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ABSTRACT OF THE DISSERTATION 

 

Understanding fear and threat responding in the human brain 

 

by 

 

Cody Alexander Cushing 

Doctor of Philosophy in Psychology, University of California, Los Angeles, 2022 

Professor David Clewett, Chair 

 

Goal:  The goal of this dissertation is to investigate threat and fear responses in humans in 

order to understand both the multifaceted nature of these responses and how they can go awry 

in fear and anxiety related disorders.  By understanding the mechanisms behind fear and 

anxiety disorders, effective treatments can be designed that minimize distressing or panic-

inducing experiences that too often lead to attrition from the clinic.  These issues are 

investigated across three studies utilizing behavioral tasks and neuroimaging via functional 

magnetic resonance imaging (fMRI) with the following aims: 

 

Aim 1. Establishing efficacy of decoded neurofeedback as an intervention for specific phobia in 

a clinical cohort.  There is an unmet need for non-distressing treatments for fear-related 

disorders like specific phobia where exposure therapy is the gold standard.  While the 

effectiveness of exposure therapy should not be diminished, it is an inherently distressing 

experience leading to high rates of attrition and a need for alternative options for those who can 

not tolerate the experience.  In the first study of this dissertation, I tested multi-voxel neuro-

reinforcement as an intervention for specific phobia in a randomized double-blind placebo-
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controlled clinical trial.  I found evidence for reduced amygdala activation to phobia as well as 

less attentional capture by the target phobia in an affective stroop task post-treatment.   

 

Aim 2.  Classifying the subjective awareness of threat from multi-voxel patterns.  Most studies 

of threat processing have relied on direct contrasts between conditioned stimulus types as a 

proxy for threat detection.  However, such contrasts fail to take individual differences in threat 

learning success and generalization into consideration.  In the second study of this dissertation, 

I use machine-learning techniques to classify the subjective awareness of threat from whole-

brain multi-voxel patterns.  Additionally, I classify threat awareness iteratively within brain 

regions to identify which brain regions are most critical for threat awareness.   These analyses 

reveal a distributed brain response to threat that is organized hierarchically along the visual 

stream. Results are also characterized in terms of self-reported participant symptomatology.  

 

Aim 3.  Investigating brain networks involved in acquisition, extinction, and recall of learned 

threat.  While many brain regions have been implicated in the formation of threat memories, the 

whole-brain dynamics of learned threat in humans are still poorly understood.  In the third study 

of this dissertation, I applied group independent component analysis to whole-brain fMRI data.  I 

identified brain networks involved in the acquisition, extinction, and recall of learned threat in a 

Pavlovian threat conditioning paradigm. This revealed stable networks across task phases that 

responded in opposing fashions across the same timescale.  Results from this study highlight 

the multitude of parallel processes and networks that are engaged in human threat detection 

and learning. 
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Chapter 1. Introduction 

 

For decades, attempts have been made to pinpoint neural mechanisms in anxiety and fear-

related disorders.  Yet, anxiety, phobia, post-traumatic stress disorder (PTSD), and other related 

disorders still do not have a clearly understood neuropathophysiology.  This difficulty may partly 

stem from the subjective experience of fear itself not having received adequate attention in the 

search for these neural mechanisms and effective treatments (LeDoux & Hofmann, 2018).  As 

such, most effort towards reducing fear disorders to a manageable level has relied on 

behaviorally targeting the object or circumstances of fear rather than the experience of fear 

itself.  However, exposure to the target of fear typically leads to a distressing and uncomfortable 

experience for patients. This leaves an unmet need for treatment options that are both effective 

and non-distressing to those seeking treatment.  By understanding the different foundational 

aspects of fear and threat responding in the human brain, individually tailored treatments can be 

developed that potentially minimize distressing patient experiences. 

 

The difficulty in treating fear disorders is not solely for lack of effective treatment options.  One 

currently popular treatment is ‘exposure therapy’ which involves direct exposure to fear-causing 

or panic-inducing stimuli. Exposure therapy attempts to extinguish or counter-condition the 

existing fear to be associated with something more positive. Inherently, this is a disturbing and 

unpleasant experience. Despite the ultimate effectiveness for individuals completing treatment, 

there are high rates of attrition due to discomfort (Loerinc et al., 2015; Zayfert et al., 2005). 

However, a promising new treatment using a fMRI method called multi-voxel neuro-

reinforcement has demonstrated the ability to lessen fear responses without direct exposure to 

fear-inducing stimuli (Koizumi et al., 2017; Taschereau-Dumouchel et al., 2018). Fear-response 

reduction is achieved through a kind of ‘unconscious exposure’ (Chiba et al., 2019). By using a 

machine-learning classifier to ‘decode’ online BOLD activity from patients in the scanner, neuro-



2 
 

reinforcement can be provided based on a specific stimulus category (e.g. spider).  Analyzing 

patterns across voxels rather than average brain activity alone enables more specific neural 

targets. Importantly, this can be done outside of conscious awareness.   

 

Anxiety-related disorders also involve these same feelings of fear but generalized over time and 

place.  The definition of a clear treatment target for something like exposure can be more 

difficult in anxiety disorders.  Though exposure therapy can not always be applied in the same 

way, a useful target for multi-voxel neuro-reinforcement may still be found. Under the fear 

responses seen in fear and anxiety-related disorders likely lies a unifying mechanism.  This 

mechanism has been theorized to involve threat conditioning processes with fear and anxiety-

related disorders arising from dysfunctional threat learning (Craske et al., 2017; Fenster et al., 

2018).  A wealth of evidence supports this notion with differences in traditional threat learning 

processes being observed in phobia (Lange et al., 2019), anxiety disorders (Marin et al., 2017; 

Pittig et al., 2018), and PTSD (Bremner et al., 2005; Hennings et al., 2020; Milad et al., 2009).  

However, the consequences of these differences for designing treatments have not been so 

immediately clear.  The reasons for this are likely also stemming from non-clarity surrounding 

just what the fear response is (LeDoux & Hofmann, 2018).   

 

As such, much of the focus has been placed on low-level threat response processes in regions 

such as the amygdala and hippocampus.  But modulating these low-level regions alone may not 

be sufficient to impact a patient’s distressing subjective experience (Taschereau-Dumouchel et 

al., 2018, 2022).  Indeed, at the human level it is not so clear exactly how necessary classic 

translational targets like the amygdala, which has been popularized as the “fear center”, are for 

threat learning as it is at times not detected during threat acquisition in human neuroimaging 

studies (Visser et al., 2021).  Additionally, amygdala lesions do not seem to alter subjective 
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experiences of either positive or negative affect (Anderson & Phelps, 2002) nor do they prevent 

the experience of fear or panic (Feinstein et al., 2013). 

 

However, these low-level processes are not to be trivially dismissed either.  They are surely a 

critical piece in understanding how threats are detected and how new threats are learned in the 

human brain. Additionally, they are undoubtedly foundational to how fear and anxiety-related 

disorders develop.  The role of each process just needs to be understood as it contributes to 

things like behavior, physiological responses, or subjective experiences.  The search for brain 

mechanisms behind these phenomena must also be expanded beyond a handful of focused 

regions as brain responses related to subjective experience tend to be distributed across the 

entire cortex (Taschereau-Dumouchel et al., 2019; Zhou et al., 2021).   

 

As an early response to the inconsistencies surrounding the term “fear” in the scientific 

literature, Peter Lang proposed the “three-systems model” of fear (Lang et al., 1983).  This 

divided the fear response into three systems: verbal (as a proxy for cognition), motor, and 

somatic. The theory purported fear and anxiety express themselves through these 3 systems 

and therapy should seek to alter a system specifically in order to impact the fear response.   

More modern approaches have sought to put subjective experience in the front seat in place of 

verbal report as methods to investigate subjective experience have come to fruition through 

technical and experimental development (Lau, 2022; Taschereau-Dumouchel et al., 2022).  A 

modern understanding of the brain mechanisms behind anxiety and fear needs to understand 

the mechanisms behind both subjective experience and low-level threat processes alike as well 

as their influence on behavior and physiology.  
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Dissertation Overview 

This dissertation is divided into 3 main chapters (Chapters 2-4). Chapter 2 describes a 

randomized double-blind placebo-controlled clinical trial of multi-voxel neuro-reinforcement as a 

clinical intervention for specific phobia.  In it, real-time activations of nonconscious visual 

representations (e.g. spider) are paired with reward during an fMRI scan.  Patients are 

assessed pre-treatment and post-treatment with a fear rating and affective stroop task while in 

the fMRI scanner.  The primary hypothesis is that multi-voxel neuro-reinforcement leads to 

selective reduction in threat responses to the phobia targeted for intervention. 

 

Chapter 3 investigates multi-voxel fMRI response patterns responsible for representing the 

subjective awareness of threat in a large cohort of participants in a Pavlovian threat conditioning 

task.  The paradigm is a 2-day three-phase procedure with participants completing threat 

acquisition and extinction on day 1 and extinction recall on day 2 at least 48 hours later. Whole-

brain classification performance is assessed in a cross-validation procedure.  Within-region 

classification is performed across a parcellation of the cortex to identify brain regions that 

contain significant information regarding the subjective awareness of threat.  Generalization of 

classification performance is assessed by applying the developed machine-learning classifier to 

a large independent dataset of participants that completed a similar Pavlovian threat 

conditioning paradigm.  Participant symptomatology is considered as it relates to classifier 

evidence of threat awareness during extinction memory recall.      

 

Chapter 4 utilizes the same Pavlovian threat conditioning paradigm and describes a group 

network analysis using group ICA analysis of fMRI data.  Using group independent component 

analysis, brain networks involved in the acquisition, extinction, and retention of extinction 

memory are explored.  Networks that are common across multiple phases of threat learning are 

given focus. 
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Chapter 2.  Establishing efficacy of decoded neurofeedback as an intervention for 

specific phobia in a clinical cohort 

 

Introduction 

 

Fear disorders such as specific Phobia and Post-traumatic stress disorder (PTSD) are among the 

most difficult mental disorders to treat.  The current best treatment is ‘exposure therapy’ which 

involves direct exposure and experience of fear-causing or panic-inducing stimuli.  This is done 

in an attempt to extinguish existing fear or to counter-condition the fear-evoking stimuli to be 

associated with something more positive. Inherently, this is a disturbing and unpleasant 

experience for the patient undergoing treatment, leading to high rates of attrition (Loerinc et al., 

2015; Zayfert et al., 2005). 

 

However, a promising new treatment using a fMRI method called multi-voxel neuro-reinforcement 

has demonstrated the ability to lessen fear responses to both lab-conditioned fears and pre-

existing fears through a kind of ‘unconscious exposure’ (Koizumi et al., 2017; Taschereau-

Dumouchel et al., 2018).  By using a machine-learning classifier (also referred to as a ‘decoder’) 

to ‘decode’ online BOLD activity from patients in the scanner, neuro-reinforcement can be 

provided based on a specific stimulus category (e.g. spider) rather than average brain activity 

alone.   

 

Importantly, this can be accomplished at an implicit nonconscious level as participants undergoing 

neuro-reinforcement are simply trying to make a feedback disc on the screen grow in size with no 

specific instruction as to what makes the disc grow.  As they are unaware of the relation of the 

feedback score to the feared stimulus category (e.g. spider), their brain is able to learn to activate 

a nonconscious representation of the feared stimulus outside of the patient’s awareness.  

Critically this results in no subjective discomfort for the patient.  
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The procedure is based on reinforcement learning. When a brain pattern is induced, it is paired 

with reward. Through this process, either exposure or counter-conditioning effects alter neural 

and behavioral responses to feared stimuli. The exact mechanism is not yet understood, but 

early results are consistent with an exposure effect over a counter-conditioning mechanism 

(Chiba et al., 2019). Regardless of the mechanism, multi-voxel neuro-reinforcement has shown 

early promise as a clinical intervention that can be applied outside of conscious awareness, 

eliminating stressful conscious exposures. Essentially any neural pattern that can be identified 

reliably with multivariate-pattern analysis (MVPA) can be used as a target for intervention. 

 

Typically the construction of such a machine-learning classifier to decode visual representations 

in a patient’s brain involves repeated visual presentation of the representation attempting to be 

decoded.  This would seemingly nullify the entire appeal of the multi-voxel neuro-reinforcement 

procedure.  However, recent advances in fMRI methodology have enabled the functional 

alignment of fMRI brain data allowing brain data to be moved from the native space of one person 

into another (Haxby et al., 2011).   Functional alignment is thought to be superior to simple 

anatomical registration based on structural landmarks as cortical regions tend to be more 

functionally organized rather than structurally organized.  Aligning fMRI data functionally results 

in superior between-subject decoding for functionally aligned data over structurally aligned data 

(Haxby et al., 2011). The functional organization of the cortex is why popular modern parcellations 

of the human brain have begun to be based on functional connectivity patterns rather than 

alignment of brain structures (Schaefer et al., 2018). 

 

By leveraging functional alignment approaches, a decoder can be built for a phobic patient’s brain 

using brain data from a non-phopic control for whom viewing repeated images of a target 

representation (e.g. spider) produces no stress.  The phobic patient simply needs to undergo a 
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similar task (minus the phobic images) while fMRI data are collected in order to calculate the 

necessary functional alignment.  This provides the opportunity to produce a “nonconscious 

exposure” in phobic patients that have not had to interact with the feared stimulus in any capacity 

other than non-distressing activation of the target representation at a nonconscious level.   

 

The specificity of the decoder also allows the opportunity for a within-subject placebo control 

provided the patient has more than one phobia.  For example, if a patient has a snake and a 

spider phobia, a decoder can be built specifically for spiders while snakes remain a placebo 

control.  Such within-subject placebo controls are not possible with other forms of neurofeedback 

as something like increasing univariate BOLD signal within a region of interest cannot be 

specifically related to one image category.  Here, I describe a double-blind placebo-controlled 

clinical trial of this method as an intervention in a population with specific phobia.  

 

Methods 

Participants 

For multi-voxel neuro-reinforcement, phobic patients (N=18) with at least 2 specific phobias were 

enrolled for treatment.  Eligibility was confirmed and phobias diagnosed via an ADIS-V (T. Brown 

& Barlow, 2014) interview conducted by a certified researcher.  Exclusion criteria were any MRI 

contraindications or meeting the diagnostic criteria for Post-traumatic Stress Disorder, Obsessive 

Compulsive Disorder, Substance Use Disorder, current Major Depressive Disorder, Bipolar 

Disorder, or Psychosis.  Patients were randomly assigned to complete either 1, 3, or 5 days of 

multi-voxel neuro-reinforcement to determine the dose-response relationship between neuro-

reinforcement and clinical outcomes. 

 

Decoder Construction 



8 
 

Prior to neuro-reinforcement, a between-subject machine learning classifier was trained for the 

target phobic image category (Fig. 1).  To eliminate the need for any exposure to phobic stimuli 

to receive treatment, the classifier was constructed using brain data from healthy controls using 

a process called hyperalignment (Haxby et al., 2011). During an initial fMRI session (Fig. 2), 

each healthy control (N=28) viewed the same image dataset of 3600 images consisting of 40 

categories of animals and objects (e.g. birds, butterflies, snakes, spiders). Conversely, phobic 

patients (N=18) viewed the same image dataset but with their specific phobias removed to avoid 

unnecessary exposure.  In place of phobic images, phobic patients viewed happy human faces 

using stimuli from the Chicago Face Database and NimStim Set of Facial Expressions (Ma et 

al., 2015; Tottenham et al., 2009).  These stimuli have their emotional expression verified by 

independent raters and were used to provide a non-disturbing stimulus replacement that was 

sufficiently orthogonal to the task image set of animals and objects.  The decoder construction 

task consisted of 6 runs of 600 trials each.  Each trial consisted of a .98 second image 

presentation with no inter-trial interval.  This rapid event-related design was used to maximize 

the number of images each participant viewed.  To ensure attention, participants were given the 

task of pressing a button each time the image category changed (i.e. a 1-back task).  Image 

categories were presented in chunks of 2, 3, 4, or 6 consecutive images. 

 

Decoder construction fMRI data were processed using a combination of SPM12 (Statistical 

Parametric Mapping; www.fil.ion.ucl.ac.uk/spm) and custom python scripts using pyMVPA and 

sklearn packages (Hanke, Halchenko, Sederberg, Olivetti, et al., 2009; Pedregosa et al., 2011).  

All 6 runs of the task were concatenated and preprocessed in SPM using default parameters  
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unless otherwise explicitly specified.  Data were realigned to the first image from the first run of 

the task and segmented into tissue classes.  Anatomical and functional data were coregistered 

using the gray matter image from segmentation as a reference.  Motion was then regressed out 

of the functional data using the parameters from realignment.  Single-trial estimates were then 

generated with pyMVPA using the least-squares 2 (LS-2) method (Turner et al., 2012) in which 

a separate GLM is computed for each trial where the current trial is assigned to one regressor 

while the remaining trials are equally split between two “rest” regressors. 

 

Using hyperalignment, single-trial estimates from healthy controls in the target brain region 

(ventral temporal cortex) were functionally transformed to the current phobic patient’s brain and 

used to train a machine-learning pattern classifier (decoder) using the phobic images that the 

Figure 1. Functional alignment of brain data into phobic patient brain using hyperalignment. All 
participants complete a near-identical task in the fMRI scanner where 3600 images are rapidly 
viewed during 1 second presentations.  Phobic patients view happy human faces instead of 
their own phobic categories.  Healthy controls view images from all categories.  Transformation 
parameters into the functionally aligned common model space are determined with phobic 
image trials withheld.  Data from all participants for all categories (including phobic categories) 
are transformed into the common model space and then reverse transformed into the native 
space of the current phobic participant.  A machine-learning classifier can then be trained on 
phobic images in the patient’s native brain space despite the patient never having personally 
viewed the images. 
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patient did not see (Fig. 1). To ensure double-blind treatment target selection, the target for 

treatment was automatically selected by a computer program that calculated which phobic 

category had the highest cross-validated area under the receiver operating characteristic curve 

(AUC) for binary classification. 

 

To determine AUC metrics, a 6-fold cross-validation (CV) procedure was used.  FMRI data for 

each participant were loaded and masked to the ventral temporal (VT) area in their own native 

space using an anatomical mask derived from Freesufer parcellations of the fusiform, lingual, 

parahippocampal, and inferior temporal areas (Fischl et al., 2004).  Single-trial parameter 

estimates were standardized by feature within subject and within each of the 6 task runs.  The 

data were split into 6 folds for training and testing based on the 6 runs completed by each 

participant.  That is, for each CV split, the withheld testing set consisted of all the data from 

each participant for one of the six task runs.  The remaining preprocessing was calculated using 

only the training data to avoid overfitting.   As hyperalignment requires a stable number of 

features across participants, 1000 voxels were selected within the VT area via F-test to select 

which voxels accounted for the most variance elicited by all image categories across all training 

trials.  For each phobic participant, a unique set of hyperalignment transformation parameters 

into the common model space was calculated for the current phobic participant and all healthy 

controls.  The fitting of the hyperalignment parameters was done using trials for all image 

categories except the current patient’s phobia.  For example, if a phobic patient had spider and 

snake phobias, all spider and snake trials were withheld from all participants when fitting the 

transformation parameters.   

 

After hyperalignment transformation parameters were determined, the data from all healthy 

controls were moved into the native space of the current phobic patient by transforming the data 

into the common model space and then reverse transforming the data from the common model 
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space into the native space of the current patient.   The transformed data included the 

previously withheld phobic category images from the healthy controls as well as the testing 

dataset. 

 

With all data in the current patient’s native space, class sizes (target vs. non-target image 

categories) were balanced by random undersampling balanced between the 39 non-target 

image categories.  Following previous work (Taschereau-Dumouchel et al., 2018), a Sparse 

Multinomial Logistic Regression (SMLR) classifier was trained to perform binary (one-vs-rest) 

classification between the potential target category and all remaining categories (Krishnapuram 

et al., 2005).  AUC scores for each CV split were calculated based on classifier estimates. 

 

Of the potential phobic categories to be selected for treatment for the current patient, the phobia 

with the highest AUC scores across all 6 CV splits was blindly selected via computer program 

as the target for treatment.  The within-subject control was also blindly selected through 

automated random selection from the remaining phobic categories.  For the final decoder to be 

used in neuro-reinforcement, the same procedure was performed but trained using all 6 runs of 

data.  

 

Specific phobia treatment 

Pre- and Post-treatment assessments 

Each participant completed a pre-treatment and post-treatment fMRI session (Fig. 2).  During 

the pre-treatment and post-treatment sessions, participants completed a fear test as well as an 

affective stroop task while their BOLD activity was recorded. 

 

Fear test. To assess physiological, neural, and behavioral responses to phobic images, 

participants completed a task in which they rated how fearful they found images from select 
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categories following the previous proof-of-

concept study (Taschereau-Dumouchel et 

al., 2018).  During each trial, a fixation 

cross was presented for 3-7 seconds, 

followed by a static image for 6 seconds.  

After the static image, a blank screen was 

displayed for 4-12 seconds followed by a 

prompt to enter how fearful they found the 

image on a 7-point scale.  Images 

displayed either belonged to the target 

phobia, control phobia, neutral animal, or 

neutral object categories.  Neutral animals 

and objects were randomly selected 

based on categories for which the patient 

reported no levels of fear during their 

diagnosis interview.  Participants 

completed two runs of 15 images each 

with a self-paced break in between runs.  

Within each run, patients viewed 5 target 

phobia images, 5 control phobia images, and 2-3 neutral animal/object images, 

counterbalanced across runs.  The first image of each run was a neutral object, always 

immediately followed by either a target phobia or control phobia image, counterbalanced across 

runs.  The remaining images within a run were randomly selected from the remaining images. 

 

Affective Stroop. In order to assess patients' reflexive attentional responses to phobic stimuli, 

patients also completed an affective stroop task.  In this task, patients started with a 1 second 

Figure 2. Study design.  Timeline detailing patient 
activities during each day’s fMRI session with 
sample stimuli from each day. Before beginning the 
treatment program patients undergo a decoder 
construction session where they view non-phobic 
images to enable hyperalignment with healthy 
control subjects.  On day 1 of treatment, patients 
complete a pre-test in which phobic (and non-
phobic) images are rated for fearfulness. Over the 
next 5 days, patients complete their assigned 
number of multi-voxel neuro-reinforcement 
sessions (1, 3, or 5 days).  On day 7, patients 
complete the same task as a post-test to assess 
changes in amygdala and SCR response to treated 
and untreated phobias. 
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red fixation cross and then briefly (300 ms) saw an image from either a phobic or neutral control 

category.  As soon as the image appeared, patients were instructed to as quickly and accurately 

as they could make a size judgment about whether the presented animal could fit in their hand 

(i.e. is it the size of your hand or smaller?).  Patients pressed one of two buttons with their index 

and middle finger to indicate yes or no.  Response-key mappings were counterbalanced across 

participants.  There was a 1.2 second response period (indicated by a blue fixation cross) 

following stimulus offset for participants to enter their response followed by a fixed 1 second 

inter-trial interval.  Stimuli were selected from 7 animal categories: target phobia, control phobia, 

and 5 neutral animal categories.   Similar to the fear test, neutral animal categories were 

selected from categories for which patients reported no fear during their diagnosis interview.  

The task consisted of 210 randomly distributed trials split over 2 fMRI runs with a self-paced 

break in between runs.  

 

Multi-voxel neuro-reinforcement 

In a number of additional fMRI sessions (based on dosage grouping), patients underwent multi-

voxel neuro-reinforcement (Fig. 2).  Using multi-voxel neuro-reinforcement, successful activation 

of the phobic image category was paired with reward. While participants laid in the fMRI 

scanner instructed to do “whatever they can” to get the best feedback, a neuro-reinforcement 

method (Taschereau-Dumouchel et al., 2018) was used to reward a nonconsciously 

represented phobic image category (e.g., spider). Feedback during these training sessions was 

based on real-time output of the decoder constructed for the individual corresponding to the 

specific phobia selected for treatment.   

 

Each neuro-reinforcement run began with an extended rest period of 50 seconds while scanner 

image reconstruction processing caught up to real time.  Then, an additional rest period of 10 

seconds was collected to determine baseline BOLD activity levels followed by 16 trials of neuro-
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reinforcement.  Each trial began with 6 seconds of rest, followed by 6 seconds of “induction” 

where patients modulated their brain activity in an attempt to receive high feedback.  Following 

induction, real-time decoder output was calculated during a 4 second period and the decoder 

output was then displayed as a green disc for 2 seconds.  The size of the disc directly 

corresponded to the likelihood estimate of the decoder such that a likelihood of 100% was 

associated with a maximum disc size (indicated by a visual boundary) and a likelihood of 0% 

associated with no disc displayed.  The size of the disc also determined the amount of reward 

the patient received at  the end of each run, with their average feedback score determining the 

percentage of that run’s total bonus received.  For example, a run finished with an average 

score of 60% resulted in 60% of the potential $6.00 bonus being received (i.e. $3.60 bonus 

received).  To further motivate patients, an additional bonus was also given when participants 

were able to generate a feedback score of 70% or more for 3 trials in a row.  Patients were 

given an additional $2.00 per high-score streak bonus which was visually indicated by the 

feedback disc turning blue with a written message alerting them to their high-score streak. 

 

Amygdala Response Analysis 

Based on previous work (Taschereau-Dumouchel et al., 2018), my primary hypothesis was that 

multi-voxel neuro-reinforcement would result in selectively reduced amygdala response to the 

target phobia of treatment.  To test this hypothesis, fMRI data from the fear test task were 

processed in the following manner. 

 

FMRI task runs were distortion corrected using FSL’s topup (Andersson et al., 2003; Smith et 

al., 2004) according to spin echo field map sequences collected in opposite phase-encoding 

directions.  Due to technical issues with spin echo field map collection, 5 participants were 

excluded from distortion correction.  Anatomical T1 images were brain extracted using bet 

(Smith, 2002).  Then, preprocessing and ICA-decomposition were performed using FSL’s 
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melodic and FEAT (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl).  During preprocessing, 

fMRI data were motion corrected using mcflirt (Jenkinson et al., 2002), brain extracted using bet 

(Smith, 2002), spatially smoothed with a Gaussian kernel of FWHM 4.0mm, intensity 

normalized, and highpass filtered with a gaussian-weighted least-squares straight line fitting 

with sigma=50.0s.  Images were then registered to the standard MNI space using FLIRT and 

then refined using nonlinear registration with FNIRT (Jenkinson et al., 2002; Jenkinson & Smith, 

2001).  Registration of multi-band images were improved by using a high-contrast single-band 

reference image collected at the start of each functional run as an initial reference image for 

registration. 

 

ICA components were then manually investigated with components resulting from movement or 

other sources of noise removed.  To further account for movement in this clinical cohort, data 

were processed with the Artifact Detection Tools (ART, 

https://www.nitrc.org/projects/artifact_detect) toolbox to generate motion regressors and identify 

outlier timepoints for censoring.  First-level GLMs were then calculated in SPM12 with a 

temporal derivative to account for slice-timing differences.  Regressors were fit for the onset of 

target phobia, control phobia, neutral animal, and neutral object images with a duration of 0 

seconds to model the event-related response.  Following previous work (Taschereau-

Dumouchel et al., 2018), only the first 2 trials within each run were analyzed for target phobia 

and control phobia images. 

 

Bilateral amygdala masks were generated from the automatic Freesurfer segmentation of the 

T1 image and transformed into the patient’s native functional space.  Average parameter 

estimates were extracted from the Amygdala using marsbar (Brett et al., 2002).  Average 

parameter estimates were then corrected to baseline by subtracting the average amygdala 

response to the neutral animal from the target phobia and control phobia, within runs.  Baseline-
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corrected phobia responses were then averaged across runs for pre-treatment and post-

treatment sessions. Amygdala responses were tested with a 2 (condition: target phobia/control 

phobia) x 2 (time: pre-treatment/post-treatment) repeated-measures ANOVA using JASP 

software (JASP Team 2022). As my specific hypothesis was that there would be a significant 

reduction in amygdala response for the target phobia category post-treatment compared to the 

control phobia, planned t-tests were performed on pre- and post-treatment reaction times for the 

target phobia and control phobia.   

 

Behavioral Analyses 

Fear test.  For the fear test task, fear ratings were extracted for the following categories using 

custom scripts in python:  target phobia, control phobia, neutral animal, and neutral object.  To 

test if there was a specific reduction in self-reported fear following treatment, planned t-tests 

were performed on pre- and post-treatment ratings for target phobia and control phobia.  One 

patient was excluded from this analysis due to not properly completing the task, resulting in 17 

patients analyzed. 

 

Affective stroop.  For the affective stroop task, response times were extracted for target phobia, 

control phobia, and neutral animal stimuli using custom scripts in MATLAB (Mathworks Inc., 

Natick, MA).  Response times were tested with a 2 (condition: target phobia/control phobia) x 2 

(time: pre-treatment/post-treatment) repeated-measures ANOVA using JASP software (JASP 

Team 2022). As my specific hypothesis was that there would be a significant reduction in 

response time for the target phobia category post-treatment compared to the control phobia, 

planned t-tests were performed on pre- and post-treatment reaction times for the target phobia 

and control phobia.  Also, to verify phobic images were modulating attention as intended, an 

additional t-test was performed on reaction times to phobic images (grouping target and control) 
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and neutral animal images pre-treatment.  Technical issues occurred for 2 patients during data 

collection, resulting in 16 patients analyzed for this task. 

 

Results 

 

Amygdala Response 

Before neuro-reinforcement, there was a significant response in the amygdala for both the 

target phobia (t(17)=2.20, p=0.042) and control phobia (t(17)=2.27, p=0.037) compared to 

neutral animals as confirmed by one-sample t-tests performed on the baselined parameter 

estimates.  This indicates successful capturing of threat responding in the amygdala for phobic 

images. 

 
Following neuro-reinforcement, there was a main effect of time shown by a 2 (condition) x 2 

(time) repeated-measures ANOVA (F(1,17)=4.56, p=0.048).  This result indicates that there was 

a generalized reduction in amygdala response to phobic images (as compared to neutral animal 

images) following neuro-reinforcement.  Amygdala responding to both phobias was reduced to 

levels comparable to neutral animals as confirmed by separate one-sample t-tests on the 

baselined parameter estimates for the target (t(17)=-0.53, p=0.60) and control (t(17)=-0.45, 

p=0.66) phobias.  However, my primary hypothesis was that neuro-reinforcement would 

selectively decrease amygdala responding for the target phobia alone.  Although the interaction 

between condition and time was not significant (F(1,17)=0.276, p=0.606), I performed planned t-

tests for the target and control phobia conditions to examine target-specific engagement 

 

After neuro-reinforcement, there was a trend of decreasing amygdala response to the target 

phobia (t(17)=1.80, p=0.09) but not for the control phobia (t(17)=1.58, p=0.13, Fig. 3A).  These  
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findings broadly support my hypothesis that amygdala activation would be selectively reduced 

for the target phobia following neuro-reinforcement.  Though only reaching trending significance, 

these results corroborate previous neuro-reinforcement findings of reduced amygdala activation  

to a feared animal category following neuro-reinforcement (Taschereau-Dumouchel et al., 

2018).  Reduction of amygdala activation following neuro-reinforcement indicates that 

physiological threat response to the target phobia is reduced by neuro-reinforcement. 

 

Although the control phobia did not reach trending significance on its own, amygdala response 

to the control phobia was more reduced in the current study compared to the original proof-of-

concept study (Taschereau-Dumouchel et al., 2018).  In order to test whether the more 

generalized reduction in amygdala responding in the current study was related to decoder 

Figure 3. Amygdala response and self-reported fear following neuro-reinforcement. (A) 
Amygdala responses to phobic stimuli (baseline-corrected to response to neutral animal stimuli) 
before and after neuro-reinforcement.  There was trending statistical significance for decreased 
amygdala response to the target phobia following neuro-reinforcement. (B) Self-reported fear 
ratings to phobic stimuli following neuro-reinforcement.  There were no changes in self-reported 
fear for either the target or control phobia following neuro-reinforcement. Error bars represent 

standard error from mean. ✝ p<0.10 
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performance during decoder construction (mean AUC=0.63(0.032)), I performed an exploratory 

follow-up analysis.  The same contrasts were performed on a subset of participants that 

demonstrated AUCs of 0.60 or higher during decoder construction cross validation (15 

participants).  This subset of participants with the highest decoding performance had greater 

specificity in amygdala response reduction following neuro-reinforcement.  Following neuro-

reinforcement, reduction of the amygdala response to the target phobia increased (t(14)=2.13, 

p=0.051) while it decreased for the control phobia (t(14)=1.09, p=0.30) in this subset of 

participants.  This finding indicates decoding performance may need to reach a sufficient 

threshold to achieve target-specific reduction of threat responding following neuro-

reinforcement.   

 

Self-reported Fear 

After neuro-reinforcement there was no significant change in self-reported fear levels in 

response to either the target phobia (t(16)=-1.52, p=0.15) or the control phobia (t(16)=-0.56, 

p=0.58, Fig. 3B).  These findings match previous findings that self-reported fear levels are not 

modulated by neuro-reinforcement (Taschereau-Dumouchel et al., 2018).  This could be due to 

implicit neuro-reinforcement being more effective for automatic physiological responses to threat 

compared to the subjective experience of fear itself. 

 

Affective Stroop 
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Before treatment with neuro-

reinforcement, response times for phobic 

stimuli were significantly slower 

compared to responses to neutral stimuli 

(t(15)=2.62, p=0.019).  Slower response 

times for phobic stimuli indicate that 

attention is successfully captured by 

phobic stimuli in this task.  Following 

neuro-reinforcement, there was a 

significant effect of time similar to that 

observed in the amygdala during the fear 

test (F(1,15)=5.644, p=0.031).  This result 

indicates that attention was less captured 

by phobia following neuro-reinforcement.  

Although the interaction of condition and time was not significant (F(1,15)=1.49, p=0.24), I 

performed planned t-tests to explore the main hypothesis that reaction times would be 

selectively decreased for the target phobia.  There was a significant decrease in reaction time to 

the phobic target compared to pre-treatment (t(15)=2.50, p=0.025) but not for the control phobia 

(t(15)=1.92, p=0.074, Fig. 4).  Selectively decreased reaction times for the target phobia indicate 

that attention is captured less by the target phobia following neuro-reinforcement.  However, the 

magnitude of this decreased reaction time was not directly predicted by the magnitude of 

decreased amygdala response during the fear test, as assessed with Spearman’s rank 

correlation (r(12)=0.19, p=0.51). 

 

Figure 4. Reaction times in affective stroop task 
following neuro-reinforcement.  Participants made 
size judgments about briefly viewed phobic and 
neutral animal stimuli.  After neuro-reinforcement, 
patients were significantly faster at responding to 
the target phobic stimulus but not the control phobic 
stimulus.  This indicates attention was less 
captured by the target phobia following neuro-
reinforcement.  Error bars represent standard error 
from mean. * p<0.05     
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Discussion 

In a double-blind placebo-controlled clinical trial, I investigated whether multi-voxel neuro-

reinforcement could nonconsciously intervene on specific phobia.  I found evidence of specific 

reduction in amygdala reactivity to the target phobia supporting previous findings (Taschereau-

Dumouchel et al., 2018) as well as significantly reduced attentional capture by the target phobia 

following neuro-reinforcement.  However, it should be noted that this trending effect for 

amygdala response reduction did not reach true significance.  This can likely be attributed to a 

lack of statistical power.  In the future, a larger trial should be conducted to see if this effect 

replicates with sufficient power.  Additionally, there was a marked reduction in amygdala 

response to the control phobia following multi-voxel neuro-reinforcement.   

 

This generalized reduction in amygdala response may be due to similarities between phobic 

categories for patients or due to limitations in the category classification performance of the 

decoder. In multiple cases, target and control phobias appeared superficially related despite 

belonging to distinct animal species (e.g. spiders/cockroaches/beetles, chickens/peacocks). 

Although the goal was to demonstrate unchanged control phobia responding following neuro-

reinforcement, generalized reduction in threat responding following neuro-reinforcement may 

still be therapeutically meaningful.  Ultimately, the goal of treating people with multiple phobias 

would be to have threat responding to all phobias reduced.  If non-specific reduction in threat 

responding is related to conceptual or perceptual overlap between target and control phobias for 

patients, it would only be more cost effective from a therapeutic angle to be able to reduce 

threat responding to both phobias simultaneously.  Future studies should employ measures of 

representational similarity between target and control phobia multi-voxel patterns in order to 

assess the relationship between target and control similarity and effect specificity following 

neuro-reinforcement.   It should be noted that this reduction in amygdala response was specific 

to phobic images as amygdala response to neutral non-feared animals was used as a baseline 
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in these comparisons.  If amygdala response was similarly reduced for both feared and non-

feared images there would have been no observed difference in amygdala responding following 

neuro-reinforcement. 

 

Despite evidence of decreased amygdala response to phobia following neuro-reinforcement, I 

did not observe any decrease in self-reported fear levels.  This also matches previous findings 

(Taschereau-Dumouchel et al., 2018) indicating non-conscious neuro-reinforcement does not 

seem to alter subjective fear experience.  This discordance is consistent with a higher-order 

theory of emotion in which subjective mental experience operates via different mechanisms than 

physiological threat responses (Taschereau-Dumouchel et al., 2022).  It may be that the kind of 

nonconscious exposure employed in this neuro-reinforcement design is more effective at 

targeting physiological threat responses rather than subjective fear experiences.  While an 

effective treatment would ultimately aim to reduce subjective fear experiences when confronting 

phobic stimuli, neuro-reinforcement could represent an important first step in reducing 

subjective discomfort during traditional exposure treatments.  Despite similar levels of self-

reported fear, patients may be more willing to engage with phobic stimuli following neuro-

reinforcement or be less behaviorally averse. 

 

This notion is supported by the results from the affective stroop task.  Following neuro-

reinforcement, reaction times were significantly decreased specifically for the target phobia.  In 

addition to providing further support for specific target engagement by neuro-reinforcement,  this 

result suggests that patients may be less reflexively avoidant to their phobia following neuro-

reinforcement.  If this is the case, patients may find traditional behavioral exposure treatments 

less aversive following neuro-reinforcement leading to lower rates of attrition. 
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To test this hypothesis, future studies should complement neuro-reinforcement with a 

behavioral-approach task to investigate whether physiological symptoms are decreased when 

approaching the target phobia following neuro-reinforcement.  If patients are more willing to 

approach the feared animal following neuro-reinforcement, then neuro-reinforcement may be a 

good complementary treatment alongside traditional exposure for ensuring the most 

comfortable treatment regimen possible. 

 

It is also worth noting this procedure was able to be conducted in a double-blind fashion.  This 

provides the utmost level of rigor for testing the efficacy of neuro-reinforcement as a clinical 

intervention.  Other forms of neurofeedback are not so amenable to double-blind testing due to 

technical constraints and psychological interventions are not always tested at such a rigorous 

level. 

 

In summary, this study represents the first clinical trial of multi-voxel neuro-reinforcement for 

nonconscious brain-based psychotherapy.  This procedure demonstrated the ability to lessen 

physiological, reflexive responses to specific phobia through reduced amygdala activation as 

well as less attentional capture by phobic stimuli.  These findings provide a promising 

foundation to attempt larger-scale replications in clinical cohorts.  Through advents in virtual 

reality, these responses can also be investigated in future studies using more realistic and 

immersive stimuli. This nonconscious procedure produces minimal discomfort in patients with 

very low rates of attrition.  Consequently, neuro-reinforcement may serve to complement current 

conventional psychotherapy approaches while providing a more tolerable experience for 

patients seeking treatment. 
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Chapter 3.  Classifying the subjective awareness of threat from multi-voxel patterns. 

 

Introduction 

Through decades of effort and billions of dollars in funding and societal cost, the treatment of 

mental health disorders has remained difficult.  This difficulty persists, in part, due to models 

that have focused on physiological or behavioral models to explain mental health symptoms. 

The temptation to do so is understandable given the ease of adapting these dimensions to 

objective operationalizations and translational models in primates, mice, and other non-human 

organisms.  However, these endeavors have left much to be desired as mental health continues 

to grow as a public health crisis (Insel, 2019).  Recently, a push has begun for mental health 

models to focus specifically on the subjective experience of the patient (Taschereau-Dumouchel 

et al., 2022; Whiteley, 2021).  After all, the patient’s subjective experience is the ultimate metric 

by which they will judge their treatment’s success.   

 

Even the most classic paradigms, such as the Pavlovian threat conditioning paradigm are in 

need of a fresh perspective when subjective experience is properly taken into account. 

Commonly referred to as the “fear conditioning” paradigm, this alternative name highlights just 

how for granted subjective experience is taken in the modeling of behavior.  Most of what has 

been studied using this paradigm has not explicitly been fear but a variety of reflexive and 

physiological threat responses and behaviors (LeDoux & Hofmann, 2018).  While the domains 

share obvious correlations, discordance between the two is critical to consider given that it may 

be in these various discordances that mental health disorders arise (Taschereau-Dumouchel et 

al., 2022). 

 

Additionally, in the exceptionally complex endeavor of explaining behavior and subjective 

experience from neuroimaging brain patterns, it is essential to understand what processes are 
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actually being studied.  For example, the brain region perhaps most famously associated with 

the Pavlovian threat conditioning paradigm, the amygdala, has recently been shown to be more 

responsible for generating physiological threat responses rather than subjective fear responses 

(Taschereau-Dumouchel et al., 2019).  Furthermore, through neuro-reinforcement, it has been 

shown that amygdala responses to feared stimuli can be selectively decreased while subjective 

fear of the feared stimulus remains unchanged (Taschereau-Dumouchel et al., 2018). While no 

singular study can control for every confound, it is important to be as conceptually precise as 

possible when investigating neural mechanisms where the temptation to impose high-level 

concepts on low-level processes remains high. 

 

Here, I investigate the brain patterns associated with subjective threat awareness using 

machine learning techniques (Ashar et al., 2017; Chang et al., 2015; Eisenbarth et al., 2016; 

Taschereau-Dumouchel et al., 2019; Zhou et al., 2021).   By leveraging machine-learning 

classifiers, threat responses can be classified based on whole-brain multi-voxel activation 

patterns according to participants' self-reported threat contingency awareness ratings.  In 

addition to utilizing the full complex multivariate nature of the human brain’s fMRI response, this 

analysis has the added benefit of utilizing threat awareness self reports taken after the task run.  

This results essentially in a no report paradigm (Tsuchiya et al., 2015) where brain responses 

from within the task are not confounded by participants needing to think about reporting their 

threat awareness during the actual task.  By investigating a population that has been selected to 

represent a wide range of anxiety and neuroticism symptoms, I am able to explore what 

symptom dimensions correlate with learned fear expression.  I also explore how results 

generalize to another large independent dataset using the same paradigm.  By exploring brain 

patterns associated with subjective awareness of threat, I hope to elucidate which brain regions 

are important for threat awareness as opposed to simple reflexive threat responses to which 

other analyses bring focus. 



26 
 

 

Methods 

Initial Dataset 

Participants 

As part of a larger study tracking development of psychological symptoms during emerging 

adulthood/late adolescence, 279 participants (183 females, mean age=19.65(.53)) were 

recruited at Northwestern University and University of California, Los Angeles.  Participants 

were sampled from a larger recruited population of 2461 participants to select participants 

representing a broad distribution of self-reported reward sensitivity and threat neuroticism traits.  

Of these 279 participants, 273 went through Structured Clinical Interview for DSM-5 interviews.  

Of these 273 interviews, 64 participants met criteria for a current anxiety disorder but no 

depressive disorder, 19 met criteria for current comorbid depressive and anxiety disorders, and  

4 met the criteria for a current depressive disorder but no anxiety disorder.  Participants were 

excluded from all fMRI analysis if they demonstrated excessive motion (defined as >10% outlier 

scans) in any of the 3 task phases (acquisition, extinction, and extinction recall).  After 

exclusions for motion and technical issues during data collection, 157 participants had usable 

data across all three task phases. 

 

Threat Conditioning Task 

Participants completed a three-phase (acquisition, extinction, and extinction recall) Pavlovian 

threat conditioning task while undergoing an fMRI scan (Fig. 5, Milad et al., 2009; Young et al., 

2021).  Extinction recall took place at least 48 hours after the initial acquisition and extinction 

session in a separate fMRI session (mean days apart=2.76(2.48)).  Conditioned stimuli (CS) 

were colored lamp lights (blue, red, and yellow) presented visually within a broader context 

image (office or conference room, depending on task phase).  The unconditioned stimulus (US) 

was an electric shock titrated for each participant as to be annoying but not painful. 
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During acquisition, participants were presented with 2 CS+ stimuli and 1 CS- stimulus (colored 

lamps counterbalanced across participants).  Participants viewed 8 trials of each CS+ and 16 

trials of the CS-.  Each trial began with 3 seconds of the context image with no CS, then the CS  

was presented within the context image for 6 seconds followed by a variable inter-trial interval of 

12-15 seconds.  For trials where CS was paired with US, the removal of the context and CS+ 

image from the screen coincided with electric shock delivery.  CS was reinforced at a rate of 

62.5%.  Trials were presented in a pseudorandom order such that shocks were delivered at the 

same timepoints across all participants while appearing random to the participants.   

 

Extinction and extinction recall followed the same trial structure but with no US delivery.  During 

extinction, participants viewed 16  trials of the extinguished CS+ (CS+E) and 16 CS- trials.   

During extinction recall, participants viewed 8 trials of CS+E, 8 trials of the unextinguished CS+ 

Figure 5. Task design.  (Top) Context images used in acquisition, extinction, and extinction 
recall phases.  Acquisition occurs in context A while extinction and extinction recall occur in 
context B.  Context identities are counterbalanced across participants.  (Bottom) Trial design for 
all task phases.  Trials begin with a 3 second context presentation, followed by 6 seconds of the 
conditioned stimulus (CS) presented within the context image, followed by a 12-15 second inter-
trial interval (ITI).  During threat acquisition, unconditioned stimulus (US, electric shock) was 
delivered at the start of the ITI following CS offset. 
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(CS+U), and 16 trials of the CS-.  Context images were consistent within each phase such that 

each phase took place in a distinct context (office or conference room). Acquisition was always 

performed in one context while extinction and extinction recall were performed in the other, in an 

A-B-B fashion.  The context identity (A/B) of office or conference room was counterbalanced 

across participants. 

 

At the end of each phase, threat “contingency awareness” ratings were collected for each CS in 

order to explicitly assess learned CS-US associations.  Participants were presented with an 

image of the CS and asked to rate the “likelihood of receiving a shock if you saw this image 

again” on a 3-point scale spanning “low”, “moderate”, and “high”. 

 

MRI preprocessing 

Structural T1 images were intensity normalized and the brain extracted using optiBET 

(Lutkenhoff et al., 2014).  The brain extracted T1 image was then segmented into White Matter, 

Gray Matter, and Cerebrospinal Fluid using FAST (Zhang et al., 2001).  

 

Functional images were preprocessed separately for each task phase. Motion outliers were 

calculated for functional images using fsl_motion_outliers before any preprocessing took place.  

Then, functional images were motion corrected, smoothed with a 4 mm FWHM kernel, and 

nonlinearly registered into the MNI152NLin6Asym standard space using 12 degrees of freedom 

with FSL’s FEAT (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Motion components were 

then automatically detected and removed using ICA-Aroma (Pruim et al., 2015).  ICA-aroma 

was used as it has been found to be one of the most effective methods of removing motion from 

fMRI data without discarding large amounts of data (Parkes et al., 2018).  Following ICA-aroma, 

single-trial GLM estimates were computed using a Least-Squares Separate (LSS) approach 

(Turner et al., 2012) in pyMVPA/python (Hanke, Halchenko, Sederberg, Hanson, et al., 2009).  



29 
 

Concretely, a separate GLM was calculated for each experimental trial wherein the current trial 

was modeled with a moment-specific regressor while all other events were grouped under a 

singular “rest” regressor.  During threat acquisition, events were modeled for each context 

presentation (office/conference room), CS presentation (2 CS+/1 CS-), and US presentation 

(shock).  For threat extinction and extinction recall, task regressors included each context 

presentation and CS presentation.  Each GLM estimation utilized a SPM-style hemodynamic 

response function model including a temporal derivative to account for slice acquisition timing 

differences and also included a 128s high-pass filter using a cosine drift model with nuisance 

regressors comprising motion outliers and 6 head motion parameters.  LSS GLMs were 

calculated in participants’ native space and then transformed into MNI space using the 

transformation parameters from the FSL registration. 

 

MVPA analysis 

Voxel-level MNI-space parameter estimates from single trial GLMs were averaged together for 

each stimulus type (CS+E, CS+U, and CS-) within runs and within participant.  This resulted in 5 

training exemplars for each participant, 3 from acquisition (CS+E, CS+U, and CS-) and 2 from 

extinction (CS+E and CS-).  Only data from acquisition and extinction were used to achieve a 

balance between class labels.  Class labels were assigned based on the threat contingency 

awareness ratings participants provided for each stimulus following each run.  Initially collected 

on a 3-point scale (“high”, “moderate”, and “low”), ratings were binarized in order to create a 

more even distribution of classes as most participants did not utilize the full 3-point scale.  High 

and moderate ratings were grouped together as one class indicating the stimulus was deemed a 

“threat” while low ratings comprised the other class indicating the stimulus posed “no threat”.  

From 157 participants this resulted in 785 training exemplars of which 358 exemplars 

represented “threat” while 427 exemplars represented “no threat”.  For each decoding analysis 
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(whole brain or ROI), features inputted to the classifier represent voxel-level GLM parameter 

estimates that are anatomically aligned across participants in MNI space. 

 

Whole-brain threat awareness decoding 

To assess threat awareness decodability at the whole-brain level, whole-brain parameter 

estimates in MNI space from the LSS GLM analysis were masked to the gray matter using a 

mask generated from a FAST segmentation of the FSL standard extracted brain.  Whole-brain 

parameter estimates were then subjected to the following cross-validation and permutation 

testing. 

 

Cross-validation testing 

In order to assess whether threat awareness could be successfully decoded from the data, a 

20-times repeated split-half cross validation scheme was used.  Repeated split-half cross-

validation schemes have been shown to have the most power despite resulting in a slightly 

lower classification accuracy (Valente et al., 2021).  For each repeat, the data was randomly 

split in half while preserving participant grouping so that there were no influences of one 

participant on both the training and testing data to prevent overfitting.  That is, the totality of 

each participant’s data was either part of the training set or the testing set, but never both.  Due 

to the uneven number of participants, this resulted in a split of 390 trials to 395 trials.  For each 

half split, each half was used once as a training set and once as a testing set.  Balanced 

accuracy scores as well as the area under the receiver operating characteristic curve (AUC) 

were calculated for each training and testing pair and then averaged first over half splits and 

then over the 20 repeats to assess cross-validation performance. 

 

For each training set, class sizes were balanced, if necessary, by random undersampling of the 

overpopulated class. Training data was then submitted to a C-Support Vector Classifier with the 
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default regularization parameter of C=1.0 and radial basis function kernel using the sklearn 

package in python (Pedregosa et al., 2011).  Standardization parameters were calculated on the 

training set to perform feature-wise standardization by removing the mean and scaling to unit 

variance.  Both training and testing data were transformed according to these standardization 

parameters, but importantly no overfitting resulted as the parameters were calculated using the 

training data only preventing any leaking of the testing data into the training data.  Predictions 

and estimates of the classifier decision function were collected for each testing set to calculate 

balanced accuracy and AUC respectively.   

 

Permutation testing 

To determine the significance of the cross-validated classifier performance, non-parametric 

permutation testing was performed.  To build a data-driven null distribution, 1000 permutation 

tests were performed over the full 20-repeat split-half cross-validation procedure.  For each 

permutation, class labels were shuffled once and then performance of the permuted classifier 

was assessed over the full 20-repeat split-half cross validation. As with the real data, 

performance of the permutation classifier was averaged across half splits and then averaged 

across the 20 repeats to obtain a singular balanced accuracy and AUC estimate for each 

permutation.  These null distributions were then used to set the critical value for significance.  

That is, for the real classifier’s performance to be considered statistically significant, it needed to 

be larger than 950 of the permutation estimates. 

 

Within-region threat awareness decoding 

To investigate which brain regions individually were sufficient to decode threat awareness, the 

same cross-validation and permutation testing routines were performed in each parcel of a 200 

parcel parcellation derived from resting state functional connectivity patterns (Schaefer et al., 

2018) as well as Amygdala and Hippocampus segmentations from the Harvard-Oxford Atlas 
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(Desikan et al., 2006) for a total of 204 brain regions.  For each ROI analysis, features inputted 

to the classifier were the voxel-level MNI-space parameter estimates falling within the ROI 

mask.  In order to correct for multiple comparisons across the 204 regions, a non-parametric p-

value was estimated for each brain region. A gaussian kernel was fitted to the null distribution 

calculated from a region’s permutation tests and the probability density function evaluated at the 

point of that region’s true classifier performance.  Then, non-parametric p-values across the 204 

brain regions were FDR-corrected to control the false discovery rate with a q-value threshold of 

0.001.     

 

Generalization Dataset 

Participants 

Participants were recruited from two clinics at University of California San Diego Primary Care 

Clinics (N=101) and University of California Los Angeles Family Health Center (N=124).  

Participants were included if they had a score greater than or equal to 10 on the Patient Health 

Questionnaire-9 (PHQ-9, Kroenke et al., 2001) or greater than or equal to 8 on the Overall 

Anxiety and Impairment Scale (OASIS, Campbell-Sills et al., 2009).  Participants were excluded 

for moderate to severe alcohol or cannabis use or any other mild substance use disorder.  

Additional exclusion criteria were a diagnosis of Bipolar or Psychotic disorders, moderate to 

severe traumatic brain injury, active suicidal ideation, or MRI contraindications. Participants 

were excluded from all fMRI analysis if they demonstrated excessive motion (defined as >10% 

outlier scans) in any of the 2 task phases (acquisition, extinction).  After exclusions for motion 

and technical issues during data collection, 183 participants had usable data across both 

acquisition and extinction phases. 

 

Task  
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Participants completed a slightly modified version of the same Pavlovian threat conditioning 

paradigm.  Participants completed a singular fMRI session with acquisition and extinction 

phases only.  As there was no extinction recall phase, participants only viewed one type of CS+ 

during the threat acquisition phase.  All other task parameters and procedures are the same as 

the initial dataset described here.   

 

MRI processing 

Structural T1 images were intensity normalized and the brain extracted using optiBET 

(Lutkenhoff et al., 2014). Functional runs for the threat acquisition and threat extinction task 

phases were processed separately.  Complete first-level analyses were processed using FSL’s 

FEAT (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl).  FMRI data were motion corrected 

using MCFLIRT (Jenkinson et al., 2002), slice-time corrected with Fourier-space time-series 

phase-shifting, and brain extracted using BET (Smith, 2002).  Images were spatially smoothed 

with a FWHM 4mm Gaussian kernel, grand-mean intensity normalized, and highpass filtered 

with Gaussian-weighted least-squares straight line fitting, sigma=50.0s. 

 

Functional runs were registered to the standard space using FLIRT (Jenkinson et al., 2002; 

Jenkinson & Smith, 2001) and further refined with FNIRT nonlinear registration. First-level 

GLMs were calculated using FILM with local autocorrelation correction (Woolrich et al., 2001).   

Regressors were included for the onset of CS+, CS-, and context image presentation.  

Nuisance regressors included the 6 head motion parameters from motion correction and 

timepoint censoring for any motion outlier TRs. 

 

First-level GLM estimates for the CS+ and CS- during threat acquisition and extinction were 

standardized within participant and paired with the behavioral contingency ratings for each run 

yielding 4 samples per participant for MVPA generalization analysis. 

http://www.fmrib.ox.ac.uk/fsl
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MVPA generalization analysis 

To test how the machine-learning classifier developed here generalizes to independent 

datasets, a generalization analysis was performed by training a classifier on the initial dataset 

and testing it on the generalization dataset.  This followed the same procedure as the MVPA 

analyses performed during the cross-validation procedure described above for the initial dataset 

but with the classifier being trained on the totality of the initial dataset and tested on the totality 

of the generalization dataset.  Classifier generalization performance was assessed using AUC 

scores and balanced accuracy scores.  Statistical significance of generalization performance 

was assessed using a permutation test in which class labels were shuffled for both the initial 

and generalization datasets with 1000 permutations. 

 

Classifier evidence for threat awareness during extinction recall 

To investigate how classifier evidence for threat awareness during extinction recall related to 

participant symptomatology in the initial dataset, a decoder was applied to average extinction 

recall trials.  To prevent overfitting and maximize training data, the decoder was trained on the 

generalization dataset (in which there was no extinction recall phase) and applied to the initial 

dataset. Classifier estimates for each participant in the initial dataset were calculated for the 

CS+U and CS+E exemplars. Classifier estimates for CS+U were subtracted from CS+E and 

these differences in estimates were correlated with self-report questionnaire scores using 

Pearson’s correlation.  

 

Trial-by-trial threat awareness classification estimates 

To generate a time-resolved picture of how threat awareness develops in the Pavlovian threat 

conditioning task, classifier estimates were also calculated at the individual trial level.  The same 

decoder trained on the generalization dataset was used to prevent overfitting.  This decoder 
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was then applied to the LSS single-trial data from the initial dataset.  Trial-by-trial classifier 

estimates were collected for each conditioned stimulus across threat acquisition, extinction, and 

extinction recall task runs.  Significant threat awareness was assessed by one-sample t-tests 

Bonferonni corrected for the number of trials tested within each task run.  Results were only 

tested for being greater than 0 to assess at what time points significant threat awareness was 

detected. 

 

Results 

Whole-brain threat awareness decoding 

To determine whether subjective threat awareness could be decoded at the whole-brain level, a 

C-support vector machine classifier was trained and tested on brain responses to conditioned 

stimuli during threat acquisition and extinction.  Whole-brain decoding demonstrated high 

sensitivity and specificity for the awareness of threat during cross validation (average 

AUC=0.84, p<0.001, average bal. accuracy=0.79, p<0.001).  This finding indicates that 

subjective awareness of threat can indeed be robustly decoded from whole-brain activation 

patterns. 

 

Generalization of whole-brain decoding 

To test how generalizable this whole-brain decoding of threat awareness was, this decoder was 

also applied to a large independent dataset.  Testing on independent data demonstrated robust 

generalized performance of the decoder to a new dataset (average AUC=0.79, average bal. 

accuracy=0.69, p<0.001). 

 

Within-region decoding 



36 
 

To determine which regions of the brain contribute to the decodability of subjective threat 

awareness, the same cross-validated classification procedure was performed iteratively over  

200 cortical parcellations spanning the entirety of the cortex (Schaefer et al., 2018) as well as 

the subcortical regions amygdala and hippocampus.  This analysis revealed a widely distributed 

signature for the subjective awareness of threat as threat awareness could be decoded from 

188 of the 204 tested parcellations following FDR correction with q=0.001 (Fig. 6). Full results 

from all parcellations are reported in Appendix Table A1.   

Figure 6. Within-region classification of subjective threat awareness. A C-support vector 
machine classifier was iteratively trained in each of 200 cortical parcellations as well as 
amygdala and hippocampus.  Significance of within-region decoders was determined through 
non-parametric permutations within each region and non-parametric p-values were FDR-
corrected for 204 comparisons with q=0.001.  (A) Parcellations with significant subjective threat 
awareness classification are plotted with color corresponding to the region’s average area under 
the receiver operating characteristic curve (AUC) over 20 repeated split-half cross validations. 
(B) Classifier performance in subcortical areas amygdala and hippocampus is plotted as 
assessed by AUC scores.  Dashed lines represent a non-parametric threshold corresponding to 
p<0.001 uncorrected.  Subjective threat awareness had a distributed signature with increased 
threat decodability traveling along the visual processing hierarchy.  A subset of regions 
including posterior cingulate, retrosplenial cortex, vmPFC, inferior frontal gyrus, and OFC as 
well as subcortical regions amygdala and hippocampus demonstrated particularly strong within-
region decoding comparable to whole-brain classification performance. 



37 
 

 

Within-region decoding results showed an hierarchical organization with early visual areas being 

unable to decode threat awareness.  Threat awareness became more decodable at increased 

levels of the visual hierarchy. Threat awareness was most decodable from areas including 

posterior cingulate, retrosplenial cortex, vmPFC, inferior frontal gyrus, and OFC as well as 

subcortical regions amygdala and hippocampus (Fig. 6B).  All these regions showed within-

region decoding broadly comparable to the whole-brain signature with AUC’s >0.8.  These 

findings suggest threat awareness information is not present in early visual processing but 

rather critically relies on lower-level signals coming from areas like amygdala and hippocampus.  

 

Threat awareness during extinction recall 

As an assessment of the relationship between extinction memory and participant 

symptomology, I examined classifier evidence for threat awareness during extinction recall as a 

function of participant symptom scores.  The trait of worry was significantly correlated with the 

level of classifier evidence for threat awareness in response to the CS+E compared to the 

CS+U during extinction recall (Fig. 7, r(155)=0.25, p=0.002).  Participants with higher trait worry 

had greater classifier evidence for threat awareness in response to the CS+E compared to the 



38 
 

CS+U while participants with low trait worry had greater classifier evidence for threat awareness 

for the CS+U compared to CS+E.  That is, participants with higher trait worry demonstrated 

worse extinction recall as evidenced by classifier estimates of threat awareness for the 

extinguished conditioned stimulus being higher than the unextinguished conditioned stimulus, 

which is the opposite of what would be expected following successful extinction.  This effect was 

primarily driven by higher classifier evidence for threat awareness in the response to the CS+E 

as worry significantly correlated with classifier evidence for threat awareness in response to the 

CS+E (r(155)=0.24, p=0.0024) but not CS+U (r(155)=-0.13, p=0.10).  As there was no relation 

between trait worry and classifier evidence for threat awareness in response to CS+ vs CS- at 

the end of extinction (r(155)=-0.0088, p=.91), this indicates those with high trait worry have 

Figure 7. Classifier evidence for threat awareness during extinction memory recall is associated 
with trait worry.  During extinction recall, predicted threat awareness for CS+E and CS+U is 
measured by classifier evidence from a classifier trained on acquisition and extinction trials only 
and tested on CS+E and CS+U trials during extinction recall.  The difference in classifier 
evidence for threat awareness for the extinguished conditioned stimulus (CS+E) compared to 
the unextinguished conditioned stimulus (CS+U) is measured on the y-axis.  Trait worry as 
assessed with the Penn State Worry Questionnaire (PSWQ37) is represented on the x-axis.  
Participants with higher trait worry had a greater threat signature for the CS+E compared to 
CS+U indicating a failure to retain extinction memory. 
function of participant symptom scores.   
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worse consolidation and retention of extinction memory rather than a failure to learn extinction in 

the first place.   That is, worry is associated with greater threat return after 48 hours following 

extinction.  Importantly, worry did not correlate with differences in self-reported threat 

contingency awareness for the CS+E and CS+U (r(155)=0.83, p=0.30).  This finding highlights 

worry as a potential process critical in the relation between anxiety disorders and threat 

conditioning. 

 
Trial-by-trial threat awareness decoder activation 

In order to obtain a time-resolved measure of the emergence of subjective threat awareness in 

this threat conditioning paradigm, the threat awareness decoder was applied to single trial data  

across acquisition, extinction, and extinction recall.  Classifier evidence for the subjective 

awareness of threat was significantly greater than chance for the last 3 trials of threat 

acquisition for the CS+E and for the last trial of CS+U (Fig. 8, one-sample t-tests Bonferonni 

corrected across time points, p<0.05).   This finding indicates it takes at least 5 trials of partially-

reinforced CS-US pairings for the brain signature of learned subjective threat to emerge.  This 

late appearance of subjective threat awareness also supports the fact that the classifier 

developed here is detecting learned threat as opposed to simple threat response elicited by the 

US which would be evident in early trials. There were no significant activations of threat during 
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extinction and extinction recall phases at the single-trial level (Fig. 8).  This could be due to the 

decoder lacking adequate performance at the single-trial level in these later phases in which no 

objective threat is present. 

 

Discussion 

For this study, the main goal was to find a whole-brain pattern for the subjective awareness of 

threat in a Pavlovian threat conditioning paradigm.  This resulted in development of a whole-

brain decoder that was able to detect subjective threat awareness developing in the final trials of 

threat acquisition with high sensitivity and specificity in a large cohort of over 150 participants.  

Results were highly generalizable to another large independent dataset of over 180 participants. 

This is indicative of a robust signature of threat awareness as it could be detected across a 

large number of participants collected across multiple geographic locations on multiple different 

Figure 8. Trial-by-trial threat awareness decoder activation.  The threat awareness decoder 
was applied to single-trial data in the threat acquisition, extinction, and extinction recall phases 
to determine at what time points subjective threat awareness emerged. Y-axis represents the 
classifier estimate for a given trial while the x-axis represents trials across time.  Legend at 
top-right indicates which line colors track what conditioned stimuli.  Shaded areas around line 
plots represent standard error of mean.  Colored bars below x-axis represent timepoints with 
classifier evidence greater than 0 (dashed line) as determined by one-sample t-tests 
Bonferonni corrected across number of trials. Significant threat awareness emerged at the end 
of threat acquisition for both CS+ stimuli but was not observed in the extinction or extinction 
recall phases.   
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scanner systems.  Decoding results were also robust to differences in preprocessing and 

differences in single-trial and first-level GLM modeling.  

 

Within-region decoding revealed a distributed pattern of threat awareness across the brain 

organized in a hierarchical fashion.  Threat awareness was not decodable from early visual 

areas and then became more decodable as the visual hierarchy progressed.  This revealed a 

sub-network of regions including posterior cingulate, retrosplenial cortex, vmPFC, inferior frontal 

gyrus, and OFC from which threat awareness could be decoded on par with the whole-brain 

signature.  The inability of threat awareness to be decoded from early visual areas is supportive 

of a higher-order view of  subjective awareness in which higher-order processes aside from 

early sensory areas are needed for content to enter subjective awareness (Brown et al., 2019; 

LeDoux & Hofmann, 2018). 

 

I also investigated subcortical regions amygdala and hippocampus which were critical in the 

decoding of threat awareness with decoder performance comparable to the whole-brain level. 

These findings are broadly consistent with other recent investigations of whole-brain signatures 

of subjective fear (Taschereau-Dumouchel et al., 2019; Zhou et al., 2021) which have indicated 

areas around PFC, OFC, and cingulate cortex as areas important for the experience of 

subjective fear.  Importantly, the results presented here do not have anything to say about the 

emotional subjective experience of fear per se.  The current study examined subjective 

awareness of threat without respect to the potential emotional experience involved.  Moreover, 

the current study was limited in its ability to disentangle subjective threat awareness from more 

implicit physiological threat responding.  This could explain high threat awareness decoding in 

subcortical regions like amygdala and hippocampus which are found to be more predictive of 

physiological threat than subjective fear (Taschereau-Dumouchel et al., 2019).  Presumably, 
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physiological threat signatures and subjective awareness of threat are highly correlated in the 

current study. 

 

I also examined classifier evidence for threat awareness during an extinction recall period 

following 48 hours after the initial threat acquisition and extinction as a function of participant 

symptomatology.  Participants with higher trait worry had higher expression of threat awareness 

for the previously extinguished conditioned stimulus compared to an unextinguished conditioned 

stimulus.  This indicates greater fear renewal for those with high trait worry.  Consequently, 

worry should be explored in future studies as a process potentially linking anxiety disorders and 

aberrant threat conditioning (Craske et al., 2017; Fenster et al., 2018).  As worry is 

characteristic of intrusive thought, it could also be related to intrusive imagery that is 

characteristic of fear-related disorders like post-traumatic stress disorder (Brewin et al., 2010).  

PTSD is similarly characterized by deficient extinction recall (Garfinkel et al., 2014).  Future 

studies should investigate the link between intrusive thoughts, images, and extinction recall 

abilities to see if a foundational mechanism links these various intrusive experiences. 

 

In summary, threat awareness is coded by a distributed brain signature that can be observed 

across differences in multiple scan sites and geographic locations. Future studies will be 

needed to disentangle subjective threat awareness from more physiological implicit threat 

processes.  Future investigation will also be needed to differentiate between things like 

subjective fear and subjective awareness of threat.  The additional disentanglement between 

things like subjective fear and awareness of threat will help to identify brain regions and 

processes responsible for the emotional experience underlying many fear-related disorders like 

anxiety and PTSD. 
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Chapter 4.  Investigating brain networks involved in acquisition, extinction, and recall of 

learned threat. 

 

Introduction 

Responses to threat need to be both fast and accurate to ensure lasting survival in an 

environment.  Direct threats need to be quickly identified and reflexively responded to when 

danger comes our way.  However, maladaptive threat responses also need to be properly 

inhibited to prevent context-inappropriate reactions such as running away from someone who is 

seeking your help.  Deficits in either of these processes can lead to behavioral outcomes 

resembling an anxiety disorder.  Consequently, fear and anxiety disorders are often thought to 

be characterized by aberrations in threat processing and conditioning (Craske et al., 2017; 

Fenster et al., 2018).  For example, anxiety disorders are associated with increased threat 

acquisition and impoverished threat extinction (Pittig et al., 2018). Anxiety is also thought to be 

related to how learned threat generalizes to new stimuli beyond the initial threat learning 

episode (Dunsmoor & Paz, 2015). As such, the Pavlovian threat conditioning paradigm has 

become a pillar in studies examining fear and threat processing due to its simplicity and utility in 

translational research from animal models to human participants.   

 

Building from animal models, critical brain areas for threat conditioning have been identified 

such as amygdala and hippocampus (Phillips & LeDoux, 1992).  Functioning in these central 

regions is certainly informative for anxiety disorders as increased anxiety is associated both with 

facilitated acquisition of threat response as well as increased response to clear threats and 

impoverished response to ambiguous threats (Im et al., 2017; Pittig et al., 2018).  However, it is 

important to situate these critical nodes within the larger functional networks in which they 

operate.  Especially at the human level, it is likely that there are multiple circuits operating in 

parallel in what we would typically label the “fear” response (LeDoux & Hofmann, 2018).  

Understanding the mechanisms of the subjective experience of fear in humans is critical to 
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helping treat anxiety and fear-related disorders (Taschereau-Dumouchel et al., 2022).  Focusing 

on changing behavioral or physiological outcomes has led to a dearth of effective treatments as 

these things can be changed without any change in the subjective distress experienced 

(Taschereau-Dumouchel et al., 2018). 

 

Much of the previous human neuroimaging work using the Pavlovian threat conditioning 

paradigm has used simple univariate contrasts to identify threat-sensitive brain regions (Fullana 

et al., 2016).  However, whole-brain connectivity is beginning to be used to understand the 

broader dynamics at play in human threat conditioning (Berg et al., 2021; Wen et al., 2021). 

Network analyses have become increasingly popular as a way to understand how distributed 

regions across the entire brain organize their activity in coordinated functions (Sporns, 2014).  

Distinct networks have been shown to track overgeneralization of conditioned threat in post-

traumatic stress disorder (Berg et al., 2021).  Extinction of conditioned threat has also been 

shown to modulate brain connectivity in areas associated with default mode, frontoparietal, and 

ventral attention networks (Wen et al., 2021).  Here, I utilize group network analysis methods to 

investigate brain networks involved in the acquisition and extinction of conditioned threat as well 

as the recall of extinction memory after a 48-hour consolidation period. 

 

Methods 

Participants 

Participants for this dataset come from the same sample of 279 participants described in 

Chapter 3.  Participants were excluded from all fMRI analysis if they demonstrated excessive 

motion (defined as >10% outlier scans) in any of the 3 task phases (acquisition, extinction, and 

extinction recall). After exclusions for motion and technical issues during data collection, 223 

participants were analyzed for acquisition and 208 participants were analyzed for extinction and 

extinction recall. 
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Task 

Participants completed the same three-phase (acquisition, extinction, and extinction recall) 

Pavlovian threat conditioning task described in Chapter 3 while undergoing an fMRI scan.   

 

MRI preprocessing 

Structural T1 images were intensity normalized and the brain extracted using optiBET 

(Lutkenhoff et al., 2014).  The brain extracted T1 image was then segmented into White Matter, 

Gray Matter, and Cerebrospinal Fluid using FAST (Zhang et al., 2001).  

 

Functional images were preprocessed separately for the acquisition, extinction, and extinction 

recall runs. Motion outliers were calculated for functional images using fsl_motion_outliers  

before any preprocessing took place.  Then, functional images were motion corrected, 

smoothed with a 4 mm FWHM kernel, and nonlinearly registered into the MNI152NLin6Asym 

standard space using 12 degrees of freedom with FSL’s FEAT (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl). Motion components were then automatically detected and removed 

using ICA-Aroma (Pruim et al., 2015).  ICA-aroma was used as it has been found to be one of 

the most effective methods of removing motion from fMRI data without discarding large amounts 

of data (Parkes et al., 2018).  Following ICA-aroma, data had linear and quadratic trends 

removed along with 6 head motion parameters from FSL and white matter and cerebrospinal 

fluid time courses using AFNI (Cox, 1996; Cox & Hyde, 1997).  A highpass filter was also 

applied to remove frequencies below .008 Hz during this step to remove potential sources of 

noise. A low-pass filter was not applied to prevent the filtering of any task-relevant content 

contained in the high frequencies. Finally functional data were transformed into the standard 

space using parameters from the FSL registration. 
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Group ICA and dual regression 

Similar to preprocessing, a separate group ICA analysis was performed for the acquisition, 

extinction, and extinction recall fMRI runs. Preprocessed functional data for all participants were 

submitted to group ICA in Melodic from FSL using the temporal concatenation method.  Group 

ICAs were limited to 20 ICs based on previous work (Webb et al., 2016) and to limit the number 

of multiple comparisons.  The group ICA analysis was masked to brain tissue only using the 

FSL standard brain mask. Group IC maps were thresholded at Z=4 for generation of figures and 

identification of key network regions.  Any components that resembled physiological noise or did 

not have significant contributions from the cortex were discarded from further analysis.  This 

resulted in 16 networks analyzed during each task phase.  Dual regression was also performed 

using FSL to obtain participant-specific time course contributions to each IC. 

 

Modeling IC response to task conditions 

To find how each IC responded to the conditions of the task, a GLM was fitted to each 

participant-specific time course for each IC using pyMVPA in python (Hanke, Halchenko, 

Sederberg, Hanson, et al., 2009).  This process is identical to modeling a typical univariate 

whole-brain GLM but rather than a voxel time course being used as a dependent variable, the 

time course of an IC is used. Specifically, the conditions of CS+ and CS- were modeled 

separately for the early and late phases of each run for acquisition and extinction.  The 

unconditioned stimulus (US) was also modeled during acquisition.  For extinction recall, early 

and late unextinguished CS+ (CSU), extinguished CS+ (CSE), and CS- were modeled.  Early 

and late represented the first and last 4 trials of each stimulus type, respectively.  A regressor 

was also included for context presentation (office or conference room image) during each 

experimental phase.  Motion outliers identified in preprocessing were included as additional 

regressors in the GLM to minimize effects of movement on parameter estimation.  GLMs were 

modeled with an SPM-style hemodynamic response function model including a temporal 
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derivative to account for temporal differences in slice acquisition. All regressors were specified 

with a duration of 0 seconds for an event-related response over epoch response in order to 

minimize influence of temporally adjacent events. 

 

Statistical Analysis 

To identify which IC networks were sensitive to task conditions, a mixed linear model was 

calculated for each IC within each task using the statsmodels package in python.  In acquisition 

and extinction, the dependent variable of IC Beta estimate was tested for the interaction of fixed 

effects condition (CS+/CS-) and time (early/late) for each IC. For extinction recall, we were only 

interested in the early phase of the task so a model of fixed effect of condition (early CSU vs. 

early CSE) was tested. Participant and scan site (UCLA/NU) were included as random effects 

with participant nested within scan site for each model.  With a model for each IC not discarded 

for resembling noise/non-cortical sources, 16 total models were tested for each task phase.  

Results of each model were bonferroni corrected for multiple comparisons.   

 

Results 

Threat Acquisition 

During threat acquisition there was a significant interaction between CS-type and Time 

(F(1,888)=15.89, p=0.0012 Bonferroni corrected) in a network including vmPFC, OFC, 

hippocampus, angular gyrus, posterior cingulate, and retrosplenial cortex (Fig. 9A).  This 

interaction was characterized by no initial difference between CS+ and CS- during early trials 

(t(222)=0.99, p=0.32) while in late trials network activity was significantly greater for CS- 

compared to CS+ (t(222)=6.71, p<0.001). This finding corroborates previous findings of 

decreased whole-brain connectivity for CS+ compared to CS- in late threat acquisition (Wen et 

al., 2021) while adding spatial specificity of the involved network.  Such late decreases in 
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response to CS+ are thought to identify regions important for threat extinction (Garcia et al., 

1999; Hennings et al., 2020; Phelps et al., 2004). 

 

One other network demonstrated a main effect of CS-type with a similar pattern of CS- 

response being significantly greater than CS+ response (F(1,888)=14.13, p<0.001 Bonferonni  

corrected).  The network consisted of the precentral and postcentral gyri and insular cortex (Fig. 

11A). 

 

Figure 9. Brain network demonstrating acquisition and extinction of learned threat.  (A) A 
distributed brain network involving bilateral hippocampus, vmPFC, and posterior cingulate 
demonstrated a significant interaction between CS-type (CS-/CS+) and time (early/late) during 
threat acquisition.  Brain plots show thresholded independent component (IC) spatial maps.  Bar 
plots show IC-specific GLM parameter estimates. During late acquisition, the network 
demonstrated increased connectivity to the CS- compared to the CS+.  (B) This same brain 
network involving bilateral hippocampus, vmPFC, and posterior cingulate was observed during 
threat extinction with connectivity in the network increasing from early to late extinction. * 
p<0.05, ** p<0.01 
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Finally, two networks also exhibited a main effect of CS-type.  These networks demonstrated 

the canonical threat acquisition response of CS+>CS- indicating successful acquisition of threat-

related response.  One network spanned the entirety of insular cortex including anterior insula 

along with cingulate gyrus, inferior frontal gyrus and OFC (F(1,888)=109.91, p<0.001 

Bonferonni corrected, Fig. 11B).  The other network included dorsal anterior cingulate cortex  

 

Figure 10. Brain network demonstrating acquisition of learned threat and recall of extinction 
memory.   Brain plots show thresholded independent component (IC) spatial maps.  Bar plots 
show IC-specific GLM parameter estimates. (A) A distributed brain network consisting of dorsal 
anterior cingulate cortex (dACC), mPFC, and inferior frontal gyrus demonstrated an effect of 
CS-type during threat acquisition with greater connectivity elicited by the CS+ compared to the 
CS-. (B) This same brain network was observed during extinction recall with significantly 
decreased connectivity elicited by the unextinguished CS+ (CS+U) compared to the 
extinguished CS+ (CS+E).   
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(dACC), mPFC, and  inferior frontal gyrus (F(1,888)=15.70, p=0.0013 Bonferonni corrected, Fig. 

10A).  Both networks showing threat sensitivity overlap with the salience network, indicating the 

salience network’s involvement in learned threat detection.  

 

Threat Extinction 

 
 
Perplexingly, there was no CS-type sensitivity during threat extinction despite immediately 

following threat acquisition.  No IC networks demonstrated interactions of CS-type and time or 

Figure 11. Brain networks involved in learned threat acquisition.  Brain plots show thresholded 
independent component (IC) spatial maps.  Bar plots show IC-specific GLM parameter 
estimates. (A) A brain network involving precentral and postcentral gyri as well as the left insular 
cortex demonstrated increased connectivity elicited by the CS- and decreased connectivity 
elicited by the CS+ during threat acquisition.  (B) A brain network involving the insula, middle 
frontal gyrus, cingulate gyrus, and OFC.  This network demonstrated acquired threat response 
with increased connectivity induced by the CS+ and decreased connectivity elicited by the CS-. 
*** p<0.001 
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main effects of CS-type.  However, extinction processes could be tracked through observed 

main effects of time. 

 

Most saliently, I observed a main effect of time in the same network involving vmPFC, 

hippocampus, and posterior cingulate from threat acquisition (Fig. 9A) during extinction 

(F(1,828)=11.42, p=0.012 Bonferonni corrected, Fig. 9B).  This network demonstrated 

decreased connectivity in response to CS stimuli during early extinction that increased to 

positive connectivity during late extinction.  This change in connectivity likely tracked extinction 

learning due to the positive increase over the extinction period as opposed to a decrease over 

the extinction period as might be expected from habituation or unrelated processes.  Another 

network involving lateral occipital cortex and fusiform cortex showed the same connectivity 

increase from negative to positive over the extinction period (F(1,828)=30.04, p<0.001 

Bonferonni corrected, Fig. 12A).  Though this network was not observed during the threat 

acquisition process, this network activity also likely tracks extinction learning due to the increase 

of connectivity over the task period.  

 

Finally, I observed a main effect of a time in a third network involving angular gyrus, frontal 

gyrus, and posterior cingulate (F(1,828)=21.49, p<0.001 Bonferonni corrected, Fig. 12B).  

However, as the connectivity pattern of this network decreased from early extinction to late 

extinction, it is difficult to attribute this result to extinction learning without stimulus-specific 

evidence as it could also represent stimulus habituation or other unrelated processes. 

 

Extinction Recall  

 

As only the early period of extinction recall was of experimental interest, I ran a model 

examining only the main effect of CS-type in the early phase of the task (early CS+E vs. early 
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CS+U).  This revealed a singular network that exhibited a greater decrease in connectivity 

(F(1,412)=10.15, p=0.025 Bonferonni corrected) for the unextinguished CS+ (CS+U) compared  

to the extinguished CS+ (CS+E, Fig. 10B).  In spatial structure, this network strongly resembled 

the same network that showed threat sensitivity during acquisition (Fig. 10A) with regions 

including dACC, mPFC, and inferior frontal gyrus.  These results showcase the importance of 

this network both in the acquisition of threat learning as well as the expression of extinction 

memory.       

 
 

Figure 12. Brain networks involved in the extinction of learned threat response.  Brain plots 
show thresholded independent component (IC) spatial maps.  Bar plots show IC-specific GLM 
parameter estimates.  (A) A brain network involving lateral occipital cortex as well as fusiform 
cortex demonstrates a significant increase in connectivity in response to CS stimuli from early to 
late trials in the extinction learning phase. (B) A brain network involving angular gyrus, frontal 
gyrus, and posterior cingulate showed significantly reduced connectivity in response to CS 
stimuli from early to late trials in the extinction learning phase. ***p<0.001 
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Discussion 

In this study, I examined brain connectivity networks during a 2-day Pavlovian threat 

conditioning paradigm.  Using group independent component analysis, I compared how 

independent brain networks responded to CS stimuli during threat acquisition and extinction as 

well as extinction recall a full 48 hours later.  This revealed multiple distinct brain networks 

involved in the acquisition, extinction, and recall of extinction memory for learned threat.  A 

stable network overlapping with the Default Mode Network involving hippocampus, vmPFC, and 

posterior cingulate was involved in both the acquisition and extinction of learned threat.  An 

additional persisting network overlapping with the Salience Network involving dACC, mPFC, 

and inferior frontal gyrus was involved in the acquisition of learned threat as well as the 

expression of extinction memory. A number of other networks were independently involved in 

the acquisition and extinction of learned threat.   

 

The finding of a network involving hippocampus and vmPFC is consistent with previous work 

that has focused on these regions as part of a ‘network’ that consistently responds to threat 

conditioning paradigms (Giustino & Maren, 2015; Picó-Pérez et al., 2019).  It is worth noting that 

these regions have been identified in the current work without the imposition of a model through 

the a priori selection of regions of interest.  This strengthens the argument for them as canonical 

threat learning regions while demonstrating the coordination of these regions in a self-contained 

connectivity network.  Responses specific to the conditioned cue developed late in the threat 

acquisition phase, indicating this network’s involvement in the learning aspect of threat 

acquisition.  Connectivity in this network then increased during the extinction process, again 

indicating a learning process over the extinction period.  As the observed network partially 

overlaps with the canonical default mode network, this adds to a building body of evidence in 

human neuroimaging implicating the default mode network in threat learning (Berg et al., 2021; 

Wen et al., 2021; Zidda et al., 2018). 
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I also observed a stable network across threat acquisition and extinction recall in dACC, inferior 

frontal gyrus, and mPFC overlapping partly with the salience network.  As the observed stimulus 

specificity during acquisition in this network was not specific to the late acquisition period, it is 

possible that this network detects learned threats at a rapid rate (e.g. one-shot learning).  This 

network was also the only network to show lasting conditioned stimulus specificity between the 

extinguished and unextinguished conditioned stimuli a full 48 hours after the threat acquisition 

and extinction periods. This underscores the importance of this network of regions in the threat 

learning process as a site of potentially rapid and lasting threat memory acquisition.  This may 

be of broad clinical significance in understanding anxiety and fear-related disorders as the 

salience network itself has been found to track fear generalization and symptom severity in 

post-traumatic stress disorder (Berg et al., 2021).  Perhaps a rapid learning rate within this 

network predisposes it to overgeneralized threat. 

 

Rapid threat learning within the salience network is further supported by the current work with 

the finding of an additional insula-centered network during threat acquisition where conditioned 

stimulus specificity emerged early.  It is unlikely that these early stimulus differences are driven 

primarily by confounding of the US during threat acquisition due to the slow trial structure, 

event-related duration modeling, and explicit modeling of the US in the independent component 

GLMs.  Additionally, results in both of these networks are characterized by a substantial 

decrease in connectivity in response to the CS- as opposed to increased connectivity to CS+ 

stimuli and there is no possibility of US contamination on CS- trials. 

 

Interestingly, there was no conditioned stimulus specificity exhibited during the extinction period 

in this network or any examined network.  This is all the more perplexing given the extinction 

phase immediately followed the threat acquisition phase, in which conditioned stimulus 
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specificity was widely observed.  This broadly matches other recent whole-brain connectivity 

findings (Wen et al., 2021) which also observed no conditioned stimulus specific response early 

in extinction (though specificity was observed by the end of extinction).  While it is difficult to be 

certain why this was the case within the current study, it may be related to the presentation of 

the conditioned stimuli within varying contexts across phases.  Threat extinction always took 

place in a different context than threat acquisition.  So, it may be that the new context presented 

in threat extinction was a sufficient safety signal over the extinction period, that participants did 

not pay as much attention to specific conditioned stimulus identities.  However, as there was 

conditioned stimulus specificity during extinction recall in the same extinction context 48 hours 

later, clearly context presentation alone does not sufficiently explain the lack of stimulus 

specificity in extinction.  It could be additionally related to consolidation or habituation processes 

that come with examining stimulus differences immediately following learning and after multiple 

days of memory consolidation.  

 

It should also be noted that the results from the current study come from a large sample size of 

more than 200 participants. As neuroimaging frequently suffers from low sensitivity and under-

powered sample sizes (Thirion et al., 2007), the findings here can be considered robust.  

Despite this high-powered sample, significant amygdala involvement was conspicuously 

missing from any of the networks found in this current analysis.  This matches large meta-

analyses as well as other findings that find a minimal role (if any) for the amygdala in human 

threat conditioning paradigms (Fullana et al., 2016; Visser et al., 2021). 

 

In summary, the findings of this study indicate a distributed response from multiple independent 

brain networks during the acquisition, extinction, and recall of learned threat memories spanning 

canonical networks like the default mode and salience networks.  This echoes other recent 

findings from whole-brain connectivity analyses of threat conditioning that demonstrate the need 
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for researchers to move beyond the previously focal region of interest analyses of threat 

conditioning paradigms in order to understand the dynamic nature of the human brain’s 

response in threat learning (Wen et al., 2021).  The present work has the added benefit of 

refining these whole-brain connectivity patterns into independent networks to identify which 

regions work directly in concert as well as which connectivity networks are involved in different 

aspects of threat learning and extinction.  Future work will need to disentangle which of these 

networks are involved in automatic defensive responses to threat and which contribute to the 

actual subjective experience of fear and threat in the human brain in order to most appropriately 

target clinical interventions for fear-related disorders. 
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Chapter 5. General Discussion. 

 

 

In this thesis, I investigated threat and fear processes in the human brain across three chapters.  

In Chapter 2, I used real-time fMRI neuro-reinforcement to causally intervene on specific phobia 

in a randomized double-blind placebo-controlled clinical trial. Then, in Chapter 3, I leveraged 

machine-learning techniques on two independent datasets using a Pavlovian threat conditioning 

paradigm to identify neural patterns associated with the subjective awareness of threat.  Lastly, 

to further understand whole-brain dynamics behind human response to learned threat, I 

explored whole-brain connectivity networks during the same Pavlovian threat conditioning 

paradigm in Chapter 4.   

 

Results from across these 3 studies came together to demonstrate a broadly distributed 

response to threat and fear across the human brain.  This response was composed of multiple 

parallel but interacting processes leading to the expression of threat and fear responses through 

the domains of subjective experience, behavior, and physiology.  Findings in Chapter 2 

demonstrated that implicit activation of feared visual representations at a nonconscious level 

has the potential to reduce threat responses both neurally and behaviorally in specific phobia.  

Following multi-voxel neuro-reinforcement there was evidence of reduced amygdala response 

to phobic images as well as reduced attentional capture by targeted phobias.  Interestingly, 

despite both these observed changes, there were no changes in the self-reported levels of fear, 

indicating subjective experience may not be affected by modulating threat processes at an 

implicit nonconscious level.  These findings broadly match our previous proof-of-concept study 

in a non-clinical population (Taschereau-Dumouchel et al., 2018).  Importantly, the observed 

changes were obtained with no distressing conscious exposures or otherwise distressing or 

panic-inducing sensations.  This highlights multi-voxel neuro-reinforcement as a promising 

intervention for specific phobia which may facilitate more traditional behavioral exposure 
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treatments by reducing physiological and behavioral expressions of threat and fear.  Following 

multi-voxel neuro-reinforcement, traditional exposure may lead to less attrition if reflexive 

responses are dampened and the instinct to avoid the feared stimulus is reduced.  The 

discordance in the observed changes following multi-voxel neuro-reinforcement underscores the 

importance of understanding the independent processes contributing to fear and threat 

responses. 

 

In Chapter 3 I found robust whole-brain classification of the subjective awareness of threat in a 

Pavlovian threat conditioning task using a machine-learning classifier.  Classifier performance 

generalized well to a new independent dataset.  Iterative within-region classification revealed a 

distributed fingerprint for subjective threat awareness organized in an hierarchical fashion 

across the cortex.  Subjective threat awareness could be not classified from early visual regions 

but became more classifiable further up the visual hierarchy.  Brain regions containing the most 

information about subjective awareness of threat were posterior cingulate, retrosplenial cortex, 

vmPFC, inferior frontal gyrus, OFC, and hippocampus.  These results help inform which brain 

regions are critical for the actual subjective experience of threat while most previous 

neuroimaging analyses of threat conditioning have failed to take subjective threat learning into 

account in place of assumed perfect threat learning (Fullana et al., 2016).   

 

The connectivity network results from Chapter 4 collaborate this multifaceted view of human 

fear and threat responding.  Group independent component analysis performed on fMRI data 

from threat acquisition, extinction, and extinction recall in a Pavlovian threat conditioning 

paradigm revealed a number of independent connectivity networks involved in the acquisition 

and extinction of learned threat memory.  These independent networks followed a variety of 

response patterns with increasing and decreasing connectivity as well as opposing stimulus 

specificity at overlapping timepoints during threat and safety learning.  I found a stable network 
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involved in threat acquisition and extinction overlapping with the Default Mode Network 

including the hippocampus, vmPFC, and posterior cingulate. I also observed a network 

persisting across threat acquisition and extinction recall overlapping with the Salience network 

including dACC, mPFC, and inferior frontal gyrus.  These networks demonstrated opposing 

stimulus specificities during threat acquisition with the Default Mode Network-overlapping 

network responding more to the safety stimulus while the Salience Network-overlapping network 

responded more to the threat stimulus.  These findings add to a growing body of literature 

examining connectivity during threat conditioning (Berg et al., 2021; Wen et al., 2021) while 

adding subnetwork specificity (rather than examining the average connectivity across the whole-

brain). As such a variety of responses can be observed in parallel, these results hazard against 

the oversimplification of the brain’s response to threat as a singular process.   

 

However, these findings are not without their limitations.  In Chapter 2, the finding of reduced 

amygdala activation to the target phobia only reached trending significance. This is most likely 

due to insufficient power as the sample size of 18 participants is small compared to modern 

fMRI standards (Turner et al., 2018).  This power issue unfortunately can not be combated with 

increased trial counts per participant as the studied amygdala response is transient, habituating 

after just a few trials. As such, only the first two trials are examined per participant following 

previous methodologies (Koizumi et al., 2017; Schiller et al., 2010) leaving a greater possibility 

of inconsistent measurement as compared to other fMRI studies with little to be done to combat 

these issues within participant.  Nonetheless, target-specific engagement of the amygdala had 

been found in a similarly sized non-clinical population in the proof-of-concept study 

(Taschereau-Dumouchel et al., 2018).  This issue highlights the difficulty in demonstrating the 

effect of multi-voxel neuro-reinforcement with primarily neural outcomes as this modest sample 

size still represents a significant effort and cost totaling over 100 separate fMRI sessions due to 

the multi-session nature of the intervention. Reaching a sample size of 100+ participants within 
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a single multi-voxel neuro-reinforcement study would be an intractable and prohibitively costly 

endeavor.   

 

A preferable alternative would be an effect demonstrated through a behavioral paradigm in 

which power issues are not so prevalent in smaller sample sizes.  This is a matter of finding the 

right task as subjective fear ratings did not change in the results reported in Chapter 2 or in the 

proof-of-concept study (Taschereau-Dumouchel et al., 2018).  The affective stroop task 

deployed in Chapter 2 seems to be a promising addition as this effect did reach statistical 

significance for the targeted phobia.  So despite the fact that patients may report the same 

subjective level of fear following multi-voxel neuro-reinforcement, behavior may be significantly 

changed as measured by tasks involving reflexive and automatic responses.  In future studies, 

besides a larger sample size, it would be informative to see other behavioral tasks implemented 

in addition to the affective stroop.  With the increasing popularity of virtual reality, future studies 

should see if patients demonstrate altered approach or avoidance in a behavioral approach task 

performed in virtual space despite reporting the same subjective level of fear. 

 

I sought to address some of the limitations in interpretation from previous fMRI studies of threat 

conditioning with the analysis reported in Chapter 3.  By incorporating participants' self-reported 

threat-stimulus contingency awareness ratings into the analysis, the results were able to 

account for individual differences in threat learning such as those that failed to properly identify 

the CS+ with threat or those that overgeneralized to view the CS- as threatening.  However, the 

results in Chapter 3 were still limited by a number of factors.  Most critically, despite explicitly 

analyzing the subjective awareness of threat, subjective awareness could not be properly 

dissociated from other correlated confounding processes like physiological and nonconscious 

threat responding.  Consequently, it is difficult to know if high classification accuracy of 

subjective awareness of threat in subcortical regions like hippocampus and amygdala is due to 
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these regions contributing to actual subjective awareness or other lower-level threat processes 

not directly contributing to subjective awareness.  Additionally, as contingency ratings were 

collected at the end of each task block rather than after each stimulus presentation, it is difficult 

to know how threat awareness developed and diminished over time during threat acquisition 

and extinction.   

 

In Chapter 4, findings were limited in interpretation due to the nature of the Pavlovian threat 

conditioning task.  Despite its simple form and prolific use, it is not clear exactly what processes 

are tracked through the task.  This analysis, like the vast majority of analyses of the task 

(Fullana et al., 2016), relied on contrasts between conditioned stimulus types (CS+E, CS+U, 

and CS-) to derive meaning.  However, exactly what differences between these stimuli reflect is 

not always clear.  The meaning is perhaps most clear during the threat acquisition phase where 

some sort of “threat” response is expected to be acquired, measured by the difference between 

CS+ and CS-.  However, oftentimes the inverse is found with CS- acquiring a response relative 

to CS+ as it was in some networks reported in Chapter 4 (Fullana et al., 2016; Wen et al., 

2021).  This has led to theorizing around what may be a “safety” signal learned in the task but 

little work has been done examining the overlap and differences between a “threat” versus 

“safety” signal in the classic conditioning model (Fullana et al., 2016).  These conceptual 

difficulties only compound when considering the extinction and extinction recall phases.  Beyond 

detection and removal of the original “threat” signal in extinction, it is not clear what an expected 

result should be.  By this standard, the desired result would be a null result at the end of 

extinction.  Conversely, perhaps stimulus specificity emerges at the end of extinction.  If it was 

not present at the end of acquisition, it is not clear what this stimulus specificity indicates 

between learned safety or persisting threat.  Finally, things become all the more unclear in 

extinction recall where stimulus differences can not be adequately discriminated between 

signals of renewed fear, original fear, or expression of an “extinction memory”.  Without an 
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understanding of what a safety signal or extinction memory is, it is difficult to distinguish 

extinction recall results from simply lingering threat acquisition.  

 

In future studies, explicit consideration of the differing processes contributing to subjective 

awareness, behavior, and physiology surrounding threat should be given in the task design.  

Rather than passive stimulus viewing, a behavioral component could be integrated where 

potentially threatening stimuli or approached or avoided with differing consequences for 

unconditioned stimulus delivery.  Additionally, it would be informative to add explicit fear ratings 

for conditioned stimuli.  Subjective awareness of threat is likely not a homogenous process itself 

with different regions potentially being implicated for the simple awareness of threat compared 

to the emotional experience of fear in the face of threat. Moreover, understanding the 

nonconscious processes of threat responding is also critical.  A future experiment in which 

nonconscious presentations of conditioned threat stimuli (using masking or near-threshold 

presentations) are assessed for both neural and behavioral response properties would be very 

informative of which threat responses and behaviors require subjective awareness.  Lastly, 

while fMRI has superior spatial resolution, a time-resolved analysis of these paradigms with a 

modality such as magnetoencephalography or electroencephalography would be greatly 

beneficial.  This would allow the temporal evolution of learned threat and fear responses to be 

assessed within trial, with reflexive and automatic responses occurring within the first 200 

milliseconds while subjective awareness processes would emerge over a longer timescale.  

 

In closing, this thesis investigated human fear and threat responses using both traditional fMRI 

and closed-loop real-time fMRI feedback.  The findings of these studies highlighted the 

importance of understanding the human fear response through the multiple domains through 

which it expresses itself such as subjective experience, behavior, and physiology.  While these 

findings demonstrate promise both for the understanding of as well as clinical intervention in the 
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human experience of fear, there is still much to be done in future studies to understand the full 

complexity of human threat and fear responses.   
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Appendices 

 

Appendix A. Within-region permutation test results 

 

 

Table A1. Non-parametric permutation test results for within-region decoding analyses.  A 
machine learning classifier was trained within each region to classify subjective threat 
awareness. Label names are reported in the left column with parcellations coming from the 200 
parcel Schaefer atlas (Schaefer et al., 2018) and amygdala and hippocampus segmentations 
from the Harvard-Oxford atlas (Destrieux et al., 2010). Classifier performance was assessed 
with area under the receiver operating characteristic curve (AUC) across 20 repeated split-half 
cross-validations.  Non-parametric null distribution was calculated by performing full cross-
validation on 1000 iterations of data with permuted class labels.  Non-parametric p values were 
calculated by fitting a non-parametric gaussian kernel to the null distribution and estimating the 
density function for the observed AUC. Significance was corrected for multiple comparisons by 
False-Discovery Rate correction with threshold q=0.001. 

Label AUC p-value Significance 

7Networks_LH_Vis_1 0.632766 1.20E-14 TRUE 

7Networks_LH_Vis_2 0.562645 1 FALSE 

7Networks_LH_Vis_3 0.584269 0.114602 FALSE 

7Networks_LH_Vis_4 0.617315 2.19E-09 TRUE 

7Networks_LH_Vis_5 0.577447 0.471595 FALSE 

7Networks_LH_Vis_6 0.661548 1.53E-32 TRUE 

7Networks_LH_Vis_7 0.60672 0.06665 FALSE 

7Networks_LH_Vis_8 0.655234 3.85E-34 TRUE 

7Networks_LH_Vis_9 0.553134 1 FALSE 

7Networks_LH_Vis_10 0.589952 2.31E-05 TRUE 

7Networks_LH_Vis_11 0.551608 1 FALSE 

7Networks_LH_Vis_12 0.660436 8.99E-26 TRUE 

7Networks_LH_Vis_13 0.593992 0.002726 FALSE 

7Networks_LH_Vis_14 0.576287 0.305778 FALSE 

7Networks_LH_SomMot_1 0.771042 8.05E-104 TRUE 

7Networks_LH_SomMot_2 0.799083 7.64E-148 TRUE 

7Networks_LH_SomMot_3 0.787974 2.38E-123 TRUE 

7Networks_LH_SomMot_4 0.785689 1.43E-164 TRUE 
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7Networks_LH_SomMot_5 0.775743 8.02E-107 TRUE 

7Networks_LH_SomMot_6 0.775704 6.75E-162 TRUE 

7Networks_LH_SomMot_7 0.753579 3.03E-85 TRUE 

7Networks_LH_SomMot_8 0.804818 2.22E-163 TRUE 

7Networks_LH_SomMot_9 0.754514 5.36E-121 TRUE 

7Networks_LH_SomMot_10 0.788915 4.82E-148 TRUE 

7Networks_LH_SomMot_11 0.734933 2.27E-71 TRUE 

7Networks_LH_SomMot_12 0.780689 2.03E-129 TRUE 

7Networks_LH_SomMot_13 0.784502 2.58E-162 TRUE 

7Networks_LH_SomMot_14 0.775841 7.87E-102 TRUE 

7Networks_LH_SomMot_15 0.778505 1.84E-151 TRUE 

7Networks_LH_SomMot_16 0.764274 4.97E-114 TRUE 

7Networks_LH_DorsAttn_Post_1 0.671068 1.58E-36 TRUE 

7Networks_LH_DorsAttn_Post_2 0.654815 1.07E-09 TRUE 

7Networks_LH_DorsAttn_Post_3 0.677605 3.33E-14 TRUE 

7Networks_LH_DorsAttn_Post_4 0.740764 1.68E-63 TRUE 

7Networks_LH_DorsAttn_Post_5 0.745178 2.37E-102 TRUE 

7Networks_LH_DorsAttn_Post_6 0.687799 1.17E-27 TRUE 

7Networks_LH_DorsAttn_Post_7 0.64221 1.16E-08 TRUE 

7Networks_LH_DorsAttn_Post_8 0.612601 0.002658 FALSE 

7Networks_LH_DorsAttn_Post_9 0.709223 6.94E-53 TRUE 

7Networks_LH_DorsAttn_Post_10 0.723036 8.90E-71 TRUE 

7Networks_LH_DorsAttn_FEF_1 0.759111 9.37E-88 TRUE 

7Networks_LH_DorsAttn_FEF_2 0.77028 4.26E-110 TRUE 

7Networks_LH_DorsAttn_PrCv_1 0.702639 3.72E-35 TRUE 

7Networks_LH_SalVentAttn_ParOper_1 0.758364 1.19E-86 TRUE 

7Networks_LH_SalVentAttn_ParOper_2 0.763731 2.97E-106 TRUE 

7Networks_LH_SalVentAttn_ParOper_3 0.72553 6.79E-69 TRUE 

7Networks_LH_SalVentAttn_FrOper_1 0.800629 1.02E-144 TRUE 

7Networks_LH_SalVentAttn_FrOper_2 0.807903 1.89E-146 TRUE 
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7Networks_LH_SalVentAttn_FrOper_3 0.801054 4.25E-147 TRUE 

7Networks_LH_SalVentAttn_FrOper_4 0.775122 4.65E-144 TRUE 

7Networks_LH_SalVentAttn_PFCl_1 0.769382 6.44E-96 TRUE 

7Networks_LH_SalVentAttn_Med_1 0.789082 2.70E-134 TRUE 

7Networks_LH_SalVentAttn_Med_2 0.792614 8.36E-143 TRUE 

7Networks_LH_SalVentAttn_Med_3 0.761205 8.30E-96 TRUE 

7Networks_LH_Limbic_OFC_1 0.796754 2.85E-135 TRUE 

7Networks_LH_Limbic_OFC_2 0.797986 8.86E-137 TRUE 

7Networks_LH_Limbic_TempPole_1 0.804719 5.72E-148 TRUE 

7Networks_LH_Limbic_TempPole_2 0.741119 2.18E-97 TRUE 

7Networks_LH_Limbic_TempPole_3 0.78426 4.04E-153 TRUE 

7Networks_LH_Limbic_TempPole_4 0.779584 8.50E-154 TRUE 

7Networks_LH_Cont_Par_1 0.710183 2.42E-67 TRUE 

7Networks_LH_Cont_Par_2 0.651319 2.24E-15 TRUE 

7Networks_LH_Cont_Par_3 0.696257 4.25E-44 TRUE 

7Networks_LH_Cont_Temp_1 0.700909 1.22E-53 TRUE 

7Networks_LH_Cont_PFCl_1 0.766817 6.78E-121 TRUE 

7Networks_LH_Cont_PFCl_2 0.75645 2.83E-84 TRUE 

7Networks_LH_Cont_PFCl_3 0.732034 7.39E-66 TRUE 

7Networks_LH_Cont_PFCl_4 0.724721 2.30E-48 TRUE 

7Networks_LH_Cont_PFCl_5 0.726062 3.61E-51 TRUE 

7Networks_LH_Cont_PFCl_6 0.748734 8.21E-96 TRUE 

7Networks_LH_Cont_pCun_1 0.661642 4.38E-31 TRUE 

7Networks_LH_Cont_Cing_1 0.758878 4.56E-94 TRUE 

7Networks_LH_Cont_Cing_2 0.775324 2.40E-133 TRUE 

7Networks_LH_Default_Temp_1 0.794165 1.79E-146 TRUE 

7Networks_LH_Default_Temp_2 0.734247 3.76E-55 TRUE 

7Networks_LH_Default_Temp_3 0.767173 1.46E-114 TRUE 

7Networks_LH_Default_Temp_4 0.756753 5.07E-76 TRUE 

7Networks_LH_Default_Temp_5 0.754365 3.14E-122 TRUE 
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7Networks_LH_Default_Temp_6 0.732778 3.02E-74 TRUE 

7Networks_LH_Default_Temp_7 0.604135 3.02E-07 TRUE 

7Networks_LH_Default_Temp_8 0.699805 1.99E-61 TRUE 

7Networks_LH_Default_Temp_9 0.68167 1.56E-39 TRUE 

7Networks_LH_Default_PFC_1 0.791686 4.58E-149 TRUE 

7Networks_LH_Default_PFC_2 0.768361 6.73E-86 TRUE 

7Networks_LH_Default_PFC_3 0.742701 4.58E-92 TRUE 

7Networks_LH_Default_PFC_4 0.750188 2.16E-74 TRUE 

7Networks_LH_Default_PFC_5 0.754086 3.55E-118 TRUE 

7Networks_LH_Default_PFC_6 0.781946 4.70E-163 TRUE 

7Networks_LH_Default_PFC_7 0.772326 4.71E-113 TRUE 

7Networks_LH_Default_PFC_8 0.77706 1.90E-112 TRUE 

7Networks_LH_Default_PFC_9 0.771017 5.05E-101 TRUE 

7Networks_LH_Default_PFC_10 0.761008 7.34E-127 TRUE 

7Networks_LH_Default_PFC_11 0.740845 7.79E-67 TRUE 

7Networks_LH_Default_PFC_12 0.781312 1.28E-119 TRUE 

7Networks_LH_Default_PFC_13 0.781377 6.55E-115 TRUE 

7Networks_LH_Default_PCC_1 0.722017 3.07E-72 TRUE 

7Networks_LH_Default_PCC_2 0.760726 2.68E-121 TRUE 

7Networks_LH_Default_PCC_3 0.795239 1.52E-148 TRUE 

7Networks_LH_Default_PCC_4 0.75216 1.37E-73 TRUE 

7Networks_LH_Default_PHC_1 0.78573 1.26E-101 TRUE 

7Networks_RH_Vis_1 0.730297 3.95E-64 TRUE 

7Networks_RH_Vis_2 0.783019 7.54E-120 TRUE 

7Networks_RH_Vis_3 0.590723 0.048796 FALSE 

7Networks_RH_Vis_4 0.645717 7.61E-22 TRUE 

7Networks_RH_Vis_5 0.591284 0.107845 FALSE 

7Networks_RH_Vis_6 0.543279 1 FALSE 

7Networks_RH_Vis_7 0.757153 1.86E-115 TRUE 

7Networks_RH_Vis_8 0.535324 1 FALSE 
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7Networks_RH_Vis_9 0.600959 0.040507 FALSE 

7Networks_RH_Vis_10 0.731587 1.05E-81 TRUE 

7Networks_RH_Vis_11 0.608348 0.026187 FALSE 

7Networks_RH_Vis_12 0.557101 0.110835 FALSE 

7Networks_RH_Vis_13 0.722415 6.80E-85 TRUE 

7Networks_RH_Vis_14 0.635928 2.64E-12 TRUE 

7Networks_RH_Vis_15 0.669223 2.76E-16 TRUE 

7Networks_RH_SomMot_1 0.769863 9.98E-111 TRUE 

7Networks_RH_SomMot_2 0.73957 8.25E-85 TRUE 

7Networks_RH_SomMot_3 0.795122 3.40E-131 TRUE 

7Networks_RH_SomMot_4 0.771923 1.92E-132 TRUE 

7Networks_RH_SomMot_5 0.750952 2.75E-62 TRUE 

7Networks_RH_SomMot_6 0.764146 2.09E-92 TRUE 

7Networks_RH_SomMot_7 0.722627 1.43E-62 TRUE 

7Networks_RH_SomMot_8 0.788706 1.56E-138 TRUE 

7Networks_RH_SomMot_9 0.697598 6.25E-52 TRUE 

7Networks_RH_SomMot_10 0.722756 1.57E-54 TRUE 

7Networks_RH_SomMot_11 0.787032 5.18E-105 TRUE 

7Networks_RH_SomMot_12 0.741859 1.48E-141 TRUE 

7Networks_RH_SomMot_13 0.710141 3.49E-54 TRUE 

7Networks_RH_SomMot_14 0.759057 1.83E-85 TRUE 

7Networks_RH_SomMot_15 0.717856 8.83E-35 TRUE 

7Networks_RH_SomMot_16 0.749068 1.56E-102 TRUE 

7Networks_RH_SomMot_17 0.737918 7.67E-76 TRUE 

7Networks_RH_SomMot_18 0.761613 1.47E-139 TRUE 

7Networks_RH_SomMot_19 0.719278 3.23E-31 TRUE 

7Networks_RH_DorsAttn_Post_1 0.699742 5.11E-14 TRUE 

7Networks_RH_DorsAttn_Post_2 0.753189 5.11E-86 TRUE 

7Networks_RH_DorsAttn_Post_3 0.728684 1.11E-83 TRUE 

7Networks_RH_DorsAttn_Post_4 0.664122 1.07E-12 TRUE 
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7Networks_RH_DorsAttn_Post_5 0.716626 2.27E-40 TRUE 

7Networks_RH_DorsAttn_Post_6 0.666373 8.55E-24 TRUE 

7Networks_RH_DorsAttn_Post_7 0.71081 5.51E-49 TRUE 

7Networks_RH_DorsAttn_Post_8 0.670391 9.40E-28 TRUE 

7Networks_RH_DorsAttn_Post_9 0.729848 9.83E-64 TRUE 

7Networks_RH_DorsAttn_Post_10 0.725605 3.60E-68 TRUE 

7Networks_RH_DorsAttn_FEF_1 0.74574 8.80E-80 TRUE 

7Networks_RH_DorsAttn_FEF_2 0.766602 2.29E-85 TRUE 

7Networks_RH_DorsAttn_PrCv_1 0.741432 2.26E-69 TRUE 

7Networks_RH_SalVentAttn_TempOccPar_1 0.743861 7.42E-109 TRUE 

7Networks_RH_SalVentAttn_TempOccPar_2 0.737418 2.09E-60 TRUE 

7Networks_RH_SalVentAttn_TempOccPar_3 0.746459 2.21E-74 TRUE 

7Networks_RH_SalVentAttn_PrC_1 0.685396 1.55E-39 TRUE 

7Networks_RH_SalVentAttn_FrOper_1 0.778321 4.56E-102 TRUE 

7Networks_RH_SalVentAttn_FrOper_2 0.794254 1.20E-134 TRUE 

7Networks_RH_SalVentAttn_FrOper_3 0.775576 2.78E-122 TRUE 

7Networks_RH_SalVentAttn_FrOper_4 0.790091 5.31E-156 TRUE 

7Networks_RH_SalVentAttn_Med_1 0.804017 5.46E-168 TRUE 

7Networks_RH_SalVentAttn_Med_2 0.792857 9.84E-135 TRUE 

7Networks_RH_SalVentAttn_Med_3 0.769307 5.81E-120 TRUE 

7Networks_RH_Limbic_OFC_1 0.800095 7.27E-130 TRUE 

7Networks_RH_Limbic_OFC_2 0.790166 2.19E-105 TRUE 

7Networks_RH_Limbic_OFC_3 0.753318 1.46E-113 TRUE 

7Networks_RH_Limbic_TempPole_1 0.784085 3.85E-125 TRUE 

7Networks_RH_Limbic_TempPole_2 0.764653 9.56E-95 TRUE 

7Networks_RH_Limbic_TempPole_3 0.809242 8.51E-171 TRUE 

7Networks_RH_Cont_Par_1 0.705036 2.73E-41 TRUE 

7Networks_RH_Cont_Par_2 0.691208 2.74E-35 TRUE 

7Networks_RH_Cont_Par_3 0.709573 1.13E-33 TRUE 

7Networks_RH_Cont_Temp_1 0.721735 4.77E-50 TRUE 
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7Networks_RH_Cont_PFCv_1 0.774332 1.21E-126 TRUE 

7Networks_RH_Cont_PFCl_1 0.760986 2.89E-90 TRUE 

7Networks_RH_Cont_PFCl_2 0.740101 4.45E-91 TRUE 

7Networks_RH_Cont_PFCl_3 0.710852 8.22E-42 TRUE 

7Networks_RH_Cont_PFCl_4 0.7252 5.94E-46 TRUE 

7Networks_RH_Cont_PFCl_5 0.734115 3.73E-96 TRUE 

7Networks_RH_Cont_PFCl_6 0.721183 6.96E-49 TRUE 

7Networks_RH_Cont_PFCl_7 0.746382 1.93E-89 TRUE 

7Networks_RH_Cont_pCun_1 0.73204 9.70E-69 TRUE 

7Networks_RH_Cont_PFCmp_1 0.798711 2.31E-130 TRUE 

7Networks_RH_Cont_PFCmp_2 0.785594 3.02E-129 TRUE 

7Networks_RH_Cont_PFCmp_3 0.78853 1.01E-126 TRUE 

7Networks_RH_Cont_PFCmp_4 0.767855 1.89E-96 TRUE 

7Networks_RH_Default_Par_1 0.682767 1.26E-28 TRUE 

7Networks_RH_Default_Par_2 0.747163 1.57E-81 TRUE 

7Networks_RH_Default_Par_3 0.708224 9.47E-17 TRUE 

7Networks_RH_Default_Temp_1 0.756282 9.81E-76 TRUE 

7Networks_RH_Default_Temp_2 0.749298 2.64E-73 TRUE 

7Networks_RH_Default_Temp_3 0.788037 2.32E-149 TRUE 

7Networks_RH_Default_Temp_4 0.722383 1.19E-91 TRUE 

7Networks_RH_Default_Temp_5 0.787762 4.21E-176 TRUE 

7Networks_RH_Default_PFCv_1 0.749247 3.11E-73 TRUE 

7Networks_RH_Default_PFCm_1 0.807987 1.84E-151 TRUE 

7Networks_RH_Default_PFCm_2 0.77118 3.73E-132 TRUE 

7Networks_RH_Default_PFCm_3 0.754254 2.50E-95 TRUE 

7Networks_RH_Default_PFCm_4 0.781183 4.03E-114 TRUE 

7Networks_RH_Default_PFCm_5 0.7541 8.10E-70 TRUE 

7Networks_RH_Default_PFCm_6 0.744002 3.21E-79 TRUE 

7Networks_RH_Default_PFCm_7 0.737682 1.04E-70 TRUE 

7Networks_RH_Default_PCC_1 0.807347 7.18E-186 TRUE 
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7Networks_RH_Default_PCC_2 0.819644 9.32E-145 TRUE 

7Networks_RH_Default_PCC_3 0.740253 1.15E-75 TRUE 

HOSPA_desc-Left_Amygdala-th50 0.805515 6.95E-152 TRUE 

HOSPA_desc-Left_Hippocampus-th50 0.833426 3.01E-212 TRUE 

HOSPA_desc-Right_Amygdala-th50 0.792829 2.14E-156 TRUE 

HOSPA_desc-Right_Hippocampus-th50 0.82053 5.57E-163 TRUE 
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