
UCLA
UCLA Previously Published Works

Title
Supplementary Materials for A Bayesian Context Fear Learning Algorithm/Automaton

Permalink
https://escholarship.org/uc/item/0dv5c0n5

Author
Krasne, Frank

Publication Date
2015

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dv5c0n5
https://escholarship.org
http://www.cdlib.org/

ON-LINE SUPPLEMENTARY MATERIALS

 This document provides supplementary materials for A Bayesian Context Fear Learning

Algorithm/Automaton, which we will refer to here simply as the "Paper". It goes into several issues that

would either have taken too much space in the published paper or distracted too much from the main line

of argument there. The matters considered are these:

A. Use of KWTA threshold setting in recurrent collateral auto-associator of CA3'

B. Conditions for autoassociator to activate a 'complete' representation

C. Exact calculation of Bayesian Weight of Evidence

D. A circuit that inhibits representation creation when there may already be a representation of the current

context

E. CA3Ptrno when all attributes of two similar contexts have been encoded.

F. Simulation of Leutgeb et al (2007) two-room exp.

G. Pseudo-code for program flow.

H. Unspecified neural implementations.

I. References for this Supplement.

A. Use of KWTA threshold setting in recurrent collateral auto-associator of CA3'

 Previous accounts of completely connected recurrent collateral networks, such as that of BACON's

CA3' have made the threshold for firing of neurons equal to the number of active neurons providing input

to the network at any given iteration (McNaughton and Morris, 1987). As a consequence, subsets of those

neurons that were active during encoding would restore activity of the full original pattern, but any neuron

not receiving effective input from all the active neurons would not fire, and spurious pattern completion

would thereby be avoided. This method of setting auto-associator thresholds only works when input

patterns at the time of recall are subsets of the encoded pattern. In the present usage, it is commonly the

case that, whereas during recall in a given context there are more representations neurons of the current

context than of other contexs active in CA3Ptrno, there may nevertheless be quite a number of neurons

active in CA3Ptrno that are part of the representation of contexts other than the current one.

 Under such circumstances, the above threshold setting rule will work poorly at best. To see this,

suppose that two similar patterns, A and B have been encoded. Each will be represented by some

hippocampal neurons that are specific to it, while there will be some representation cells common to both

patterns. Especially early in the process of sampling context attributes, there will be neurons specific to

both A and B active in CA3Ptrno (see Figs 7 and 8 of the Paper). Suppose that there are K neurons active,

of which NA are specific to context A, NB of which are specific to context B, and NAB of which are part of

the representation of both [NA+NB+NAB=K; NA <K and NB<K]. At the first iteration of recurrent collateral

input the A-specific neurons will be effectively excited by NA+NAB inputs and the B-specific ones by

NB+NAB inputs. Both sums will be <K. Only the representation cells that are part of both A and B will get

K effective inputs and fire. So even though NA>NB, this information will be lost at the next iteration, and a

complete representation of context A will never be able to be activated in CA3'.

B. Conditions for autoassociator to activate a 'complete' representation

 As a preface to this section it will be useful to introduce some terminology: We will call a

Hippocampal cell that represents only context x a "solo" context x cell, a cell that represents context x and

also other contexts, a "mixed x" cell, and a cell that represents more than one context, without regard to

which ones, simply a "mixed" representation cell. We will call the number of solo x cells active in CA3Ptrno

Sx and the total number representing x (whether solo or not) Tx. Also call the total number of solo x cells

that have been created Lx and the total number of mixed cells Nmxd.

 As explained in the Paper, during recall it will usually be the case that the K CA3Ptrno cells activated

by a sample of a context's attributes (call it context x) will include not only solo and mixed context x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 10 20 30 40 50 60 70 80 90 100
w

p

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 5 10 15 20 25

M

p
 a

s
 P

c
n
t

representation cells but also cells that do not even represent context x. If sampling of a context is well

advanced, eventually solo and mixed context x cells will be more common than cells representing any

other context, but even then there will often be cells active that do not represent context x. As pointed out

in the Paper, it is only after input from the recurrent collateral network that a 'complete' representation of

context x comprised of the K cells of context x's representation and no others will be activated in CA3Ptrnfin.

Thus arises the question of under what circumstances a complete representation will be produced at the

output of CA3'? As we will explain below, three rules emerge from a consideration of this question (we

call the current context x and assume that x is one of M similar contexts for which representations have

previously been created):

Rule 1. If M=2, then a complete representation of context of x will be activated in CA3' as the result of

one cycle of recurrent input if a majority of the CA3Ptrno cells represent x.

Rule 2. If M>2, then the condition for a complete representation at the first cycle of recurrent input is that

Tx>K-Sx. This condition will be fulfilled only if M is quite low and the percent overslap (ω) of each of the

M contexts is quite low. For example, if M=3, ω would have to be less than 70% (given that 50% of

attributes in BACON are assumed to be common to all contexts. This means that a complete

representation would occur after one cycle only if each pair of contexts had less than 30% of overlap of

context-specific attributes). Thus, a complete representation of the current of more than 2 similar contexts

would be unlikely to emerge from the first cycle unless the contexts were quite dissimilar.

Rule 3. If a plurality of active cells in CA3Ptrno represent

context x, then a complete representation will emerge at

the end of the second cycle of recurrent input if Nmxd<K.

If the probability that a unit that is part of one

representation will also be part of a second is ρ, then

 M

 Nmxd = K Σ C(j , M) ρ
j-1

 (1-ρ)
M-j

 .

 j=2

Where C() is the number of combinations of M things

taken j at a time. Figure S1 plots the value of ρ for which

Nmxd=K when K=60, as was the case in the simulations of

the Paper. Thus, if M were 5, ρ would have to be less

than about 10% in order for a complete representation to

become activated by two iterations of input from the

recurrent collaterals.

 Fig. S2 shows the relationship between the

probability of overlap between a given attribute in two

different contexts (ω) and the probability of overlap of

their hippocampal representations (ρ) when

representations are formed at Zcur=Z0. Even when ω is

very high, ρ is not more than about 13%. This is the case

because two different samplings of Z0 attributes, even of the same context, will end up with a somewhat

different set of attributes, and the pattern separating features of DG' will decrease overlap still further.

Since even for very similar (i.e. virtually identical) contexts ρ is less than 13%, one can usually expect to

get a complete representation after two iterations if there are not more than 5 very similar contexts

encoded.

 Somewhat better performance might sometimes be achieved by allowing further cycles of recurrent

input, but we believe that not much improvement can be achieved in that way, and we run just two cycles

of recurrent input in BACON. Further explication of this matter is a topic for further investigation.

 In order understand the reasons for the above rules, it is useful to first make several general points:

Fig. S1

Fig. S2

...

...

First cycle

E=Tx
E >Tx

Lx of these

K-Lx of these

Y in all

E=K-Tx

...
...

E=K
E>K

Lx of these

K-Lx of these

.

Cells that represent all contexts except x. K-Tx in number
Other cells that do not represent x

Cells that represent all contexts except x. K-Tx in number

Other cells that do not represent x

E=Y

HI LO

HI LO

EXCITATION (E)

Second cycle

Figure S3

i). Each cycle of recurrent collateral input begins with a set of CA3'cells active. This activity then

propagates into the cells' recurrent collaterals where it produces a unit of excitation (or "vote"). Excitation

from the collateral-receiving dendrites is assumed to replace whatever excitation activated the cells and

collaterals in the first place, and units of excitation are assumed to add (without decrement) proximally.

The KWTA rule is then applied. A common threshold of the cells is set so that at least K fire. If there are

ties, then more than K are activated (activation is all-or-none); this is in contrast to the situation for

determinaton of the initial pattern of CA3' activity CA3Ptrno where any ties are broken randomly so that

exactly K cells fire.

ii). During input from recurrent collaterals, each CA3' cell will get a unit of excitation (vote) from every

cell that represents a context that it, itself represents.

 Therefore a solo context x cell will get a unit of excitation from every solo or mixed CA3' cell that

represents context x. Thus the excitation of a solo x cell is Tx.

 A mixed cell that (in part) represents context x will in addition receive excitation from all those cells

that do not represent context x but do represent other contexts which that mixed cell represents. Thus

mixed cells representing a context will usually receive more excitation than their solo counterparts.

Explanation of Rule 1. If M=2, then all

the mixed 1 and mixed 2 cells are the

identical sets of cells. Therefore, if

T1>T2, the excitation of the solo 1's will

be greater than that of the solo 2s and

the excitation of the mixed 1s will be

greater than that of the solo 1s. That

accounts for all the cells, so there will

be no mixed cells other than mixed 1

cells having greater excitation than the

solo 1s. The KWTA rule will thus

cause the K context 1 cells and no

others to fire.

Explanation of Rule 2. As pointed out

above, mixed cells representing a

context receive more excitation than

their solo counterparts. So when the

KWTA rule is applied, one will get a

complete representation of context x if

all non-x representation cells have excitation less than that of the solo x cells, which is Tx. The non-x cells

with the greatest excitation will be those which represent all contexts but x, and they will be excited by all

active cells but the solo x cells, of which there are K-Sx. Therefore, the criterion for a complete

representation at the end of the first cycle of recurrent input is Tx>K-Sx (or Sx>K-Tx). The calculations to

determine expected values of Tx and Sx for given M and ω are complex, and since they show that only quite

distinct contexts will be able to meet the above criterion, we do not detail the calculations here.

Explanation of Rule 3. If Tx is greater than all other Tjs, then the solo x cells will be more excited than

any other type of solo cell, and the excitation of the mixed x cells will be greater still. If the total number

of mixed cells < K, then there will be less than K mixed cells of any kind having excitation greater than

that of the solo x cells.

 Since the total number of mixed cells is <K, the total number of cells firing at the end of the first pass

will be the K context x rep cells (white in Fig. S3) plus Y (<K) non-context x cells (red).

 At the second pass the (K-Lx) mixed context x cells will be excited by the K context x cells plus some

of the non context x cells, and the solo x cells will be excited by the K context x cells active at the end of

the previous pass. The most excited non-context x cells will be the set representing every context except x,

and they will be excited by the Y<K active non-context x cells. So all non-context x cells will get less

excitation than any of the context x cells. Hence there will be a ‘complete’ representation of context x.

C. Exact calculation of Bayesian Weight of Evidence

Given the values of Zcom, Zcur, and Zrec we define the Bayesian Weight of Evidence that an active

representation is valid as

BRep(Zcom| Zcur, Zrec) = log [P(Zcom | Same, Zcur, Zrec) / P(Zcom | Diff, Zcur, Zrec)

where Same specifies that the active representation is valid and Diff that it is not and that instead the

automaton is in some random context. Here, and in the equations below, "Zcur" means that the variable Zcur

has the value Zcur, etc.

It is convenient to define some additional variables: Zv, Zg, Zr

Zr~Number of attributes of the current context (whether sampled or not) that are asssociated with the

currently active hippocampal representation.

Zg~Number of general attributes (i.e. attributes that pertain to all contexts) that are associated with the

currently active hippocampal representation

Zv~Number of context-specific attributes of the current context that are associated with the currently active

hippocampal representation.

The Same case is straight-forward:

P(Zcom | Same, Zcur, Zrec) = H(Zcom | Zcur, Zrec, NA)

The Diff case is more complicated: Note that every context has all the Ng general attributes but only NA-Ng

of the Nctx-Ng possible context-specific ones.

 NA

P(Zcom | Diff, Zcur, Zrec) = Σ H(Zcom | Zcur, j, NA) P(Zr)

 Zr=j

where

 NA

P(Zcom| Diff, Zcur, Zrec) = Σ H(Zcom | Zcur, j, NA) P(Zr=k)

 Zr=k

and

P(Zr=k) = Σ P(Zv=i and Zg=j) = Σ H(i|NA-Ng, Zx - j , Np) H(j|Zx, Ng,NA)

 All Zv=i and Zg=j All Zv=i and Zg=j

 such that i+j=k such that i+j=k

D. Circuit that inhibits representation creation when there may already be

a representation of the current context

 At each computational cycle the basic algorithm that constitutes BACON activates whatever existing

contextual representation receives the most input from those contextual attributes that have so far been

randomly sampled during the current session. It then computes the Bayesian weight of evidence (BRep)

that this representation is valid. If BRep is less than Bnew the active representation is almost certain not to be

valid. The active representation will be the existing representation most consistent with the set of

o

F

B(Zcom,Zcur,Zrec) =

rate rate

posB () negB()

0/1

X
Hipp I

< K

OR

negB >|B
New

|

AND Zcur> Z
o

Confidence
that "Same"

Confidence
that "Diferent"

P[Zcom | Same, Zcur, Zrec]

P[Zcom | Different, Zcur, Zrec]
log10

0/1rate
0/1

CreateUpdate posBRep
(control:
conditioning,
fear expression,
LTP on F neuron)

rate rateraterate

Zrec Zcom Zcur

X
Hipp I

0/1

Thrsh =Badd

^2

C

1. If posBrep > Btv,
potentiate synapses of presynaptically active terminals on F.

2. C activates all terminals on F. If any are potentiated, F fires and
prevents firing of the Create neuron.

3. Potentiation of any active synapse on F is abolished by input from
active C (i.e. when BRep<Bnew).

o

F

B(Zcom,Zcur,Zrec) =

rate rate

posB () negB()

0/1

X
Hipp I

< K

OR

negB >|B
New

|

AND Zcur> Z
o

Confidence
that "Same"

Confidence
that "Diferent"

P[Zcom | Same, Zcur, Zrec]

P[Zcom | Different, Zcur, Zrec]
log10

0/1rate
0/1

CreateUpdate posBRep
(control:
conditioning,
fear expression,
LTP on F neuron)

rate rateraterate

Zrec Zcom Zcur

X
Hipp I

0/1

Thrsh =Badd

^2

C

1. If posBrep > Btv,
potentiate synapses of presynaptically active terminals on F.

2. C activates all terminals on F. If any are potentiated, F fires and
prevents firing of the Create neuron.

3. Potentiation of any active synapse on F is abolished by input from
active C (i.e. when BRep<Bnew).

Fig. S4

attributes so far sampled. So if sampling is far advanced and the "best available" representation is

definitely invalid, the appropriate action is to infer that the automaton is somewhere for which there is no

existing representation and create a new one for this context. And this is what the neural circuit presented

in the paper proper and shown at the top of Fig. S4 would do. However, if sampling in a given session is

not far advanced the viscissitudes of attribute sampling my well cause an invalid representation to be

activated. In such cases a negative BRep value will be calculated, but usually it will not be very negative

because Zcur is small, and the automaton will go on to further sampling of the current context without

alterning its set of representations in any way. However, if it should happen that the Zrec value associated

with the active representation is very high (i.e. a lot is known about the invalid context whose

representation is active), the circuit shown at the top of the figure would create a new representation if

BRep< Bnew. However, this might well be a mistake, because a valid representation for this context might

already exist (but not be active because of the accidents of current sampling).

 As an add-on to try to diminish such occurrences, we added to the rules for creating a new

representation the proviso that, even though the BRep value for an active representation is less than Bnew, a

new representation should not be created if at some prior point in the session a representation with a fairly

high BRep value (taken to be a value greater than Btv) had been activated by the set of attributes sampled.

This is not an absolute fix, but it dramatically decreases unwanted creations of second representations for

contexts already having hippocampal representations. Presentation of circuitry that could implement this

rule was deferred to this

supplement, and is shown at the

bottom-right of Fig. S4

 The added circuitry,

prevents neuron C from

activating the Create neuron if

there is any representation the

automaton has earlier in the

session evaluated as tentatively

valid but not subsequently

rejected: Whenever a

representation producing a

BRep> Btv is activated, the

synapses of all active Hipp II

neurons on neuron F (those

orange synapses that are active)

become potentiated. Unless this

potentiation is reversed,

whenever that representation is

active, it will activate the F

neuron and prevent the Create

neuron from firing. This

potentiation can only be undone

if the representation is activated

in conjunction with the C

neuron, which itself signals BRep

< Bnew. Thus the Create neuron

cannot be activated if there are

any representations that have

been judged tentatively valid

but not subsequently been

rejected.

0

5

10

15

20

25

30

35

40

45

50

1

0

5

10

15

20

25

30

35

40

45

50

1

0

5

10

15

20

25

30

35

40

45

50

1

37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Correct

Incorrect

No.
attributes
specific to
each
context
out of 100

25 44 16 CA3PtrnfnlCA3Ptrno

N
u

m
b

e
r

o
f

c
o
n

te
x
t-

s
p
e

c
if
ic

 r
e

p
 u

n
it
s
 a

c
ti
v
e

No. of cells
specfic to
each
represent-
ation.

No. of cells
common to
both
represent-
ations

10 30 30

3 22 38

Fig. S5

E. CA3Ptrno when all attributes of two similar contexts have been encoded.

 If several similar contexts are known, CA3Ptrno will usually include representation cells

specific to contexts that are similar to those it is in as well as cells specific to the actual context,

though cells representing the actual

context will predominate. The "errors"

will occur in part because partial random

sampling of attributes during encoding

and updating causes different common

attributes to become associated with each

representation, and attributes associated

with a "wrong" representation may be

sampled during recall. But even if all NA

attributes of two similar contexts have

been encoded, representation cells specific

to the wrong one may be among the K

most excited because many of the

common attributes so far sampled happen

to be ones that innervate those particular

cells. The simulation results shown at the

right illustrate this point.

 Two contexts having the number of

context-specific attributes indicated in the left-

most column were fully encoded, and

BACON then tested for recall in one of them.

The complete representations of the two

contexts overlapped to the extent indicated in

the 2nd and 3rd columns of the figure. When

25% of the contexts' attributes were non-

overlapping, 73% of their representation cells

were distinct. When only 3% of their attributes were overlapping, 37% of their representation cells were

distinct.

 The graphs at the right show how many of the distinct representation cells for the context in which

BACON was placed, and also for the other context, were active as more and more of the context's 100

attributes were sampled (the graphs start at sample 17). At all the stages of sampling shown, CA3Ptrnfnl was

the complete representation of the context BACON was actually in. However in CA3Ptrno there were

representation cells specific to the incorrect context active throughout most of the sampling process,

though these were less numerous than those of the correct representation. It was only after sampling was

very advanced that incorrect cells stopped being part of the active set, and for the most similar pair of

contexts, some continued to fire even after all 100 attributes had been sampled.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Test A twice

Test A once and B once

Noise added
so points
would not
completely
overlap

Test 1

T
e
s
t

2

CA3'

DG'

A and B 75%
similar

From Leutgeb et al, p. 965

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Test A twice

Test A once and B once

Noise added
so points
would not
completely
overlap

Test 1

T
e
s
t

2

CA3'

DG'

A and B 75%
similar

From Leutgeb et al, p. 965

Fig. S6

F. Simulation of Leutgeb et al (2007) two-room exp.

 At the right of Fig. S6 is a page

from an experiment by Leutgeb et al

(2007), which was discussed in the

Paper proper. Rats were

familiarized with two contexts, A

and B and then tested several times

in each while recording from both

dentate and CA3. The red points on

each scatterplot show the firing rate

of a given cell in both context A

(one axis) and context B (the other).

The dark blue points are for two

different sessions in the same

context. In CA3, when tested in

two different contexts most cells

responded in only one of them,

whereas in DG they tended to

respond in both, but at different

rates in each. When tested twice in

the same context, both the CA3 and

the DG cells responded at about the

same rate on each occasion in the

context.

 The graphs at the left of the

figure show simulation results for a

similar experiment in BACON. The automaton was given an encoding session of 80 samples each in

context A and context B, which had 75% of their attributes in common (50% of their non-general

attributes). It was then tested either twice in A or once each in A and B. The results shown are for the

Zcur=95 in each session. As in the real animals, CA3 cells responded similarly on each test in context A

when tested in the two different contexts, most responded in only one (except for the 7 of 113 total

representation cells that were common to both contexts). These results are similar to those of the real

animals except that when a BACON cell did respond, it always responded at a fixed high rate whereas in

the real animals different cells responded at different rates. It may well be that the firing rate of CA3 cells

in real animals are coding for something not mimicked by BACON. However, as pointed out in our paper,

one way of coding BRep would be via the firing rate of representation cells. If that were happening in real

animals, then BRep values would be different in each of the several animals from which Leutgeb et al's data

were obtained, and a range of firing rates might well have been seen. In DG, which in BACON does use

rate coding during recall, the results are even more similar to those of the real animals. The most obvious

difference is that there are no very low firing rates in the BACON simulation. This is because all cells that

became representation cells did so because they were fairly well innervated by the contexts encoded, and

since 50% of attributes are common to all contexts (NGen=50), most cells that got encoded got some input

during the test (Zcur=95). Had we included data from earlier in the session, there would have been more

low firing rates in the scatterplot.

CA3'

DG'

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Encode A
Test A

Encode A&B
90% similar
Test in A

Encode A&B
50% similar
Test in A

Firing Rate (arbitrary scale)

P
ro

p
o
rt

io
n

 o
f

c
e
lls

 s
a
m

p
le

d
 f

ir
in

g
 a

t
th

is
 r

a
te

N
o
rm

a
liz

e
d
 t

o
 u

n
it
y
 f

o
r

C
A

3
' c

e
lls

CA3'

DG'

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Encode A
Test A

Encode A&B
90% similar
Test in A

Encode A&B
50% similar
Test in A

Firing Rate (arbitrary scale)

P
ro

p
o
rt

io
n

 o
f

c
e
lls

 s
a
m

p
le

d
 f

ir
in

g
 a

t
th

is
 r

a
te

N
o
rm

a
liz

e
d
 t

o
 u

n
it
y
 f

o
r

C
A

3
' c

e
lls

Fig. S7

 The Leutgeb et al paper found that the proportion of sampled cells

firing in DG was about a third that in CA3'. As discussed in the

BACON paper, we could have achieved greater biological realism by

letting BACON's CA3' be about an eighth smaller than DG', with no

impact on the performance of the automaton unless large numbers of

very similar contexts had to be learned. If we had made this size

adjustment, then the numbers of cells active during tests in the above

experiment would have been as shown at the right. In CA3', which is at

all times subject to a KWTA rule, exactly K cells would have fired,

leading to the firing rate distributions shown at the top of Fig. S7. In

DG' there is a range of firing rates during recall. If only one context has

been learned, then the picture is like that at the left of the figure, where

the total number of cells firing is K (=60). If two contexts have been

learned, the picture depends on how similar the contexts are to each

other If they are very different (as on the far right where only the 50

attributes common to all contexts are the same in A and B), there is a

group of cells that fire in the same way as if only one context were

encoded and another that fire at lower rates. If they are very similar, as

in the middle column of graphs, the number of cells active is 2K - the

number of representation cells common to the two contexts, and there is

a spread a little greater than in the left-most case.

 If a great many very different contexts have been encoded, there will be on the order of K

representation cells created for context, and thus the total number of cells active at recall could become

quite large. However, the representation cells for the correct context would fire at much higher rates than

those of incorrect ones. Moreover, since the CA3’ partners of relatively unexcited DG’ cells will

never be winners of a CA3’ KWTA competition, our algorithm could have assumed a regulatory

mechanism that silenced DG' cells excited so little that they could have no impact on CA3'

behavior. Had we done that, the number of DG' cells firing would remain modestly greater than

K no matter how many contexts were encoded.

G. Pseudo-code for computation cycle

 We give here the flow diagram of computer program that implements BACON.

 Subroutines and functions are in bold-face; variables or flags are ordinary font, and logical statements

are in caps. The role of Subroutine and Function names are mostly obvious in the context of the paper.

 Sample makes a random selection of a not-yet-sampled contextual attribute and augments Zcur by one.

EvaluateHipp calculates excitations and graded firing rates of DG' cells, calculates excitation of CA3'

cells and determines CA3Ptrno , and CA3PtrnFnl. EvaluateCtx causes the firing those ECout cells for which

more than ThrshCtx of its active inputs have potentiated synapses with the cell (EC' cells are binary). It

also computes Zrec and Zcom. MakeNewRep determines which DG'-CA3' dyads have heaviest innervation

from EC'in and then potentiates all appropriate EC'in-DG', EC'in-CA3', CA3'-CA3', and CA3'-EC'out

synapses, normalizing those made by EC'in. Update potentiates input and output synapses between the

currently active representation cells and EC'in and EC'out neurons that represent all current or recalled

attributes, normalizing those made by EC'in.

Sample

EvaluateHipp

EvaluateCtx
IF NewRep=0

 EvaluateBrep
ElSEIF NewRep=1

 EvaluateExpectedBrep

 Brep=ExpectedBrep
END IF

EvaluateFear(Brep)
IF Brep<=Bnew AND NewRep=0

 NewRep=1

 Add2Rep=1

 MakeNewRep

ELSEIF Brep>=Badd

 Add2Rep=1

 IfFAdd2Rep=1 OR NewRep=1, Update

ELSE

 Add2Rep=0

 IF Add2Rep=1 OR NewRep=1, Update

END IF

EvaluateHipp

EvaluateCtx
IF NewRep=0

 EvaluateBrep
ELSEIF NewRep=1

 EvaluateExpectedBrep

 Brep=ExpectedBrep
END IF

EvaluateCnd(Brep)
IF Shk=1, DoShk(Cnd)

 H. Unspecified neural implementations

 There are several places in this paper where neural computations are simply assumed

to occur, without providing a means of neural implementation. This was done for K-winners-

takeall logic because this is a very non-straightforward topic that has been discussed elsewhere

(e.g. Coultrip et al., 1992;Wang, 2010;Tymoshchuk, 2013) and would have distracted here.

Neural circuitry to carry out the logic in the box feeding the Create neuron in Figure 7 of the

Paper, which could be implemented in many ways, was also not specified. We freely used

neurons which fire at rates proportional to sums, differences, products, and power functions of the

firing rates of the neurons innervating them. Sums are straightforward so long as synaptic

conductances are kept small relative to leakage conductances of neurons. Subtraction can be

accomplished by inhibition, though distortion by shunting effects of inhibition must be contended

with; methods that do not have this problem have been suggested (Holt and Koch, 1997).

Products could be computed using divisive inhibition to divide by the reciprocal of a multiplier.

Several additional ways of computing products have been suggested (e.g. Tal and Schwartz,

1997;Gabbiani et al, 2002;Nezis and vanRossum, 2011), and there is empirical evidence that,

whatever the biophysical mechanism responsible, actual neurons can do so (Silver, 2010;

Gabbianai et al, 2002). Outputs that are accelerating functions of inputs, and therefore power-

function-like, could be produced by allowing limited active responses to membrane

depolarization, such as those that can be produced by voltage-dependent calcium channels in

dendritic membrane.

I. References for this supplement

Coultrip, R., Granger, R., and G, L. (1992). A cortical model of winner-take-all competition via

lateral inhibition. Neural Networks 5, 47-54.

Gabbiani F, Krapp HG, Koch C, Laurent G (2002). Multiplicative computation in a visual neuron

sensitive to looming. Nature 420, 320-4.

Holt, G.R., and Koch, C. (1997). Shunting inhibition does not have a divisive effect on firing

rates. Neural Computation 9, 1001-1013.

Leutgeb JK, Leutgeb S, Moser MB, Moser EI. (2007). Pattern separation in the dentate gyrus and

CA3 of the hippocampus. Science.315(5814):961-6.

Nezis P, vanRossum MC (2011). Accurate multiplication with noisy spiking neurons. J Neural

Eng 8,(3):034005. doi:10.1088/1741-2560/8/3/034005.

Silver, R.A. (2010). Neuronal arithmetic. Nature Reviews Neuroscience 11, 474-489.

Skaggs, W.E., and Mcnaughton, B.L. (1992). Computational approaches to hippocampal function.

Curr Opin Neurobiol 2, 209-211.

Tal, D., and Schwartz, E.L. (1997). Computing with leaky integrate-and-fire neuron: logarithmic

computation and multiplication. Neural Computation 9, 305-318.

Tymoshchuk, P.V. (2013). A model of analogue K-winners-take-all neural circuit. Neural Netw.

42, 44-61.

Wang, J. (2010). Analysis and design of a k-winners-take-all model with a single state variable

and the Heaviside step activation function. IEEE Transactions on Neural Networks 21,

1496-1506.

