systematic mitigation

solutions that can be employed broadly across each individual contended structure.

The solutions described in this section include static partitioning, adaptive

partitioning, and asymmetric SMT.

4.5.1 Static Partitioning

The most basic partitioning scheme, already employed heavily, statically divides

a resource into equal-sized partitions. Static partitioning can be applied in two forms:

spatial or temporal. Spatial partitioning assigns a resource to a thread and that

assignment does not change through time. This can only be applied to resources for

which the processor has multiple instances, such as ROB entries. If the number of

instances of a resource is less than the number of SMT threads (e.g., some functional

units), the processor cannot statically assign the resource to a thread. In such cases,

the processor employs temporal partitioning (also called time multiplexing). Temporal

partitioning assigns a single resource to each thread in a round-robin fashion. These

basic partitioning schemes ensure that dynamic contention cannot occur between the

threads, eliminating leakage. For example, in a strictly round-robin resource, the time

slot assigned to thread T1 does not depend, in any way, on the usage of thread T2. T1
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only gets one out of two slots whether or not T2 uses its slot. This completely inhibits

a thread from inferring any information from the usage of the other thread.

4.5.2 Adaptive Partitioning

While static partitioning can eliminate dynamic contention between SMT threads,

it typically results in underutilization of pipeline resources, sacrificing overall per-

formance – the fundamental benefit of SMT processors is allowing resources to be

better utilized by dynamically assigning each resource to the context that needs it.

However, we show that it is possible to gain back much of the full performance of SMT

if we can adapt to the varied needs of contending threads, but more slowly. Adaptive

partitioning is an on-demand partitioning scheme that allows for the dynamic reconfig-

uration of partition size, once per adaptation interval. This not only improves resource

utilization and overall performance, but also limits the information leakage to at most

one bit per adaptation. In fact, our results show that even a very long adaptation

interval (of 100,000 cycles) can be effective in recovering much of the full performance

benefits of a fully shared SMT pipeline.

Our adaptive partitioning design augments each resource with a set of counters:

(1) the current size of the partitions, (2) counters that track the number of “full” events

that each thread encounters, and (3) a countdown timer until the next adaptation

interval. Note that in our experiments we assume a single countdown timer for all

resources to help simplify presentation of the results. It also takes three parameters that

are set at design time: adaptation interval, adaptation step, and adaptation threshold.

Figure 4.5a shows an example for adaptive partitioning of the instruction queue.

For every adaptation period, we select a thread that has faced more full events in

that period. We then increase the size of the partition of the selected thread by the

adaptation step size. We increase the partition size only if the new partition size is still

smaller than the adaptation threshold.
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We can also apply adaptive partitioning for temporally shared resources, devi-

ating from a completely symmetric round-robin assignment. For example, we might

adaptively modify the assignment process for a resource that alternates between two

threads each cycle, in such a way that the resource is assigned to a more hungry thread

two out of every three cycles. If it needs more, we could again alter the policy such

that the resource is assigned to the hungry thread three out of four cycles. At each

adaptation interval, we examine the number of full events of each thread and increase

the share of the thread with the highest full event count. If that thread is more resource

hungry, we increase its count (subject to the threshold), otherwise we decrease its

count. Figure 4.5b shows an example of adaptive temporal partitioning.

Adaptive partitioning severely restricts the leakage. Now, for each resource, the

attacker can only leak at most approximately 1 bit (adaptation without threshold) per

adaptation interval (100,000 cycles). For example, an attacker can probe the size of its

own reservation station in two consecutive adaptation intervals. If the RS shrunk, the

attacker infers that the victim’s RS usage exceeds that of the attacker. This is orders of

magnitude below known channels across cores on non-SMT processors.

While adaptive partitioning limits leakage to a single bit per interval, the values

of the counters could potentially be exposed when a thread crosses protection domain

boundaries, and it is therefore critical to reset all such counters at domain crossings.

Resetting the adaptation counters stops the current context’s behavior from affecting

that of the next context. By doing so, we might miss one opportunity to adapt.

But we find that in steady-state, partition sizes do not change dramatically, and the

performance effect of missing one adaptation opportunity is minimal.

4.5.3 Asymmetric SMT

While the adaptive partitioning scheme can help recover a significant chunk of

the performance lost due to partitioning, it is still restrictive as it limits the pipeline
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Figure 4.5. Adaptive Partitioning Examples.

resource utilization even in scenarios where at least one of the threads running on

the processor are trusted or when no sensitive code is running and cross-thread

information leakage may not be of concern. In this section, we describe a mitigation

called Asymmetric SMT that allows two threads with asymmetric trust levels to securely

share resources in an SMT processor, while preventing unauthorized information

leakage from a higher security domain to a lower security domain.

With Asymmetric SMT, then, assuming active threads T H and T L, where T H

is at a higher security level than T L, we have the ability to block the leakage from

T H to T L, but allow leakage from T L to T H. An example where this is useful

is sandboxing in web browsers. While it is not secure to leak information from the

browser thread to the sandbox thread, it is safe to leak information from the sandbox to

the browser thread. Similarly, it might be safe to leak information from a user process

to a kernel process, from a guest virtual machine to the hypervisor, etc. Asymmetric

SMT enables lost resource utilization due to partitioning, but the only beneficiary is

the trusted thread. The performance of trusted threads is on the critical path for many

applications, such as a web browser that runs untrusted Javascript. A study by the
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Google v8 team [258] shows that only 20% of Chrome’s page processing time is spent

in running untrusted Javascript code, while the rest is spent in trusted browser code

that performs tasks such as parsing, compilation, and garbage collection. Therefore, by

improving the performance of the trusted part of the execution, Asymmetric SMT can

significantly impact overall performance.

The key to Asymmetric SMT is that it allows the trusted thread to borrow unused

pipeline resources from the untrusted user, only in cases where it can instantly return

the resource when the untrusted thread needs it back. Fortunately, this instantaneous

return is possible for many of the pipeline resources as the out-of-order pipeline is

already well-equipped with mechanisms to deal with various squash events.

The rest of this section discusses how Asymmetric SMT can be enabled for

various pipeline resources. We categorize the resources into stateful (e.g., ROB),

stateless (e.g., functional units), and cache-like resources.

Stateful Resources

We refer to the resources that hold the transient execution state of a thread’s

instructions across multiple cycles and then get released, as stateful resources – this

includes physical registers, IQ entries, ROB entries, and load/store queue entries.

Asymmetric SMT allows the borrowing thread to use a free unused entry from the

other thread’s partition. Here, we use Physical Register File (PRF) as an example.

Figure 4.6 depicts two example scenarios for borrowing a physical register. In

the initial state, three out of eight entries are assigned to T H (assuming PRF already

uses an adaptive partitioning scheme). Note that Asymmetric SMT is orthogonal to

the other two partitioning schemes (static and adaptive) and can be added to either.

Once Asymmetric SMT receives a request from the trusted thread, T H, which has

exhausted all of the entries in its partition, it checks if T H can borrow an unused entry

from T L. Asymmetric SMT permits borrowing only if the number of T L’s free entries
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is larger than a threshold (MIN FREE), i.e., it always leaves some free slack registers.

This condition is helpful at reducing the number of expensive squashes which results

when T L runs out of resources and one must be freed immediately by T H.

Figure 4.6a shows the common-case scenario where we commit one of T H’s

instructions before T L’s partition gets full. Note that in this case we are not borrowing

a specific register, but rather allowing T H’s count to exceed its threshold. Thus, any

T H instruction that commits and frees a register will restore it to T L. Figure 4.6b

shows a scenario where T L takes up all of the free entries in its partition before

T H gets the chance to return the borrowed register. In such a scenario, Asymmetric

SMT immediately returns the borrowed register to T L. It selects the youngest T H

instruction that holds a physical register and assigns that register to T L. T H then

needs to squash that instruction and all of its subsequent instructions and restart

execution from there.

Similarly, it is possible to allow a trusted thread to borrow instruction queue and

load/store queue entries. During issue, if the trusted partition is full but the untrusted

partition has more than MIN FREE free entries, the trusted thread can borrow unused

entries. If the untrusted partition becomes full before the trusted partition returns the

borrowed instruction queue entry, the trusted thread should immediately return the

borrowed entry.

Not all stateful resources are suitable for borrowing. For example, we can only

allow borrowing of a limited number of ROB entries due to the instantaneous return

requirement. If we borrow from the ROB more entries than what we can free per cycle

(retire bandwidth), then the borrowing becomes visible to the owner thread and that

leads to information leakage.
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Stateless Resources

Examples of stateless resources include execution ports, functional units, fetch

bandwidth, and commit bandwidth. Asymmetric SMT works well with stateless

resources, as borrowing a stateless resource will not ever require an expensive squash.

Here we use execution ports to describe Asymmetric SMT in stateless resources.

Figure 4.7 illustrates different temporal partitioning (multiplexing) schemes for

execution ports. We can assign the whole dispatch bandwidth to one thread each
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cycle, which reverts the pipeline to fine-grain multithreading [240] and sacrifices the

benefits of SMT in eliminating horizontal waste [198]. A better approach is to multiplex

individual execution ports each cycle, which can either be partitioned evenly or

unevenly using our adaptive partitioning methodology. However, even with adaptive

partitioning, there are cycles where T L cannot fully utilize the ports that are assigned

to it. In such cases, Asymmetric SMT utilizes the unused ports and borrows them for

T H. The scheduler for Asymmetric SMT, at each cycle, first tries to schedule all the

ready instructions of T L to the execution ports that are assigned to T L at that cycle,

then it assigns any unused T L slots to T H and schedules T H’s ready instructions.

Note that for brevity, we do not show the non-pipelined functional units in Figure 4.7.

Non-pipelined functional units (e.g., Intel’s divider unit) are also borrowable, but as

soon as we receive a request from the owner thread, we abort the execution of the

borrowing thread and immediately start execution of the owner instruction. Most of

the functional units in the Intel and AMD processors are pipelined.

Cache-like Structures

Cache-like structures are a special type of stateful resource. In the context of

Asymmetric SMT, the major difference between these and other stateful resources is

that caches, once warmed-up, do not have empty entries. Structures that fit in this

category are the micro-op cache, the private TLBs, and the private data and instruction

caches.

For these structures, Asymmetric SMT cannot enable borrowing of blocks

without leaving a visible effect. To address this, we introduce a mechanism that

invalidates entries in the untrusted (owner) thread’s partition. This invalidation

mechanism must be deterministic and independent of any requests by the trusted

thread. Therefore, it does not leak information.

Similar to some of the methods proposed in architecture literature on cache
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dead block prediction [75,115,168], we dynamically calculate the average reuse distance

of cache blocks of the untrusted partition. Then, we multiply that average with a

static parameter (distance coefficient > 1) and use that as a threshold to distinguish

between live and dead cache blocks. If the last access to a cache block is greater than

the threshold, we invalidate that cache block so that it can be lent to the other thread.

Again, only cache accesses of the untrusted thread can influence this invalidation, so

it does not leak information about the access pattern of the other thread. We use a

simple dead block detection mechanism that is only influenced by accesses, but more

sophisticated dead block elimination methods can also be used [75, 115, 168]. Unlike

other stateful resources, in caches returning a borrowed cache line does not incur any

”squash” cost – it is a simple eviction. As soon as we receive an access from the owner

thread, we invalidate one of the borrowing thread’s cache lines (based on the cache

replacement policy) and return it to the owner partition. For a write-back cache, we

only allow a borrowed line to become dirty if the cache features a write-out-buffer

(WOB) [117] – a buffer that handles the writes down to the memory hierarchy – so that

we can guarantee the process of returning a dirty borrowed line is still instantaneous.

In addition, we do not allow the number of dirty borrowed lines to grow larger than

the size of the WOB.

Overheads

Overall, we find that borrowing from stateless resources (functional units and

fetch bandwidth) does not impose significant overheads on the processor pipeline. In

terms of area overhead, we only need to (1) make sure that instructions are tagged

with one bit of thread ID across the pipeline (already necessary for other reasons), and

(2) add very simple logic that checks if borrowing of a specific resource is allowed in

each cycle, i.e., it checks that the current instruction belongs to the borrowing (trusted)

thread and also there is no demand for the resource from the untrusted thread. This
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simple logic, as shown in Section 4.7.5, does not impose any overhead on the cycle time,

and has negligible power and area overheads. For stateless resources, Asymmetric

SMT only uses an unused resource which will be lost if not utilized by borrowing.

Therefore, the performance effect will always be positive. Borrowing stateful resources,

however, may require additional flushing if the untrusted thread requests a borrowed

resource. While this flushing imposes performance overhead to the borrowing thread,

our results show that the improved utilization brought by borrowing greatly outstrips

the flushing costs.

More than Two Threads

While SMT implementations with more than two threads are not common, our

asymmetric SMT can be extended to those processors as well. In those cases, we can

define a security lattice between trust domains and allow threads with higher trust

levels to borrow from threads with lower trust levels. For example, a kernel thread can

borrow from both a sandbox thread and a browser thread, while a browser thread can

only borrow from the sandbox.

HW/SW Interface

Asymmetric SMT requires knowledge of the trust level of active threads running

on the SMT processor. We envision two possible modes of operation for Asymmetric

SMT. In the first mode, Asymmetric SMT relies on existing privilege levels. That is,

without any software change, Asymmetric SMT enables the kernel to borrow resources

from a user thread, or let the hypervisor borrow resources from any of the guest

threads. The second mode allows the software to specify more fine-grain trust levels

for the SMT threads. Thus, Asymmetric SMT needs to add and maintain new control

registers that represent the trust level of an active thread. Privileged software would

update the control register via a privileged instruction (e.g., x86’s wrmsr). The second
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Table 4.2. Architecture Detail for the Baseline x86 Core

Baseline Processor
Frequency 3.3 GHz I cache 32 KB, 8 way
Fetch Width 16 B D cache 32 KB, 8 way
Fetch Policy IQ count Retire Width 8 uops
Issue Width 8 uops Decode Width 5 uops
INT/FP Regfile 186/144 regs IQ 97 entries
LQ/SQ Size 64/36 entries Functional Int ALU(4), Mult(1),
ROB Size 224 entries Units FPALU/Mult(2)

mode also does not require extensive software changes as all the modifications required

will be contained in the thread/process creation logic.

Quality of Service (QoS)

In addition to the evident security use case, Asymmetric SMT can also be lever-

aged for better and more versatile performance isolation (i.e., better QoS guarantees).

The OS could mark a latency-critical thread as a high security/priority thread. Asym-

metric SMT, then, improves QoS by assigning more resources to the latency-sensitive

job with guaranteed (performance) protection of other jobs.

4.6 Methodology

This section details the experimental methodology for performance evaluation

of the proposed partitioning schemes, including the Asymmetric SMT architecture. We

also discuss the methodology we use for our covert-channel characterization framework

presented in Section 4.4.

For performance evaluation, we model our partitioning scheme and Asymmetric

SMT architecture in the gem5 v20 architectural simulator [173]. We add full support

for SMT in gem5’s out-of-order CPU model. We choose the parameters of our baseline

architectures to resemble an Intel Skylake, except that, for a more intuitive comparison

of partitioning schemes, our baseline architecture dynamically shares all the pipeline

resources between the threads. The other exception is that the assignment of the

functional units to the execution ports are slightly different than Skylake and more
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closely resembles AMD processors where floating-point and integer units do not share

a single port. Table 4.2 describes the detailed architectural configuration.

To characterize performance, we use the C and C++ benchmarks from the SPEC

CPU2017 suite. These benchmarks are compiled at the -O3 optimization level using

the LLVM compiler. Following the prevalent methodology for creating accurate and

representative simulation points [13, 169, 234], we use PinPlay [211] and Simpoint [235]

to select representative regions for simulation. For each of these benchmarks, we select

the Simpoint region with the highest weight – the most representative region. We

then make one multi-threaded checkpoint for every possible pair of the benchmark

programs by combining their selected Simpoints. We run each pair twice: In the first

experiment, we simulate until we complete 100 Million instructions from the first

thread, then swap the threads and repeat. For example, we will run lbm and perl

together twice. The effect of perl on lbm performance will be factored into the lbm bars

in our graphs, and the effect of lbm on perl will appear in the perl bars.

The speedup numbers of different schemes are calculated as the ratio of the

combined instruction per cycle (IPC) for each pair of the programs over the combined

IPC of that pair of programs in the dynamically shared processor. Thus, for the

Asymmetric SMT results, it accounts for both the sped-up trusted thread and the

unaffected untrusted thread in the overall results. This is also equivalent to weighted

speedup [241], a well-established performance metric for multiprogram workloads,

where in this case the baseline is that thread’s performance in a dynamically shared

SMT processor. Weighted speedup more accurately reflects useful performance gains,

and avoids over-rewarding speedup of high-IPC threads. For adaptive partitioning we

use at least 100,000-cycle adaptation intervals, unless otherwise noted. The performance

bars that represent Asymmetric SMT are the results of applying Asymmetric SMT

together with adaptive partitioning.

In addition to the SPEC benchmarks, to evaluate Asymmetric SMT in a more
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realistic scenario, we model a setting that resembles the computation of web browsers:

running untrusted Javascript codes on one thread and sensitive cryptography computa-

tions on the other. On the first thread, we run Javascript programs from SunSpider [249]

benchmarks on Duktape [74] Javascript engine, and on the second thread, we run RSA

and AES GSM benchmarks from Wolf SSL v4.5.0 [294].

We evaluate the performance of our proposed mitigations by applying them to

a wide range of pipeline resources, including the Instruction Queue, the Load Queue,

the Store Queue, the integer and vector physical register files, the ROB (Adaptive only),

the instruction and data TLBs, the instruction and data caches, Branch Target Buffer,

fetch and decode bandwidth, commit bandwidth, and the execution units.

We use Verilog HDL to implement different partitioning schemes on an example

structure (Dispatch Unit). To that end, We use Synopsis Design Compiler Q-2019.12-

SP5-3 with the 45 nm NanGate standard cell library [1] to synthesize and obtain

timing, area, and power information. The results of this analysis are discussed in

Section 4.7.5.

For covert-channel characterization experiments we build our microbenchmarks

on Agner’s test infrastructure [83]. We run our experiments on various processors.

Specifically, we use AMD Ryzen Threadripper 3960X (Zen2), Intel Xeon E3-1230 (Ivy

Bridge), and Intel Core i7-6770HQ (Skylake). To measure the bandwidth and error rate

of the covert channels, we transfer a pseudorandom bit sequence which is generated

using a 15-bit wide linear feedback shift register (LFSR). This allows us to identify

various errors that might happen during the transmission, including bit loss, multiple

insertions of bits, or bit swaps [167]. To estimate the error rate, we use Levenshtein

edit distance between the sent and received data for the pseudorandom bit sequence.
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Figure 4.8. Covert Channels between a Spy (T0) and a Trojan (T1) Thread. In a fully
shared pipeline the instructions executed on T1 have a clear effect on T0’s execution time.
Partitioned, Adaptive and Asymmetric are always constant and share the same straight line.

4.7 Results

This section characterizes our mitigation strategies. We first present the security

evaluation, followed by performance.

4.7.1 Security Evaluation

To show the effectiveness of our mitigation strategies in stopping covert channels,

we perform a study similar to Covert Shotgun [84]. In this experiment, a spy thread

constantly executes one type of instruction and measures its timing. The trojan thread

tries to send a signal by executing different instructions, thereby varying the contention

on various pipeline resources. Figure 4.8 shows the results of this experiment. In

a fully shared pipeline, the timings of the spy process can be clearly influenced by

the trojan’s instructions. An attacker, therefore, can pick any pair of instructions that
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Figure 4.9. Performance of the Proposed Schemes.

show a different effect on the spy process to create a covert channel. When we enable

any of our mitigation strategies, the spy thread timings become constant, effectively

stopping all identified covert channels. For adaptive partitioning, all measurements

are within one adaptation period. For Asymmetric SMT, the trust levels are set so that

only the trojan thread can borrow resources. Further examination of the experiments

shows that the covert channels in the fully shared pipeline are created by contention

on mainly two resources: the fetch bandwidth and the functional units. We observe

similar results when the spy uses different instructions.

Note that while this study shows that our mitigation strategies completely

stop the covert channels that can be found with this approach, this test does not give

complete coverage of all shared resources, particularly structures not documented by

Intel or AMD. Also, these are the results of simulation (the only way to evaluate most

new hardware mitigation techniques), and a real processor may contain other leaks

not simulated.

4.7.2 Performance Evaluation

Figure 4.9 shows the results of our mitigation schemes applied to the pipeline

resources mentioned in Section 4.6. Each bar represents the average results of running

a benchmark on one thread with each of the other benchmarks on the other SMT

thread. Static partitioning of the pipeline resources, as expected, imposes a significant

performance cost. On average, it slows the execution by 10% compared to dynamically-
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Figure 4.10. Running Trusted Cryptography Computation with Untrusted JavaScript Code.

shared resources. The performance overhead goes as high as 24% for some benchmarks

(mcf ). However, for one program (lbm), static partitioning significantly improves the

performance. That is because lbm frequently exhausts the entire store queue on a

dynamically shared pipeline, which causes the other thread to stall due to lack of store

queue entries. In this case, lbm gets no benefit from more queue entries, and only gets

extra interference by causing the other thread to get backed up. Therefore, statically

partitioning the store queue achieves better performance for lbm, and our schemes

further accentuate that advantage. Our adaptive partitioning reduces the performance

overhead of partitioning to only 2% on average (5% if we ignore lbm), and consistently

reduces the performance overhead of partitioning across all the benchmarks.

Asymmetric SMT further improves the performance and even provides a 2%

speed-up over the shared pipeline (thanks again to lbm). But even excluding lbm,

Asymmetric SMT almost fully restores the performance of a fully shared pipeline.

These results show that opportunistically borrowing resources is highly effective at

maintaining high utilization of partitioned resources. Note that, as mentioned in
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Figure 4.11. Partitioning Schemes for Functional Units.

Section 4.6, for each pair of the benchmarks, we run the experiment twice. In each run,

a different benchmark is considered as the trusted (borrower) thread in the Asymmetric

SMT experiments.

Figure 4.10 shows the performance of the Asymmetric SMT architecture in a

different, more realistic setting. On one thread, the SMT processor runs the SunSpider

Javascript benchmark on Duktape engine, and on the other thread, it runs a trusted

cryptography benchmark from the WolfSSL suit. This resembles computation that a

web browser might perform. Asymmetric SMT allows the trusted threads (AES and

RSA in this case) to borrow resources from the untrusted threads. The combination

of our adaptive partitioning and Asymmetric SMT, on average, reduces the overhead

of partitioning from 24% to 11% for RSA. For the AES benchmark, Asymmetric SMT

not only completely restores the performance overhead of static partitioning, but also

outperforms the fully shared baseline by 7% on average. The performance gain mostly

comes from the pairs of benchmarks for which static partitioning performs better

than the fully shared pipeline, such as regexp-dna. These benchmarks exhibit frequent

resource full events (e.g., high number of physical register full in regexp-dna) that stall
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Figure 4.12. Partitioning Schemes for Fetch Bandwidth.

both threads in a shared pipeline. In such cases, partitioning allows one thread to

continue execution and thus improves overall performance.

Next, we take a closer look at the performance of the proposed schemes by

examining their effects on the individual pipeline resources. Among the resources

that we partition, we find that the most significant contributor to the performance cost

is the execution ports/functional units. Figure 4.11 shows the results of an isolated

experiment where all resources are dynamically shared except the execution ports.

We examine four partitioning schemes for the execution ports: two different static

partitioning schemes as well as our proposed adaptive and asymmetric SMT.

Multiplexing the dispatch bandwidth refers to the method where we only dispatch

instructions from one thread each cycle. It severely impacts performance. On average, it

reduces the performance by 12%, compared to dynamically shared execution ports, and

is as high as 19% for some benchmarks. The main reason for such poor performance

is that, at each cycle, there are not enough instructions from only one thread to fully

utilize the execution ports. Another scheme is multiplexing individual functional units

instead of the dispatch bandwidth as a whole (described in Section 4.5.3). This is also
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Figure 4.13. Partitioning Schemes for Caches.

the default static partitioning scheme used for the summary results of Figure 4.9. This

improves the utilization of the execution ports over dispatch bandwidth multiplexing.

However, the cost of static multiplexing of the functional units is still high (10%, on

average) compared to shared execution ports. Adaptive partitioning is able to reduce

that overhead to only 6%. Adaptive partitioning, even with extremely long adaptation

intervals, is highly effective for the execution ports as different programs naturally

exhibit different usage distributions for different functional units. Asymmetric SMT

reduces this overhead even further to only 1%.

The next big contributor to the performance cost is the fetch bandwidth. Fig-

ure 4.12 shows the results of another isolated experiment where we only partition the

fetch bandwidth and keep other resources dynamically shared. The baseline shared

architecture uses ICount [265] to dynamically determine the best thread to fetch from.

However, as Section 4.4.2 shows, this can be used to construct covert channels. One

way to mitigate that is to use a strict round-robin scheme (partitioned bars in the

figure) where the fetch unit alternates between the threads each cycle. A partitioned

fetch policy does not have the ability to choose the fetching thread based on dynamic
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conditions each cycle; therefore, it loses 7% performance overhead, on average. We

get small gains from adapting the partition (and so restore some small amount of

the dynamic adaptation), then a bit more from asymmetric SMT, which enables us to

retrieve some of the unused fetch bandwidth.

Figure 4.13 shows the effect of our partitioning scheme applied to the cache

hierarchy (L1 instruction and data, and L2 caches). On average, the static partitioning

of the cache sets into two equally sized partitions imposes 6% performance overhead.

This is greatly influenced by one benchmark (mcf ) that has a large cache working

set. Adaptive partitioning reduces the overhead to only 2%. It allocates more cache

ways in each set to the thread that shows more misses during the adaptation period.

Asymmetric SMT further reduces the overhead to only 1%.

One interesting aspect of these results, compared to Figure 4.9, especially

considering results not shown for other individual resources, is that the performance

costs incurred overall are far less than the sum of the costs for individual mitigations.

This is expected on a well-balanced architecture, as these processors are designed

to be. In a well-balanced architecture, restricting one resource but not others will

always make that resource a bottleneck. But in a (hypothetically) perfectly balanced

architecture, restricting all resources may have no more negative impact than restricting

one.

4.7.3 Parameter Search for Adaptive

To select the best parameters for our adaptive partitioning and also to analyze

the effects of each parameter on the performance, we conduct an exhaustive parameter

search. Due to the combinatorial explosion problem, we cannot perform our parameter

search study on all of the SPEC17 benchmarks. Therefore, we select four representative

benchmarks: (1) a low ILP program that exhibits frequent memory accesses (mcf ),

(2),(3) two integer-heavy workloads (deepsjeng, perl), and (4) an FP-heavy workload
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(c) Caches.

Figure 4.14. Parameter Search for Adaptive Partitioning of Three Example Stateful Re-
sources.

(lbm). We then use all combinations of these benchmarks to conduct our parameter

search. For each stateful pipeline resource, we examine five different adaptive limits

(thresholds). For the stateless resources, we introduce another parameter, Mult. We

increase the share of a thread, only if the full counters of that thread is larger than Mult

times that of the full counters of the other thread – i.e., if Mult is 3, one counter must

be more than 3X the other to cause a repartition. A higher Mult makes it more difficult

to change the share of each thread. It particularly helps the resources where the cost

of a wrong adaptation decision is high. In these experiments, we set the adaptation

interval to 100, 000 cycles.

Figure 4.14a shows the results of our parameter search for the physical register

files. One benchmark pair that is sensitive to physical register file partitioning is

mcf-lbm. For this combination, a limit higher than 0.7 causes a significant performance

cost. That is because when the limit is high, one thread can potentially take up most

of the physical registers. On the other hand, a limit of 0.6 hinders our ability to fully

adapt physical register file allocation to different execution phases. Therefore, we use a

limit of 0.7 for the physical register file. Similarly, Figure 4.14b and Figure 4.14c show

the results of our parameter search for two other example stateful structures–Store

Queue and Caches. An adaptation limit of 1.0 for the SQ severely impacts performance,
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(b) Fetch Bandwidth.

Figure 4.15. Parameter Search for Adaptive Partitioning of Two Example Stateless Re-
sources. We only increase the share of a thread, if the full counter of that thread is larger
than Mult times of the counter of the other thread.
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as it allows one thread to potentially take up all the SQ. This performance impact is

reduced as we reduce the limit. Therefore, we choose the smallest adaptation limit

(0.6) for Store Queue. For caches, however, the threads can fully take advantage of a

larger adaptation limit, and the performance would improve as we allow the partitions

to grow larger. Thus, we choose the adaptation limit of 1.0 for caches.

Figure 4.15 shows the results of the parameter search for two example stateless

resources–fetch bandwidth and functional units. The adaptation limit for stateless

resources determines the maximum number of consecutive cycles that one thread can

hold the resource before it is assigned to the other thread. The results suggest that, for

both of these resources, the best performance is achieved when Mult is set to 1.2, and

adaptation limit to 8.

4.7.4 Partitioning Effects on Other Resources

This section discusses the effects of our schemes on different stateful pipeline

resources. Figure 4.16a shows the number of full register events for static and adaptive

partitioning of physical register files (both integer and vector). That is the number

of times the rename unit could not rename an instruction due to lack of physical

registers. Partitioning, in general, significantly increases the number of full register

events. However, the results show that adaptive partitioning can be highly effective at

reducing the number of full register events. On average, it reduces the number of full

register events by 63%.

Figure 4.16b shows the number of SQ full events. Dynamically sharing SQ

results in a significant number of full events for all benchmarks. lbm, in particular,

exhibits an exceptionally high pressure on SQ, resulting in 5× more full SQ events

than the average. Static partitioning of SQ reduces the number of SQ full events to

almost half compared to shared, while our adaptive partitioning reduces that even

further to 37%, on average.
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(a) Full Physical Register Events.
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(b) SQ Full Events.
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(c) Data TLB Misses.
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(d) Instruction Queue Full Events.

Figure 4.16. Impact of Partitioning Schemes on Individual Resource

Table 4.3. Delay, Area, and Power Results for Different Implementation of the Dispatch
Unit.

Module Delay (ns) Area (µm2) Static Power (mW) Dyn. Power (mW)

Shared Dispatch 0.955 7567 0.168 4.118

Partitioned Dispatch 0.951 7660 0.170 4.900

Asymmetric Dispatch 1.037 12147 0.284 6.508

Mult 32×32 1.318 7597 0.163 6.835

Figure 4.16c shows the effects of adaptive partitioning on the data TLB miss

rates. On average, our adaptive partitioning scheme reduces the number of data TLB

misses by 14% compared to a static partitioning baseline.

Similarly, Figure 4.16d compares the number of full IQ events for different

partitioning schemes. Static partitioning, in general, significantly increases the number

of the IQ full events (by 3×). However, our adaptive partitioning exhibits 11% fewer

IQ full events than static partitioning.
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4.7.5 RTL Model of Asymmetric SMT

To fully evaluate the effects of resource borrowing on cycle time, power, and

area (and to supplement our simulation-based performance results), we implement

different partitioning schemes on an example resource in Verilog HDL. To that end, we

choose the dispatch unit, the biggest contributor to the performance loss of partitioning

and likely the most latency-critical, for which we implement three different sharing

schemes: fully shared dispatch, partitioned dispatch, and Asymmetric dispatch. Fully

shared dispatch assigns the functional units to the instructions marked ”ready” in

the queue, in a simple first-in-first-out fashion. The partitioned dispatch is similar to

the shared, but it only dispatches instructions from a single thread each cycle. The

Asymmetric dispatch is similar to the partitioned dispatch, but it assigns any unused

functional units to the trusted thread. We then use the Synopsis Design Compiler

Q-2019.12-SP5-3 with the 45 nm NanGate standard cell library [1] to synthesize and

obtain timing, area, and power information.

Table 4.3 shows the post-synthesize analysis of different implementations of the

dispatch unit. Our Asymmetric scheme increases the delay of the dispatch unit from

0.955 ns to 1.037 ns. However, this 8.6% extra overhead does not affect the processor’s

cycle time, as it is not enough to put the dispatch unit on the critical path of the whole

processor core. As an example, we show that the (pipelined) integer multiplication unit

has a longer delay. To see this, we implement a three-cycle multiplication module [17],

imitating Skylake’s three-cycle integer multiplication design. Our results show that

the delay of our Asymmetric dispatch is still significantly smaller than the cycle time

determined by the multiplier (the longest of the three stages); thus, our Asymmetric

dispatch will not affect the cycle time.

Asymmetric dispatch covers a 16% larger area compared to a shared dispatch

unit. However, this is also not a matter of concern as the dispatch unit constitutes only
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a tiny fraction of a modern processor’s die area. The Skylake core, for example, has an

area of 8.73 mm2 [292]. The asymmetric dispatch overhead, thus, will be only 0.051%

of the core area (calculated conservatively, not accounting for the technology node

differences). Similarly, the power overhead is also not considerable compared to the

total power consumption of an out-of-order core, which could be in the order of tens

of Watts.

4.8 Conclusion

This chaoter provides the first comprehensive and exhaustive analysis of sharing-

based security vulnerabilities in modern, high-performance SMT processors. This

analysis shows that despite the fact that many resources are statically partitioned, there

still remain many resources that are dynamically shared and present high bandwidth

leakage channels. Among the channels identified are some previously unknown,

including fetch bandwidth dynamic sharing and dynamically shared issue bandwidth,

each enabling channels of over 500 Kbps.

This work also examines some novel, unified approaches to mitigation that can

be applied throughout the pipeline. These provide high isolation between threads

(allowing collectively a few bits of leakage over, for example, 100,000 cycles) while

retaining most of the performance of a fully dynamically shared, insecure SMT imple-

mentation. Adaptive partitioning gets within 5% of shared SMT, and asymmetric SMT,

which further enables unfettered performance of a trusted thread in the presence of

an untrusted, all but eliminates the loss.

It is common for SMT execution to be disabled in security-critical code, or

in the presence of frequent untrusted execution streams. This work shows that

SMT contention-based vulnerabilities can be reduced below the level of other known

vulnerabilities, making SMT execution a viable alternative for secure execution. We do

so while still preserving the bulk of the performance benefit of SMT.
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Chapter 5

Conclusion and Future Directions

In modern processor architectures, the ever-present tension between security

and performance has been considerably growing in recent years as new attacks appear,

each exploiting a crucial performance optimization in the processor, threatening to

unwind decades of architectural gains. Speculative execution, shared caches, branch

prediction, shared execution units, etc. are exploited in well-established classic attacks,

as well as recent instances. Turning off any of these features would be crippling

to performance, so we seek to design new architectures to continue to enable the

optimization but with higher levels of protection.

To that end, in this dissertation we first look at the new practical ways that

microarchitecure can be exploited in real attacks, deepening our understanding of how

microarchitectural optimizations can leak important information. Then we turn our

attention to defusing this tension with secure high-performance microarchitectures that

can preserve critical optimizations, such as speculative execution and simultaneous

multithreading, but at the same time provide protections against those vulnerabilities.

We also demonstrate how microarchitectural techniques can be utilized to provide

more efficient security solutions.

This dissertation addresses the question of how we can disentangle the inherent

tension between security and performance. This dissertation shows that, at the mi-
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croarchitecture level, where the sources of these vulnerabilities reside, it is possible to

ease this tension with secure microarchitectural techniques. This dissertation proposes

techniques that allow us to flexibly reach desirable points in the security-performance

space.

5.1 Future Directions

This dissertation has unlocked several new secure high-performance architec-

tures, including new secure multithreading architectures. These secure architectures

have the potentials to change the landscape of microarchitectural optimizations. Con-

sider multithreading and aggressive speculation, which are the two major alternatives

to achieve higher utilization of the pipeline. Security concerns may have led to a

more heavy reliance on speculation than higher levels of multithreading; however, this

resulted in the opposite effect, as it opened a Pandora’s box of new vulnerabilities. This

dissertation, however, has shown that multithreading’s vulnerabilities are much easier

to cap. As a result, it behooves us to completely rethink the balance of multithreading

and speculation, and consequently, the whole suite of tools for parallelism.

While the attacks we present in this dissertation represent a substantial leap

in understanding how microarchitectural optimizations can be exploited to leak in-

formation, it is only one step in that direction. In the future, to battle the continued

slowing of Moore’s Law, architects will likely begin to more aggressively introduce

and adopt new paradigms such as more complex optimizations, heterogeneity, spe-

cialization, and new memory technologies. Any of these, if not designed carefully,

will have the potential to bring about devastating security vulnerabilities. Following

on from the offensive microarchitecture research presented in this dissertation, we

need to explore the security implications of these emerging architectures. To that

end, we need to investigate tools that architects can use to reason about the security
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implications of their proposed optimizations. Such tools need to be integrated into

architects’ everyday simulation methodology (e.g., gem5 architectural simulator) for

encouraging widespread adoption. However, for emerging architectures that are past

the prototyping stage and are making their ways into productions systems, we need

to take a different approach. We need to understand them (if necessary, by reverse

engineering) and unveil their vulnerabilities before they become rampant. We need to

continue offensive security research on other new technologies so we can avoid a new

silent issue, such as Spectre, to get into our large-scale production systems.
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[33] Aleksandar Branković, Kyriakos Stavrou, Enric Gibert, and Antonio González.
Performance analysis and predictability of the software layer in dynamic binary
translators/optimizers. In Proceedings of the ACM International Conference on
Computing Frontiers, 2013.

[34] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,
Kari Kostiainen, and Ahmad-Reza Sadeghi. Dr.sgx: Automated and adjustable
side-channel protection for sgx using data location randomization. In Annual
Computer Security Applications Conference (ACSAC), 2019.

[35] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks
are practical. In USENIX Workshop on Offensive Technologies (WOOT), 2017.

[36] Yuriy Bulygin. Cpu side-channels vs. virtualization malware: the good, the bad
or the ugly. ToorCon: Seattle, Seattle, WA, US, 2008.

172

https://www.kernel.org/doc/Documentation/DMA-API.txt
https://www.kernel.org/doc/Documentation/DMA-API.txt


[37] Serdar Cabuk, Carla E Brodley, and Clay Shields. Ip covert timing channels:
design and detection. In 11th ACM conference on Computer and communications
security (CCS), 2004.

[38] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-Phillipe Martin, and Miguel
Castro. Data randomization. Technical report, Technical Report MSR-TR-2008-
120, Microsoft Research, 2008.

[39] Chandler Carruth. Mitigating Speculative Attacks in Crypto.
https://github.com/HACS-workshop/spectre-mitigations/blob/master/
crypto guidelines.md, 2018. Online; accessed Jul 2018.

[40] Chandler Carruth. RFC: Speculative Load Hardening (a Spectre variant1 mitiga-
tion). https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT
61e Ko3TmoCS3uXLcJR0/edit, 2018. Online; accessed Jul 2018.

[41] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing
data-flow integrity. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, page 147160, USA, 2006. USENIX Association.

[42] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. Sgxpectre attacks: Leaking enclave secrets via speculative execution.
CoRR, abs/1802.09085, 2018.

[43] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang,
XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. Racing in hyperspace:
Closing hyper-threading side channels on sgx with contrived data races. In IEEE
Symposium on Security and Privacy (S&P), 2018.

[44] H. Chen, X. Wu, L. Yuan, B. Zang, P. c. Yew, and F. T. Chong. From speculation
to security: Practical and efficient information flow tracking using speculative
hardware. In 2008 International Symposium on Computer Architecture, pages 401–
412, June 2008.

[45] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, and Todd C. Mowry. Log-
based architectures: Using multicore to help software behave correctly. SIGOPS
Oper. Syst. Rev., 45(1):84–91, February 2011.

[46] Tao Chen, Alexander Rucker, and G. Edward Suh. Execution time prediction
for energy-efficient hardware accelerators. In Proceedings of the 48th International
Symposium on Microarchitecture, 2015.

[47] Long Cheng, Fang Liu, and Danfeng (Daphne) Yao. Enterprise data breach:
causes, challenges, prevention, and future directions. WIREs Data Mining and
Knowledge Discovery, 7(5):e1211, 2017.

173

https://github.com/HACS-workshop/spectre-mitigations/blob/master/crypto_guidelines.md
https://github.com/HACS-workshop/spectre-mitigations/blob/master/crypto_guidelines.md
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit


[48] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori.
Software-based gate-level information flow security for iot systems. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
50 ’17, pages 328–340, New York, NY, USA, 2017. ACM.

[49] Haehyun Cho, Jinbum Park, Donguk Kim, Ziming Zhao, Yan Shoshitaishvili,
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