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SUMMARY

Regulatory mechanisms set a gene’s average level of expression, but a gene’s expression 

constantly fluctuates around that average. These stochastic fluctuations, or expression noise, play 

a role in cell-fate transitions, bet hedging in microbes, and the development of chemotherapeutic 

resistance in cancer. An outstanding question is what regulatory mechanisms contribute to noise. 

Here, we demonstrate that, for a fixed mean level of expression, strong activation domains (ADs) 

at low abundance produce high expression noise, while weak ADs at high abundance generate 

lower expression noise. We conclude that differences in noise can be explained by the interplay 

between a TF’s nuclear concentration and the strength of its AD’s effect on mean expression, 

without invoking differences between classes of ADs. These results raise the possibility of 

engineering gene expression noise independently of mean levels in synthetic biology contexts 

and provide a potential mechanism for natural selection to tune the noisiness of gene expression.

In brief

Gene expression varies widely, even in populations of otherwise identical cells. Loell et al. show 

that the degree of variation (“noise”) can be controlled independently of the average level of 

expression (“mean”) by simultaneously varying a transcription factor’s activation domain (AD) 

and the amount of it in the nucleus.
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INTRODUCTION

Gene expression is an inherently stochastic process, producing levels of protein and mRNA 

that fluctuate between genetically identical cells (Elowitz et al., 2002; Raj et al., 2006; 

Shahrezaei and Swain, 2008a, 2008b; Kepler and Elston, 2001). This stochasticity, or noise, 

in gene expression is unavoidable due to the randomness of molecular motions. Noise is 

a fundamental property of gene expression with phenotypic consequences that have been 

observed across all domains of life and scales of organization (Raj and Van Oudenaarden, 

2008; Gandrillon et al., 2012).

Stochastic noise in gene expression tends to occur in bursts during which many mRNAs 

are transcribed within a short period, interspersed within longer silent intervals (Paré et 

al., 2009; Singh et al., 2010; Halpern et al., 2015; Chubb and Liverpool, 2010; Dar et al., 

2012, 2016; Tantale et al., 2016). This bursty gene expression has been observed in bacteria 

(Golding et al., 2005), yeast (Zenklusen et al., 2008), and mammalian cells (Halpern et 

al., 2015). One major consequence of bursty gene expression noise is its effect on cell fate 

decisions (Symmons and Raj, 2016; Balázsi et al., 2011; Losick and Desplan, 2008; Bell 

et al., 2007), which are frequently determined by stochastic fluctuations in the levels of 

transcriptional regulators (Miller et al., 2008; Chang et al., 2008; Pina et al., 2012; Graf and 

Enver, 2009; Enver et al., 2009; Cross and Enver, 1997; Wolff et al., 2018; van Roon et al., 

1989; Fiering et al., 1990; Dingemanse et al., 1994; Walters et al., 1995). Stochasticity in 

cell fate decisions represents a “bet hedging” strategy that keeps cellular phenotypes diverse, 

even in the absence of genetic or environmental variation (Rouzine et al., 2015; Singh and 
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Weinberger, 2009; Weinberger et al., 2005, 2008; Schwall et al., 2021; St-Pierre and Endy, 

2008; Zeng et al., 2010; Golding, 2011; Dar et al., 2014; Razooky et al., 2015).

Efforts to understand the molecular causes of expression noise have shown that both cis 
(Raser and O’Shea, 2004; Walters et al., 1995; Anderson et al., 2017; Waymack et al., 2020) 

and trans factors (Ahmad and Henikoff, 2001; Hensel et al., 2012; Kalo et al., 2015; Kafri et 

al., 2016) influence noise in gene expression. Transcription factors (TFs) are a known source 

of expression noise (Senecal et al., 2014). TFs are composed of DNA binding domains, 

which confer specificity for their target CREs, and activation domains (ADs), which recruit 

trans-acting cofactors that alter transcription once bound to DNA (Näär et al., 2001; Govind 

et al., 2005). Fluctuations in TF binding are a major determinant of gene expression noise 

(Parab et al., 2021; Senecal et al., 2014; Pelet et al., 2011), but the effects of TF ADs on 

expression noise have not been determined. Because ADs vary widely in the cofactors they 

recruit and the contexts in which they are active (Blau et al., 1996; Brown et al., 1998; 

Duarte et al., 2016; Stampfel et al., 2015), we investigated whether ADs also vary in their 

effects on noise in gene expression.

Two hypotheses might explain how ADs influence noise in gene expression. One hypothesis 

is that the noise generated by an AD depends solely on its effect on mean levels of 

expression. Noise is tightly coupled to mean output levels in most stochastic processes 

(Vallania et al., 2014). Thus, increasing a gene’s mean expression necessarily increases 

its expression noise. This hypothesis is consistent with the increase in noise produced by 

VP64 relative to VP16 (Senecal et al., 2014). A strong prediction of this hypothesis is 

that diverse ADs will all generate the same amount of noise for a given mean level of 

expression. An alternate hypothesis is that an AD’s effect on noise depends both on its effect 

on mean expression and on the specific cofactors that underpin its activity. Different ADs 

might produce different amounts of noise, even at the same mean output level, because of 

the distinct biochemical properties of the cofactors they recruit. For example, it has been 

suggested (Pelet et al., 2011) that recruitment of chromatin remodelers is a key step in 

generating gene expression variation. If this is the case, TFs with activation domains that 

recruit chromatin remodelers will have distinctly different effects on noise from those that 

cannot. This hypothesis is supported by Tan et al.’s observations of the effects on noise 

of mutations in the p65 AD that ablate binding to CBP/p300 (Tan et al., 2021). However, 

because only a very limited number of ADs have been tested, it remains unresolved which 

hypothesis applies more generally.

RESULTS

A reporter system that measures the effects of different ADs on expression noise

To compare the effects of diverse ADs on expression noise, we set up a reporter system 

that allowed us to measure the mean and noise of expression generated by TFs that differ 

only in the AD they carry. We repurposed the reporter system described in Staller et al. 

(2018); Figure 1A), which uses synthetic S. cerevisiae TFs consisting of an AD of interest, 

a fluorescent tag (mCherry), an estrogen response domain (ERD), and a fixed synthetic 

zinc-finger DNA binding domain (DBD) (McIsaac et al., 2013). Using a synthetic DBD 

avoids interference with endogenous yeast TFs, and the ERD allows us to control the nuclear 
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localization of the synthetic TFs with β-estradiol. Swapping the ADs on these synthetic TFs 

allowed us to directly compare the effects of different ADs while keeping the rest of the TF 

constant and avoiding competition with endogenous TFs.

We measured the activities of these synthetic TFs by reading out the fluorescence of a GFP 

reporter construct via flow cytometry. The reporter construct contains a tandem array of 

zinc-finger binding sites and is integrated at a single allele of the URA3 locus. To probe 

the impact of varying TF stimulation on target expression, we performed dose-response 

experiments with increasing amounts of β-estradiol and measured the resulting distribution 

of GFP by flow cytometry. We did not observe any effect on cell growth from the β-

estradiol, either in the side and forward scatter measurements (Figure S1A) or in the growth 

rates (Figure S2). We then computed the mean (x) and Fano factor (σ2/x) of expression for 

each TF at each β-estradiol concentration. We used the Fano factor as the measure of noise 

because it normalizes for different mean levels of expression (Blake et al., 2003; Munsky et 

al., 2012; Ozbudak et al., 2002; Sanchez and Golding, 2013).

A gene’s expression noise can be divided into an intrinsic and extrinsic component (Swain 

et al., 2002). We focused on the effect of ADs on the intrinsic component because current 

models of stochastic gene expression best capture intrinsic noise. We therefore attempted to 

exclude extrinsic noise from our measurements.

The presence of significant extrinsic noise in our data was indicated by a strong correlation 

between the forward scatter, side scatter, GFP, and mCherry fluorescence in the raw data. 

However, after controlling for cell size by gating on forward scatter, there was little 

correlation between the expression of the TF construct as measured by mCherry signal 

and GFP expression (Figure S1B). We speculate that there is no residual correlation between 

mCherry and GFP because of the time lag between the production of mCherry-tagged TFs 

and the expression and maturation of the GFP reporter or because the mCherry signal 

reflects the TF concentration throughout the cell and is not specific for the nucleus.

To screen out this source of extrinsic noise, we filtered our data by gating on cells expressing 

similar levels of mCherry, which removed 56% of the total variance in GFP expression. We 

chose mCherry as the marker to filter by to exclude a small (<1%) outlier subpopulation of 

events with similar scatter to most cells but very high mCherry and low GFP. While filtering 

on mCherry does not exclude all extrinsic noise related to forward scatter, additional 

filtering on forward scatter leaves few cells, which lowered reproducibility without affecting 

the overall shape of the mean-Fano relationships. Using this system, we compared the 

effects of diverse ADs on both the mean and noise of expression.

Comparison of the VP16 and Gcn4 ADs demonstrates that it is possible to decouple 
expression noise from the mean

We first compared the effects of a strong AD (VP16) and a weak AD (Gcn4) on expression 

mean and noise by performing dose-response experiments. Varying the levels of induction 

for each synthetic TF led to Fano factors increasing with mean reporter protein expression. 

Strikingly, VP16 produced more gene expression noise than Gcn4 for every mean level of 

reporter expression tested (Figure 1B). This result indicates that different ADs can create 
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different amounts of noise in gene expression, even when the mean expression level is the 

same.

Because the VP16 AD is stronger than the Gcn4 AD, the Gcn4 construct always required 

higher β-estradiol concentrations than VP16 to achieve the same mean reporter expression 

level. This observation led us to a working hypothesis that high expression noise is produced 

by strong ADs present at low nuclear concentrations, whereas low expression noise is 

achieved by weak ADs present at high nuclear concentrations.

Comparisons of multiple activation domains reveal that expression noise can be explained 
by AD strength

Our working hypothesis assumes that the noise generated by an AD is determined solely by 

its strength and nuclear concentration. Alternatively, different ADs might generate different 

amounts of noise based on the distinct cofactors they recruit. These two possibilities can 

be distinguished by measuring the mean and noise induced by a diverse set of ADs at the 

same β-estradiol concentration. If the differences in noise were due only to differences in the 

strengths and nuclear concentrations of ADs, then, for a fixed level of induction, the noise 

generated by ADs would be predictable from the mean levels of reporter gene expression 

they produce. Alternatively, if certain ADs had special biochemical properties, then such 

ADs would deviate from the mean versus noise trendline.

To test these predictions, we assayed 11 different yeast ADs and a negative control at a 

fixed β-estradiol concentration. This experiment revealed a linear relationship between the 

mean and noise of expression for all ADs tested (Pearson R2 = 0.90) (Figure 2A). We 

observed similar linear trends at different fixed β-estradiol concentrations (Figure S3J). 

To confirm that the AD does not affect the TF construct’s localization, we imaged the 

subcellular localization of the TF construct using the mCherry tag. The ratio of nuclear to 

total mCherry fluorescence was distributed similarly across strains (Figure S4), indicating 

that the AD does not affect the TF’s nuclear concentration. In the Saccharomyces Genome 

Database (www.yeastgenome.org/), most of the TFs from which these ADs derive interact 

with unique cofactors (examples in Figure S5), suggesting that they activate transcription 

through different mechanisms. Thus, at a fixed nuclear concentration, diverse ADs follow a 

predictable trend relating the mean and noise of expression they produce.

We next asked whether mutants that interfere with the mechanism of action of ADs alter 

the fixed relationship between the mean and noise produced by ADs. We assayed, at a 

fixed β-estradiol concentration, the activities of 84 mutants in the Gcn4 AD from Staller 

et al. (2018). This set was chosen to cover a broad range of mutation types and activities. 

Although the mutants produced a wide range of mean reporter gene activities, we still 

observed a strong linear relationship between the mean and noise of expression across all 

mutants (Pearson R2 = 0.91) (Figure 2B).

Taken together, these results demonstrate that it is difficult to uncouple the mean and noise 

of expression at a fixed nuclear concentration of AD. At a fixed nuclear concentration, 

diverse ADs and a diverse set of AD mutants both exhibit a tight coupling between mean 

and noise. These observations support our working hypothesis that noise in gene expression 

Loell et al. Page 5

Cell Rep. Author manuscript; available in PMC 2023 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.yeastgenome.org/


is controlled by the interplay between the strength and nuclear concentration of ADs and not 

by the specific mechanism of action of ADs.

Simulations provide a mechanistic interpretation of the results

We asked what quantitative models of gene expression noise could explain the above 

observations and whether we could link perturbations of specific kinetic parameters of those 

models to the observed effects of perturbing AD strength or nuclear concentration.

To identify perturbations that could reproduce the effects of varying the nuclear 

concentrations of ADs, we aimed to identify single parameters or linearly related pairs 

of parameters that, when varied, reproduced our experimental observations. We performed 

simulations in which we varied one or two parameters in the model through its physiological 

range while holding the other parameters in the model at fixed values. We performed 

these simulations many times, each time holding the other parameters in the models at 

different fixed values. We found no individual parameter that when varied reproduced 

our experimental observation that the Fano factor-mean relationship is nonlinear with a 

decreasing slope. However, linear perturbations to two parameters simultaneously could 

recapitulate the experimental effects of increasing nuclear concentration (Figure S6). More 

specifically, we found that, assuming the random telegraph model (Shahrezaei and Swain, 

2008a, 2008b; Sherman and Cohen, 2014; Tiberi et al., 2018; Figure 3A), increasing Kon 

(the frequency of transitioning to the active state) while simultaneously increasing Km 

(the transcription rate while in the active state) (Figure 3E) or decreasing Dm (the mRNA 

degradation rate) (Figure 3F) produced trendlines that resembled those associated with 

increasing nuclear concentration of TF.

All other models we tested either could not explain our observations or provided no 

additional explanatory value. The mean-noise relationships predicted by the transcription 

cycle model (Scholes et al., 2017; Figure 3B) sharply contrast with those we observe. 

Altering either parameter of this model is predicted to cause Fano factor to fall then rise 

with mean (Figures S6G-S6I). Simulations performed across a range of combinations of 

parameters predicted that noise would be at a minimum when the two rates are equal, with 

noise increasing with increasing disparity between the parameters. The refractory period 

model’s (Zoller et al., 2015; Figure 3C) predictions also conflict with our observations. 

This model predicts two qualitatively distinguishable mean-Fano factor relationships, with 

changes in the rates of steps leading out of the active state causing Fano factor to change 

linearly with mean (Figures S6O and S6P) and changes in the remaining steps having no 

effect on noise (Figures S6J-S6N).

The effects of varying the AD strength were more straightforward to recreate in models. 

Again, assuming the random telegraph model, linear increases in Km, with or without 

concurrent changes in Dm, produced linear mean-Fano relationships matching those we 

observed when AD strength is varied (Figures 3G and 3H). Sherman and Cohen’s (Sherman 

and Cohen, 2014) analytical solution for the moments of the random telegraph model’s 

protein distribution also predicted these mean-Fano relationships (Figures S6Q-S6S). 

Varying Km while holding Kon or Koff fixed at different values produced different slopes 

but otherwise preserved the linear mean-Fano relationship produced by ADs of increasing 
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strength, whereas varying Kon or Koff could not reproduce this trend, regardless of the value 

of Km (Figure S6).

The multi-state model (Rodriguez et al., 2019; Figure 3D), while able to reproduce our 

experimental results, did not fit our observations better than the less complex random 

telegraph model. It predicted mean-variance relationships similar to those of the random 

telegraph model, with modulating the rates of transition into and out of the long-lived 

repressed state predicted to have effects resembling those of modulating Koff (Figure S6T) 

and Kon (Figure S6U) in the random telegraph model, respectively, and changes in the rates 

of the other steps having effects (Figures S6V-S6X) similar to those of changes in Km.

We conclude that the random telegraph model is the simplest model that captures the effects 

of both varying the strength and nuclear concentration of ADs. In addition, we conclude 

that the nuclear concentration of a TF influences Kon, while AD strength primarily acts 

through Km. This can further be interpreted in terms of transcriptional burst parameters. Kon 

in the random telegraph model is effectively equivalent to burst frequency, while burst size 

is proportional to the ratio of Km to Koff. We therefore conclude that AD strength primarily 

controls burst size, while the nuclear concentration of an AD affects burst frequency.

DISCUSSION

We demonstrate here that the mean and noise of gene expression can be separated by 

varying the strength and nuclear concentration of ADs. By varying the induction levels of 

different ADs, we observed noise levels spanning a roughly 2-fold range at comparable 

means. These results raise the possibility of synthetically manipulating expression mean 

and noise independently by using ADs of varying strength while tuning TF occupancy on 

DNA to compensate. Doing so would have many applications in synthetic biology, allowing 

perturbation experiments aimed at determining the effects of noise on gene expression 

networks, development, and cellular physiology and opening the way for engineering 

stochastic fate decisions during cellular reprogramming. Likewise, natural selection could 

tune the noisiness of a gene’s expression, independent of its mean levels, by operating on 

variation that affects the strength and nuclear concentrations of ADs.

Our results can be explained in terms of the effects of AD strength and TF concentration in 

the nucleus. TF binding to DNA occurs for only brief periods (Normanno et al., 2015; Zhang 

et al., 2016; Liu and Tjian, 2018; Hansen et al., 2020), leading to intermittent transcriptional 

activation. At low TF concentrations, there is low TF occupancy on the DNA. Coupled with 

a strong AD, this regime leads to large but infrequent bursts of expression, which produce 

high noise. Conversely, at high TF concentrations, there is much higher promoter occupancy, 

leading to more frequent bursts approaching a continuous rate of mRNA production and 

therefore relatively low noise. Maintaining the same mean level of expression in this regime 

requires lowering the strength of the AD to compensate for more frequent bursting.

Our working hypothesis that both nuclear concentration and AD strength determine noise 

can be formulated quantitatively in terms of the random telegraph model of gene expression 

kinetics. The components of the random telegraph model are both necessary and sufficient 
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to explain our results: models such as Zoller et al.’s (Zoller et al., 2015)and Scholes et 

al.’s (Scholes et al., 2017)that cannot be reduced to the random telegraph model are unable 

to produce the mean-Fano relationships we observe experimentally, and those such as 

Rodriguez et al.’s (Rodriguez et al., 2019) that add additional steps to the random telegraph 

model do not provide additional explanatory power. Our results thus favor models without 

cycles or refractory states as the more parsimonious explanation.

Based on the simulation and experimental results, we posit that AD strength primarily 

affects Km, the rate of transcription from the promoter in its active state, while the 

abundance of TF in the nucleus determines Kon, the rate at which the promoter switches 

into the transcriptionally active state. Under these assumptions, the random telegraph model 

predicts mean-Fano factor relationships resembling those we observed experimentally. 

Future work will elucidate the role of DBD affinity for sequence motifs, cooperative TF 

binding, and other cis factors in TF regulation of transcriptional noise.

Limitations of this study

Synthetic TFs were used throughout this study. Their use is necessary to control for DNA 

binding and isolate the effects of AD sequences and nuclear concentration but could, in 

theory, alter the properties of the ADs from their physiological context. In addition, we 

performed all experiments in yeast because it is a highly tractable model system. Because of 

this, the generalizability of our results to mammalian contexts depends on the conservation 

of transcriptional regulatory mechanisms across eukaryotes.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Please direct any requests for further information or reagents to the lead 

contact, Barak Cohen (cohen@wustl.edu).

Materials availability—Plasmids and yeast strains generated in this study are available 

upon request from the lead contact.

Data and code availability

• Data and code generated in this study are available upon request from the lead 

contact.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains—We repurposed the yeast strains created by Staller et al. (Staller et 

al., 2018). These strains (MATa/MATalpha, synthetic TF-Kanr::ura3/URA3 GFP reporter-

natR::YBR032w/YBR032w) are generated from crosses between derivatives of FY4 

(MATa, synthetic TF-Kanr::ura3) and FY5 (MATalpha, GFP reporter-natR::YBR032w). 
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Each synthetic TF construct consists of an mCherry tag, a murine Zif268 DNA binding 

domain (DBD), a human estrogen response domain (ERD), and an activation domain (AD), 

driven by the yeast ACT1 promoter. The activation domains were either sampled from the 

library of GCN4 mutants described in Staller et al. by picking clones at random, or derived 

from wild type ADs (Table S2). Sequence files of the all wild-type synthetic TF-AD fusions 

are available in supplementary folder 1. The GFP reporter is the same as reported in Staller 

et al. and consists of a fast maturing GFP variant, with expression driven by six upstream 

Zif268 binding sites and the P3 promoter.

Culture conditions—All strains were obtained from frozen glycerol stocks. For the 

experiments involving wild-type activation domains, cultures were seeded by pipetting 2 

uL of each strain onto a YPD agar plate, streaking out, and growing for 2 days in a 30 

degree incubator. For each experiment, individual colonies were then picked from the plates 

and grown out overnight in tubes containing 3 mL of SC dextrose medium. These tubes 

were constantly rotated on a wheel in a 30 degree incubator throughout the growth process. 

The optical densities of 1:10 dilutions of the overnight cultures were then measured, and 

all cultures were diluted to an OD of 0.0225. For each combination of strain and level of 

induction, 200 uL of diluted culture was added to a well of a deep 96 well plate. 50 uL of 

diluted beta-estradiol was then added to the well (final concentrations are listed in Table S1). 

The diluted cultures were incubated with the beta-estradiol in a shaker incubator set to 300 

rpm for 5 h before measuring.

For the experiments involving mutant activation domains, the initial cultures were seeded by 

pinning from the 96 well plate containing the glycerol stocks onto a YPD agar plate. Liquid 

cultures were then seeded by pinning from the agar cultures into a deep well plate with 300 

uL of SC in each well. The deep well plate was agitated in a shaker incubator overnight.

METHOD DETAILS

Molecular cloning and transformations—To generate the remaining yeast strains 

not described in Staller et al. (MATa/MATalpha, synthetic TF-Kanr::ura3/URA3 GFP 

reporter-natR::YBR032w/YBR032w), eleven AD sequences (Table S2) were ordered as 

DNA fragments from SynBio Technologies (Monmouth Junction, NJ). Those AD fragments 

have homology arms for cloning into pMV219 (Addgene), a plasmid vector that contains 

the pACT1-mCherry-DBD-ERD cassette described above. More specifically, pMV219 was 

digested with Nhe1-HF (NEB, R3131S) and Asc1-HF (NEB,R0558S), AD sequences were 

cloned downstream of the ERD using HIFI assembly (NEB, E2621S). The entire pACT1-

mCherry-DBD-ERD-AD region was then PCR amplified using primers YP16 and YP17 

(supplemental information) with homology targeting the URA3 locus. The PCR product was 

then transformed into FY4 S288c yeast by incubating with a mixture of 30–33% PEG, 100 

uM lithium acetate, and 0.3 mg/mL boiled salmon sperm DNA for 30 min at 30 C followed 

by 1 h of heat shock at 42 C. The transformed yeast were spun down, resuspended in YPD, 

and plated on nonselective medium, followed by replica plating onto YPD+G418 plates 

(200 mg/mL). The KanR positive yeast were then struck out onto SC-URA and 5-FOA (1 

mg/mL) plates to test for loss of the URA3 locus.
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Integrations were confirmed by colony PCR targeting the upstream breakpoint. To extract 

genomic DNA, URA- yeast strains were grown overnight in YPD, spun down and 

resuspended in 500 ul each of lysis buffer containing 100 mM Tris, 50 mM EDTA, and 1% 

SDS. They were then vortexed with silica beads for 2 min each. The liquid was then pipetted 

off the beads, mixed with 275 uL of 7M ammonium acetate pH7, and incubated for 5 min 

65 C then 5 min on ice. 500 uL of chloroform was added, and the mixture was vortexed and 

spun for 2 min. The supernatant was then added to 1 mL isopropanol, incubated for 5 min at 

room temperature, and spun down for 5 min. The resulting pellet was then washed with 70% 

ethanol, air dried, and dissolved. For PCR, the genomic DNA was first digested with Nhe1. 

2.5 uL of digest was then mixed with 2.5 uL of each primer (put sequences in supplemental 

information), 2.5 uL water, and 10 uL of NEB OneTaq and run for 34 cycles of 30 s at 94 

C, 30 s at 55 C, and 1 min at 72 C. The resulting PCR product was loaded directly onto an 

agarose gel, which was then run and imaged.

Beta-estradiol induction and flow cytometry—All single-cell fluorescence 

measurements were collected using a Beckman Coulter cytoflex S flow cytometer.

In the experiments with wild-type activation domains, the optical densities of 1:10 dilutions 

of the overnight cultures were first measured, and all cultures were diluted to an OD of 

0.0225. For each combination of strain and level of induction, 200 uL of diluted culture was 

added to a well of a deep 96 well plate. 50 uL of diluted beta-estradiol was then added to 

the well (final concentrations are listed in Table S1). The diluted cultures were incubated 

with the beta-estradiol in a shaker incubator set to 300 rpm for 5 h before measuring. Finally, 

100,000 such single-cell fluorescences were collected for each combination of activation 

domain and induction level.

In the experiments with mutant activation domains, 5 uL of overnight culture from each well 

was first diluted into 200 uL of SC in the corresponding well of a new deep well plate. 50 uL 

of 1 mM beta-estradiol diluted 1:1000 was added to each well of the new plate, and the plate 

was again incubated for 5 h in a shaker set to 300 rpm before measuring. Strains for which 

we suspected contamination or other experimental error were then subjected to verification 

experiments. These involved growing them up as liquid cultures in tubes and then streaking 

them out on agar plates. Single colonies were then picked and used to start liquid cultures 

which were then induced and measured using the same protocols used for the wild-type 

activation domains, except that, for each mutant, we collected measurements for a fixed 45 s.

Imaging—Yeast strains MY447 (expressing a VP16 fusion), YM23.31 (expressing a War1 

fusion), MY450 (expressing a GCN4 fusion), and MY460 (expressing a Gal4 fusion) were 

grown overnight from streakouts in 1 mL of SC. They were then incubated for 4 h in 250 uL 

of SC with or without 200 uM beta-estradiol. The yeast were immobilized on agarose pads 

and imaged on a Zeiss LSM 880 Confocal.

QUANTIFICATION AND STATISTICAL ANALYSIS

Simulations—Sets of simulations were run to predict the effects on mean and noise of 

varying one or two parameters in a given stochastic model of gene expression, while keeping 

all others constant. The models simulated were the random telegraph model (Shahrezaei 
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and Swain, 2008a, 2008b; Sherman and Cohen., 2014; Tiberi et al., 2018), the multi-state 

model of Rodriguez el at (Rodruigez et al., 2019), the refractory period model of Zoller 

et al. (Zoller et al., 2015), and the transcription cycle model of Scholes et al. (Scholes et 

al., 2017). These simulations were run using the implementation of Gillespie’s stochastic 

simulation algorithm (Gillespie, 1976) in BioNetGen (Harris et al., 2016). Model files are 

available in supplemental information, and sets of input parameters used for each simulation 

are available in Table S3. For each set of parameters, 1000 individual simulations were run 

and a mean and a Fano factor was computed for the distribution of protein expression at the 

ends of the individual runs. The relationships between mean and Fano factor over multiple 

sets of parameters within the same model were plotted using the Matplotlib and Seaborn 

packages in Python.

Flow data analysis—Outliers in forward and side scatter area and height were removed 

at the collection stage through gating. Summary statistics of GFP fluorescence (mean and 

Fano factor) were then computed over the cells whose mCherry fluorescence fell between 

300 and 400 units, and the results were plotted, again using Matplotlib and Seaborn. To 

generate each plot, means and Fano factors were computed for each of 3 replicates (n = 3 for 

all figures), and scatterplots were made of means of the summary statistics, with the standard 

deviations of the summary statistics across replicates plotted as error bars.

Image analysis—The images were segmented in CellProfiler using the GFP signal, and 

total mCherry signal was quantified for the nuclear and cytoplasmic segments of each cell. 

Nuclear/cytoplasmic ratios were computed, and the distributions of these ratios across cells 

were plotted using Matplotlib and Seaborn.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Orthogonal perturbations to TF AD and level can decouple mean and noise

• Differences in noise can be explained solely in terms of TF occupancy and 

AD potency

• The random telegraph model explains observed mean-noise relationships

• TF level affects multiple parameters, while AD potency primarily affects burst 

size/Km
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Figure 1. Comparison of the VP16 and Gcn4 Ads
(A) Reporter system to measure the mean and noise produced by diverse ADs. Synthetic 

TF constructs are composed of an mCherry tag (red), a fixed zinc-finger DBD (blue), an 

estrogen response domain (yellow), and a variable AD (gray). Synthetic TFs induce GFP 

expression (green) from a reporter gene driven by an array of zinc-finger binding sites. 

Varying levels of β-estradiol (black) control the nuclear localization of the synthetic TFs, 

allowing precise control of nuclear concentration while controlling for AD.

(B) Activation domains differ in the amount of noise they induce, even at comparable means. 

The noise (Fano factor) produced by synthetic TFs carrying either the Gcn4 or VP16 AD 

is plotted for varying mean levels of reporter gene expression. The trend lines connect the 

data points and are not model fits to the data. Error bars are standard deviations over three 

replicates.
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Figure 2. Comparisons of multiple activation domains
(A) Linear relationship between activation domain strength and noise for diverse ADs. The 

noise produced by diverse ADs is plotted versus the mean level of reporter gene expression 

for each AD. Error bars are standard deviations of mean and Fano across three replicates.

(B) Linear relationship between activation domain strength and noise for mutants in the 

Gcn4 AD. The noise produced by each Gcn4 AD mutant is plotted versus its mean reporter 

gene expression. Error bars are standard deviations over three replicates.
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Figure 3. Stochastic models of gene expression
(A–D) Cartoon diagrams of (A) the random telegraph model, (B) the transcription cycle 

model of Scholes et al. (2017), (C) the refractory model of Zoller et al. (2015), and (D) the 

multi-state model of Rodriguez et al. (2019).

(E–H) The mean (x axis) and Fano factor (y axis) of protein expression predicted by the 

random telegraph model are plotted for simulations in which (E) Kon and Km are varied 

simultaneously, (F) Kon and Dm are varied simultaneously, (G) Km is varied, or (H) Km and 

Dm are varied simultaneously.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

β-estradiol Sigma E2758

Experimental models: Organisms/strains

Yeast:FY4:MATa prototroph Fred Winston (S288c)

Yeast:FY5:MATalpha prototroph Fred Winston (S288c)

Yeast:GCN4 mutant library:MATa/MATalpha, synthetic TF-Kanr::ura3/URA3 
GFP reporter-natR::YBR032w/YBR032w

Max Staller N/A

Yeast:VP16:MATa/MATalpha, synthetic TF-Kanr::ura3/URA3 GFP reporter-
natR::YBR032w/YBR032w

Max Staller MY447, MY448

Yeast:GCN4 WT:MATa/MATalpha, synthetic TF-Kanr::ura3/URA3 GFP 
reporter-natR::YBR032w/YBR032w

Max Staller MY449, MY450, MY461, MY457

Yeast:War1:MATa/MATalpha, synthetic TF-Kanr::ura3/URA3 GFP reporter-
natR::YBR032w/YBR032w

Max Staller YM23.23, YM23.24, YM23.31, 
YM23.32

Yeast:Gal4:MATa/MATalpha, synthetic TF-Kanr::ura3/URA3 GFP reporter-
natR::YBR032w/YBR032w

Max Staller MY459, MY460

Yeast:No AD:MATa/MATalpha, synthetic TF-Kanr::ura3/URA3 GFP reporter-
natR::YBR032w/YBR032w

Max Staller MY445, MY446, MY458

Oligonucleotides

See supplemental information IDT N/A

Recombinant DNA

See Table S2 Synbio Tech S014756

Software and algorithms

BioNetGet Harris et al., 2016 https://bionetgen.org/

Jupyter Notebook https://jupyter.org/ https://jupyter.org/
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