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Abstract—In this paper, we study two pieces of malware that
attempted to create blackouts in Ukraine. In particular, we
design and develop a new sandbox that emulates different
networks, devices, and other characteristics so that we can ex-
ecute malware targeting substation equipment and understand
in detail the specific sequence of actions the attackers could
perform on substation equipment. We also study the effects
that future similar malware can have. Our findings include
new malware behavior not previously documented (such as
the detailed algorithm for the MMS protocol payload) and
an illustration of how attacking different targets will produce
different effects.

1. Introduction

In less than a decade, Ukraine has suffered from several
cyber attacks attempting to cause electrical outages. On
December 23, 2015, in a dark and cold winter, Ukraine
suffered a blackout caused by cyber attacks [1]. This was the
first confirmed case worldwide of cyberattacks intentionally
targeting the power grid. In this first incident, attackers
gained remote access to the industrial networks of power
companies, and a remote adversary operated the human-
machine interface of operators, opening circuit breakers
manually.

A year later, on December 17, 2016, a fifth of Ukraine’s
capital, Kyiv, experienced another blackout [2], [3]. This
time, the target was a transmission utility, and unlike the
previous year when remote human attackers opened the cir-
cuit breakers, the attack in 2016 was launched automatically
by the first known industrial malware targeting the power
grid: Industroyer [4] (also known as CrashOverride [5]).

Finally, on April 8, 2022, in the first months of the
Russian invasion of Ukraine, operators discovered another
malware tailored to attack circuit breakers automatically.
This new malware was called Industroyer 2, and it repre-
sented yet another attempt to target Ukraine’s power grid
amid many other Russian cyber-attacks coordinated along-
side their kinetic military action [6].

The two Industroyer malware payloads represent a wa-
tershed moment for the security of critical infrastructures for
several reasons: (1) they represent the first and only known
malware samples specifically deployed by malicious actors
to target the power grid. (2) Industroyer is the only known
malware that caused a power blackout successfully. (3)
Industroyer 2 exemplifies how modern wars combine cyber
and kinetic attacks to maximize a show of force. (4) While
the attackers in 2015 needed a real-time network connection
to the power company to open circuit breakers, Industroyer

and Industroyer 2 can, in principle, be deployed in air-
gapped systems (or systems with strong network segmenta-
tion where remote connections are not allowed) because the
malware could automatically target power grid equipment
without the need for human feedback. (5) Industrial malware
may have other advantages over remote (manual) attackers,
like the ability to repeatedly send commands to devices
faster than an operator could respond to them.

In the remainder of the paper, we will refer to “Indus-
troyer” as “Industroyer 1” to avoid ambiguity.

While Industroyer 1 and Industroyer 2 represent the
only known malware samples specifically designed to cause
power blackouts, they have received little attention from
the academic community. There have been several industrial
reports about them [4], [5], [7], [8], [9], [10], [11], [12], but
unfortunately, these reports tend to focus on the Windows
exploits and other indicators of compromise and do not
focus on the power grid.

We believe academic researchers working on the secu-
rity of the power grid want to learn the details of how
Industroyer 1 and 2 launched the attacks and the impact
that similar malware may have in the future so that we
can understand the attacker’s decision-making behind the
payload design and also anticipate future attacks. As we
will explain later in Table 6, these industrial reports do not
give us enough details about the design behind the industrial
payloads. For example, these reports do not answer (1)
whether the payload against the power grid expects a central
control room or a substation, (2) how many substations or
devices can be attacked, (3) what the specific sequence of
industrial commands these malware samples could send to
different devices in the power grid, and (4) what is the
impact that these attacks may cause in the bulk power
system (e.g., can these attacks lead to cascading outages,
and if not, what would be the alternate impacts).

To answer these questions, in this paper, we design and
develop a new industrial sandbox to execute malware target-
ing the power grid. Anti-virus companies use various tools
and sandboxes to execute regular IT malware dynamically.
However, as far as we are aware, there is no sandbox to
understand the execution of power grid malware because
the sandbox needs to represent a high-fidelity simulation of
industrial systems and include the unique industrial proto-
cols the malware expects. In this paper, we develop such a
sandbox and use it to understand in detail the operation and
potential impact of Industroyer 1 and Industroyer 2, reveal-
ing previously unreported functionalities of these attacks.
We plan to continue developing this sandbox and extend it



to provide other use cases.
As our contributions:

• We provide the first in-depth analysis of Industroyer
1 and 2. Our paper fills the gap between previous
industrial reports and the knowledge that power grid
operators and industrial control experts need to under-
stand the specific attack commands targeting power
grid equipment. Our analysis finds previously unre-
ported behavior of Industroyer 1 and 2.

• We design and develop NEFICS1, a new industrial
control sandbox to test malware interacting with power
grid equipment. In particular, we provide environments
that emulate a control room for a power grid operator
with remote connections to substations or a substation
network with local connections to electrical equipment.
Our software artifacts are openly available.

• We discuss and analyze the evolution of attacks, the
attack surface of the grid, and the impact that these
attacks may have on the bulk power system.

2. Background

The power grid is a distributed control system operated
by a federation of companies, each controlling a specific part
of the infrastructure. For simplicity, we call any company
monitoring and controlling a section of the power grid a
Transmission and Distribution System Provider (TDSP).

A typical TDSP has a central Control Room (CR). The
control room is where the physical process is monitored and
controlled with the help of human operators. A CR hosts
the Supervisory Control and Data Acquisition (SCADA)
applications, which collect information from remote devices
and remotely actuating equipment. A CR usually has several
specialized computers focusing on different aspects of the
operation of the power grid, such as a Historian that keeps
track of the operational states of the power grid, Human-
Machine Interfaces (HMIs) that operators can use to visu-
alize and manage the physical process, and OPC servers
used for compatibility. Most of the sensors and actuators
monitored and controlled by the CR, can be found in various
substations. So, CRs have several remote connections to a
set of distributed substations.

Substations are distributed facilities that house equip-
ment to monitor and control the power grid. These include
transformers, voltage regulators, telemetry equipment, and
protection devices. Substations can be indoor or outdoor
facilities and can be staffed or unattended. Some substations
have their own Control Room (CR) to monitor and control
the local equipment.

A SCADA server in the central CR interacts with Re-
mote Terminal Units (RTUs). RTUs are embedded com-
puters deployed in remote substations to collect data from
various devices within the substation and report this to
the CR. While RTUs have been the traditional endpoint
for communications between a CR and a substation, some
modern substation endpoints are called substation gateways.

Within a substation, an internal local network connects
various devices, including Intelligent Electronic Devices
(IEDs). An IED is an embedded computer in a substation

1. https://github.com/Cyphysecurity/NEFICS

that directly monitors and controls power system equip-
ment. IEDs host logical nodes (computer programs) such
as Control Switches (CSWI). A CSWI, in turn, controls
a physical device called a Circuit Breaker (CB). CBs are
independently mounted poles with a chamber that has an
isolating material able to stop current or arc effect currents.
CBs can be used to disconnect parts of the electric grid.

2.1. Industrial Communication Protocols

CR to substation: The communication between a CR
and a remote substation is realized by the SCADA system
through various industrial protocols. Early SCADA sys-
tems used point-to-point serial communication protocols like
Modbus and IEC 101, which emerged as the communication
standards for connecting a CR with substations. IEC 60870-
5-101 (IEC 101) enables telecontrol messages between the
CR and substations. This protocol uses a low bandwidth
bit-serial communication (serial communication) to trans-
mit data objects and services over geographically wide
areas. With the advent of TCP/IP networks, new Internet-
compatible protocols such as IEC 60870-5-104 (IEC 104)
and DNP3 became popular for connecting substations to
a CR. While these protocols support Internet standards
(TCP/IP), they are generally used over private networks
leased from telecommunication providers, so, in principle,
the links between CRs and substations are not accessible
through the public Internet.

Within a Substation: Ethernet-based communications
within a substation are defined by the IEC 61850 stan-
dard. IEC 61850 includes three protocols: MMS (used by
workstations to get data from IEDs), GOOSE (this is how
IEDs communicate between themselves), and SV (used by
IEDs to get data from the physical process). IEC 61850 also
defines a universal language for substation configuration, the
Substation Configuration Language (SCL), which includes
a logical and abstract representation of the substation com-
ponents and facilitates the automation of substations.

Finally, OPC (OLE for Process Control) is a standard
to facilitate intercommunication among ICS devices. By
leveraging Microsoft’s standards Object Linking and Em-
bedding (OLE), Component Object Model (COM), and Dis-
tributed Component Object Model (DCOM), OPC models
the interface to translate OPC requests (e.g., read/write) to
requests understandable by the target device [13]. What is
known as OPC Classic is the initial standard that used to
work only on Windows systems and is composed by the
OPC Data Access (DA), OPC Alarms & Events (AE), and
OPC Historical Data Access (OPC HDA). More recently,
the OPC Foundation created the OPC Unified Architecture
(UA) [14]; a standard that works on multiple environments
(not only on Windows) and includes multiple capabilities,
such as Session Encryption, Message Signing, and Se-
quenced Packets.

An attacker must understand these protocols to design an
effective payload capable of communicating with the equip-
ment in predictable ways. Defenders can also understand
the potential impact of the malware by understanding these
protocols and the architecture of industrial networks. For
example, Industroyer 1 was a Swiss army knife for attacking
power grid systems. It had payloads for IEC 101, IEC 104,
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Figure 1: Industroyer capabilities (denoted by the devils) in
a power grid. Industroyer can interact using the industrial
protocols in red and purple.

IEC 61850, and OPC, while Industroyer 2 only targeted IEC
104. This meant that Industroyer 1 could be deployed in a
CR and use IEC 101 or IEC 104 to talk to substations, or
if it was deployed in a substation, it could use IEC 61850
to talk to IEDs.

Figure 1 shows how Industroyer 1 could have interacted
with several devices in the power grid; e.g., it could be
launched from the SCADA computer in the main control
room and use serial connections (such as IEC 101) or
TCP/IP connections (such as IEC 104) to reach substations.
Alternatively, it can be deployed in a workstation within a
substation and use IEC 61850 to discover and target IEDs.
As far as we are aware, this is the most detailed network
architecture representing the capabilities of Industroyer 1
and 2 and the specific locations where they could interact
with power grid equipment. This diagram also helps us
design a sandbox that can convince Industroyer 1 and 2
to believe they are inside a power grid.

3. Sandbox Design

Malware analysis is more effective if it can be deployed
in a sandbox that represents a realistic environment where it
is intended to be deployed. A securely isolated virtual ma-
chine is sufficient to understand general malware affecting
system resources. However, we must emulate or simulate
new equipment and industrial protocols to interact with the
malware. A cost-effective solution is to use a simulated
environment replicating the conditions of such critical in-
frastructures, allowing us to observe both the malware’s
digital behavior and the attack’s physical repercussions.

We evaluated some existing power grid testbeds to de-
termine whether they would be a suitable starting point for
our purposes (Table 1). We looked into whether the system

provides a suitable device and network components simu-
lation, is fully open-source, easily extensible, and supports
all the protocols that Industroyer uses.

While searching for different testbeds, we noticed that
the ones with an accurate power grid model lacked the
capabilities to support the required network protocols (in
particular, none supported IEC-101 and IEC-104), and those
with accurate network simulations lacked a reliable physi-
cal model. Most of them have some external component
such as a system-in-the-loop (SITL) or hardware-in-the-loop
(HITL), making it difficult to replicate, or use proprietary
modules that prevent it from being easily extensible, as its
original goal constraints the design. HITL testbeds aim to
test and refine a system by adding hardware components
that reflect the changes in the physical system. In contrast,
SITL testbeds add an existing system to simulated real-time
devices to test and refine these simulations.

TABLE 1: Power grid / Smart Grid testbeds.
[15] [16] [17] [18] [19] [20] [21] [22] [23]

Physical simulation    # #  # #  
SITL / HITL  #        
Network simulation       #   
Proprietary modules          
Industroyer protocols 0/4 0/4 0/4 2/4 2/4 2/4 1/4 1/4 1/4

#: Not supported  : Supported

Overall, these environments rely on proprietary software
or hardware, limiting their extensibility and openness. In ad-
dition, none of them support all the devices or the industrial
protocols we need in our study; therefore, we now propose
a new open-source, extensible solution. We identified the
following criteria when designing our sandbox:
Isolation: It must be isolated from any other network.
Secure-coupling: We must be able to integrate a machine

infected with malware.
Network tracking: A network traffic capture is essential to

understand how the malware interacts with its targets.
Flexibility: It must support various industrial control proto-

cols. In this specific instance, power grid protocols for
remote substation control and substation automation.

Physical simulation: It must simulate changes in a physi-
cal process.

Customizable: The simulation scenarios must be config-
urable.

Extensible: It must support future scenarios with different
processes.

Figure 2 illustrates the proposed design. Isolation,
Secure-coupling, and Network traffic are three characteris-
tics that a virtual network linked to a virtual machine’s net-
work interface offer. Two virtual machines linked by a host-
only network in the hypervisor prevent potentially hazardous
network traffic from leaving the secure environment (Figure
2 2 ). Moreover, having all the malicious traffic routed to
the simulated network via a virtual machine interface allows
us to capture any network traffic for analysis.

To implement the virtual network itself, kernel names-
paces, often used in container solutions, provide a viable
way of simulating multiple hosts in a single Linux machine.
Mininet uses the same concept to create virtual network



hosts. Since it is Python-based, we can develop a way to
integrate a physical simulation into the network emulation
provided by Mininet. Moreover, Mininet uses Open vSwitch
to interconnect the simulated hosts, providing a software-
defined network solution that allows us to connect the
simulation to a virtual machine’s host-only network inter-
face, integrating the infected host to the simulated network
(Figure 2 1 ). This solution offers a secure and isolated
network to capture and analyze the network traffic.

We can achieve Flexibility, Extensibility, and Cus-
tomizable characteristics by implementing the sandbox in
separate modules. Any industrial control protocol supported
by the sandbox would be a separate module, dynamically
loaded and enabled as required. By making the sandbox
modular by design, we can incrementally add new phys-
ical processes and industrial control protocols as needed.
Moreover, implementing a handler component to parse a
configuration file with the description of the desired scenario
allows us to build complex topologies dynamically without
explicitly developing the scenario but rather the modules
comprising it.

Finally, the Physical emulation must provide realistic
data over the implemented protocols. We must interconnect
the physical simulation with the network simulation (Figure
2 3 ). For this purpose, we identified two primary compo-
nents for our sandbox: the communication with the network
emulation and the physical process.

Infected VM

local server

Sandbox VM

Host-only network

Hypervisor named pipe

Network Emulation

Mininet
vSwitch

modules

Handler

Proto 2Proto 1 Proto n

Serial Emulation

Physical Emulation

1

2

3

Figure 2: Sandbox architecture.

Since one of our requirements is to support various
industrial control protocols, albeit not necessarily at the
same time, each simulated host must be able to dynami-
cally enable or disable the support for an industrial control
protocol. Moreover, the network topology and simulated
hosts must be configurable. Therefore, there needs to be
a component that parses the configuration requirements and
uses each supported protocol as needed. Since this com-
ponent will essentially handle the information flow of the
simulated industrial device, we could tie this component to
the physical simulation, requesting and updating values from
the simulated physical process and translating these values
into the industrial control protocol.

With this information handler in mind, we can imple-
ment the different supported industrial control protocols into
modules that the handler can dynamically import to enable
a specific protocol and communicate with the infected ma-
chine or any standard industrial control client.

This handler presented the primary implementation chal-
lenge. Once the sandbox instantiates a device, the virtual
device must follow with an instantiation of this handler.
Therefore, each virtual device implementation must have a

unique handler that bridges the device with the different
network protocols and the physical simulation. Following
our flexibility and extensibility requirements, these handlers
must be imported and instantiated at runtime. To overcome
this complexity, we implemented a generic launcher that
checks the device and handler modules against the provided
configuration at runtime and creates the required instances.
Using this launcher component, we do not restrict the im-
plementation to a particular scenario and allow the sandbox
to be extended to include additional physical processes and
devices.

So far, we have implemented modules for handling IEC-
60870-101, IEC-60870-104, and Modbus TCP using Scapy,
IEC-61850 using the iec61850bean library, a Matrikon OPC
server for OPC-DA, and CPPPO for Ethernet/IP CIP.

IEC-60870-101 (Serial) and IEC-60870-104 (TCP/IP)
and both remote control protocols are used by operators
to control multiple substations from a central control room.
Therefore, this scenario simulates the remote communica-
tion between an infected host in a control center and multiple
remote substations linked by a WAN or a legacy serial dial-
up connection. We use the IEC-61850 module to simulate
devices within the local LAN of a substation. Thus, the
infected machine in this scenario would be a local operator
workstation inside the substation within the local LAN.

For the physical process simulation, we can either have
one virtual host do all the simulations and coordinate with
the other hosts or have each host simulate part of the
physical process and synchronize the simulation state with
the relevant hosts. In either case, we need the simulated
hosts to communicate with each other and synchronize the
state of any physical sensors and actuators handled by the
simulated devices. This physical communication must be:
(1) Fast, meaning that the physical process simulation must
be as realistic as possible and run in real-time. (2) Up-to-
date, meaning that each device holds only the most recent
data. (3) Concise, meaning that we only send the necessary
values, and (4) Addressable as we want the values to reach
the desired device.

A UDP protocol is sufficient for the fast and up-to-date
requirements, as there would be no issue with a missing
packet if a device receives a more recent packet, and the
lack of flow control offers a speed advantage over a TCP
protocol. As for conciseness and addressability, a fixed-size
structure of bytes carrying the necessary information fulfills
this requirement. We designed a simple small payload that
allows us to transmit concise sensor and actuator values to
and from the simulated devices, with addressable device IDs,
as most industrial control protocols do.

Our proposed solution is a UDP protocol that uses
fixed 28-byte packets containing sender and receiver IDs,
a message type, two integer values, and two float values.
Sender and Receiver IDs make the protocol addressable in
the application layer, meaning that the sender can broadcast
the packet without knowing the recipient’s IP address and
effectively transmit a value, which is helpful in scenarios
in which we dynamically build a network topology without
knowing the IP addresses that Mininet assigns to the hosts.
The message type allows us to customize the messages and
specify the packet’s data, be it a range, set-point, sensor
value, or actuator value. Since we want a standardized way



of sending the data, we always send a fixed-size payload,
and it is up to the message type to determine the semantics
of the four values.

Using this protocol, we construct the physical simulation
in separate modules that we instantiate as needed. These
modules use the protocol to communicate with the simu-
lation handlers, providing them with the up-to-date state of
the sensors and receiving any state changes for the actuators
to simulate the modifications in the simulation.

4. Malware Analysis

TABLE 2: Malware samples.
Sample Industroyer SHA-256
101.dll 1 a319551ef72492b3cd489de676b2f6e7938a5ef23e572d36dd742b599686caac
104.dll 1 7907dd95c1d36cf3dc842a1bd804f0db511a0f68f4b3d382c23a3c974a383cad
61850.dll 1 4e7d2b269088c1575a31668d86de95fd3dde6caa88051d7ec110f7f150058789
haslo.exe 1 ad23c7930dae02de1ea3c6836091b5fb3c62a89bf2bcfb83b4b39ede15904910
opc.exe 1 156bd34d713d0c8419a5da040b3c2dd48c4c6b00d8a47698e412db16b1ffac0f
svchost.exe 1 7cc9ac6383437dd96161b93b017500a22a2c8d05f58778b9b9fce8ea73304546

40 115.exe 2 d69665f56ddef7ad4e71971f06432e59f1510a7194386e5f0e8926aea7b88e00

Our Industroyer samples are summarized in Table 2.
Industroyer 1 consists of a set of DLLs and executable files.
In contrast, Industroyer 2 is a single executable file. Both
malware versions are post-exploitation tools (final payload),
which are deployed after a successful intrusion.

The attackers built Industroyer 1 as a malicious frame-
work. A launcher component (svchost.exe) executes the
desired framework payload, masquerading it as a Windows
service for persistence. The adversaries can launch a dif-
ferent service for each supported industrial control pro-
tocol (i.e., 101.dll, 104.dll, 61850.dll, and opc.exe) using
the corresponding configuration file, initiating the malicious
payload. Once they complete their primary objective, they
can execute the wiper component (haslo.exe), which wipes
critical industrial information from the infected host and
prevents a prompt solution against the attack.

Unlike its predecessor, Industroyer 2 is a single stand-
alone executable file with a hard-coded configuration that
executes all the necessary actions for the attack and ter-
minates its execution once it accomplishes the primary
objective. During the Industroyer 2 intrusions, adversaries
also deployed several wiper components (CaddyWiper for
Windows systems, ORCSHRED, SOLOSHRED, and AW-
FULSHRED for Linux and Solaris systems), following the
same general modus operandi adopted during the Indus-
troyer 1 attack.

4.1. Methodology

To understand the malware capabilities, we studied each
payload sample through three sequential stages: static anal-
ysis, dynamic analysis, and semantic analysis.

Static analysis: Initial sample exploration to gather suf-
ficient information about each malicious image without ex-
ecuting them. Some of the tests performed involve strings
extraction, gathering of import/export functions, and detec-
tion of anti-debugging mechanisms (e.g., obfuscation/en-
cryption). In this stage, we determined various execution
constraints, such as the file format of the expected con-
figuration files for specific payloads, a control flow graph

analysis to determine the expected values by the malware,
and entry points for further debugging.

Dynamic analysis: Behavioral study of the sample. The
objective is to understand how the malware behaves when
executed. Based on the execution constraints obtained from
the static analysis, we deployed an isolated environment that
simulated the scenario expected by the malicious software.
The output of this stage provides information about the inter-
action between the malware and its environment (e.g., packet
captures, log files, etc.) and helps us to craft the adequate
packets for the NEFICS modules in scenarios where the
malware waits for certain values and packet sequences.

Semantic analysis: Semantic study of the sample. The
objective is to understand the real impact of the malware
execution against the physical system. We simulate physi-
cal systems and electricity network services in our testing
environment using the modules we designed for NEFICS to
determine how the malware can affect the targeted infras-
tructure.

4.2. Attack Patterns of Industroyer 1 & 2

Being a modular industrial control malware, Indus-
troyer 1 can carry out multi-pronged and multi-target attacks
against different processes and parts of the power grid opera-
tion by using four payload modules, each targeting a specific
power grid control protocol: IEC 101, IEC 104, IEC 61850,
and OPC Data Access (OPC-DA). In contrast, Industroyer
2 is a stand-alone executable that uses a single protocol to
perform its attack: IEC 104. Each supported protocol also
reveals the potential industrial control targets the attackers
could compromise. Using Industroyer 1, an adversary could
launch an attack against an OPC-DA server, RTUs via IEC-
101 or IEC-104, and substation IEDs using IEC-61850. As
for Industroyer 2, the targets are RTUs supporting IEC-104.

Figure 3 shows the overall process each payload exe-
cutes to accomplish its task. In the next section, we will de-
scribe each payload in detail, but here, we briefly overview
the attack patterns.

Targets. This is the step where the payloads differed the
most. In some cases, the attacker had a lot of information
about the specific targets and baked the targets into the
executable (e.g., Industroyer 2); in other cases, the mal-
ware expected a specific target (e.g., IP addresses, ASDU
Common Address, and specific IOAs) but this information
was provided via a configuration file read at execution
time (e.g., Industroyer 1’s IEC 104 payload), finally, in
some cases the malware did not have nor expected any
information about the target; instead, the malware executed
commands to perform a reconnaissance of potential targets
(e.g., Industroyer 1’s OPC-DA payload).

Blocking. Most payloads prevented a legitimate process
from interfering. If the legitimate control process retains a
communications channel with the target, it can prevent or
override any malicious command. Each payload attempts
to avoid this by terminating the legitimate process (e.g.,
the IEC-104 payload terminates the running SCADA soft-
ware communication agent) or locking the required resource
within the operating system (e.g., the IEC-101 payload
blocks all serial ports).
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Figure 3: Overall malicious process for each payload

Connection. Most payloads use a TCP-based protocol
to send malicious commands to the targets. These payloads
create a separate thread to handle each TCP connection (e.g.,
IEC-104) or occupy the serial port (IEC-101).

Exploit. In this step, the malware sends malicious com-
mands to devices in the power grid. Some payloads send
specific commands to each target (e.g., the IEC-61850 pay-
load sends 35 commands to a CSWI). In contrast, others en-
ter an infinite loop in which they periodically send malicious
commands (e.g., the IEC-104 payload of Industroyer 1 keeps
repeating a configurable sequence of commands forever).

Regardless of the specific payload nuances, the main
objective of all payloads is to change the status of specific
circuit breakers controlled by RTUs or IEDs. We now dis-
cuss the general overview of the payloads.

4.3. IEC 61850 payload

Industroyer 1 targets MMS, a protocol used to connect
with IED devices. To observe the malware interacting with
its target, we used the iec61850bean open-source server [24]
as a target.

Fig. 4 illustrates a general IEC 61850 network in a
substation. The 61850 payload has three primary stages, as
shown in Fig. 3a:

1 Initialization and configuration: The payload’s entry
point may have a configuration (.ini) file with a list of
target IP addresses. In this stage, the payload reads the
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Figure 4: Industrial Network in a Substation.

configuration file and identifies targets with open port 102
(MMS service); otherwise, it scans the local network for
viable targets.

2 Establishing communication: In this stage, the pay-
load creates an individual thread for each IP address with
an open 102 port to establish the connection and launch the
attack. It sends a TCP connection request, followed by a
Connection-Oriented Transport Protocol (COTP) request. If
the target accepts the COTP request, the malware sends an
MMS connection initiation request. The target confirms the



connection initiation by sending an MMS initiation response
and establishing a successful connection.

3 Malicious control loop: In the final stage, the pay-
load enters into a loop of write requests. The goal of the
61850 payload is to locate the control switches (CSWIs)
exposed by the target. The malware targets these switches
and changes the values of their control variables.

Devices (IEDs) that support IEC 61850 usually come
pre-configured with data models from the manufacturer.
These data models summarize what the device is capable
of. For example, if an IED can Protect a circuit from over-
current, it will have a logical node named PTOC (a logical
node beginning with a “P” means it is for protection).
Similarly, a device with over-voltage protection will have
a logical device named PTOV.

Industroyer 1 uses the command getNameList to find
the logical devices of a given IP address supporting IEC
61850. In particular, we find that Industroyer 1 asks if the
device has logical nodes named CSWI. This logical node is
used for control (logical names starting with “C” means that
they are control devices). These control elements can operate
circuit breakers (XCBR), isolators (XSWI), or other process
equipment located in a merging unit in the switchyard (the
process level in Fig. 4). Logical node names starting with an
“X” means that these devices are switchgear–and are located
in the switchyard.

In the analysis of the 61850 payload, we observed that
Industroyer 1 tries to identify the following CSWI objects:
stVal: This variable indicates the status of the CSWI. It
can assume several possible values, among which 0x40 is
for position OPEN and 0x80 for position CLOSED. In
our analysis, we found that any value that is not 0x80 is
(incorrectly) considered as OPEN by Industroyer 1.
ctlModel: Defines the mode in which the CSWI operates.
In mode 0, it only reports its status; in mode 1, it can
be controlled directly by a single command; in mode 2,
it is configured with Select Before Operate (SBO), where
(for safety reasons) the switch first needs a select command
indicating the intention to change its status, and only after
it receives a second command (operate) it changes its value.
In mode 3, it can be controlled by a single command, and
the IED sends back a confirmation that the physical device
changed its position as requested (or not). Finally, in mode
4, the switch is in SBO mode, and in addition, it sends
the confirmation command. These modes are summarized
in Figure 5a. We configured the IED server to reply with
all of these possible values but found that Industroyer 1
considered ctlModel replies of 0, 1, 2, or 3 as if the
server was configured with a ctlModel of 1, as illustrated
in Figure 5b (i.e., Industroyer 1 sends an Operate command
without a Select beforehand). This is one of the many ways
Industroyer 1 deviates from the standards, as we will show
later in the paper.

After the initial reconnaissance is completed, Industroyer
1 delivers its malicious commands by sending write requests
based on the ctlModel value. As illustrated in Fig. 5b, if
ctlModel=4, then it sends two write requests: (1) SBO
to select the device before sending Operate command, and
(2) Oper to change the control value of CSWI. For any
other value of ctlModel, it sends only one write com-
mand, Oper (which, as we mentioned before, violates the

standard). We infer that the machine targeted by Industroyer
1 was only either in a ctlModel mode of 1 or 4, and that is
the reason the malware developers did not create an accurate
payload for the reply if the server replies with a ctlModel
of 0, 2, or 3.

Another interesting observation is that the malware sends
a sequence of 36 commands, each time alternating the status
of the circuit breaker. This repeated opening and closing
of the circuit breaker may be meant to damage the circuit
breaker or associated device (in addition to trying to create
a blackout).
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Figure 5: Industroyer 1 sends same write requests for
ctlModel = 0, 1, 2, 3. Only two distinct modes (1 and 4)
of operation by malware.

Fig. 6 shows the logic of Industroyer 1 for changing
the status of a circuit breaker. The first step is to get
details of the target: after Industroyer 1 sends the first read
request getNameList, the server gives the list of logical
devices (IEDs) in the server. The second read request is
logical device-specific, to obtain the list of logical nodes
(Control switches, Circuit Breakers, etc.) in the specified
logical device. The server responds with all the logical nodes
and their corresponding data attributes. Then Industroyer 1
scans for the CSWI objects described above. If the variables
stVal and ctlModel are not present, then it closes the
connection. Industroyer 1 sends read requests to get these
values if these variables are present. The response from the
server may be 0x40 or 0x80 for stVal, which represents
that the switch is either OPEN or CLOSED, respectively.
For ctlModel, the server can respond with either value
from 0− 4.

Experiments with IEDs: We now test how Industroyer
1 interacts with real-world devices.

Fig. 7 shows the devices used: Siemens Siprotec 4 7sj82
(Fig. 7a); Siemens Siprotec 5 6MU85 (Fig. 7d left); ABB
ref 620 (Fig. 7d right); and a Raspberri PI running the
LibIEC61850 library (Fig. 7e). Figures 7b and 7c show the
light indicator and the single-line diagram graphical repre-
sentation of the protection mechanisms (circuit breakers and
isolators).

While performing tests against different IEDs, we no-
ticed the brittleness of Industroyer 1 toward the data model
provided by an IED. Attempts against the Siemens Siprotec
4 family yielded mixed results depending on the testing
mode setting. Whenever the IED is under regular operation,
Industroyer 1 executes the attack without affecting the sys-
tem’s physical state, sending the commands in testing mode.
However, if the device operates in testing mode, Industroyer
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Figure 7: IEDs and Testbed

1 fails to interpret the device’s data model and does not
launch the attack. As for the Siprotec 5 family, it always
fails to interpret the data model. Overall, our observations
on SIEMENS devices reveal that Industroyer 1 receives the

Logical Devices information but fails to inspect the respec-
tive logical devices; the malware creates a GetNameList
command of a logical device with a blank name.

That was not the case for the utilized ABB device:
when we chose the Testing Mode, the malware was able
to successfully modify the positions of both Circuit Breaker
and Isolator as shown in figures 7b and 7c, effectively com-
promising any physical state controlled by the target device.
This change is because it sends the command to the control
switch in the IED, which is the logical node responsible
for actuating upon both the breakers and isolators in these
devices.

We confirmed these results with physical and simulated
devices using the same data model in both scenarios. In-
dustroyer 1 behaved similarly whenever it tried to attack
a simulated version of the data model of the Siemens and
ABB devices. This behavior leads to the conclusion that the
malware was tailored-made to attack a specific data model
of certain manufacturers using testing mode (this was either
because Industroyer 1 was configured to attack devices in
a lab or because the target substation had left a device
operating in testing mode and the adversaries knew about
this). Our analysis confirms that the targets of Industroyer 1
were IEDs manufactured by ABB, as the malware did not
work reliably with other manufacturers.

4.4. IEC-101 Payload

The IEC-101 payload communicates with the target RTU
via a serial port in the compromised host. As shown in
Fig. 3b, the overall process has three primary stages: 1
Initialization and configuration, 2 Establishing the com-
munication and resetting the serial link, and 3 malicious
control loop.

This payload requires a configuration file containing the
serial port to use, the remaining serial ports to occupy,
the name of the legitimate process, the RTUs’ Common
Address, and the target IOA ranges. In the first execution
stage, the payload reads the configuration file, terminates the
legitimate process, and occupies the configured serial ports.

The second stage involves establishing a proper connec-
tion with the target RTU. The payload sends a “Reset link”
command encoded in FT 1.2 format to the RTU through the
serial port, re-establishing a clean communications channel
with the target and resetting the send-receive counters re-
lated to the IEC-101 protocol.

In the final stage, the payload enters an infinite
loop, periodically alternating between sending a single
(C SC NA 1) and a double (C DC NA 1) command with
the ’OFF’ value. This payload follows the Select-Before-
Operate paradigm by sending two frames per command, one
for selecting the information object and the other to execute
the command.

It then continuously sends an ‘OFF’ value in an attempt
to open the circuit breakers in the target substation. For each
circuit breaker in the configured IO range, the payload will
send a single and a double command, infinitely iterating
this range. An educated guess as to why attackers alternate
between single and double commands is that they were
unsure which type of command the various IOs in the target
substations support; thus, they send both.



4.5. IEC-104 Payload

Substation 1: alternate
Substation 2: on
Substation 3: off

Substation 1

Substation 2
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Figure 8: Options for IEC 104 in Industroyer 1.

This payload requires a configuration file containing
several target parameters: IP addresses, ASDU Common
Addresses, IO Address ranges, TCP port, and timeouts.
In addition to these parameters, the attacker can fine-tune
the next stage with additional parameters that control the
qualifier of the IEC-104 command, whether the malware
will alternate the value of each command, and the initial
value to use.

In this first execution stage, the payload reads the con-
figuration file and identifies all the target RTUs with their
corresponding attack parameters. After this, a second stage
involves ending the legitimate connections by terminating
the legitimate process, if any. In the third stage, the malware
creates a thread for every target RTU, prepared with all the
necessary parameters to establish a connection with its target
and the corresponding attack. Given the configuration, each
thread will vary the actions performed during the malicious
loop according to the attack parameters.

Following the attack configuration, the payload enters an
infinite loop in the final stage. This payload loosely follows
the IEC-104 standard in that it only sends the minimum
necessary messages to communicate with the targets without
strictly following an expected procedure of a legitimate
connection. Moreover, this payload disregards any messages
the target sends, continuing the attack even if the target RTU
replies with an error frame. The attack itself varies according
to how the adversary configured it. It can send the same
value (ON or OFF) in every IEC-104 frame or alternate
between values. This is the only payload that allows that
level of configuration. All other payloads have a fixed set
of instructions for the circuit breakers: (send repeated open
commands, such as IEC 101, or alternate between open and
close 36 times as IEC 61850). With the IEC 104 payload, the
attacker can select to send continuous open commands (to
keep overriding a manual close command), send repeated
close commands, or send an alternating set of commands
(open, followed by close) in an infinite loop.

Overall, the IEC-104 payload had the most advanced
configuration file. As shown in Fig. 8, the attacker could
create different configurations that allowed the malware to

interact differently with each device and each substation. For
example, it could ask one device in a substation to alternate
its status and another in the same (or a different substation)
to remain open.

5. OPC Payload

The OPC payload of Industroyer 1 aims to find manip-
ulable devices using known standard COM interfaces and
close and immediately open enumerated circuit breakers to
cut off power. Based on our analysis, we believe that the
malware attacked the OPC client station by initially retriev-
ing the registered OPC servers in its Windows registry. It
obtains all items in these servers and finally looks for items
with a specific string identifying the targeted circuit breaker.
Once it finds those items, it uses the exact commands to
select and execute a disconnection from the power grid. As
shown in Fig. 3c, the execution of the OPC payload is as
follows:

1 Initialization and configuration: The OPC module’s
entry points call a single primary function that handles the
entire logic of the executable. Without requiring a configu-
ration file as some of the other modules, the OPC’s payload
primary function starts by enumerating all OPC servers in
the Windows registry by looking for the OPC Server 2.0
CATID, a type of globally unique identifier (GUID) that
distinguishes between types of interfaces.

2 Establishing communication: The module
uses the Component Object Model (COM) interface
IOPCBrowseServerAddressSpace to find locally
registered OPC servers. The module needs to create an OPC
group for each server to interact with and manipulate items.
The function invokes the IOPCServer::AddGroup
method to achieve this. Then, to enumerate the OPC items
in each server, Industroyer 1 leverages the IOPCItemMgt
interface.

3 Retrieving OPC items: The OPC module specifically
looks for items containing one of the following strings:
ctlSelOn, ctlOperOn, ctlSelOff, ctlOperOff,
and stVal. According to ESET [4], these are strings asso-
ciated with OPC items for ABB devices, and as shown later,
these items are used as abstractions of the circuit breakers.
During the enumeration of servers, the main function logs
the name of each server. Assuming all the strings are present,
the function will begin by logging the name, quality, and
value of \Pos.stVal. The OPC item \Pos.stVal holds
the current status of the circuit breaker, which can have one
of four integer values: 0 for intermediate-state, 1 for off,
2 for on, and 3 for bad-state. The rest of the items are
functions that execute specific commands in the physical
breaker.

4 Writing OPC items: The module uses the
IOPCSyncIO interface to write 0x01 bytes to ctlSelOn
and ctlperOn to close the circuit breaker the given item
refers to. The module then logs the new values and uses
the same interface to write 0x01 bytes to ctlSelOff
and ctlOperOff, opening the circuit breakers. The final
status after the last write is also retrieved and logged by the
payload.

To understand the dynamic behavior of this payload, we
simulated an OPC server in our virtual environment with



Matrikon [25]. In particular, we leveraged the Matrikon
server to simulate a circuit breaker and the items the mal-
ware is trying to retrieve during the reconnaissance stage.

TABLE 3: MatrikonOPC simulation server configuration
with fake items and values. Industroyer 1 writes the values
of the last 4 items with 1 and logs the value of stVal in each
step

Item Value After ON After OFF
Pos.stVal 2 2 2
ctlOperOn 0 1 1
ctlOperOff 0 0 1
ctlSelOn 0 1 1
ctlSelOff 0 0 1

In normal scenarios, to close a circuit breaker (thereby
activating it), one would have to first select the circuit
breaker by sending a 0x01 byte to the ctlSelOn item.
Then execute the task by similarly sending a 0x01 byte to
the ctlOperOn item. To open a circuit breaker (which
would be the objective of a malicious actor trying to
cut off power), one would have to send a 0x01 byte
to ctlSelOff and ctlOperOff. Industroyer 1 OPC
module performs these actions automatically, as seen in
Table 3, where the values of ctlOperOn, ctlOperOff,
ctlSelOn and ctlSelOff are overwritten to 1.

[* ServerName : M a t r i k o n . O P C . S i m u l a t i o n . 1 * ]
[ S t a t e : B e f o re ]

OPCItem name : Bucket B r i g a d e .\ P o s . s t V a l
Q u a l i t y : 192 v a l u e : 2

[* ServerName : M a t r i k o n . O P C . S i m u l a t i o n . 1 * ]
[ S t a t e : A f t e r ON]

OPCItem name : Bucket B r i g a d e .\ P o s . s t V a l
Q u a l i t y : 192 v a l u e : 2 # Should change in r e a l s c e n a r i o

[* ServerName : M a t r i k o n . O P C . S i m u l a t i o n . 1 * ]
[ S t a t e : A f t e r OFF]

OPCItem name : Bucket B r i g a d e .\ P o s . s t V a l
Q u a l i t y : 192 v a l u e : 2 # Should change in r e a l s c e n a r i o

P r o c e s s Close

Figure 9: Log output generated by OPC module after exe-
cuting against our test server Matrikon.OPC.Simulation.1

The module writes a log file during its operation as the
one shown in Fig. 9, and prints the status of the stVal item,
which, as we previously mentioned, could represent the
resultant circuit breaker status. The payload logs the values
of the stVal item in different stages of its execution: The
initial value is logged under State: Before; The second value
after setting ctlSelOn and ctlOperOn under State:
After ON; and the third value after setting ctlSelOff
and ctlOperOff under State: After OFF. According to
our tests, the logging and value writing will still work in
case some items are missing; however, we believe that the
malware requires all of these items to be present in order to
impact the physical circuit breakers.

5.1. Industroyer 2

Unlike its predecessor, Industroyer 2 does not use a
custom configuration file through the command line to
determine the targets and nature of the attacks. Instead,
the malware has hard-coded configurations that specify the
different targets. Having the targets hard-coded means the

attacker must re-compile the malware whenever they need
to change the attack targets. Moreover, since the adversary
needs to have this information at compilation time, we
assume that the attackers had prior detailed knowledge about
the target infrastructure (IP addresses of target RTUs and
specific IOA addresses of the circuit breakers).

We summarize the overall process in the same four basic
steps, shown in Fig. 3e: 1 the malware parses the configu-
ration from the hard-coded strings, 2 it kills the legitimate
process and any active connections with the targets, 3 it
launches an individual thread for each target RTU, and 4
it executes the malicious process over a newly established
connection with each target RTU.

Upon execution, the malware first checks the command
line arguments to determine the value of two possible argu-
ments: ”-t” and ”-o”.

Including the ”-t” flag will set a timed start of the
process. If the attacker includes this argument as part of
the command line, the malware will take the following
token in the command line and use it to determine when
the process begins. The minute specified by the parameter
determines this time. For instance, if the adversary runs the
malware using the value “-t 40”, the malware will wait
until the next 40th minute in an hour. If the attacker runs
the command, say at 02:35, the process will begin at 02:40;
if s/he runs it at a minute greater than the specified, it will
wait until the next occurrence of the specified minute within
the following hour. For instance, if s/he runs it at 02:55, the
process will begin at 03:40.

As for the second possible argument, the meaning is
relatively straightforward; the ”-o” parameter determines
the filename of a log file the malware will use to store the
output. If this argument is not specified, the malware prints
any output on the standard output.

As a result of the static analysis we performed on the
sample, we determined that an array of strings comprises
this hard-coded configuration, each string containing
the necessary values to execute an attack against a
targeted RTU. As an example, the configuration string
located at offset 0x9818 is u"192.168.122.2
2404 2 0 1 1 PService_PPD.exe 1
\"D:\\OIK\\DevCounter\" 0 1 0 0 1 0 0 8
1104 0 0 0 1 1 1105 0 0 0 1 2 1106 0 0 0
1 3 1107 0 0 0 1 4 1108 0 0 0 1 5 1101 0
0 0 1 6 1102 0 0 0 1 7 1103 0 0 0 1 8 ".

Each configuration string starts with global values re-
garding the target and the configuration format. The first
two values (‘192.168.122.2’ and ’2404’), the IP address, and
the TCP port are self-explanatory. We traced the remaining
values through the execution path of the binary during
our static analysis. The malware uses the third value (‘2’)
while building the IEC-104 frames as the ASDU “common
address”. The fourth value (‘0’) determines how the malware
parses the configuration string, hence the operation mode.

Depending on the configured operation mode, the mal-
ware determines the target circuit breaker set via an IOA
range (value ‘1’) or a configured IO target list (value ‘0’).
We found it curious that the subroutine parsing the configu-
ration can customize the attack this way, as the configuration
is hard-coded, and the attackers had prior knowledge of
the intended targets when they compiled the malware. An



educated guess regarding the decision to hard-code the
configuration is that attackers rushed the active usage of
the malware due to the rapid evolution of the political and
military situation at the time.

Suppose the operation mode is set to an IOA range
(fourth value set to ‘1’). In that case, the malware uses
the fifth and sixth values as the first and last “information
object addresses” for the IEC-104 frames, iterating between
them to generate the necessary frames. Aside from this, the
remaining configuration value positions are shifted by 2.

The following value (‘1’) is a boolean flag that triggers
the parsing of 9 additional optional values following this
flag. If this flag is ‘1’, the first optional value (‘1’) seems
innocuous, as we found no execution branch associated with
that value throughout the sample.

As part of the optional parameters, the following values
target the legitimate process. First comes the executable
name of the process that the malware will terminate upon
execution (‘PService PPD.exe’). Next is a flag that deter-
mines whether or not the malware will rename the target
executable (‘1’), potentially preventing future executions of
the legitimate process. Finally, a value specifies the path
corresponding to the directory in which the target executable
resides (‘\”D:\\OIK\\DevCounter\”’).

The following four optional values trigger delays in the
malware’s execution (‘0’, ‘1’, ‘0’, and ‘0’). We surmise
that these values allow the attackers to tweak the timing
of the malicious commands. The value that holds a ‘1’
seems to be a delay between sent frames, according to the
execution path we analyzed in the sample. After these timing
values, another seemingly innocuous optional value has no
use throughout the sample (‘1’), concluding the additional
optional values.

The next value (‘0’) determines what value the malware
will use as the default value for the malicious commands.
The malware uses this value in every IEC-104 information
object unless altered by a specific flag. After this value, a
flag (‘0’) triggers an additional IEC-104 command with an
inverted default value by default, resulting in two commands
per target information object.

The malware parses the remaining parameters only if the
operation mode is ‘0’. The next and final global value is the
target information object amount (‘8’). After this, a set of
sub-configurations corresponds to each target information
object. As an example, the first target configuration is as
follows: 1104 0 0 0 1 1.

The first value (‘1104’) corresponds to the information
object address the malware will add to the malicious ASDU.
The second value (‘0’) determines whether the malware
will build an IEC-104 single command (C SC NA 1, if
the value is ‘1’) or a double command (C DC NA 1 if the
value is ‘0’). The next value (‘0’) determines if the malware
will send one (‘execute’) or two (‘select’ and ‘execute’)
frames. The next value (‘0’) determines if the malware
will invert the default state from the global configuration.
The next value (‘1’) seems to alter the order in which the
malware sends the frames, prioritizing the targets. Finally,
the last value (‘1’) is the current index of the target within
the set.

In the sample we analyzed, the malware targets three IP
addresses, each with a specific list of targeted information

objects (target circuit breakers). The target systems exist
within at least two subnetworks, one of which could be a
subnetwork with a 23-bit prefix (Fig. 10).

10.82.40.105 
ASDU Address: 3 
Target IOAs: 44

192.168.122.2 
ASDU Address: 2

Target IOAs: 8

192.168.121.2 
ASDU Address: 1
Target IOAs: 16

Compromised host 
<Unknown IP address>

Figure 10: Targets of Industroyer 2.

Table 4 reveals the specific targets. We infer the attacker
targeted three RTUs (presumably three different substa-
tions). In the first substation, it attempted to open 16 circuit
breakers; in the second substation, it attempted to open
8 circuit breakers; and in the third substation (the largest
substation with 44 circuit breakers), it attempted to open 28
circuit breakers, and then it attempted to change the status
of 16 circuit breakers from open and then to close. Open-
ing this large amount of circuit breakers in three different
transmission substations can significantly negatively impact
the power grid.

TABLE 4: Industroyer 2 configured targets
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192.168.121.2 1 0 0 16 0 16 0 0
192.168.122.2 2 0 0 8 0 8 0 0
10.82.40.105 3 0 0 44 28 16 0 28

Notice that the attacks included always disconnecting the
circuit breaker, always connecting the circuit breaker, and
connecting and disconnecting repeatedly. This last attack
appears similar to the Aurora generator attack [26], where
connect and disconnects can be used to apply maximum
torque.

5.2. Post blackout

Industroyer 1 and 2 also attempted to wipe out systems
after launching an attack opening circuit breakers. This
could lead to longer blackouts that are harder to recover
because the machines that could be used to recover the
electrical grid would be wiped out and unbootable.

The entry point for the wiper in Industroyer 1 is called
Crash, and it calls three subroutines. One subroutine tries
to make the system unbootable by writing to the ImagePath
values, the other attempts to delete critical files and the third
subroutine terminates all processes and crashes the system.



TABLE 5: Attack target configuration.
Autonomous Optional Required Hard-coded

OPC  

IEC-61850   

IEC-101  

IEC-104  

Industroyer 2  

For our OT analysis, we noticed that subroutine 2
attempts to delete the following file extensions: .scl,
.cid, and .scd. These are substation configuration files:
.scl files define the functions of IEC 61850 devices, inter-
faces, and systems; .cid is a configured IED description,
and .scd is a Substation Configuration Description file.
Deleting these files from a substation can mean that even
if the devices are powered on again, the configuration and
the rules for how they should interact together would be
lost. This would prevent a quick recovery of a substation
and make the remote operation of the breakers impossible,
requiring manual reconnections.

5.3. Summary

Table 5 summarizes how the malware targets devices.
This process goes from a fully automated attack to a hard-
coded attack defined within the binary.

Autonomous: Both the OPC and the IEC-61850 payload
can autonomously acquire their targets and begin the attack.
In the case of the OPC payload, it will examine the infected
host’s registry for a server and then request the potential
targets. As for IEC-61850, if it does not have a configuration
file, it will scan the broadcast domain to find potential
targets.

Optional: The IEC-61850 payload can discover targets
automatically, but it can also be executed with a configura-
tion file. The configuration file is simple in this case, as it
only has a list of target IP addresses.

Required: Both IEC-101 and IEC-104 payloads require
a configuration file. While the formats vary, the contents are
relatively similar because the variables define the attack’s
behavior. Each configuration file holds variables defining
the legitimate process to kill, the communication mechanism
(e.g., serial ports or target IP address), protocol requirements
(e.g., ASDU Common Address), and attack definition (e.g.,
IOAs or command patterns).

Hard-coded: Industroyer 2 has the configuration hard-
coded in the binary. It defines a structure similar to the
original IEC-104 in that it also has some general variables
determining the communication, variables involving the le-
gitimate process, and variables defining the particular targets
and attack method.

Once it connected to each target device, it attempted to
change the status of circuit breakers. The options can be to
open, close, or alternate between opening and closing them.

The timing of these commands is different among differ-
ent payloads. We look at the frequency at which the different
payloads send commands toward their targets. Since the
primary objective is to disrupt operations, the malware at-
tempted to send commands fast enough to prevent a response

by human operators. While this behavior makes sense for
an attack, it is also a giveaway for any intrusion detection
system.

IEC-101

IEC-104

IEC-61850

IEC-104 

1 2 3 4 5

36 36 36 36

Payload

Time (s)

1 packet36 packets

Industroyer v2

Industroyer v1

Figure 11: Average delay between commands, frames, or
packets.

We executed every payload in the sandbox and took
samples of the traffic we could capture or log. Within each
traffic capture, we isolated the malicious commands sent
by the payloads and measured the time between commands
during an attack. Figure 11 presents the average delay
between commands for every payload.

These average delays provide some insights regarding
the intended target. For instance, the IEC-101 protocol
travels via serial port at a 9600 baud rate towards a remote
substation with limited bandwidth. It seems the attackers
considered this limitation, as the payload is the slowest
within the framework. In contrast, the IEC-61850 payload
is the only attack meant to be launched over a LAN; hence,
it is the fastest payload.

The most curious behavior, however, is how attackers
evolved the delay between IEC-104 commands. The Indus-
troyer 1 IEC-104 payload sent commands with a reasonable
delay for its purposes, as it intended to contact remote
substations via some private WAN. Nonetheless, when it
comes to Industroyer 2, the attackers decided to increase
this delay by ten times, making it the most conservative
payload, regardless of the available bandwidth. This may
have been a strategy to avoid triggering anomaly detection
systems.

Industroyer 1 also had several non-standard behaviors.
We will discuss in the next section how it did not follow
the IEC 104 standard, but here we summarize some of
the unusual behavior of the 61850 payload: (1) it did not
interpret correctly Control Switch StVal or CtlModel values,
(2) it send a fast alternating sequence of 36 commands to
modify the position status of a circuit breaker may have been
intended to cause not only a blackout but also equipment
damage, (3) it was targeting devices on test mode. Despite
all of this unusual behavior, it still manages to affect the
intended ABB devices (but not the other devices we tested).
So, while the malware can have general payloads that could



potentially be used against other targets, it appears it was
only tested in equipment the attackers knew was used by
the victim.

From a network security perspective, the nonstandard
behavior of Industroyer 1 can be detected by various means,
from unusual rates of the traffic being generated to detecting
state transitions not allowed in the protocol standard. For
example, to detect Industroyer’s behavior on a network, we
can use Snort IDS to log every command sent using Snort’s
inspector modules (e.g., “iec104”), and alter the log action
to alert whenever an endpoint sends several commands
in a short period of time with rate filters.

iec104 = { }
binder = {
{
when = { proto = ’tcp’, ports = ’2404’},
use = { type = ’iec104’ },
},
}

log tcp any any -> any 2404 (
msg:"IEC-104 Single Command";
sid:1000001;
rev:1;
priority:10;
service:iec104;
iec104_asdu_func:c_sc_na_1;
);

rate_filter gen_id 1, sig_id 1000001, \
track by_src, count 2, seconds 10, \
new_action alert, timeout 1800

We can create similar anomaly detection rules for other
payloads in Industroyer 1. Detecting Industroyer 2 would
require going beyond protocol anomalies and studying the
payload’s semantics. For example, for Industroyer 2, one
anomaly would be: Does it make sense to activate so many
circuit breakers simultaneously in three different substa-
tions? These rules must balance operational needs (operators
isolating parts of the grid for maintenance) vs. security risks.

6. Discussion

6.1. Malware Evolution

Evolution towards Industroyer 2: Industroyer 1 does
not follow the standard in many ways. Not only did it
disregard any incoming packets, but it also did not behave
as a legitimate client. Industroyer 2 fixed these issues by
following the correct behavior of the standard. While Indus-
troyer 1 can be detected by monitoring the expected protocol
behavior, Industroyer 2 would bypass this anomaly detection
check.

Fig. 12 shows the expected behavior of a controlling
station in IEC 104. Under normal circumstances, the control-
ling station would establish a TCP connection with the RTU,
poll for the existing devices with an interrogation command,
and send keep-alive frames to maintain the connection with
the controlled station while receiving measurements.

TCP connection

Established

Begin data transmission

Interrogation

Data transmission

Terminate TCP

Timeout T1

STARTDT Timeout T1STOPDT

C IC NA 1 (100)

Timeout T1

STOPDT

I/S/U Frame

Timeout T1

STOPDT

I/S/U Frame

C SC NA 1 (45)

Figure 12: IEC-104 connection behavior. Industroyer 1 (red)
does not follow the expected behavior of a legitimate con-
nection (black).

The behavior of the IEC-104 payload of Industroyer 1
varies from the behavior of its successor. Industroyer 1 skips
the interrogation stage, disregards any incoming frames and
begins to send commands after starting the data transmission
at a rate of 2 frames/s in an infinite loop for as long as
the process executes. Industroyer 2, however, follows the
standard more closely; not only does it verify every received
frame as a valid IEC-104 frame, but it follows the legitimate
control flow of sending an interrogation command prior to
any other interaction with the controlled station after the
data transmission begins, sending commands at a rate of 0.2
frames/s. Also, Industroyer 2 does not execute indefinitely
like the 104 and 101 payloads (or 36 times in the case of
the 61850 payload); it sends one (or two) commands to the
configured targets and gracefully terminates the connection
with the controlled station after sending the malicious com-
mands.

Third Blackout: A report that was published after this
paper was accepted [27] details yet another blackout in
Ukraine, on October 2022, caused by a combination of cyber
attacks and physical attacks (missile strikes targeting critical
infrastructure across the country).

Instead of deploying their own custom malware, the
attackers used their access to the SCADA software (a
MicroSCADA server capable of directly sending IEC-104
commands to the target RTUs) by running a script to be
interpreted by the MicroSCADA server. This change creates
more stealthy attacks, as the commands to open circuit
breakers come from a legitimate process, not a piece of
malware. The attack consists of a script that runs a Super-
visory Control Implementation Language (SCIL) executable
provided by MicroSCADA to interpret the contents of a text
file (which was unavailable during their analysis), presum-
ably holding the SCIL commands.

While the method is different, our sandbox can also
be used to analyze this attack. We would need to have
the infected virtual machine running MicroSCADA. The
MicroSCADA instance should have the necessary privi-



leges to interact with the simulated RTUs or IEDs in the
sandbox. Assuming we acquire the malware samples and
the specific SCIL commands the attackers used (currently,
these commands are unknown), we could run the malicious
script described in Mandiant’s report in the infected virtual
machine and then analyze the commands sent to the targeted
RTUs or IEDs.

Takeaways: Looking at the evolution of these attacks,
we see Sandworm constantly changing tactics in attempts
to trip devices. First, Industroyer 1 was a Swiss army knife
to attack the power grid. It was developed without any
specific target, and it could deal with legacy connections
(IEC 101), modern connections (IEC 104), and interoper-
ability systems (OPC). In addition to working on SCADA
computers in a central control room, Industroyer 1 could
even be deployed in the computers at substations (IEC
61850). Second, Industroyer 1 was highly configurable. It
expected configuration files telling it how and who to attack.
It also attempted a limited reconnaissance of potential victim
devices. Finally, it had several bugs; most notably, it did not
follow the industrial protocol specifications, and its success
may have depended on how tolerant victim devices were to
non-standard industrial protocols.

Because Industroyer 1 was so adaptive, without the
configuration files, we do not know the targets or the attacks
launched (did they open and close the circuit breakers?
Only some of them? Open and then close? etc.) In contrast,
Industroyer 2 was a targeted strike; it did not read any
configuration files, so attackers knew how and who to attack
before deploying the malware. It also only targeted one
industrial protocol (instead of four). Industroyer 2 was also
fairly polished, following the expected behavior defined
by the industrial protocol standards more precisely. These
changes might mean that the attackers did not want to share
all their capabilities with the forensic teams and that the
malware was now polished enough to interact with most
devices without errors. As time passes, attack tools may
become more polished, and the teams using them will only
use the pieces necessary for the attacks.

The most recent attack on MicroSCADA shows a
paradigm shift. After several attacks, Ukrainian power util-
ities may develop stronger attack detection tools, and they
can identify malicious processes or that the provenance of
a control command is not the SCADA. Future defenses
may prevent the execution of remote control commands
originating from a script.

6.2. Attack Surface

All known attacks targeting the Ukrainian power grid
compromised a Windows computer. This computer was
either in a substation or the control room, both shown as 1
in Fig. 13. However, these are not the only possible targets;
there are several other embedded computers in the power
grid, including RTUs ( 2 ) and IEDs ( 3 ). Any of these
devices can also send commands to electrical equipment.

As the latest attack on MicroSCADA shows, attackers
may be trying to become more stealthy, and attacking an
embedded device with limited anti-malware support may be
more attractive to future attackers. Furthermore, attacking
an RTU or an IED might give attackers the same level of

stealthiness as Stuxnet, as these embedded devices can send
malicious control commands to electrical equipment while
reporting back to the Human Machine Interface (HMI) that
everything is working under normal operating conditions.
While remaining stealthy might be difficult in an intercon-
nected power system where attacks propagate and become
visible to other power utilities, sabotaging specific devices
(e.g., the Aurora attack) might be easier to keep under the
radar.

The disadvantage of targeting these embedded devices is
that the reach of the attack may be limited. By compromis-
ing a central control room, the attacker can reach multiple
substations, while by compromising an IED or an RTU, the
device can only send control commands to the substation
where they are located. Then again, if the defender only
focuses on protecting Windows desktops, they may motivate
the attacker to jump to RTUs or IEDs.

SCADA WAN

Main Control Network

RTU

IEC-104 Substation

IEDIED

IED

Workstation

IEC-618501

2

3

1

IEC-104

Figure 13: Attack surfaces.

6.3. Impact on the Power Grid

So far, we have analyzed the commands sent to circuit
breakers in a substation, but we have not discussed how
opening circuit breakers may cause a blackout. Furthermore,
the impact of blackouts can be different depending on the
magnitude of the attack; disconnecting a distribution system
will keep the bulk of the power grid running, and reinstating
power in the affected area will only require reconnecting
the affected area to the bulk system. On the other hand,
an attack that brings down the interconnected bulk system
will affect a large geographical area (e.g., a country), and
restoring power to all consumers can take several days.

In this subsection, we want to highlight that the impact
of future malware attacks on the power grid will depend on
(1) which devices the attacker can target and (2) how many
devices the attacker can trip. Transmission owners operate
different parts of the North American Bulk power grid; these
include the American Transmission Company, Xcel Energy,
Entenergy Arkansas, LLC, Wolverine Power Cooperative,
etc. Each of these companies manages different portions and
sizes of the power grid; for example, Xcel Energy manages
1,200 substations and over 20,000 miles of transmission
lines, while the American Transmission Company manages
582 substations and over 10,081 miles. Attacking different
companies may produce different results.

We leverage a high-fidelity cascade analysis tool we have
used in previous work [28], [29], [30] and recontextualize
our work with our new analysis. Our model considers a
large-scale North American regional interconnection system



with over 5,000 buses. This model approximates a real-
world system in North America operated by different power
companies; in particular, each element in our dataset (e.g.,
substations, lines) has a tag that identifies the transmission
owner of the element. This allows us to partition our power
grid model into areas operated by different companies,
which, in turn, allows us to model the case where malware
like Industroyer can infiltrate the control room (or substa-
tion) of one of these transmission companies. As mentioned
in Section 2, we call these companies TDSPs, and we
consider an attacker that has access to one (or more) control
rooms in that TDSP and can send commands for opening
all or a specific subset of these devices.

Because the attack of Industroyer 2 was hard-coded,
we know it may have been attacking three substations and
opening 68 circuit breakers (and then closing 28 of them).
A circuit breaker can de-energize various devices, including
generators, loads, lines, transformers, and capacitors, and it
is not clear which of these were attacked by Industroyer 1
and 2.

Our simulations show that a naive attacker opening all
circuit breakers might not cause a blackout. Fig. 14a shows
some cases under 1,000 MW (in generation or load tripped)
where the points along the diagonal (in green) with the
same amount of generation and load removed will balance
out and will not cause a blackout. Thus, if the adversary
targets a TDSP managing only a limited amount of power,
the power imbalance caused by the initial contingency is
critical to maximizing the chances of a system collapse. The
attacker needs to know precisely which circuit breakers will
disconnect a generator and which will disconnect a load
to maximize the chances of a system-wide blackout. Our
results also show that if an adversary prioritizes which TDSP
to compromise, and the load imbalance of disconnecting
all devices in both cases is the same, attacking the TDSP
with more generation and disconnect generators will have a
greater effect than disconnecting the load.

The types of lines disconnected can also affect the
outcome of the attack. There are three main voltage classes:
Extra High Voltage (EHV) which covers anything over
500kV; High Voltage (HV), ranging from 100kV to 500kV;
and Medium Voltage (MV), ranging from 1kV to 100KV.
A naive attacker might think disconnecting the EHV, and
then the HV lines will maximize the chances of causing a
load imbalance. In contrast, Fig. 14b shows that attacks on
medium-voltage and high-voltage lines are more effective
than those on Extra high-voltage lines if we want to cause
load shedding. The reason for this is that EHV lines are
highly interconnected networks, and the remaining EHV
lines can easily handle the redistributed flows; on the other
hand, MV lines are closer to the customers, and they are
less redundant, so if you take just a couple of them, the
consumer will not be connected to the electricity system.
Having said that, attacking EHV lines is more likely to
result in a complete system collapse, showing that load
imbalance is not the only metric for a successful attack.
In our simulations, attacking only 25 EHV lines can bring
a complete system collapse (non-convergence case), and
attacking more than 100 is a guaranteed system collapse.

If the attacker wants to be completely agnostic to the
devices it is operating, our results show that if the attacker

targets a company that operates more than 200 devices (and
the attacker can trip them all), then the attack will most
likely result in a complete system collapse; however, if the
number is closer to 100 or less, it is more likely that the
bulk system will survive the attack.

(a) Generation vs. Load. (b) Losses per line attacked.

Figure 14: Industroyer-like Attacks to the Power Grid.

In summary, we can see that different types of dis-
connection attacks can have different results in the power
grid. Attacking the largest TDSP or targeting the largest
number of EHV lines can cause system-wide blackouts.
In contrast, if the adversary cannot bring the system down
but wants to maximize the local blackouts (load shedding),
it should target the largest number of MV lines it can.
Finally, an attacker that wants to be strategic in attempting
to create a systemwide blackout should not simply open
any line, but (if possible) it should attempt to create the
largest imbalance between generation and load. Even more,
while an imbalance in either direction (more generation
than load or more load than generation) can create system-
wide blackouts, our results indicate that cutting generation
will create higher chances of a systemwide collapse than
targeting only loads.

From a defense perspective, a single compromised con-
trol room can take out as many devices as it has access to.
We need to perform risk assessments that assume a control
room has been compromised and then design alternatives
(e.g., divide control of substations into smaller and different
control rooms with a separation of privilege) or identify and
respond to attacks (identify anomalous patterns of control
commands sent to substations).

7. Related Work
The most well-known malware attacks to control sys-

tems are (1) Stuxnet [31], the first documented malware
targeting industrial systems; (2) Industroyer, the first mal-
ware targeting the power grid and causing a blackout; and
(3) Triton [32] (also known as TRYSIS) the first malware
targeting the equipment that protects the safety of industrial
systems. While each of these attacks has created physical
damage (Stuxnet damaged centrifuges, Industroyer 1 created
blackouts, and Triton shut down a petrochemical facility),
they are very different in their targets and methods. Stuxnet
and Triton are malware designed for embedded control sys-
tems called Programmable Logic Controllers (PLCs), while
Industroyer interacts with RTUs and IEDs.

Academic research has also looked at the security of
PLCs. There are several efforts to analyze the programs of
PLCs [33], maintain the control flow integrity of PLC pro-
grams [34], perform PLC forensics [35] or reverse-engineer



PLC binaries [36]. There are new threat analysis tools that
identify what attackers can do with a PLC program [37],
PLC malware with basic physics of a process [38], or
attacks exploring how to identify the effort to compile a PLC
payload [39] or to automate PLC payloads [40]. Similarly,
other efforts have examined static code analysis of robotic
languages [41]. Our efforts complement these other papers,
as we focus on malware that interacts with IEDs or RTUs
using network protocols for the power grid, as opposed to
focusing on PLCs.

In addition, we look at the malware’s impact on real-
world devices and the power grid at large. Other papers
have shown the importance of understanding the operation
of the power grid under attack [42]. One of the popular
methods to understand the impact of attacks is using digital
twins [43], [44]: high-fidelity software simulations often
interfacing with real-world hardware. While there is an
active community working on the security of the power
grid [45], as far as we are aware, this is the first paper
that looks jointly at program analysis of real-world malware
samples against the power grid, their impact on several real-
world IED devices, and study also the impact against a high-
fidelity model of a large-scale power grid.

Reports on Industroyer: After the attack against the
Ukrainian power grid in 2016, several security companies
presented their findings regarding this malware [4], [5], [7],
[8]. These reports discuss the malware’s inner workings
and primary goal, focusing on binary analysis, configura-
tion files, payloads, and network protocols. Similar reports
emerged addressing Industroyer 2 [9], [10], [11], [12]. While
these reports present an overall analysis of the malware (Ta-
ble 6), they do not consider the surrounding context of
the attack. Instead, theirs is a more practical approach to
detect the malware and improve existing commercial prod-
ucts to identify the relevant signatures. These reports fail
to combine their findings with the relevant context into a
comprehensive analysis of the malware that goes beyond
a standard malware analysis and considers the challenges
of dynamic analysis of malware with different libraries and
devices, as well as using high-fidelity models of a power
grid to understand the impact that the malware can have.

In particular, no other report has run dynamic analysis
tests for all the industrial protocols targeted by the malware.
For example, by using real-world IEDs, we discovered that
Industroyer 1 could change not only the status of circuit
breakers but also the status of isolators; we also discovered
the brittleness of Industroyer 1 to specific IED models from
different brands. These facts were not mentioned in any of
the previous white papers.

To the best of our knowledge, we present the first in-
depth study discussing the underlying inner workings of the
malicious payloads and the ramifications of these attacks
on the targets. Moreover, we discuss the adversaries’ design
decisions while developing these malware artifacts and the
practicality of using one payload versus another.

State-Sponsored Operations: There are three well-
known examples of malware with industrial protocol pay-
loads causing real-world physical damage: Stuxnet, Indus-
troyer, and Triton. While Stuxnet has been attributed to
a collaboration between the US and Israel, the remaining
two malware attacks have been attributed to two different

TABLE 6: Reports on Industroyer 1 or Industroyer 2.
Analysis [4] [5] [7] [8] [9] [10] [11] [12] Ours

Static analysis  G#  #  G#  G#  
Dynamic analysis G# # # # G# G#    
Malware capabilities    G# G# G#    
Malware configuration   # # G# G#    
Malware design discussion # # G# G# # # G# #  
Attack stages # G# G#  G# # G# G#  
Attack’s ICS impact G# G# #  # # # G#  
High-fidelity cascading analysis # # # G# # # # #  
Attack timing analysis # # # # # # # #  
Tests with real devices # # # # # # # #  
Comparison of Industroyer 1 & 2 – – – – G# G# # G#  

#: no mention G#: partially discussed  : thoroughly analyzed –: not applicable

entities within the Ministry of Defense of Russia: the GRU
and TsNIIKhM. TsNIIKhM, a subcontractor for the GRU,
is believed to be the main entity behind Triton [46].

The GRU, on the other hand, has two main active
groups: Sandworm and Fancy Bear [47]. Combined, these
two groups are believed to be behind some of the most
infamous cyber attacks in the last decade, including the
cyber attacks against Ukraine’s election in 2014, the US
election in 2016, and the attacks against the power grid
in Ukraine in 2015 and 2016 (Industroyer) [48]. The Five
Eyes (the intelligence agencies of Australia, Canada, New
Zealand, the UK, and the US) also believe they are behind
NotPetya, the ransomware that was described by the White
House in 2017 as the most destructive and costly cyber-
attack in history and part of the Kremlin’s ongoing effort to
destabilize Ukraine. [49].

The 2022 Russian invasion of Ukraine has also been
accompanied by various cyber operations [50], [51], [52],
[53]. The Russian government has increasingly resorted to
targeting Ukraine’s power grid with a massive bombardment
of power facilities, destroying more than 40% of the coun-
try’s energy infrastructure [54]. These attacks intensified in
the winter months, similar to when the cyber attacks against
Ukraine’s power grid happened in 2015 and 2016. The
most recent cyber attack against the power grid, reported in
2023 [27], aligned with kinetic attacks against substations.

War is an act of force (physical harm or intimidation)
for political purposes to motivate the enemy to do the
attacker’s will. Most nations who rely on their military for
political purposes now consider cyberspace as an official
theater of conflict (in addition to land, air, sea, and space),
and this poses new societal threats as our dependence on
computer-controlled physical infrastructures is targeted by
sophisticated adversaries. We argue that we must be better
prepared to analyze and respond to future cyber-attacks on
critical infrastructure systems, given this new reality.

8. Conclusions

In this paper, we designed and tested a new industrial
sandbox that enabled us to provide the first in-depth analysis
of the only known malware family to attack a power grid.
We believe our work fills the gap between industrial reports
on Industroyer and the technical details that researchers
need to understand the malware and how future attack
vectors may develop and impact equipment and the grid. For
example, our finding regarding the specificity of the IEC-



61850 payload affecting ABB devices in “testing” mode, is
something not visible through static analysis only.

Through our analysis, we uncovered some of the imple-
mentation decisions the adversaries made during the devel-
opment of the malware. For instance, our timing analysis
revealed they fine-tuned their attack against the specific
network target. Moreover, these timings consider the overall
network delay and the time it takes to physically open or
close a target circuit breaker. Furthermore, the fact that they
considered these timings and the ability to tweak some of
the payloads via configuration files suggests that they also
considered the possibility of damaging the devices through
different attack patterns.

As for the duration of the attacks, the way they coded the
payloads provided some clues of a long-standing network
intrusion. For both cases of IEC-104 usage, the adversaries
had to obtain relevant IP addresses, common addresses, and
information object addresses corresponding to the targeted
substations and circuit breakers. Regarding IEC-61850, the
fixed “invoke ID,” and the hard-coded bytes within the
binary suggest that the attackers had traffic captures of
working substations and gathered the necessary commands
from these captures. Access to these captures reveals poten-
tial device manufacturers via MAC addresses and specific
configuration settings such as the “test mode” of the target
devices.

Among future protections, 61850 allows operators to
protect the data models, such as allowing reconnaissance
commands (e.g., getNameList) to be executed only by spe-
cific devices or via password protection.

While it was not necessary for Industroyer 1 & 2,
future malware attacking the grid may only execute in the
right environment. To prepare for this, we plan to continue
working on our framework and extend it with the use of
symbolic execution. We also plan to adapt more protocols
popular in the U.S., like DNP3.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper presents a detailed analysis of two industry
malware samples, Industroyer 1 and 2, and evaluates the
protocol-level behaviors with a sandboxing environment. It
also uses a simulator to analyze the potential impact of an
attack to today’s power grid.

A.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) This paper contributes a detailed analysis of real-world
malware, with detailed, protocol-level behaviors. It de-
scribes the background in a very clear manner. This
could potentially help other researchers to move into
this area.

2) The sandboxing environment could be useful for re-
searchers in this area, although there are noteworthy
concerns about the novelty of this tool.

3) The paper is well written and provides background to
an area where future research could be conducted.

A.4. Noteworthy Concerns

1) The sandboxing environment is interesting, but it would
be stronger if there are more novel designs that went
into that. It seems to be largely based on a containerized
environment with Mininet, with a limited amount of
customization for this particular problem setting.

2) The attack impact to the power grid is interesting, but
somewhat loosely coupled to the rest of this paper.




