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ON-LINE  SUPPLEMENTARY MATERIALS 
 

 This document provides supplementary materials for A  Bayesian Context Fear Learning 

Algorithm/Automaton, which we will refer to here simply as the "Paper".  It goes into several issues that 

would either have taken too much space in the published paper or distracted too much from the main line 

of argument there. The matters considered are these: 

 

A. Use of KWTA threshold setting in recurrent collateral auto-associator of CA3' 

B. Conditions for autoassociator to activate a 'complete' representation 

C. Exact calculation of Bayesian Weight of Evidence 

D. A circuit that inhibits representation creation when there may already be a representation of the current 

context 

E. CA3Ptrno when all attributes of two similar contexts have been encoded. 

F. Simulation of Leutgeb et al (2007) two-room exp. 

G. Pseudo-code for program flow. 

H. Unspecified neural implementations. 

I. References for this Supplement. 

 

A. Use of KWTA threshold setting in recurrent collateral auto-associator of CA3' 

 

 Previous accounts of completely connected recurrent collateral networks, such as that of  BACON's 

CA3' have made the threshold for firing of neurons equal to the number of active neurons providing input 

to the network at any given iteration (McNaughton and Morris, 1987).  As a consequence, subsets of those 

neurons that were active during encoding would restore activity of the full original pattern, but any neuron 

not receiving effective input from all the active neurons would not fire, and spurious pattern completion 

would thereby be avoided.  This method of setting auto-associator thresholds only works when input 

patterns at the time of recall are subsets of the encoded pattern.  In the present usage, it is commonly the 

case that, whereas during recall in a given context there are more  representations neurons of the current 

context than of other contexs active in CA3Ptrno, there may nevertheless be quite a number of neurons 

active in CA3Ptrno that are part of the representation of contexts other than the current one.   

 Under such circumstances, the above threshold setting rule will work poorly at best.  To see this, 

suppose that two similar patterns, A and B have been encoded.  Each will be represented by some 

hippocampal neurons that are specific to it, while there will be some representation cells common to both 

patterns.  Especially early in the process of sampling context attributes, there will be neurons specific to 

both A and B active in CA3Ptrno (see Figs 7 and 8 of the Paper).  Suppose that there are K neurons active,  

of which NA are specific to context A, NB of which are specific to context B, and NAB of which are part of 

the representation of both [NA+NB+NAB=K; NA <K and NB<K].  At the first iteration of recurrent collateral 

input the A-specific neurons will be effectively excited by NA+NAB inputs and the B-specific ones by 

NB+NAB inputs. Both sums will be <K.  Only the representation cells that are part of both A and B will get 

K effective inputs and fire.  So even though NA>NB, this information will be lost at the next iteration, and a 

complete representation of context A will never be able to be activated in CA3'. 

 

B. Conditions for autoassociator to activate a 'complete' representation 

 
 As a preface to this section it will be useful to introduce some terminology:  We will call a 

Hippocampal cell that represents only context x a "solo" context x cell,  a cell that represents context x and 

also other contexts, a "mixed x" cell, and a cell that represents more than one context, without regard to 

which ones, simply a "mixed" representation cell. We will call the number of solo x cells active in CA3Ptrno  

Sx and the total number representing x (whether solo or not) Tx. Also call the total number of solo x cells 

that have been created Lx and the total number of mixed cells Nmxd. 

 

 As explained in the Paper, during recall it will usually be the case that the K CA3Ptrno  cells activated 

by a sample of a context's  attributes (call it context x)  will include not only solo and mixed context x 
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representation cells but also cells that do not even represent context x.   If  sampling of a context is well 

advanced, eventually solo and mixed context x cells will be more common than cells representing any 

other context, but even then there will often be cells active that do not represent context x.  As pointed out 

in the Paper, it is only after input from the recurrent collateral network that a 'complete' representation of 

context x comprised of  the K cells of context x's representation and no others will be activated in CA3Ptrnfin. 

Thus arises the question of under what circumstances a complete representation will be produced at the 

output of CA3'?  As we will explain below, three rules emerge from a consideration of this question (we 

call the current context x and assume that x is one of M similar contexts for which representations have 

previously been created):   

 

Rule 1.  If M=2, then a complete representation of context of x will be activated in CA3' as the result of 

one cycle of recurrent input if a majority of the CA3Ptrno cells represent x. 

 

Rule 2. If M>2, then the condition for a complete representation at the first cycle of recurrent input is that 

Tx>K-Sx.  This condition will be fulfilled only if M is quite low and the percent overslap (ω) of each of the 

M contexts is quite low. For example, if M=3, ω would have to be less than 70%  (given that 50% of 

attributes in BACON are assumed to be common to all contexts.  This means that a complete 

representation would occur after one cycle only if each pair of contexts had less than 30% of overlap of 

context-specific attributes).  Thus, a complete representation of the current of more than 2 similar contexts 

would be unlikely to emerge from the first cycle unless the contexts were quite dissimilar. 

 

Rule 3. If a plurality of active cells in CA3Ptrno represent 

context x, then a complete representation will emerge at 

the end of the second cycle of recurrent input if Nmxd<K.  

If the probability that a unit that is part of one 

representation will also be part of a second is ρ, then  

          M 

       Nmxd = K  Σ  C(j , M) ρ 
j-1

  (1-ρ) 
M-j

 . 

                     j=2 

 

Where C( ) is the number of combinations of M things 

taken j at a time.  Figure S1 plots the value of ρ for which 

Nmxd=K when K=60, as was the case in the simulations of 

the Paper.  Thus, if M were 5, ρ would have to be less 

than about 10% in order for a complete representation to 

become activated by two iterations of input from the 

recurrent collaterals. 

 Fig. S2 shows the relationship between the 

probability of overlap between a given attribute in two 

different contexts (ω) and the probability of overlap of 

their hippocampal representations (ρ) when 

representations are formed at Zcur=Z0.  Even when ω is 

very high, ρ is not more than about 13%.  This is the case 

because two different samplings of Z0 attributes, even of the same context, will end up with a somewhat 

different set of attributes, and the pattern separating features of DG' will decrease overlap still further.  

Since even for very similar (i.e. virtually identical) contexts ρ is less than 13%, one can usually expect to 

get a complete representation after two iterations if there are not more than 5 very similar contexts 

encoded. 

 Somewhat better performance might sometimes be achieved by allowing further cycles of recurrent 

input, but we believe that not much improvement can be achieved in that way, and we run just two cycles 

of recurrent input in BACON.  Further explication of this matter is a topic for further investigation. 

 

 In order understand the reasons for the above rules, it is useful to first make several general points: 

Fig. S1 

Fig. S2 
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i). Each cycle of recurrent collateral input begins with a set of CA3'cells active. This activity then 

propagates into the cells' recurrent collaterals where it produces a unit of excitation (or "vote").  Excitation 

from the collateral-receiving dendrites is assumed to replace whatever excitation activated the cells and 

collaterals in the first place, and units of excitation are assumed to add (without decrement) proximally.  

The KWTA rule is then applied.  A common threshold of the cells is set so that at least K fire.  If there are 

ties, then more than K are activated (activation is all-or-none); this is in contrast to the situation for 

determinaton of the initial pattern of CA3' activity CA3Ptrno  where any ties are broken randomly so that 

exactly K cells fire. 

 

ii). During input from recurrent collaterals, each CA3' cell will get a unit of excitation (vote) from every 

cell that represents a context that it, itself represents.  

 Therefore a solo context x cell will get a unit of excitation from every solo or mixed CA3'  cell that 

represents context x.  Thus the excitation of a solo x cell is Tx. 

 A mixed cell that (in part) represents context x will in addition receive excitation from all those cells 

that do not represent context x but do represent  other contexts which that mixed cell represents. Thus 

mixed cells representing a context will usually receive more excitation than their solo counterparts.  

 

Explanation of Rule 1. If M=2, then all 

the mixed 1 and mixed 2 cells are the 

identical sets of cells.  Therefore, if 

T1>T2, the excitation of the solo 1's will 

be greater than that of the solo 2s and 

the excitation of the mixed 1s will be 

greater than that of the solo 1s.  That 

accounts for all the cells, so there will 

be no mixed cells other than mixed 1 

cells having greater excitation than the 

solo 1s.  The KWTA rule will thus 

cause the K context 1 cells and no 

others to fire. 

 

Explanation of Rule 2. As pointed out 

above, mixed cells representing a 

context receive more excitation than 

their solo counterparts.  So when the 

KWTA rule is applied, one will get a 

complete representation of context x if 

all non-x representation cells have excitation less than that of the solo x cells, which is Tx.  The non-x cells 

with the greatest excitation will be those which represent all contexts but x, and they will be excited by all 

active cells but the solo x cells, of which there are K-Sx.  Therefore, the criterion for a complete 

representation at the end of the first cycle of recurrent input is Tx>K-Sx (or Sx>K-Tx).  The calculations to 

determine expected values of Tx and Sx for given M and ω are complex, and since they show that only quite 

distinct contexts will be able to meet the above criterion, we do not detail the calculations here. 

 

Explanation of Rule 3. If Tx is greater than all other Tjs, then the solo x cells will be more excited than 

any other type of solo cell, and the excitation of the mixed x cells will be greater still.  If the total number 

of mixed cells < K, then there will be less than K mixed cells of any kind having excitation greater than 

that of the solo x cells.  

 Since the total number of mixed cells is <K, the total number of cells firing at the end of the first pass 

will be the K context x rep  cells (white in Fig. S3) plus Y (<K) non-context x cells (red).   

 At the second pass the (K-Lx) mixed context x cells will be excited by the K context x cells plus some 

of the non context x cells, and the solo x cells will be excited by the K context x cells active at the end of 



the previous pass.  The most excited non-context x cells will be the set representing every context except x, 

and they will be excited by the Y<K active non-context x cells.  So all non-context x cells will get less 

excitation than any of the context x cells.  Hence there will be a ‘complete’ representation of context x. 

 

C. Exact calculation of Bayesian Weight of Evidence 
 

Given the values of Zcom, Zcur, and Zrec we define the Bayesian Weight of Evidence that an active 

representation is valid as  

 

BRep(Zcom| Zcur, Zrec) = log [ P(Zcom | Same, Zcur, Zrec) / P(Zcom | Diff, Zcur, Zrec) 

 

where Same specifies that the active representation is valid and Diff that it is not and that instead the 

automaton is in some random context.  Here, and in the equations below, "Zcur" means that the variable Zcur 

has the value Zcur, etc. 

 

It is convenient to define some additional variables: Zv, Zg, Zr 

Zr~Number of attributes of the current context (whether sampled or not)  that are asssociated with the 

currently active hippocampal representation. 

Zg~Number of general attributes (i.e. attributes that pertain to all contexts)  that are associated with the 

currently active hippocampal representation 

Zv~Number of context-specific attributes of the current context that are associated with the currently active 

hippocampal representation. 

 

The Same case is straight-forward: 

P(Zcom | Same, Zcur, Zrec) = H(Zcom | Zcur, Zrec, NA) 

 

 

The Diff case is more complicated:  Note that every context has all the Ng general attributes but only NA-Ng  

of the  Nctx-Ng possible context-specific ones. 

 

                                             NA 

P(Zcom | Diff, Zcur, Zrec) =      Σ      H(Zcom | Zcur, j, NA) P(Zr) 

                                           Zr=j  

 

where 

                                         NA 

P(Zcom| Diff, Zcur, Zrec) =   Σ      H(Zcom | Zcur, j, NA) P(Zr=k) 

                                      Zr=k 

 

and 

 

P(Zr=k)  =       Σ      P(Zv=i and Zg=j)   =         Σ      H(i|NA-Ng, Zx - j , Np) H(j|Zx, Ng,NA) 

 All Zv=i and Zg=j                     All Zv=i and Zg=j 

 such that i+j=k                                    such that i+j=k 

 

D. Circuit that inhibits representation creation when there may already be  

a representation of the current context 

 

  At each computational cycle the basic algorithm that constitutes BACON activates whatever existing 

contextual representation receives the most input from those contextual attributes that have so far been 

randomly sampled during the current session.  It then computes the Bayesian weight of evidence (BRep) 

that this representation is valid.  If BRep is less than Bnew the active representation is almost certain not to be 

valid.  The active representation will be the existing representation most consistent with the set of 
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attributes so far sampled. So if sampling is far advanced and the "best available" representation is 

definitely invalid, the appropriate action is to infer that the automaton is somewhere for which there is no 

existing representation and create a new one for this context.  And this is what the neural circuit presented 

in the paper proper and shown at the top of  Fig. S4 would do.  However, if sampling in a given session is 

not far advanced the viscissitudes of attribute sampling my well cause an invalid representation to be 

activated.  In such cases a negative BRep value will be calculated, but usually it will not be very negative 

because Zcur is small, and the automaton will go on to further sampling of the current context without 

alterning its set of representations in any way.  However, if it should happen that the Zrec value associated 

with the active representation is very high (i.e. a lot is known about the invalid context whose 

representation is active), the circuit shown at the top of the figure would create a new representation if 

BRep< Bnew.  However, this might well be a mistake, because a valid representation for this context might 

already exist (but not be active because of the accidents of current sampling).   

 As an add-on to try to diminish such occurrences, we added to the rules for creating a new 

representation the proviso that, even though the  BRep value for an active representation is less than Bnew, a 

new representation should not be created if at some prior point in the session a representation with a fairly 

high BRep value (taken to be a value greater than Btv) had been activated by the set of attributes sampled.  

This is not an absolute fix, but it dramatically decreases unwanted creations of second representations for 

contexts already having hippocampal representations.  Presentation of circuitry that could implement this 

rule was deferred to this 

supplement, and is shown at the 

bottom-right of Fig. S4 

 The added circuitry,  

prevents neuron C from 

activating the Create neuron if 

there is any representation the 

automaton has earlier in the 

session evaluated as tentatively 

valid but not subsequently 

rejected:  Whenever a 

representation producing a 

BRep> Btv is activated, the 

synapses of all active Hipp II 

neurons on neuron F (those 

orange synapses that are active) 

become potentiated.  Unless this 

potentiation is reversed, 

whenever  that representation is 

active, it will activate the F 

neuron and prevent the Create 

neuron from firing.  This 

potentiation can only be undone 

if the representation is activated 

in conjunction with the C 

neuron, which itself signals BRep 

< Bnew.  Thus the Create neuron 

cannot be activated if there are 

any representations that have 

been  judged tentatively valid 

but not subsequently been 

rejected.  
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E. CA3Ptrno when all attributes of two similar contexts have been encoded. 
  

 If several similar contexts are known, CA3Ptrno will usually  include representation cells 

specific to contexts that are similar to those it is in as well as cells specific to the actual context, 

though cells representing the actual 

context will predominate. The "errors" 

will occur in part because  partial random 

sampling of attributes during encoding 

and updating causes different common 

attributes to become associated with each 

representation, and attributes associated 

with  a "wrong" representation may be 

sampled during recall.  But even if all NA 

attributes of two similar contexts have 

been encoded, representation cells specific 

to the wrong one may be among the K 

most excited because many of the 

common attributes so far sampled happen 

to be ones that innervate those particular 

cells. The simulation results shown at the 

right illustrate this point.  

 Two contexts having the number of 

context-specific attributes indicated in the left-

most column were fully encoded, and 

BACON then tested for recall in one of them. 

The complete representations of the two 

contexts overlapped to the extent indicated in 

the 2nd and 3rd columns of the figure.  When 

25% of the contexts' attributes were non-

overlapping, 73% of their representation cells 

were distinct.  When only 3% of their attributes were overlapping, 37% of their representation cells were 

distinct.   

 The graphs at the right show how many of the distinct representation cells for the context in which 

BACON was placed, and also for the other context, were active as more and more of the context's 100 

attributes were sampled (the graphs start at sample 17). At all the stages of sampling shown, CA3Ptrnfnl was 

the complete representation of the context BACON was actually in.  However in CA3Ptrno there were 

representation cells specific to the  incorrect context active throughout most of the sampling process, 

though these were less numerous than those of the correct representation.  It was only after sampling was 

very advanced that incorrect cells stopped being part of the active set, and for the most similar pair of 

contexts, some continued to fire even after all 100 attributes had been sampled. 
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F. Simulation of Leutgeb et al (2007) two-room exp. 
 

 At the right of Fig. S6 is a page 

from an experiment by Leutgeb et al 

(2007), which was discussed in the 

Paper proper.  Rats were 

familiarized with two contexts, A 

and B and then tested several times 

in each while recording from both 

dentate and CA3.  The red points on 

each scatterplot show the firing rate 

of a given cell in both context A 

(one axis) and context B (the other). 

The dark blue points are for two 

different sessions in the same 

context.  In CA3, when tested in 

two different contexts most cells 

responded in only one of them, 

whereas in DG they tended to 

respond in both, but at different 

rates in each.  When tested twice in 

the same context, both the CA3 and 

the DG cells responded at about the 

same rate on each occasion in the 

context. 

 The graphs at the left of the 

figure show simulation results for a 

similar experiment in BACON.  The automaton was given an encoding session of 80 samples each in 

context A and context B, which had 75% of their attributes in common (50% of their non-general 

attributes).  It was then tested either twice in A or once each in A and B.  The results shown are for the 

Zcur=95 in each session.  As in the real animals, CA3 cells responded similarly on each test in context A 

when tested in the two different contexts, most responded in only one (except for the 7 of 113 total 

representation cells that were common to both contexts).  These results are similar to those of the real 

animals except that when  a  BACON cell did respond, it always responded at a fixed high rate whereas in 

the real animals different cells responded at different rates.  It may well be that the firing rate of CA3 cells 

in real animals are coding for something not mimicked by BACON.   However, as pointed out in our paper, 

one way of coding BRep would be via the firing rate of representation cells.  If that were happening in real 

animals, then BRep values would be different in each of the several animals from which Leutgeb et al's data 

were obtained, and a range of firing rates might well have been seen.  In DG, which in BACON does use 

rate coding during recall, the results are even more similar to those of the real animals.  The most obvious 

difference is that there are no very low firing rates in the BACON simulation.  This is because all cells that 

became representation cells did so because they were fairly well innervated by the contexts encoded, and 

since 50% of attributes are common to all contexts (NGen=50), most cells that got encoded got some input 

during the test (Zcur=95).  Had we included data from earlier in the session, there would have been more 

low firing rates in the scatterplot. 
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 The Leutgeb et al paper found that the proportion of sampled cells 

firing in DG was about a third that in CA3'.  As discussed in the  

BACON paper, we could have achieved greater biological realism by 

letting BACON's CA3' be about an eighth smaller than DG', with no 

impact on the performance of the automaton unless large numbers of 

very similar contexts had to be learned.  If we had made this size 

adjustment, then the numbers of cells active during tests in the above 

experiment would have been as shown at the right.  In CA3', which is at 

all times subject to a KWTA rule, exactly K cells would have fired, 

leading to the firing rate distributions shown at the top of Fig. S7.  In 

DG' there is a range of firing rates during recall.  If only one context has 

been learned, then the picture is like that at the left of the figure, where 

the total number of cells firing is K (=60).  If two contexts have been 

learned, the picture depends on how similar the contexts are to each 

other  If they are very different (as on the far right where only the 50 

attributes common to all contexts are the same in A and B), there is a 

group of cells that fire in the same way as if only one context were 

encoded and another that fire at lower rates.  If they are very similar, as 

in the middle column of graphs,  the number of cells active is 2K - the 

number of representation cells common to the two contexts, and there is 

a spread a little greater than in the left-most case.   

 

 If a great many very different contexts have been encoded, there will be on the order of K 

representation cells created for context, and thus the total number of cells active at recall could become 

quite large. However, the representation cells for the correct context would fire at much higher rates than 

those of incorrect ones.   Moreover, since the CA3’ partners of relatively unexcited DG’ cells will 

never be winners of a CA3’ KWTA competition, our algorithm could have assumed a regulatory 

mechanism that silenced DG' cells excited so little that they could have no impact on CA3' 

behavior.  Had we done that, the number of DG' cells firing would remain modestly greater than 

K no matter how many contexts were encoded. 
 



G. Pseudo-code for computation cycle 
 

 We give here the flow diagram of computer program that implements BACON. 

 

 Subroutines and functions are in bold-face; variables or flags are ordinary font, and logical statements 

are in caps.  The role of Subroutine and Function names are mostly obvious in the context of the paper.   

 

 Sample makes a random selection of a not-yet-sampled contextual attribute and augments Zcur by one. 

EvaluateHipp calculates excitations and graded firing rates of DG' cells, calculates excitation of CA3' 

cells and determines CA3Ptrno , and CA3PtrnFnl.  EvaluateCtx causes the firing those ECout cells  for which 

more than ThrshCtx of its active inputs have potentiated synapses with the cell (EC' cells are binary).  It 

also computes Zrec and Zcom. MakeNewRep determines which DG'-CA3' dyads have heaviest innervation 

from EC'in  and then potentiates all appropriate EC'in-DG', EC'in-CA3', CA3'-CA3', and CA3'-EC'out 

synapses, normalizing those made by EC'in.  Update potentiates input and output synapses between the 

currently active representation cells and EC'in and EC'out neurons that represent all current or recalled 

attributes, normalizing those made by EC'in. 

 

Sample 

EvaluateHipp 

EvaluateCtx 
IF NewRep=0  

   EvaluateBrep 
ElSEIF NewRep=1   

   EvaluateExpectedBrep 

   Brep=ExpectedBrep 
END IF 

EvaluateFear(Brep) 
IF Brep<=Bnew AND NewRep=0 

   NewRep=1 

   Add2Rep=1 

   MakeNewRep 

ELSEIF Brep>=Badd 

   Add2Rep=1 

   IfFAdd2Rep=1 OR NewRep=1, Update 

ELSE 

   Add2Rep=0 

   IF Add2Rep=1 OR NewRep=1, Update 

END IF 

EvaluateHipp 

EvaluateCtx 
IF NewRep=0  

   EvaluateBrep 
ELSEIF NewRep=1   

   EvaluateExpectedBrep 

   Brep=ExpectedBrep 
END IF 

EvaluateCnd(Brep) 
IF Shk=1, DoShk(Cnd) 

 



 H. Unspecified neural implementations 

 There are several places in this paper where neural computations are simply assumed 

to occur, without providing a means of neural implementation. This was done for K-winners-

takeall logic because this is a very non-straightforward topic that has been discussed elsewhere 

(e.g. Coultrip et al., 1992;Wang, 2010;Tymoshchuk, 2013) and would have distracted here. 

Neural circuitry to carry out the logic in the box feeding the Create neuron in Figure 7 of the 

Paper, which could be implemented in many ways, was also not specified. We freely used 

neurons which fire at rates proportional to sums, differences, products, and power functions of the 

firing rates of the neurons innervating them. Sums are straightforward so long as synaptic 

conductances are kept small relative to leakage conductances of neurons. Subtraction can be 

accomplished by inhibition, though distortion by shunting effects of inhibition must be contended 

with; methods that do not have this problem have been suggested (Holt and Koch, 1997). 

Products could be computed using divisive inhibition to divide by the reciprocal of a multiplier. 

Several additional ways of computing products have been suggested (e.g. Tal and Schwartz, 

1997;Gabbiani et al, 2002;Nezis and vanRossum, 2011), and there is empirical evidence that, 

whatever the biophysical mechanism responsible, actual neurons can do so (Silver, 2010; 

Gabbianai et al, 2002). Outputs that are accelerating functions of inputs, and therefore power-

function-like, could be produced by allowing limited active responses to membrane 

depolarization, such as those that can be produced by voltage-dependent calcium channels in 

dendritic membrane. 
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