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ABSTRACT OF THE DISSERTATION

Quality of Time: A New Perspective in Designing Cyber-Physical Systems

by

Fatima Muhammad Anwar

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Mani B. Srivastava, Chair

Unprecedented Cyber-Physical Systems (CPS) and Internet of Things (IoT) applications

such as health care, connected vehicles, and augmented/virtual reality are revolutionizing

smart spaces and change how we build and manage our systems. These applications

span the cloud and the edge devices and give birth to new system designs with critical

dependence on temporal use cases. As such, cloud services are expected to provide timely

responses and schedulable demands, while edge devices are required to synchronize

observations and choreograph actions across distributed entities. Both cloud and edge

demand time awareness in general, and time-indexed queries, precise timestamping, and

dynamic clock synchronization in particular. However, contemporary distributed system

designs are inherently “clockless” and becoming increasingly complex. They fail to meet

consistency, causality, and scheduling demands of underlying applications yet enabling

time awareness for various applications running on commodity platforms and operating

systems (OS) is a challenge in itself.

In this dissertation, we devise a new way of acquiring time information by introducing

the notion of Quality of Time (QoT) that collectively captures various time metrics such

as resolution, accuracy, stability, and integrity. Analogous to Quality of Service (QoS) in

networking, QoT treats time as a controllable OS primitive with observable performance.

To provide QoT to applications, we proposed the first OS abstraction – timeline – that

reacts to application timing demands and exposes QoT to applications in an easy-to-use,
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secure, and scalable way. This degree of richness of information had never been available

to coordinated applications whose activities are choreographed across time and space.

This flow of information was immediately relevant to the broader field of IoT addressing

the emerging temporal use cases for applications at the cloud and the edge in a secure

fashion. As such, QoT expanded distributed applications to global scale with no significant

overhead and no performance compromise.

This dissertation focuses on covering various aspects of QoT. In the first part of

this thesis, we design extensible abstractions to characterize timing uncertainty in the

presence of timing variations. In an effort to reduce complexity and overhead of current

distributed database designs, our abstractions and systems enable globally replicated

lockless transactions with simplified design, low overhead and no loss in performance. The

second part exposes timing vulnerabilities in trusted execution technologies and network

security mechanisms and provides timing integrity by designing secure time architectures in

the presence of vulnerabilities. Thus enabling trusted timestamping in commodity systems

to preserve one’s digital rights and digital signals. The third part focuses on redesigning the

hardware, OS and network interfaces that help time information flow between applications

and systems, and enable timing precision. This precision boosts high speed measurements

at large-scale distributed entities. The final section addresses the inefficacy of testing

mechanisms for time synchronization protocols deployed in safety-critical environments.

We then propose a customized testbed for testing timing robustness under failures and

adversarial attacks.

Current designs in distributed systems rely on message-passing based protocols and

come at a huge energy and bandwidth cost along with high system complexity. In contrast,

our designed systems based on QoT support new temporal use cases of globally distributed

applications with low computation and communication overhead. We released our system

designs to support various time management and clock synchronization use cases in

emerging distributed applications.
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CHAPTER 1

Introduction

Technology trends such as Cyber-Physical Systems (CPS) and Internet of Things (IoT)

drive us towards a world where a large number of end-point, intermediary devices, and

servers share, store and process real-time data leading to the emergence of time-aware

applications with extremely diverse timing requirements. The timing requirements of

applications in one domain of connected systems may be substantially different for others,

and may also change over time. For instance, application requirements in distributed

and autonomous robotics lie in the range of seconds to milliseconds. Autonomous driving

use cases rely on the millisecond to microsecond precision. While monitoring grid health

requires at most nanosecond accuracy. These applications with diverse timing needs run

on commodity platforms and operating systems that were never designed to handle these

precise and adaptive requirements: these devices undergo variations that cause uncertainty

in the notion of time. As such, numerous vulnerabilities compromise timing integrity.

Access to precise time on these devices is quite complicated. Above all, there are limited

mechanisms to test time robustness against faults and malicious attacks.

Enabling time awareness for various applications in CPS running on commodity plat-

forms and operating systems (OS) in the presence of timing variations and vulnerabilities

is a big challenge. Given a broad range of CPS applications that benefit from time

awareness, this dissertation puts forward a new concept: Quality of Time (QoT) that

collectively captures the state of various timing primitives, and provides the opportunity

to applications to observe and control their time quality. QoT is a new paradigm that char-

acterizes uncertainty, maintains integrity, provide required precision, and test robustness

under failures and adversarial conditions. Hence QoT serves the needs of all time-aware
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applications.

1.1 Challenges

Awareness of Time has never been more important than now because there has been

increased reliance on temporal use cases in unprecedented CPS and IoT applications. For

instance, critical services rely on time awareness across the whole autonomous driving

ecosystem. Distributed infrastructure constructs a common environmental picture through

a shared sense of time with respect to each other. A temporal understanding between

infrastructure and autonomous vehicles enables efficient traffic management. Time-critical

use cases emerge among vehicles and pedestrians, and in-vehicle sensors and controllers

work on a common time scale to infer system states such as traffic sign recognition or

assisting brake system. We are surrounded by time-aware applications spread across the

spectrum of time and space. However, the clockless assumption underlying the design of

these distributed applications increases complexity and inhibits extensibility giving rise to

consistency, causality, and scheduling issues. Below, we highlight several challenges that

arise in the context of enabling time-awareness over commodity platforms and operating

systems in the presence of timing variations and vulnerabilities.

1.1.1 Timing Uncertainty

Maintaining a shared notion of time is critical to the performance of many distributed

systems such as swarm robotics [G 13], high-frequency trading [EB12], telesurgery [NG09],

Big Science [LWS11] and global-scale databases [CDE13a]. Technologies such as GPS,

Precision Time Protocol [LEW05] and chip-scale atomic clocks have made it possible to

provide systems with accurate, stable, and a common notion of time across a network.

However, other technology trends have made it harder for applications to benefit from

these advances in timing technologies. For example, asymmetric medium delays degrade

time transfer [LL84], imperfect oscillators cause timing jitter [ZNK08], multi-core systems

have timing inconsistencies [KR11], and abstractions like virtual machines introduce
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more significant timing uncertainty [BCR10]. In multiple domains ranging from database

consistency [CDE13a] to interactive cloud gaming [LCC15], the knowledge of timing

uncertainty has proven to be useful. However, application-level visibility into timing

uncertainty remains mostly unexplored in current systems.

1.1.2 Timing Integrity

Emerging temporal use cases in IoT applications have a critical dependence on high

precision and accurate relative time. For instance, distance and speed calculations rely on

precise round trip times [MPP07] [TSS16], schedulers build upon elapsed and remaining

times [RPM13] [MW13], network telemetry depends on residency delays [LPJ15], code

profiling requires execution times [CZR17], and data sampling needs timestamps [HSG18].

Attacking a system’s sense of time has ramifications such as location theft, network outages,

higher delays, and data inconsistencies. Furthermore, critical functionalities for securing

applications in shielded execution environments such as Haven [BPH15], SCONE [ATG16],

Panoply [STT17] and Graphene-SGX [TPV17] have no access to secure time. Instead,

they rely on untrusted operating system (OS) time. A compromised OS may lie about the

time or signal early timeouts, and although traditional cryptographic techniques, trusted

execution technologies, and network security mechanisms may guarantee data security,

they do not cater to time security.

Network elements that assist time transfer can also be malicious. They can develop

various Man in the middle (Mitm) capabilities such as dropping, replaying, pre-playing

and delaying packets. Previous works [MDA16] [YAY13] [DSD18] talk about attacks on

time transfer packets and mitigating these attacks using cryptographic [AFZ17a] [IW17]

and network security [sgx16] [AFZ17b] mechanisms. Unfortunately, Unfortunately, delay

attacks are considered exceedingly hard to protect against and immune to proposed

mitigations [UV09] [MVV17]. The ultimate goal of a Mitm attacker is to move the client’s

clock away from true time towards its malicious time for illegal activities in high-frequency

trading [PH16], digital rights violation [CRS14], and spoofing location [SP05], etc.
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1.1.3 Timing Precision

Modern distributed systems comprise of many different devices. These devices need to

share a common notion of time, which may or may not be pinned to some global time

coordinate like UTC, to choreograph their actions. Various hardware and software solutions

exist for providing standalone and networked devices with precise knowledge of time such as

GPS and atomic clocks, network adapters that perform hardware timestamping [LEW05],

and synchronization algorithms that achieve low-nanosecond time synchronization between

devices [LWS11]. These precise time solutions are mostly available for wired interfaces,

preferably ethernet. We have yet to see precise time solutions for applications in Low Range

Wireless Personal Area Networks (LR-WPAN) even though numerous applications in LR-

WPAN require precise time-awareness such as real-time positioning systems, formation

flying, distributed sound systems, and foraging applications. Various sensors and actuators

also demand precise timestamping and scheduling capabilities.

1.1.4 Timing Robustness

Hardware capabilities required for clock synchronization have developed significantly

in the past decade; hardware timestamping feature is introduced for many processors,

co-processors [AAZ17], and network interface cards [AS17] While various systems have

extensively made use of time-based technology developments to push for better perfor-

mance [ADS16], there are limited testing mechanisms available for comparing performance

of synchronization algorithms in a comprehensive manner. Industrial and automotive

applications heavily rely on these clock synchronization techniques, yet these applications

operate under uncertain environments and prone to hardware faults, network failures, or

Mitm attacks.

Comprehensive testing of a clock synchronization algorithm that is robust to faults,

failures, and attacks is necessary before practical deployments in safety-critical applications.

Unfortunately, many algorithms are not tested for faults and attacks as it is hard to

reproduce them on distributed devices. Due to hardware characteristics of a clock, no
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two clocks are the same; Cho et al. [CS16] have used unique clock characteristics for

fingerprinting electronic control units in cars because a clock model is affected by short

and long term variations in jitter, wander, and skew due to physical characteristics of

oscillators and environmental variations. For a fair comparison of multiple synchronization

algorithms, their disciplinable clock models should be derived from the same hardware

clock.

1.2 Our Contributions

The contribution of this dissertation to address the challenges mentioned earlier is multi-

fold. In particular, we design systems that characterize uncertainty in time, establish the

integrity of time, provide precise time, and test robustness of time.

The notion of time is not perfect; it has an uncertainty that is indicative of hardware

and network variations and vulnerabilities. While researchers have built timing solutions

tailored to specific domains, they act as a black box with unobservable uncertainty

leading to overdesign, complex precise time access leading to hardware-specific solutions,

and inefficient timing services oblivious to applications’ timing needs leading to high

complexity and overhead. We argue that timing quality should be made visible to the

application and should be controllable by the user so that the application can adapt to

system variations in a hardware-agnostic manner, and degrade gracefully in the presence

of failures. In this regard, this work seeks to close the timing loop between systems and

applications by proposing Quality of Time (QoT) that provides a new way of thinking

for time management. Application requirements are written in terms of a timing contract

specifying the desired timing metrics such as accuracy, stability, and integrity. QoT is the

ability to guarantee a certain level of performance listed in a timing contract. This notion

of QoT is inspired by the networking Quality of Service (QoS) requirement, where the

system delivers the required QoS specified in terms of a traffic contract.

To provide QoT to applications, we design the first abstraction, timeline, to assist

coordinating applications with their diverse timing requirements. Timeline is a virtual time
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base with respect to an epoch. It is a platform-independent OS abstraction that greatly

simplifies the development of QoT-aware choreographed applications. QoT architecture

is centered around the timeline abstraction and provides an expressive application pro-

gramming interface that treats time as a controllable, verifiable and observable primitive,

and enables developers to quickly write coordinated applications whose activities are

choreographed across time and space. We evaluate the timeline abstraction and QoT

architecture for a Time Division Multiple Access (TDMA) protocol and for a control

application. Both applications are compared in terms of application performance, resource

consumption, and developer effort with and without QoT support. Our results indicate

that QoT significantly improves resource consumption and decreases developer effort for

the same application performance. This work has also motivated follow-up research in

geo-distributed IoT, virtualization, and coordinated manufacturing and driving.

Motivated by QoT, this thesis also seeks to provide precision timing to heterogeneous

sensors, actuators, and radios by designing a generalized Precise Hardware Clock gPHC that

abstracts away from hardware type as long as the desired timing properties are satisfied.

System support around gPHC abstraction lays the foundation for IoT applications that

enjoy high-level features with low-level determinism for time-critical operations. It provides

automatic configuration, a high-level programming language, and a library to interface a

real-time unit with the OS. A real-time unit paired with an OS should provide the best

of both worlds: the real-time unit handles time-sensitive aspects, and the OS provides

the filesystem, scheduling, and networking services. Note that gPHC does not require

modification to current clock synchronization protocols or hardware platforms. In practice,

we used this high precision system to develop a Phasor Measurement Unit (PMU) for

smart grid research. A PMU samples and timestamps phasor measurements from the grid

at a very high rate. This collected data can only be correlated if distributed PMU are

synchronized in time with high precision. As a result, high precision enables PMUs to

detect and isolate grid faults promptly.

Another aspect of QoT is to validate timing robustness especially in the context of

safety-critical environments prone to faults and attacks. This dissertation provides an
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OpenClock testbed. It provides multiple disciplinable clocks on a single platform for fair

algorithmic comparison under failures and adversarial attacks. It features a rich set of

clock abstractions that categorizes clocks based on their functionalities. These set of clocks

are managed by a clock management engine that helps virtualize time-related resources

on a platform for modular and extensible design. We also provide an attack simulator

for testing algorithmic resilience. We evaluate the performance of a number of protocols

and show hardware and network biases in the results when these protocols are tested on

different devices, whereas biases are alleviated from results when these protocols are tested

on OpenClock testbed. We also added a new attack capability for researchers in the testbed

to find vulnerabilities and test the resilience of synchronization algorithms. Architectural

support for these abstractions is provided in the Linux kernel over an embedded and x86

platform, creating an opportunity for many distributed applications and services to be

time-aware.

In addition, this dissertation establishes the necessary and sufficient conditions to

provide timing integrity for QoT. Accurate time is essential for the safe and correct

operation of all hardware, software, and networked systems. Unfortunately, an adversary

can manipulate clocks and cause hardware faults in logic circuits, measurement errors

in sampling, and inconsistencies in distributed systems. Cryptographic techniques do

not suffice for time security if the “timeliness" property is violated. An adversary is

capable of disrupting temporal characteristics of applications even within the protection

of shielded execution such as Intel SGX enclaves and ARM TrustZone. We find that

time provided by these trusted execution technologies is also not secure against attacks.

We successfully launch delay attacks and scheduling attacks on time provided in trusted

technologies. Taking insights from our studies and analysis, we holistically designed a

secure time architecture encompassing hardware security, trusted execution environments,

and network-based protections.

Time has been manipulated for a wide range of incentives such as location, crypto-

graphic keys, and copyright theft. An attacker can move time backward for digital rights

management and movie rentals, disrupt temporal forensic analysis by violating causality,
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increase user perceived delays, and prove to be physically present at a place where it is not.

On the other hand, shielded execution environments are emerging such as Haven, SCONE,

Panoply and Graphene-SGX that rely on untrusted OS time for critical functionalities. A

compromised OS may lie about the time or signal early timeouts. Traditional approaches

have focused on designing cryptographic techniques and fail to secure time. This disser-

tation points out timing vulnerabilities in trusted execution technologies and network

security mechanisms; puts forth challenges surrounding secure time, and provides extensive

work to address each challenge. In this regard, TimeSeal develops the first trustworthy

clock that cannot be manipulated by a privileged attacker – the OS. We address three key

challenges to secure time, i.e. (i) we find a trusted timer that no adversary can manipulate

(defeat timer attacks), (ii) we provide a secure path to that trusted timer (overcome delay

attacks), and (iii) we maintain timekeeping software that is unaffected by attacks (thwart

scheduling attacks). TimeSeal leverages TEE for hardware timer protection and exploits

the structure of TEE to construct high-resolution counters that detect attacks when they

occur. TimeSeal secures time using only software based changes on TEE. As a result, we

provide a high-resolution secure clock that is able to timestamp and schedule events with

an accuracy of 10’s of milliseconds in the presence of time attacks. This work also serves

as a reminder for hardware vendors that have traditionally focused on secure computation

that there is a great need to design secure peripherals such as secure clocks for CPS

applications.

Our approach for global clock synchronization – Feedforward control with feedback

trim – introduces a new clock disciplining mechanism that protects time transfer pack-

ets from Mitm attacks. Time Transfer packets share global time among physically or

geographically separated entities. Malicious network elements can replay, pre-play, and

delay these packets. Cryptographic mechanisms mitigate most of these attacks, but delay

attacks violate packet timeliness and are considered too strong to protect against, especially

if the powerful network attacker is capable of attacking all packets in the network. In

contrast to approaches that focus on mitigating malicious network delays, our approach

uses these malicious delays to its advantage. The key enabler is relying on equally-delayed

8



one-way time transfer packets for frequency synchronization, and replacing traditional

feedback controllers with feedforward controllers, with occasional feedback trim for time

synchronization. Our system design was able to preserve high precision under all kinds of

delay attacks in the network. It is well established that critical infrastructure relies on

GPS for global time. However, GPS spoofing is a pressing concern. One of the motivations

for this work is to find alternate global time synchronization solutions to GPS.

1.3 Organization

This dissertation highlights four aspects of Quality of Time.

Part I: Systems for Characterizing Timing Uncertainty. This part presents the

timeline abstraction that enables QoT over commodity platforms and OS.

Part II: Systems for Timing Integrity. This part describes TimeSeal that secures the

relative time and feedforward control with feedback trim for securing global time.

Part III: Systems for Timing Precision. This part presents a new abstraction gPHC

along with its system support to enable high precision over heterogeneous processors,

co-processors, and peripherals.

Part IV: Systems for Testing Timing Robustness. This part presents OpenClock,

a testbed to compare the performance of different clock synchronization algorithms under

simulated failures and attacks.
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Part I

Systems for Characterizing Timing

Uncertainty
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CHAPTER 2

Timeline: An Operating System Abstraction for

Time-Aware Applications

2.1 Introduction

Time-aware applications range from small-scale wireless sensor networks to large-scale

Cyber-Physical Systems. These applications often involve distributed coordination, tem-

poral ordering of events, or reconciled observations, which require a common notion of

time. The taxonomy of these applications exhibits diverse timing requirements. While

some applications require fine-grained timing [EB12], others can work with relatively

coarse-grained timing. On the other hand, some applications have statically-defined timing

requirements, while others have context-dependent dynamic timing requirements. From the

standpoint of choosing a time reference, some applications require clock synchronization

among coordinating peers [WYM02], while others synchronize their clocks to absolute

global time (like UTC) [CDE13a].

Nanosecond-level clock synchronization is now achievable using specialized hardware

such as GPS, chip-scale atomic clocks, network adapters that perform hardware times-

tamping, and clock-synchronization protocols. These technologies have enabled a wide

range of applications such as, cellular-telephone backhaul networks, which use specialized

hardware for synchronizing transmissions to maximize channel utilization, and distributed

databases like Google Spanner [CDE13a] which order database transactions with the aid

of GPS synchronized clocks. However, it is not feasible to equip all end-point devices with

specialized hardware. At the same time, the timing accuracy of applications running on

networked edge devices is degraded by asymmetric medium delays and imperfect oscilla-
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tors. Other technology trends such as timing inconsistency in multi-core platforms and

virtualization-induced timing uncertainty further degrade the timing accuracy provided to

applications.

Operating systems play a key role in how time is managed and delivered to applications.

In most operating systems, the notion of time is generally derived from the highest-quality

system timer. Take the case of Linux: multiple clocks are derived from this timer and

exposed to user-space via the standardized POSIX-clock interface. One important clock

is CLOCK_REALTIME, which is disciplined by best-effort synchronization techniques

such as NTP [Mil91] and PTP [LEW05]. However, existing OS timing abstractions

continue to manage time in an application-agnostic fashion, i.e., independent of application

timing requirements, and without providing any information about the delivered timing

uncertainty.

This status quo in time management is highlighted in Figure 2.1 (Left), where clock

synchronization is completely oblivious to timing requirements of App 1 and App 2, and

always provides best-effort synchronization performance. The operating system returns

the time estimate to applications with no information on how off this time estimate is

from the true time, i.e., the uncertainty in time. We advocate for a new way of thinking

in how time is managed in an OS. We close the loop – as shown in Figure 2.1 (Right)

– through applications specifying their timing requirements, while the OS orchestrates

the underlying platform to meet these requirements, and exposes the achieved timing

uncertainty back to the applications. Thus providing applications the ability to adapt to

changes in timing uncertainty.

Therefore, we introduce the notion of Quality of Time (QoT) as the end-to-end

uncertainty in time desired by an application. Application requirements are written in

terms of a timing contract specifying the desired timing metrics such as accuracy, stability,

and integrity. QoT is the ability to guarantee a certain level of performance listed in a

timing contract. This notion of QoT is inspired by the networking Quality of Service

(QoS) requirement, where the system delivers the required QoS specified in terms of a

traffic contract.
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Figure 2.1: Contrast between time management in current operating systems and our
proposed way for time management

With the emergence of the Internet of Things (IoT), scarce resources like energy,

bandwidth, and processor cycles must be balanced with application QoT requirements.

Existing clock-synchronization protocols synchronize the entire network to a common time

reference. This wastes hardware and network resources on unwanted synchronization. We

instead argue for factored coordination. Only those nodes which need to coordinate their

tasks, synchronize their clocks. Factored Coordination enables subsets of coordinating

nodes to synchronize their clocks to the desired QoT. To enable QoT as well as factored

coordination in an OS, we propose a new OS abstraction, called a timeline. The timeline

abstraction helps virtualize time-related resources in a system and plays a role analogous

to sockets in network stacks. Just as QoS-aware applications can read, write, open and

close sockets, and specify QoS parameters; QoT-aware applications can bind and unbind

from timelines, read and schedule events on the timeline reference, and specify QoT

requirements.

The timeline-driven QoT architecture closes the loop between the timing requirements

of applications, and how well the system is able to meet their needs by propagating

timing uncertainty back to the applications. It characterizes the timekeeping hardware

capabilities e.g. oscillators and timestamping mechanisms and exposes them as controllable

and disciplinable clocks. The system can adjust these clocks and/or switch between them

to balance application needs with the system resources. For example, a system can switch

from a high energy rubidium oscillator to an unstable low energy quartz crystal oscillator,
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from hardware timestamping to software timestamping, from a high synchronization rate

to a low rate to balance system resources with application QoT requirements.

The primary contributions of our work are as follows:

• We propose the notion of Quality of Time based on timing uncertainty.

• We investigate how time-aware applications and the OS should exchange information

about time and develop a model that describes how (i) applications interact with a

shared notion of time, (ii) applications register their timing requirements with the

OS and (iii) how timing uncertainty is conveyed from the OS to applications.

• We propose a platform-independent OS abstraction called a timeline, and present

an application programming interface (API) that greatly simplifies the development

of QoT-aware choreographed applications.

• We provide an end-to-end timeline-driven QoT architecture and its corresponding

implementation for Linux.

• We conduct a series of micro-benchmarks to verify the performance of our QoT

architecture on a Linux-based embedded platform, the Beaglebone Black [Bla].

2.2 Time Fundamentals

2.2.1 Clock Model

A hardware clock measures time by counting the number of cycles of a periodic signal.

This periodic signal is typically a sinusoidal obtained from some oscillator, which is

then multiplied or divided in hardware to oscillate close to some nominal frequency f0.

Consequently, a hardware clock’s perception of time is inherently a discrete quantity.

Every free-running oscillator’s output signal is perturbed by a frequency bias, which

varies with time or environmental conditions, such as temperature, vibration or supply

voltage. This error is described as the frequency bias of the oscillator, and quoted in parts
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per million, or ppm = fe/f0 ∗ 106, where fe is the worst-case upper-bound on frequency

bias with respect to the nominal frequency. An advantage of this representation is that

the stability of two oscillators can be compared independently of nominal frequency.

For example, under well-specified operating conditions an oscillator with a 1ppm error

accumulates no more than 1µs over a one second period, irrespective of its nominal

frequency. Frequency stability is a combination of three key components: warm-up,

short term stability and aging. The warm-up only applies to the initial period where the

internal temperature of the crystal is rising asymptotically, and normally stabilizes within

milliseconds for crystal oscillators, or minutes for cesium oscillators. Short term stability

is a function of independent noise that and manifests as jitter in the time domain and

accumulates to cause drift. Aging describes a long-term gradual shift in the oscillator’s

output frequency due to its electromechanical properties.

A consequence of frequency instability is that two free-running hardware counters –

and hence the devices’ relative clocks – will drift with respect to each other unless one

of them is periodically disciplined. The process of disciplining clocks across a network is

referred to as time synchronization.

2.2.2 Time Synchronization Basics

The error (ε) in an application’s time at any instant is the difference between its local

perception of time (tlocal) and the true reference time (tglobal), or equivalently ε = tlocal −
tglobal. In order to minimize this error, the local clock can be synchronized to a reference

clock through message passing. However, the Round Trip Time (RTT) of a message

varies over every message exchange as a result of current network conditions and how

deterministically each participating device is able to time stamp incoming and outgoing

messages. In addition, since each device’s local clock is driven by an independent oscillator,

its perception of time drifts with respect to the reference between synchronization rounds

and as a function of both time and environmental conditions. If the frequency bias with

respect to the reference – expressed in parts per million (ppm) – is known, then the
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reference time may be approximated at some future local time, say (t′local), using the

following linear relationship: ε′ = ε + (t
′

local − tlocal) ∗ (1 + ppm/106). The accuracy of

projection of future time is both a function of how well ε′ corresponds to the actual offset

of future local time from the global reference, and how well the ppm value approximates

the actual frequency stability over the period. By maintaining a variance in the error

estimate, synchronization uncertainty is captured.

2.2.3 Time in Linux

Operating systems also play a key role in how time is managed and delivered to applications.

In most commodity operating systems, the notion of time is generally derived from the

highest quality timer available on a system. Take the case of Linux: multiple virtual

clocks are derived from such a single timer. These virtual clocks are implemented in a

layered fashion using multiple abstractions such as cyclecounters, timecounters and

clocksources, and expose themselves to userspace via the standardized POSIX clock [IEE]

interface. This interface allows clocks to be disciplined, using synchronization algorithms

such as NTP [Mil91] PTP [LEW05], which run as userspace daemons. The Linux kernel also

allows users to precisely schedule events on any of these clocks’ notion of time, using both

absolute and relative blocking waits by use of the underlying High Resolution Timer [GN06]

subsystem. However, the Linux timing system does not expose any notion of uncertainty

to applications, nor does it allow applications to specify their timing requirements. The

synchronization and scheduling systems always provide best effort performance. The same

can be said for most operating systems. Hence, the applications are unaware of the error

in their time estimate.

2.2.4 Time Stamp Determinism

Time synchronization algorithms typically estimate the relationship between two clocks by

comparing the receive and transmit time stamps for the same message, and their accuracy

is ultimately limited by various stochastic delays in the system:
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1. Propagation delay - propagation distance divided by propagation velocity, which

depends on medium. Note that this may not necessarily be symmetric because of

different routes, multipath effects or cable properties.

2. Transmit/Receive delay - the delay between message time stamp and transmis-

sion.

3. Receive delay - the delay between message time stamp and reception.

4. Residency delay - only applicable to multi-hop networks, this is the duration that

a packet spends in the buffer of an intermediate switch or router.

2.2.5 Time Synchronization Protocols

Time synchronization has been an important field of study, and a comprehensive software

stacks with accompanying hardware are readily available. Examples of hardware include

GPS and atomic clocks, switches that calculate residency delay for routed packets, and

network adapters that precise time stamp a field of incoming and outgoing packets. Such

infrastructure is already in use by many back-end systems. For example, cellular telephone

backhaul networks use bespoke hardware for synchronizing transmissions to maximize

channel utilization. Distributed database algorithms like Google Spanner [CDE13a] are

already making use of this timing infrastructure

It is currently possible to synchronize to an error in the order of milliseconds with the

Network Time Protocol (NTP) [Mil91] over Ethernet, or nanoseconds with the Precision

Time Protocol (PTP) [LEW05] and compliant hardware. More specialized projects, such as

WhiteRabbit [LWS11], attain sub-nanosecond error – enough to measure the distance light

travels in a second with millimeter accuracy – by compensating for cable delay asymmetry

and using Synchronous Ethernet to frequency-lock devices.

In the wireless sensor networking literature time synchronization has been approached

in a different way. Rather than considering the objective to be to synchronize devices

to some universal time reference, all that matters is that peer devices – which may be

17



multiple hops away from each other – share a common sense of time, and with an emphasis

on channel utilization efficiency. For the case where the root time is maintained across all

nodes in the network, Flooding Time Synchronization Protocol (FTSP) [MKS04] is state

of the art. It allows only one-way reference broadcasts as opposed to Timing-sync Protocol

for Sensor Networks (TPSN) [S G03] and Reference Broadcast Synchronization (RBS) [J

E02], which use two-way message exchange between nodes, thus effectively reducing the

network traffic. All of these protocols implicitly assume that the distance between devices

is sufficiently small enough (tens of meters or less) so that propagation delay can be

ignored. Recently, Glossy [F F11] and PulseSync [C L14] have emerged and improved on

the multi-hop accuracy of FTSP by flooding pulses at high speed throughout the network.

In recent literature, many time synchronization techniques use analytical modeling.

Adaptive Clock Estimation and Synchronization (ACES) [HMZ08] model the clock directly.

It applies Kalman filter to track the clock offset and skew. Based on these offset and skew

estimations, it adaptively adjusts the synchronization interval to achieve desired error

bounds. In [Ad07] and [Ble05] clock is synchronized over the packet switched network

using Kalman filtering. But their assumption of constant clock skew over a long time

is unrealistic for off the shelf unstable clocks. Xiali Li et al [LYL12] argue that sensor

clock system switches between different models and modeled the clock drift using first and

second order Kalman filters. Yi Zeng et al [Yi 08] considered taking offset readings from

multiple parents and combining them using vector Kalman filter over a multi-hop network.

What they did not consider is that multiple parents could also go out of sync and more

message exchange cause an increase in communication bandwidth.

Clock synchronization techniques are also gaining momentum in distributed measure-

ment and control systems. IEEE 1588-2008 transparent clock (TC) [Jih10] solves the

problem of exponential accumulation of offset by measuring the residence time of messages

in a network node. Thereof, this residence time is eliminated from the offset calculation.

But it requires dedicated hardware for higher accuracy. Synchronization accuracy in

nanosecond is achieved despite large queuing delays. In [Xu13] quantization effect in

timestamping is taken into account. Previously, Seong et al. [C 10] compensated for this
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quantization error using feed forward filter preceding the PI controller. But [Xu13] uses a

Kalman filter based proportional-integral (PI) clock servo to correct for this quantization

error and clock offset in cascaded real time sensor networks. However, no comparison

against an existing optimal PI controller has been given.

The notion of time uncertainty is not new to the field of time synchronization. NTP

[Mil91] computes a bound on time for every timestamp sample and applies clock filtering

algorithms to filter out the false samples. However, this bound is never exposed to

an application and hence becomes invalid when a clock adjustment is made. Google

Spanner [CDE13a] has shown how the knowledge of uncertainty in time, can be used to

implement a TrueTime API in order to achieve external consistency of transactions in a

global database. However, Spanner is a closed system and the TrueTime APIs are tailored

only to database transactions. In contrast, our work seeks to provide a universal framework

for making uncertainty of time observable and controllable to a broad range of time-aware

applications, both at the edge and in the cloud. Outatime [LCC15] attains real-time

interactivity in cloud gaming in the face of wide-area latency through speculative execution;

they claim however that outatime can relax the stringent demands on speculation provided

the uncertainty in their time is within 100msec.

At the programming level, time-triggered and event-triggered computation models

provide timing determinism. The time-triggered architecture (TTA) [KB03] addresses

issues in real-time programming by establishing a global time-base to specify interaction

between nodes, whereas, an event-triggered architectures like Ptides [DFL08] maps model

time to real time, only when systems react or act to the physical world, e.g, sensors

and actuators. A key assumption that Ptides make is the execution times of software

components are sufficiently small and can be ignored. However if execution times of software

components are not sufficiently small, the design is infeasible and the deadlines specified

by the Ptides model will not be met by the implementation [ZML12]. PtidyOS [ZML12]

is a micro kernel for Ptides that generates target specific code for the Ptides model and

runs on bare metal. Our stack operates on a different paradigm than Ptides. It focuses on

assisting coordinated and distributed time-aware applications on a local as well as wide
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area, through a hardware independent system library as well as an entire framework built

using commodity hardware/software.

2.2.5.1 Precision Time Protocol

Precision Time Protocol (PTP) [LEW05] is an IEEE 1588 compliant time synchronization

protocol and it synchronizes clocks over a multicast capable network. It provides a best

master clock algorithm that identifies the best clock in the network and choose it as a master.

A slave clock synchronizes to the master clock using bidirectional communication. The

master sends a ‘Sync’ packet along with the timestamp when the packet left the master node.

The slave receives the ‘Sync’ packet and timestamps its arrival time. The slave determines

its clock offset from the master by calculating the difference in ‘Sync’ packet’s departure

and arrival times, and adjusts its Network Interface Clock (/dev/ptpX ) accordingly. The

slave also compensates for the network propagation delay by exchanging ‘delay request’ and

‘delay response’ packets with the master.

2.3 Related Work

The notion of time uncertainty is not new to the field of time synchronization. NTP [Mil91]

computes a bound on time for every timestamp sample and applies clock filtering algorithms

to filter out the false samples. However, this bound is never exposed to applications and

hence becomes invalid when a clock adjustment is made. Google Spanner [CDE13a] utilizes

the True Time API to show how the knowledge of uncertainty in time can be used to

achieve the external consistency of transactions in a global database. However, Spanner

is a closed system and the TrueTime API are tailored only to database transactions.

Additionally, both the TrueTime API and POSIX API do not treat the notion of time as

an application-specified requirement. In contrast, our work seeks to provide a universal

framework with associated timeline-based API that lets applications specify their QoT

requirements, and also exposes the achieved QoT to applications for varied uses including

coordination and adaptation. Outatime [LCC15] attains real-time interactivity in cloud
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gaming in the face of wide-area latency through speculative execution; they claim however

that outatime can relax the stringent demands on speculation provided the uncertainty in

their time is within 100msec.

At the programming level, time-triggered and event-triggered computation models

provide timing determinism. The time-triggered architecture (TTA) [KB03] addresses

issues in real-time programming by establishing a global time-base to specify interaction

among nodes, whereas event-triggered architectures like Ptides [DFL08] map model time

to real time, only when systems interact with the physical world, e.g. using sensors and

actuators. PtidyOS [ZML12] is a microkernel that generates target specific code for the

Ptides model. Our timeline-driven QoT architecture utilizes a different paradigm. It

focuses on assisting coordinated and distributed time-aware applications on local as well

as wide area networks, through a hardware-independent system library as well as an entire

framework built using commodity hardware and software.

Also relevant and complementary to our work is research in time synchronization on

the analytical modeling of clock uncertainties [HMZ08], and methods to compensate for

them via approaches such as Kalman filtering [Xu13].

2.4 Timeline

A timeline is a virtual time base with respect to an epoch. Unlike other time bases, a

timeline’s notion of time is not necessarily tied to any specific reference device or time

system. Timeline attributes are binding accuracy (µ), and binding resolution (r). A node1

binds to a timeline with the desired µ and r. µ is the maximum error a node can tolerate

in its time estimate from the true time. We represent µ as an asymmetric interval around

true time. r – also called the timeline tick – is the minimum time increment on the timeline.

r actually corresponds to the nominal or scaled hardware clock frequency. We represent

both µ and r as a {second, attosecond} tuple. The choice of µ and r for a timeline affects

1A ‘node’ can be a device, or an application thread on a device
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the consumption of resources in a system. Higher µ and r necessitates the use of a clock

with high resolution and stability, which costs energy. A proper balance between µ and r

helps the system deliver the required QoT to applications, as well as optimize resource

usage like energy and network bandwidth.

Each timeline maintains a virtual clock. Hence, a device can maintain multiple timelines;

making use of different time bases for different applications running on the device. On

the other hand, a single timeline can be shared among coordinating nodes who wish

to synchronize their time. This concept is illustrated in Figure 2.2 (Left). Multiple

applications running on a device may have different QoT requirements. The timeline

abstraction enables the OS to provide as many disciplinable clocks as needed by the

applications.

The timeline abstraction also assists developers to easily implement coordinated ap-

plications. Nodes that need to coordinate their tasks, bind to a common timeline and

synchronize their time. We argue that (i) clocks should be synchronized only with the

desired QoT, and (ii) only clocks of coordinating nodes should be synchronized. We

represent the coordinating nodes and their respective timelines as a factor graph in Figure

2.2 (Right). As depicted in this figure, only those nodes which bind to a common timeline,

synchronize their time, hence reducing the number of packets exchanged and the usage of

timing-related hardware resources.

We design a complete architecture around the timeline abstraction, which is gener-

alizable to any operating system. The QoT Architecture centered around timelines is

described in the subsequent section.

2.5 QoT Architecture

The QoT Architecture uses the timeline abstraction along with the associated notion of

QoT to make uncertainty in time observable to distributed applications. Our architecture

supports multiple timelines, enabling different coordinating sub-groups with varying QoT

requirements to co-exist on the same system.
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Figure 2.2: (Left) Node a and b bind to Timeline 1 with a desired binding accuracy µ1,
and binding resolution r1. Node b and c bind to Timeline 2 with µ2, and r2. Note that
the accuracy requirement of nodes on Timeline 1 is tighter than the accuracy requirement
of nodes on Timeline 2 (µ1 < µ2). Also note that Node b binds to both Timeline 1 and
Timeline 2. This shows that the timeline abstraction is flexible enough to be shared by
multiple nodes, and at the same time, a node can maintain multiple timelines as well.
(Right) Factor graph representation of Nodes and Timelines from Left figure. Rather
than synchronizing clocks of all nodes {a, b, c, d, e, f , g} in the network, only coordinating
nodes synchronize their clocks; {a, b, g} through Timeline 1, {b, c, d} through Timeline 2,
and {e, f} through Timeline 3.
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We now present the key components of the QoT Architecture as shown in Figure 2.3.

It is comprised of three distinct components: (i) Clocks, (ii) System Services, and (iii) QoT

Core. In this section, we describe the individual components of this architecture and show

how they interact with each other. We believe that the core concepts of our architecture

are applicable to any platform. However, the range of platforms supported by Linux make

it an ideal candidate for prototyping our architecture. Our Linux implementation is called

the QoT Stack for Linux, and focuses on prototyping essential functionality for embedded

Beaglebone Black (BBB) [Bla] nodes connected over a Local-Area Network. The stack

consists of kernel modules and system services, and does not modify the Linux kernel,

ensuring portability across different kernel versions. Additionally, our implementation

separates hardware-specific and hardware-independent code, providing ease of portability

across platforms.

2.5.1 Clocks

The QoT architecture exposes timekeeping hardware as Clocks, which play a major role

in delivering knowledge of time with associated QoT to the applications. Based on the

functionality provided, we categorize them into two types:

Core Clocks drive all the functionality of the stack. All timelines derive their reference

time as a projection from a core clock. For a clock to qualify as a core clock, it must

provide (i) the ability to read a strictly-monotonic counter, which cannot be altered by

any system process, (ii) the ability to schedule events along a timeline reference, and

(iii) provide the hardware resolution and uncertainty associated with reading the clock.

Optionally, a core clock may also expose interfaces to timestamp and generate external

events.

Network Interface Clocks (NICs) assist in disciplining the local time to some

global reference time. Only those network interfaces which have the ability to accurately

timestamp network packet transmission and reception, at the physical layer, are exposed as

NICs. This enables precise calculation of the offset between two clocks, and the propagation
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delay associated with a medium. A NIC is similar to a core clock in providing the ability

to read time, and optionally provide I/O functionality for precisely timestamping an event,

or generating a very deterministic pulse in the future. A NIC, however, differs from a core

clock in that: (i) it is not necessarily monotonic, (ii) it may be disciplinable and (iii) it

does not provide the ability to generate interrupts. Hence, it cannot be used to accurately

schedule user-level application threads.

Our architecture supports these two clock categories, and provides mechanisms to

synchronize them with each other. While every node must contain a core clock, it is not

necessary for a node to contain a NIC.

2.5.2 System Services

System services are user-space processes responsible for distributing timeline metadata,

quantifying timing uncertainties, and synchronizing time within and across nodes.

2.5.2.1 Data Distribution Service (DDS)

DDS [Ope] is a networking middleware service which simplifies networking programming

for our architecture. It provides a publish-subscribe framework, which collects all the

timeline requirements and gives participating nodes the ability to decide the reference

time in a decentralized fashion.

2.5.2.2 Synchronization Service

Modern OSs expose only a single clock and synchronize it on a best-effort basis by being

oblivious to the application requirements. In contrast, our timeline-driven architecture

supports multiple timelines on a single node, each having its own notion of time. In Figure

2.2 (Right), node c is part of both Timelines 1 and 2. Hence, it runs two parallel instances

of the synchronization service for two different timelines, each achieving only the desired

accuracy.
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Figure 2.4: End-to-end time synchronization using timelines. (1) NIC is disciplined by
the core clock on a single node (tN = tC). (2) NICs on two nodes exchange packets and
timestamp them in core time. (3) The timestamps are used to work out the Core – Core
mapping (tM) and are stored in the form of a logical timeline mapping.

A timeline represents a mapping from a local core time to a global reference time. To

generate this mapping we require a two-step synchronization procedure as shown in Figure

2.4. In the first step, we synchronize the NIC to the core clock on a single node. Once the

NIC is aligned to core time all timestamps provided by a NIC can be mapped to core time.

In the second step, we perform inter-node synchronization. NICs exchange synchro-

nization packets across nodes and timestamp them in core time, thus generating a timeline

mapping using a first-order linear model, tM = t
′
M + (1 + ppb/109) ∗ (tc − t′c), where tM is

the current timeline mapping that is derived from previous mapping t′M , frequency bias

ppb (parts per billion) and current and previous core time, tc and t
′
c respectively. In Figure

2.4, multiple timelines are maintained as logical mappings and they provide the ability to

synchronize with multiple nodes with totally different accuracy requirements, thus enabling

the factored coordination paradigm. The Linux PTP Project [Pro] also runs two-step

synchronization. It first aligns NICs across different nodes, and then it synchronizes the

system clock to the NIC. However, this approach does not scale to multiple timelines.

Hence, we keep the core clock strictly monotonic and maintain multiple timelines as logical

mappings from the core clock.

Synchronization Uncertainty: Time synchronization performance is limited by

various stochastic delays in the system: Propagation delay, Transmit delay, Receive delay

and Residency delay. These delays introduce uncertainty in our time measurements. Using

a statistical approach we can calculate the upper bound on synchronization uncertainty as,

EU = {(ppbm−ppb+∆ppb)/109}∗(tc−t′c)+(em+∆e), and the lower bound on uncertainty,
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EL = {(ppb−ppbm+∆ppb)/109}∗ (tc− t′c)+(em−∆e), where ppbm is the mean bias, ∆ppb

is the standard deviation of bias, em is the mean offset and ∆e is the standard deviation of

offset. Instead of using only local statistical information to calculate the bounds, network

wide information using a Kalman filter can also be applied to calculate tighter uncertainty

bounds. Whichever model is used for the uncertainty bound calculation, a global time

estimate at any point in time should be tM − EL < tM < tM + EU .

2.5.2.3 System Uncertainty Estimation Service

Every timestamp read by a user application contains an uncertainty value introduced by

the OS, which is a function of factors like the system load and CPU operating frequency.

This service continuously updates these uncertainty statistics and passes it to the the stack.

These uncertainty values are appended to every timestamp as an uncertainty bound. The

overhead of the OS contributes significantly to the end-to-end uncertainty associated with

reading a clock.

2.5.3 QoT Core

The QoT Core (also referred to as the core) acts as a bridge between all the stack

components, and the host OS. The core performs a range of functionality:

Timeline Management: To satisfy different QoT requirements, the core keeps

track of different timelines and their associated bindings, and handles their creation and

destruction. It also provides an interface for applications to bind to a timeline and specify

their QoT requirements.

Clock Management: The core provides an interface for different hardware clocks to

register with it, and exposes an interface for a privileged user to choose and switch between

these different clocks. The core utilizes this chosen clock to maintain a monotonic sense of

time, referred to as core time. The key idea is that a privileged daemon should be able to

automatically select the core clock in a manner that balances clock stability/resolution

with energy consumption. The core also maintains the projection parameters from the
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core clock to each timeline reference, and provides an interface for the synchronization

service to manipulate them.
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Figure 2.5: The QoT Stack for Linux

Event Scheduling: Scheduling an application on a global notion of time is important

to execute distributed tasks synchronously. Hence, the core provides applications the

ability to synchronously schedule events based on a timeline reference. The core provides

this functionality in the form of timed waits by interfacing with the OS scheduler. Timed

waits provide threads the ability to sleep for a relative duration or until an absolute

time. The scheduling subsystem is also designed to dynamically compensate for any

synchronization changes to a timeline reference.

QoT Propagation: One of the goals of the QoT stack is to expose the timing

uncertainty to applications, so that the framework gives the current estimate of time,

along with the uncertainty associated with it. As shown in Figure 2.3, the core propagates

the uncertainties from different stack components, appending uncertainty to every time

estimate. It also provides interfaces for the system services and the hardware clock to

expose/update these uncertainty values.
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2.6 QoT Stack for Linux

To demonstrate the possibility of our QoT architecture, we have developed a timeline-

driven QoT Stack for Linux. Given the variety of supported software and hardware, Linux

is an ideal candidate to prototype a cross-platform timeline abstraction. Since, every

system has its unique timing limitations, we attempt to quantify and work with them,

instead of forcing the use of a particular platform.A complete architectural diagram of our

QoT Stack for Linux appears in Figure 2.5. We adopt a modular design to avoid requiring

changes to the Linux kernel, instead relying on loadable kernel modules and userspace

daemons to make Linux QoT-aware.

2.6.1 Timelines in Linux

Our Linux-based prototype implements a timeline as a /dev/timelineX character device,

where X corresponds to a unique identifier. The character device exposes the timeline

reference as a POSIX clock [IEE] to userspace, which is disciplinable by a synchronization

service. The timeline character device also exposes an Input-Output Control (ioctl) inter-

face, for applications to bind/unbind to a timeline, specify/update their QoT requirements,

and read the timeline’s reference time with an uncertainty estimate. In the Linux kernel,

timelines are stored and ordered on a red-black tree which provides an O(log(N)) look-up

time with a string identifier.

2.6.2 Clocks

Clocks (shown as Network Interface Clock and Platform Core Clock in Figure 2.5) are man-

aged via drivers and use the Linux ptp_clock libraries to abstract away from architecture-

specific sources. This abstraction provides the ability to enable or disable the clock source,

configure timer pins (for timestamping inputs or pulse-width modulated outputs) and

discipline the external clock (either in hardware or software). Pins are configured through

the hardware timer subsystem using .enable and .verify function callbacks. The time
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can be observed or set through .gettime64 and .settime64 function callbacks. The

kernel drivers implement the correct function callbacks, and register the existence of the

precise clock through ptp_clock_register, with the kernel’s PTP subsystem. In PTP

terminology, these clocks are referred to as Precise Hardware Clocks (PHC), which is any

clock or network interface that supports hardware timestamping and GPIO capabilities.

These clocks are exposed to userspace as /dev/ptpX character devices and they register

their capabilities, uncertainties, resolution and function hooks with the core module.

2.6.3 System Services

Data Distribution Service: OpenSplice [Ope] is used as the data distribution service in

our stack. It disseminates timeline metadata across the entire network. Once every node

has a complete picture of timelines on all nodes, they compete for providing the reference

time and in our baseline implementation, the node with the highest accuracy requirement

is chosen to provide the reference time to the timeline’s subgroup. The synchronization

rate is determined by the highest accuracy requirement in the network. Hence, the node

which has the highest requirement in its timing subgroup can become a master and push

packets with a rate corresponding to its accuracy requirement.

Synchronization Service: The synchronization service operates in userspace and

comprises of Core-NIC Synchronization and Timeline Synchronization daemons, as shown

in Figure 2.5. The Timeline Synchronization daemon is implemented by patching the

Linux PTP Project [Pro]. It calculates clock discipline parameters, and disciplines the

/dev/timelineX character devices through the .settime and .adjtime POSIX clock APIs.

The mappings are stored in the kernel so that the timeline reference can be easily returned

using the .gettime POSIX clock API.

We also create a synchronization service phc2phc that aligns two Precise Hardware

Clocks (PHC): clocks which support hardware timestamping and GPIO with external hard-

ware timestamping, and deterministic hardware interrupt capabilities. Our implementation

performs Core-NIC synchronization using phc2phc. If one of the clock is not a PHC, we
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Figure 2.6: Decision tree for choosing a time synchronization service based on hardware
capabilities

use the phc2sys [Pro] service to synchronize clocks. The decision tree in Figure 2.6 shows

how timestamping and GPIO capabilities of a clock influence our choice of synchronization

service. Certain network interfaces do not support hardware timestamping, but provide a

hardware interrupt upon the Start of Frame Delimiter (SFD) of a synchronization packet.

In this case, if the core clock is a PHC, it can timestamp the SFD interrupt in hardware and

run phc2phc across multiple nodes for high accuracy. However, certain network interfaces

neither expose a PHC, nor support SFD. In this case, the core clocks resort to software

time stamping and perform sys2sys. Table 2.1 lists some example network interfaces with

different hardware capabilities and the corresponding synchronization service.

Table 2.1: Network Interface Capabilities

NIC Capabilities Service
TI CPSW PHC, GPIO interrupt phc2phc
AT86RF233 PHC, SFD interrupt phc2phc
DW1000 PHC, SFD interrupt phc2phc
IEEE 802.11 None sys2sys

System Uncertainty Estimation Service: This service tries to get a probabilistic

estimate of the OS clock read uncertainty by reading the core clock in a tight loop from

userspace, via a privileged interface (/dev/qotadm). By taking the difference of consecutive

timestamps, the service calculates the uncertainty distribution.
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2.6.4 Linux QoT Core Kernel Module

The Linux QoT Core, shown as the central component in Figure 2.5, is implemented as a

loadable kernel module. It consists of the following sub-modules.

Scheduler Interface: Each active timeline maintains a red-black tree of waiting

threads, ordered by their wake-up times in the timeline reference. When an application

thread issues a timed wait request, the thread is suspended and en-queued on a red-black

tree corresponding to the timeline to which it is bound. Waking up applications from their

suspended state relies on the interrupt functionality of the core clock. When the callback

triggers, the interrupt handler checks each active timeline for tasks that need to be woken

up, and moves such tasks from the wait queue to the ready queue. Subsequently, the task

is scheduled as per its priority, and the policy being used by the scheduler. This introduces

scheduling uncertainty, as other threads may also be present on the ready queue. Before

the task is actually scheduled, the core returns a timestamp of the scheduling instant along

with an uncertainty estimate. This enables an application to take a decision, based on the

received QoT. The scheduling policy agnostic design, enables the stack to be portable to a

range of different Linux kernels, and prevents it from being tied down to a specific kernel

version. It also gives the opportunity for OS developers to use scheduling policies best

suited for the target platform. Future implementations of the stack will include techniques

to probabilistically compensate for the scheduling uncertainty.

Decisions on waking up a task, or programming the next interrupt callback, rely on

the projections between core time and the timeline references. The scheduling interface

compensates for any synchronization changes to these projections. When a synchronization

event occurs, the interface checks the head of the timeline queue, to decide whether the

change in the projection, necessitates a task to be scheduled earlier than previously

estimated.

User Interface: The core exposes a set of thread-safe ioctl interfaces in the form

of a character device, /dev/qotusr, to userspace. It gives user applications the ability to

create/destroy a timeline, read timestamps with uncertainty estimates, as well as issue
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timed waits on a timeline reference. The user interface also provides applications the

ability to access the external timestamping and event triggering functionality of the core

clock (if supported by hardware).

Admin Interface: This is a special character device /dev/qotadm, which enables

a privileged daemon to control specific parameters of the QoT stack. It provides an

ioctl interface, which allows a privileged user to get information on clocks, switch

between different core clocks, as well as get/set the OS uncertainty associated with reading

timestamps.

Sysfs Introspection: The core provides a sysfs interface for a user to view and

change the state of the system using file operations. It can be used to develop complex

visualization tools or to integrate with existing monitoring systems.

On the Beaglebone Black platform, the memory footprint of the QoT Stack for Linux

is 4.071 MB. The current implementation re-implements a number of existing components

for easier debugging, leading to a large code size. Future implementations will focus on

optimization.

2.7 Application Programming Interface

We provide an API that allows programmers to easily develop coordinated distributed

applications shown in Table 2.2.

It is essential to have a core set of APIs that are independent of the platform and OS. At

the same time, our APIs are extensible to support platform-specific extensions. Our APIs

are based on the timeline abstraction and support coordination through timelines. The

APIs enable applications to (i) bind/unbind from a timeline, (ii) specify/update their QoT

requirements, (iii) schedule sensing, computation, and actuation based on a shared notion

of time, (iv) timestamp events, and (v) exchange messages using the publish-subscribe

framework. All our API calls return the achieved QoT, providing applications the ability

to adapt to changes in their QoT.
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Table 2.2: Quality of Time APIs

Category API Return Type Functionality
Timeline timeline_bind (name, accuracy, resolution) timeline Bind to a timeline

Association timeline_unbind (timeline) status Unbind from a timeline

timeline_getaccuracy (timeline) accuracy Get binding accuracy

timeline_getresolution (timeline) resolution Get Binding resolution

timeline_setaccuracy (timeline, accuracy) status Set Binding accuracy

timeline_setresolution (timeline, resolution) status Set Binding resolution

Time timeline_gettime (timeline) uncertain_timestamp Get timeline reference time with uncertainty

Management timeline_getcoretime () uncertain_timestamp Get core time with uncertainty

timeline_core2rem (timeline, core_time) uncertain_timestamp Convert a core timestamp to a timeline reference

timeline_rem2core (timeline, time) uncertain_timestamp Convert a timeline reference timestamp to core time

Event timeline_waituntil (timeline, absolute_time) uncertain_timestamp Absolute timed wait

Scheduling timeline_sleep (timeline, interval) uncertain_timestamp Relative timed wait

timeline_setschedparams (timeline, period, start_offset) status Set period and start offset

timeline_waituntil_nextperiod (timeline) uncertain_timestamp Absolute timed wait until next period
timeline_timer_create (timeline, period, start_offset, count, callback) timer Register a periodic callback

timeline_timer_cancel (timer) status Cancel a periodic callback

timeline_config_events (timeline, event_type, event_config, enable, callback) status Configure events/external timestamping on a pin

To demonstrate the use of APIs, we first present a code snippet for a Time Division

Multiple Access (TDMA) application in Listing 2.1, and another code example of a

simplistic distributed-control application in Listing 2.3.

Listing 2.1: QoT-Aware TDMA Application

name = "tdma−t ime l i n e " ; /∗ Timel ine UUID ∗/

/∗ Timel ine accuracy equ iva l en t to TDMA guard band ∗/

t ime inte rva l_t accuracy = {

. below = TL_FROM_nSEC(0) ,

. above = TL_FROM_nSEC(TDMA_GUARD_BAND) ,

} ;

/∗ Timel ine r e s o l u t i o n equ iva l en t to TDMA per iod ∗/

timelength_t r e s = TL_FROM_nSEC(TDMA_PERIOD) ;

t imelength_t per iod = TL_FROM_nSEC(TDMA_PERIOD) ;

timepoint_t s t a r t_o f f s e t

= TP_FROM_nSEC(get_my_slot ( ) ∗TDMA_SLOT_LENGTH) ;

/∗ Bind to a t ime l i n e with reques ted UUID ∗/

t ime l ine_t t ime l i n e = timeline_bind (name , accuracy , r e s ) ;

/∗ Set per iod and s t a r t o f f s e t ∗/

timeline_setschedparams ( t ime l ine , per iod , s t a r t_o f f s e t ) ;

/∗ Pe r i od i c TDMA Transmiss ion ∗/

whi le ( tdma_running ) {

/∗ S leep un t i l s t a r t o f next transmit s l o t ∗/

s t a tu s = timeline_waituntil_nextperiod ( t ime l i n e ) ;

i f ( s t a tu s == QOT_OK) {

/∗ Transmit i f un c e r t a i n i t y with in bound ∗/
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transmit_packet ( message ) ;

} e l s e {

hold_off ( ) ;

}

}

timeline_unbind ( t ime l i n e ) ; /∗ Unbind from a t ime l i n e ∗/

The TDMA application needs to ensure that each node transmits in its own time

slot to avoid packet collisions. This implies that all nodes must have a shared time base,

along with the knowledge of associated uncertainty. Traditionally, TDMA application

compensates for timing uncertainty using guard bands. If this uncertainty increases beyond

these guard bands, packet collisions will occur. Our method of delivering the achieved

QoT to the TDMA application gives it the ability to take a decision to transmit a packet

or not, and avoid collisions.

For the TDMA application, the nodes first bind to a timeline, along with specifying

their desired accuracy and resolution using timeline_bind. Transmitting in a TDMA slot

is inherently periodic, therefore, the application can set its period and start offset using

timeline_setschedparams. Subsequently, the application periodically calls

timeline_waituntil_nextperiod, which wakes up the task using the programmed param-

eters. This call also returns the achieved QoT. The application can utilize this information

to decide on packet transmission. Finally, before termination, the application unbinds

from the timeline using timeline_unbind.

We also contrast our QoT-aware TDMA application with one written using the Linux

POSIX API. The Linux API based TDMA application does not have a notion of QoT and

cannot provide end-to-end estimates on timing uncertainty. The application computes its

wake up time every period, and uses the clock_nanosleep system call to wake up and

transmit a packet. If the timing uncertainty exceeds the guard bands, then packets will

collide. On the other hand, a QoT-aware TDMA application can take a decision on packet

transmission based on the returned QoT.

Alternatively, a developer may create a daemon to compute the end-to-end timing

uncertainty. However, this involves significant effort, complex interactions with existing
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timing systems, and privileged system access. Given that this functionality is commonly

required across a range of applications, our stack provides it as a system service.

Listing 2.2: TDMA Application using Linux API

c lock_gett ime (CLOCK_REALTIME, now) ; /∗ Get time ∗/

/∗ Current TDMA cyc l e number and s t a r t time ∗/

i n t tdma_cycle_no = timespec2ns (now) /TDMA_PERIOD;

uint64_t cyc le_start_ns = tdma_cycle_no∗TDMA_PERIOD;

/∗ S l o t time o f f s e t from s t a r t o f c y c l e ∗/

uint64_t s l o t_o f f s e t = get_my_slot ( ) ∗TDMA_SLOT_LENGTH;

uint64_t transmit_time_ns = cycle_start_ns + s l o t_o f f s e t ;

/∗ Pe r i od i c TDMA Transmiss ion ∗/

whi le ( tdma_running ) {

/∗ Time o f next t ransmi s s i on ∗/

transmit_time_ns = transmit_time_ns + TDMA_PERIOD;

/∗ Sleep t i l l t ransmit s l o t . Also handle s i g n a l s ∗/

whi l e ( c lock_nanos leep (CLOCK_REALTIME, ns2t imespec ( transmit_time_ns ) == EINTR) ;

c lock_gett ime (CLOCK_REALTIME, now) ; /∗ Get time ∗/

/∗ Transmit i f wakeup time with in bound ∗/

/∗ Packets may c o l l i d e due to bad sync or c l o ck ∗/

i f ( timespec_compare (now , transmit_time_ns + TDMA_GUARD_BAND) <= 0 ) {

transmit_packet ( message ) ;

} e l s e {

hold_off ( ) ;

}

}

We now demonstrate the use of our API through a second example. Control theory

assumes that sensing and actuation happens at the same time. This assumption however

does not hold in distributed control systems due to time delays, jitter and uncertainties.

The clocks at distributed sensors and actuators should be synchronized and controller

takes decision based on the synchronization uncertainty in sensing timestamps and the

actuation signals. Control applications are sensitive to timing uncertainty, and sensor

timestamps with uncertainty exceeding tolerable limits can lead to controller instability,

or incorrect actuation. Therefore, if the exposed uncertainty from our API exceeds the

threshold, the controller discards those values to avoid controller instability, or incorrect

actuation.

Our application consists of a sensor node and an actuator node. Both nodes first bind to
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a timeline, along with specifying their desired accuracy and resolution using timeline_bind.

When the sensor generates a value with a timestamp (containing its associated uncertainty),

the sensor node then publishes this information, using timeline_publish. The actuator

node subscribes to all messages on a timeline, using timeline_subscribe, and waits for

a message (sensor value), using timeline_waituntil_message. When a sensor value is

received, the actuator node checks the uncertainty of the timestamp, along with the

uncertainty in its own knowledge of time. If the uncertainty is within tolerable limits, the

actuation node runs the controller, and performs the required actuation. If the uncertainty

exceeds tolerable limits the application can stop. Alternatively, the application may

decide to switch to a more robust controller. Finally, before termination, the application

components unbind from the timeline using timeline_unbind.

Listing 2.3: QoT-Aware Distributed Control

/∗ Sensor Code Snippet ∗/

name = " contro l−t ime l i n e " ; /∗ Timel ine UUID ∗/

/∗ Appl icat ion−de s i r ed Timel ine Accuracy ∗/

accuracy = REQUIRED_ACCURACY;

/∗ Appl icat ion−de s i r ed Timel ine Reso lut ion ∗/

r e s o l u t i o n = REQUIRED_RESOLUTION;

/∗ Bind to a t ime l i n e with reques ted UUID ∗/

t ime l ine_t t ime l i n e = timeline_bind (name , accuracy , r e s ) ;

whi l e ( running ) {

/∗ Wait f o r s enso r to wr i t e a value ∗/

waitunt i l_sensor_ready(&sensor_val , &timestamp ) ;

/∗ Publ i sh s enso r va l with timestamp and unce r ta in ty ∗/

timeline_publish ( t ime l ine , sensor_val , timestamp ) ;

}

timeline_unbind ( t ime l i n e ) ; /∗ Unbind from a t ime l i n e ∗/

/∗ Actuator Code Snippet ∗/

name = " contro l−t ime l i n e " ; /∗ Timel ine UUID ∗/

/∗ Appl icat ion−de s i r ed Timel ine Accuracy ∗/

accuracy = REQUIRED_ACCURACY;

/∗ Appl icat ion−de s i r ed Timel ine Reso lut ion ∗/

r e s o l u t i o n = REQUIRED_RESOLUTION;

/∗ Bind to a t ime l i n e with reques ted UUID ∗/

t ime l ine_t t ime l i n e = timeline_bind (name , accuracy , r e s ) ;

/∗ Subscr ibe to Messages on Timel ine ∗/

t ime l ine_subsc r ibe ( t ime l i n e ) ;
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whi le ( running ) {

/∗ Wait f o r a r r i v a l o f a message ∗/

waituntil_timeline_message(&sensor_val , &timestamp ) ;

/∗ Run c o n t r o l l e r us ing senso r va lue s and timestamps ∗/

i f ( timestamp . unce r ta in ty < REQUIRED_UNCERTAINTY && t ime l i n e . unce r ta in ty <

REQUIRED_UNCERTAINTY) {

run_cont ro l l e r ( sensor_value , timestamp ) ;

perform_actuation ( ) ;

} e l s e {

break ; // I f unce r ta in ty exceeds requirement

}

}

timeline_unbind ( t ime l i n e ) ; /∗ Unbind from a t ime l i n e ∗/

2.8 Experimental Evaluation

Our prototype stack provides hardware support for the popular Beaglebone Black (BBB)

embedded Linux platform [Bla]. We implement drivers to support the Texas Instruments

(TI) AM335x ARM Cortex-A8 System-on-Chip (SoC) found on the BBB. The SoC

supports the IEEE 1588 standard [LEW05] (Precision Time Protocol) over Ethernet, and

has the ability to timestamp network packets at the physical layer. The drivers serve as a

reference implementation, and provide core concepts which can be ported to a variety of

platforms. Corresponding to the two types of clocks that we defined in Section 2.5.1, we

have implemented platform-specific drivers as follows.

Beaglebone Black QoT Clock Drivers To support the QoT stack functionality,

the following clock drivers were implemented for the Beaglebone Black platform:

TI CPSW Network Interface Clock : The Linux kernel already ships with TI’s Common

Platform Ethernet Switch (CPSW) Drivers (which also supports the AM335x SoC), which

can be found in the kernel at Linux/drivers/net/ethernet/ti. The Common Platform

Time Stamping (CPTS) module inside the CPSW ethernet subsystem is used to facilitate

host control of time synchronization related operations. CPTS supports ethernet receive

events, ethernet transmit events, and hardware and software timestamp push events. By

default, hardware timestamp push events are disabled in the CPTS module, so we patched

38



it and enabled time stamp inputs (HW1/4_TS_PUSH) to load the timestamp push events

into the FIFO. These time stamp inputs can be triggered from Timers 4-7 of the AM335X.

This setup enables NIC to Core synchronization (described in Section 2.5.2) with high

accuracy.

BBB-AM335x Core Clock : This driver makes use of the on board dual mode timers

(dmtimers) to provide various core clock related functionality. The AM335x contains

7 timers. All of them can be driven by on board oscillators, and some provide external

clocking ability. Timers 1 and 2 are already used by the Linux kernel, hence, we use timers

3-7 to demonstrate the range of functionalities of a core clock. All the timers are clocked

by an onboard 24 MHz crystal. The timers and their corresponding function are as follows:

• Timer 3: Drives the monotonic core clock.

• Timer 4: Enables scheduling, by providing the ability to trigger interrupts in the

future.

• Timer 5: Generates a precise Pulse-per-second (PPS) which is used to discipline

the Network Interface Clock.

• Timer 6: Provides the ability to timestamp external events on a pin.

• Timer 7: Provides the ability to generate a periodic output on a pin.

In order to deliver the functionality of timers 5-7 the system needs to configure the

GPIO pins. For ARM based platforms, this is done by using a device tree. A device tree

enables a user to configure the peripherals of an embedded ARM platform at run-time.

Our prototype stack also provides a device tree for the Beaglebone Black platform.

Our testbed comprises multiple BBB nodes, with the Linux 4.1.12-rt kernel, connected

via an IEEE 1588-compliant switch [RSG], running the synchronization service which is

a patched version of the Linux PTP Project [Pro] and Network Time Protocol (NTP)

[Mil91] implementation ntpv4 2 synchronization services, and term them as ptp-qot and

2http://ntp.org
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ntp-qot respectively. Instead of disciplining the ethernet controller’s NIC on the node

(/dev/ptp0) or ntpv4 that synchronizes CLOCK_REALTIME, ptp-qot and ntp-qot support

simultaneous QoT-based synchronization of multiple timelines (/dev/timelineX). Using

this testbed, we now present multiple micro-benchmarks which demonstrate the ability

of our stack to perform synchronization, expose uncertainty and perform choreographed

scheduling.

2.8.1 Synchronization Uncertainty
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Figure 2.7: (a) Core-NIC synchronization accuracy (b) Illustrating the adjustable synchro-
nization parameter

The prerequisite for end-to-end synchronization – mapping local core time to a global

timeline reference – is to first synchronize the on-board NIC with the local core clock. We

use a programmable hardware timer on the BBB AM335x to trigger very deterministic

and periodic outputs on a pin in core time, which is then timestamped by the NIC. The

difference between the core and NIC timestamps is used to work out the clock disciplining

parameters. We plot the distribution of this difference in Figure 2.7a, which indicates

the Core-NIC synchronization accuracy, which is in the order of nanoseconds. A similar

approach can work on other hardware platforms as well.

The ability to control the synchronization accuracy, is a key goal of the QoT stack.

We use the transmission rate of synchronization packets as a control knob to adjust

the accuracy, and the resulting plot is shown in Figure 2.7b. Note that increasing the
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Figure 2.8: (a) shows pair-wise error probability density of three nodes a, b, c bound to
timeline 1 in Figure 2.2(Right) with 100 µsec accuracy requirement, (b) shows pair-wise
error probability density of three nodes c, d, e bound to timeline 2 with 1 µsec accuracy
(Note that x-axis units are in nanoseconds, and x-axis scale changes in (a) and (b)). Note
that c maintains mappings of both timelines, and the achieved accuracy for all the nodes
is almost equal to their desired accuracy

synchronization packet transmission rate reduces synchronization error and increases

timing accuracy. This proves the existence of such adjustable parameters, which can be

exposed to the userspace services so that they can control the system performance and

meet the QoT requirements.

Now that we have synchronized the NIC to the core clock and established the relation-

ship between synchronization rate and accuracy, we use a topology similar to the one in

Figure 2.2(Right) for end-to-end synchronization. There are two timing subgroups: nodes

a, b and c bound to Timeline 1 with an accuracy of 100 µsec; and nodes c, d and e bound

to Timeline 2 with an accuracy of 1 µsec. The system sets a synchronization rate of 0.05

Hz for Timeline 1, and 2 Hz for Timeline 2 according to their accuracy requirements. We

conducted experiments on this topology to demonstrate that the QoT stack runs multiple

and parallel synchronization sessions on a single node, which disciplines multiple timelines
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Figure 2.9: (Left) The timing error distribution for two nodes is in the range of 10
millisecond. These nodes bind to a timeline with 10 millisecond desired accuracy and
are synchronized using ntp-qot. (Right) We first run ntp-qot, resulting in a horizontal
line (negligible uncertainty). Subsequently, we turn the ntp-qot synchronization off and
within just few minutes, the timing uncertainty increases 1000x from 4 millisecond to 4000
millisecond

simultaneously. The results are shown in Figure 2.8, where node c maintains two timelines

with very different accuracy requirements of 100 µsec and 1 µsec, with respect to Timelines

1 and 2 respectively. This validates our initial claim that the timeline-driven architecture

not only supports multiple virtual time references on a single node, but also synchronizes

only to the desired accuracy, hence conserving resources like bandwidth and energy.

In general, NTP is used to synchronize nodes distributed in a wide-area network. NTP

servers provide reference global time and are globally-distributed in different stratum.

However, software timestamping limits the accuracy of NTP to the order of milliseconds.

The results of our timeline-based NTP implementation ntp-qot are shown in Figure 2.9.

We see that the nodes’ clocks are no more apart than 10 milliseconds from each other,

thus validating our initial claim that nodes bound to timeline, only synchronize to the

desired accuracy.

For applications to adapt and be robust to failures, the system should continue to

report the estimated uncertainty. When we turn off the synchronization service, the

uncertainty bounds increase at a high rate as shown in Figure 2.9 (Right), because of the

lack of drift compensation by NTP implementations in general. Hence, nodes synchronized
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using NTP have large uncertainties when synchronization stops3.
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Fig. 9: Upper bound (upper green plot) and lower bound (lower blue plot) around the actual uncertainty (middle red plot) with
and without synchronization. Note the change in y-axis scale which is increasing from (a) to (c)
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Fig. 10: (a) shows pair-wise error probability density of
three nodes a, b, c bound to timeline 1 in Figure 3b with
100 µsec accuracy requirement, while (b) shows pair-wise
error probability density of three nodes c, d, e bound to
timeline 2 with 1 µsec accuracy (Note that x-axis units are
in nanoseconds, and x-axis scale changes in (a) and (b)). Note
that ‘c’ maintains mappings of both timelines, and the achieved
accuracy for all the nodes is almost equal to their desired
accuracy

with an accuracy of 1 µsec. The system sets a synchronization
rate of 0.05Hz for timeline 1, and 2Hz for timeline 2 according
to their accuracy requirements. We conducted experiments on
this topology to demonstrate that the QoT stack runs multiple
and parallel synchronization sessions on a single node, which
disciplines multiple timelines simultaneously. The results are
shown in Figure 10, where node ‘c’ maintains two timelines
with very different accuracy requirements of 100 µsec and
1 µsec, with respect to timeline 1 and 2 respectively. This
validates our initial claim that the timeline-driven architecture
not only supports multiple virtual time references on a single
node, but also synchronizes only to the desired accuracy, hence
conserving resources like bandwidth and energy.

In Figure 9, we show the QoT stack’s ability to estimate
the uncertainty in synchronization and expose it. Uncertainty
captures the variance in time introduced by various sources of

errors, that cause the time to deviate from its true value. The
red plot provides the ground truth i.e, the actual uncertainty
between the local timeline reference and the global timeline
reference, e = tglobal � tlocal, whereas, the green plot is an
upper bound on uncertainty estimated by the stack, eu =
tupper � tlocal and the blue plot is the lower bound on uncer-
tainty estimated by the stack, el = tlower�tlocal. Note that the
bounds are valid that is, tupper > tglobal > tlower & tupper >
tlocal > tlower, only when, eu > e > el, which is what is
achieved in Figure 9. The uncertainty bounds estimated by
the stack are applicable, both when synchronization is running
or not. Figure 9 (a) shows bounds when the synchronization
is running. Note that these bounds tend to increase when we
turn the synchronization off (Figure 9 (b) and (c)). The bounds
extend in both directions as a function of variance in frequency
bias, and they will always bound the actual uncertainty. The
longer the period for which the synchronization is off, the
higher will be the uncertainty bounds. Thus the QoT stack
not only reports precise time to the applications but also the
uncertainty in time with high confidence bounds.

B. Scheduler Uncertainty

We benchmark the QoT Core’s scheduling interface against
the Linux Real-Time (RT) scheduler, by using periodic pin
toggling applications. All the following experiments were
conducted under identical load conditions, for a duration
of 3000 seconds, with the pin toggling application being
the highest real-time priority user application in the system.
Multiple sporadic tasks with lower real-time priorities, which
used the QoT stack functionality, were also running on the
same system.

To measure scheduler uncertainty, we devise the following
experiment. On a single node, an application periodically calls
the timeline_waituntil_nextperiod API call, such
that the task is scheduled to toggle a memory-mapped GPIO
pin, at every second boundary on a timeline reference. When
the task wakes up, the QoT stack provides a timestamp (with
uncertainity) for when the event was actually scheduled. The
scheduler latency can be estimated by taking the difference of
the timestamps: when the task was supposed to wake up, and
when it was actually scheduled. We also empirically measure
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Figure 2.10: Upper and lower bounds around the observed uncertainty with and without
synchronization. Note the change in y-axis scale, increasing from (a) to (c)

In Figure 2.10, we show the QoT stack’s ability to estimate the uncertainty in synchro-

nization and expose it. Uncertainty captures the variance in time introduced by various

sources of errors, that cause the time to deviate from its true value. The red plot provides

the ground truth i.e, the actual uncertainty between the local timeline reference and the

global timeline reference, e = tglobal − tlocal, whereas the green plot is an upper bound

on uncertainty estimated by the stack, eu = tupper − tlocal and the blue plot is the lower

bound on uncertainty estimated by the stack, el = tlower − tlocal. Note that the bounds

are valid that is, tupper > tglobal, tlocal > tlower, only when, eu > e > el, which is what is

achieved in Figure 2.10. The uncertainty bounds estimated by the stack are applicable,

both when synchronization is running or not. Figure 2.10a shows the bounds when the

synchronization is running. Note that these bounds tend to increase when we turn the

synchronization off (Figures 2.10b and 2.10c). The bounds extend in both directions as a

function of variance in frequency bias, and they will always bound the actual uncertainty.

The longer the period for which the synchronization is off, the higher will be the uncertainty

bounds. Thus, the QoT stack not only reports precise time to the applications but also

the uncertainty in time with high confidence bounds.

3due to possible transient/permanent network outages
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2.8.2 Scheduler Uncertainty

We benchmark the QoT Core’s scheduling interface against the Linux Real-Time (RT)

scheduler by using a periodic pin-toggling application which toggles a memory-mapped

GPIO pin, at every second boundary. All the following experiments were conducted under

identical load conditions for a duration of 3000 seconds, with the pin-toggling application

being the highest real-time priority user application in the system. Multiple sporadic tasks

with lower real-time priorities, which used the QoT stack functionality, were also running

on the same system.

To measure scheduler uncertainty, we devise the following experiment. On a single

node, an application periodically calls the timeline_waituntil_nextperiod API call,

such that the pin toggle is scheduled at every second boundary on a timeline. When the

task wakes up, the QoT stack provides a timestamp (with uncertainity) for when the event

was actually scheduled. The scheduler latency can be estimated by taking the difference

of the timestamps: when the task was supposed to wake up, and when it was actually

scheduled. We also empirically measure the scheduler latency by using a Salae Logic Pro

16 logic analyzer [Sal]. The logic analyzer measures the latency for each pin toggle event

by comparing against a deterministic PWM with edges at every second boundary on a

timeline reference.
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Figure 2.11: Scheduler Latency Distributions, for a periodic pin toggling application on a
single node

Figure 2.11a plots the distribution of the scheduler latency as estimated by the
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(b) Linux RT Scheduler with PTP

Figure 2.12: End-to-end scheduling jitter distributions for synchronous pin toggling on
two nodes
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Figure 2.13: Clock read latency histograms in different time intervals, estimated by the
system uncertainty estimation service

QoT stack, while Figure 2.11b shows the empirically-measured distribution. Observe

that the empirical distribution and the distribution provided by our stack share similar

characteristics. Thus, the uncertainty estimate provided by the QoT stack holds up to

empirical measurement.

For the Linux RT scheduler, using real-time priority scheduling (SCHED_FIFO), Figure

2.11c shows the empirically-measured latency distribution, where the clock_nanosleep

system call was used to schedule a periodic pin toggle. Note that the QoT-aware Linux

scheduler and the Linux RT scheduler share similar statistical properties. The QoT-

aware scheduler provides adherence to our timeline-driven architecture with no significant

overhead.
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The ability to perform choreographed scheduling is key to our stack, and hence we

next characterize the end-to-end synchronous scheduling jitter. In our setup, we have

two identical applications running on separate nodes. Both applications bind to the same

timeline and synchronize with each other. Using the timeline_waituntil_nextperiod

API call, the applications synchronously toggle a memory-mapped GPIO pin at every

second boundary on the timeline reference. The synchronization service is also running on

both nodes. In Figure 2.12a, we plot the distribution of the end-to-end jitter between the

pin toggles of the distributed application. The instants at which the pins toggled were

captured by a logic analyzer, and the difference in timestamps was used to compute the

obtained distribution.

We conduct a similar experiment using the Linux clock_nanosleep system call on two

distributed nodes synchronized by PTP. Figure 2.12b plots the distribution of the end-to-

end scheduling jitter for Linux and PTP. Our stack runs a patched PTP synchronization

service, and hence the distribution obtained has a similar jitter profile to that obtained

using PTP. Note that our interface is policy-agnostic and does not incur additional

overhead, while at the same time providing a range of QoT-based functionality. However,

the scheduling jitter can be reduced using more suitable policies in the kernel.

Figure 2.13 shows two histograms for the estimated latency in reading the core clock

from userspace, over different one-second durations, as estimated by the system uncertainty

estimation service. Observe that the distributions change over time and are a function

of system load. Each peak in the distribution corresponds to different locks which cause

contention in reading the core clock. This measured distribution plays a key role in

continuously keeping track of the uncertainty introduced by the OS in reading the clock.

2.9 Key Findings

Summarizing all the empirical results, we have shown multiple capabilities of timeline.

The ability of our system to report the uncertainty gives an application confidence in

its time estimate. Applications are able to adapt to variations and be robust to failures
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should the system continue to report the estimated uncertainty. These uncertainties arise

form hardware, software and network component of a time stack. For the synchronization

uncertainty contributed by the network component, we extend it as a function of variance

in frequency bias when synchronization has been turned off and the clocks are free to

drift. Our system is able to capture this drift and adjust the error accordingly. Scheduling

uncertainty is also a key concern for systems. We have shown that our system is able

to estimate the scheduling uncertainty and expose that to the application with an error

of few microseconds. Clock read latency also contributes to the end-to-end uncertainty

in timing. Our results show that this latency is in the order of 100’s of nanoseconds. In

short, we have collected uncertainty information from the hardware component (clock

read latency), software component (OS and scheduling uncertainty), and the network

component (synchronization uncertainty). We sum these uncertainties and expose it to

the application. We provide an upper and lower bound to the actual (ground truth)

uncertainty with an error margin of 6 microseconds on average. Another capability of

timeline is to control application’s performance by specifying their requirements. We show

that an application bound to a timeline with an accuracy of 1 microsecond achieves an

average accuracy of 0.6 microsecond i.e. it is well below the error the application can

tolerate. In short, our results show that an application can not only control its timing

performance but also be aware of its timing performance.

2.10 Conclusion & Future Directions

The timeline abstraction with its associated notion of Quality of Time (QoT) helps

virtualize time-related resources in a system and plays a role analogous to that of sockets

with associated Quality of Service (QoS) bindings in network stacks. QoS-aware networking

applications can read, write, open and close sockets, and specify QoS parameters. Similarly,

QoT-aware time-sensitive applications can bind and unbind from timelines, read and

schedule events on the timeline reference, and specify QoT requirements. We make QoT

visible and controllable in our timeline-driven architecture. This enables QoT-aware
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applications to specify their timing requirements, while the system manages clocks and

synchronization protocols to provide the appropriate levels of QoT. In the future, this

architecture would be extended to address challenges introduced by multiple processing

cores, hardware accelerators, and peripherals.

Our initial implementation of the QoT Stack for Linux delivers most of our early goals.

However, it presently takes advantage of only the accuracy attribute of timelines. Future

implementations of our stack will also make use of the resolution attribute and provide the

ability to dynamically switch between hardware clocks based on application requirements.

We also plan to support multiple network interfaces and different oscillators that could

be adjusted in hardware. The stack could then switch between different core clocks, use

different NICs across heterogeneous networks, and use different synchronization protocols,

to best strike a balance between desired performance and resource consumption. Finally,

a co-optimization of timelines and synchronization sessions would help conserve network

and system resources.

The QoT Stack for Linux is open-source and under development. In the future, we

plan to support multiple hardware platforms. The code repository can be found at,

https://bitbucket.org/rose-line/qot-stack/src
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Part II

Systems for Timing Integrity
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CHAPTER 3

Securing Time in Untrusted Operating Systems with

TimeSeal

3.1 Introduction

Emerging temporal use cases in the Internet of Things (IoT) applications have a critical

dependence on high precision and accurate relative time. For instance, distance and speed

calculations rely on precise round trip times [MPP07] [TSS16], schedulers build upon

elapsed and remaining times [RPM13] [MW13], network telemetry depends on residency

delays [LPJ15], code profiling requires execution times [CZR17], and data sampling

needs timestamps [HSG18]. Attacking a system’s sense of time has ramifications such

as location theft, network outages, higher delays, and data inconsistencies. Furthermore,

critical functionalities for securing applications in shielded execution environments such

as Haven [BPH15], SCONE [ATG16], Panoply [STT17] and Graphene-SGX [TPV17]

have no access to secure time. Instead, they rely on untrusted operating system (OS)

time. A compromised OS may lie about the time or signal early timeouts, and although

traditional cryptographic techniques, trusted execution technologies, and network security

mechanisms may guarantee data security, they do not cater to time security.

In an attempt to provide this security of time, researchers have tried to implement

secure clocks for shielded execution in Trusted Execution Environments (TEE) [SLK17].

A well known industrial approach fTPM [RSW16] tries implementing a secure clock on

Arm TrustZone but it relies on untrusted OS acknowledgments for clock writes. On the

other hand, Déjá Vu [CZR17] leverages hardware transactional memory to provide a high

resolution clock for Intel SGX but it is susceptible to frequent aborts. Aurora [LLZ18]
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also leverages hardware support of System Management RAM (SMRAM) to provide an

absolute clock for SGX. Although it relies on specialized hardware capabilities, it makes

use of untrusted timers and kernel devices. All of these clocks are prone to attacks in the

presence of a compromised OS.

To reason about the generalized security of a clock, we argue that it is essential to

secure all layers in a time stack giving rise to three main challenges: first, find a trusted

timer that cannot be modified by a privileged adversary [TKG18], second, provide a secure

path to read the trusted timer in a timely manner [SWG17], third, protect timekeeping

software from adversarial attacks [CZR17]. In this paper, we propose TimeSeal, a secure

time architecture designed to tackle these challenges.

To address the first challenge, we compare the timing capabilities of different Trusted

Execution Environments (TEE) [SLK17]. Based on our analysis, TimeSeal leverages

hardware-based protection of Intel SGX that gives access to a trusted timer. A privileged

adversary in a compromised OS cannot write to the SGX trusted timer.

With respect to the second challenge, the SGX community has confirmed that the path

to SGX trusted timer is not secure [lin18b]. The SGX platform service transfers trusted

time packets over a secure session via OS inter-process communication (IPC) [CZ17]. As

these packets are encrypted and integrity protected, a compromised OS cannot change

the packet contents. However, an attacker may violate timely arrival of these packets

by delaying them and consequently settles on the wrong perception of elapsed time. We

address this challenge of securing trusted timer access by mitigating the effects of this

delay attack on trusted time values.

Unfortunately, coarse-grained SGX time–which increments once per sec– is insufficient

to protect against delay attacks. TimeSeal first aims to increase SGX trusted time

resolution by providing a subtick service that interpolates the SGX time and divides it

into granular subticks, This work is based on a coarse-grained TEE trusted timer, and

uses counting threads to increase its resolution while adopting compensation mechanisms

to mitigate accumulative errors and maintain monotonicity. Using both the SGX time
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and subticks, we build a high-resolution and monotonic SGX clock that is capable of

measuring intervals as small as 0.1msec and timestamp events that are apart by ≥ 0.1msec.

TimeSeal then utilizes this improved precision to detect and mitigate delay attacks. This

high resolution also serves applications with high precision requirements [TKG18] [TKA17].

The third and final challenge requires us to defend against attacks on timekeeping

software, where a compromised OS may downgrade the time resolution to seconds by

scheduling out the associated timekeeping threads. TimeSeal overcomes these scheduling

attacks and adopts multithreaded counting policies to induce uncertainty in malicious

scheduling and reduce the efficacy of this attack on resolution degradation. As a result, the

system maintains msec-level resolution that is also substantial to detect and compensate

for delay attacks.

Our contributions are summarized as follows,

• We provide a complete guideline for time security by enumerating challenges in

securing a clock.

• We identify and verify that the path to reading SGX time is not secure by imple-

menting a delay attack in OS and disrupting the timely arrival of SGX time.

• We present TimeSeal, a secure time architecture that addresses the aforementioned

challenges.

• We provide a high-resolution SGX time and use the improved resolution to mitigate

delay attacks.

• We devise policies that reduce the effect of malicious scheduling on time error.

• We prototype TimeSeal on Intel SGX and evaluate the complete secure time

architecture.

3.2 Related Work

In this section we review related works that motivated our design of TimeSeal.

Secure clocks. Researchers have attempted to implement trusted clocks for secure

computation inside Trusted Execution Environments (TEE) [KHH17] [ZCC16] or to
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enforce time-based policies [KRR12]. For example, Chen et al. [CRS14] provides coarse-

grained secure clock on a trusted cloud with the assumptions that the network link has

a bounded delay, and a trusted counter is present in the cloud. Raj et al. [RSW16]

face numerous challenges in implementing a secure clock. The absence of a secure timer

forces them to rely on a compromised OS to acknowledge clock writes and make the clock

persistent. It is to be noted that there is no secure clock on ARM TrustZone. Though a

peripheral such as a timer can be mapped to the secure world, a peripheral’s controller

can still be programmed by the normal world [RSW16].

Time in shielded execution. For line rate processing in middleboxes such as Shield-

Box [TKG18] and Slick [TKA17] implemented over SGX, fine-grained cycle-level mea-

surements are made inside enclaves via reasonably fast Network Interface Card (NIC)

clock. However, as noted by the authors, this clock is not secure against OS attacks but

they argue that there is no precise trusted time source for SGX enclaves and it remains

an open problem [TKG18] [SWG17]. Other secure systems such as SCONE [ATG16],

Haven [BPH15], and Panoply [STT17] also rely on untrusted time via OS system calls.

High resolution trusted clocks. TrustedClock [LL18] for SGX and Aurora [LLZ18]

tries to provide a high resolution and absolute secure clock for SGX enclaves. Their

absolute clock leverages System Management RAM (SMRAM) for timekeeping, and relies

on a kernel daemon to trigger system management interrupt (SMI) for a clock read request.

A malicious OS can make time fuzzy by arbitrarily delaying these requests. Also, SMI

handler reads legacy timers on Intel Architecture that can be written to by the OS in

a consistent manner to avoid detection. Thus relying on hardware timers that OS can

manipulate and reading from kernel devices that can be delayed makes their system not

secure.

On-demand high resolution timers. Much closer to our work is an entire body of

research that uses high resolution timers either to launch side channel attacks [SWG17]

or to detect side channel attacks [CZR17] in shielded execution. The absence of high

resolution timers inside shielded execution environments, particularly Intel SGX, motivated

researchers to find alternative solutions. Malware Guard Extension [SWG17] emulates a
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short-lived precise timer inside an enclave to perform a Prime+Probe cache side-channel

attack against co-located enclaves. Déjá Vu [CZR17] detects page faults by measuring

execution time of the victim code in SGX with a reference-clock. This clock is incremented

within a Hardware Transactional Memory [HM93] to detect OS interruptions but it is

affected by high frequency TSX aborts restricting the applications to execute in less

time. Researchers in this domain are mostly interested in constructing on-demand, high

resolution timers to measure very short durations [KS16] [SWG17]. They do not quantify

performance of a clock source capable of providing high resolution monotonic sense of

time.

In short, secure clocks are non-existent, and current secure systems have to rely either

on untrusted clocks or coarse-grained clocks, leaving out many applications in need of

precise trusted time.

3.3 Background

This section covers concepts that influence our design choices for TimeSeal. We start by

explaining a traditional time stack in all systems, possible attacks on the time stack, and

the timing capabilities of TEE.

Attacks on the Time Stack. Every system maintains a time stack. Discrete components

that make up a time stack are hardware timers and timekeeping software. A hardware

counter/timer counts the number of cycles of a periodic signal obtained from an oscillator.

Timekeeping software maintains time by converting cycle counts into human understandable

time.

A hardware timer in a time stack is not considered secure if a malicious software is

able to write to its registers. In Intel architecture, RDTSC/RDTSCP results are not

immune to influences by privileged software, e.g., the Time Stamp Counter (TSC) can be

written to by the OS [sgx16] [for17]. Similarly, other timers such as the High Precision

Event Timer (HPET) can be controlled by the OS. Basically, the design principle of the

OS dictates that its high privilege allows it to write to all registers. Virtualizing timer
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via trusted hypervisor also does not protect against timer modifications. First, OS can

consistently alter timer to avoid detection. Second, no hypervisor can detect malicious

time delays. Furthermore, OS is responsible for timekeeping, and it can lie about time,

signal timeouts early or late, delay time transfer to applications, or gradually change the

notion of time for applications to deceive them. Hence, a privileged software is capable

of adding discontinuities in time. To protect these timers, it is essential to restrict timer

writes only to trusted entities.

Trusted Time in SGX. Intel SGX supports trusted time service by leveraging the

security capabilities of Intel Converged Security and Management Engine (CSME) [CZ17].

The CSME consists of an embedded hardware engine that runs its own firmware. This

firmware allows the host to load and execute Java applets in the CSME at runtime through

a dynamic application loader. SGX hosts different architectural enclaves that provide

key services to application enclaves. Platform Service Enclave (PSE) is an architectural

enclave that provides trusted time and monotonic counter service. Architectural Enclave

Service Manager (AESM) is a background service that hosts the PSE and automatically

loads and starts the Platform Services DAL Applet (PSDA) inside CSME to securely

expose the CSME battery backed Protected Real-Time Clock (PRTC) timer. As CSME

is backed up with a battery, it’s not affected by CPU power management states, i.e., it

always has power to keep the PRTC running. PSDA and PSE communicate through a

Management Engine Interface (MEI) driver. This MEI interface supports data exchange

through a secure, memory-mapped mechanism not accessible by OS.

Intel SGX gets its notion of time from the PRTC timer in CSME. The OS can neither

access nor manipulate the PRTC and, hence, SGX provides access to a trusted timer. This

trusted time is managed by a PSE that reads the PRTC and transforms it into SGX time

by appending an epoch to it. An application enclave first establishes a secure session with

PSE, then invokes the sgx_get_trusted_time() API to get SGX time.

The encrypted and integrity protected messages between the application enclave and

PSE pass through the OS layer. These messages can be captured or replayed by the OS.

However, a PSE message includes a sequence number that helps reset a session if replay
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attacks are detected. SGX time is in seconds and too coarse-grained to be useful for

measuring short durations within a single enclave.

Secure Clock in TPM [Spe17]. Secure clock in TPM provides time in msec since

TPM boot. This clock can be aligned with any time reference by shifting it forward or

by changing the clock frequency using owner or platform authorizations [Spe17]. Its time

is written to non-volatile memory at most every 222 msec for persistence. Applications

query TPM’s time using standard API. The API TPM2_ReadClock() returns uncertified

(not signed) values, and it is used by the OS to manage the timing resources of the TPM.

TPM2_GetTime() API returns a structure and an optional signature over it for time

attestation. This attestation mechanism helps in detecting attacks on TPM time. A TPM

clock is mostly used for internal data timestamping. It is not used as a timekeeping source

for external applications because of restricted frequent accesses and large communication

delays.

3.4 TimeSeal Design

To provide a secure time architecture, the challenges to address are namely the availability

of a trusted timer, secure access to that timer, and secure clock software. In this section,

we present design overview of TimeSeal overcoming these challenges under a generalized

threat model.

3.4.1 Challenges

The choice of a trusted timer, one that cannot be modified by a privileged adversary, is

critical for TimeSeal’s design. To make this choice, we compare the timing capabilities

of SGX and TPM, the only two clocks provided in TEE.

[Challenge 1] A Trusted Timer: SGX Trusted Time versus TPM Secure Clock.

There are a number of limitations in providing secure time over Intel SGX. First, peripheral

registers such as hardware timer’s registers cannot be mapped into protected enclave
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memory to protect the timer from OS manipulation. Only the Process Reserve Memory

(PRM), a special DRAM for secure enclaves in SGX, can be mapped into the virtual

address of an enclave page – or in SGX’s terminology – Enclave Page Caches (EPC).

Second, SGX trusted timer has coarse-grained, one-sec resolution [CZ17] that can only

be used for enforcing policies spanning large time intervals. In contrast, TPM has a high

resolution clock. The effective resolution of TPM clock however is reduced when accessed

from an enclave. We empirically compared the access latencies to SGX trusted time and

TPM secure clock from an application enclave. The latency in retrieving SGX time from

CSME has a mean of 13msec, whereas TPM clock has an access latency of almost 32msec

that is three times more than SGX time latency. Note that both CSME and TPM are

separate from the CPU, justifying their large access latencies from enclaves.

The effective clock resolution that an application sees is either the base timer resolution

or the clock access latency, whichever is higher. This makes theoretical time resolution of

1sec for SGX and approximately 32msec for TPM. Although TPM has higher resolution, it

cannot be accessed by multiple applications at the same time due to limited TPM resources,

thus decreasing it’s effective resolution for applications. TPM’s clock is mostly used to

timestamp stored keys and data inside it, and not designed for timestamping network

packets or sensor data. TPM clock does not satisfy the needs of broad applications, hence

we choose SGX trusted time as a trusted timer for TimeSeal’s secure time architecture.

[Challenge 2] A Secure Path to Trusted Timer. The encrypted SGX time value

passes through a secure channel established between PSE and an application enclave. This

communication happens via IPC [CZ17]. We know that a compromised OS cannot attack

the encrypted and integrity protected packet. We show, however, that it can still cause

damage by delaying the time packet. Delaying affects timely arrival of of SGX time, hence

distorting time for application enclaves. Note that TPM time is also prone to IPC delay

attacks.

We implement a delay attack in the OS by delaying all SGX time packets with a

random value sampled from a uniform distribution of 0 to 1sec. The result in Figure 3.1a

shows that SGX notion of 1sec fluctuates within 0 to 2.5sec, while 4sec varies between 2.2
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Figure 3.1: Two ways to visualize the effect of delay attacks on SGX trusted time

to 5.5 sec. Time fuzziness due to delay attacks affects many applications. For example,

Timecard [RPM13] servers need to provide consistent response times to clients within few

msec of target delays. Fuzzy time in the order of seconds distorts their sense of elapsed

time resulting in wastage of computation resources.

The effect of delay attacks can also be visualized in another way shown in Figure 3.1b.

An application relying on SGX time measures 1sec durations on y-axis, which in reality

are distorted durations on x-axis. Time advances without a fundamental fixed frequency,

resulting in either time dilation or compression across different intervals. Thus, delay

attacks cause SGX time to dilate and constrict, and we establish that the path to our

choice of trusted timer – SGX time – is not secure.

[Challenge 3] A Secure Timekeeping Software. A timekeeping service maintained

by an enclave process and threads is secure from memory manipulation. However, these

threads can still be attacked by malicious OS scheduling that can make time inconsistent.

This is because a thread running in enclave mode is the same as a thread running in

normal mode from the OS perspective [Int18], We refer to attacks on timekeeping threads

through malicious scheduling as scheduling attacks and these also result in time dilation

or compression. Hence, we establish that timekeeping software within secure enclave is

also prone to attacks.
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Figure 3.2: TimeSeal components inside an Application Enclave. It is subject to two
main attacks: 1○ OS scheduling attacks on TimeSeal threads, and 2○ OS delay attacks
on SGX trusted time

3.4.2 TimeSeal Overview

TimeSeal is a secure time architecture that overcomes the above mentioned challenges,

i.e., the availability of a trusted timer, secure access to that timer, and an attack free

timekeeping software. It solves Challenge 1 by leveraging SGX time derived from a

trusted timer. Challenge 2 is addressed by timely detection and mitigation of delay

attacks, while Challenge 3 is resolved by devising policies that overcome the effect of

scheduling attacks.

TimeSeal’s components are shown in Figure 3.2. SGX time provided by PSE to an

application enclave is coarse-grained and incapable of detecting and eliminating scheduling

and delay attacks. Hence, a high resolution clock is critical to secure time. TimeSeal

provides a high resolution clock comprised of a timekeeping thread that keeps track of

SGX time, and counting threads that interpolate between SGX time to provide sub-sec

resolution.

3.4.3 Threat Model

The goal of an attacker is to compromise TimeSeal’s sense of time while maintaining

stealthiness. Although more prominent attacks could cause damage, e.g., a denial-of-service

attack on any component, we consider attacks that have a more enduring impact over time,

e.g., an attacker that gradually makes time fuzzy successfully establishes false proximity
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for various applications that rely on co-location detection [HCS18] [SP05].

Compromised OS and TimeSeal. Our threat model considers TEE by different

vendors such as ARM TrustZone and Intel SGX as trustworthy. TimeSeal does not trust

the OS nor hypervisors as they can be corrupted. To maximize damage, an attacker may

stay undetected throughout the system’s operation because consistent time uncertainty

is worse for the system as a single time jump can easily be detected. We also assume

that the threads in TimeSeal are subject to a normal OS scheduling policy and can be

aborted/scheduled out at any instant, i.e., they will compete for CPU time with the rest

of the system.

Attack vectors. Because the attacker is trying to compromise the timing components

of TimeSeal in a stealthy fashion, the only two attack vectors specific to TimeSeal’s

attack surface are the aforementioned (1) delay attacks or (2) scheduling attacks. For delay

attacks, prior knowledge of the system and physical clock characteristics helps the attacker

launch an attack that degrades system performance without detection. For example,

the OS knows that ‘aesmd daemon’ encapsulates PSE and handles SGX trusted time

packets. Therefore, it launches delay attacks on SGX time packets by intercepting all

transmitted/received packets to/from aesmd daemon. Hence the attacker is capable of

making SGX time fuzzy as established in Challenge 2.

It is to be noted that an attack strategy of delaying all SGX packets by a constant

value does not harm a system. Adding a constant value to true time does not affect the

rate at which time is elapsed. Rather, delaying SGX packets by a different value adds

variations to the clock rate and distorts the passage of time. Therefore, our threat model

incorporates incremental, random, and distribution based delay attacks on SGX packets.

Detectability of DoS Attacks. The attacker also knows that SGX time increments

every sec, referred to as SGX tick. It may choose to delay a packet by any arbitrary

value. This causes an application polling SGX time to detect missing SGX ticks. We

equate this scenario to a denial of service, which becomes an availability issue rather than

a security issue. To maintain stealthiness, it would choose to delay by a sec or so. For
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Figure 3.3: (a) High-resolution SGX clock measures sub-second durations compared to
SGX tick that is only capable of measuring durations greater than a second. (b) Achieved
mean resolution of high-res clock is 0.1msec with 0.4microsec standard deviation (std)

scheduling attacks (established in Challenge 3), we assume that an attacker does not

want to schedule out all threads of a process in order to maintain stealthiness–if there are

no threads running, this is considered a detectable denial of service because the count

value is less to none.

TimeSeal strives to protect against attackers capable of launching scheduling attacks

on SGX enclave threads as well as delay attacks on SGX time packets.

3.5 Achieving High Resolution Secure Clock in SGX

The resolution of SGX time is only one sec. This low resolution is not enough for many

IoT applications.

We provide a subtick service that builds a high resolution SGX clock on top of coarse

SGX time. We refer to a 1sec SGX time increment as an SGX tick. To get fine time

granularity, we develop a subtick service that interpolates SGX ticks. This interpolation

mechanism uses an SGX tick, which has a large, known one-sec period, and a subtick,

which has a short, unknown sub-sec period. SGX tick is used to establish the period of

the subtick, and together they can provide time with high resolution.

To build a high resolution SGX clock–which we call “high-res clock"–using SGX

ticks and subticks, we use a clock model to calculate the current time, i.e., tlocal =

SGXticks + subticks
MA(subticks_per_sec) , where tlocal is the local time reported by our high-res
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Figure 3.4: Comparison of different clock models to build a high resolution SGX clock. A
clock should always be monotonic and compensate for time errors during high system load

clock, SGXticks represents seconds, and subticks divided by the moving mean (MA) of

multiple

subticks_per_sec values in a window represents the fractional part of a sec. Thus, we

are able to provide sub-sec clock resolution.

The subtick service is comprised of a timekeeping thread inside an enclave that contin-

uously polls SGX time, and a counting thread that counts for one SGX tick as shown in

Figure 3.2. Note that counting thread runs software executing a loop such that subticks

correspond to instruction cycles. We test the resolution of our high-res clock by measuring

fine time intervals. The smallest duration that a clock is able to measure in a stable

manner is its resolution. As shown in Figure 3.3a, the sloped dotted line (blue) shows that

the high-res clock is capable of measuring sub-sec time durations. The dashed (red) line

shows that SGX time is not capable of measuring durations that are less than a sec, i.e.,

a new value comes once every sec. Figure 3.3b shows that our high-res clock is able to

achieve a mean resolution of 0.1 msec, i.e., the clock is capable of measuring durations as

small as 0.1 msec or timestamp events that are apart by 0.1 msec. This 0.1 msec resolution

is a result of software instructions in subtick service that take up CPU cycles. We can

configure the code to improve or relax this resolution.

Threads scheduled under high system load cause subtick variations. We conduct

experiments by running a large number of stressing threads along with the subtick service

to overload the system by 80%. This causes fluctuations in subticks_per_sec that result

in discontinuities in tlocal based on our current clock model. Figure 3.4a shows a non
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monotonic clock with time discontinuities shifting the clock back in time. tlocal exceeds

true SGX time as it advances at a rate higher than the nominal rate.

To make the high-res clock monotonic, we revise our clock model by advancing local

time from previous local time instead of the latest SGX tick, i.e. tlocal = tprev_local +

subticks
MA(subticks_per_sec) . The result of this, as shown in Figure 3.4b, is a monotonic clock where

tlocal significantly deviates from true time due to accumulated errors over time. We rely

on the SGX tick boundary to calculate the accumulated error, terror = tlocal − SGXticks,
and compensate for it. We thus propose a new clock model that not only advances time

with respect to previous time, but also takes into account the accumulated error in local

time at every SGX tick boundary.

Adding huge offsets to remove error from time is not a good practice as it can lead

to negative durations or high error fluctuations. Thus, we divide this error into smaller

chunks equal to the high-res clock resolution. We then remove the error by subtracting

small error chunks from local time at every iteration until no error remains. This process

of removing error using smaller chunks is called slewing time. Thus, our new clock model

is, tlocal = tprev_local +
subticks

MA(subticks_per_sec) − slew(error). Figure 3.4c shows that the slewed

clock is monotonic and slowly converges to true time during peak load.

3.5.1 Scheduling Attack and Mitigation

An enclave counting thread of the subtick service is continuously counting. This thread is

subject to normal OS scheduling policy and can be aborted/scheduled out at any instant.

As a result, the number of subticks per sec over multiple SGX ticks are inconsistent. A

compromised OS may issue sophisticated attacks and schedule out the counting thread to

downgrade the time resolution to seconds, making the subtick service useless for achieving

high resolution.

A single counting thread is unlikely to provide a consistent count every sec under

malicious scheduling as there is a higher probability that an attacker can identify the

counting thread. Our goal is to provide a stable count every sec in the presence of high
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system load and malicious OS scheduling, both of which may cause huge variations in

count values over multiple SGX ticks. We attain this goal by inducing uncertainty in the

OS scheduling policy: TimeSeal employs multiple threads and a thread counting policy

design that reduces the efficacy of an attack on the time resolution per sec.

3.5.1.1 Thread Counting Policy Design

One naive approach for inducing scheduling uncertainty is to let all threads count all the

time and choose one maximum count value at the end of every SGX tick. This is not

an effective counting policy because a fair OS scheduling interrupts all threads for the

same amount of time, and results in same reduced resolution as with one counting thread.

Another approach is to allow only one thread to count at a time for a specific duration

before switching to the next thread. If the order in which the threads are scheduled and

their count intervals are known, a malicious OS can locate and interrupt the thread that

is ready to count. As such, we need to design policies that reduce this predictability.

Policy design variables. The design variables of a thread counting policy include the

number of threads, the counting interval assigned to each thread, as well as the order

in which each thread counting interval occurs. We first design three policies based on

the latter two variables and discuss how varying the number of threads will affect each

policy. For the purpose of clarity, Figure 3.5 depicts the three general approaches for a

counting policy consisting of three threads1: T1, T2, and T3. Each policy assigns an order

and counting interval to each thread. In summary,

• Policy A: assigns a different order but the same count interval to the threads every

sec

• Policy B: chooses a different order and count interval every sec

• Policy C: chooses a different thread order every sec while assigning a different count

interval to every thread within one sec.

1Note that this figure only depicts the counting threads for clarity. These threads will most likely
compete with the rest of the OS.
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Figure 3.5: Multiple threads consuming equal CPU time either in one SGX sec or across
multiple seconds. Note that threads count in a different order every sec

All threads get the same amount of counting time over a small (Policies A and B) or a

long period (Policy C). In order to assess the efficacy of each defense, we will first describe

possible attack scenarios that aware of TimeSeal’s counting policy design variables.

Attacker strategies. Based on the aforementioned design variables of TimeSeal, a

clever attacker may craft one of the three following approaches:

• Attack 1: Choose n out of N counting threads randomly to be scheduled out for one

sec, where n could be any value from 1 to N − 1.

• Attack 2: Schedule out all counting threads for the same interval delay of cd secs

one after the other in any order, where cd < 1.

• Attack 3: Schedule out all threads for the same interval delay of cd secs at the same

time.

In all cases, we assume the attacker not only knows the design variables of TimeSeal,

but can also identify the candidate set of counting threads of the associated application.

In reality, there may be several other threads associated with the application that may

further obfuscate the counting process.

Policy efficacy. To assess the efficacy of each policy against each defense, we define a

degradation metric, D, as the portion of subticks that will be omitted from the overall

subticks count across one SGX tick, e.g., if subticks_per_tick = 1000, and D= 0.5, that
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would mean an attack caused the subtick service to lose 50% of its resolution. We further

determine what is the maximum and minimum degradation an attack may achieve, Dmax

and Dmin, respectively, as well as the probability of achieving the maximum degradation,

P(D).

Table 3.1 summarizes the results of our formalization for each attack’s efficacy across all

policies. In general, Attack 3 is the most powerful and has complete control of the subtick

count degradation, D, but causes a detectable denial of service. Attack 1 has the most

consistent degradation under stealthy conditions assuming that an attacker can accurately

identify the set of counting threads. Attack 2 has the highest possible degradation but

with a much lower probability of success. In terms of choosing a policy, they all perform

the same on average across all attacks. However, Policy B’s performance is greater than or

equal to Policy A across SGX ticks, and provides more consistent performance than Policy

C–whose degradation fluctuates across SGX ticks since it is possible that an attacker

schedules out the threads with the largest count intervals. As such, we hypothesize that

Policy B will be the most robust approach against scheduling attacks. We will validate

this hypothesis empirically in evaluation section.

3.5.2 Overcoming SGX Delay Attacks

Referring back to TimeSeal’s design overview in Figure 3.2, we provide a high resolution

clock by overcoming SGX trusted time limitations. Assuming we choose an optimal

scheduling policy–tentatively, Policy B–that provides stable subtick values across stealthy

attacks, we can also use it to detect delay attacks. If an attacker delays one SGX time

Policy A Policy B Policy C
P(D) Dmax Dmin P(D) Dmax Dmin P(D) Dmax Dmin

A1 1 n
N

n
N

1 n
N

n
N

1 n
N

n
N

A2 ( 1
N

)N 1 0 ( 1
N

)N 1 0 ( 1
N

)N <1 0
A3 1 cd cd 1 cd cd 1 cd cd

Table 3.1: Efficacy of each attack against all policy designs enumerated in Figure 3.5. The
degradation metric D refers to the portion of subticks that will be lost due to the attack
over one SGX tick
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packet by nth of a sec, the previous SGX tick is 1 + n sec away from the current tick,

while the next one will be 1− n sec away from the current tick. A stealthy attacker that

wants to avoid detection delays SGX time packets by a little bit more than a sec and

makes SGX time fuzzy by twice the delay as established in Figure 3.1a. The effect of a

delay attack is time dilation and compression. Some elapsed seconds span more than a few

seconds, while other seconds only span a few msecs as shown in Figure 3.1b. As a result, a

time-aware application that relies on the physical notion of elapsed time calculates wrong

intervals [SP05].

Our design relies on the intuition that subticks over multiple seconds show large

variations under delay attacks. The attacker cannot avoid these large variations even when

it launches coordinated delay and scheduling attacks. With no knowledge of the time value

inside an SGX packet, the attacker does not know when a new SGX tick starts. There

are two ways an attacker can avoid subtick variations: it can delay packets by a small

value–which reduces the time error, or it can delay all packets by the same value–which is

not an attack because relative time stays the same. Both ways do not result in an attack.

To provide an accurate high resolution clock, the local time tlocal should join the SGX

ticks by a straight line. Figure 3.6a, 3.9a shows that tlocal significantly deviates from

true SGX ticks due to delay attacks. The first step to overcome delay attacks and align
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Algorithm 1 Delay Free Clock Model
1: procedure RestoreTrueSGXTicks(avg_subticks_per_sec,

subticks_persec_upperlimit, subticks_persec_lowerlimit)
2: a← avg_subticks_per_sec
3: u← subticks_persec_upperlimit
4: l← subticks_persec_lowerlimit
5: true_tick_dist← 1
6: new delayed tick :
7: d← delayed_subticks_per_sec
8: if d > u then . true tick found: Condition 1
9: true_tick_dist← 1
10: else if d < u & d > l then . true tick passed
11: true_tick_dist← true_tick_dist+ 1
12: else if d < l then . true tick found: Condition 2
13: true_tick_dist← 1
14: d← a
15: n← true_tick_dist
16: tdelay ←

∑n
1 d

a
− n

17: tlocal_shifted ← tlocal − tdelay
18: terror ← tlocal_shifted − SGXticks
19: goto new delayed tick

1: procedure Advance Time(tprev_local, avg_count)
2: terror ← procedure{Restore True SGX TICKS}
3: new subtick :
4: tlocal ← tprev_local + subticks

avg_count − slew{terror}
5: goto new subtick

tlocal with true SGX ticks is to approximately locate these ticks. We make an observation

that large delay variation gives rise to two conditions that are an indication of a delayed

tick being close enough to true SGX tick. Condition 1, as shown in Figure 3.6, arises

when delayed_subticks_per_sec is large enough for a delayed tick to be aligned with at

least one of the true SGX ticks. Once a true tick is identified, we shift the delayed tick

back to true tick by tdelay. This delay approximately equals delayed_subticks_per_sec

minus the average of delayed subticks avg_subtick_per_sec. We can find the error

in local time terror by subtracting tdelay from tlocal and shifting it to true SGX Tick at

tlocal_shifted. This error helps slew the clock to true time. Figure 3.6b shows a scenario

that gives rise to Condition 2 of detecting a true SGX tick., This condition states if

delayed_subticks_per_sec is small enough, the delayed tick overlaps the true tick within
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an error tolerance. In that case tdelay is zero and terror would be the difference in tlocal and

true SGX tick. Algorithm 1 provides the details of how we calculate tdelay and terror to

overcome delay attacks and slew the clock towards true time.

Calculating the right tdelay value is critical to construct a delay-free clock. Algorithm 1

shows in detail how tdelay is calculated from different set of parameters. The range of delay

variation helps select values for these parameters: subticks_persec_upperlimit determines

how large delayed_subticks_per_sec should be to satisfy Condition 1,

subticks_persec_lowerlimit satisfies Condition 2, whereas avg_subticks_per_sec is

the mean of multiple delayed_subticks_per_sec. This mean provides a good approxima-

tion of true subticks_per_sec. The upper and lower limits parameters are adjusted based

on the maximum, minimum, and average delayed_subticks_per_sec.

To align tlocal with true SGX ticks, it is necessary to find a true tick and extrapolate

time from there. As the occurrence of Condition 1 and 2 is not high, we maintain a

parameter true_tick_dist that determines how many delayed ticks have elapsed since the

last found true tick. In essence, it makes sure that tdelay is always calculated with respect to

true tick. In reality, error in time gets accumulated due to inaccuracies in tdelay calculation

with every passing delayed tick since the true tick. Therefore, the true_tick_dist value

should not exceed an accumulated error threshold that deems the time unreliable.

3.6 Implementation and Evaluation

We provide a scalable TimeSeal implementation on a SGX enabled computer with an

i7-6700K processor and 16 GiB memory running Ubuntu Linux 16.04.3, kernel version

4.10.32. The sgx_get_trusted_time API provides time from the hardware management

engine. An application that wishes to acquire secure time instantiates TimeSeal within

its own process to limit OS interactions and avoid delay attacks. Counting policies and

their associated parameters, e.g., the number of threads, counting order, and count values,

are maintained within the SGX process memory. To randomize the selection of threads,

and count values every SGX sec, we use sgx_read_rand API to generate a true random
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Attack 1 Attack 2 Attack 3
Single Thread N-1 Threads Single Thread N-1 Threads 50% cd
µ σ µ σ µ σ µ σ µ σ

Policy A 0.5‖ 3 7‖ 7 0.5‖ 3 9‖ 8.4 0.5‖ 1.8 7‖ 7 0.5‖ 3 9‖ 8.5 0.6‖ 8 25‖ 24
Policy B 0.002‖ 3 6.6‖ 5.2 0.068‖ 3 9.6‖ 8.5 0.076‖ 1.5 6‖ 5 0.05‖ 0.6 10‖ 7.4 0.08‖ 9.4 22‖ 24
Policy C 8‖ 2.7 300‖ 200 0.3‖ 0.6 1500‖ 1600 1‖ 11 81‖ 60 1‖ 25 100‖ 99 0.02‖ 5 31‖ 26

Table 3.2: Counting policies results for single and multiple-thread contexts, where µ and σ
are the mean and standard deviation of induced error in msec. A “Single" Thread attack
implies only one thread is scheduled out while an “(N-1) Threads" attack implies only one
thread is counting at a time. Format of error is {errortick ‖ errorOS}

number. Every thread increments its own counter based on the counting policy instead of

incrementing a common global counter. This is to avoid reliance on OS mutual exclusion

locks for race conditions. To manipulate thread count, OS may give two threads the lock

at once or may not give a lock to any thread at all [PG08].

Evaluation metrics. We choose two evaluation metrics. One metric is the time difference

of TimeSeal’s high resolution secure clock with SGX trusted time at the boundary of a

true SGX tick. We term this accumulated error per SGX tick as errortick. It represents

frequency error in TimeSeal’s clock. Note that TimeSeal’s clock is derived from SGX

time by constantly polling it. The SGX time access latency is around 13 msec on average.

Therefore, errortick would always have a standard deviation comparable to access latency.

The other evaluation metric compares TimeSeal’s jitter with respect to OS time.

We term it as errorOS. Considering an OS’s monotonic clock as the ground truth for

evaluation purposes, we generate small durations with respect to OS time. TimeSeal

timestamps these durations and the resultant jitter indicates its stability w.r.t. OS’s

monotonic clock. Because the oscillators for OS’s clock and TimeSeal’s clock are different,

there will be sub millisec level relative drift between both clocks. However, this drift is

masked by millisec level access latencies.

Countering scheduling attacks. Table 3.2 provides a summary of TimeSeal’s errors

in the presence of scheduling attacks. We run different experiments with three threads

(N = 3) counting under different policies (A, B, C) experiencing the three categories of

scheduling attacks (1, 2, 3) under 50% system load. The performance of Policy B is

comparable to Policy A in terms of empirical errors except that Policy B also decreases the
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Figure 3.7: Scheduling attacks 1 and 2 aborts either 1, 2, 3, or 4 threads out of 5 counting
threads. Policy B bounds the error to within tens of msec
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Figure 3.8: Delay attacks of different durations

attack’s success probability. Policy C performs worse when few threads are allowed to run

because of uneven count distribution among threads per sec. Lastly, Attack 3 degrades all

policies equally because it causes a detectable denial of service for a duration it is launched

in. Figure 3.7 shows the relationship between the number of threads and TimeSeal’s

errors. Using Policy B, we see a decrease in errors with an increase in number of threads

because of small attack success probability. Also note that 95th percentile errortick for

Attack2 is smaller as compared to Attack 1 because of its lower attack success probability

as discussed in Section 3.5.1.

Countering delay attacks. Time error is directly proportional to delay attack duration.

The more the SGX time packet is delayed, the more error an attacker can accumulate.

We test different delay attack intervals ranging from 0 to 1sec under 50% system load. In

Figure 3.8, although TimeSeal’s error increases with an increase in delay duration, our

delay mitigation technique bounds it to be within 100s of msec. For example, for a delay
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Figure 3.9: Time plot of true SGX, delayed SGX, and TimeSeal measured time. (a) Error
in subticks_per_sec due to delayed SGX ticks affects TimeSeal’s accuracy. (b) Delay
attack mitigation technique, connects measured time to true SGX ticks. (c)Scheduling
attacks on top of delay attacks decrease resolution as shown in zoomed-in plot

duration of 1sec, errortick has a 140msec mean and 342msec 95th percentile. errorOS has

137msec mean with 356msec 95th percentile. We can also detect and bound delay attacks

above 1sec by adjusting the subtick related parameters discussed in Section 3.5.2.

Overcoming scheduling and delay attacks. Figure 3.9 shows the effects of delay

attacks and scheduling attacks on time plots. SGX true time advances every sec (red

dashed line), delayed SGX time advances with variations around 1 sec (green solid line),

and TimeSeal’s clock advances with a msec resolution (blue dotted line). Delay attacks

distort frequency of TimeSeal’s clock such that it advances at a different rate every sec

as shown in Figure 3.9a.

Our delay mitigation technique restores true SGX ticks, adjusts TimeSeal’s frequency,

and slews accumulated errors of delay attacks. By doing so, Figure 3.9b shows that

the high resolution TimeSeal clock traces SGX ticks precisely and advances with a

stable frequency. If an attacker also launches scheduling attacks on top of delaying SGX
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Figure 3.10: An attacker delays SGX packets by 1 sec and launches scheduling attacks 1,
2, 3. The mean error distribution for all attacks remain within 100s of msec

packets, our policies make sure that the error remains bounded to within 100s of msecs.

Depending upon the scheduling attack type and cd value per thread, Figure 3.9c’s zoomed-

in plot shows a decrease in TimeSeal’s effective resolution. The wavy plot with small

time discontinuities is a result of different threads counting at different times due to

scheduling attacks. TimeSeal’s resolution degradation is much less than the clock errors.

Figure 3.10 presents the mean errortick and errorOS distributions for different scheduling

attack types and 1sec delay attacks. The mean of errors are a result of delay attacks while

the interquartiles (iqr) are a result of scheduling attack. Note that fewer number of threads

yield slightly large errors. For Attack 1 with N-1 threads counting (A1 : (N − 1)c), the

mean erroros is 135msec with 11msec iqr, and mean errortick is 138msec with 9msec iqr.

For Attack 1 with only one thread counting (A1 : c) the mean errors increase to 165msec

with 15msec iqr for both errors.

System resources overhead. TimeSeal threads are not given a high priority and

they are scheduled as normal threads. Systems under high load may give less CPU time

to TimeSeal threads resulting in errors due to varying subticks_per_sec as shown in

Figure 3.4. Scheduling attack achieves same degradation maliciously. Hence, we argue

that our clock model and counting policies are equally resilient to high load scenarios and

an attacker can’t obfuscate an attack during high load.

For every application that needs secure time, TimeSeal’s model of polling PSE for SGX

time is similar to current SGX model. To enforce certain time based policies, SGX enclaves

also poll PSE continuously to make sure that a certain duration has passed [sgx18].
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Therefore, we argue that there is no bandwidth increase over current SGX use cases.

However, although more counting threads under any scheduling policy decreases the

probability of an attack’s success, CPU usage increases. This implies a performance

degradation after a certain number of threads. Figure 3.7 supports this claim where four

threads provide the best performance, and degradation is minimal with decreasing threads.

Therefore, an application can strike a balance among the number of threads, CPU usage,

and required time error.

3.7 Discussion

The following are key points for TimeSeal’s design.

TimeSeal placement: TimeSeal’s components are enclosed inside application en-

clavesto avoid delay attacks on additional communication channels via the OS. This design

requires applications to have their own instances of TimeSeal threads–increasing the

CPU usage. One possibility to avoid delay attacks between PSE and TimeSeal is to

provide a high resolution clock within PSE. A modified PSE, though, will not be able

to use a secure channel with CSME because the root of trust isn’t established by Intel

servers [lin18a].

Attacks Validation. A diverse set of timers such as TSC, APIC, HPET, PIT are present

in Intel architectures. These timers are controlled by the OS. The diversity of these timers

give us the opportunity to query multiple timers to detect misbehaving OS. The OS

however can remain undetected by adopting an attack strategy of consistently lying for all

the timers. Moreover, the diverse OS timers cannot be leveraged against delay attacks on

SGX trusted time as OS and SGX time sources cannot be correlated. In future, we can

formulate a game theory based approach by giving time based challenges to OS that can

restrict its attack strategies.

Agnostic to Synchronization Protocol. In our TimeSeal implementation, we do not

necessitate the use of one synchronization protocol or the other. In fact we argue that any

synchronization protocol or a filter in the time synchronization literature can be used in

74



place of our linear regression filter.

TimeSeal for other TEE: TimeSeal’s architecture and design principles are not

dependent on one TEE. Though we used SGX, any TEE that provides access to a trusted

timer can be considered. Exploring the possibility of enabling TimeSeal for ARM

TrustZone is in consideration as it dominates the embedded market.

TimeSeal performance: The number of applications running TimeSeal is limited by

the number of logical cores on a CPU. If a CPU has 8 cores, only 8 applications can run

TimeSeal without being a victim of Attack 3 where all TimeSeal threads are scheduled

out at the same time. However, we do quantify and provide bounds on time degradation

for threads running only 50% or 75% of a sec in Figure 3.10.

Recommendations for vendors: To avoid complex and incomplete designs of secure

clocks–which is still an open problem–we list a set of requirements for hardware vendors

that fulfill all conditions of a secure clock to the best of our knowledge. First, there should

exist a hardware timer with associated registers that no privileged hardware or software can

write to. Second, this timer should be derived from a high frequency oscillator that should

not be overclocked or under-clocked by a malicious software. Third, the timer should have

a sufficient number of bits–preferably 64 bits–so that it never overflows. Finally, access to

the timer value should be securely memory mapped for fast access and independent of OS

manipulation and delays. These requirements can only be fulfilled by a hardware vendor.

3.8 Key Findings

In this work, we have shown that time can be attacked at all layers of a time stack;

via hardware timers, timekeeping software, and time transfer network packets. We also

demonstrate the time in trusted execution technologies such as Intel SGX and ARM

TrustZone can also be attacked. Exploiting vulnerabilities in the OS, we are able to

launch a delay attack on SGX trusted time and accumulate a timing error of multiple

seconds. Another demonstrated attack is scheduling attack also with an error accumulation

of multiple seconds. We thwart both these attacks via TimeSeal design and provide a
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high-resolution secure clock on commodity TEE with 10’s of milliseconds accuracy in the

presence of delay and scheduling attacks.

3.9 Conclusion

Securing time in an untrusted OS is a challenge. We present TimeSeal, a new secure

time architecture that leverages TEE for hardware timer protection and eliminates timing

limitations and vulnerabilities in TEE to secure time. TimeSeal provides a local secure

clock that is good for measuring time durations. There are a plethora of applications that

require secure global time [ZCC16] [CDE13b] [DR17]. Researchers have addressed global

time security by protecting time transfer packets in the network. This is an orthogonal

area of research, where we synchronize TimeSeal to global time. TimeSeal protects

time or in other words “seal" time so that no privileged adversary can arbitrarily change

the notion of time, and compromise safety and performance of applications.
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CHAPTER 4

A Case for Feedforward Control with Feedback Trim to

Mitigate Time Transfer Attacks

4.1 Introduction

Time Transfer is a way of sharing reference time among physically or geographically sepa-

rated entities. A shared sense of time is critical for many applications such as to correlate

observations in astronomical [AAA19] and financial [PH16] systems, coordinate tasks

between cell towers [HSA11], and choreograph acts among autonomous agents [KSB14].

Widely used time transfer systems either rely on one-way packets or a two-way packets

exchange. In a one-way time transfer system, a server/master sends its current time over

a network to multiple clients. This technique is simple yet its accuracy suffers from un-

compensated propagation delays. Global Positioning System (GPS) [AW80] is an example

of one-way time transfer system with tightly calibrated delays. In a two-way time transfer

systems, both master and a client exchange their current time with each other. The four

timestamp measurements from two packets help calculate round trip delays. A major

drawback of two-way packet exchange is the assumption that delays are symmetric in both

directions. In reality, these delays are asymmetric and translate to clock errors. Clock

synchronization protocols make use of two-way time transfer to calculate delays and clock

offsets. These offsets are fed to a feedback controller that adjusts a clock to compensate

for the offset.
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4.1.1 Time Transfer Attacks

Network elements that assist time transfer can be malicious. They can develop various Man

in the middle (Mitm) capabilities such as dropping, replaying, pre-playing, and delaying

packets. Prior works [MDA16] [YAY13] [DSD18] talk about attacks on time transfer

packets and mitigating these attacks using cryptographic [AFZ17a] [IW17] and network

security [sgx16] [AFZ17b] mechanisms. Unfortunately, delay attacks are considered too

strong and immune to proposed mitigations [UV09] [MVV17]. Researchers have attempted

to secure systems against delay attacks under many assumptions. Widely used assumptions

relate to the availability of excess or redundant information in terms of (1) multiple masters

providing reference time, (2) multiple communication paths to those masters, and (3)

at least two-thirds of those paths to not be compromised. These assumptions are not

realistic in the presence of a malicious gateway router that can potentially delay ‘all’

packets [DSD18]. There exist numerous synchronization architectures where redundant

resources come at a cost [Sym09]. The ultimate goal of a Mitm attacker is to move the

client’s clock away from true time towards its malicious time for illegal activities in high-

frequency trading [PH16], digital rights violation [CRS14], and spoofing location [SP05],

etc.

Prior work has identified two key problems in current synchronization protocols that

make them vulnerable to delay attacks. First, an attacker can induce large asymmetric

delays by delaying one packet in a two-way time transfer [MVV17] [DSD18]. Second, a

feedback control based clock adjustment mechanism amplifies the effects of delay asymmetry

by feeding the error back to the controller and steering the clock towards inaccurate time.

4.1.2 Contributions

It is already well known that one-way packets with a feedforward control can syntonize

clocks, however in this paper, we make a case that one-way time transfer and a feedforward

controller can achieve clock syntonization1 even in the presence of delay attacks. Syntonized

1The process of aligning frequencies of different clocks is called syntonization
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clocks help systems perform various operations such as measuring precise inter-event times

in localization [BHE00], residency delays in high-speed networks [GLY18], and execution

times for code profiling [CZR17]. We highlighted a key advantage of a feedforward controller

to compensate for delay attacks i.e, its ability to calculate relative frequency even in the

presence of constant delays. Feedforward control leverages the property that equally delayed

packets cannot give correct instantaneous offset, but they do preserve the rate of change

in offset i.e., the relative frequency of the two clocks.

In contrast to feedback control, feedforward does not rely on the instantaneous time

offset. Instead, it monitors the “rate of change" in this offset over multiple one-way

time transfer packets to calculate relative frequency error. A feedforward controller uses

timestamps from a free-running clock that is never adjusted. This is because the relative

frequency of two clocks is a property of their hardware oscillators. Comparing timestamps

of free running clocks derived from these oscillators gives the best estimate of relative

clock frequency.

We make an observation that if two packets are received at the same interval at which

they are transmitted, they either experience no delay or equal delays in the network. An

adversary may choose not to delay packets equally and degrade the feedforward controller’s

performance by injecting random delays. In this case, the received packets do not arrive

at the same interval at which they are transmitted, hence they experience unequal delays.

Leveraging this observation and the fact that feedforward control calculates accurate

relative frequency only for equally delayed/periodic packets, we propose a technique that

restores periodicity among unequally delayed packets. Given that a master transmits

packets periodically – which is the generalized case – we are able to filter received packets

and transform their timestamps to emulate received periodic packets under the right

conditions. Once we restore periodicity of the delayed one-way packets, we feed the

transformed timestamps of the emulated packets to a feedforward controller to calculate

the relative frequency error.

After aligning frequencies of different clocks in a secure manner, we present a secure

clock synchronization approach in the presence of delay attacks. To synchronize two clocks,
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we cannot rely on a feedforward controller as it only calculates relative frequency using

raw timestamps. We need to calculate the accurate clock offset i.e, the error between

a reference time and the adjusted time. Unfortunately, delay attacks make it harder to

calculate the exact offset. Therefore, we propose a packet filtering technique that looks for

delay patterns in consecutive packets to search for minimally delayed or, as we call them,

delay-free packets. These delay-free packets provide a good estimate of the clock offset.

Rather than directly adjusting a clock with this offset, we design a frequency shaper that

uses this offset to trim the relative frequency calculated by the feedforward controller. The

resultant trimmed frequency is used to synchronize the clock. In short, we calculate the

offset in a feedback loop and utilize it to shape the relative frequency for clock adjustment.

We call this clock adjustment mechanism feedforward control with feedback trim.

4.1.3 Advantages

Our proposed approach of feedforward control with feedback trim can syntonize clocks for

constant delays, and synchronize clocks in the presence of random delays and other delay

patterns. It comes with an additional benefit of reduced bandwidth as we mostly rely on

one-way time transfer with occasional reliance on two-way time transfer. This is in contrast

to traditional synchronization protocols that rely on two-way time transfer. Our standalone

software implementation can easily be integrated into various synchronization protocols

with minimal code changes. For proof of concept and to support one synchronization

protocol, we implement our packet filtering techniques along with feedforward controller

with feedback trim for Precision Time Protocol (PTP) [LEW05] and evaluate our system

on a real embedded platform [Bla] used in many clock synchronization applications. Our

evaluation shows promise and comparable performance in reference to systems that are

not under attack.

To summarize our contributions,

• We present a detailed experimental analysis of how different delay patterns affect

feedback and feedforward control based clock synchronization.
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Figure 4.1: (a) Symmetric delays in forward and reverse direction (δ1 = δ2), (b)
Asymmetric delays in both directions (δ1 > δ2)

• We identify a key property of equally delayed packets. These packets preserve the

relative frequency between two clocks. Hence we leverage equally delayed packets to

syntonize clocks with feedforward control.

• We propose two packets filtering techniques: one to restore periodicity of variably

delayed packets to calculate relative frequency, and the other to find delay-free

packets to calculate offset.

• We design a secure clock synchronization architecture under delay attacks. It consists

of a feedforward control with feedback trim based clock adjustment mechanism and

relies on a frequency shaper that trims the relative frequency based on the offset.

• Finally, we evaluate our proposed architecture on a hardware-supported testbed and

support new feedforward controllers for widely used precision time protocol.

4.2 Background

4.2.1 Time Synchronization Basics

In any time synchronization protocol, there is always a disciplinable clock and a timestamping

mechanism that captures event times from that clock. Packets exchanged in the network

act as events to be timestamped. These packets can either be timestamped in software or

hardware depending upon the desired synchronization accuracy and/or the availability

of hardware timestamping in a given platform. A time synchronization protocol relies
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on one-way or two-way time transfer packets to align a clock with a reference time. To

explain a time synchronization protocol, lets take an example of Precision Time Protocol

(PTP) [LEW05] that is widely used in high precision measurement and control applications.

The packet exchange for PTP is shown in Figure 4.1. Master node sends the SYNC

message at t1 and clients receive it at t2. The actual value of t1 is sent to client in a

follow up (FUP) message. The time offset of two clocks are, offset = t2 − t1 − delay. To
determine this delay, the client sends a delay request (DELAY_REQ) message at t3 that

reaches the master at t4. The master sends the timestamp t4 to client in a response

message (DELAY_RESP). In PTP, the timeliness of SYNC and DELAY_REQ message is

important as their timestamps are used to determine clock synchronization parameters.

The calculated delay = (t2− t3 + t4− t1)/2 is round trip delay divided into two symmetric

delays. The delay in SYNC message to reach the client is termed as forward path delay

(δ1), whereas the delay that DELAY_REQ message incurs is the reverse path delay (δ2).

PTP like other protocols also assumes that both forward and reverse path delays are equal

i.e. symmetric with a very small error margin as shown in Figure 4.1(a). If an attacker

launches a delay attack either on the forward or the reverse path, the delays are no longer

symmetric as shown in Figure 4.1(b), and the quality of time synchronization is degraded.

4.2.2 Time Transfer Attacks and Mitigations

There are many ways for an adversary in a network to attack time transfer packets and

degrade the accuracy of a time synchronization protocol. It can launch a removal attack

that selectively drops the synchronization packets before they reach the receiver. Note

that not all packets are dropped so as not to cause a DOS attack. Replay attack records

previous synchronization packets and replay them at a later time providing inaccurate

time information to the receiver. Pre-play attack injects new messages in the network

and tricks the receiver into believing that the newly forged messages are from a legitimate

sender. Substitution attack replaces time value inside a valid packet with a new value.

Finally, delay attack simply holds the packet for some time and send it later. Various
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cryptographic techniques protect against pre-play and substitution attacks by verifying

that the messages have indeed been sent by a legitimate sender [AFZ17a] [IW17]. A replay

attack is thwarted by checking the freshness of a packet by observing a monotonically

increasing sequence number [sgx16] [AFZ17b].

Delay attack however is considered too powerful to be completely mitigated [UV09]

[MVV17]. Cryptographic and network security mechanisms are insufficient to detect and es-

timate delay attacks. Some attempts have been made to bound these attacks [MDA16] [YAY13].

Most of these techniques rely on the diversity in servers that provide reference time [DSD18],

and the paths towards them [Miz12] [KB18] to bound delay attacks, while assuming that

not all paths to these servers are attacked. The assumption of a communication architec-

ture with multiple servers per client is valid for a Network Time Protocol (NTP) [Mil91].

However, all paths to those servers are compromised if a single gateway router is malicious

and delays all NTP traffic. In PTP however the availability of multiple masters is not

realistic. PTP networks rely on few grandmasters due to cost issues and utilize switches

that contain boundary clocks and transparent clocks to scale the network [Sym09]. In this

scenario, a single compromised switch can delay all the packets to PTP clients.

Prior works tried to calibrate round trip delays of different paths in the network.

During time synchronization, the two-way time transfer is not considered secure if the

packets exceed the expected round trip delay [SNW06]. Annessi et al. have tried to give

upper bounds on delay by modeling the clock drift [AFZ17b]. The offline modeling based

approaches have conservative bounds and give a smart attacker sufficient slack to launch

attacks and remain unnoticed. Narula et al. [NH18] presents a theory to assess security of

protocols in a generic setting. Their necessary and sufficient conditions give an idea of how

to prove a protocol’s security. By doing so, they prove that PTP [LEW05] is not secure.

In securing PTP, their assumptions of communicating over line of sight channel or shortest

possible path are not realistic. They also give a necessary condition of bounding delays

by estimating round trip delays a priori. Distance bounding protocols [SP05] leverage

the same idea for bounding distances but there are numerous attacks [HK08] [ABG17]

possible on these protocols.
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Researchers have also correlated different sensing modalities to timing signals. Dima

et al. [RTY17] secured NTP communication against delay attacks by detecting and

estimating path asymmetries through the use of power grid voltages. Their solution

requires specialized hardware and only works for grid-connected distributed systems.

Hence making it unsuitable for embedded and wireless sensor networks applications.

Seismic deployments are also used to recover temporal integrity [LDC09]. The availability

of seismic modality is not widespread and its accuracy is sub-seconds that is insufficient

for most applications.

4.2.3 Why clock synchronization protocols are vulnerable to delay attacks

There are two key problems in a clock synchronization architecture that an attacker

exploits to manipulate the time,

1. Clock synchronization protocols calculate offset between two clocks by utilizing

near-symmetric delays in a two-way time transfer. Both network variations and

adversarial components in the network can violate the symmetric delay assumption

in synchronization protocols. An attacker delays one of the two packets in a two-way

time transfer to achieve desired delay asymmetry. This asymmetry directly translates

to a clock error.

2. In a synchronization protocol, a controller adjusts a clock by aligning it to a reference

clock both in time and frequency. Most protocols use a feedback controller as shown

in Figure 4.2a. This controller either jumps time by a large offset or it uses a

small offset to tune the frequency of a clock called skew. In a closed loop feedback

control, next measurements are affected by the previous adjustments. In case of an

attack, adjustments are based on offsets calculated from asymmetric delays. These

adjustments affect the next measurements, thus accumulating clock errors.
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Figure 4.2: Global clock synchronization based on different clock adjustment mechanisms

4.3 Feedforward Control

In contrast to feedback control in current clock synchronization protocols, we propose

a feedforward control for frequency correction in the presence of delay attacks. Unlike

feedback, it decouples the time and frequency calculation so that the error in one does not

affect the other. A comparison of feedback and feedforward based clock adjustment is shown

in Figure 4.2b. In a feedforward system, the control is not driven by an error in the output.

Instead, it is based on the knowledge of the process. In context of clocks, the process

knowledge we use is that all clocks are derived from hardware oscillators that tick at a

nominal frequency. Due to manufacturing variations, the oscillators drift from their nominal

frequency. These frequency drifts are unique to a hardware oscillator. A free running

counter or a clock is directly impacted by this frequency drift. Comparing timestamps of

two free running clocks gives an estimate of their relative frequency drift. This is termed

as frequency error in context of a clock synchronization protocol. Feedforward control

directly compares the timestamps of two free running / raw clocks to get an accurate

estimate of relative frequency error. It uses this relative frequency to adjust the clock.

Thus a feedforward control is able to syntonize clocks i.e. aligns the frequency of two

clocks. An accurate estimate of this frequency reduces the need to synchronize often

thus saving network bandwidth. But the accuracy of feedforward control depends on how

accurate our process model is.

A feedback control continuously exchange messages to calculate and adjust the offsets.
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Frequently adjusting offsets indirectly compensates for the relative frequency error, but it

comes at a cost of increased bandwidth. Any error in offset affects the relative frequency

as well. Note that the feedback control sample timestamps from an adjusted clock to

calculate the offset, whereas a feedforward control gathers timestamps from a free running

clock to calculate relative frequency. Feedforward control also bypasses various sources of

error in an adjusted clock due to noisy measurements and asymmetric delays.

RADclock [RVB12] was the first to introduce a feedforward clock model. The difference

between RADclock and our architecture is that RADclock provides a feedforward clock

model [BRV09], whereas we propose a feedforward controller to adjust a general clock

model. RADclock derives frequency and time adjustments from two-way time transfer

and feedback controllers to adjust their feedforward clock. In our case, we use feedforward

controllers to calculate clock adjustments for the regular clock models in the kernel. Unlike

RADclock, our feedforward controller does not rely on a specific hardware functionality. It

can also be integrated with any clock synchronization protocol and work with any clock

model with minimal code changes.

We implement a feedforward controller for PTP, and switch from the regular PTP

feedback controller to this feedforward controller. Using multiple timestamps of a local

free running clock with respect to the reference clock over the passage of time, we calculate

the rate of change in clock errors. This rate of change determines how fast or how slow the

local clock should tick to be aligned with the reference clock. Once the relative frequency is

known, feedforward control can switch to infrequent packets exchange. One disadvantage

of feedforward control is that it cannot handle disturbances or transient events.

4.4 Inadequacy of the Status Quo

Before designing a feedforward based delay-tolerant architecture, an important step is to

analyze the performance and compare the behaviors of feedforward and feedback controllers

under attacks.
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4.4.1 Experimental Methodology

We introduce our experimental methodology early on to use it in our experimental analysis

and later on in evaluation.

The basic setup is shown in Figure 4.3a. It incorporates our own implementation of virtual

clocks derived from the same timing hardware on a single platform to alleviate performance

bias due to hardware variabilities. Each virtual clock is disciplined by a separate controller.

Time transfer packets flow between the master and the client for synchronization purpose,

typically with a poll period of half a second. These packets are delayed in the network

before reaching the client. Then the same network traffic is fed to all the controllers to

remove the effects of network variations.

In these experiments, we intend to compare the performance of a feedback control with

a feedforward control under delay attacks. Though our feedforward controller is generalized

and applicable to a wide variety of synchronization protocols, we choose PTP for our

experiments as it is widely used in many applications. PTP provides a set of feedback

controllers to choose from. We compare the commonly used Proportional Integral (PI)

controller with our implementation of a linear regression based feedforward controller. It

is essential to note that we use hardware timestamping capability to timestamp incoming

and outgoing packets.

For evaluation purposes, a separate box shown in Figure 4.3b generates events at the

rate of 8 events per second. These events act as common timestamping opportunities for

multiple virtual clocks under test. A monitor analyses the timestamps in the following

two ways,

1. Frequency stability: Finds timestamping jitter in all clocks to compare relative

frequency error of these clocks with respect to the master clock.

2. Time accuracy: Finds the absolute time accuracy of virtual clocks with respect to

the master.

All the experiments for synchronization and validation are run concurrently so that

clocks to be compared experience identical conditions, and show a real time performance.
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Figure 4.3: (a) A single platform testbed to synchronize virtual clocks to a master in the
network. Each virtual clock is disciplined by a separate controller. (b) Once the virtual
clocks are disciplined, we test their accuracy with respect to master by supplying common
events to all clocks with an event generator. All clocks timestamp the same events, and a
monitor analyses these timestamps.
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Figure 4.4: Periodic events occurring every 125 milliseconds are timestamped by two clocks,
where one clock is adjusted by feedback control and the other clock with feedforward
control. Both of these clocks experience forward path delays of 1 second. (a) feedback
clock jitter gradually oscillates to a steady state whereas feedforward clock jitter is smooth
from the start. (b) Timestamping jitter distribution for feedback based clock sync varies
in the order of 247 µseconds, whereas (c) jitter distribution for feedforward based clock is
only 9µseconds
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Timestamping Jitter under constant delay attack: We first run an experiment

where we constantly add one second delays to all one-way SYNC packets in PTP. This

induces asymmetry of 1 second, and an error of half a second in offset estimation. We

synchronize two virtual clocks on the same platform, one with feedback and the other with

feedforward control. Then generate periodic events separated by 125 milliseconds and use

both clocks to timestamp these periodic events. Using these timestamps, we calculate

the interval between consecutive events. Note that this interval should ideally be 125

milliseconds but due to errors in relative frequency calculation, there is a jitter in interval

measurements. We plot the timestamping jitter for both clocks. Nodes only need to align

their frequencies to measure fine inter-event times. Our results show that the frequency

error calculation for our feedforward clock has less variations under constant delay attack

as shown in Figure 4.4c because feedforward control is indifferent to asymmetric delay.

Whereas, feedback clock utilizes asymmetric delays to calculate the offset and then use

this offset to calculate frequency error. This results in high jitter as shown in Figure 4.4b.

Figure 4.4a shows how the jitter in both clocks varies over time.

Timestamping Jitter under random delay attacks: In reality, an adversary can

delay synchronization packets both in forward and reverse paths by any value. To illustrate

the effect of a random attacker, we imitate an adversary that delays packets by a random

value from a uniform distribution of 0 to 1 seconds. We synchronize one clock with

feedback control and the other with feedforward control using SYNC packets delayed

randomly in the network. In a separate process, we repeat the same validation mechanism;

the two clocks timestamp 125 milliseconds periodic events from an event generator. We

plot the clock jitter in Figure 4.5a. There is a jitter in the order of sub-milliseconds both

for feedback and feedforward clock. The jitter distributions in Figure 4.5b and 4.5c are

comparable. The Inter Quartile Range (IQR) for both clock’s jitter is around 250 µseconds.

We conclude that the feedback has similar clock jitter behavior for constant and random

delays, whereas the feedforward clock performs worse in the presence of random attacks.

Synchronization error under constant/random delay attacks: We also com-

pare the synchronization error of the feedback and feedforward clocks. Again the master
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Figure 4.5: Clock under random delay attack from 0 to 1 second. (a) Timestamping jitter
of both feedback and feedforward clocks have large variations in the range of -150 µsec to
150 µsec. The jitter distributions are shown in (b) and (c) with approximately 250 µsec
IQR.

and the client clocks timestamp periodic events. The errors are shown in Figure 4.6.

The synchronization errors in Figure 4.6a are influenced by constant delay attacks. Note

that the feedforward clock error is almost constant at -0.5 second with little fluctuations

that are hard to visualize in comparison to large error variations for feedback clock. The

variations in feedback clock are in the range of 800 µseconds. We conclude that a constant

delay attack only adds a large offset to a feedforward clock with no effect on the clock’s

frequency. Whereas, feedback clock is affected both in terms of an offset and large peak

oscillations due to frequency error. In Figure 4.6b however, we see that random delay

attack largely influences the open loop relative frequency calculation in a feedforward

controller. The random delay gradually steers the frequency in one direction and the

error of feedforward clock never converges. On the other hand, a feedback clock gradually

accumulates error and reaches a steady state value of one fourth of the maximum random

attacks. It oscillates in the order of milliseconds after reaching the steady state. This gives

us an idea that feedforward works well for constant attacks, but it performs far worse

under random attacks.

Delaying both forward and reverse path packets with equal delays in both directions is

not an attack because in this case the delay is symmetric. Feedback clock error however

takes longer time to converge in the presence of high symmetric delays, while feedforward

clock error quickly converges. Another delay attack model is to gradually increase delay to

a maximum attack value and then gradually decrease the delay to a minimum value. The
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Figure 4.6: Clock errors of feedback and feedforward based clock synchronization under
different attacks

behavior of both feedback and feedforward control is quite predictable in this scenario.

For both controllers, the clock error gradually increases to a maximum offset and then

decreases to zero. They both exhibit oscillating behavior with a period that depends on

the rate of change of delay.

Through our experimental analysis, we came to a conclusion that an attacker can cause

maximum damage by first launching a constant delay attack and then switching to random

delays. With this attack, both feedback and feedforward controllers jump to a clock error

that equals half the initial delay value and then oscillate at a maximum frequency due to

random delays. In case of feedforward clock, the error never converges.

Observations: We make three key observations after analyzing the behavior of both

controllers in the presence of different attacks,

1. The frequency error calculated by the feedforward controller is unaffected by constant

delay attacks. This gives us an intuition that we can syntonize clocks with a

feedforward controller if consecutive packets are equally delayed.

2. The problem of delay asymmetry does not affect one-way clock syntonization. But

delay asymmetry greatly influences two-way clock synchronization.
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3. Both feedback and feedforward controllers accumulate clock errors under different

attacks. The only way to reliably calculate offset between two clocks is through

one-way packets that do not experience delays, or through two-way packets that are

delayed by the same value in both directions.

4.5 Delay Attack-Tolerant Architecture for Clock Synchroniza-

tion

After observing the behavior of controllers under delay attacks, we first state our threat

model. Then leverage some of the observations we made in our experimental analysis to

put forward a delay attack-tolerant clock synchronization architecture for systems under

time transfer attacks.

4.5.1 Threat Model

Delay attacks are considered too strong to protect against [MVV17]. Prioir work [DSD18]

offered delay attacks mitigations for NTP with a weak assumption that only one-third of

the time servers and network links are compromised. We argue that an adversary sitting

on a gateway router can easily delay or attack all the packets for a client. In our work, we

consider a much stronger threat model, where all the links between clients and master

can be compromised. In other words, an attacker sitting on a network element is capable

of delaying all the packets by any value. A practical assumption however is the attacker

delays packets by a finite value to avoid detectable denial of service.

Clock synchronization protocols employ sanity checks through prior knowledge of the

environment, network and physical clock characteristics to reject outliers that exceed the

delay bounds. These bounds are conservative and gives attacker enough slack to launch

delay attacks. A smart attacker can significantly alter the time value within the specified

bounds. In our threat model, an attacker can delay packets by a value smaller or greater

than the synchronization period. Small, large, incremental, or distribution based delay
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variations with prior knowledge of the network delay are in scope.

In this work, we trust the master or any entity that provides the reference time

to the system. In many industrial systems, the nodes that provide reference time are

mostly considered secure. Most of the servers are equipped with GPS modules that

provide reference time in many clock synchronization protocols such as NTP, and PTP.

Any GPS spoofing attack is not in our scope. We do not consider any hardware clock

manipulation both at the master and the clients. Prior works have addressed hardware

based protections [sgx16] [RSW16]. Our threat model also excludes those network attacks

that are mitigated by cryptographic techniques. We are interested in addressing the

most powerful attack considered in clock synchronization literature; a delay attack that is

immune to any cryptographic or network security mechanisms.

4.5.2 Overview

The delay attack-tolerant clock synchronization architecture along with its major compo-

nents is shown in Figure 4.7. Our architecture is designed for a feedforward controller that

aligns clock frequencies for equally delayed packets. As not all packets are equally delayed,

we put forward a packet processing technique that restores periodicity of variably delayed

packets such that the feedforward controller can better estimate the relative frequency

error. As our focus is also to synchronize clocks in the presence of attacks, we search for a

property in consecutive one-way packets that can safely declare them delay-free. These

delay-free packets provide good offset estimates that are used by a frequency shaper to

trim the relative frequency. We refer to it as a feedback trim to the feedforward calculated

frequency. Finally the trimmed frequency is used to steer the clock towards true time.

We make the following key contributions to bound the effect of delay attacks on clock

synchronization protocols,

• Restore periodicity of delayed one-way packets under certain conditions with

a frequency tolerance. These transformed periodic packets at the client are assumed

to be equally delayed in the network.
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Figure 4.7: Delay attack-tolerant clock synchronization architecture

• Implement a feedforward controller that leverages the transformed one-way

packets to calculate the relative frequency error with respect to the master. This

frequency error is used to adjust the client clock’s frequency.

• Find delay-free packets or packets that experience less delays in the network to

calculate the time offset between the clocks. The occurrence of these packets depend

upon the maximum delay an attacker is capable of launching.

• Design a feedback trim to synchronize clocks. The feedforward calculated fre-

quency is trimmed based on clock offset to compensate for the accumulated error due

to inaccuracies of feedforward controller and the error in finding delay-free packets.

4.5.3 Design

We now explain the detailed system design.

4.5.3.1 Restore one-way packets periodicity

Periodic one-way packets from the master are delayed in the network by an adversary.

Our approach transforms the receive timestamps of these packets in a way that restores

their original periodicity. Maintaining original period of one-way packets does not reflect

zero delays in the network, rather it emulates equal delays for all the packets.

A master sends one-way packets with a predefined period. If two packets are sent with
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a time interval of s seconds, upon receiving the packets we mark those packets valid for

our clock synchronization if they satisfy one of the three conditions shown in Figure 4.8.

Packet a is sent before packet b, and both are s seconds apart.

Algorithm 2 Restore Periodicity
1: procedure Transform Timestamps

(sync_period, tolerance)
2: s← sync_period
3: ε← tolerance
4: sample new packet :
5: ta ← tprev_pkt . Timestamp of previous

packet
6: tb ← tnew_pkt . Timestamp of latest packet
7: inter_pkt_dist← tb − ta
8: if inter_pkt_dist > 0 then . In order

packets
9: if inter_pkt_dist = s± ε then .

Condition I
10: ta ← ta
11: tb ← tb
12: if inter_pkt_dist ≤ ε then . Condition

II
13: ta ← ta
14: tb ← tb + s

15: if inter_pkt_dist = ns± ε then .
Condition III

16: ta ← ta + (n− 1)s
17: tb ← tb
18: goto sample new packet.
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Figure 4.8: Two packets sent at a pre-
defined interval of s seconds experience
different delays in the network. Packet a
and packet b may incur same delay with
a small tolerance ε as shown in Condition
I. Packet a could be delayed s seconds
more than packet b such that both pack-
ets are only ε seconds apart from each
other as shown in Condition II. Packet
b could be delayed s times more than
packet a such that they have large delays
between them as shown in Condition III

1. Condition I: If the received packets arrive at the client in order and they are s

seconds apart within some tolerance ε, then they hold the periodicity property and

do not need to be transformed.

2. Condition II: If the received packets arrive in order and the time interval between

them is negligibly small then packet a is delayed s seconds more than packet b. In

this case, we transform the receive timestamp of packet b such that it reflects the

same delay as packet a and both packets remain periodic.

3. Condition III: If the received packets are in order and their inter-packet time is much

higher than the actual period, then it can be safely said that packet b is delayed

multiples of s times the packet a. We add the same amount of delay to packet a

timestamp to align it with the desired period.

Refer to Algorithm 2 for the steps to restore periodicity among received packets by

transforming their timestamps. The sync_period and tolerance are the input parameters
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Figure 4.9: An illustrated example of receive timestamps transformation to keep the
packets periodic

that can be tuned to achieve desired synchronization performance. When a new packet

is received, its receive timestamp is compared with the previous packet’s timestamp. If

their difference is greater than zero, we received in order packets. If the inter-packet time

difference is equal to the sync_period with a small tolerance, the timestamps are not

changed (Condition I). If the packets arrive at a very small time difference, we move the

second packet’s timestamp ahead by the period (Condition II). If the packets have big

enough of a difference, we transform the first packet’s timestamp so as to maintain the

sync_period (Condition III). We demonstrate an example in Figure 4.9 to show how the

transformation works. Packets a and b maintains the same period s hence condition I

is applied and their timestamps are used as it is. Packets b and c are very close hence

condition II dictates that packet c be delayed by s seconds. Finally, packet f is farther

away from g, and condition III transforms timestamp of f to be only s seconds away from

packet g.

The key to restore periodicity is the knowledge of the one-way packets period. We

assume that the master is trustworthy and sends one-way packets at a known rate. Current

feedback based clock adjustment in PTP also makes use of the knowledge of packets’

period. If the received packets at the client adhere to the same known period, they are

assumed to be equally delayed and do not alter frequency error calculation in a feedforward

controller.

4.5.3.2 Implement a feedforward controller

We filter out the packets satisfying the three conditions mentioned above, and transform

their timestamps such that the filtered packets are periodic with an error tolerance. Note
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that these timestamps come from a free running client clock that is not adjusted. This

free running clock is labeled as ‘Raw Clock’ in Figure 4.2b. After transformation, these

timestamps emulate packets that experience same delay in the network. The rate of change

of these timestamps w.r.t master timestamps over the course of one period determines

the frequency error of client clock w.r.t master clock. For example, given two sets of

transformed timestamps (t1previous, t2previous) and (t1current, t2current) for two consecutive

one-way packets, the frequency error is calculated as,

skew =
(t2current − t1current)− (t2previous − t1previous)

t2current − t2previous

Note that this equation to calculate frequency error (skew) based on previous and current

packets with equal delays in the network only holds true for a feedforward controller. The

benefit of feedforward over feedback under delay attacks is its ability to calculate frequency

error in the presence of large and varying delays. The transformed timestamps are not

advantageous to the feedback controller as it cannot make use of timestamps of equally

delayed packets.

We know that feedforward controller is only capable of aligning frequencies i.e. syn-

tonization between a master and a client because we gather timestamps from a free

running undisciplined clock. However, the feedforward controller gradually builds up

error in its skew calculation due to environmental disturbances, error tolerance, path

noise, and inaccuracies in timestamping. The accumulation of error due to inaccuracies in

skew estimation results in increased time error between the two clocks. To overcome this

error and also to synchronize two clocks, we propose a feedback trim to our feedforward

controller.

4.5.3.3 Search for delay-free packets

There are two components in a clock adjustment mechanism: one is the frequency and

the other is a time component. Two clocks are syntonized if we only adjust the frequency

component of a clock w.r.t a reference clock. On the other hand, two clocks are synchronized
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when we adjust the time component of a clock. Syntonized clock is enough for applications

interested in precisely measuring small inter-event times. Whereas, synchronized clocks

are necessary for applications that coordinate tasks or choreograph acts.

We already provide syntonization to clocks under delay attacks through a feedforward

controller. Now we attempt to synchronize two clocks in the presence of delay attacks.

To synchronize two clocks, we have to find an offset between them. As the offsets are

affected by adversarial network delays, we first filter the packets that are least affected by

network delays. In other words, we search for delay-free packets. To find packets with

less delays, we again rely on periodic one-way packets. Except now our conditions to

filter packets are different. In Figure 4.10, a master sends two packets at a known interval

s. We assume that an adversary is able to delay packets by at most x seconds. This

assumption is realistic as it can easily be checked by a sanity check. We assert that one of

the consecutive packets experience small delay if both packets satisfy the following two

conditions,

Algorithm 3 Find Delay Free Packets
1: procedure Packet Filtering(sync_period, off-

set_tolerance, max_delayattack)
2: s← sync_period
3: γ ← offset_tolerance
4: x← max_delayattack
5: sample new packet :
6: ta ← tprev_pkt . Timestamp of previous packet
7: tb ← tnew_pkt . Timestamp of latest packet
8: inter_pkt_dist← tb − ta
9: if inter_pkt_dist > 0 then . In order packets
10: if inter_pkt_dist > x+ s− γ then .

Condition IV
11: (t1, t2)← ta

12: if inter_pkt_dist < 0 then . Out of order
packets

13: if inter_pkt_dist > x− s− γ then .
Condition V

14: (t1, t2)← tb

15: goto sample new packet.
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Figure 4.10: To calculate clock offset,
only those packets are chosen that expe-
rience very small delay. The adversary
delays packets by no more than x sec-
onds. If two packets sent at a predefined
interval s seconds experience delays such
that packet a and packet b are x + s
apart then packet a incurs negligible de-
lay (Condition IV), or if packet a gets
ahead of packet b by x− s then packet
b incurs negligible delay (Condition v)

1. Condition IV: Given two packets sent at an interval of s seconds, capable of being

delayed in the network by at most x seconds, the first packet is said to be minimally

delayed if the two packets are in order and the received interval between these

packets is at least x+ s− γ, where γ is the error tolerance in offset calculation.
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2. Condition V: Given two packets sent at an interval of s seconds, capable of being

delayed by at most x seconds, we consider the second packet delay-free if the two

packets are out of order and the resulting interval between the packets is at least

x− s− γ.

Refer to Algorithm 3 for details.

There must be enough delay variation among two consecutive packets to satisfy the

above two strict conditions. We do not put the expectation of providing delay variation

on the attacker. Instead, we argue that less variations in delay attack would take longer

for the Condition IV, and V to be met and the clocks to be synchronized. But these less

variations in delay comes at a benefit. It supplements our approach to restore periodicity

and the ability of our feedforward controller to precisely calculate frequency adjustment.

On the other hand, huge variations in delay speed up our efforts to synchronize clocks.

Nonetheless, our clock syntonization and synchronization architecture works with a wide

variety of delay attacks.

4.5.3.4 Design a feedback trim for the feedforward controller

Feedback control based clock adjustment is only capable of providing synchronized time

whereas, our implementation of feedforward control with feedback trim (feedforward w/

feedback trim) shown in Figure 4.11 is capable of providing both syntonized frequency

and synchronized time.
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Figure 4.11: Feedforward control with feedback trim based clock adjustment
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Algorithm 4 Feedback Trim
1: procedure Trim Frequency Adjustment (skew, offsetc,

sync_period, max_adj)
2: delay-free packet :
3: f ← offsetc

sync_period
. time error converted to frequency error

4: loop:
5: skew_adj ← skew + f
6: if skew_adj < −max_adj then . lower frequency adjustment

limit
7: skewc = −max_adj − skew
8: f = skew_adj +max_adj . residual error
9: else if skew_adj > max_adj then . upper frequency adjustment

limit
10: skewc = max_adj − skew
11: f = skew_adj −max_adj . residual error
12: else
13: skewc = f
14: f = 0

15: if f ! = 0 then
16: goto loop . loop again for residual error
17: else
18: goto delay-free packet . no residual error

After identifying the delay-free packets, we record their timestamps (t1, t2). In Fig-

ure 4.11, reference time represents t1, and the timestamp from the client’s adjusted clock

is t2. The offsetc = t2 − t1 is calculated from the timestamps of delay-free packets. A

clock’s time can be adjusted in two ways. Either add the time error, offsetc, to the clock

or increase/decrease the clock frequency to gradually compensate for the clock error. We

refrain from adding offsetc to adjust the clock because it would cause discontinuities

in time, and a clock should not have time discontinuities greater than it can tolerate.

Instead we feed offsetc and the frequency error (skew) from the feedforward controller

to the feedback trim block. This block transforms the time error to a frequency error

f = offsetc/sync_period, and trims the frequency skew of feedforward controller. Details

of feedback trim algorithm is found in Algorithm 4.

4.5.3.5 Putting it all together

An adversary in the network delaying packets can cause a lot of damage to the clock

synchronization accuracy. We propose a delay attack-tolerant clock synchronization archi-

tecture that bounds the effect of delay attacks on clock errors. Our clock synchronization

architecture consists of four major blocks as shown in Figure 4.7. The timestamps of

delayed one-way packets are transformed in an effort to restore their periodicity such that
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a feedforward controller utilizes them to calculate frequency adjustment of a clock. Our

architecture is also capable of finding delay-free packets to assist in offset calculation. The

feedback control utilizes timestamps of delay-free packets to calculate the clock offset.

Using this offset, we trim the adjusted frequency and provide the final trimmed frequency

to discipline the clock. Thus presenting our architecture that uses feedforward control w/

feedback trim based clock adjustment.

4.6 Implementation & Evaluation

We implement a testbed to evaluate the clock synchronization architecture. Our testbed

consists of Beaglebone Black (BBB) [Bla] embedded Linux platform used in many ap-

plications in industry [ET03], fog computing [VDK17], smart grids [SBH12], financial

market [PH16], and autonomous agents [KSB14]. The ethernet interface on BBB is IEEE

1588 standard compliant, and provides hardware timestamping capability essential for

PTP protocol. Our testbed consists of two BBB nodes, one serving as the master and the

other as a client. These nodes are connected via an IEEE 1588 compliant switch [Mox].

We do not necessitate the use of one synchronization protocol for our approach.

However, we choose PTP [LEW05] for prototyping because of its demand in various high

precision applications. We run a modified version of linuxPTP [Pro] on BBB nodes. One

modification in PTP is we do not discipline the PTP clock. Instead we modify virtual clocks

derived from that PTP clock. This concept of virtual clocks is not new; the need of multiple

disciplinable clocks on a single platform has motivated this architecture [ADS16] [AAS18].

Posix standard [IEE] virtual clocks derived from the same hardware timer are also part

of the Linux kernel. Our approach does not depend on any single architecture. It can

work with POSIX clocks in the kernel as well as timeline in QoT stack [ADS16]. The

only assumption we make is the access to a free running raw clock from which we derive

a disciplinable clock. In the context of Linux kernel, CLOCK_MONOTONIC_RAW

serves as the free running clock whereas CLOCK_REALTIME is a disciplinable clock

derived from this raw clock. Our software implementation can be plugged into any
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Figure 4.12: Synchronization error of two client clocks with respect to a master clock. One
clock is disciplined by a feedback controller, and the other is adjusted by a feedforward
controller with feedback trim. For a fair comparison, both controllers process transformed
timestamps of periodic one-way packets, and timestamps of delay-free packets. Note that
these packets are delayed in the network randomly by 0 to 2 seconds.

synchronization protocol as a standalone combination of a filter and a controller. We

already provide controllers for PTP that work alongside PTP’s traditional PI and Linear

regression controllers. A user can switch between any controller of its choice.

We simulate delay attacks by adding delay to the received PTP SYNC packets at the

client as shown in Figure 4.1(b). Note that our approach utilizes only one-way SYNC

packets and does not require DELAY_REQ packets as feedforward controller does not rely

on calculated delay. We established in Section 4.4 that feedforward calculated frequency

error from one-way packets that are delayed equally is valid. Therefore, a constant delay

attack is not considered an attack for a feedforward controller. Instead it complements

frequency error estimation for the controller. But our results for random delay injection

show that feedforward based frequency estimation never converges. Therefore, we evaluate

our architecture for random attacks throughout this section, and discuss countermeasures

for a combination of attacks.
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Feedback-only versus Feedforward w/ feedback trim: We compare a Feedback-

only controller used in all synchronization protocols with our proposed Feedforward with

feedback trim controller in the presence of delay attacks. In this test case, a master

periodically sends one-way packets at 2Hz (0.5seconds). An adversary is delaying these

packets by randomly choosing a delay value from a uniform distribution of 0 to 2 seconds.

Both controllers are fed the same delayed packets. The adjustable clocks for the controllers

are derived from the same timing hardware ticking at 24MHz. This test scenario is depicted

in Figure 4.3a, where we alleviate the bias caused by network and hardware variations on

our results. In this test case, both the controllers process filtered one-way packets using

our Restore Periodicity and Delay-Free packets techniques explained in Section 4.5. We

choose the frequency error tolerance ε = 10 milliseconds for restoring the periodicity of

delayed packets, whereas, offset error tolerance γ = 100 milliseconds to find delay-free

packets. While both controllers discipline their respective clocks, we continuously measure

the time error of the adjustable clocks w.r.t the master clock using the setup shown in

Figure 4.3b. We run this experiment for 8 hours and the results are shown in Figure 4.12.

The time series plot of the synchronization errors in Figure 4.12a shows large fluctuations

in feedback clock error. While the clock error for feedforward w/ feedback trim has

comparatively small variations. We zoomed into this result to show the range of clock error

fluctuations for feedforward w/ feedback trim control. The feedforward controller calculates

the frequency adjustment / skew from raw timestamps of a free running clock. The property

of skew is that it does not vary much over time. Hence you see regions in Figure 4.12a for

feedforward control that do not have much variations. As a result, the median of clock

error distribution for feedforward w/ feedback trim control in Figure 4.12b(2) is almost

0.7µsecond with an IQR of only 4µsecond. On the other hand, the clock error distribution

for feedback control has a median of 84µsecond with and IQR of 212µsecond. These results

show 100 times synchronization improvement of feedforward w/ feedback trim control over

feedback-only control in the presence of delay attacks.

Figure 4.13 shows a zoomed in six seconds duration in Figure 4.12a. This result gives

the reason behind large clock errors in feedback than feedforward control. A you can see,
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Figure 4.13: Zoomed in plot of 6 seconds duration from Figure 4.12a. Feedback con-
trol steers clock towards high errors with high frequencies whereas, feedforward control
maintains clock error with consistent frequency

the clock error for feedback control keeps on increasing while the error for feedforward

control is quite consistent. We know that feedback control only relies on the clock offset.

This offset is calculated from delay-free packets, and the duration between two delay-free

packets is not predictable. The feedback controller adjusts the frequency of the clock

calculated from the clock offset, and waits for the next delay-free offset calculation. In

the meantime, it updates the clock using the previous frequency adjustment and the

error keeps on accumulating as shown in Figure 4.13 between two dashed lines. In this

particular case, the delay-free packet come after few seconds but it can take longer as well.

When the new delay-free packet comes, feedback control identifies the large clock error and

steers the error in the other direction. On the other hand, feedforward w/ feedback trim

control does not solely rely on the offset value from delay-free packets. For our controller,

the time and frequency components are independent of each other. While waiting for a

delay-free offset, it continuously adjusts the clock frequency calculated from transformed

timestamps of periodic one-way packets. Hence feedforward w/ feedback trim maintains

clock synchronization through syntonization.

As we establish that our approach of feedforward w/ feedback trim performs better

than feedback-only approach, we now present other controller combinations and find the

optimal combination among all. Other controller combinations are, feedforward-only, and

independent feedforward & feedback under delay attacks. It is to be noted that none of

these combinations exist in the current synchronization architectures. The only purpose

of this comparison is to validate our choice of feedforward w/ feedback trim over other
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combinations using our filtering and frequency shaping techniques.

(1) A feedforward-only approach only calculates the frequency adjustment using times-

tamps sampled from a free running raw clock. It does not account for clock offset and

accumulated clock error due to inaccuracies on feedforward frequency calculation. There

is no loop to feed the error back for compensation. This control can syntonize but cannot

synchronize the clocks.

(2) A feedforward & feedback approach uses two independent controllers. One feedforward

controller to adjust the clock frequency, and one feedback controller to fix the clock offset.

feedforward component syntonizes the clock, and feedback component synchronizes the

clock.

(3) A feedforward w/ feedback trim approach is similar to feedforward & feedback, except

here the two controllers are not independent. The feedback calculated offset is used to

trim the feedforward calculated frequency.

Comparison of feedforward-only, feedforward & feedback, and feedforward

w/ feedback trim: Now we compare the three possible controller combinations to find

the optimum one in the presence of delay attacks. In this test case, we try to synchronize

three virtual clocks on one client to a master. The reason of putting all clocks on a single

client is to remove hardware and network variations related biases in results. Each of these

clocks is disciplined form one of the above 3 controllers. For a fair comparison, all the

controllers process the same filtered packets after restoring packets periodicity and finding

delay-free packets using approaches in Section 4.5. We plot the clock errors in Figure 4.14.

In the presence of random 0 to 2 seconds delay attacks, Figure 4.14a shows that the

performance of feedforward & feedback and feedforward w/ feedback trim clock errors is

comparable. Their clock errors fluctuate in the range of -50 to 200µseconds with large

durations of stable error. The feedforward & feedback median error is 0.27µsecond and

0.93µsecond IQR. While feedforward w/ feedback trim median error is slightly larger

as 1µsecond with 11µsecond IQR. The slightly better results of feedforward & feedback

control comes at a benefit of increased clock discontinuities as shown in the zoomed plot
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Figure 4.14: Clock errors for three different controllers. Less error fluctuations for
feedforward & feedback control as well as feedforward control w/ feedback trim. An
added advantage of smooth error adjustment by the latter controller shown in zoomed in
subplots in (a) and (b). feedforward-only control never compensates for clock offset and
accumulates error at a small rate. Note the change in x-axix and y-axis for both (a) and
(b)

inside Figure 4.14a. This one minute zoomed plot shows how both controllers adjust their

clock offsets. As feedforward & feedback adjusts offset independently, it has no choice but

to jump the time to adjust the clock. These jumps cause discontinuities in time that are

not desirable. On the other hand, feedforward w/ feedback trim transforms the calculated

offset to a frequency adjustment. Then gradually adjust the frequency with maximum

and minimum bounds to compensate for the offset. Thus avoiding time discontinuities at

the cost of increased clock error.

We have yet to explain the performance of feedforward-only approach. We plot the

normalized clock error in Figure 4.14a by subtracting all the errors from the first error.

Thus the plot represents the rate of increase in error because feedforward control does

not adjust clock offsets. The increased clock error is due to inaccuracies in calculated

frequency adjustment. Note the sudden jumps in error. These jumps occur when a wrong

feedforward based frequency adjustment makes the clock progress at the maximum fre-

quency. We have set the limits of frequency adjustment to not exceed 10µseconds/second.

In our test duration of almost 90 minutes, the clock error increased to approximately 2
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milliseconds at the rate of 22µseconds/minute median and 15µseconds/minute IQR. Even

though this error accumulation rate is low, an adversary may end up accumulating large

errors over large durations. Therefore it is required to compensate for these errors. Hence

feedforward-only approach could only work for measuring small durations inter-event times

where the 20µseconds/minute error accumulation can be tolerated. In cases where better

syntonization or where synchronized clocks are required, this approach would not work.

Performance under large delay attacks: So far our experiments had a random

delay injection in the range of 0 to 2 seconds. We run the same set of experiments of

comparing different controller under large delay attacks of 0 to 4 seconds. The clock errors

of feedforward & feedback control and feedforward w/ feedback trim control in Figure 4.14b

are not as stable as errors for these controllers in Figure 4.14a. The median error for

feedforward & feedback control is -0.4µseconds with 38µseconds IQR, while feedforward

w/ feedback trim control provides 47µseconds median error with 124µseconds IQR. Even

though the high IQR of clock errors shows less error stability, we are still able to provide

decent synchronization accuracy that many applications require. With different delay

distributions, choosing the right frequency and offset tolerance to filter delayed packets

greatly affects the synchronization performance.

Optimizing Frequency tolerance (ε) and offset tolerance (γ):

Frequency tolerance ε is the upper error limit our system can ignore in calculating

frequency adjustment when checking for different conditions to restore delayed packets’

periodicity as explained in Section 4.5. Offset tolerance γ is the system’s upper error limit

in its offset calculation when finding delay-free packets. Filtering delayed packets that

satisfy conditions in Figure 4.8 and 4.10 is affected by ε and γ value. Too high tolerance

values result in high false positives. Less packets are filtered out increasing the probability

of accepting those delayed packets that do not necessarily satisfy the desired conditions.

Too low tolerance produces false negatives and valid syntonization and synchronization

opportunities are missed. Therefore, it is necessary to find the optimal tolerance values
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Figure 4.15: Showcasing the relationship between frequency tolerance and clock error rate.
Higher the tolerance, higher the rate of error accumulation raising the instantaneous clock
error.

when filtering packets.

We evaluate our delay-tolerant synchronization approach with three different ε values.

The result in Figure 4.15a shows the clock error for different ε values. For ε = 1 millisecond,

the clock error is small with relatively less number of high outliers. For same ε value,

the conditions to restore periodicity do not occur often, hence there are less chances

for the feedforward controller to calculate frequency adjustment. That is why a wrong

frequency adjustment keeps on doing the damage before the next frequency adjustment

can be calculated. The result are a few outliers in Figure 4.15a for 1 millisecond. On

the flip side, the small tolerance range reduces false positives resulting in valid frequency

calculation most of the time, hence the small clock error. The error accumulated rate due

to wrong frequency calculation is also less for ε = 1 millisecond in Figure 4.15b. The high

IQR with respect to median error accumulation rate signifies occasional wrong frequency

calculations. The clock error and the rate at which this error gets accumulated keep on

increasing with the rise in ε value. As ε increases, the high chances of calculating wrong

frequency on false positives increases clock error as well as error accumulation rate.

The clock errors are also dependent on the offset tolerance γ. Note in Figure 4.16a

that the clock error keeps on decreasing with an increase in γ. A controller with small γ
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Figure 4.16: Showcasing the relationship between offset tolerance and clock error. Higher
the tolerance, lesser the clock error but only till a certain limit beyond which the errors
are marked as attacked. Offset tolerance does not affect error accumulation rate

value takes more time to synchronize because high tolerance puts strict bounds on offset

error and reduces the chance of getting a delay-free packet. This results in high clock

error accumulated due to the inaccuracies in frequency adjustment. A large γ value means

getting delay-free packets more frequently, hence increased opportunities to fix the clock

offset and overcome accumulated error due to wrong frequency. But there is a limit to this

increase as too high a value increases false positives and the clock error has large outliers

and huge discontinuities as shown for γ = 1500 milliseconds in the subplot in Figure 4.16a.

There are huge jumps in the order of seconds that are heavily influenced by delay attacks.

Thus a large γ value is useful but only up to a certain limit. The error accumulation rate

is only a function of ε, hence it remains unaffected by γ in Figure 4.16b.

Our architecture can dynamically select tolerance values by keeping track of error

accumulation rate, time taken to synchronize, and calculated offset outliers. High error

accumulation rate gives an indication to decrease ε while frequent and large offset outliers

is an indication to decrease γ. Reducing γ also speeds up synchronization. Ultimately, an

optimal combination of frequency and offset tolerance gives small and stable error.

Incremental delay attacks and countermeasures: There are three major kinds

of delay attacks: constant delay, random delay, and incremental delay. Most of the other
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attacks are a combination of these attacks. We already analyzed and evaluated constant

and random delay attacks. Indeed our approach works best under large delay variations

but it can also detect attacks with small delay variations over a longer time. Over small

duration, an incremental attacker injects small delays. If these increments are smaller

than the frequency tolerance (epsilon), our approach can potentially makes use of them to

calculate the adjustment frequency. If left unchecked, a patient adversary can accumulate

large error over a long period by inducing small errors in adjusted frequency. We can

thwart this attack by not only applying our restoring periodicity conditions to consecutive

packets but also every tenth or hundredth packet, depending on the value of incremental

attack. This value can be dynamically adjusted in many ways. Keeping the same ε, our

approach can detect the attack and filter packets accordingly. Thus it is able to bound

the errors induced by incremental attacks. Similarly, small variations between consecutive

packets can never satisfy conditions for delay-free packets. We repeat the same method

above by applying the conditions on every tenth or more of a packet. When an adversary

is able to accumulate an error in the order of our offset tolerance γ over multiple periods,

our conditions for delay-free packets will be satisfied. Depending upon the value of γ, the

conditions may occur sooner or later.

4.7 Key Findings

This work is the first to overcome network delay attack under a very strict threat model i.e.

delaying all time transfer packets to a client node. We evaluated our design by preserving

the accuracy of precision time protocol in the order of microseconds by overcoming constant,

random, and incremental delay attacks. Our design features a feedforward controller for

synchronizing clock frequency with a reference, and a feedback trim to synchronize the

clocks. Our architecture also works in non malicious networks. The idea of restoring

packets periodicity in the presence of attacks is equally valid for packets that are not

delayed. In a benign network, the packets reach at almost the same interval hence it can

be used to calculate frequency adjustment. As we mostly rely on one-way packets and
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rarely upon two-way packets over long durations in clock synchronization, our system

consumes less bandwidth as compared to traditional protocols. Summarizing all the

results, feedforward control w/ feedback trim outperforms other controllers with high clock

accuracy, no time discontinuities, and achieving tunable syntonization as well as clock

synchronization in the presence of different kinds of delay attacks.

4.8 Conclusion & Future Directions

Security in the context of time is important as many applications are emerging that have

moved away from traditional “clockless” assumption [GLY18]. Systems are increasingly

making use of synchronized clocks to enhance the accuracy of network measurements and

reduce the complexity of distributed system protocols. On the other hand, adversaries

are targeting timing primitives for copyright theft, illegal trade, and location theft, etc.

Cryptography and network security mechanisms have thwarted various attacks on time

transfer packets but delay attack is too strong to be mitigated completely. We pointed out

the key issues in current clock synchronization architectures that make them vulnerable

to delay attacks and propose a new delay attack-tolerant synchronization architecture.

Built on top of a feedforward control with feedback trim clock adjustment mechanism

coupled with packet filtering techniques, the architecture is capable of bounding delay

attack errors.

In the future, we intend to provide a formal security analysis of our delay attack-tolerant

clock synchronization architecture and provide provable error bounds under all possible

attacks. Showing an implementation for NTP is also an interesting direction where we

can utilize the excess information from multiple servers to tighten the error bounds for

strong delay attacks.

We are also considering some interesting future research directions. We know that

securing time transfer packets is meaningless if the timing hardware and software stack are

stealthy. Researchers show that an adversary can cause hardware faults by overclocking

digital circuits and not satisfying their timing constraints [TSS17]. A malicious OS can
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manipulate timer registers [sgx16], and a host can lie about time [BPH15]. It would be

beneficial to protect all layers of the time stack – the hardware timers, system software,

and the network packets.
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Part III

Systems for Timing Precision
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CHAPTER 5

gPHC: generalized Precise Hardware Clock

5.1 Introduction

Modern distributed systems comprise of many heterogeneous devices. In order to choreo-

graph their actions, these devices need to share a common notion of time, which may or

may not be pinned to some global time coordinate like UTC. Various hardware and software

solutions exist for providing standalone and networked devices with precise knowledge

of time. For example, GPS and atomic clocks, network adapters that perform hardware

timestamping [LEW05], and synchronization algorithms that achieve low-nanosecond time

synchronization between devices [LWS11]. These precise time solutions are mostly available

for wired interfaces, preferably ethernet. We have yet to see precise time solutions for

applications in Low Range Wireless Personal Area Networks (LR-WPAN) even though

numerous applications in LR-WPAN require precise time-awareness such as real-time

positioning systems, formation flying, distributed sound systems, and foraging applications.

IPv6 over Low power Personal Area Network (6LoWPAN) is a powerful technology

that defines the upper layers for the LR-WPAN MAC and PHY layers [CC09]. The

key idea is to provide IP connectivity for resource-constrained devices so that they may

participate in the IoT with their sensing, communication, and data delivery capability. In

addition, 6LoWPAN is interoperable with IPv6 based networks, and software written for

6LoWPAN is compatible with IPv6 based solutions. These characteristics along with access

to cloud-based services increase the chances of penetration of 6LoWPAN for applications

in LR-WPAN.

This motivates us to enable PTP over 6LoWPAN interface to bring precision timing
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to applications in LR-WPAN. In fact, we provide a generalized Precise Hardware Clock

(gPHC) abstraction that enables high precision for all processors, co-processors, radios,

and other interfaces equipped with the necessary hardware capabilities. As a proof of

concept, we prototype it for LR-WPAN and 6LoWPAN, though the purpose of this paper

is not only to implement timestamping capability and a PHC for a specific radio but also

to provide a generalized guide for developers to implement their own gPHC over desired

hardware.

We make use of the existing PTP Clock infrastructure in the Linux kernel [CM10], and

the networking stack to implement hardware timestamping for LR-WPAN and 6LoWPAN

interface. We also expose these radio interfaces as a PTP clock. In PTP terminology, the

PTP clock is referred to as a Precise Hardware Clock (PHC). We provide the wireless

version of a PHC along with the capability to precisely timestamp external events, generate

precise hardware interrupts, and provide pulse-per-second (pps) signal for onboard time

alignment of peripherals and processor.

There are indeed many drivers written to expose the network interfaces as PHC such

as National Semiconductor PHYTER (dp83640), AMD 10GbE Ethernet Soc (amd-xgbe),

Freescale eTSEC gianfar (gianfar), and Intel 82574 (e1000e). All of these PHCs are pinned

to an ethernet network interface. Contrary to these, we put forward a wireless PHC1. We

implement the wireless PHC driver on top of the PTP class driver to expose the LR-WPAN

and 6LoWPAN interface as a PHC (/dev/ptpX character device) to the userspace services

and applications. Using this hardware clock and the hardware timestamping functionality

implemented in Linux, we run PTP synchronization service [Pro] as an IPv6 based protocol

to discipline Precise Hardware Clocks (PHCs) in a distributed network.

Our experimental testbed consists of beaglebone black devices interfaced with the

Decawave DW1000 radios, which is a short-range wireless Ultra-wideband (UWB) radio

[SPN05]. UWB radios are LR-WPAN and 6LoWPAN compliant. We provide PTP support

over UWB radios and achieve synchronization accuracy in the order of nanoseconds. One of

1Intel is working on PHC support for WiFi but they have not released yet
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the results shows that the propagation delay in the UWB wireless medium is deterministic.

This is due to the fact that UWB signaling has low power spectral density and have

reduced interference with other radio frequencies.

5.2 Background

Before diving into details, we go through the fundamentals of few networking standards

and timestamping capabilities of the networking stack.

5.2.1 IEEE 802.15.4 (LR-WPAN) and 6LoWPAN

The IEEE 802.15.4 standard defines the protocols for low-rate, low energy, and low-cost

wireless data communication devices transmitting RF signals over short range in personal,

local, or metropolitan area networks. This is in contrast to WiFi, which offers more

bandwidth at the cost of high power [LSS07]. IEEE 802.15.4 standard is implemented as

a Low Rate Wireless Personal Area Network (LR-WPAN). Key features of LR-WPAN are

optional allocation of guaranteed time slots, channel access protocols, energy detection,

and link quality indication. LR-WPAN standard define these features only at the PHY and

MAC layers in the network stack. Other standards like Zigbee, Thread, and 6LoWPAN

define upper layers for LR-WPAN to provide the entire networking stack. 6LowPAN

provides LR-WPAN nodes with IP communication capabilities. The advantages of IPv6

over LR-WPAN frames is that IP based technologies already exist; the pervasive nature of

IP networks allows use of existing infrastructure, IPv6 is more suitable for higher density,

and IP based applications can make use of socket interface for programming. Low-power,

IP-driven nodes and large mesh network support make 6LoWPAN technology a great

option for Internet of Things. It open doors for many applications such as precision Real

Time Location System (RTLS), home automation, building security, distributed sound

system, and gaming.
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5.2.2 Ultra-wideband (UWB) radios with Hardware Timestamping support

UWB radios are LR-WPAN and 6LoWPAN compliant. They use very low energy levels for

short range communication. The key characteristic of UWB radios is that they transmit

over an absolute bandwidth of more than 500MHz. Spreading information over a large

bandwidth decreases the power spectral density, reducing interference with other systems

and enabling coexistence with conventional radio frequencies with minimal interception.

The large bandwidth also alleviates small scale fading [GTG05]. UWB pulses are timed

very precisely across a wide spectrum, and the receiver signal detector should match the

transmitted signal in bandwidth, signal shape and time. A mismatch results in loss of

margin for the UWB radio link. UWB signaling combines low rate precision communication

with positioning capabilities, and allows centimeter level ranging [GTG05].

During frame transmission or reception, the Start of Frame Delimiter (SFD) detection

event marks the end of the preamble and the start of the PHR (PHY header). The

IEEE 802.15.4 UWB standard nominates the time when the start of the PHR arrives

at the antenna as the significant event to capture the transmit or receive timestamp in

a hardware register [Man]. Antenna delay effects the transmit and receive timestamps

accuracy. Antenna delay occurs between internal processor digital timestamp at the start

of the PHR and when the start of PHR is actually transmitted or received at the antenna.

Antenna delays can be calibrated to get more accurate timestamps.

Table 5.1: Flag options for network sockets based hardware timestamping in Linux

Flag Description
SOF_TIMESTAMPING_TX_HARDWARE Generate transmit timestamp in the hardware by Network Interface Clock
SOF_TIMESTAMPING_RX_HARDWARE Generate receive timestamp in the hardware by Network Interface Clock
SOF_TIMESTAMPING_TX_SOFTWARE Generate transmit timestamp in kernel driver by Network Interface Clock
SOF_TIMESTAMPING_RX_SOFTWARE Generate receive timestamp in kernel driver by Network Interface Clock
SOF_TIMESTAMPING_RAW_HARDWARE Report any generated hardware timestamp when available

5.2.3 Network Sockets based Timestamping in Linux

Networking stack in Linux provides socket attributes to query software or hardware times-

tamps. The socket attribute used to get the software timestamps is SO_TIMESTAMPNS.
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Socket attribute to request the generation of hardware timestamps, and report the hard-

ware timestamps is SO_TIMESTAMPING. Bitmap of flags provided by

SO_TIMESTAMPING socket attribute determines the generation or reporting of hard-

ware timestamps. Different timestamping options corresponding to different flags are

summarized in Table 5.1. Socket types that support timestamping are RAW, UDP, and

Stream sockets. The hardware timestamping capability however is contingent upon a

radio’s capability of generating timestamps in PHY or MAC.

A process reads the timestamp by calling

recvmsg(intsockfd, structmsghdr ∗msg, intflags) linux api [pagb] on a network socket.

The flags field determines if the reported timestamp came for a received packet or a

transmitted packet. In the case of packet transmission, the outgoing packet is looped back

to the socket’s error queue with the transmit timestamp appended to the message ancillary

data (CMSG). The flag used to retrieve this transmit timestamp is MSG_ERRQUEUE.

On packet reception, the receive timestamp is also stored in the message ancillary data

CMSG (cmsg_data). cmsg_data consists of struct timespec ts[3]. This structure returns

three timestamps. Software timestamps are passed in ts[0] while hardware timestamps

are passed in ts[2]. The attributes of CMSG determines the type of socket and the

type of timestamping. If the CMSG attributes cmsg_level equals SOL_SOCKET , and

cmsg_type is SO_TIMESTAMPING, then ts[2] has a value of transmit or receive

hardware timestamp.

5.3 Related Work

It is currently possible to synchronize system clock in Linux to the order of milliseconds

with the Network Time Protocol (NTP) [Mil91], or nanoseconds with the Precision Time

Protocol (PTP) [LEW05] and compliant hardware. More specialized projects, such as

WhiteRabbit [LWS11], attain sub-nanosecond error – enough to measure the distance light

travels in a second with millimeter accuracy – by compensating for cable delay asymmetry

and using Synchronous Ethernet to frequency-lock devices. Authors of [CM10] were the
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first to provide a Precise Hardware Clock (PHC) infrastructure in the Linux kernel, also

refereed to as a PTP clock. Authors in [CMR11] makes use of the PHC support in

Linux to synchronize the PTP clock with the Linux system clock. In short, the PTP

protocol is implemented around powerful abstractions and a complete system support for

precise timing. PTP however is exclusive to ethernet interface; select companies provide

PTP-compliant ethernet interface and drivers. We argue that other network interfaces

particularly wireless NICs can leverage the PTP capabilities.

There have been attempts to enable PTP for WiFi radios. Authors in [MGT11] tried

wireless clock synchronization based on PTP and software timestamping using specialized

drivers. The accuracy however is compromised by software timestamping in WiFi drivers.

Authors in [Exe12] proposed hardware timestamping for WiFi radios. They estimate delay

between the received signal and the local clock through timing recovery measurements with

an FPGA based implementation. The use of additional and specialized hardware limits the

use of their approach, and multipath propagation was also a liming factor. Other wireless

technologies like Ultra-wideBand (UWB) radios have emerged recently, where [DFR11]

achieved high precision timestamping based on UWB signaling.

One interesting direction in time synchronization literature is for the applications to

know what sort of synchronization accuracy or Quality of Time the underlying system

provides. Authors of [ADS16] coined the term Quality of Time and reported the timing

uncertainty to the applications. In a similar context, [AF07] provides a detailed comparison

of timestamping accuracy different hardware and software provides.

5.4 PTP over LR-WPAN and 6LoWPAN

To be able to run PTP over any network interface, it is essential to follow three steps: (a)

implement socket based hardware timestamping in the radio driver and MAC software,

(b) expose the radio as a PHC clock, and (c) discipline the PHC clocks in a distributed

network through packet exchange. These three steps are covered in detail in this section.
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Figure 5.1: Flow chart of hardware timestamping configuration for LR-WPAN (8021.5.4
standard)

5.4.1 Enable socket based hardware timestamping in LR-WPAN and 6LoW-

PAN stack

Various Network Interface Cards (NIC) have the capability to shadow capture timer values

in hardware registers upon packet transmission and reception. The drivers written for

these NICs however may not make use of these timestamps stored in hardware registers.

Even though the networking stack in Linux provides sockets and socket buffers to store

and transfer timestamps up the stack. Currently, various Ethernet NICs support network

sockets based hardware timestamping. The drivers of these NICs read the timestamps

in hardware registers and push these timestamps to the socket buffer. In order to see

the timestamping capabilities of a particular NIC, run ethtool − T ethX, where ethX

corresponds to the network interface.

In this section, we will walk through the necessary steps to add socket based hardware

timestamping support for a particular network interface. Our steps are explained in

reference to WPAN2 (802.15.4) and 6LoWPAN interface but the procedure is generalized

enough to be applicable to other network interfaces as well.

5.4.1.1 Hardware timestamping configuration

The first step is to configure which outgoing and incoming packets should be timestamped.

The NICs should not be timestamping all packets since the code responsible for times-

tamping may slow down the network stack on a critical path. After all, not every user of

the network stack requires accurate hardware timestamping. Applications use the ioctl

2LR-WPAN will be referred to as WPAN from here on for simplicity
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SIOCGHWTSTAMP to choose which outgoing packets to timestamp in hardware

(tx_type) and which incoming packets to timestamp in hardware (rx_filter). This ioctl

is also used to retrieve the timestamping configuration (tx_type and rx_filter) that may

have already been set. Refer to the file, /include/linux/net_tstamp.h for complete values

of timestamping configuration.

Figure 5.1 illustrates the entire flow of hardware timestamping configuration for the

WPAN NIC. The SIOCSHWTSTAMP and SIOCGHWTSTAMP ioctls are initiated

in the userspace (shown as wpan ioctl block in Fig 5.1). These ioctls are passed down to

WPAN MAC software in the kernel (mac802154 block in Fig 5.1). mac802154 handles

these ioctls by invoking the driver’s registered callback functions. We used three registered

callbacks for timestamping configuration: hwts_get, hwts_set, and hwts_info, and

implemented these callback functions in the WPAN driver (wpan driver block in Fig 5.1).

The following code snippet shows how mac802154 handles the hardware configuration

ioctls,
mac802154_wpan_ioctl (...) {

struct ieee802154_local *local = sdata ->local; ...

case SIOCSHWTSTAMP:

if (local ->ops ->hwts_set)

err = local ->ops ->hwts_set (&local ->hw, ifr);

case SIOCGHWTSTAMP:

if (local ->ops ->hwts_get)

err = local ->ops ->hwts_get (&local ->hw, ifr);

... }

mac802154 defines the hardware timestamping configuration callback functions along

with other network operations such as, asynchronous frame transmission, channel access,

and address assignment. The callback function (hwts_info) which returns what kind of

packets the NIC is capable of timestamping, and the functions (hwts_get and hwts_set)

which return what kind of packets the application wants the NIC to timestamp are shown

in the following listing,
struct ieee802154_ops {

int (xmit_async)(struct ieee802154_hw *hw,

struct sk_buff *skb); ...
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int (hwts_get)(struct ieee802154_hw *hw,struct ifreq *ifr);

int (hwts_set)(struct ieee802154_hw *hw,struct ifreq *ifr);

int (hwts_info)(struct ieee802154_hw *hw,

struct ethtool_ts_info *info);

};

Ethtool [paga] is a useful tool that provides visibility into the timestamping capabilities

of a NIC. To provide ethtool support in the WPAN driver, mac802154 makes use of

ethtool_ops and implements its callback function .get_ts_info, which further invokes a

nested callback function hwts_info to get the desired timestamping capabilities from the

driver. The complete ethtool flow is shown in Fig 5.1 and the following code would make

it more clear,
static const struct ethtool_ops mac802154_ethtool_ops = {

.get_ts_info = mac802154_get_ts_info ,

};

static int mac802154_get_ts_info(struct net_device *ndev ,

struct ethtool_ts_info *info) { ...

if (local ->ops ->hwts_info)

return local ->ops ->hwts_info (&local ->hw, info);

}

5.4.1.2 Hardware timestamping implementation

Socket Buffer (sk_buff) is a core data structure in Linux networking stack, designed

to store protocol PDUs for packet transmission and reception. As the packets enter or

leave NIC, they are processed up or down the stack through socket buffers. These buffers

optionally store hardware timestamp for packet transmission and/or reception inside

a structure skb_shared_hwtstamps which is a part of skb_shared_info as shown in

Fig. 5.2. Network driver (wpan driver in Fig. 5.2) is responsible for copying the timestamps

captured in hardware registers to the skb_shared_hwtstamps structure in socket buffer.

The following code snippet shows how a timestamp is copied from a register to socket

buffer upon frame reception.
static void wpan_async_rx () { ...

struct sk_buff *skb;

struct skb_shared_hwtstamps *sshptr;
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skb_hwtstamps(skb)

wpan ioctl
mac802154

SIOCSHWTSTAMP
SIOCGHWTSTAMP wpan driver

ethtool -T wpan

hwts_info

get_ts_info

hwts_get
hwts_set

…
skb_shared_hwtstamps {
ktime_t hwtstamp   }
}

sk_buff

skb_shared_info {

socket

put_cmsg(hwtstamp)

recvmsg()
wpan driver

Figure 5.2: Timestamps are copied to socket buffer by the wpan driver. The socket buffer
store the timestamp in the message ancillary data (CMSG) to be read by an application

sshptr = skb_hwtstamps(skb);

sshptr ->hwtstamp = RXhardwareTimestampValue;

}

In the above code, skb_hwtstamps(skb) function returns the pointer to

skb_shared_hwtstamps structure in the socket buffer. Using this pointer, a network

driver can set the hwtstamp to the timestamp value captured in hardware register

(RXhardwareT imestampV alue in the code above). The procedure of copying transmit

timestamp is a bit different though. Since transmit timestamps are reported by looping

the outgoing packet to the socket error queue (as mentioned in previous section), the

function, skb_tstamp_tx() (shown in the following code snippet) is used to copy the

captured transmit timestamps in hardware registers to the socket buffer.
static void wpan_async_tx () { ...

struct skb_shared_hwtstamps sshptr;

ssh.hwtstamp = TXhardwareTimestampValue

skb_tstamp_tx(skb , &ssh);

}

The entire flow of hardware timestamp implementation is shown in Fig 5.2.

The wpan driver is responsible for writing the hardware timestamps in registers to socket

buffer. socket reads the timestamp from the buffer and put it in the ancillary data (CMSG)

of the message. A userspace application retrieves timestamp in CMSG by calling the

recvmsg function on the network socket.
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5.4.1.3 Hardware timestamp configuration & implementation for 6LoWPAN

After setting up hardware timestamp configuration and implementation for WPAN, the

next step is to enable these functionalities for 6LoWPAN interface. Since 6LoWPAN

represents the upper layers of WPAN in a network stack, we just need to add function

hooks in 6LoWPAN software to pass the ioctl calls to the underlying WPAN driver.

The SIOCSHWTSTAMP and SIOCGHWTSTAMP ioctls for harwdare timestamping

configuration, called on a 6LoWPAN interface, are passed down to the ioctl of WPAN

driver.
static int lowpan_ioctl (...){

struct net_device *real_dev = lowpan_dev_info(dev)->real_dev;

real_dev ->netdev_ops ->ndo_do_ioctl(real_dev , ifr , cmd);

...}

In this listing, the real_dev represents the WPAN device of the 6LoWPAN interface.

The ndo_do_ioctl is forwarding the arguments of 6LoWPAN ioctl to WPAN ioctl. We

implement the ethtool functionality for 6LoWPAN in a similar manner by forwarding

ethtool call to the WPAN driver.

5.4.2 Expose Radio as a PHC Clock

PTP clock is also referred to as a Precise Hardware Clock (PHC). A clock that supports

hardware timestamping for packets transmission and reception, and has associated pins with

external event hardware timestamping and deterministic hardware interrupt capabilities

is a PHC. Richard et al. [CM10] was the first to provide PTP clock infrastructure in

Linux kernel along with a standard API for user space programs and kernel clock drivers.

The structure used to represent a PHC is ptp_clock. This is a powerful abstraction with

drivers written around it to abstract away from hardware-specific code.

After enabling hardware timestamping for WPAN in Linux, the next step is to expose

the WPAN interface as a ptp_clock. This is essential because it provides a clock source

that is central to maintain time and discipline time. A ptp_clock is an abstraction on

top of an oscillator that is used to drive a hardware timer, from which an overflow-safe
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logical clock is derived using the cyclecounter and timecounter structures in Linux. The

key functionalities to implement this clock are listed here,
static struct ptp_clock_info wpan_ptp_info = {

.owner = THIS_MODULE ,

.name = "WPAN Clock",

.max_adj = 1000000 ,

.n_ext_ts = 0,

.n_per_out= 0,

.pps = 0,

.n_pins = 0,

.adjfreq = wpan_ptp_adjfreq ,

.adjtime = wpan_ptp_adjtime ,

.gettime = wpan_ptp_gettime ,

.settime = wpan_ptp_settime ,

.enable = wpan_ptp_enable ,

};

A ptp_clock is a wrapper around the posix_clock interface and provides additional/op-

tional pin capabilities. ptp_clock provides an interface to enable or disable the clock

source, configure timer pins (for timestamping inputs or pulse-width modulated outputs),

and discipline the clock (either in hardware or software). Pins are configured through the

hardware timer subsystem using .enable and .verify function callbacks. The time can be

observed or set through .gettime and .settime function callbacks, which reduce to read

from or write to instructions on the cyclecounter and timecounter. The WPAN driver

implements the correct function callbacks, and register the existence of the precise clock

through ptp_clock_register, with the kernel’s PTP subsystem. This clock is exposed to

userspace as /dev/ptpX character device.

5.4.3 Synchronize Distributed gPHCs

We have configured and implemented hardware timestamping for WPAN and 6LoWPAN

in Linux and exposed these interfaces as a PHC. Note that a single PHC (/dev/ptpX)

represents WPAN as well as 6LoWPAN since both are a part of the same networking

stack. The next step is to synchronize the PHCs in a distributed network. Linuxptp [Pro]

is a synchronization daemon for PTP and it supports synchronization for three kind of
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network packets; Ethernet (IEEE 802.3), IPv4, and IPv6 packets. 6LoWPAN supports

IPv6 packets and it provides an adaptation layer that is used to fragment packets if IPv6

packets are large enough to exceed the maximum MTU (127 bytes) of 802.1.5.4 packets.

Since PTP packets are multicast, the packet sizes will not exceed the 802.15.4 maximum

MTU. We used the IPv6 packet option for running Linuxptp over the 6LoWPAN interface.

We choose the end-to-end (E2E) mode over peer-to-peer (P2P) for PTP because E2E is

more flexible and does not require the entire infrastructure (switches and routers) to be

PTP-compliant as required in P2P mode.

5.5 Evaluation

We set up a test bed comprised of Beaglebone Black devices (BBB) [Bla]; it is a low cost

development platform running Linux operating system. We interface a UWB decawave

radio DW1000 [Man] to the BBB through SPI using the device tree overlay. DW1000 is a

low power, low cost transceiver IC compliant to the IEEE 802.15.4-2011 standard. It has

the capability of hardware timestamping. We package the DW1000 driver as a loadable

kernel module that supports the following functionalities,

• Configure hardware timestamping in network stack by implementing MAC callback

functions; hwts_set, hwts_get, and hwts_info. These functions are invoked

through ioctl calls from userspace to set, get and query hardware timestamping

capability.

• Upon frame transmission and reception, copy timestamps from hardware registers

to socket buffers.

• Develop all the functions necessary to implement a ptp_clock and expose it to

userspace as a /dev/ptpX character device.

We also modify the Linux kernel source code such as mac802154, 6lowpan, and UDP socket

interface files to implement hardware timestamping for wpan and 6lowpan.
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Figure 5.3: Synchronization accuracy over WPAN and 6LoWPAN based radio (DW1000),
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Figure 5.4: Synchronization Accuracy is a function of the synchronization period over
UWB DW1000 radios

The instructions to set up a node for wpan & 6lowpan time synchronization, and the

complete source code repository for this work can be found at,

https://bitbucket.org/rose-line/ptp-wpan-6lowpan

The master in PTP synchronization sends periodic Sync messages to slaves while

the slaves send periodic Delay_Req messages to the master in E2E mode. Delay_Req

messages are used to compensate for the packet propagation delay in the medium. Since

the variation in wireless propagation delay is minimal for UWB transmissions, we statically

computed a fixed propagation delay to compensate for the synchronization bias. We then

test the synchronization accuracy (offset) of two nodes (one acting as a master and the

other as slave) with and without the Delay_Req messages. As seen in Fig 5.3(a), the

mean offset is almost 0.3 nsec with a standard deviation of 2.27 nsec for the case when no
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Delay_Req messages are exchanged. The offset standard deviation increases to 5.3nsec

as shown in Fig 5.3(b) when we enable periodic Delay_Req messages, which is mostly

because of the transmission delay jitter, and clock quantization noise.

We conclude from these results that in this wireless setting, where path delay does not

change much, and we can estimate this delay through statistical means, it is better to

reduce the number of synchronization messages by keeping the periodic Sync messages,

and exchanging Delay_Req messages only when needed and not in a periodic fashion.

This takes us to our next result. We plotted the effect of synchronization period to the

synchronization accuracy in Fig 5.4. We argue that accuracy is a logarithmic function of

the synchronization interval, and a synchronization protocol should exchange messages

only as often as needed to achieve the required synchronization accuracy, and not more.

There is no need to send Sync and Delay_Req messages beyond the required accuracy.

5.6 Key Findings

gPHC abstraction assist developers to access high precision over commodity devices and

peripherals such that the same synchronization protocols can be run on heterogeneous

devices greatly reduces developer burden, and eases the reuse of existing and well tested

protocols. Also, since most of the coordinated IoT applications are composed of heteroge-

neous devices and posses high precision requirements, gPHC provides ease of integration

and hardware-agnostic solutions. Our results show that we provide the same level of

synchronization performance using a software based solution with no dependence on a

specific hardware.

5.7 Conclusion

For NICs capable of timestamping events in hardware, we have provided a generalized

guide to enable network sockets based hardware timestamping in Linux. This is the key

to run PTP synchronization over a network interface. We have also implemented a precise

128



hardware clock for a wireless network interface using the PTP clock infrastructure. We

also explored the PTP clock abstractions beyond the radio interfaces, and extend the

precision time support to other peripherals like processors and co-processors over gPHC.
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Part IV

Systems for Testing Timing Robustness
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CHAPTER 6

OpenClock: A Testbed for Clock Synchronization

Research

6.1 Introduction

Hardware capabilities required for clock synchronization have developed significantly in

the past decade; hardware timestamping feature is introduced for many processors, co-

processors [AAZ17], and network interface cards [AS17], and new timing abstractions have

been added in operating systems for precise timing [ADS16]. Systems have extensively

made use of time-based technology developments to push for higher timing accuracy.

These systems, however, lack a comprehensive testing environment to test and compare

synchronization algorithms.

Industrial and automotive applications heavily rely on clock synchronization. These

applications operate under uncertain environments and prone to hardware faults, network

failures, or man in the middle attacks. To develop a clock synchronization algorithm that

is robust to faults, failures, and attacks, comprehensive testing is necessary before practical

deployments in safety-critical applications. Unfortunately, many algorithms are not tested

for faults and attacks as it is hard to reproduce them on distributed devices.

Due to hardware characteristics of a clock, no two clocks are the same; Cho et al. [CS16]

have used unique clock characteristics for fingerprinting electronic control units in cars.

To compare multiple synchronization algorithms in a fair manner, their disciplinable clock

models should be derived from the same hardware clock. A clock model is affected by

short and long term variations in jitter, wander, and skew due to physical characteristics
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Figure 6.1: Testbed architecture

of oscillators and environmental variations due to temperature and aging.

For fair algorithmic comparison, and the ability to test algorithms under faults and

attacks, we assert that it is essential to provide a clock synchronization testbed on a single

host, as a single platform is subject to the same hardware and network conditions. The

big challenge however in testing clock synchronization algorithms on a single platform is

the absence of multiple similar clocks. We propose OpenClock, a testbed that supports

multiple virtual clocks derived from the same physical clock, alleviating the bias in results

from the physical and network characteristics. OpenClock consists of multiple components

as shown in Figure 6.1. A clock management engine initializes and manages three layers

of clocks: platform clocks that define the hardware timing capabilities, synchronization

clocks that assist time synchronization protocols, and application clocks that provide the

notion of time to applications.

As shown in Figure 6.1, OpenClock supports multiple clock synchronization protocols

in three key steps. First, the dashed (blue) line represents the initial setup that bootstraps

the required clocks for synchronization. Second, the dotted (red) line shows the interactions

among clocks, synchronization services, and the network to perform clock synchronization

and discipline the virtual clocks. Finally, the solid (green) line retrieves time from

disciplined virtual clocks and transfer it to applications. These three steps are necessary
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for testing a clock synchronization algorithm offered by OpenClock testbed.

OpenClock also has the capability of testing algorithms in the presence of attacks.

It consists of a network attack simulator that can be used to inject different kinds of

attacks. The attack simulator imitates an adversary sitting on a network element that can

arbitrarily delay victim packets in the network. Users leverage the attack simulator to test

the conditions under which their algorithms fail. Users can also design new algorithms and

test their resilience to attacks. To demonstrate the usage of OpenClock, we test different

use cases in this paper. The design of OpenClock is modular, extensible, and it is open

source. Developers can extend the testbed functionalities will minimal effort.

In this work, we lay the foundation of a testbed for clock synchronization research.

This testbed can be extended in many ways, from supporting tunable synchronization

parameters to providing attacks and faults primitives.

6.2 Hierarchy of Clocks

Clocks are the essential part of time synchronization protocols because they do timekeeping,

timestamping, and scheduling. A clock is represented by a timing stack. This stack consists

of an oscillator that oscillates at a particular frequency. The frequency of oscillation

corresponds to the clock resolution. A counter counts the oscillations, and a software

converts those counts to a human readable time in seconds. The ability of a clock to

measure small time intervals is limited by its resolution, and a clock can be no more

accurate to some reference time than its resolution.

A clock is either a software abstraction in the operating system or a logical mapping

in the application. Our proposed clock synchronization testbed OpenClock consists of a

hierarchy of clocks as shown in Figure 6.1. The clocks at the bottom of the hierarchy are

(A) platform clocks ; they represent the timing characteristics of a particular hardware. The

middle layer in the clock hierarchy is comprised of (B) synchronization clocks; they are

derived from the platform clocks and assist time synchronization protocols. The clocks at

the top of the hierarchy are (C) application clocks ; they are derived from synchronization
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clocks, and exposed to applications for timekeeping, and timestamping.

6.2.1 Platform Clocks

Platform clocks define the timing capabilities of a given platform. There are three types of

platform clocks; a 1) system clock, a 2) precise hardware clock, and a 3) peripheral clock.

Every device has at least one of these clocks. Below, we explain the types of platform

clocks in reference to the Linux operating system.

1. System Clock provides a local sense of time to the operating system and user

processes. System time is the number of time units passed since an epoch e.g, POSIX-

compliant systems such as Linux count seconds since 1st January 1970. It’s timing stack is

shown in Figure 6.2 (middle vertical path). Linux uses hardware counters as the basis for

higher-level clock abstractions: the clocksource encapsulates a non-wrapping hardware

counter. The clocksource contains a member-function for reading the hardware counter,

and mult and shift parameters that convert the counter value into nanoseconds for

timekeeping. CLOCK_REALTIME is the Linux system clock that is exposed to userspace via

the standardized POSIX clock interface. This interface allows the system clock to be

disciplined using synchronization algorithms such as NTP [Mil91] and PTP [LEW05]. We

refer to the system clock as SYS from now onward.

2. Precise Hardware Clock (PHC) is capable of timestamping events and schedul-

ing tasks in hardware [CM10]. Unlike system clock, a PHC provides hardware pins for

precise timestamping and accurate interrupt generation. In Figure 6.2 (left vertical path),

an oscillator source is used to drive a hardware counter, from which an overflow-safe logical

PTP clock ptp_clock is derived using the cyclecounter and timecounter abstractions.

This clock is exposed to userspace as a PTP character device. It extends a POSIX clock

interface and implements hardware pin functionalities. A PTP clock is also called a

PHC. A userspace daemon can synchronize this clock to other PHCs in the network.

PHC provides high synchronization accuracy and low synchronization jitter because it

timestamps network packets in hardware. We refer to a PHC clock as PHC from now
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Figure 6.2: The timing stack of three different Platform Clocks in Linux OS

onward.

3. Peripheral Clock is a bare-metal peripheral clock on a platform such as a co-

processor clock. The applications running on an operating system can access this clock via

the Userspace I/O (UIO) Linux kernel subsystem as shown in Figure 6.2 (right vertical

path). UIO maps regions of the peripheral clock memory and registers directly into

userspace, with a small amount of kernel-space code to handle interrupts. This allows

most of the driver logic to run in userspace instead of kernel-space, reducing the need for

debugging kernel modules. UIO is used because it has low latency and is supported by

both old and new Linux kernels. Thus a peripheral’s clock is accessed at the userspace via

UIO. We refer to this clock as PPHL from now onward.

6.2.2 Synchronization Clocks

For the working of a time synchronization protocol, two clocks are needed. A local clock that

is used for timekeeping, and a network interface clock that timestamps the incoming and

outgoing packets at the interface. For most of the platforms and synchronization protocols,

a single clock is used both for timekeeping and packets timestamping (NTP [Mil91],

PTP [LEW05], FTSP [MKS04]). In OpenClock, we assert that the usage of different
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clocks for timekeeping and timestamping in a synchronization protocol provides a modular,

and extensible design. We refer to these clocks as synchronization clocks that are derived

from platform clocks.

1. Core Clock is a synchronization clock in OpenClock testbed. It does timekeeping

by providing a core sense of time to the entire platform. For a clock to qualify as a core

clock, it must provide the ability to read a strictly monotonic counter that cannot be

altered. Core clocks may also provide interfaces to expose platform-specific functionality

such as, timestamping and generating interrupts at precise time.

2. Network Interface Card Clock (NICC) is the second synchronization clock in

OpenClock testbed. It timestamps the synchronization packets at the network interface.

Only those network interfaces that can accurately timestamp packet transmission and

reception – at the physical or MAC layers – are exposed as NICC. This enables clock

synchronization protocols to precisely estimate the offset between two clocks, and the

propagation delay associated with a medium. Like core clocks, NICC provide the ability

to read time, and optionally provide I/O functionality for precisely timestamping an event,

or generating a very deterministic pulse in the future. However, a NICC is not necessarily

monotonic and it can be disciplined. In addition, NICC do not provide the ability to

generate interrupts, and cannot be used to accurately schedule user-level application

threads.

NTP only has a core clock that also timestamps network packets, while PTP does not

have a core clock and disciplines a network clock. A user process cannot use PTP clock to

schedule events. In OpenClock, we provide synchronization clocks and mandates the use

of a core clock while making NICC usage optional. However, we believe that both types of

clocks are required for precise clock synchronization and scheduling events. Depending

upon the hardware capabilities of a platform, and synchronization requirements of an

application, a core clock can be derived from any platform clock, whereas, NICC can only

be derived from a PHC or a PPHL.
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6.2.3 Application Clocks

For fair algorithmic comparison, we establish that multiple disciplinable clocks are needed

on a single platform. Currently, the platforms and operating systems only provide a

single disciplinable clock. In OpenClock, we leverage a timing abstraction called a

timeline [ADS16] that derives its time from a core clock projection. That way, multiple

timelines or virtual clocks are derived from a single core clock on one platform. The

timeline abstraction was first proposed by Anwar et al. [ADS16]; they used timelines to

synchronize distributed clocks with desired accuracy. Note that in OpenClock, timelines

are the application clocks, and the synchronization protocols discipline these application

clocks. The synchronization clocks (core and NICC) are not disciplined, they are only

used to assist the synchronization protocol.

Timeline maintains a virtual time base with respect to an epoch. The timeline

abstraction enables the OS to provide as many disciplinable clocks as needed by the

applications. Timelines enforce isolation among different synchronization algorithms and

their respective clock adjustment routines by providing a unique disciplinable virtual clock

to each synchronization protocol. An application creates a timeline with a unique uuid

and specifies its synchronization requirements and protocols. These protocols synchronize

their respective timelines under the given requirements. Hence the timeline abstraction

provides a natural isolation among multiple protocols running on the same platform.

6.3 OpenClock Architecture

OpenClock is a clock synchronization testbed that is used to compare different synchro-

nization algorithms on a single platform. Figure 6.3 shows the OpenClock architecture.

It consists of a clock management engine that interacts with synchronization services to

manage and discipline timelines. The detailed procedure is: (1) an application registers

its synchronization requirements with the clock management engine. (2) This engine

assigns a platform clock to core clock and NICC according to the requirements. (3) If a
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Figure 6.3: Clock synchronization steps in OpenClock architecture

different platform clock is assigned to core and NICC, they both should synchronize to

each other and present the same time. NICC timestamps network packets to synchronize

to a reference time, and (4) send those timestamps to all the synchronization services. (5)

These services utilize the timestamps in their algorithms to calculate clock disciplining

parameters, and fix their respective timelines. Note that each synchronization service

disciplines its corresponding timeline. (6) The applications can then retrieve synchronized

time from their timelines, and compare the performance of different synchronization

algorithms. We now cover the key components of OpenClock in detail.

6.3.1 Clock Management Engine

The clock management engine initializes and manages the hierarchy of clocks (explained

in Section II). This engine assess the hardware timing capabilities of a platform and

expose them as platform clocks. SYS is present on every platform and operating system.

However, this clock does not have the hardware capabilities to measure precise intervals

or schedule tasks at precise time instants. PHC have these hardware capabilities but it’s
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to provide the reference time to the timeline’s subgroup. The
synchronization rate is determined by the highest accuracy
requirement in the network. Hence, the node which has the
highest requirement in its timing subgroup can become a
master and push packets with a rate corresponding to its
accuracy requirement.

Synchronization Service: The synchronization service op-
erates in userspace and comprises of Core-NIC Synchroniza-
tion and Timeline Synchronization daemons, as shown in Fig-
ure 6. The Timeline Synchronization daemon is implemented
by patching the Linux PTP Project [21]. It calculates clock
discipline parameters, and disciplines the /dev/timelineX
character devices through the .settime and .adjtime
POSIX clock APIs. The mappings are stored in the kernel
so that the timeline reference can be easily returned using the
.gettime POSIX clock API. A detailed description of PTP
can be found in Appendix C.

We also create a synchronization service phc2phc that aligns
two Precise Hardware Clocks (PHC): clocks which support
hardware timestamping and GPIO with external hardware
timestamping, and deterministic hardware interrupt capabili-
ties. Our implementation performs Core-NIC synchronization
using phc2phc. If one of the clock is not a PHC, we use the
phc2sys [21] service to synchronize clocks. The decision tree
in Figure 7 shows how timestamping and GPIO capabilities
of a clock influence our choice of synchronization service.
Certain network interfaces do not support hardware times-
tamping, but provide a hardware interrupt upon the Start of
Frame Delimiter (SFD) of a synchronization packet. In this
case, if the core clock is a PHC, it can timestamp the SFD
interrupt in hardware and run phc2phc across multiple nodes
for high accuracy. However, certain network interfaces neither
expose a PHC, nor support SFD. In this case, the core clocks
resort to software time stamping and perform sys2sys. Table I
lists some example network interfaces with different hardware
capabilities and the corresponding synchronization service.

TABLE I: Network Interface Capabilities

NIC Capabilities Service
TI CPSW PHC, GPIO interrupt phc2phc
AT86RF233 PHC, SFD interrupt phc2phc
DW1000 PHC, SFD interrupt phc2phc
IEEE 802.11 None sys2sys

System Uncertainty Estimation Service: This service tries
to get a probabilistic estimate of the OS clock read uncertainty

by reading the core clock in a tight loop from userspace,
via a privileged interface (/dev/qotadm). By taking the
difference of consecutive timestamps, the service calculates
the uncertainty distribution.

D. Linux QoT Core Kernel Module

The Linux QoT Core, shown as the central component in
Figure 6, is implemented as a loadable kernel module. It
consists of the following sub-modules.

Scheduler Interface: Each active timeline maintains a red-
black tree of waiting threads, ordered by their wake-up times
in the timeline reference. When an application thread issues
a timed wait request, the thread is suspended and en-queued
on a red-black tree corresponding to the timeline to which it
is bound. Waking up applications from their suspended state
relies on the interrupt functionality of the core clock. When
the callback triggers, the interrupt handler checks each active
timeline for tasks that need to be woken up, and moves such
tasks from the wait queue to the ready queue. Subsequently,
the task is scheduled as per its priority, and the policy being
used by the scheduler. This introduces scheduling uncertainty,
as other threads may also be present on the ready queue.
Before the task is actually scheduled, the core returns a
timestamp of the scheduling instant along with an uncertainty
estimate. This enables an application to take a decision, based
on the received QoT. The scheduling policy agnostic design,
enables the stack to be portable to a range of different Linux
kernels, and prevents it from being tied down to a specific
kernel version. It also gives the opportunity for OS developers
to use scheduling policies best suited for the target platform.
Future implementations of the stack will include techniques to
probabilistically compensate for the scheduling uncertainty.

Decisions on waking up a task, or programming the next
interrupt callback, rely on the projections between core time
and the timeline references. The scheduling interface com-
pensates for any synchronization changes to these projections.
When a synchronization event occurs, the interface checks the
head of the timeline queue, to decide whether the change in
the projection, necessitates a task to be scheduled earlier than
previously estimated.

User Interface: The core exposes a set of thread-
safe ioctl interfaces in the form of a character device,
/dev/qotusr, to userspace. It gives user applications the
ability to create/destroy a timeline, read timestamps with un-
certainty estimates, as well as issue timed waits on a timeline
reference. The user interface also provides applications the
ability to access the external timestamping and event triggering
functionality of the core clock (if supported by hardware).

Admin Interface: This is a special character device
/dev/qotadm, which enables a privileged daemon to control
specific parameters of the QoT stack. It provides an ioctl
interface, which allows a privileged user to get information on
clocks, switch between different core clocks, as well as get/set
the OS uncertainty associated with reading timestamps.

Sysfs Introspection: The core provides a sysfs interface
for a user to view and change the state of the system using

DW1000

AT86RF233

LPC1768

Ethernet

Figure 6.4: Hardware capabilities of clocks influence synchronization performance (adapted
from [ADS16])

been tied to ethernet interfaces on certain platforms. In our previous work [AS17], we

show if a network interface support certain hardware features, we can expose it as a PHC

by writing drivers for it. We propose that besides network interfaces, a processor clock

or a co-processor clock can also be converted to a PHC, given that they have necessary

hardware functionalities. In this work, we expose a processor (AM335X) as a PHC because

it is capable of timestamping and scheduling hardware events. We use the processor timer

and wrote a kernel module to transform it into a PHC. The clock management engine also

initializes any PPHL on a platform. For example, on the beaglebone black platform, there

is a Programmable Realtime Unit (PRU) that has good timing capabilities. Our previous

work cyclops [AAZ17] exposes PRU as a timing device and synchronizes it to the processor

clock. We utilize the PRU clock as PPHL in OpenClock, and we believe similar peripherals

on other platforms can provide a PPHL platform clock. Hence a SYS, PHC, and PPHL are

initialized and managed by the clock management engine.

After initializing the platform clocks, the clock management engine assigns the platform

clocks to synchronization clocks based on the synchronization requirements of an application.

The engine also dynamically switches core clocks and NICC to different platform clocks.

For example, if a user wants to run NTP, the engine selects core clock as SYS and leave

the NICC empty. If the user wants to run PTP, core clock is selected as SYS and NICC as

PHC. To run the QoT Stack [ADS16] with highest accuracy, both core clock and NICC are
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Figure 6.5: Comparison of time accuracies for different synchronization clocks

chosen as PHC.

We know that the hardware capabilities influence the accuracy of a synchronization

protocol. In Figure 6.4, the flow chart and the accompanying hardware platforms provide

the following guideline: given certain capabilities, how would you traverse down the

flowchart to determine which accuracy the synchronization protocol will achieve. For

example, given an Intel edison platform, the clock management engine cannot select the

core clock or NICC as a PHC because edison is incapable of hardware timestamping. On

the other hand, for a DW1000 platform interfaced with Beaglebone Black, the engine

selects both the core and NICC to be a PHC [ADS16]. For LPC1768, only core clock is a

PHC, while NICC is empty.

To test the effect of platform clock on the synchronization accuracy, we run an experiment

to synchronize the core clock with the NICC on one device. We use three different

combinations of SYS and PHC. In the first experiment, both the core and NICC are PHC,

and the synchronization accuracy achieved is in the order of nanoseconds as shown in

Figure 6.5a. In the second experiment, we choose core as SYS and NICC as PHC, and the

accuracy reduced to microseconds in Figure 6.5b. In the last experiment, we choose both

the core and NICC as SYS. The accuracy reduced even further to 10s of microseconds in

Figure 6.5c. Thus we establish that the choice of PHC for a core clock and NICC provides

the highest accuracy.

In OpenClock, besides using the traditional protocols, users can write their own
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synchronization protocols and choose any platform clock to act as core or NICC. The user

also has the advantage of testing established time synchronization algorithms such as NTP

and PTP with different clock settings. A user can also specify its own clocks of choice, if

however a user doesn’t specify the synchronization clocks, the engine choose SYS to be the

default core clock as it is available on every platform. The engine also maintains default

clock settings for known synchronization protocols but they can be overridden if desired.

After assigning desired platform clocks to synchronization clocks, the engine creates

timelines as application clocks. Recalling from Figure 6.3, a timeline is a projection of

core clock’s time. The engine maintains the projection parameters for all timelines, and

provides an interface to all synchronization services to change the projection parameters

of their respective timelines.

6.3.2 Synchronization Service

As shown in Figure 6.3, multiple synchronization services work with the clock management

engine in OpenClock. A synchronization service utilizes the engine’s interface to discipline

its timeline. OpenClock also provides multiple parameters that tune the performance of

a synchronization algorithm. The two tunable parameters are, the 1) synchronization

interval, and the 2) clock discipline mechanism. These tunable parameters can be changed

during initialization or at runtime. The performance is enhanced by reducing the first

tunable parameter i.e. the synchronization interval. To tune the other parameter, one has

to choose between two different mechanisms to discipline a clock. A feedback mechanism

timestamps packets and calculates synchronization parameters from the disciplined clock.

On the other hand, a feedforward mechanism is based on a clock that is never disciplined.

The calculated synchronization parameters reflect the local clock’s relative drift with

respect to global time.

Using OpenClock, users can write their own synchronization algorithms and specify their

own tunable parameters.

141



6.3.3 Network Attacks Simulator

OpenClock supports comparison of multiple algorithms under fair conditions. It also

provides an opportunity to compare algorithmic resilience to attacks on network packets.

With the system and network attacks on the rise, there is a need to design algorithms

that are both resilient to faults and attacks. OpenClock lets the user test its algorithms

for various kinds of attacks by providing a network attack simulator. This simulator

injects delays in packets transmission and reception as shown in Figure 6.3. These attacks

compromise the accuracy of time by delaying the synchronization packets. The attacks

can be injected in both forward and reverse paths in the network. The attacked packets

are fed to the synchronization algorithms that need to be compared.

To use the OpenClock testbed, a user provides a configuration file to the system. This file

specifies the name of timelines, types of clocks, protocols for timelines along with their

tunable parameters, and an attack indicator. One example configuration file is shown

below,
timeline1{

Core: SYS

NICC: PHC

SYNC:{

protocol: PTP

servo: feedforward

interval: 1

}

attack: true

}

timeline2{ ... }

Here, the user has defined two timelines. On one timeline, she configures core clock as

SYS and NICC as PHC running PTP algorithm that synchronizes to a master every second

through an attacked network medium using a feedforward clock disciplining mechanism.
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(a) Timeline 1: NTP without sanity check
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(b) Timeline 2: NTP with sanity check

Figure 6.6: Comparison of synchronization accuracies for unmodified NTP running in
Timeline 1, and modified NTP running on Timeline 2 under network attacks. (a) Timeline
1 fluctuates and accumulates large error over time, while (b) Timeline 2 accumulates less
error

6.4 Evaluation

The purpose of providing a testbed for clock synchronization protocols is to compare

multiple algorithms under same hardware and network conditions. OpenClock leverages

timeline to provide multiple disciplinable clocks on a single platform and run multiple

protocols. Below, we provide three use cases that show case different ways in which

OpenClock could be used. Nonetheless, the usage of this testbed is not limited to these

test cases.

Use Case 1: Effect of network attacks on synchronization error: When a network

packet moves from client to server, the adversary in a network router can delay the packet.

We refer to it as the forward path attack. The adversary can also delay the packet in the

opposite direction i.e. when the packet moves from server to client in the network. We

term it as reverse path attack. Multiple protocols are subjected to these attacks. In NTP, if

an attacker is able to attack sufficient number of packets, it can manipulate the Marzullo’s

algorithm [MO85] to converge to a time desired by the attacker. We simulate both forward

and reverse path attacks in OpenClock. We use these attacks to understand how NTP

algorithms can be fooled. We run unmodified NTP on one timeline, and assume that the

attacker is compromising more than half the packets from the NTP servers. By adding 2

second forward path delay to 4 out of 6 packets coming from 6 different NTP servers in

143



0 2000 4000 6000 8000 10000

Common events

-3000

-2500

-2000

-1500

-1000

-500

0

500
S

y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r 

(n
a
n
o
s
e
c
)

(a) Timeline 1 Feedback synchronization error: (from left to right) synchronization period is 1sec, 4sec, 8sec, 16sec respectively
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(b) Timeline 2 Feedforward synchronization error: (from left to right) synchronization period is 1sec, 4sec, 8sec, 16sec respectively
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Figure 6.7: Visualizing effect of two tunable parameters in this figure, the first parameter
is clock discipline mechanism that changes from top to bottom row. The second parameter
is synchronization period that changes from left to right. Synchronization error increases
with an increase in synchronization period. This is evident in both (a) and (b) going from
left to right. Comparison of feedback (top) and feedforward (bottom) and for 1 second
synchronization period shows that feedback performs well for small periods. As we move
to higher periods, the feedforward error tends to converge

the network, we slowly shift the timeline’s notion of time away from the global time. We

then modify NTP algorithm by adding a sanity check. This check sorts the timestamps

from multiple servers based on their offsets, then carefully discards first half or the last

half of NTP timestamps. We run the unmodified NTP on timeline1 and modified NTP on

timeline2 at the same time processing the same attacked network packets. Our results in

Figure 6.6 show that the attacks led to an increase in unmodified NTP’s synchronization

error, while the modified NTP experience less degradation in synchronization accuracy.

So far in this work, we simulate network attacks and test for resilience against those

attacks. We can also test for hardware attacks (temperature variations etc.) by simulating

their effect in the testbed.

Use Case 2: Effect of clock discipline mechanism on synchronization error:

To understand which clock discipline mechanism enhances system performance, we run

PTP on two timelines. Timeline 1 employs feedback discipline using PTP PI servo while
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Timeline 2 runs feedforward discipline using linear regression. Both timelines choose SYS

for core clock and PHC for NICC. The results for both the timelines is shown in Figure 6.7.

We explain the results with the next use case.

Use Case 3: Effect of synchronization parameters on error: There exists multiple

tunable parameters in a synchronization protocol that can affect the performance. For

example, to study the affect of synchronization period on the error, we run PTP with a

feedback PI servo on two timelines. Both timelines use SYS for core clock and PHC for NICC.

The only difference between the two timelines is that Timeline 1 has a synchronization

period of 1 second while Timeline 2 has a period of 4 seconds. The results in Figure 6.7 show

that both feedback and feedforward have different impact on synchronization error with

increase in period. Feedforward performs better at higher periods because it disciplines

clock by measuring relative drift that can only be measured accurately over long durations.

6.5 Key Findings

OpenClock is the first testbed for clock synchronization research that alleviates hardware

and network biases in testing mechanisms and provide new means to test multiple algo-

rithms for failures and attacks at the same time. It provides a rich suite of clocks with a

modular and extensible design. We evaluate the performance of a number of protocols

and show hardware and network biases in the results when these protocols are tested

on different devices, whereas biases are alleviated from results when these protocols are

tested on OpenClock. Our results also show that algorithms on OpenClock can be tested

simultaneously by simulating various conditions and attacks in real time.

6.6 Conclusion

When designing new time synchronization algorithms, they are compared with the estab-

lished algorithms on distributed platforms. We argue that such comparisons are not fair as

distributed platforms are subject to hardware and network variabilities. Moreover, many
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algorithms are not tested for attacks as it is hard to simulate the same attacks on multiple

platforms. We design and implement OpenClock, a real testbed on a single platform that

overcomes the above limitations: (1) it provides multiple disciplinable clocks on a single

platform to circumvent hardware variability, (2) it provides adjustable parameters for

timelines to tune the synchronization performance. (3) OpenClock also presents an attack

simulator that injects the same attack to all algorithms under test. The benefit of an

attack simulator is two folds: it can help find vulnerabilities in an algorithm, and help

test resilience of algorithms under those attacks. OpenClock can be extended in multiple

ways. Developers can write their own synchronization algorithms, present new dynamically

tunable parameters, and define new hardware and network attacks. Our modular design

based on clocks hierarchy and timelines provides programming and porting flexibility.
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CHAPTER 7

Conclusion and Future Research

7.1 Conclusion

This dissertation presented Quality of Time (QoT) that brings a new paradigm for

distributed system design particularly for Cyber-Physical Systems and Internet of Things.

We conclude this thesis by summarizing the systems designed to enable QoT for applications

running on commodity platforms and operating systems under timing variations and

vulnerabilities. Our thesis contribution to enable QoT is categorized into four main parts:

7.1.1 Systems for Characterizing Timing Uncertainty

In this part, we presented a new operating system abstraction – timeline – that helps

design coordinated applications through a thorough set of API. Built around the timeline

abstraction is an architecture that orchestrates system resources to provide the required

QoT to applications. The timeline abstraction with its associated notion of Quality of

Time (QoT) helps virtualize time-related resources in a system and plays a role analogous

to that of sockets with associated Quality of Service (QoS) bindings in network stacks.

QoS-aware networking applications can read, write, open and close sockets, and specify

QoS parameters. Similarly, QoT-aware time-sensitive applications can bind and unbind

from timelines, read and schedule events on the timeline reference, and specify QoT

requirements. We make QoT visible and controllable in our timeline-driven architecture

that enables time-aware applications to specify their timing requirements, while the system

manages clocks and synchronization protocols to provide the appropriate levels of QoT.
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7.1.2 Systems for Timing Integrity

In this part, we present challenges in providing a secure clock shared across distributed

entities. Security in the context of time is vital as many applications are emerging that have

moved away from traditional “clockless” assumption [GLY18]. Systems are increasingly

making use of synchronized clocks to enhance the accuracy of network measurements and

reduce the complexity of distributed system protocols. On the other hand, adversaries

are targeting timing primitives for copyright theft, illegal trade, and location theft, etc.

To provide timing integrity, we present TimeSeal, a new secure time architecture that

leverages trusted execution for hardware timer protection and eliminates timing limitations

and vulnerabilities in trusted execution to secure time. TimeSeal provides a secure local

clock that is good for measuring time durations. In other words, it “seals" time so that no

privileged adversary can arbitrarily manipulate a local clock, and compromise the safety

and performance of applications. For a secure global clock, we establish that cryptography

and network security mechanisms thwart various attacks on time transfer packets but

delay attack is too strong to be mitigated completely. We pointed out the key issues in

current clock synchronization architectures that make them vulnerable to delay attacks

and propose a new delay attack-tolerant synchronization architecture. Built on top of a

feedforward control with feedback trim clock adjustment mechanism coupled with packet

filtering techniques, the architecture is capable of bounding delay attack errors.

7.1.3 Systems for Timing Precision

High timing precision is required by many applications across a broad spectrum of

applications. We have provided a generalized Precise Hardware Clock (gPHC) abstraction

that enables high precision for applications. For NICs capable of timestamping events in

hardware, we have provided a generalized guide to enable network sockets based hardware

timestamping in Linux that is the key to run PTP synchronization over a network interface.

We have also implemented a precise hardware clock for a wireless network interface using

the PTP clock infrastructure as a proof of concept. We also support other peripherals
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and processors beyond the radio interfaces and extend the precision time support to other

peripherals like processors and co-processors over gPHC.

7.1.4 Systems for Testing Timing Robustness

When designing new time synchronization algorithms, they are compared with the estab-

lished algorithms on distributed platforms. We argue that such comparisons are not fair

as distributed platforms are subject to hardware and network variabilities and security

vulnerabilities. We design and implement OpenClock, a real testbed on a single platform

that overcomes the above limitations: (1) it provides multiple disciplinable clocks on a

single platform to circumvent hardware variability, (2) it provides adjustable parameters

for virtual clocks to tune the synchronization performance. (3) OpenClock also presents

an attack simulator that injects the same attack to all algorithms under test with two-

fold benefits: it can help find vulnerabilities in an algorithm, and help test resilience of

algorithms under those attacks.

The implementations of the systems designed in this thesis are open-source and available

at the following code repositories,

• QoT Stack: https://bitbucket.org/rose-line/qot-stack

• TimeSeal: https://bitbucket.org/rose-line/linux-sgx-secure-clock

• gPHC: https://bitbucket.org/rose-line/ptp-wpan-6lowpan

• OpenClock: https://bitbucket.org/fatimanwar/openclock-testbed

7.2 Future Directions

In the next few years, modern applications in IoT such as health care, connected vehicles,

digital assistants, and augmented/virtual reality are going to bridge the gap between the

edge devices and the cloud. Similar to the current theme, the research goal would be to

design and build high-performance, secure systems that tackle various issues across all
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levels in a cooperative fashion with an emphasis on developing practical and functional

systems.

7.2.1 Spatiotemporal awareness in distributed applications

Time and space are intertwined and their relationship assists distributed applications

spanning the edge and the cloud. Enabling spatiotemporal awareness for distributed

applications – such as swarms – in the presence of intermittent network connection

and adversarial scenarios remains an exciting research challenge. A principled approach

to design is suitable, where we first design the essential components such as precise

time and frequency synchronization, accurate localization, high-resolution inter-event

time measurement, distance bounding technique, and co-location detection mechanisms.

Afterward, integrate these components to build reliable and secure spatiotemporal services.

Along this direction, developing high-level abstractions and API to simplify access to

spatiotemporal services across heterogeneous platforms is also a research challenge.

7.2.2 Increased responsiveness in interactive applications

IoT applications such as cloud gaming and AR/VR require real-time interactivity in the face

of wide-area latency. Round trip delays as little as 60 milliseconds significantly depreciate

users experience. The challenges are manifolds in this domain: to bring distributed servers

closer to clients increase cost, average network latencies are high, and buffering does not

work for interactive applications. There exist several research challenges in this domain,

including designing systems that mask the high latency for end users in a secure fashion

using speculative execution with machine learning models.

7.2.3 Secure peripherals in trustworthy platforms

Emerging Trusted Execution Environments (TEE) such as ARM TrustZone and Intel SGX

limit security features to the boundary of a CPU with no support of secure resources/pe-

ripherals, i.e., secure storage, clock, counter, and entropy. Dedicated trusted hardware
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such as Trusted Platform Module (TPM) provides secure resources. However, TPM does

not have a powerful processor, no flexibility for application development, and only accessed

by a fixed set of API guided by a standard. Even worse, applications running on ARM

TrustZone secure world and Intel SGX enclaves only access TPM resources via an untrusted

and unreliable communication channel. There is a need to conduct extensive research

in hardware and system security to provide software systems running on trusted CPU

with similar security guarantees as dedicated, trusted hardware. One hurdle in the way of

trusted hardware support is the lack of full stack open source implementations of current

TEEs. There are some initiatives such as Keystone project that provides a new open

source TEE based on RISC-V architecture, but they lack secure peripherals. A preliminary

investigation by thoroughly examining the shortcomings of current TEE implementations

and putting forward recommendations for vendors to support secure resources outside

the CPU perimeter is needed. Providing trusted resources beyond the CPU remains a

fundamental challenge, and requires research to design trustworthy platforms.

7.2.4 Side-channels on secure computation

Hyperthreading is a side-channel by design. Two notable systems that are vulnerable to

side-channel are microarchitectures and browsers. The key attack enabler is the attacker’s

ability to precisely measure the time a victim process takes to access its contents. Caches

and Translation Lookaside Buffer (TLB) have been identified as microarchitectural resources

assisting side-channel attacks. Shared event loops are also susceptible to timing attacks in

browsers. Recent work has also shown that it is possible to emulate a short-lived precise

timer inside an enclave to perform a Prime+Probe cache side-channel attack against co-

located enclaves. Previous prevention techniques remain ineffective: minimizing the effect

of a process’s state on microarchitectural resources requires a clean slate design; making

all computations in a process take constant time is a challenging task, and restricting

precise time access only to trusted entities is an open research area. A future direction

is to rethink designs from the ground up, and overcome attacks without compromising

system performance.
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