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Just-in-Time compilers offer substantial runtime performance benefits over tradi-

tional execution methods like interpretation; and they have enjoyed widespread deploy-

ment in the JavaScript engines found in nearly all modern web browsers. Unfortunately,

security has taken the back seat to performance in many JIT compilers, despite the often

untrusted nature of their inputs and the tremendous privilege that they have been granted

to generate machine code on the fly. While the concerns regarding performance are

understandable, the threat posed by blind JIT spraying has been underestimated.

In this dissertation, we demonstrate the feasibility of blind JIT spraying on the

xiii



ARM architecture against three modern JavaScript engines, despite many restrictions

imposed by ARM such as coarse-grained instruction boundaries and limited space for

encoding immediate operands. We find that useful instruction decoding ambiguity can be

leveraged to create a blind JIT spraying payload using either intended ARM or Thumb

instructions. Furthermore, we demonstrate that instruction decoding ambiguity is not

necessary in the construction of a blind JIT spraying payload. We also introduce a

technique for abusing JIT sprayed code called gadget chaining, which enables an attacker

to exploit even limited control over JIT code.

To better understand the state of JIT spraying mitigation research and deployment,

we survey the literature and examine four open source JavaScript engines several years

after the debut of JIT spraying on x86. We find that all four engines cut corners in

their implementations—often quite egregiously—in the name of reducing performance

overhead.

In order to form a consolidated picture of the costs and benefits of diversification

defenses, we implement five diversification defenses, without cutting corners, on the

SpiderMonkey JavaScript engine for 32-bit ARM and x86-64 and empirically evaluate

their overheads across a consistent set of benchmarks and hardware. We find that all five

diversification defenses can be deployed in tandem with reasonable security parameters

at a runtime overhead cost of <5%. Our analysis of the diversification defenses indicates

that, in combination, they provide effective mitigation of the blind JIT spraying threat for

less overhead than other effective options.

xiv



Introduction

The common ground shared by all computers is software that is—either directly

or indirectly—written by human developers who inevitably make mistakes and introduce

bugs into their software. In most cases, the consequences of these bugs are not severe,

but in others, they can create an opportunity for a malicious party interacting with the

software to effect undesirable and, sometimes, even harmful computation.

The classic example of a security-relevant bug is the buffer overflow vulnerability,

in which the vulnerable program copies a user input into a fixed-size buffer without first

checking whether the input’s length exceeds that of the buffer. If the input is too large,

part of its contents can overflow the buffer and overwrite memory adjacent to the buffer.

By carefully crafting an input used to overflow a buffer allocated on the stack, an attacker

can corrupt the saved function return address and divert control flow to an address of

her choosing. To exploit this “control flow vulnerability,” the attacker could inject a

malicious program into the victim’s address space by injecting it as part of an input to the

vulnerable program [4], or she could reuse pre-existing code by directing control flow to

a shared library function’s entry point [25] or even a short snippet of code in the middle

of a library function or the program’s own binary [46].

Defenses against corruption of the saved return address [1, 20, 28] and buffer

overflows [45] have been developed, and some have even been widely deployed. However,

they fail to provide comprehensive prevention of control flow vulnerabilities. Other

defenses such as control flow integrity [3] and software-based fault isolation [57] take

1
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more generalized approaches to preventing control flow vulnerabilities, but a combination

of runtime overhead and difficulty of integration with legacy binaries has prevented their

widespread use. Consequently, control flow vulnerabilites remain a threat, and much

effort is still poured into mitigating an attacker’s ability to successfully exploit them.

In an effort to prevent exploitation of control flow vulnerabilities with code

injection and code reuse attacks, the default behavior of nearly all modern operating

systems is to prohibit data from being executed and to randomize the base addresses

of the program’s stack, heap, binary image, and shared libraries. With these defenses,

known as W ⊕ X and ASLR, respectively, in place, the threat posed by control flow

vulnerabilites superficially appears to be mitigated, but unfortunately, this is not the case.

With the aid of a vulnerability that leaks the address of any shared library function, the

randomized addresses of all other library functions can be computed [47]; similarly, a bug

which allows an attacker to perform arbitrary memory reads can completely undermine

randomization of the address space layout. Such additional vulnerabilities do exist in

real programs, but even in their absence, a unique attack surface remains in the form of

JIT-compiled code.

The growing popularity of the Internet has driven the growth of the web browser

as a platform for client-side software, much of which is distributed as high level lan-

guage code or portable bytecode to support a diverse ecosystem of machines. However,

interpreted code is nowhere near as performant as its native code counterpart. To reap

the performance benefits of native code, language runtimes both inside and outside web

browsers began including components to compile bytecode and source code to native

code on the fly. These Just-In-Time (JIT) compilers drastically improved performance

but opened the door to a new class of attack—the JIT spraying attack.

The role of a JIT compiler is to take arbitrary bytecode or high level language

code as input and produce new, executable native code derived from it. Therefore, by
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carefully crafting an input to a JIT compiler, an attacker can trick it into unwittingly

emitting native code that is useful to some malicious intent of the attacker. Moreover, the

attacker has the ability to cause the JIT compiler to generate as much of this code as she

desires, and she can leverage this to “spray” useful native code throughout the victim’s

address space.

The ability to abuse a JIT compiler to dynamically allocate large swaths of

executable memory and fill them with malicious code allows an attacker to defeat both

W ⊕ X and ASLR. Even if the attacker does not know the precise randomized address

of code emitted by the JIT compiler, a random address chosen blindly (i.e., without the

aid of an information leak vulnerability) is likely to point to malicious JIT code after

enough of it has been generated. Consequently, triggering a control flow vulnerability

in the JIT compiler or any program that embeds it (e.g., a web browser) to branch to

a random address is likely to execute JIT sprayed code, which will perform malicious

computation on behalf of the attacker.

Prior work has primarily focused on JIT spraying against the x86 architecture,

and many defenses against it have been proposed, but few have been deployed with the

gusto required to effectively mitigate the threat of JIT spraying. Instead, many defense

implementations favor performance over covering all corner cases, leaving opportunities

for exploitation as a consequence. The contributions of this dissertation are as follows:

• The extension of JIT spraying to the ARM architecture

• A comprehensive survey and analysis of JIT spraying mitigations in the literature

• Open source implementations of full-fledged diversification defenses for 32-bit

ARM and x86-64 on a single JavaScript engine

• Empirical evaluations of the runtime and memory overheads of the above imple-

mentations on a consistent set of benchmark suites and hardware testing platforms.
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These evaluations indicate that fully-implemented diversification defenses are

practical and effective.

Outline

Chapters 1, 2, and 3 provide context to our work. In Chapter 1, we give a more

technical description of the attack and defense landscape leading into the debut of JIT

spraying and the JIT spraying attack against x86 itself. Chapter 2 outlines our assumptions

regarding a blind JIT spraying attacker’s capabilities and the defense mechanisms against

which she contends. Chapter 3 describes key features of the ARM architecture.

In Chapter 4, we consider an attacker’s options for controlling the output of a

JIT compiler and discuss the challenges of creating different types of blind JIT spraying

payloads for the ARM architecture. We find that the design of ARM’s instruction set

encodings leads introduces no small amount of complexity to this task.

In Chapters 5 and 6, we describe proof of concept blind JIT spraying attacks

against the JavaScriptCore JavaScript engine for ARM—which is used by all major

web browsers on Apple’s iOS mobile operating system—and the V8 JavaScript engine

for ARM found in the Chrome web browser on all operating systems except iOS. In

Chapter 7, we present a proof of concept blind JIT spraying payload, but not a full

end-to-end attack, against the SpiderMonkey JavaScript engine for ARM. SpiderMonkey

is the JavaScript engine that ships with the Mozilla Firefox web browser on all operating

systems except iOS.

In Chapter 8, we turn our attention to JIT spraying mitigations, beginning with a

survey of those proposed in the literature and an investigation of those deployed into actual

JavaScript engines. We find that JIT spraying mitigations are in short supply in most real

world JIT compilers, and almost all of those that exist do so only in enfeebled forms that

minimize their performance impact at the cost of any substantive protection. We then
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describe a suite of diversification defenses that we implemented for the SpiderMonkey

JavaScript engine which seeks to prioritize security over performance and present the

results of an empirical evaluation of the performance and memory overheads thereof. We

find that in exchange for only modest runtime overhead (<5%), diversification defenses

are capable of mitigating all known blind JIT spraying attacks.

Finally, we conclude in Chapter 9.



Chapter 1

Background

History holds no shortage of avenues through which an adversary can exploit

a control flow vulnerability to perform arbitrary malicious computation on a victim’s

machine. Roughly speaking, they can be broken down into the following two categories:

code injection attacks and code reuse attacks.

A code injection attack such as Aleph One’s infamous stack smashing attack [4]

introduces new code masquerading as data into a vulnerable process’s address space

and exploits a control flow vulnerability to divert execution to it. W ⊕ X (a.k.a. Data

Execution Prevention (DEP), Exec Shield, etc.) [5] has become the standard defense

against code injection. W ⊕ X is a defense mechanism that enforces the separation

between data pages such as the stack and heap—which should be writable but not

executable—and code pages—which should be executable but not writable. W ⊕ X

is widely supported in hardware in modern Intel, AMD, and ARM chips; if a W ⊕ X

violation occurs (e.g., branching to a non-executable page), a fault is raised.

Enter code reuse attacks, which circumvent W ⊕ X by repurposing instructions

found within the vulnerable process’s own executable memory as the building blocks for

malicious computation. Canonical examples of code reuse attacks are the return-to-libc

attack [25] and return-oriented programming (ROP) [46]. The most widely deployed

defense against code reuse attacks is Address Space Layout Randomization (ASLR).

6
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Code reuse attacks require the attacker to guess the addresses of the instructions they

intend to repurpose for their malicious computation with pinpoint accuracy. ASLR makes

that task more difficult by randomizing the locations of objects in a process’s virtual

address space. Typically these objects are the stack, the heap, shared libraries, and the

process’s binary image.

In the absence of W ⊕ X, an attacker can reduce ASLR’s effectiveness with a

heap spraying attack (e.g., [50]). Heap spraying is a code injection technique in which

a buffer containing the attacker’s malicious code is programmatically generated and

copied (i.e., “sprayed”) to multiple locations throughout the heap. Each instance of the

malicious code—often called shellcode—is preceded by a much longer sequence of NOP

instructions called a NOP sled. The purpose of a NOP sled is to increase the surface area

of addresses that can be branched to in order to execute the shellcode from start to finish.

Without NOP sleds, the only way to ensure that an instance of shellcode executes in its

entirety is to branch precisely to its first instruction. ASLR prevents the attacker from

accurately predicting where injected instances of shellcode will reside in memory; but

if enough copies of NOP sled-prefixed shellcode are sprayed into memory, a randomly-

chosen address is likely to point into a NOP sled. If an attacker can successfully target

such an address with a control flow vulnerability, execution beginning in the NOP sled

will “slide down” through the NOP sled into the first instruction of the shellcode.

Shacham et al. [47] demonstrated another technique for circumventing ASLR

in a 32-bit address space to bootstrap a code reuse attack, even with W ⊕ X enabled.

The attack learns the randomization offset of the victim process’s shared libraries by

brute force search, but it has the disadvantage of crashing the victim process once for

each incorrect guess. This method is acceptable against a web server process, which

automatically replaces the crashed request handling child processes with forked copies

with identical address space layouts; but it is not suitable for attacking a user-facing
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process such as a web browser.

JIT spraying brings together code injection and code reuse into a hybrid attack

that defeats both DEP and ASLR with a much lower probability of crashing the victim

process than [47]. First introduced by Blazakis [13], JIT spraying makes use of the Just-

In-Time compilers (a.k.a. JIT compilers, or simply JITs) found in the implementations

of many languages that are not compiled to native code ahead of time. JIT compilers

allow these language implementations to enjoy vast performance improvements over

interpretation by emitting native code at runtime. They are deployed widely and can be

found in the JavaScript engines of nearly all mainstream web browsers. JIT spraying

abuses the observation that when a JIT compiler compiles code in a high level language

down to native code, the opcodes and operands it emits are heavily influenced by the

potentially-untrusted high level code. Furthermore, the high level code can create new

native code at-will by dynamically creating and evaluating new code. This grants the

untrusted party who wrote the high level code unprecedented influence over large swaths

of executable memory in the address space of the language runtime and any program

with which it shares its address space.

Blazakis’ JIT spraying attack targeted the ActionScript (Flash) JIT on x86. In the

attack, the adversary encodes a NOP sled and shellcode in the JIT code produced by a

seemingly-innocuous sequence of bitwise XOR operations resembling the following:

x = 0x3c909090 ^ 0x3c909090 ^ 0x3c909090;

When compiling the above statement, the ActionScript JIT compiler produces

the bytes shown in dashed boxes in Figure 1.1, which encode the x86 instructions shown

in the solid-bordered boxes below them. However, since x86 instructions have variable

lengths and can be decoded at any byte alignment, an alternate decoding of the bytes

can be observed by disassembling from any unintended instruction boundary, as shown
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9090B8 90 90 90 3C 35 90 90 90 3C 35 90 3C

mov eax, 3c909090h xor eax, 3c909090h xor eax, 3c909090h

NOP cmp al, 
35hNOPNOPcmp al, 

35hNOP NOP NOP NOP NOP NOP

Figure 1.1. Illustration of a NOP sled encoded in the bytes implementing the statement
x = 0x3c909090 ^0x3c909090 ^0x3c909090;

in the bottom row of Figure 1.1. This alternate decoding contains one-byte x86 NOP

instructions (0x90) and compare instructions that are semantic NOPs so long as the state

of the processor flags need not be preserved. Therefore, execution that begins at 4 out of

5 byte offsets in the JIT code will execute a NOP sled rather than the intended instruction

stream. The NOP sled can be extended in length without resynchronizing to the intended

instruction stream as long as the opcode bytes for XOR (the 0x35 bytes) continue to be

consumed as instruction operands.

In an actual attack, the adversary would extend the NOP sled by XORing more

0x3c909090 constants and eventually encode shellcode instructions up to three bytes

in length in place of the 0x90 (NOP) bytes. The XOR chain statement could be placed

in a function that is repeatedly declared and invoked in order to cause the JIT compiler

to fill as many pages as possible of executable memory with the hidden NOP sled and

shellcode. By spraying NOP sleds that are much larger than the shellcode, execution

beginning at a random address in sprayed code has nearly an 80% chance of successfully

executing the shellcode.

After Blazakis brought JIT spraying into the public eye, Sintsov explored the art

of writing ActionScript JIT spray payloads for the x86 in greater depth by demonstrating

the construction of a stage-0 JIT spray shellcode that locates and calls VirtualProtect

to enable executability on a shellcode buffer [49]. JIT spraying has also been extended

beyond the ActionScript JIT to other x86 JITs. Sintsov demonstrated [48] a JIT spraying
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attack against the JavaScriptCore Baseline JIT on x86. Rohlf and Ivnitskiy pointed out the

presence of attacker-provided constants in JIT code emitted by Mozilla’s JaegerMonkey

and TraceMonkey JavaScript engines for x86; they also introduced the idea of ROP

gaJITs, short instruction sequences ending in a return that can be sprayed multiple times

into memory and cobbled together into a ROP attack [44]. In 2011, Beck [12] presented

findings that the Tamarin ActionScript JIT for ARM can be abused to inject attacker-

provided code verbatim via constant pools, which are regions of data that are placed

inline with JIT code and contain constant operands too large to encode as immediate

operands within an instruction.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of

the 2015 Network and Distributed System Security Symposium. Wilson Lian, Hovav

Shacham, and Stefan Savage, Internet Society, 2015. The dissertation author was the

primary investigator and author of this paper.

Chapter 1, in part, has been submitted for publication of the material as it may

appear in appear in Proceedings of the 2017 Network and Distributed System Security

Symposium. Wilson Lian, Hovav Shacham, and Stefan Savage, Internet Society, 2017.

The dissertation author was the primary investigator and author of this paper.



Chapter 2

Assumptions and Threat model

In this chapter, we lay out the assumptions we make with regard to the capabilities

possessed by an attacker as well as the defense mechanisms in place on systems under

attack. The most important capability that we assume is that the attacker is able to leverage

a control flow vulnerability in the process under attack on-demand to divert control flow

to an address of her choosing. Despite defensive efforts to preserve the integrity of

control flow (e.g., stack canaries [1, 28, 20], CFI [3], etc.), control flow vulnerabilities

continue to plague modern systems. Therefore, we consider this assumption to be within

reason.

We assume that the process under attack is protected by security mechanisms

such as W ⊕ X and fine-grained ASLR, which enable it to resist traditional code injection

and code reuse attacks such as stack smashing [4] and return-oriented programming [46].

We grant the adversary no further capabilities beyond a control flow vulnerability

and access to a scripting environment which performs JIT compilation of attacker-

provided code on the victim’s machine (e.g., a JavaScript engine in a web browser). In

particular, we do not assume that the attacker is able to write arbitrary memory locations

in the victim process’s address space. We argue that an arbitrary memory write capability

obviates malicious reuse of JIT code and merely amounts to abuse of the readable-

writable-executable memory protections often assigned to memory regions allocated for

11
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JIT code, and while such a capability would pose a severe threat, it ignores the threat of

attacker influence on the instructions emitted by JIT compilers.

Furthermore, we assume that the attacker is operating “blindly” without the aid

of a vulnerability allowing her to read arbitrary memory locations. We believe that the

threat model in which an attacker does not possess a memory disclosure vulnerability is

reasonable. The majority of attacks in the literature that maliciously reuse JIT code can

be performed blindly. Furthermore, if we are able to reach a state where deployed JIT

spraying defenses completely mitigate blind JIT spraying attacks, we will have raised the

bar on malicious reuse of JIT code to the extent that control flow vulnerabilities will not

be useful against JIT code unless accompanied by other vulnerabilities.



Chapter 3

ARM Architecture

The ARM architecture is a reduced instruction set computer (RISC) architecture

that has enjoyed widespread deployment in computing environments where low power

draw is important such as smartphones, tablets, and laptops. ARM Holdings’ 2014

Strategic Report [8] proclaims a dominating 95% ARM market share in mobile handsets

and an 86% market share in the broader category of smartphones, tablets, and laptops.

In the global processor market, ARM is a growing presence; ARM chip production

increased by 20% from 2013 to 2014, making up 37% of all chips manufactured in the

latter year.

In this dissertation, we will focus on ARM chips implementing the ARMv7-A

architecture, which supports a 32-bit address space with 32-bit arithmetic. Chips imple-

menting the newer 64-bit ARMv8-A architecture, introduced in 2011, are beginning to

appear but are out of the scope of this dissertation.

3.1 Instruction sets

Prior to ARMv4T, the ARM architecture supported just one instruction set known

simply as “ARM.” ARM instructions are stored as fixed-width 4-byte words aligned to

4-byte boundaries. In 1994, ARM Holdings released the ARM7TDMI core implementing

the ARMv4T architecture, which introduced the “Thumb” instruction set, composed

13
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of 2-byte fixed-width instructions stored as halfwords. Like ARM instructions, Thumb

instructions must be aligned, but rather than being 4-byte aligned, Thumb instructions

must be 2-byte aligned.

In 2003, ARM introduced the Thumb-2 enhancements to the Thumb instruction

set, which added 4-byte instructions (separate from those found in the ARM instruction

set) that can be intermixed with 2-byte Thumb instructions. Unlike ARM instructions,

which are encoded as 4-byte words, 4-byte Thumb-2 instructions are encoded as two

consecutive 2-byte halfwords. Thumb-2 support was introduced in the ARMv6T2

architecture and is mandatory in all cores implementing ARMv7 and above. We use

the names Thumb and Thumb-2 interchangeably to refer to the Thumb-2 instruction set

containing mixed 2- and 4-byte instructions.

The ARM architecture includes support for two other instruction sets, Jazelle and

Thumb Execution Environment (ThumbEE). Jazelle was intended to allow Java bytecode

to be executed directly on hardware but is almost never implemented, and ThumbEE

has been deprecated. Therefore, both Jazelle and ThumbEE are outside the scope of this

dissertation.

Whether a particular ARM core will interpret an instruction stream as ARM,

Thumb, ThumbEE, or JVM bytecode is determined by its current execution mode, which

is stored in the instruction set state register (ISETSTATE). The ISETSTATE register can

be modified through the use of interworking instructions. Since the ThumbEE and

Jazelle execution modes are rarely used, we constrain our discussion of instruction set

interworking to ARM-Thumb interworking.

ARM processors allow ARM code to call into and return from Thumb code

and vice versa. The current execution mode can be changed via a handful of branch

instructions that always toggle the instruction set and interworking branch instructions

that use the least significant bit of the branch target address as a signal for whether to
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execute in ARM or Thumb mode. When branching to an address using an interworking

branch instruction, the processor inspects the least significant bit of the branch target

address. If it is set, the processor clears the least significant bit and branches execution to

the resulting address in Thumb mode; if it is not set, the processor branches execution

to the target address in ARM mode. This clever use of the least significant bit is made

possible by the fact that ARM and Thumb instructions are aligned to 4- and 2-byte

boundaries, respectively. Consequently, the least significant bit of every instruction’s

address is never needed to identify the branch target and is free to be repurposed for

interworking.

3.2 Core registers

The ARM architecture has 13 32-bit general purpose registers (R0-R12) and three

32-bit special-purpose registers (R13-R15). The usage convention for the general purpose

core registers is defined by the Procedure Call Standard for the ARM Architecture

(AAPCS) [7] and is summarized in Table 3.1.

The special-purpose registers have roles defined by the instruction set and imple-

mented in hardware. R13 serves as the stack pointer register (SP). Special variants of the

add and sub instructions are hardwired to use SP as an operand.

The link register (LR/R14) is used to hold subroutine return addresses. The ARM

analogs of x86’s call instruction are the branch with link (bl) and branch with link

and exchange (blx) instructions. When either of these instructions is executed, it not

only causes execution to branch to the provided branch target, but also saves the address

of the instruction following the branch instruction into LR. To support ARM-Thumb

interworking, the saved return address has its least significant bit set if and only if the

branch was executed in Thumb mode. Whether the callee is ARM code or Thumb code,

it will be able to return to its caller in the proper execution mode because the return
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Table 3.1. ARM general-purpose registers

Register Argument Return value Scratch Local Var. Platform-specific

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

address’s least significant bit encodes the return mode. If the callee makes any subroutine

calls of its own, it must save LR before it gets overwritten by the call. For this reason, it

is common practice to store all callee-saved registers along with LR onto the call stack at

the beginning of each function and restore them prior to returning.

The program counter register (PC/R15) holds the address of the instruction cur-

rently being executed plus 8 while in ARM mode or the address of the currently-executing

instruction plus 4 while in Thumb mode. Most data processing and memory instructions

can write their results into the PC. The PC overwrite has the effect of branching to the

address written to the register and, in certain circumstances, can cause the processor to

switch from ARM to Thumb mode or vice versa. A common convention at subroutine

return sites is to restore the callee-saved registers from the stack, and then to restore the

saved LR value (which held the return address) directly into the PC, effectively causing
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the subroutine to return to its caller.

3.3 Endianness

ARM is a bi-endian architecture, meaning that it can interpret words and half-

words as either big or little endian. The ENDIANSTATE execution state register stores

a bit determining data memory endianness, and the ARM ISA provides the setend

instruction to modify its value. Prior to ARMv7, ARM supported both big and little

endian instruction memory, but big endian instruction support was dropped in ARMv7.

The endianness of data memory can still be toggled.

3.4 Conditional execution

Unlike the x86 instruction set, which only supports conditional execution of

branch instructions, most ARM instructions can be predicated through a 4-bit condition

code. This allows for the construction of some if-then-else blocks without the use of

a branch instruction. The condition code field is located in the most significant nibble of

the ARM instruction and comprises three bits which specify a positive condition (e.g.,

negative result, carry bit set, overflow) and a fourth bit which allows for negation of

the condition (e.g., non-negative result, carry bit clear, no overflow). The condition

code 11102 is the Always (AL) condition code and cannot be negated; 11112 is an

illegal condition code that will cause a processor exception if encountered. Some ARM

instructions do not treat the most significant nibble as a condition code. These instructions

may only be executed unconditionally, and their most significant nibble must be 11112.

They are composed of coprocessor instructions, SIMD instructions, hint instructions, and

an unconditional PC-relative branch with a forced instruction set mode change to Thumb

mode.

Since the Thumb-2 instruction set is designed to improve code density, most of its
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instructions do not contain a condition code field. The only exception is the PC-relative

branch instruction. Conditional execution in Thumb mode can also be achieved through

the “compare and branch on zero/non-zero” (cbz/cbnz) instruction, which compares a

register’s value against zero and conditionally performs a PC-relative branch based on

the outcome. Thumb-2 also provides the ability to create a short conditionally-executed

block of code without a branch instruction via the “if-then” (it) instruction. Up to four

Thumb-2 instructions following an it instruction are conditionally executed based on a

condition code provided in the it instruction.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of

the 2015 Network and Distributed System Security Symposium. Wilson Lian, Hovav

Shacham, and Stefan Savage, Internet Society, 2015. The dissertation author was the

primary investigator and author of this paper.



Chapter 4

JIT Spraying Payloads on ARM

4.1 Introduction

There is a pattern in security research whereby new attacks are initially designed

to target the x86 platform. This is not without good reason. The x86 is undoubtedly the

most prevalent architecture on the market. Eventually, however, researchers discover

that the architectural features that were thought to be lynchpins of an attack are in fact

merely implementation details. For example, Shacham’s seminal work on return-oriented

programming [46] was thought to hinge on specific properties of the x86 architecture

such as its variable-length, unaligned instructions and small register file. However, since

then, there has been an explosion of work extending ROP to architectures very different

from the x86 such as SPARC [15], ARM [34], and the Zilog Z80 [17].

In similar fashion, the x86 architecture lends itself particularly well to JIT spray-

ing. In particular, the x86’s variable-length, byte-aligned instructions and support for

32-bit immediate operands are conducive to hiding malicious instructions within be-

nign JIT-compiled instructions. The absence of these features in other architectures

greatly complicates the construction of a JIT spraying payload. In this chapter and the

three that follow it, we continue the tradition of extending attacks from the x86 to new

architectures by demonstrating JIT spraying on the ARM architecture. We begin by

19



20

examining the attacker’s options with regard to encoding a JIT spraying payload on the

ARM architecture.

After discussing vectors through which an attacker can exert influence over JIT

code memory, we consider three types of JIT spraying payloads that one might try

to construct on ARM. They are same-instruction set self-sustaining payloads, cross-

instruction set self-sustaining payloads, and gadget chaining payloads. Of these three

types, we found that cross-instruction set self-sustaining payloads and gadget chaining

payloads are the most feasible payloads for blind JIT spraying on ARM. Specifically,

they allow us to make the following contributions:

1. We show for the first time that RISC architectures are not immune to instruction

decoding ambiguity in JIT-compiled code demonstrate a payload that hides un-

intended Thumb-2 instructions among intended Thumb-2 instructions. In Chapter 5,

we use this payload in a proof of concept blind JIT spraying attack in conjunction

with a new model we discovered for JIT spraying called gadget chaining, wherein

a high level language is able to treat short snippets of unsafe computation called

gadgets as callable primitives.

2. We demonstrate that JIT spraying attacks are not dependent on abusing instruction

decoding ambiguity (i.e., unintended instructions). We present a proof of concept

attack against Chrome’s V8 JavaScript engine on ARM which uses gadget chaning

and relies only on intended ARM instructions to bootstrap arbitrary malicious code

execution (Chapter 6).

3. In Chapter 7, we present a proof of concept JIT spraying payload against Mozilla’s

SpiderMonkey JavaScript engine on ARM which takes advantage of ARM-Thumb

interworking to hide an unintended Thumb-2 instruction stream that does not

resynchronize to the intended instruction stream among intended ARM instructions.
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Taken together, the proof of concept attacks against JavaScriptCore, V8, and SpiderMon-

key on ARM cover major browsers on both the Android and iOS smartphone platforms

and show that almost 2 billion computers are vulnerable to JIT spraying attacks.

4.2 Controlling JIT compiler output

The ease with which an attacker can devise a high level language input to a JIT

compiler that results in the emission of JIT instructions that can be reused for malicious

computation (i.e., the JIT spraying payload) is a function of both the JIT compiler’s

code generation practices and the target architecture. The JIT compiler’s practices with

respect to register allocation policy, call/return conventions, management of runtime

type information, instruction selection, and code layout dictate the set of useful JIT

code emissions that the attacker will be able to induce and the organization thereof.

Architectural design choices such as instruction encoding layout, instruction length, and

instruction alignment decide what, if any, ambiguous instruction decoding is possible.

In this section, we focus our attention primarily on features of the ARM architec-

ture that give the attacker control over JIT code and allow her to create malicious code

from the encodings of benign code. For the sake of concreteness, our discussion makes

reference to the specific code emission practices of certain JITs when necessary, but our

intention is to highlight concepts may be generalized to other JIT compilers.

4.2.1 Attacker-controlled bits

One of the attacker’s primary goals when designing a JIT spraying payload

is maximizing the percentage of attacker-controlled bits in JIT-emitted code. This is

especially important when the JIT spraying attack relies on improper disassembly of

JIT code. We define an attacker-controlled bit as a bit in an instruction’s immediate or

register field whose value an attacker can predictably manipulate by varying her input to
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Table 4.1. ARM and Thumb immediate encoding limits

Immediate bits Immediate bits (arithmetic)

ARM 25 16

Thumb-2 24 16

the JIT.

Maximizing attacker-controlled bits involves both maximizing the concentration

of attacker-controlled bits in instructions that do contain them as well as minimizing

the emission of instructions bytes that do not contain attacker-controlled bits. Blazakis’

original JIT spray payload against x86 is a prime example of JIT code with high attacker-

controlled bit concentration. It contains numerous back-to-back sequences of one non-

attacker- controlled byte (the instruction opcode)1 followed by four attacker-controlled

bytes (an immediate operand).

4.2.2 Immediate bits

Unfortunately, ARM and Thumb instruction encodings cannot contain as many

immediate bits as x86 instructions. In contrast with the 32-bit immediates that can be

encoded in the x86 bitwise XOR instruction, both the ARM and Thumb instruction

sets’ immediate-operand bitwise operation instructions (AND, OR, and exclusive OR)

only dedicate 12 bits to the immediate operand. Compiling the bitwise XOR of a 32-bit

immediate on ARM is usually handled by loading the constant piecewise into a register

16 bits at a time, then computing the bitwise XOR over the register operand. Table 4.1

lists the maximum number of immediate bits that can be encoded in any one ARM or

Thumb instruction as well as in only arithmetic/bitwise instructions, whose immediate

1The attacker can manipulate the opcode to a small degree by choosing different operations and gaming
the register allocator, but this control is relatively constrained compared to direct control over the immediate
operand.
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bits are more readily and precisely influenced by the JIT’s input than other instructions

such as load/store or branch instructions.

As mentioned above, there are instructions for moving a 16-bit immediate half

of a register; these instructions exist in both the ARM and Thumb instruction sets and

are usually emitted as a pair. The movw instruction moves a halfword into the bottom

half of a register and clears the top half; the movt instruction moves a h alfword into

the top half of a register while preserving the bottom half. Since movw/movt pairs are

simply compensating for the lack of 32-bit immediate operands on the ARM architecture,

we have never observed them emitted in long back-to-back chains; they are always

punctuated with instructions that operate on the register being populated.

Aside from the immediates in arithmetic/bitwise instructions, an attacker could

control the immediate bytes in a PC-relative branch by creating branches of varying sizes.

Maisuradze et al. [36] demonstrate an application of this control vector by using the

offsets in PC-relative calls and branches in x86 JIT code to encode ROP gadgets whose

locations are revealed with the help of a memory disclosure vulnerability. If control

flow between unintended instructions encoded by branch offsets can be orchestrated with

PC-relative branches, a non-ROP attack could be launched. To conserve space when

a payload makes use of multiple branch offsets, branches can be nested by creating

a common convergence point for all of the branches. Such an optimization is crucial

for reusing branch instructions with large branch offset fields. For example, the ARM

instruction set’s PC-relative branch contains a 24-bit branch offset, allowing it to skip up

to 64MB of code (2ˆ24 4-byte ARM instructions). Listing 4.1 shows how an attacker

might use mutually-exclusive if blocks to generate branch instructions with strictly

decreasing immediate offsets. A drawback to to this method is that not all branch offsets

will be available due to the auxiliary code that must be produced between each branch

instruction. Second, since the branch distances are organized in strictly decreasing
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if (condition_1)

;

else if (condition_2)

;

else if (condition_3)

;

...

// All ‘then’ blocks converge here.

Listing 4.1. Mutually-exclusive conditionals enable an attacker to spray PC-relative
branch instructions with varying immediate offsets.

order, it may be non-trivial to execute consecutive unintended instructions encoded by

increasing branch distances, as this would require branching backwards. Rather than

branching backwards, one could create multiple sets of mutually-exclusive if blocks and

optimize the ordering and choice of unintended instructions to minimize the number of

such blocks that need to be compiled.

An attacker might also attempt to influence the immediate offset field in a load or

store instruction by tuning the parameter, variable, or object property access patterns in

her high level language code. This is possible because many values are stored sequentially

in memory in a predictable order. For example, SpiderMonkey’s non-optimizing JIT

places formal function arguments in an array 28 bytes above the location pointed to by its

frame pointer register. An attacker can therefore predict that, since SpiderMonkey stores

JavaScript values as 64-bit NaN-boxes, read accesses of the first argument will result in a

load instruction whose immediate offset is 28; accesses of the second argument will have

an immediate offset of 36; and so on.

4.2.3 Register fields

In addition to immediate bits, an attacker can control the choice of operand and

destination registers used in certain instructions by carefully crafting her input to the

JIT compiler. The JavaScriptCore, V8, and SpiderMonkey JavaScript engines employ
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function (R0, R2, R8, R10) {

var R1 = R0 ^ 0x1234;

var R4 = R2 ^ 0x2345;

var R9 = R8 ^ 0x3456;

var R11 = R10 ^ 0x4567;

// At this point all registers have been populated

return (R1^R2) | (R4^R8) | (R10^R9) | (R11^R0);

}

Listing 4.2. Variables in this function are named for the registers storing the variables’
values at the point in execution just prior to the return statement.

4051 eors r1 , r2

ea84 0408 eor.w r4 , r4 , r8

4321 orrs r1 , r4

ea8a 0a09 eor.w r10 , r10 , r9

ea41 010a orr.w r1 , r1 , r10

ea8b 0b00 eor.w r11 , r11 , r0

ea41 010b orr.w r1 , r1 , r11

Listing 4.3. Raw bytes and disassembly of the computation of the return value in
Listing 4.2, as generated by JavaScriptCore’s optimizing JIT compiler.

multiple levels of JIT code optimization; and at the lowest level, where a register allocator

is not used, the registers chosen for a particular high level operation are always the same.

Values are conveyed from one high level operation to the next via the stack. JIT code at

the lowest level of optimization is therefore immune to this form of manipulation. All

three of the aforementioned JavaScript engines do however have an optimization level

which performs register allocation, enabling an attacker to predict the registers which

will hold the values corresponding to high level language variables. The parameters

and variables in the anonymous function shown in Listing 4.2 are named to correspond

with the registers into which their values will be stored. The function body’s first four

lines cause its arguments to be loaded into registers in a predictable order. The result

of XORing each argument with an immediate is stored into other registers, again in

predictable order. At this point, the attacker can predict which registers will be used in

combination with one another and in what manner, as the return statement demonstrates.
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Listing 4.3 shows the raw bytes and disassembly of the return value computation

generated by JavaScriptCore’s optimizing JIT compiler. Notice how the attacker has

complete control over which registers are XORed together: R1 with R2, R4 with R8, etc.

Furthermore, the attacker has control over which registers are chosen as accumulator

registers based on the order of the operands. The result of (R4 ^ R8) is stored into R4

because R4 is the left-hand operand of the XOR operator. Likewise, the result of (R10

^ R9) is saved into R10, which was written to the left. The capability for the attacker to

control the accumulator register varies by JIT compiler; if similar code were compiled by

SpiderMonkey’s optimizing JIT, the lower-numbered register would always be chosen as

the accumulator.

Influence over what registers are used as operands can translate to influence over

the lengths of instructions if the JIT emits Thumb-2 instructions. Register fields in most

16-bit Thumb instructions are only three bits wide, restricting them to accessing only

the lower 8 registers. Using R8–R15 as an operand usually requires the use of a 32-bit

instruction. This can be observed in the first two lines of Listing 4.3 which shows that

the JIT chooses to use the 16-bit XOR encoding to XOR R1 with R2, but it must use the

32-bit encoding to XOR R4 with R8 since the 16-bit encoding only provides 3-bit register

fields which cannot encode R8.

4.2.4 Arithmetic woes

If an attacker opts to chain together arithmetic operations such as addition, sub-

traction, multiplication, and division rather than bitwise operations in an attempt to

induce the JIT to emit densely-packed instructions with attacker-controlled immediates

a la Blazakis’ original payload [13], she will most likely discover that the arithmetic

instructions will not be emitted back-to-back. This is because it is common for JIT

compilers to inject runtime checks after these operations to test for overflows, underflows,
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and other exceptional conditions. These checks introduce several consecutive instructions

that do not contain attacker-controlled bytes and should therefore be avoided. For this

reason, we consider bitwise operations to be the best method for generating long runs

of tightly-packed instructions with a relatively high concentration of attacker-controlled

bits.

As an aside, runtime checks are necessary for a JavaScript JIT because although

JavaScript numbers are all technically floating point numbers, optimized code can be

generated that assumes (based on observations of prior values) that certain numbers are

32-bit integers. This enables optimized JIT code to take advantage of native integer

arithmetic, which can be faster than its floating point counterpart. However, if the

result of 32-bit integer arithmetic were to under- or overflow, the runtime would need

to intervene to convert the value to a floating point representation, which would be

large enough to hold the result. JIT code generated by a non-optimizing JIT compiler

would not necessarily contain these runtime checks, but none of the three non-optimizing

JavaScript compilers we studied are useful for generating instructions with densely-

packed attacker-controlled bits because they produce “canned” instruction sequences

for high-level operations and do not incorporate untrusted constants into the sequences

for bitwise and arithmetic operations. Therefore, it is only necessary to consider the

usefulness of arithmetic instructions emitted in optimized JIT code.

4.3 Same-instruction set self-sustaining payloads on
ARM

In this subsection, we analyze the prospect of same-instruction set self-sustaining

JIT spraying payloads on ARM. This is the type of payload used in Blazakis’ [13]

original JIT spraying attack. It is “self-sustaining” because once the payload is branched

to via a control flow vulnerability, an arbitrary number of unintended instructions can
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be executed without resynchronization to the intended instruction stream. The notion of

a self-sustaining JIT spraying payload therefore only pertains to payloads which abuse

instruction decoding ambiguity to create unintended instructions from intended JIT-

emitted instructions. A self-sustaining payload is designated as being “same-instruction

set” when the intended instruction stream and unintended instruction streams are executed

under the same instruction set mode.

On the ARM architecture, same-instruction set decoding ambiguity can be

brought about by endianness confusion or execution from an unintended instruction

boundary. Endianness confusion can be created by toggling the processor’s endian state

to cause it to decode JIT code with a reversed byte order from the one under which it

was generated. However, since recent (ARMv7 and later) ARM chips only support little

endian instruction memory, we omit endianness confusion from the scope of our work,

and it remains an open problem.

Same-instruction set execution of JIT code at unintended instruction boundaries

on ARM is limited to Thumb-mode execution. Specifically, the CPU under attack must

support the extended Thumb-2 instruction set. The reason for this is quite self-evident.

In ARM mode, the processor ensures that instruction fetching and decoding occurs along

4-byte aligned boundaries; it is simply impossible to divert control flow into the middle

of an ARM instruction. Likewise, on a processor that lacks support for 32-bit Thumb-

2 instructions, all 2-byte aligned branch targets are intended instructions. Thumb-2,

however, allows for ambiguity in the decoding of instruction memory. While it is still

necessary to fetch and decode instructions from 2-byte aligned boundaries, the mixing of

16- and 32-bit Thumb-2 instructions allows for the second halfword of a 32-bit Thumb-2

instruction to be interpreted as the first halfword of an unintended instruction.

In order for the unintended instruction stream to avoid resynchronizing with

the intended instruction stream, all unintended instructions must be 32-bit Thumb-2
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Halfword 1 Halfword 2 Halfword 3 Halfword 4 Halfword 5

Instruction A Instruction B

Instruction C Instruction D

Memory Layout

Intended 
Instructions

Unintended 
Instructions

Figure 4.1. Example of two possible Thumb-mode decodings of a sequence of halfwords.

instructions, and the intended instructions encoding them must also be 32-bit Thumb-2

instructions. In other words, the attacker’s goal is to execute a chain of intended 32-bit

Thumb-2 instructions out of phase by one halfword, as illustrated in Figure 4.1. Notice

that if any of the intended or unintended instructions were shorter than 32-bits wide,

the instruction stream would resynchronize. For example, if intended Instruction B

were a 16-bit instruction, unintended execution would resynchronize to the intended

instruction beginning with Halfword 4 immediately after executing unintended Instruction

C. Similarly, if unintended Instruction C were a 16-bit instruction, execution would

resynchronize immediately after it, resuming the intended instruction stream at Instruction

B.

Inducing a JIT compiler to generate a chain of intended 32-bit Thumb instructions

that encode a out-of-phase chain of 32-bit Thumb instructions is challenging. The

intended instructions used must have the property that their second halfword is a valid

first halfword for a 32-bit Thumb instruction. All 32-bit Thumb-2 instructions must begin

with either the 11112 or 111012 bit pattern, but the second halfword of all 32-bit Thumb

encodings of the bitwise AND, OR, and XOR operations begin with a 0-bit. Therefore

the intended instruction stream cannot comprise chained bitwise operations. Moreover,

we are not aware of any 32-bit Thumb-2 instructions that are both easily controlled

and generated back-to-back using SpiderMonkey, JavaScriptCore, or V8 and encoded

using a second halfword that can be interpreted as the first halfword of a 32-bit Thumb-2
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instruction.

Thus, we conclude that same-instruction set self-sustaining payloads are infeasible

on ARM. At best, we can execute a single unintended 16-bit Thumb instruction before

execution resynchronizes to the intended instruction stream. In Section 4.5, we describe

how an attacker can exploit this limited decoding ambiguity to build a gadget chaining

payload.

4.4 Cross-instruction set self-sustaining payloads

A cross-instruction set self-sustaining payload takes advantage of the ARM archi-

tecture’s support for interworking branches. An obvious consequence of the interworking

feature is that corrupted control data (e.g., function pointers, saved return addresses,

etc.) can cause the processor to execute Thumb code in ARM mode or vice versa. This

capability could be exploited by crafting an input to a JIT compiler that leads to the

emission of code that, when executed in an instruction set mode not intended by the JIT

compiler, performs malicious computation. Such a payload can avoid resynchronization

to the intended instruction stream as long as the unintended instruction stream does not

perform an interworking branch back to the intended instruction set mode at an intended

instruction boundary. In Sections 4.4.1 and 4.4.2, we analyze the feasibility of creating

useful Thumb-to-ARM self-sustaining payloads and ARM-to-Thumb self-sustaining

payloads, respectively.

4.4.1 Thumb-to-ARM self-sustaining payloads

Encoding a Thumb-to-ARM self-sustaining payload poses a perplexing practical

problem of nightmarish complexity due to the fact that intended Thumb-2 instructions

are at most as long as the unintended ARM instructions that they are used to encode.

Consequently, no two consecutive halfwords in a Thumb-2 instruction stream can be used
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to encode an unintended ARM instruction comprising exclusively attacker-controlled

bits. In other words, every unintended ARM instruction derived from a Thumb-2 in-

struction stream must contain fixed opcode bits, and since it is easier for an attacker to

exert fine control over operand bits than opcode bits in the intended instruction stream,

the set of encodable unintended ARM instructions is constrained by the quirks of the

Thumb-2 opcode encoding scheme. To make matters more complicated, each of the two

consecutive Thumb-2 halfwords that are used to build an ARM instruction could be a

16-bit Thumb instruction, the first halfword of a 32-bit Thumb instruction, or the second

halfword of a 32-bit Thumb instruction (with the exception of two combinations—16-bit

instruction followed by second halfword of 32-bit instruction and first halfword of 32-bit

instruction followed by 16-bit instruction). In this subsection, we scratch the surface of

this payload type; truly understanding its feasibility requires exhaustive cataloguing of

Thumb instructions that can be generated consecutively with respect to a specific JIT

compiler.

In particular, we study the consequences of using each of the three types of Thumb

halfword to encode the most significant half of an unintended ARM instruction. The most

significant half of the ARM instruction is important because most of the instruction’s

opcode is located therein. We will pay particular attention to two fields found in ARM

instructions that complicate the task of encoding useful ARM instructions with intended

Thumb-2 instructions. They are the condition code and the result destination register

(denoted Rd) for ALU instructions (e.g., mov, and, sub). Figure 4.2 illustrates the

positions of these fields in ARM instructions and their corresponding positions in a

Thumb instruction stream. Notice that the most significant 4 bits of every consecutive

Thumb halfword will correspond to either the condition code or Rd (if the unintended

instruction contains the Rd field). Below we will see the impact of these two fields on

building ARM instructions out of Thumb-2 instructions. We structure our discussion by
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DCBARaw bytes

Halfword 1
15                                             0

Halfword 2
15                                             0

Thumb
B A D C

ARM cond Rd
15    1231    28 0

D C B A

Figure 4.2. Example decoding of four consecutive bytes of little endian instruction
memory into two Thumb halfwords and an ARM instruction with both a condition flag
and an ALU destination register. Bytes are denoted A-D. Note the correspondence
between the first 4 bits of each Thumb halfword with the condition code and Rd.

referring to the three types of Thumb-2 halfwords used to encode an ARM instruction’s

most significant half by the following three class numbers:

1. The first halfword of a 32-bit Thumb instruction (Figure 4.3a)

2. The second halfword of a 32-bit Thumb instruction (Figure 4.3b)

3. The sole halfword of a 16-bit Thumb instruction (Figure 4.3c)

Class 1

We first look at using the first halfwords of 32-bit bitwise instructions—which,

as we described in Section 4.2, are the easiest instructions to generate back-to-back

and control—as the most significant half of an unintended ARM instruction. Thumb’s

32-bit register-operand bitwise instructions can only be used to from PC-relative branches

because they all begin with the bit pattern 11101012, which is the prefix for ARM’s

various PC-relative branch instructions. The immediate-operand variants of the bitwise

operations offer little more than their register-operand counterparts; they can only encode

variants of the vst instruction, which store the contents of floating point registers into

memory.
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A B C D E F G H

CDAB GHEF

F E D C

Raw bytes

Intended Thumb

Unintended ARM

(a) Class 1: First halfword of 32-bit Thumb instruction

A B C D

CDAB

D C B A

Raw bytes

Intended Thumb

Unintended ARM

(b) Class 2: Second halfword of 32-bit Thumb
instruction

A B C D E F

CDAB EF

F E D C

Raw bytes

Intended Thumb

Unintended ARM

(c) Class 3: Sole halfword of 16-bit Thumb instruction

Figure 4.3. Illustrations of the three classes of halfwords from which unintended ARM
instructions can draw their most significant half.
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0 imm8

15

imm3

14          12 7                                              0

Rd

11                   8

Figure 4.4. Diagram of the second halfword encoding found in many Thumb ALU
instructions with an immediate operand.

The first halfword of Thumb-2 load and store instructions, whose immediate

offsets can be influenced by an attacker, do not encode valid ARM instructions. The movw

and movt instructions can only be used to encode various SIMD instructions, and the

32-bit Thumb PC-relative branch instruction can only encode memory barriers, SIMD

instructions, hint instructions, and a handful of coprocessor instructions. In general, it is

difficult to use class 1 halfwords to encode a broad array of ARM instructions because

the first halfword of a 32-bit Thumb instruction is composed primarily of fixed opcode

bits rather than register or immediate operands. The condition code field, which occupies

the most significant nibble of most ARM instructions, further hinders unintended ARM

instruction diversity since variations in the most significant nibble of the Thumb-2

instruction will only affect it and not the ARM opcode.

Class 2

The second class of Thumb halfwords can generate a broader range of unintended

ARM instructions since the second Thumb halfword, which typically contains more

attacker-controlled bits than the first halfword, will coincide with the most significant bits

of the unintended ARM instruction, where the fixed opcode bits usually reside. Figure 4.4

illustrates the typical layout of the second halfword in a 32-bit Thumb ALU instruction

with an immediate operand, which contains 11 more-easily controlled immediate bits

and a 4-bit register field. The attacker cannot create the Always condition code with

this class using any of the easily-controlled instructions described in Section 4.2 (except

in the unlikely case that the JIT under attack uses the link register as an allocatable
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general purpose register for live values, in which case the attacker could use a load

or store instruction). Without the Always condition code, the attacker must duplicate

each unintended instruction with complementary condition codes in order to ensure that

it executes. This is not a major setback, however, because the encodings of most of

Thumb’s immediate-operand ALU instructions allow the attacker to control the bits that

correspond to the last three bits of the unintended instruction’s condition code. In fact,

this may be a boon to the attacker, as it allows her to write shellcode instructions that can

be conditionally executed.

The second class of halfwords does, however, suffer from a drawback stemming

from the the destination register (Rd) field found in nearly all ARM instructions that

produce an ALU result. As shown in Figure 4.2, if the second halfword of a Thumb

instruction is decoded as the most significant half of an ARM instruction, the first four

bits of the first halfword of that same instruction will be decoded as the Rd field (for

ARM instructions that have one, of course). Since the Thumb instruction is a 32-bit

instruction, we know that its first four bits must be either 11102 or 11112. Therefore,

the unintended ARM instruction’s Rd field can only take the values R14/LR and R15/PC.

Although the second class provides yet another way for an attacker to encode a branch

instruction (since writing to the PC results in a branch to the address written), it is difficult

to perform useful computation without being able to store ALU results to registers other

than R14 and PC. For example, invoking a system call on the ARM Linux GNU EABI

requires placing the system call number into R7 and its arguments into R0-R6.

Some ARM instructions do not expect the Rd field in the location shown in

Figure 4.2 and do not conflict with 32-bit Thumb instruction prefixes (11112 and 111012).

They comprise the following types of instructions:

• multiplication
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• Advanced SIMD & floating point (VFP)

• hint instructions

• memory barriers

• coprocessor instructions

• branches

• system instructions (e.g., system call)

• miscellaneous addition & subtraction

• memory loads & stores

It may be possible to extend the number of registers available to unintended

instructions encoded with second class halfwords by exploiting Advanced SIMD and

VFP instructions and the “extension registers”—a set of registers separate from the

core registers—on which they operate. The high-level idea is to populate R14/LR with

available standard ALU instructions and use the vmov instruction (which copies values

between from core registers to the extension registers and vice versa) to shuttle values

into and out of various extension registers via R14/LR and to use Advanced SIMD/VFP

instructions to process those values. Unfortunately, vmov cannot be used to copy values

into abitrary core registers; the only core registers into which vmov is permitted to move

values are R14/LR and R15/PC due to the 32-bit Thumb instruction prefix.

A simple application of this technique is a stack-based virtual machine. Operands

are popped into R14/LR then moved into extension registers. An Advanced SIMD/VFP

instruction performs an operation on them, and the result is moved back into R14/LR,

from whence it is pushed onto the stack. We did not build this payload; our analysis

of the second class of halfwords has been simplified by constraining only the bits that
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0 imm3 Rd imm8 1 1 1 0 0 imm11 0 imm3 Rd imm8 1 1 1 0 0 imm11

cond
1110 0 imm11 0 imm3 Rd imm8 ? cond

1110 0 imm11 0 imm3 Rd imm8

and/or/xor with immediate operand and/or/xor with immediate operandPC-relative branch PC-relative branch?

Useful UsefulGap instruction (junk?)

Thumb-mode decoding

ARM-mode decoding

Figure 4.5. Diagram illustrating the use of 16-bit Thumb branch instructions as the most
significant half of unintended ARM instructions. Thumb halfwords appear to swap order
in the ARM decodings due to the little endian decoding of words in memory.

form the prefixes of all 32-bit Thumb instructions. The actual set of unintended ARM

instructions that can be encoded with the second class of halfwords depends on the set of

intended Thumb instructions that the attacker is able to induce a specific JIT to emit.

Class 3

The third class of halfwords provides the most potential flexibility for unintended

ARM instruction encoding, but it poses the greatest logistical challenge. The only

16-bit Thumb instruction whose prefix can encode the Always condition code is the

unconditional PC-relative branch instruction. Figure 4.5 illustrates the structure of a

payload using the branch instruction as the first halfword of each useful unintended ARM

instruction. By creating large if-then blocks as described in Section 4.2, the attacker

can enumerate a large portion of possible ARM instruction first halves. By placing an

immediate-operand instruction immediately before the branch instruction, the attacker

can control most of the bits in the second half of the unintended ARM instruction as well.

A challenge to using the third class of halfwords is filling the gaps between

useful unintended ARM instructions. In the example in Figure 4.5, the second half of

each useful unintended ARM instruction comes from the second half of a 32-bit Thumb

instruction. The first half of each of those 32-bit Thumb instructions forms the first

half of an ARM instruction containing very few attacker-controlled bits; these are the
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instructions in the gaps. Even if the second half of the unintended ARM instructions were

to be derived from 16-bit Thumb instructions, it is unlikely that an attacker can induce any

JIT compiler to emit an unconditional branch instruction as every other instruction. There

are bound to be gap instructions. The attacker must ensure that these gap instructions are

semantic NOPs with respect to the useful instructions in her payload.

Using 16-bit Thumb instructions aside from the PC-relative branch provide the

benefit of allowing the attacker to conditionally execute unintended ARM instructions,

but unconditionally executing ARM instructions using those instructions is much more

difficult. This is because no 16-bit Thumb instructions place operands in the first four

bits of the instruction. Thus, if the attacker needs to duplicate an ARM instruction

with complementary condition codes, she cannot simply duplicate the operation in her

high level language code with different operands. She must find two separate 16-bit

Thumb instructions that encode the top half of the same ARM instruction, but with

complementary fourth bits.

By now, we hope to have convinced the reader that Thumb-to-ARM

self-sustaining payloads—while possible in theory—are a nightmare to implement in

practice.

4.4.2 ARM-to-Thumb self-sustaining payloads

At first glance, the task of encoding a useful Thumb-2 payload with ARM

instructions appears insurmountable. On one hand, Thumb-mode execution has the

advantage of supporting 16-bit instructions, which can be formed from a strict subset of

a single intended ARM instruction’s bits. Ideally, unintended 16-bit Thumb instructions

would be formed from the attacker-controlled-bit-rich least-significant halves of intended

ARM instructions. This allows for a wide range of unintended Thumb instructions to be

encoded without being constrained by the fixed opcode bits of an ARM instruction.
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On the other hand, the vast majority of ARM instructions contain the Always

condition code, meaning that the Thumb instructions formed from the most significant

halves of such ARM instructions must contain the 11102 prefix. The set of Thumb

instructions with this prefix is limited; the only 16-bit Thumb instruction starting with

11102 is an unconditional branch. The 32-bit Thumb instructions that allow that prefix

are load/store instructions, register-operand data processing instructions, coprocessor

instructions, SIMD, and floating point instructions.

Furthermore, whenever the least-significant half of an intended ARM instruction

is used as a 16-bit Thumb instruction, at least one 16-bit Thumb instruction encoded

from the most significant half of an intended ARM instruction must be executed before

another 16-bit Thumb instruction from the least significant half of an ARM instruction

can be executed.

Figure 4.6 illustrates this point. Suppose that the least significant half of each

ARM instruction can be influenced by an attacker (halfwords BA and FE); in both

subfigures, the attacker has used the least-significant half of the first ARM instruction to

encode a useful 16-bit Thumb instruction. Notice in Figure 4.6a that when halfword DC

initiates a 32-bit Thumb instruction, halfword FE cannot be a 16-bit Thumb instruction;

instead, it must be consumed as the second halfword of a 32-bit Thumb instruction.

Extrapolating from this, if halfword HG were to initiate a 32-bit Thumb instruction, the

least significant half of the next ARM instruction (not pictured) would be forced to form

the second halfword of the 32-bit Thumb instruction. However, if halfword DC were

a 16-bit Thumb instruction as shown in Figure 4.6b, halfword FE is free to become a

16-bit Thumb instruction. More generally, once the most significant half of an intended

ARM instruction encodes the first half of a 16-bit unintended Thumb instruction, the least

significant half of the next ARM instruction is free to encode a useful 16-bit unintended

Thumb instruction.
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C F

cond
1110 Rd imm12 cond

1110 Rd imm12

Rd imm12

D C B A H G F E

B A D E

A B C D E F G HRaw bytes

ARM

Thumb

(a) Most significant half of ARM instruction encodes start of 32-bit Thumb instruction

cond
1110 Rd imm12 cond

1110 Rd imm12

Rd imm12

D C B A H G F E

B A D C F E

A B C D E F G H

Rd imm12

Raw bytes

ARM

Thumb

(b) Most significant half of ARM instruction encodes 16-bit Thumb instruction

Figure 4.6. Illustration of ARM-to-Thumb payloads resulting from the most significant
half of an ARM instruction (halfword DC) encoding the first halfword of a 32- and 16-bit
Thumb instruction. Subsequent least-significant halves cannot encode 16-bit Thumb
instructions until after a most-significant half encodes a 16-bit Thumb instruction.

The consequence of the above observation is that if an attacker wishes to encode

a 16-bit Thumb instruction using the least-significant half of an ARM instruction, she

must eventually execute an unconditional branch instruction. Superficially, it seems that

such a payload encoding will waste a large quantity of JIT code, but in the remainder

of this subsubsection, we look at a concrete ARM instruction and discuss how it can be

used to construct a relatively space-efficient ARM-to-Thumb self-sustaining payload. In

particular, we will analyze ARM’s immediate-operand bitwise AND instruction, which

computes the bitwise AND of a 12-bit immediate value (imm12) and the contents of a

register (Rn) then stores the result into an arbitrary register (Rd). By carefully structuring

the JavaScript code used to generate the payload, we are able to control both 4-bit register

operands and the 12-bit immediate for a total of 20 out of 32 bits. The bytes in the

encoding of ARM’s immediate-operand bitwise AND instruction form two consecutive

16-bit Thumb instructions, as shown in Figure 4.7. From top to bottom, the rows show
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DCBARaw bytes

15                               4

Thumb
B A D C

ARM Rd imm12
15   1231                              20 11                                0

D C B A
111000100000

19   16

Rn

imm12 111000100000Rd Rn
3       015   12 11                                0

Figure 4.7. Illustration of how the immediate-operand bitwise AND instruction from
the ARM instruction set (top row) can be decoded as two 16-bit Thumb-2 instructions
(bottom row).

the layout of the ARM AND instruction, the in-memory layout of those bytes, and the

layout of those same bytes when decoded as Thumb-2 instructions.

The observant reader may be curious as to why the unintended Thumb-2 instruc-

tion stream will decode to 16-bit instructions rather than 32-bit Thumb-2 instructions.

The reason is that 32-bit Thumb-2 instructions must begin with the bit prefix 111012

or 11112, but ARM JITs are unlikely to to perform the bitwise AND operation with a

destination register (Rd) of R14/LR or R15/PC. Therefore, neither byte B nor byte D in

this particular instruction will contain this prefix, and Thumb-mode decoding beginning

at either halfword can only yield 16-bit Thumb-2 instructions. Why not choose an ARM

instruction whose byte B or byte D can include 32-bit Thumb-2 instruction prefixes? The

reason is that immediate-operand data processing instructions are easy to generate and

furnish the attacker with the most controllable bits in the instruction’s least-significant

half; and all such instructions begin with 16-bit Thumb-2 instruction prefixes.

In addition to the constraints on the Rd register, the first Thumb-2 instruction

is also constrained by the set of valid 12-bit immediate operands to the ARM AND

instruction. The 12-bit immediate is meant to be interpreted as an 8-bit value with a 4-bit

rotation field prefix, but valid encodings must use the smallest possible rotation value.

Therefore, it is impossible to induce the JIT compiler into emitting certain bit patterns in

the imm12 field. Taking these constraints into account, the halfword formed by bytes A
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and B can still encode a broad range of 16-bit Thumb-2 instructions.

The second Thumb-2 instruction must be an unconditional PC-relative forward

branch of at least 512 halfwords (this minimum exists because one of the high-order

bits in the branch instruction’s offset must be set due to the intended ARM instruction’s

opcode). The Rn field forms the least-significant 4 bits of the branch distance in units of

halfwords. The self-sustaining payload works by chaining together pairs of unintended

16-bit Thumb-2 instructions with these unconditional branches. The first Thumb-2

instruction in each pair performs useful work for the attacker; the second branches to the

first Thumb-2 instruction in a subsequent pair. In order for this branch to target the first

instruction in a pair, the branch offset must be an odd number of halfwords; therefore Rn

must be an odd-numbered register. The value of the PC in Thumb mode is the address of

the current instruction plus 4 (i.e., 2 halfwords). Consequently, the closest we can place

the next pair of unintended Thumb-2 instructions is (512+1+2)∗2 = 1030 bytes after

the start of the unintended branch instruction.

Naı̈vely chaining 1030-byte forward branches would require an exorbitant amount

of memory to encode even a simple payload. To reduce the space requirements of our

self-sustaining payload, we can designate a general purpose register as a virtual PC which

we use to loop execution back into the space skipped by unintended Thumb branches,

where another unintended instruction pair has been placed. We define a branch block as

the largest block of unintended instruction pairs whose first unintended instruction pair

skips over all subsequent unintended instructions pairs in that branch block. Figure 4.8

shows the virtual PC method with 3 branch blocks under simplified conditions. Note how

execution flows through the first unintended instruction pair in each branch block (with

the exception of branch block 3, which only executes the first unintended instruction in

the pair), then through the second instruction pair in each branch block, etc.

In proof of concept payload we describe in Section 7.2, 12-bit immediate encoding
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add r6, #0 b loopback_0vpc_update_0:

add r6, #4 b loopback_1

add r6, #4 b loopback_2

mov pc, r6loopback_0:

mov pc, r6loopback_1:

mov pc, r6loopback_2:

vpc_update_1:

vpc_update_2:

pair_0:

pair_1:

mov r6, pc b vpc_update_0

shellcode_insn_1 b vpc_update_1

shellcode_insn_2 b vpc_update_2pair_2: }Branch
Block 1

}Branch
Block 2

}Branch
Block 3

Figure 4.8. Illustration of using a virtual PC (in this case R6) to more efficiently utilize
the space skipped over by branches.

rules require us to populate a register with the virtual PC advancement amount and

perform register-register addition rather than register-immediate addition to advance

the virtual PC. Furthermore, in order to prevent dead store elimination, the JavaScript

statements that produce unintended instruction pairs reside in separate mutually-exclusive

conditional blocks, resulting in a larger virtual PC advancement interval of 36 bytes

rather than 4 bytes. Since these details are SpiderMonkey-specific, we present them in

Section 7.2.

Note that although Figure 4.8 shows only three branch blocks, longer payloads

can be encoded by inserting an arbitrary number of branch blocks before the “vpc update”

block. Another option is to increase the size of branch blocks by using an intended

instruction other than bitwise AND; for example, bitwise XOR and OR would result

in branch blocks that are 64 and 768 bytes longer, respectively, due to the high-order

bits in the unintended branch instruction’s offset field that correspond to set bits in their
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opcodes.

4.5 Gadget chaining payloads

In this subsection, we introduce gadget chaining, a novel technique for utilizing

JIT sprayed payloads. Unlike an attack which diverts control flow to a self-sustaining

payload, in which control flow is retained throughout the execution of the entirety of the

attacker’s malicious computation, a gadget chaining attack uses the high level language

already available to the attacker to perform Turing-complete computation and treats short

sequences of JIT-sprayed code as callable primitives used to augment the program with

capabilities beyond those prescribed by the language’s designers.

We refer to these short sequences of JIT sprayed code as “gadgets,” and they

can be thought of as short subroutines that are called by the high level language (e.g.,

JavaScript) via a control flow vulnerability. Once execution branches to a gadget, it

performs its malicious computation (e.g., storing a value to memory or moving a value

into a register) and returns control flow back to the high level language.

We borrow the term “gadget” from return-oriented programming parlance, but

gadget chaining’s gadgets function quite differently. Whereas the return at the end of a

ROP gadget serves to divert control flow to the next gadget, a gadget chaining gadget’s

return is more akin to a normal function return.

As we observed in Sections 4.3 and 4.4, it can be difficult on ARM to produce a

payload in which every instruction performs useful computation for the attacker. For this

reason, most of the instructions executed in each gadget are actually filler instructions that

do not perform useful computation. For example, in the case of the Thumb-mode gadget

we describe below, the first instruction in the gadget is an unintended 16-bit Thumb

instruction. After that, execution resynchronizes to the intended instruction stream, and

eventually execution reaches the end of the gadget, where a function return sequence is
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function readGadget(x) {

return x ^ 0x11111610;

}

Listing 4.4. JavaScript function that produces a memory-read gadget when JIT compiled.

0x0: mov r2, lr

0x2: str.w r2, [r5, #-16] ; save return address

...

0x32: ldr.w r0, [r5, #-64] ; load argument

0x36: movw r12 , #5648 ; 0x1610

0x3a: movt r12 , #4369 ; 0x1111

0x3e: eor.w r0, r0, r12

0x42: mov.w r1, #4294967295 ; 0xffffffff

0x46: ldr.w r2, [r5, #-16] ; load return address

0x4a: ldr.w r5, [r5, #-40] ; restore frame ptr

0x4e: mov lr, r2

0x50: bx lr ; return

...

Listing 4.5. Selected instructions from the DFG JIT compilation of the readGadget

function given in Listing 4.4.

found. The return sequence enables the gadget to return control flow to the high level

language.

Consider the following example: a memory read gadget. When compiled by

JavaScriptCore’s optimizing DFG JIT, the JavaScript function readGadget shown in

Listing 4.4 will contain a gadget that will enable an attacker to read bytes from a specific

address in memory into a JavaScript value. Listing 4.5 shows an excerpt from the JIT code

emitted when readGadget is compiled to Thumb-2 instructions by JavaScriptCore’s

DFG JIT, which shows behavior that one might expect. Note the instruction at offset

0x42, which places 0xffffffff into R1 before the return sequence. This instruction sets a

register responsible for conveying to the caller the type of the return value; in this case, it

indicates a 32-bit integer value.

Listing 4.6 shows the instruction stream when execution begins at the second

halfword of the 32-bit instruction at offset 0x36. The halfword at offset 0x38 is a 16-
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...

0x38: ldr r0, [r2, #64]

0x3a: movt r12 , #4369 ; 0x1111

0x3e: eor.w r0, r0, r12

0x42: mov.w r1, #4294967295 ; 0xffffffff

0x46: ldr.w r2, [r5, #-16] ; load return address

0x4a: ldr.w r5, [r5, #-40] ; restore frame ptr

0x4e: mov lr, r2

0x50: bx lr ; return

...

Listing 4.6. Disassembly of the readGadget function’s DFG JIT code starting from the
middle of the intended instruction at offset 0x36.

bit load instruction that adds 64 to the value in R2 and loads a word of memory from

that address into R0. Immediately thereafter, execution resynchronizes to the intended

instruction stream. The upper halfword of R12 is loaded with the value 0x1111,2 and the

value that was read from memory is XORed against the entire contents of R12. Because

the attacker may not be able to predict R12’s value at the time the gadget is invoked, it

is necessary to make its contents predictable by writing 0x1111 into its upper halfword.

The result of the XOR operation is returned to the JavaScript execution context as a

32-bit integer.

The attacker can recover 2 bytes of memory by XORing the upper halfword of the

returned value against 0x1111, and by repeatedly invoking the read gadget, the attacker

can read out all but the first two bytes of a readable memory region. If the attacker can

assume that R12 will contain the same value at the beginning of every invocation of the

read gadget, then it is possible to ascertain the value of R12’s lower halfword after the

second invocation of the read gadget, at which point any memory marked readable can

be read and un-XORed.

Figure 4.9 depicts a simplified view of calling and returning from the read gadget.

A JavaScript control program calls a JIT-compiled wrapper function, which places the

2This pollution of R12 is not harmful because JSC uses it as a scratch register.
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function readGadgetWrapper(addr) {
  … // Place (addr - 64) into R2
  … // Ctrl flow vuln branch
}

readGadget(x)

function controller() {
  …
  val = readGadgetWrapper(addr);
  doSomething(val);
  …
}

return sequence

…

…

…

   ldr r0, [r2, #64]

Figure 4.9. Diagram of the invocation of the read gadget with arrows showing control
flow.

address to be loaded (adjusted by the offset of 64) into a register and exploits a control

flow vulnerability to branch to the read gadget. The read gadget computes the return

value as described above, and its return sequence serves as a return from the wrapper

function back into the control program. Certain details are abstracted away in Figure 4.9.

Most notably, the wrapper function must populate certain registers needed as input to

the gadget and must furthermore branch to the read gadget without perturbing either the

JavaScript call frame pointer or the native stack pointer (the SP register). Otherwise, the

gadget’s return sequence will not work properly, and subsequent execution is at risk of

crashing. Furthermore, the control flow vulnerability used is presumed to preserve the

value placed in R2 so that it can be used by the gadget. These conditions can be satisfied

by taking advantage of the fact that JIT-compiled functions can be called directly from

within another JIT-compiled function. If an attacker were to exploit a bug allowing her to

trick the high level language runtime into writing a gadget’s address in place of a function

entry point, the read gadget could be called with the call frame register intact and without
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growing the native call stack. Consequently, the return from the gadget to the controller

depicted in Figure 4.9 would succeed. Even the gadget’s return value would be passed

correctly to the controller and interpreted as the wrapper function’s return value. Such a

bug is plausible since a reference to each JIT code block’s entry point is typically held in

a heap object which could potentially be corrupted by the attacker to form the control

flow vulnerability.

Giving an attacker the capability to perform arbitrary memory reads on top of a

repeatedly-invokable control flow vulnerability is sufficient for her to perform arbitrary

malicious computation using an attack dubbed Just-In-Time code reuse [51]. Just-In-

Time code reuse allows an attacker to harvest the addresses of useful code sequences from

the address space of a process protected by fine-grained ASLR. The code sequences could

subsequently be used to launch a code reuse attack such as ROP. One of the requirements

for Just-In-Time code reuse attack is an existing memory disclosure vulnerability: a

ReadByte(address) function. A callable read gadget as described above provides

exactly this functionality.

A register-to-register move instruction can be used to construct a gadget that

leaks the contents of a register (even the stack pointer or link register) as a JavaScript

numerical value. Since an attacker can influence the contents of one or more registers

at the time a gadget is invoked, it is also possible to disclose the address of a JavaScript

object by “casting” it to a number.

When compiled by JavaScriptCore’s optimizing compiler, the JavaScript state-

ment return arg0 ^ 0x10 produces an R2-disclosure gadget that can be used to cast

a pointer to a JavaScript object to a JavaScript numeric value. The gadget begins with

an unintended movs r0, r2 followed by mov.w r1, #4294967295 (i.e., 0xffffffff, the

JavaScriptCore tag for 32-bit integers) and a return sequence. If the gadget is invoked

with a JavaScript object’s payload field in R2, the object’s payload, which is a pointer
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to the object itself, will be returned as a 32-bit integer. When used in conjunction with

subsequent read gadget calls, the disclosure of an object’s address could lead to the

disclosure of a non-JIT code pointer. A non-JIT code pointer is desirable as a seed for

code sequence harvesting in a code reuse attack; JITed code tends to branch directly only

to other JITed code.

As we alluded to in the previous paragraph, a single JIT spraying attack using

gadget chaining can make use of more than one gadget. This can be accomplished by

spraying all necessary gadgets in the same payload at known offsets from one another. If

the attacker is able to correctly guess the address of one gadget, she can use the known

offsets to correctly deduce the addresses of the other gadgets. Gadgets—especially those

leveraging unintended instructions decoded from unintended instruction boundaries—

must be branched to at their exact addresses; otherwise, a useful, unsafe instruction might

be skipped or improperly executed (e.g., an input register for an unsafe instruction might

be clobbered by a preceding instruction). Placing gadgets at predictable offsets requires

heap feng shui [53] tailored to the JIT under attack. For concrete examples of this, see

Sections 5.2 and 6.2, in which we describe concrete heap feng shui for gadget chaining

against JavaScriptCore and V8, respectively.

The unsafe instructions in a gadget need not be unintended instructions. The

gadget chaining attack against V8 (Section 6.2) utilizes a store gadget containing only

intended ARM instructions.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of

the 2015 Network and Distributed System Security Symposium. Wilson Lian, Hovav

Shacham, and Stefan Savage, Internet Society, 2015. The dissertation author was the

primary investigator and author of this paper.

Chapter 4, in part, has been submitted for publication of the material as it may

appear in appear in Proceedings of the 2017 Network and Distributed System Security
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Symposium. Wilson Lian, Hovav Shacham, and Stefan Savage, Internet Society, 2017.

The dissertation author was the primary investigator and author of this paper.



Chapter 5

Thumb gadget chaining against
JavaScriptCore

5.1 The JavaScriptCore JavaScript Engine

JavaScriptCore (JSC) is the JavaScript engine used by the WebKit layout engine.

It is an attractive platform to target because of iOS’s code signing policy, which requires

all executable code running on iOS to be cryptographically signed, with one exception—

JIT code emitted by JSC. Hence, JSC is used by Chrome, Safari, and Firefox—the three

major browsers—on iOS. Since the code signing policy complicates traditional code

injection attacks, JIT spraying against JSC is an especially compelling attack path. In

this section, we describe JSC for ARMv7-A as it appears in the WebkitGTK version

2.2.2-1 port for Debian; this is the version of JSC that we target in our proof of concept

JIT spraying attack in Section 5.2.

JSC is a multi-tier JavaScript engine, meaning it will recompile a piece of

JavaScript code with increasing levels of optimization as that code’s execution count

grows. When JSC is given a piece of JavaScript source code, it is first compiled down

to bytecode. Initially, the bytcode is interpreted, but once it has been executed several

times (6 times for functions or 100 times for loops), the bytecode is compiled down to

51
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unoptimized native code1 by the Baseline JIT. Once the Baseline JIT’s code has executed

many times (60 times for functions or 1000 times for loops), the Data Flow Graph (DFG)

JIT kicks in and emits optimized Thumb-2 code. An adversary can induce JSC into

compiling a piece of JavaScript with any tier by selecting an appropriate number of times

the script is invoked.

Both the Baseline JIT and DFG JIT produce Thumb-2 code on 32-bit ARM

machines, and the code resides in memory pages that are marked readable-writable-

executable (RWX). The write flag remains throughout the lifetime of the JIT code

because JSC occassionally modifies the native code in situ.

5.1.1 Low Level Interpreter

At the bottom tier lies the Low Level Interpreter (LLInt), which interprets byte-

code. Bytecode consists of 32-bit opcodes followed by as many 32-bit operands as are

required by that opcode. Bytecode opcodes are pointers to pre-compiled code snippets

in the interpreter’s text section implementing the bytecode operations. During bytecode

execution, a virtual program counter (vPC) register points to the currently-executing

opcode in the bytecode while the real PC is in the code snippet pointed to by the opcode.

The snippet accesses the opcode’s operands via vPC-relative memory loads, performs the

desired computation (optionally storing results onto a special JavaScript stack), advances

the vPC, and finally branches to the next opcode’s snippet via a register-indirect jump

through the vPC.

5.1.2 Baseline JIT

Cold code that has become “warm” gets compiled to native code by the non-

optimizing Baseline JIT. The instruction stream produced by the Baseline JIT differs

1On ARMv7-A, all JSC JIT tiers produce Thumb-2 code.
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slightly from the one executed by the LLInt since it does not need to manage the vPC;

but they are functionally equivalent. Baseline JIT code has clear boundaries where the

execution of one bytecode instruction ends and the next begins, and it does not flow

scratch values in registers across those boundaries. Instead, scratch values are stored onto

the JavaScript stack and read back out by subsequent bytecode operations.

5.1.3 Data Flow Graph (DFG) JIT

During execution in the LLInt and Baseline JIT, JSC collects type profiling

information in order to try to predict the types of operands found in the code. The DFG

JIT uses this type profiling information to aggressively optimize “hot” code for what it

perceives to be the common case. When a piece of DFG JITed code is executed, and the

runtime data types match those predicted by the DFG JIT, execution continues on the fast

path through the optimized DFG JITed code. Otherwise, execution will fall back to the

Baseline JIT code via a process known as an on-stack-replacement (OSR) exit. Among

the DFG JIT’s features are dead code elimination analysis, function inlining, and a basic

register allocator.

5.1.4 Fourth Tier LLVM (FTL) JIT

In May 2014, the WebKit developers enabled what is known as the Fourth Tier

LLVM (FTL) JIT as an additional compilation tier. The FTL JIT utilizes the LLVM

compiler infrastructure to provide a higher-performance alternative to the DFG JIT [43].

Since the FTL JIT was still in the experimental development phase in the version of JSC

under study, its functionality is out of the scope of this chapter.

5.1.5 JavaScript value representation

All values in JavaScript are stored as 64-bit IEEE 754 double precision floating-

point numbers. Non-float 32-bit data types are encoded in the floats using NaN values. A
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Exponent 
(11 bits) Fraction (52 bits)

Sign bit

Tag (32 bits) Payload (32 bits)

64-bit float

Tag/Payload

Figure 5.1. Illustration mapping the bits of an IEEE 754 double precision floating-point
number to the tag and payload portions of a 32-bit JSC JS value.

NaN (Not a Number) value is a floating point value wherein all the bits in the exponent

component are set, and the fraction component is non-zero. The low-order 32-bits of the

float store the non-float’s value; this is called the payload field. The upper half of the

float is a 32-bit tag field, whose value indicates the value’s type. If the 64-bit value can be

interpreted as a non-NaN float, then the value is interpreted as a 64-bit float; otherwise,

its type is given by the tag field. Figure 5.1 shows the mapping from a 64-bit floating

point value to a tag/payload pair. Tags for non-floats are assigned in such a way that the

value will be a NaN float. Some tag examples are 0xffffffff for 32-bit integers and

0xfffffffb for pointers to objects.

5.1.6 JavaScript call stack and calling convention

JavaScriptCore allocates a stack separate from the one used by native host func-

tions. Rather than maintaining a pointer to the head of the stack, a register holds a pointer

to a fixed location in the current function’s call frame; the value of the caller’s call frame

pointer is stored in the callee’s stack frame and explicitly restored by the callee before

returning. The JS call frame also stores function arguments, local variables, the return

address, and pointers to other runtime objects.

When performing a function call, the calling function allocates the callee’s call

frame and populates it with everything except the return address. The caller then updates

the call frame register to point to the callee’s call frame and branches to the callee with a

linking branch instruction (such as bl or blx). The callee immediately saves the return
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address (which was placed into the LR register by the linking branch instruction) to its

call frame. After it performs its computation, the callee loads its 64-bit return value (as

described in § 5.1.5) into registers R0 and R1, restores the call frame register to point to

the callee’s call frame, and branches back to the caller using the value it saved to its call

frame.

5.2 Proof of concept gadget chaining attack

In this section we demonstrate the use of gadget chaining in the construction of

an end-to-end proof of concept attack against JavaScriptCore on ARMv7-A. The attack

uses a memory store gadget to corrupt JIT code memory and execute arbitrary code.

The high level overview of the attack is as follows: The attacker lures the victim’s

WebKit browser into loading and executing attacker-provided JavaScript. For example,

the attacker could purchase web advertisements, enabling her to push arbitrary iframe

contents to any client to whom the ad is shown. The attacker’s JavaScript induces

JSC on the client to repeatedly JIT-compile a JavaScript function containing a memory

store gadget (a gadget beginning with an unintended str Rt, [Rn, #imm]), producing

multiple copies of its JIT code in RWX memory; this is the spraying stage. The sprayed

function is devised in such a way that the memory store gadget resides at a known offset

in each 4 KB page that has been sprayed.

The attacker is assumed to have corrupted a function pointer using methods

outside the scope of this dissertation (e.g., via a use-after-free bug).2 The function whose

pointer was corrupted should have the the following two properties:

1. Execution can be induced on-demand by the attacker

2We simulate a use-after-free vulnerability by adding a virtual function, hijackVFT(), that can be
called from JavaScript to WebKit’s HTMLInputElement object. The function overwrites the vtable pointer
for the object against which it is called so that it uses a fake VFT with one of its values overwritten with
an attacker-provided value.
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64+ bytes

return sequence

   str r2, [r3, #64]

…

(a) Initial memory layout.

bx lr1

64+ bytes

   str r2, [r3, #64]

…

(b) First gadget invocation re-
places return sequence.

NOP

Shellcode

n

2

n-1

…

64+ bytes

   str r2, [r3, #64]

(c) Subsequent invocations write
shellcode and finally replace re-
turn sequence with NOP, allow-
ing execution to fall through into
shellcode.

Figure 5.2. Progression of our proof of concept attack’s self-modifying code. Encircled
numbers to the left show the order in which the self-modifying writes occur.

2. Accepts two attacker-provided 32-bit arguments that will be passed in registers

rather than on the stack. These two registers correspond to the Rt and Rn register

fields in the sprayed memory store gadget

The attacker guesses the address of a page where a sprayed instance of the memory store

gadget will reside and uses the memory store gadget’s known page offset to form the

address used to corrupt the function pointer.

The attacker uses the corrupted function pointer to invoke the memory store

gadget, providing values for its Rt and Rn fields as arguments to the function. The

memory store gadget enables the attacker to write arbitrary words to arbitrary memory

locations, and the attacker leverages this capability to modify the gadget’s own code.

Initially the gadget’s memory is laid out as shown in Figure 5.2a. The first invocation

of the memory store gadget performs self modification of the gadget’s original return

sequence, overwriting it with an alternative return sequence (Figure 5.2b). This allows

the gadget to return control flow back to JavaScript without crashing. Subsequent

invocations of the gadget copy shellcode into the memory following the alternative return

sequence. Finally, the gadget is invoked to overwrite the alternative return sequence with
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a NOP instruction, allowing execution to fall through into the shellcode (Figure 5.2c). In

Figure 5.2, the correspondence between the 64-byte offset in the gadget’s store instruction

and the size of the 64+ byte gap between the store instruction and return sequence is

merely coincidental. The store instruction’s offset is a product of the encoding of the

intended instruction from which it is derived, and the 64+ byte gap is dictated by the size

of an instruction cache line on the 32-bit ARMv7-A machine on which we tested our

attack.

In the remainder of this section, we explain the details of our proof of concept

attack, most notably those that pertain to the following four major components of

deploying an attack using gadget chaining:

1. generating the store gadget

2. pinpointing gadgets in memory

3. preparing registers and branching to gadgets from JavaScript

4. returning from gadgets without crashing

5.2.1 Gadget generation

We know from our discussion of controlling JIT output in Section 4.2 that we can

setup registers in such a way that the statement

var R4 = R2 ^ 0x09a00000;

will be compiled by the DFG JIT to the 32-bit Thumb-2 instruction

eor.w r4, r2, #161480704

The second half of this instruction encodes the 16-bit unintended Thumb instruction

str r2, [r3, #64]
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which we use in our memory store gadget. The use of registers R2 and R3 as operands

in the store instruction is deliberate, and the reason will become clear in Section 5.2.3.

The displacement value of +64 is due entirely to the choice of Rd = R4 in the intended

eor.w instruction, and the code that calls the gadget can adjust by simply subtracting 64

from the desired store target address. Although we used the XOR operation, the other

bitwise operations (i.e., AND & OR) would work as well.

5.2.2 Pinpointing gadgets in memory

To set up the hijacked function pointer, the attacker must first guess an address

where she hopes a memory store gadget has been sprayed. This guess must be correct

down to the halfword, since being off by even one halfword will result in failure to

execute the unintended instruction(s) at the beginning of the gadget. This is a direct result

of the fact that it is difficult to chain long sequences of unintended instructions together

in JIT-emitted code on ARM, making it impossible to create a NOP sled.

To increase the probability of correctly guessing the memory store gadget’s

address, we leverage the predictability of JSC’s code generation and memory allocation

to place instances of the gadget at the same known offset on each 4 KB page. It is

advantageous to the attacker that the gadget be produced by the DFG JIT rather than

the Baseline JIT. This is because JSC’s Baseline JIT performs a weak form of random

NOP insertion as a JIT spray mitigation. The idea behind random NOP insertion is that

if a NOP instruction is inserted into the middle of a sequence of intended instructions,

the behavior of the unintended instruction stream that it encodes would no longer be

predictable and might even resynchronize with the intended instruction stream. The

Baseline JIT implements random NOP insertion by emitting a 2-byte NOP instruction at

the beginning of each compilation output with 50% probability. The DFG JIT, on the

other hand, does not perform random NOP insertion, so the gadget is guaranteed to begin
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at a fixed offset from the beginning of the function’s DFG JIT code.

What remains to be shown is how one can force each instance of the store gadget

function’s DFG JIT code to be placed at a fixed offset on each sprayed page. We leverage

the following properties of WebKit to create memory holes just large enough for the DFG

JIT code at a predictable offset on all sprayed pages:

# 1: Native code emitted by both the Baseline JIT and DFG JIT share the same pool of

executable memory regions.

# 2: The Baseline JIT does not perform dead code elimination, but the DFG JIT does.

The introduction of dead code can lead to DFG JIT code that is considerably more

compact than its Baseline JIT counterpart.

# 3: JIT-emitted code “shrinks.” That is, the code initially produced by a JIT compiler is

larger than the code that is eventually executed, and the extra space is released back

into the pool of free memory regions. Shrinkage occurs due to minor space-saving

optimizations of certain instructions. For example the original form of a 4-byte

PC-relative branch in the code’s final form may have formerly been a register-based

branch consisting of two 4-byte instructions to load the register with an absolute

address followed by a 2-byte instruction to branch through the register.

# 4: The executable memory allocator used to allocate JIT code minimizes the number of

committed pages when fulfilling an allocation request by selecting the smallest free

memory region that is at least as large as the requested size and allocating the space

from either the low-addressed end or the high-addressed end of the region in such a

way that the newly-allocated space spans the fewest pages (with preference for the

low-addressed end of the region if both ends would result in the same number of

spanned pages). If no existing free region is large enough to fulfill the allocation
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request, a new 16 KB region is mapped and added to the pool of free regions, but it

is not merged with existing regions that are contiguous with it.

# 5: The executable memory allocator allocates chunks at 32-byte granularity, rounding

up allocation requests if necessary. The Baseline JIT does not return unused bytes

created by this rounding to the free pool.

Let
∣∣Baselineps

∣∣, |Baselines|,
∣∣DFGps

∣∣, and |DFGs| denote the size in bytes of the

store gadget function’s pre-shrinking Baseline JIT code, shrunken Baseline JIT code,

pre-shrinking DFG JIT code, and shrunken DFG JIT code, respectively. The store gadget

function is written in such a way that the following constraints are met:

• |DFGs| ≤
∣∣DFGps

∣∣< |Baselines|<
∣∣Baselineps

∣∣
•
∣∣Baselineps

∣∣≈ 4076

•
∣∣Baselineps

∣∣+ |Baselines|> 4096

• |Baselines|+
∣∣DFGps

∣∣≤ 4096

Suppose the attacker’s JavaScript control program is the only thread initiating re-

quests to the executable memory allocator and is repeatedly allocating space for Baseline

JIT code. Once the memory pool no longer contains regions 4 KB or larger, a fresh 16

KB region will be mapped and added. Figure 5.3 depicts how the allocator will place

consecutively-allocated Baseline JIT code instances in this region. The first allocation

occurs at the beginning of the region, and subsequent allocations walk backwards 4 KB

at a time from the end of the region, leaving between them holes just large enough for

the DFG JIT code to be placed.

The reason this occurs is simple, yet subtle. The pre-shrinking Baseline JIT code

will result in an allocation request that is rounded up to 4 KB. The pre-shrinking size of
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Shrunken Baseline JIT code for 
storeGadget() 

4 KB

4 KB

4 KB

4 KB

Shrunken Baseline JIT code for 
storeGadget() 

Shrunken Baseline JIT code for 
storeGadget() 

Shrunken Baseline JIT code for 
storeGadget() 

1

2

3

4

Size of pre-shrinking 
DFG JIT code

Low addresses

High addresses

Size of pre-shrinking 
DFG JIT code

Size of pre-shrinking 
DFG JIT code

Size of pre-shrinking 
DFG JIT code

Figure 5.3. Layout of executable memory showing holes created between instances of
the store gadget function’s Baseline JIT code. Bars on the right show the progression
of the available space as instances of the Baseline JIT code are allocated. The encircled
numbers indicate the order of Baseline JIT code allocation.

approximately 4076 bytes ensures that despite small size reductions due to uncontrollable

optimization and small expansions due to constant blinding, the allocation request will be

4 KB. The first Baseline JIT allocation request will be placed at the beginning of the 16

KB region since it is guaranteed not to span more than one page. It will then be shrunk,

and the returned free space will be merged with the rest of the free space in the region.

The next 4 KB Baseline allocation will start 4 KB from the end of the region rather than

immediately after the first allocation because that will prevent the second allocation from

spanning multiple pages. The third allocation will be placed 4 KB before the second and

so forth. The unused fragments of memory left behind after shrinking the Baseline JIT

code are large enough to allocate instances of the DFG JIT code, but not large enough

that they can be used by Baseline JIT code instances. All of these memory holes begin

at the same offset on each page because the allocator’s 32-byte allocation granularity

absorbs small deviations in the Baseline JIT code’s shrunken size. The holes are filled by



62

spraying at least as many DFG JIT instances as we did Baseline JIT instances.

5.2.3 Preparing registers and branching to gadgets
from JavaScript

The memory store gadget’s unintended str instruction requires the following

two inputs: a register containing the word to be written and a register containing a base

address to which a known offset will be added to form the memory address. Since the

ARM ABI places some function arguments in registers, a hijacked function pointer is a

perfect avenue for both loading registers with attacker-provided values and branching

to the gadget. The HTMLInputElement object in the WebKit DOM exposes the vir-

tual method void setRangeText(replacement, start, end, selectionMode);

to JavaScript. This function is perfect for our attack because the start and end parame-

ters are 32-bit integer values that are passed in registers (they are among the first four

parameters, counting the this pointer). Furthermore, since it is a virtual function, it is a

candidate for a vtable hijacking attack.

Once the vtable of an instance of the HTMLInputElement class has been hi-

jacked, the attacker can issue a call to the hijacked object’s setRangeText method with

specially-chosen values for start and end, whose values will be placed into R2 and R3,

respectively. Execution will then branch to the gadget. Supposing the unintended store

instruction in the gadget is of the form str r2, [r3, #imm], the value passed as the

start parameter will be stored into memory at the address given as the end parameter

(plus the offset value).

5.2.4 Returning from gadgets without crashing

The setRangeText method whose function pointer we hijack is a so-called “host

function,” meaning it is compiled ahead of time and is exposed to JavaScript for calling

through Web IDL. Host functions operate on the native call stack rather than the special
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JavaScript stack, and they do not observe the same register-preservation practices as

JavaScript. In order for JavaScript code to call host functions, a “prototype function”

serves as an intermediary. A prototype function is responsible for storing callee-saved

registers onto the native stack, placing arguments passed from JavaScript into their proper

locations for a native function call, and calling into the host function. Once the host

function returns into the prototype function, it marshalls the return value into a JavaScript

value, and returns to the JavaScript caller. The prototype function acts as the wrapper

function shown in Figure 4.9.

However, the return sequence found in the gadget cannot be used to return to the

prototype function’s JavaScript caller. This is because the return sequence at the end

of the gadget performs a JavaScript return, which retrieves the return address from the

JavaScript call frame. This requires that the register holding the JavaScript call frame

pointer be preserved by the prototype function, a property which is not guaranteed and in

fact does not hold for setRangeText’s prototype function. Moreover, even if the call

frame pointer were preserved, returning back to the JavaScript controller from the gadget

will leave certain registers unrestored and the native call stack in an inconsistent state

due to the saved registers pushed onto it by the prototype function. Any subsequent

computations that rely on the contents of the saved registers or the native call stack are

likely to crash the process if the saved registers are not popped off the stack.

In order to decouple our attack from JSC’s choice of call frame register and

ensure the integrity of registers and the native call stack, the first invocation of the store

gadget must overwrite its own return sequence with a bx lr instruction (Figure 5.2b),

which will cause execution to return to the prototype function, where the saved registers

will be popped off of the stack before control is returned to the JavaScript controller.

Since the prototype function calls the host function using a linking branch, we can expect

LR to hold the correct return address so long as the new bx lr instruction precedes any
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instructions in the gadget which would overwrite it. Fortunately, the only such instruction

in the gadget is the instruction in the gadget’s original return sequence which loads the

return address from the JavaScript call frame.

A final concern for returning from a gadget is ensuring that the newly-written bx

lr instruction does not reside on the same i-cache line as the unintended store instruction.

If they were to be on the same i-cache line, the overwritten instruction would exist only in

the data cache and/or main memory. The intended instruction that we wanted to overwrite

would remain intact in the i-cache and would be executed, leading to the crash we were

trying to avoid. In order to prevent this scenario, we pad the store gadget function with

code that will yield at least 64 bytes (the size of an i-cache line on our 32-bit ARMv7-A

test machine) of instructions between the unintended store and the return sequence.3

With the padding in place, the newly-written return sequence will only be loaded into

the i-cache after the unintended store has executed. In order to ensure that the cache line

containing the instructions to be overwritten is not in the cache prior to executing the

gadget, the attacker should use JavaScript to induce JSC to execute many non-sprayed

functions after spraying and before invoking the gadget. The same cache flush should

be done after the shellcode has been injected but before the new return instruction is

overwritten with a NOP instruction.

5.2.5 Analysis of the proof of concept attack

One of the most important metrics when evaluating a spraying attack is its success

rate. The success rate of a JIT spraying attack (Psuccess) is expressed by the following

3This is another reason it is important to generate the gadget with the DFG JIT. Baseline JIT code loads
and saves operands onto the call stack for each bytecode instruction, whereas the DFG JIT can allocate
scratch registers to avoid memory accesses. We do not know of a method to generate 64 bytes of padding
code with the Baseline JIT that does not invoke a memory access through the call frame pointer. Since we
would like to avoid relying on the validity of the call frame pointer register, DFG JIT code is ideal.
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equation:

Psuccess = Pvuln×Ppage×Poffset×Pbytes

where Pvuln, Ppage, Poffset, and Pbytes are defined as follows:

• Pvuln: the probability that the attacker’s control flow vulnerability results in populat-

ing the gadget’s input registers with the appropriate values and branching execution

to an attacker-chosen address. We assume a best-case value of 1.

• Ppage: the probability of correctly guessing a page containing sprayed instructions.

The attacker can maximize this probability by spraying more gadgets and using

an address disclosure vulnerability. We estimate this quantity via an empirical

measurement. In a 32-bit address space, there are 220 ≈ 1M pages. We were able

to spray about 200,000 pages (19.1% of the virtual address space) of JIT code

on a 32-bit machine with 4 GB of physical memory before the browser process

exhausted its memory and crashed. The fraction of pages that can be JIT sprayed is

limited by the presence of LLInt bytecode and other heap objects that are allocated

for every instance of the sprayed function (63 pages for every 37 pages of JIT code).

The blocks of pages containing this support data are interleaved with regions of JIT

code pages. Therefore a perfect pair of address disclosures which tightly bounds

the memory region containing all JIT code and support data cannot improve Ppage

beyond 37%, and without the address disclosure, Ppage = 19.1%.

• Poffset: the probability that the function containing the sprayed gadget on the

guessed page begins at the expected page offset. A sprayed function can begin

at an unexpected page offset if the memory hole into which it was sprayed was

misaligned as a result of several low-probability events causing the size of Baseline

JIT code to vary unpredictably. Fortunately for the attacker, the allocation offsets
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for Baseline JIT code have an opportunity to resynchronize for every new 16

KB region that is allocated, so misalignments do not cascade. We measured the

alignment of 100,000 consecutively-allocated memory store gadgets and found

that 97,826 of them were correctly aligned, giving us an empirical estimate for

Poffset of 97.826%.

• Pbytes: the probability that the intended instruction that encodes the gadget is the

instruction expected by the attacker. JSC randomly applies the constant blinding

JIT spraying defense, which scrambles constants in the instruction stream, leading

to unexpected instructions. However, only 1 out of 64 constants are scrambled at

random, giving us Pbytes = 63/64.

The success rate of our proof of concept attack is 35.6% if it makes use of address

disclosures that perfectly bound the sprayed pages or 18.4% without them (randomly

guessing for 200,000 sprayed pages). Without our techniques for placing JIT code at

known page offsets, Blazakis’ x86 JIT spraying attack, which relies on an 80% proba-

bility NOP sled (Poffset = 80%), would succeed under JSC’s memory layout constraints

with probability at most 29.1% and 15.0% with and without perfect bounding address

disclosures, respectively.

Chapter 5, in part, is a reprint of the material as it appears in Proceedings of

the 2015 Network and Distributed System Security Symposium. Wilson Lian, Hovav

Shacham, and Stefan Savage, Internet Society, 2015. The dissertation author was the

primary investigator and author of this paper.



Chapter 6

ARM Gadget Chaining against V8

6.1 The V8 JavaScript Engine

V8 is the JavaScript engine used by the the popular Chrome and Chromium web

browsers on all platforms except iOS, which only allows the JavaScriptCore JavaScript

engine to dynamically-generate code. In this section, we describe V8’s JITs as they exist

at Git commit 1398078; this is the version of V8 against which we targeted the proof of

concept JIT spraying attack in Section 6.2.

Unlike JSC and SpiderMonkey, V8 does not include an interpreter—although

one named Ignition is currently under development. Instead, all code is JIT compiled

for its first execution. V8 is a two-tier JavaScript engine composed of the Full Codegen

JIT and the Crankshaft JIT.1 The first time any JavaScript function is executed, it is

compiled by the Full Codegen JIT; therefore, the Full Codegen JIT must work fast. Each

function is first parsed into an abstract syntax tree (AST), which the Full Codegen JIT

uses to emit non-optimized code. The Full Codegen JIT does not employ a register

allocator; local variables and intermediate values that persist across the boundaries of an

operation are stored on the stack. The code emitted for each operation loads operands

into statically-predetermined registers before the operation is actually carried out. Full

1A third tier optimizing JIT called Turbofan was added to V8 after the V8 version under study. We do
not include it in our discussion in this chapter.

67
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Codegen JIT code collects type information which is used by Crankshaft to produce

optimized JIT code.

Crankshaft is V8’s JIT compiler that kicks in to compile “hot” functions. Using

the type information gathered during the execution of Full Codegen JIT code, Crankshaft

produces code that is optimized for the value types that the function is expected to

encounter (i.e., the types that that function has seen in the past). Since Crankshaft

compilation is asynchronous, its compilation process need not be as fast as the Full

Codegen JIT’s; and it uses this relaxed schedule to perform register randomization and

other compiler optimizations such as loop-invariant code motion and inlining. If a

Crankshaft-compiled function encounters values with unexpected types, its Crankshaft

code is discarded, and execution falls back onto Full Codegen code. The function is

eligible to become hot again, at which point it will once more be compiled by Crankshaft.

Both the Full Codegen JIT and Crankshaft emit ARM instructions on 32-bit

ARM machines, and like JSC, V8’s the memory protection status of JIT code pages

is permanently read-write-execute (RWX) to support runtime patching. V8 limits the

amount of JIT code memory that can be allocated. On 32-bit sytems, the limit is 256MB,

and on 64-bit systems, it is 512MB.

6.2 Proof of concept gadget chaining attack

In this section, we describe a new proof of concept attack against Chrome’s

V8 JavaScript engine on ARM which demonstrates—for the first time against any

architecture—the feasibility of carrying out a blind JIT spraying attack that uses JIT-

emitted instructions without exploiting ambiguity in the decoding of those instructions. In

fact, this attack relies on neither untrusted constants appearing in JIT code as immediate

operands nor execution of JIT code at unintended instruction boundaries. Since V8’s JIT

compiler emits fixed-width 32-bit ARM instructions, the latter non-dependency is trivial,
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provided that the JIT spraying payload is executed in ARM mode.

The V8 attack uses the gadget chaining technique introduced in Section 4.5;

gadget chaining is a technique in which an attacker’s high level language (HLL) code

(e.g., JavaScript) is able to treat unsafe computation performed by reused code as though

it were a subroutine. The attacker’s HLL code invokes a control flow vulnerability to

branch to a reused code snippet, which performs unsafe computation then returns control

flow back to the HLL code. Each reused snippet is referred to as a “gadget,” and each

gadget may or many not take arguments or return values to the HLL code. The use of

gadget chaining gadgets differs from ROP gadgets, however, in that control flow after a

gadget chaining gadget returns does not continue directly to another gadget, but rather

back to the HLL code that invoked it.

The high level structure of the proof of concept attack is the same as the gadget

chaining attack against JSC (Section 5.2). After JIT spraying a particular intended store

instruction (the store gadget) into memory, the attacker clears the victim’s i-cache of

the sprayed store gadgets by calling numerous DOM functions. She then guesses the

address of a store gadget and uses a hijacked virtual host function call2 to simultaneously

branch to that address and control the contents of the input registers used by the store

gadget. The first invocation of the store gadget writes a return instruction (bx lr) into

JIT code a short distance after the store instruction. Subsequent invocations are made

in order to write 4 bytes at a time of shellcode into the memory following the injected

return instruction. The victim’s i-cache is cleared once more, and a final invocation of

the store gadget overwrites the injected return instruction with a NOP instruction and

the execution of the shellcode. The details of gadget layout and creation, the artificial

control flow vulnerability, and failure-tolerant gadget invocation are described below.

2This was a vulnerability which we artificially injected into V8.
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6.2.1 Gadget layout and creation

The sprayed store gadget consists of an intended store instruction used to spill

a live value onto the stack followed by at least one i-cache line (128 bytes on our

test machine) of padding instructions that perform bitwise operations over caller-saved

registers. The injected return instruction will be written after the one i-cache line padding

so that it will be executed during the same gadget invocation that it is injected. The

padding instructions must not access memory because they state of registers is not

guaranteed to result in valid memory addresses; moreover, store instructions could

clobber critical machine state. They must also store results only to caller-saved registers

because they will execute as intended and must preserve the values of callee-saved

registers for when the gadget returns.

It is necessary to inject a return instruction rather than allowing control flow to fall

through into the enclosing function’s epilogue and return instruction because the epilogue

performs stack cleanup and loads the return address from the stack, both of which would

prevent a proper return to high level language (HLL) code given our decision to use an

injected control flow vulnerability in the form of a hijacked virtual host function call.

When control flow arrives at the gadget under those circumstances, the stack is not setup

properly for a JIT function epilogue to clean it up, and the return address resides in the

link register (LR) rather than on the stack. However, once the store instruction has written

its return instruction during its first invocation, the gadget is a reusable primitive that can

be called repeatedly to overwrite arbitrary words in memory.

The sprayed store instruction is str r2, [r11, #-20], where r11 is used as a

frame pointer register in V8’s JIT code. The JavaScript function whose JIT compilation

results in the emission of the sprayed store gadget defines numerous variables which are

used in the computation of the return value. By defining more such variables than there



71

are allocatable registers, V8’s optimizing JIT will begin spilling values onto the stack.

The sprayed store instruction is one such spilling instruction. We eval() the definition

and repeated invocation of the sprayed function to trigger optimized compilation and

the spraying of a store gadget. Optimized compilation is necessary because only the

optimized compiler allocates and spills registers, which are necessary to create the store

instruction and the subsequent memory-access-free padding instructions.

V8 performs code caching; therefore redefining and invoking the same function

more than once will not result in multiple copies of that function being compiled. To

circumvent code caching, we inject a constant counter value as a term in the computation

of the function’s return value and only use each counter value once.

6.2.2 Artificial control flow vulnerability

For the purposes of our proof of concept attack, we simulated a memory corrup-

tion vulnerability that could be used to hijack the virtual function table pointer of a DOM

object. We added a JavaScript host function hijackVTable into V8 which performs

the desired corruption. Hijacked virtual functions are especially useful for a gadget

chaining because they can serve two purposes, which are subverting control flow and

controlling the gadget’s operands, which in the case of the store gadget are two registers.

We make use of the DOM’s Blob class and its slice() method, which is implemented

as a C++ virtual function and accepts two longs as arguments that can be controlled by a

JavaScript caller. We were fortunate that both arguments eventually reside in the registers

used by the store gadget (R2 and R11), despite the fact that one of the long arguments is

actually passed on the stack. This occurs because the various trampolines executed to

shuffle values between the JavaScript calling convention and the architecture ABI calling

convention happen to leave a copy of the stack-passed argument in R11.
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6.2.3 Failure-tolerant invocation

In order to use the store gadget, our control flow vulnerability must be able

to precisely target the gadget’s store instruction; if execution begins before the store

instruction, the intended instructions before it could clobber the source register operand.

If execution begins after it, the new return sequence cannot be patched in during the

gadget’s first invocation, most likely leading to a crash. To solve this problem, we place

the gadget at a (semi-)predictable offset within each coarse-grained memory allocation

chunk.

V8’s code memory allocator maps a new 1MB chunk of RWX memory if it is

unable to fulfill an allocation request from the current pools of free JIT code memory.

Allocation requests are satisfied starting at the low-addressed end of the new chunk. If

we are able to coerce V8 into placing a copy of the optimized function containing the

store gadget as the first unit of code compilation in each fresh 1MB code chunk, we

would only need to guess which 1MB chunk contains a sprayed gadget (i.e., the most

significant 12 bits of a 32-bit address).

Unfortunately, due to the nature of V8’s JIT compilation pipeline, it is not possible

to guarantee that the store gadget will be the first unit of code compilation placed in each

1MB chunk. During a single function instance’s lifetime from declaration to optimized

compilation, V8 produces four different pieces of code which contend for the coveted

first slot. They are the anonymous function that defines the function being sprayed, the

unoptimized JIT code for the function being sprayed, a second copy of the unoptimized

JIT code (which is produced once more after V8 decides to compile the function with the

optimized compiler), and the optimized JIT code for the function being sprayed.

For reasons which will become apparent, it is essential that these four pieces of

code are emitted in that exact order, with no interleaving between parts of consecutively-
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sprayed instances of the function. Our spraying procedure ensures this by invoking

each instance of the sprayed function in a loop a sufficiently-large number of times in

order to cause V8 to consider the function “hot” and optimize it. The number of loop

iterations was tuned to be large enough that the invocation loop for a particular instance

of the function would still be running when the optimized code (which is compiled

asynchronously) is finally emitted.

If the first piece of code in each 1MB chunk were chosen uniformly at random

from the four possibilities, 25% of the time it would be the anonymous declaration

function, over whose size and contents we exert very little control. However, due to the

various space requirements of the different pieces of code—384 bytes for the declaration,

2912 bytes for each copy of the unoptimized code, and 672 bytes for the optimized

code—a new 1MB chunk is most likely to be allocated for the large unoptimized spray

code. Indeed, measurements of V8 embedded in Chrome show that the probabilities that

the first copy of optimized spray code in a 1MB chunk will be preceded by 0, 1, and 2

copies of the unoptimized spray function are 0.391%, 49.2%, and 48.4%, respectively;

and the probability that the anonymous declaration function will take the first slot is only

1.17%.

Although the optimized spray function is not likely to be sprayed at any single

location near the beginning of all 1MB chunks, in over 98% of chunks, the only code

preceding it in a chunk are unoptimized spray functions, whose size and contents we

control. We take advantage of this fact and craft the spray function in such a way that an

intended return instruction is emitted at the same offset (∆) from the beginning of the

function in unoptimized code as the store gadget in optimized code. This makes it safe

to accidentally branch into an unoptimized spray function with a hijacked function call

since execution will immediately return rather than crashing. Figure 6.1 illustrates how

we accomplished this by placing a conditional return early in the sprayed function to take



74

function sprayMe(x) {
…
if (x == -1)
  return A;
…
// Trigger gadget production.
var R3 = R2a ^ 0x1098;

…
return B;
}

return B

return A

unusable gadget

gadget start
return A

return B

Δ

Unoptimized sprayMe()

Optimized sprayMe()

Figure 6.1. Illustration of how a return instruction in unoptimized JIT code is aligned to
the same function offset ∆ as a gadget in optimized JIT code.

advantage of the fact that V8’s unoptimized JIT code is less dense than its corresponding

optimized code.

With the spray function’s unoptimized and optimized code laid out as described,

there is >98% probability that the store gadget will reside at one of the following offsets

in a given 1MB chunk: θ , θ +ψ , or θ +2ψ . The values of both θ and ψ are deterministic

and known. The value of θ is the size of the fixed-sized header at the start of each 1MB

chunk plus ∆; and ψ is the size of the unoptimized spray function. Figure 6.2 illustrates

an example memory layout at the beginning of a 1MB allocation chunk in which two

copies of the sprayed function produced by the non-optimizing JIT precede a copy of

the sprayed function produced by the optimizing JIT. The optimized copy contains the

store gadget, which resides at the offset θ +2ψ from the start of the chunk. Observe that

if there were zero or one copies of the unoptimized function code before the optimized

copy, the gadget’s offset from the chunk’s start would be θ and θ +ψ , respectively.

This meticulously-crafted memory layout enables us to probe for the gadget’s
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θ

return

return

gadget start

ψ 

ψ 

Δ

Δ

Δ

1MB Chunk Start

Legend

Chunk Header

Unoptimized fxn

Optimized fxn

Figure 6.2. Illustration of the beginning of a 1MB chunk that can be probed for the
location of a gadget in a failure-tolerant manner. An incorrect guess of θ or θ +ψ will
only execute a harmless return instruction. ∆ is the common offset of both the return
instruction and the gadget in both the unoptimized and optimized code.

address in a failure-tolerant manner. The first time the attacker triggers the control flow

vulnerability, she guesses a 1MB chunk and targets the common offset in the first function

in the chunk (θ ). In the unlikely event that the first function in the 1MB chunk is a

declaration (1.17% probability, assuming spray code is monopolizing JIT code memory),

the attack will fail. However, with high probability, it will be a copy of the sprayed

function’s optimized or unoptimized code. In those cases, either the gadget or a return

instruction will execute. If it is the former, the attack succeeds; otherwise, the hijacked

virtual function call will immediately return. Eventually, the attacker’s script will expect

an invocation of the store gadget to result in shellcode execution, and when that fails

to occur, it can be concluded that the control flow vulnerability was targeting a return

instruction rather than a store gadget. The script can then increase the target address of

the control flow vulnerability by the size of the unoptimized spray function (ψ) and try

again.
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6.2.4 Analysis

Recall that V8 limits the amount of JIT code memory at 256MB. If the attacker

is able to monopolize these 256MB, her odds of success depend mostly on her ability to

guess which 1MB chunks contain JIT code. On a 32-bit system, a conservative estimate

is 6.125% (256/4096×0.98); however, a more realistic estimate might take into account

that the location of JIT code regions can be narrowed down to half of the available address

space, giving a probability of 12.25%.

Chapter 6, in part, has been submitted for publication of the material as it may

appear in appear in Proceedings of the 2017 Network and Distributed System Security

Symposium. Wilson Lian, Hovav Shacham, and Stefan Savage, Internet Society, 2017.

The dissertation author was the primary investigator and author of this paper.



Chapter 7

ARM-to-Thumb Self-sustaining JIT
Spraying against SpiderMonkey

7.1 SpiderMonkey JavaScript Engine

SpiderMonkey is a three-tier JavaScript engine developed by Mozilla and inte-

grated into the Firefox web browser. Like V8, SpiderMonkey is not deployed on iOS

due to its code signing policy; instead, Firefox for iOS uses WebKit and JavaScriptCore

for rendering and JavaScript support. In this section, we describe SpiderMonkey at

Git commit ce31ad5, the version against which we base our attack in Section 7.2 and

on top of which we based the implementations of diversification defenses described in

Section 8.4. SpiderMonkey features a bytecode interpreter, the non-optimizing Baseline

JIT compiler, and the optimizing IonMonkey JIT compiler. Both of the JIT compilers

emit code from the ARM instruction set on 32-bit ARM machines. We discuss each of

these execution tiers in turn.

7.1.1 Bytecode Interpreter

After SpiderMonkey parses JavaScript to an abstract syntax tree, a code generator

traverses the tree and emits the bytecode which will serve as the low-level representation

of the code throughout its lifetime. SpiderMonkey bytecodes are instructions to a stack-
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based virtual machine; each bytecode retrieves its operands off the top of a stack and

pushes 0 or more results onto it afterwards. All JavaScript functions are first executed in

the interpreter, during which time information about the types of values encountered by

the function is recorded. The interpeter maintains a JavaScript call stack that is separate

from the native C stack; this is in contrast to the Baseline JIT and IonMonkey, which

both use the native C stack.

7.1.2 Baseline JIT

SpiderMonkey’s Baseline JIT was built as a replacement for the now-deprecated

JaegerMonkey JIT compiler; its purpose is to serve as an intermediate JIT between the

interpreter and IonMonkey. Once a function becomes hot in the interpreter, it is compiled

by the Baseline JIT. Like JSC’s Baseline JIT compiler, SpiderMonkey’s Baseline JIT

does not aim to produce the most optimized code possible. It quickly compiles bytecode

to native code that executes orders of magnitude faster than its interpreted counterparts.

Another similarity to JSC’s Baseline JIT compiler is the lack of a register allocator; the

native code emitted for each bytecode operates on a fixed, pre-determined set of registers

and saves values that must persist across bytecodes onto the stack.

Baseline JIT code collects type information via inline caches, and the performance

of a function can improve over time as new optimized inline cache stubs are added. The

collected type information will be used if the function becomes hot enough to warrant

compilation by IonMonkey. Since Baseline JIT code collects type information, there

is no need for a Baseline-compiled function to ever bail out back to the interpreter if

unexpected types are encountered (unlike its predecessor JaegerMonkey, which did not

collect type information).
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7.1.3 IonMonkey JIT

IonMonkey is SpiderMonkey’s optimizing JIT compiler that is reserved for very

hot functions. Like V8’s Crankshaft, IonMonkey makes use of type information gathered

during execution in lower tiers to produce code tailored to the types that a function is

expected to encounter. IonMonkey’s compilation process occurs in the following five

phases:

1. The function’s bytecode is lowered to an architecture-independent intermediate

representation called MIR.

2. Numerous analyses and optimizations are performed over the MIR.

3. MIR is lowered to an architecture-dependent intermediate representation called

LIR.

4. Physical registers are allocated to values in LIR.

5. LIR is provided to a code generator, which emits native code.

If JIT code produced by IonMonkey encounters a type that was not optimized to

handle, execution bails out back to Baseline JIT code.

7.2 Proof of concept Turing-complete self-sustaining
payload

7.2.1 Implementing an SBNZ One Instruction Computer

Using the method described in Section 4.4.2, we constructed an ARM-to-Thumb

self-sustaining JIT spraying payload that implements the interpreter loop for a One

Instruction Set Computer (OISC) [37], an abstract universal machine that has only one

instruction. There are many options for the single instruction; we implemented Subtract
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function sbnz(a, b, c, d)

Mem[c] = Mem[b] - Mem[a]

if (Mem[c] != 0)

// branch to instruction at address d

else

// fallthrough to next instruction

Listing 7.1. Pseudocode for the sbnz instruction.

and Branch if Non-Zero (SBNZ). Listing 7.1 shows the pseudocode for the sbnz instruc-

tion. Given enough memory, an OISC is capable of universal computation; therefore this

payload demonstrates the feasibility of performing Turing-complete computation using

an ARM-to-Thumb self-sustaining payload.

In addition to the general purpose register that must be repurposed as a virtual

PC in order to optimize the memory usage of Thumb-to-ARM self-sustaining payloads,

we designate another general purpose register as the OISC PC and use unintended

instructions to implement the SBNZ instruction semantics and update the OISC PC.

The OISC PC is initialized with the value of the stack pointer. In other words, the first

instruction, composed of four consecutive 32-bit addresses corresponding to the four

instruction operands, is expected to reside at the top of the stack when it begins executing.

The instructions used to build the interpreter are shown in Table 7.1. Note that

instructions 1 and 2 within each branch block are 40 bytes apart, whereas all other inter-

instruction spacing within branch blocks is 36 bytes. When tracing control flow through

the table, remember that instructions sharing a common number in the first column will

be executed consecutively with one another with the exception of instruction 11 in the

first branch block (cbz), which may branch to the zero label.

7.2.2 Encoding challenges

We overcame three major hurdles during the construction of the SBNZ OISC

interpreter payload. They were IonMonkey’s register allocator, dead store elimination op-
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Table 7.1. Table of instructions implementing the SBNZ OISC abstract machine as a
self-sustaining payload. Horizontal rules indicate branch block boundaries where padding
is inserted.

# Label
Unintended Thumb

instruction
Intended ARM

instruction

1 vpc init add r6, pc, #36 and r10, r1, #9437184
2 add, r7, #1 and r3, r1, #262144
3 oisc pc init mov r5, sp and r4, r1, #114294784
4 interpreter loop top ldr r1, [r5, #0] and r6, r1, #2686976
5 ldr r2, [r5, #4] and r6, r1, #6946816
6 ldr r3, [r5, #8] and r6, r1, #11206656
7 ldr r1, [r1, #0] and r6, r1, #589824
8 ldr r2, [r2, #0] and r6, r1, #1179648
9 sub r2, r2, r1 and r1, r1, #335872

10 str r2, [r3, #0] and r6, r1, #26
11 cbz r2, #104 (zero) and r11, r1, #-2013265918
12 non zero ldr r5, [r5, #12] and r6, r1, #15532032
13 subs r6, #162 and r3, r1, #2592
14 zero adds r5, r5, #13 and r3, r1, #54525952
15 adds r5, r5, #3 and r3, r1, #12582912
16 subs r6, #215 and r3, r1, #3440

1 incr init movs r7, #35 and r2, r1, #9175040
2–12 vpc advance (× 11) adds r6, r7 and r4, r1, #1040187392

13 non zero loopback subs r6, #162 and r3, r1, #2592
14–15 vpc advance (× 2) adds r6, r7 and r4, r1, #1040187392

16 zero loopback subs r6, #217 and r3, r1, #3472

1–16 branch vpc (× 16) mov pc, r6 and r4, r1, #191889408

DCBARaw bytes

15                               4

Thumb
B A D C

ARM Rd imm12
15   1231                              20 11                                0

D C B A
111000100000

19   16

Rn

imm12 111000100000Rd Rn
3       015   12 11                                0

Figure 7.1. Illustration of how the immediate-operand bitwise AND instruction from
the ARM instruction set (top row) can be decoded as two 16-bit Thumb-2 instructions
(bottom row).
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timizations, and the ARM architecture’s restrictions on the encodings of 12-bit modified

constants. We discuss each of these challenges in turn in this subsection.

Register allocation

To a first approximation, IonMonkey’s register allocator iterates over values in

order of decreasing lifespan, allocating them to registers (by probing for an available

register between R0 and R11, inclusive, in order of ascending register number). Once

registers have filled up, a shorter-lived value can evict a longer-lived value from its

registers if the shorter-lived value has a higher use count-to-lifespan ratio (a.k.a. spill

weight). The register allocator allows a small number of evictions on behalf of a value

before the value’s lifespan is partitioned, and allocation is re-attempted on the resulting

fragments.

The JavaScript function that generates the proof of concept payload creates

variables named after ARM core registers and coerces IonMonkey into storing those

variables’ values into the registers corresponding to their names. This is advantageous

because subsequent uses of and assignments to those variables in the JavaScript result in

predictable instruction operands in the native code. For instance, the JavaScript statement

R11 = R1 & 130;

will be compiled to the ARM instruction

and r11, r1, #130

We influence the allocation of variable values to registers by fine tuning the

lifespans of variables to alter the order in which they will be allocated to a register. By

creating only the necessary number of variables, evictions do not occur, and the variable

with the longest lifespan will be allocated to R0, the next longest to R1, etc. In particular,

the strategy we employed was to work upwards from the lowest-numbered registers,
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function sprayMe(r0, R10 , FP, r8, R7, R5) {

// Statements to define additional variables and

// populate their values into registers go here

if (R10 == 0) {

R10 = R1 & 9437184; // and r10 , r1 , #9437184

} else if (R10 == 1) {

R3 = R1 & 262144; // and r3 , r1 , #262144

} else if (R10 == 2) {

...

}

// Return statement using all variables goes here

}

Listing 7.2. The structure of the JavaScript function sprayed to produce the self-
sustaining SBNZ OISC payload. Mutually-exclusive conditional blocks prevent dead
store elimination.

extending the corresponding variables’ lifespans until they were correctly allocated.

Although tedious, this process is relatively straightforward.

There were a number of registers that were not used in the payload and for which

an exact variable-register mapping was unnecessary; in those cases, we simply ensured

that a non-essential variable was allocated to the register.

Dead store elimination

Many consecutive intended AND instructions in the proof of concept payload

store their result into the same register (e.g., all intended instructions that encode branch

block 3 in Table 7.1 are identical). To prevent IonMonkey from emitting only the last

instruction in such a sequence (dead store elimination), we place each bitwise AND in a

separate mutually-exclusive else-if block, as shown in Listing 7.2. The consequence

of this code structure is that intended AND instructions cannot be emitted back-to-

back. Instead, IonMonkey only emits one AND instruction every 36 bytes. We use this

technique consistently across all unintended instruction pairs, even between cases where

dead store elimination would not occur, so that the virtual PC is always incremented by

the same amount.



84

Modified immediate constants

As we mentioned in Chapter 4 when we introduced this payload type, some

ARM instructions’ immediate fields are composed of a 4-bit right-rotate portion followed

by an 8-bit value portion that allow for the encoding of various 32-bit values. The

8-bit value is placed in the least significant byte of a 32-bit value and right rotated 2×

the value of the rotate field. Some 32-bit values have more than one possible 12-bit

encoding; the only valid encoding (i.e., the only one that a JIT compiler will produce

for that 32-bit value) is the one with the smallest rotation value. Consider the case of

encoding the value 0x00000001. It could theoretically be encoded as 0x210, meaning

0x10 right-rotated 2×2 = 4 bits. However, the only valid encoding is 0x001 because it

has the smallest rotation amount. This is important because if we require an intended

immediate-operand AND instruction (which uses this type of immediate encoding field)

with a 12-bit immediate field containing the value 0x210, it is impossible to coerce

IonMonkey to produce it because 0x210 encodes the 32-bit value 0x00000001, which

must be encoded as 0x001. This in turn limits the unintended Thumb instructions that

can be encoded with those bits.

The consequences of this encoding constraint can be observed throughout the

payload. For example, when the zero and non zero branches loop back to the

interpreter loop top label, they each perform two subtractions from the virtual

PC, the composition of which move it back to the top of the loop. This is necessary

because a single Thumb instruction performing the loopback all at once requires an

invalid immediate encoding that has a non-zero rotation amount and an 8-bit value whose

least significant two bits are clear (meaning that the 8-bit value, if non-zero, could be

right-shifted to reduce the rotation amount).

Advancing the virtual PC requires even more sophisticated trickery to avoid
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invalid immediate encodings. Adding 36 to the virtual PC register in a single instruction

requires an invalid immediate encoding, but rather than splitting the instruction into two

smaller additions each time the virtual PC needs to be advanced, which would require the

addition of another branch block (block 1 does useful work; block 2 partially advances

the virtual PC; block 3 finishes advancing the virtual PC; block 4 diverts the real PC to the

now-advanced virtual PC), we populated R7 with the virtual PC advancement amount in

two steps (instruction 1 in branch block 2 and instruction 2 in branch block 1 in Table 7.1)

and advance the virtual PC by adding that register to the virtual PC. The first time around

the branch blocks, R7 has not been fully populated yet and cannot be used to advance

the virtual PC. We work around this in instruction 1 of branch block 1 by preloading

the virtual PC with the address of the next instruction in the branch block. Instruction 1

of branch block 2 is thereby free to initialize R7 instead of manipulating the virtual PC

(notice that the task of all other instructions in branch block 2 is to update the virtual PC,

R6).

Recall that in Thumb mode, the value of the PC register is the address of the

currently-executing instruction plus 4. Therefore, in actuality, instruction 1 of branch

block 1 prepopulates the virtual PC with the address of the instruction 40 bytes later

rather than the standard virtual PC advancement amount of 36 bytes. This was necessary

because the minimum distance between unintended instruction pairs is 36 bytes due to

the sizes of the mutually-exclusive else-if blocks, but to encode instruction 1 of branch

block 1 as add r6, pc, #32 would require an invalid modified immediate constant in

the overlapping intended ARM instruction. Adding 4 bytes between instructions 1 and

2 in each branch block requires the instruction to instead be add r6, pc, #36, which

can be encoded. Note that this is the only place where we are able to have an inconsistent

distance between unintended instructions in the same branch block because in all other

cases the virtual PC advancements are effected by adding R7 to the virtual PC.
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7.2.3 Encoding a NOP sled

It is possible to construct a NOP sled using the same payload encoding method

by placing n+ k branch blocks prior to the branch blocks containing the shellcode/OISC

interpreter. The unintended instruction pairs in the initial n branch blocks exist only to

direct control flow forward to the final k branch blocks; in these n branch blocks, the

first unintended instruction in each pair is irrelevant. The unintended instructions in the

final k branch blocks of the NOP sled use their statically-predetermined offset within

the branch blocks to construct a branch to the first unintended instruction in the first

shellcode branch block. For example, the first unintended instruction in the final NOP

sled branch block must effect a large forward branch to skip the entire branch block, but

the last unintended instruction in the same branch block need only skip any remaining

tail in its own branch block and whatever short head exists at the beginning of the next

branch block.

The success rate of correctly landing in the NOP sled depends on how densely

unintended instruction pairs can be packed in the final k branch blocks. The only way

to achieve back-to-back unintended instruction pairs and avoid dead store elimination

is to use the the destination register of the intended AND instruction as one of the

input operands. For example, and r1, r1, #10; and r1, r1, #10 is okay, but and

r4, r1, #10; and r4, r1, #10 is not because the first instruction can—and will—

be eliminated. Recall that the register must also be odd-numbered in order for the

unintended branch instruction in each pair to correctly target the beginning of the next

unintended instruction pair. We were unable to devise a NOP sled whose unintended

instructions are derived from only intended instructions operating on odd-numbered

registers. Therefore the NOP sled must be encoded using AND instructions operating

on other registers, and density must be sacrificed by using mutually-exclusive else-if
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blocks as described earlier. The spacing of AND instructions for the SBNZ OISC payload

is 36 bytes (9 ARM instructions); a similar spacing should be achievable for a NOP

sled. However, the NOP sled’s success probability is greater than 1
9 because the ARM

instruction before each AND instruction is a conditional branch instruction used to skip

the block if its condition was not met; by carefully selecting the conditions of the else-if

blocks, the attacker can ensure that the conditional branch instruction’s Thumb decoding

does not have undesirable side effects. Namely, the Thumb decoding of the conditional

branch must allow execution to fall through into the Thumb instructions encoded by the

following ARM AND instruction. Branch instructions are one of the few instructions

that IonMonkey emits that will have this property. The probability of choosing a correct

offset within the NOP sled is therefore 2
9 .

Although the probability of successfully guessing a valid offset within an ARM-

to-Thumb NOP sled is 2/9, the probability of landing in the NOP sled at all must be

considered as well. Using the size of the unoptimized (21440 bytes) and optimized (4140

bytes) code generated for the SBNZ OISC payload, we estimate that for every byte of

optimized code generated, about 5.2 bytes of corresponding unoptimized code will be

generated. Because SpiderMonkey must be able to fall back to unoptimized code if

speculative optimization fails, the unoptimized code will not be garbage collected even

after optimized code is generated. Therefore the probability of successfully landing an

attack using this particular payload on IonMonkey is approximately 4140/21440× 2
9 =

4.3%.

7.2.4 System calls

Unintended Thumb system call instructions can be encoded in intended ARM

instructions that store their result into the stack pointer and use certain immediate

operands. In particular, the 4-bit rotation portion of the 12-bit immediate field must
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be 11112; consequently, the immediate must decode to a value between 516 and 1020,

inclusive.

Unfortunately, instructions that modify the stack pointer in conjunction with

immediate operands of that order of magnitude are rarely emitted in IonMonkey JIT

code. Those that do so are found in function prologues and epilogues to allocate and

free the call frame. On the ARM architecture, IonMonkey call frames smaller than 1024

bytes are rounded up in size to the nearest power of 2, with a minimum call frame size of

128 bytes. Since there are no powers of 2 between 516 and 1020, inclusive, prologues

and epilogues in IonMonkey JIT code will not be able to generate an intended ARM

instruction that hides an unintended Thumb system call instruction.

The SBNZ OISC interpreter cannot perform system calls, and in general, we are

not aware of a method that would allow an attacker to encode an unintended Thumb sys-

tem call instruction using the payload-encoding method used to implement it. However,

the SBNZ OISC interpreter serves merely as a minimal proof of concept of Turing-

complete computation. More powerful programs could be constructed that read from

memory to launch a code reuse attack against static code containing system calls.

7.2.5 Design shortcomings

The proof of concept SBNZ OISC implementation requires the operands to the

sbnz instruction to contain absolute addresses. This requires the attacker either to learn

where her SBNZ instructions will reside via an information leak or to heap spray them.

Unfortunately, heap spraying SNBZ instructions competes with JIT spraying. A more

practical SBNZ OISC implementation might use stack pointer offsets rather than absolute

addresses for sbnz operands. The attacker could even devise an SBNZ NOP sled to place

on the stack before her SBNZ shellcode to mitigate an unpredictable stack layout.

Chapter 7, in part, has been submitted for publication of the material as it may
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appear in appear in Proceedings of the 2017 Network and Distributed System Security

Symposium. Wilson Lian, Hovav Shacham, and Stefan Savage, Internet Society, 2017.

The dissertation author was the primary investigator and author of this paper.



Chapter 8

Defensive Just-In-Time Code Emission
on ARM

8.1 Introduction

Researchers and practitioners have proposed numerous mitigations against the

unique security risks introduced by JIT compilers. The mitigations vary widely in

their peformance overhead, difficulty of integration into an existing JIT compiler, and

defensive effectiveness. These efforts fall roughly into the following three categories:

capability confinement, memory protection, and diversification.

Despite the vast abundance of JIT spraying mitigations proposed in the literature,

hardly any of them are deployed in production-quality JavaScript engines—which are

arguably the most ubiquitous language runtimes that employ JIT compilation. Although

some mitigation proposals and methodologies are incomplete or carry shortcomings

that are prohibitive to their widespread deployment, others that do not share these faults

remain unimplemented. An obvious culprit is the war for performance, perpetuated by

browser vendors grappling for market share. JIT compilation is, after all, meant to be

performance-enhancing technique; slowing down JIT compilation and code execution

runs in opposition to its very purpose. It is estimated that a defense technique must incur

no more than 10% runtime overhead to have even a chance at being deployed in a real
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system [55].

To make matters worse, the various performance figures presented by those who

have developed and evaluted their own JIT spraying mitigations are not based on a

consistent set of benchmarks or testing hardware. Consequently, JIT developers seeking

to understand the relative costs of JIT spraying mitigation are unable to make meaningful

comparisons between the reported overheads.

In this chapter, we survey and qualitatively evaluate the effectiveness of the state

of the art in JIT spraying mitigations and shed light onto the current state of mitigation

deployment. Additionally, we present and quantitatively analyze the effectiveness of our

own open source implementations of several diversification defenses on SpiderMonkey

for ARM and x86-64 and empirically evaluate their performance overhead using a

consistent set of industry-standard benchmarks on fixed hardware platforms.

From our study of JIT spraying mitigations in the wild, we conclude that most

mainstream JavaScript JITs are woefully underprotected against JIT spraying attacks,

even 5 years after its public debut in [13]. We find that a full complement of diversification

defenses can mitigate the threat posed by blind JIT spraying by drastically reducing the

probability of successful code reuse at the cost of less than 5% runtime overhead.

8.2 Survey of Proposed JIT Spraying Mitigations

We structure our survey of proposed JIT spraying mitigations by partitioning the

approaches into the following three classes: capability confinement, memory protection,

and diversification.

8.2.1 Capability confinement

Capability confinement defenses seek to make JIT code an unattractive reuse

target by reducing the set of capabilities that JIT code can possess. Concrete approaches
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range broadly in sophistication and effectiveness. Some seek to guard against a small

number of specific instruction sequences, whereas more sophisticated proposals go so far

as to sandbox both the JIT compiler and the code it creates.

Heuristic JIT spray detection

Piotr Bania [11] proposes a JIT “intrusion detection system” that analyzes the

code produced by the JIT in order to detect a JIT spraying payload as it is being compiled

so that the JIT compiler can halt emission before the spray becomes exploitable. Bania’s

IDS relies on the observation that early JIT spray payloads included long sequences of

instructions that operated on 32-bit immediate values. It raises an alarm if the number of

such instructions following an instruction of the form mov reg, imm32—but preceding a

control flow transfer—exceeds a certain threshold. In effect, this system confines JIT code

to contain only short sequences of immediate-operand instructions (i.e., attacker-provided

32-bit values). An obvious evasion is to spray short sequences of immediate operand

instructions interrupted by branch instructions, having the last unintended instruction in

each sequence jump forward into the next unintended instruction sequence. Bania’s IDS

watches for this by disassembling constant values to detect chained jumps.

This defense raises the bar for Blazakis-style JIT spraying payloads (e.g., var

x = 0x3c909090 ^...) on x86 by reducing the effectiveness of NOP sleds by forcing

attackers to periodically encode instructions for detection evasion, but it does little to

curb the encoding of ROP gadgets and gadget chaining gadgets in JIT code. Since a

self-sustaining ARM JIT spraying payload constructed from chained immediate-operand

instructions has yet to be discovered, there is no evidence that this mitigation is valuable

for ARM.

Bania’s disassembly strategy only begins counting for immediate-operand instruc-

tions after encountering a 32-bit value being moved into a register. Bania explains that
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this improves performance by avoiding exhaustive disassembly of emitted code; however

it leaves the IDS vulnerable to a chain of instructions that accumulate operations against

a program variable (e.g., var x = y ^0x3c909090 ^...). In this case, one would

expect the instruction chain to begin with a memory value rather than an immediate being

loaded into the accumulator register. Bania does not report the performance overhead of

this proposed defense.

JITSec

JITSec [24] confines JIT code by adding runtime protections against system

calls originating from the stack and heap regions in memory. JITSec is guided by the

assumption that any system call invoked from dynamically-allocated code is evidence of

an attack underway. JITSec is implemented as a kernel module that intercepts system

calls and inspects their callsites before deciding whether to pass them on to the normal

system call handler or to terminate the process.

As one might speculate, JITSec’s overhead is more noticeable for simple system

calls; for example getpid experiences a 11.71% reduction in throughput compared to

0.25% for clone. The SPEC CPU2000 Integer benchmark showed a 1.84% average

overhead.

Unfortunately, while JITSec will prevent an attacker from executing syscalls from

JIT code, it does not prevent JIT sprayed code from launching a code reuse attack by

branching into statically-compiled code which then invokes the desired system call from

a valid callsite.

NaCl-JIT

NaCl-JIT [6] is a system that extends the Native Client (NaCl) sandbox [62] so

that a language runtime running in the sandbox can dynamically install, invoke, modify,

and delete code within the sandbox on the fly. The sandbox provides the following three
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high-level guarantees about sandboxed code execution:

1. It cannot read or write outside of a contiguous region of data memory.

2. It contains only instructions drawn from a whitelist, and they reside in a contiguous

region of sandboxed code memory.

3. Aside from API calls into the NaCl runtime, its control flow only executes instruc-

tions decoded at intended instruction boundaries within the aforementioned code

memory region.

Thus, even a malicious JIT-compiled program that is able to completely commandeer the

sandboxed language runtime and issue arbitrary NaCl-JIT API calls still cannot access

memory outside of the sandbox or directly execute non-whitelisted instructions such as

system calls or cache flushes. While this may allow a malicious JIT-compiled program to

access sandbox memory in ways that the sandboxed language runtime did not intend for

it to access, the underlying system outside the sandbox remains safe.

NaCl uses runtime checks to ensure that indirect memory accesses and control

flow transfers do not break out of the sandbox. A check must be inserted before each

instruction that could potentially escape the sandbox; and together, each runtime check

and the instruction it guards are referred to as a pseudo instruction. Runtime checks and

the code layout described below ensure that normal and pseudo instruction can only be

executed from their first byte, eliminating the threat of unintended instructions.

Untrusted code must be laid out in a special way to support NaCl. The smallest

unit of untrusted code allocation is called a code region, which is comprised of one or

more 32-byte instruction bundles. Instruction bundles are aligned to 32-byte boundaries,

and code is arranged in such a way that no instruction or pseudo instruction straddles

an instruction bundle boundary. This provides the invariant that any branch targeting

the beginning of an instruction bundle will execute an intended instruction along with
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all necessary runtime checks. The runtime checks for indirect branches take advantage

of this by clearing the least significant 5 bits of the branch target address to force it

into 32-byte alignment. To facilitate the proper alignment of subroutine returns, each

call instruction is padded forward so that the instruction following it will be the first

instruction or pseudo instruction in the next instruction bundle. Unused bytes preceding

call instructions and at the ends of instruction bundles are filled with NOP instructions.

Untrusted code compiled to be run in a NaCl sandbox is already laid out in bundles

with runtime checks in place. Before loading the code into the sandbox’s executable

memory region, NaCl validates it to check that code is properly laid out and that runtime

checks are correct and present where needed. The validator also checks the instructions

against a whitelist and ensures that direct branches stay within the sandbox and do not

target the middle of an instruction or pseudo instruction.

For the sake of brevity, we have not exhaustively specified the behavior and

constraints of a NaCl-validated binary. However, the overall effect is that sandboxed

code that is executed from an intended instruction boundary then left to its own devices

will never run unintended instructions or execute code outside the sandbox (except via an

API call into the NaCl runtime); nor will it read or write outside of its own data region.

Even if an attacker were able to commandeer the JIT compiler and dictate every byte of

JIT code it emitted (which would need to pass NaCl validation in order to execute), she

would not be able to escape the sandbox. This level of capability confinement comes

with great performance cost, as shown in Table 8.1. The NaCl-JIT authors ported the V8

JavaScript Engine and the Mono Common Language Runtime to run in NaCl-JIT and

evaluated their results on both x86-32 and x86-64 platforms running Ubuntu 10.04. The

Mono JIT on x86-32 performed admirably under NaCl-JIT with just a 2% slowdown; but

all other options—even the same JIT on x86-64—suffered at least 20% slowdowns.
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Table 8.1. NaCl-JIT Slowdown Percentages

x86-32 x86-64

V8 JIT (V8 benchmark v. 6) 28% 51%
V8 JIT (SunSpider100) 32% 60%
Mono JIT (SciMark C#) 2% 21%

RockJIT

RockJIT [42] offers a platform similar to NaCl-JIT with considerable performance

improvements due to more efficient JIT code validation and its use of control flow integrity

(CFI) [3] rather than code bundling to protect control flow. Like NaCl-JIT, RockJIT

sandboxes the language runtime and its JIT code. Since the runtime is statically-compiled,

and its control flow graph can be generated and analyzed offline, it is subjected to a fine-

grained CFI policy (without a shadow stack). JIT code, on the other hand, is protected

by coarse-grained CFI (meaning that any indirect branch site can target any indirect

branch target). The decision to enforce coarse-grained rather than fine-grained CFI

on JIT code improves the speed of dynamic code generation because computing and

dynamically-updating a coarse-grained CFI policy is less computationally intensive than

its fine-grained counterpart.

The sandboxed language runtime is expected to emit JIT code that contains

runtime checks similar to those found in NaCl-verified code. Memory write targets are

masked to confine them to the bottom 4GB of memory (assuming a 64-bit system), and

indirect branches are instrumented to check their branch targets against the CFI policy

and to mask their targets to 4-byte boundaries. Accordingly, instructions in JIT code that

may be indirect branch targets are expected to be NOP-padded to 4-byte alignment. In

the case of call-return pairs, the call instruction is padded forward until the subsequent

instruction is properly aligned. Note that memory reads are not confined by runtime

checks.
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RockJIT provides sandboxed code a read-execute (RX) virtual memory mapping

of the JIT code region while keeping a separate read-write (RW) mapping to the same

physical pages for itself. The sandboxed RX mapping resides in the bottom 4GB of

memory; whereas the RW mapping resides outside of the sandbox. This ensures that

a guarded write in JIT code cannot corrupt the JIT code region. The language runtime

installs code by calling into the RockJIT API and providing (1) a buffer of code to be

installed; (2) the address in the RX mapping at which to install the code; and (3) a

list of indirect branch targets in the new JIT code. RockJIT validates that system call

instructions are not present, that all necessary runtime checks are installed, and that direct

branches do not escape the sandbox or allow for the circumvention of runtime checks. If

validation passes, RockJIT copies the code into the RW mapping at an address computed

as a fixed offset from the requested installation address in the RX mapping; afterwards, it

updates the CFI metadata so that indirect branches may target the newly-installed code.

In RockJIT’s threat model, the language runtime is considered benign but poten-

tially buggy. The language runtime is therefore allowed to make system calls and expose

an interface through which JIT code may indirectly invoke them. The language runtime

cannot issue system calls that manage memory mappings and memory protection bits,

but it may indirectly request those operations via a RockJIT API call.

RockJIT’s authors ported the V8 JavaScript engine to use RockJIT; and on the

same set of benchmarks over which NaCl-JIT incurred a 51% overhead, RockJIT had just

9.0% overhead. Over the entire Octane 2 JavaScript benchmark suite, RockJIT incurred

a 14.6% average overhead.

However, these performance gains come with security risks. Notably, since

RockJIT allows the (untrusted) language runtime to directly make system calls (excluding

memory reprotection), and RockJIT’s fine-grained CFI implementation does not use a

shadow stack to ensure return address integrity, it is vulnerable to an attack called control
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flow bending [16]. Control flow bending attacks abuse the lack of a shadow stack to

weave control flow through a fine-grained CFI control flow graph by taking legal, but

un-paired, return edges until a system call is reached.

In general, sandboxing defenses such as NaCl-JIT and RockJIT do a good job

of protecting the system outside the sandbox from bugs in sandboxed code. However,

they fail to protect the language runtime against malicious JITed code. For example, if an

attacker is able to compromise the sandbox, she could read from the language runtime’s

memory to steal cookies across web origins—assuming process-based origin isolation

a la Chrome/Chromium is not in use. Furthermore, exploitation of bugs outside the

sandbox is not mitigated at all. This means, for example, that a control flow vulnerability

in NaCl-JIT or RockJIT is able to target any address in JIT code, even unintended

instruction boundaries. On the other hand, it could be argued that most exploitable bugs

occur in the language runtimes themselves (or the programs embedding them) and that a

sandboxing environment represent a much smaller, easier-to-verify attack surface.

8.2.2 Memory protection

Perhaps one of the most glaring threats created by the introduction of JIT com-

pilers is the omisson of W ⊕ X protection on JIT code regions. Unlike most statically-

compiled code (e.g., C/C++ binaries and libraries), which is typically marked readable

and executable (RX), JIT-emitted code, especially for dynamically-typed languages, is

often permanently marked readable, writable, and executable (RWX). Permanent RWX

permissions eliminate the memory reprotection system calls that would be necessary to

support the performance-critical technique known as inline caching, which can require

frequent modification of JIT code.

Inline caching is a technique initially developed for the Smalltalk programming

language [26] that offers improved execution speeds for dynamic and dynamically-typed



99

languages. In a dynamic language, object properties may be added on the fly; therefore

the offset within an object of any particular fixed property name may differ across objects.

Furthermore, a variable in a dynamically-typed language may be backed by any type,

so the behavior of an operator taking a variable as an operand cannot be known until

the runtime type of the variable is determined (e.g., in JavaScript, the expression ‘x +

3’ evaluates to a number if x is a number and a string otherwise). Normally, accessing

a property or using a variable as an operand requires a call into the runtime to inspect

runtime types and dispatch the proper pre-compiled handler, a process which is typically

expensive. Inline caching employs self-modifying code to save fast path code for recently-

seen runtime types at each dynamic access site.

The intuition behind inline caching is that each variable access site in the source

code tends to encounter values of the same primitive type or dynamic “class,”1 and

furthermore, if a property of a variable is being accessed at a particular location in code,

it tends to refer to the same property of the same dynamic class. For example, consider

the function shown in Listing 8.1, which access the same property of every element in an

array and adds it to an accumulator variable. A reasonable argument to this function is an

array of objects—all constructed in a common manner—whose value property holds an

integer value. For such an input, accessing e.value could be optimized down to a short

code stub containing a few machine instructions that read from a fixed memory offset in e

into a register rather than an expensive call into the JavaScript runtime that accomplishes

the same task less efficiently after searching through e’s type information. Similarly,

the addition operation could be optimized down to an efficient code stub that performs

integer addition over two registers rather than calling a JavaScript runtime routine that

checks the runtime types of the operands and decides how to add them.

1For non-primitives, a common notion of a class in JavaScript implementations is any object with the
same property names that were defined in the same order.
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function (elements) {

var s = 0;

for (var i = 0; i < elements.length; i++) {

e = elements[i];

s = s + e.value;

}

return s;

}

Listing 8.1. Sample JavaScript function demonstrating access patterns that could benefit
from inline caching.

Inline caches (ICs) are efficient runtime type checks that are placed at each

potential optimization site. Whenever the code encounters an object whose runtime type

matches the type checked for by the IC (IC hit), the optimized code stub is executed.

If the type check fails (an IC miss), the slow path (through the language runtime) is

executed; a fast path code stub optimized for the new type is generated; and the IC is

updated to check for the new type and call the replacement stub on IC hit.

In 1991, Hölzle et al. [30] extended inline caching to support “polymorphic” sites

that encounter a small number of types and/or properties and use the type information

stored in the ICs to implement adaptive optimization, allowing JIT compilers to generate

highly-specialized code based on information recorded in polymorphic ICs. Polymorphic

inline caching and adaptive compilation have been widely deployed in all major browsers’

implementations of JavaScript [54, 38, 2], resulting in considerable performance gains.

For example, V8 performance incurs a 12× slowdown when inline caching mechanisms

are disabled [6].

RWX memory poses a significant threat to JIT security. Our gadget chaining

proof of concept attacks against JavaScriptCore (Section 5.2) and V8 (Section 6.2) both

leverage always-RWX JIT code pages to corrupt the JIT code buffer and install arbitrary

shellcode. Memory protection defenses seek to rid JIT code of its always-RWX memory

protection status by adapting W ⊕ X to dynamically-generated code. The two primary
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approaches to memory protection for JIT code are transient protection and dual mapping.

Transient protection

Transient protection defenses minimize the time during which memory has an

undesirable protection status. Both JITDefender [18] and JITSafe [19] attempt to parry

JIT code reuse by marking JIT code pages as non-executable upon completion of compi-

lation and re-enabling the execution bit only before the language runtime calls into JIT

code. Once the call into JIT code returns to the runtime, the execution bit is disabled. If

the attacker were to trigger a control flow vulnerability to branch to the JIT code pages

outside of this window, the segmentation fault would be raised, terminating the attack.

JITSafe and JITDefender never disable writeability of JIT code. Therefore, while

JIT code is executing, it is marked RWX. This enables IC updates to proceed efficiently

without the overhead of calling mprotect and clearing the TLB each time. As a result,

JITDefender’s transient protection overheads were 0.9%, 0.5%, and 0.1% for Tamarin,

V8, and JavaScriptCore respectively (Windows 7, x86-32). JITSafe’s transient protection

component yields similarly minimal overheads of 0.5%, 0.5%, and 0.9% for Tamarin, V8,

and JavaScriptCore, respectively (Windows 7, x86-32). In addition to transient execution

protection, JITSafe also employs diversification techniques.

A shortcoming of JITSafe and JITDefender is the large window of opportunity

for exploitation while JIT code is executing. For example, each JIT sprayed function

containing the JIT spraying payload could call another instance of the function in order

to make all copies simultaneously executable; the last callee in the chain would then

trigger the control flow vulnerability.

JITScope [63] is a proposed defense that mitigates the threat of JIT code cor-

rupting itself. JITScope wraps all control flow transfers from the language runtime into

JIT code with a function which sets the JIT code region’s protection bits to RX before
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branching to it; the wrapper does not remove the executable bit when control returns

from JIT code. JITScope funnels all writes to the JIT code region (including IC updates)

through a wrapper function which first sets the JIT code region to RW before invoking

the desired write function. Once writing is complete, and control flow has returned to the

wrapper, the JIT code region is reprotected to read-only (non-writable, non-executable).

No benign path through the control flow graph leaves the JIT code in a state that is both

writable and executable.

JITScope does not interfere with the predictability of emitted JIT code; therefore

if there were a control flow vulnerability, it could divert control to and unintended entry

point in the JIT code in the usual Blazakis-style JIT spraying fashion. To address this

threat, JITScope protects all statically-compiled code with fine-grained control flow

integrity (CFI) for forward edges and a shadow stack for backward edges, in addition

to coarse-grained CFI (with a shadow stack) on JIT code.

Since JITScope must make a system call to modify memory protection bits

each time the JIT code undergoes modification (e.g., to update an IC), its overhead is

predictably much higher than JITSafe and JITDefender, which only modify protections

when calling and returning from JIT code. JITScope benchmarks for the SpiderMonkey

JavaScript engine on Ubuntu 12.04 for x86-64 indicate a 4.26% overhead for memory

protection alone and 9.51% overhead for the entire system when CFI is enabled as well.

However, we believe these performance numbers should be taken with a grain of salt, as

a recent study has found that a traditional shadow stack implementation alone incurs a

9.69% CPU overhead [23].

In 2011, the SpiderMonkey team experimented with transient protections similar

to those proposed by JITScope with overheads in the 2%–3.5% range on Windows

7 and Linux for (unspecified 32- or 64-bit) x86 [41]. For the SunSpider benchmark,

against which both JITScope and the SpiderMonkey team’s experimental work were
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Table 8.2. Dual-mapping defenses and overheads

Overhead % Weakness

Single-process dual mapping 1% Info leak

Lobotomy 387% (27% @ 95th %ile) Code corruption

SDCG 5.6%-16.6% Entire compiler trusted

evaluated, JITScope’s W ⊕ X enforcement incurred ∼3.8% overhead (Ubuntu 12.04,

x86-64), which is comparable to the 3.5% overhead for the SpiderMonkey team’s work

(unspecified Linux, unspecified 32- or 64-bit x86). After the initial push, transient write

protection was not enabled in SpiderMonkey due to the performance cost and uncertainty

concerning its security benefits.2

These concerns were justified when Song et al. [52] demonstrated the use of

Web Workers [56] to launch a multi-threaded attack that circumvents transient memory

protections by creating a race condition. The web workers specification enables the

main JavaScript thread to spawn a separate thread in the same process that executes

JavaScript and can communicate with the main thread via the postMessage interface.

To launch the attack, the main thread instructs a worker thread to cause its JIT code

region to become writable (e.g., by inducing JIT compilation of a new function) and

simultaneously exploits a memory corruption bug to write to the writable region during

the window of opportunity. Although this attack presents a code corruption threat, it

could be adapted to pose a code reuse threat against temporarily-executable JIT sprayed

code under the protection of JITDefender and JITSafe.

Dual mapping

As we saw in Section 8.2.2, varying JIT code’s writability and executability over

time is vulnerable to race condition attacks. Furthermore, toggling between RW and RX

2More recently, the SpiderMonkey team changed their mind and pushed transient protection (non-
writable JIT code by default) into production [39].
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protections is not even possible on all systems. SELinux prohibits processes from adding

executability to memory if it has ever been writable in the past [27] in order to thwart

code injection attacks that attempt to grant executability to shellcode stored in a data

buffer.

Prior to the publicization of JIT spraying [13], the SpiderMonkey team investi-

gated an alternative to transient protection in which JIT code is allocated in physical

memory pages that are mapped to two virtual address ranges within the same process [40].

One mapping would have RX permissions and would be used for executing JIT code, and

the other would have RW permissions and would be used for code emission, IC patching,

garbage collection, etc. The single-process dual mapping scheme, which incurred about

a 1% slowdown on x86-32 and x86-64 on both Linux and OS X, was never adopted, in

part due to doubts regarding its security.

SpiderMonkey never adopted the single-process dual mapping method because it

can be circumvented with the aid of an information leak, which would allow an attacker to

locate both the RW and RX mappings. RockJIT implements single-process dual-mapping

but mitigates the abovementioned threat by confining memory writes in JIT code to the

bottom 4GB of memory and placing the RW mapping at a higher address, safely out of

reach of a guarded write.

Other research efforts address the shortcomings of single-process dual mapping

by separating the RX and RW mappings of JIT code across process boundaries. An

untrusted process will hold either the RX or RW mapping to JIT code residing in shared

memory, and a trusted process will hold the other mapping. Whenever the untrusted

process needs to perform an action requiring the trusted process’s permissions to the JIT

code, it will request it through some form of inter-process communication (IPC). If the

untrusted process becomes compromised by an attacker, it can only directly have either

write or execute access to the JIT code region.
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Whether the untrusted process holds the RW or the RX mapping depends on

the defense’s motivating threat model. Lobotomy [33] addresses the code reuse threat

and therefore allows only the trusted process to have the RX mapping of the JIT code.

Consequently, an attacker who is exercising only one bug–a control flow vulnerability in

the untrusted process–will not be able to branch directly into the JIT code region.

A prototype of Lobotomy was implemented for Firefox’s now-deprecated tracing

JIT, TraceMonkey, and evaluated by simulating user interaction with several popular

websites via browser automation tools. Lobotomy incurred a 387% mean slowdown over

the unmodified JIT, compared to a mean slowdown of 160% when the JIT was disabled.

The authors cite corner cases as the source of Lobotomy’s poor performance and also

report the slowdown at the 95th percentile, which is only 27% for Lobotomy compared

to 586% with the JIT disabled.

SDCG [52] responds to the threat of code corruption and takes the approach

opposite to Lobotomy by implementing multi-process dual mapping with a trusted

writing process. SDCG is designed around the assumption that the attacker can write

arbitrarily to memory. Since an arbitrary memory write can be used to divert control

flow to an attacker-controlled address, and the untrusted process holds an RX mapping to

JIT code, the threat of JIT spraying must be addressed. SDCG assumes that JIT code

diversification mechanisms (Section 8.2.3) are in place to reduce the likelihood that

branching into a JIT sprayed payload will result in successful shellcode execution. To

prevent the attacker from launching a code reuse attack that leverages non-JIT code in

order to reprotect JIT memory as writable, SDCG interposes itself on virtual memory

management system calls and blocks such requests.

The performance cost of this defense comes from RPC and cache coherency

overheads. Table 8.3 shows the drop in V8 benchmark scores incurred by implementing

SDCG on top of V8 revision 16619. There is a notable performance drop on both x86-32
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Table 8.3. V8 benchmark score reductions for SDCG

Threads pinned Free scheduling

x86-32 6.9% 15.9%
x86-64 5.6% 16.6%

and x86-64 when trusted and untrusted threads are allowed to be scheduled on different

physical cores.

8.2.3 Diversification mechanisms

The cornerstone of all attacks that reuse JIT-emitted code for malicious pur-

poses [13, 48, 49, 44, 35, 9] is the assumption that, for a given input program, a particular

JIT compiler will always emit the same sequence of machine instructions (modulo mem-

ory addresses embedded in the code). Diversification defenses seek to invalidate this

assumption, thereby undermining the utility of JIT-emitted code for malicious reuse. Di-

versification defenses can be organized into the following two categories: intra-instruction

randomization and code layout randomization.

Since many proposed defenses that include diversification share common mech-

anisms, we first describe high-level diversification mechanisms in order to establish a

vocabulary for discussion. In the next subsection, we will exercise this vocabulary and

delve into specific proposals in the literature that apply these techniques.

Intra-instruction randomization

Intra-instruction randomization defenses invalidate an attacker’s assumption that

particular instruction encodings will appear in JIT code memory. The three types of

intra-instruction randomization that appear in the literature are register randomization,

constant blinding, and call frame randomization.
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Register randomization Register randomization permutes register assignment during

compilation, resulting in instructions whose register operands are unpredictable [58, 59,

61] and can often be performed with nominal overhead at compile time, though some

runtime overhead may be added due to instructions that require longer encodings for

certain register operand values. For example, in the Thumb-2 instruction set, most 16-bit

instruction encodings only support register operands R0-R7. Register randomization could

cause higher-numbered registers to be used when they otherwise would not, resulting in

the need for 32-bit Thumb instructions instead of 16-bit instructions.

Constant blinding Immediate operands can consume a large percentage of an instruc-

tion’s encoding and are often derived from untrusted values provided in the code being

compiled. This grants attackers a large amount of control over the code produced by

the JIT compiler, enhancing its utility for malicious code reuse. Indeed, predictable

immediate operands have been a cornerstone of many JIT spraying attacks. Constant

blinding [58, 44, 59, 61, 19, 31] seeks to eliminate this predictability. A typical implemen-

tation of constant blinding splits each instruction that contains an untrusted immediate

operand into two instructions whose respective immediate operands are functions of the

untrusted immediate and a random secret value. The side effect of the composition of the

two new instructions is the same as that of the original instruction, but neither of the new

immediate operands are predictable. As long as the attacker does not know the secret

value that is used, she cannot predict any of the immediate operands that will appear

in the final instruction stream and therefore cannot rely on them to encode malicious

instructions.

Listing 8.2 shows an example of blinding a bitwise XOR instruction on x86. By

composing two instructions of the same operation, blinding can be carried out with only

one additional instruction. However, consider the example in Listing 8.3, in which an
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; Unblinded

xor eax , 0xabababab

; Blinded

; Operand 1: 0x193da98c (secret)

; Operand 2: 0xabababab ^ 0x193da98c = 0xb2960227

xor eax , 0x193da98c

xor eax , 0xb2960227

Listing 8.2. x86 assembly demonstrating constant blinding of a bitwise XOR instruction.

; Unblinded

add eax , 0xabababab

; Blinded

; Operand 1: 0x193da98c (secret random value)

; Operand 2: 0xabababab ^ 0x193da98c = 0xb2960227

mov ebx , 0x193da98c

xor ebx , 0xb2960227

add eax , ebx

Listing 8.3. x86 assembly demonstrating the addition of the untrusted constant
0xabababab to a register with and without constant blinding.

untrusted constant is placed into a register in two steps, and the original immediate-

operand instruction is converted to a register-operand instruction. In addition to requiring

one more instruction, this method requires a spare register to hold the untrusted constant.

This method is preferred to composing two add instructions because the add instruction

will update the processor flags. In optimized JIT code, it is common for the compiler to

test for overflows and underflows after addition, subtraction, multiplication, and division.

Those conditions can indicate that the operation’s result cannot be represented as a 32-bit

integer and that deoptimization to a floating point representation is needed; therefore

flag-mutating arithmetic instructions should not be used when operating on constant

blinding operands to prevent unwarranted deoptimization.

Even bitwise AND and bitwise OR instructions should be converted to register-

operand instructions rather than composed because set and unset bits in the untrusted

constants can result in predictable bits in the blinding operands. In particular, for
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; Unblinded

add R0 , #2880154539 ; 0xabababab

; Blinded

; Operand 1: 0x193da98c (secret random value)

; Operand 2: 0xabababab ^ 0x193da98c = 0xb2960227

movw R1 , #43404 ; 0x193da98c & 0xffff

movt R1 , #6461 ; 0x193da98c >> 16

movw R2 , #551 ; 0xb2960227 & 0xffff

movt R2 , #45718 ; 0xb2960227 >> 16

eor R1 , R2

add R0 , R1

Listing 8.4. ARM assembly demonstrating the addition of the untrusted constant
0xabababab to a register with and without constant blinding.

bitwise AND, each 1-bit in the untrusted constant forces corresponding bits in both

blinding constants to be set; for bitwise OR, each 0-bit in the untrusted constant forces

corresponding bits in both blinding constants to be unset. This can be most clearly

observed by considering the corner cases where all bits in the untrusted constant are

either set or unset. The instruction

and eax, 0xffffffff

can only be blinded with composed and instructions as

and eax, 0xffffffff

and eax, 0xffffffff

Similarly, blinding the bitwise OR of 0x00000000 with composed or instructions requires

blinding operands of 0x000000 and 0x00000000.

The limited number of immediate bits available in ARM and Thumb instructions

forces most instructions to be converted to register-operand instructions in order to

perform constant blinding. Moreover, two scratch registers rather than one are needed to

hold the blinding operands, as shown in Listing 8.4. Note that in this case, the unblinded

instruction could be encoded as an immediate-operand instruction thanks to Thumb
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immediate encoding rules that allow a 32-bit constant composed of the same 8-bit pattern

replicated 4 times to be encoded in a 12-bit field.

As one might expect, the overhead of constant blinding comes in the form of both

increased code footprint and increased execution time. Athanasakis et al. [9] estimate

that constant blinding can result in up to 80% additional instructions.

Call frame randomization Call frame randomization [58, 59] scrambles the instruc-

tions that are used to access values such as arguments, local variables, spilled temporary

values, etc. in a function’s call frame. These instructions usually access memory at

predictable immediate offsets relative to the stack pointer or a call frame register, which,

as we showed in our proof of concept gadget chaining attack against V8 (Section 6.2), can

provide an attacker with a predictable memory access instruction that can be conveniently

repurposed for memory corruption.

Code layout randomization

Predictable are not only the contents of JIT code, but also the layout of its instruc-

tions relative to one another and the boundaries of coarser-grained memory allocation

units. Nearly all JIT spraying attacks we have seen so far rely on predictable code layout

either to prevent an unintended instruction stream from resynchronizing to the intended

stream or to predict the relative or absolute locations of instructions. Two strategies have

been proposed to diversify JIT code layout at both fine and coarse granularity: random

NOP insertion and base offset randomization, respectively.

Random NOP insertion Random NOP insertion [31, 32, 58, 59, 44, 61] involves

injecting semantic NOP instructions at random in JIT code. Its effect is both to randomize

the offset of any given instruction from the beginning of the unit of code compilation and,

more generally, to randomize the relative offset between any given pair of instructions.
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Table 8.4. Table of the mechanisms and overheads of various concrete proposals con-
taining diversification defenses

Overhead %
Constant
blinding

Register
randomization

Call frame
randomization

Random NOP
insertion

Base offset
randomization

INSeRT 2%

RIM < 1%

JITSafe 2.80%

librando 15%–250%

Adaptive
Diversification 5%-6%

Like constant blinding, the overhead of random NOP insertion comes from increased

code footprint (leading to increased i-cache pressure) and wasted cycles at runtime;

however the overhead for random NOP insertion scales with code size rather than the

number of untrusted constants compiled.

Base offset randomization Base offset randomization [44] places a random amount

of “dead” space before the beginning of each unit of code compilation, either in the form

of NOP instructions or free space. This perturbs both the offset of the first unit of code

compilation when the JIT compiler maps a fresh region of executable memory and the

relative offsets between consecutively-compiled units of code compilation. The absence

of base offset randomization is critical to the heap feng shui [53] used to pinpoint gadget

addresses in our proof of concept gadget chaining attacks described in Chapters 5.2

and 6.2. Base offset randomization would have drastically reduced the reliability of those

attacks with substantially less overhead than random NOP insertion.

8.2.4 Concrete diversification proposals

In this subsection, we will discuss five concrete defense system proposals from

the literature. Table 8.4 provides an overview of these proposals with their overheads and

the diversification mechanisms they include.
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INSeRT

Wei et al.’s INstruction Space Randomization & Trapping (INSeRT) [58, 59]

defense targets x86 and performs constant blinding of all immediates, register randomiza-

tion, call frame randomization, and a variant of random NOP insertion. Their objective is

to randomize all instruction operands as well as give a process under attack a chance to

detect certain failed exploitation attempts if they do not crash the process.

Rather than inserting semantic NOPs, INSeRT’s variant of random NOP insertion

randomly injects what its authors call trapping snippets. A trapping snippet is a sequence

of instructions that starts with a short, forward PC-relative branch, followed by a small

number of breakpoint instructions (the x86 implementation uses int 3, which is typically

used by debuggers and can be encoded in a single byte as 0xCC). If execution begins

at the first byte of the trapping snippet, as would be the case in benign execution, the

relative branch will skip over the rest of the trapping snippet. However, if execution

begins anywhere else in the snippet (for example, due to an attack underway), one of

the breakpoint instructions will execute, and the interrupt can be handled by the process

under protection, which can react accordingly.

The frequency of trapping snippet injection influences code size in the expected

manner, where more frequent injection results in greater memory overhead, and can be

fine tuned to balance security with memory usage. The authors of INSeRT implemented

a prototype for V8 running on Windows 7 on x86; their average overhead across five runs

of the SunSpider 0.9.1 benchmark showed only a 2% slowdown with trapping snippet

injection tuned to 5.9% memory overhead.

The only design description Wei et al. provide for call frame randomization is to

reorder “function arguments, local variables, and so on” in such a way that there are at

least 256 potential offsets. The authors do not make any statements regarding whether or
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; Original

xor eax , 0xabababab

; Diversified with RIM

; 0xabababab ^ 0x22222222 = 0x89898989

push ecx ; ecx chosen at random

xor ecx , ecx

xor ecx , 0x89892222

nop ; inserted with 50% probability

xor ecx , 0x22228989

xor eax , ecx

pop ecx

Listing 8.5. x86 assembly demonstrating RIM performing constant blinding with random
scratch register selection, immediate splitting, and random NOP insertion.

not values of different types should be intermixed or not.

RIM

Wu et al.’s Removing IMmediate (RIM) [61] defense applies constant blinding

along with weakened forms of register randomization and random NOP insertion to

immediate-operand bitwise XOR instructions. RIM selects a random register to use as

a scratch register and converts the immediate-operand XOR instruction to a register-

operand that uses the scratch register instead of the untrusted constant. The 32-bit

untrusted constant and a randomly-chosen 32-bit secret value are bitwise XORed with

each other to form a scrambled value, and both the secret and scrambled values are split

into 16-bit halves. The upper half of the scrambled value and the lower half of the secret

are concatenated and moved into the scratch register. A NOP instruction is emitted with

50% probability, then the remaining halves are concatenated and XORed against the

scratch register. Listing 8.5 shows an example of RIM diversification in x86 assembly.

The prototype of RIM that its authors implemented and evaluated only applied

diversification to the immediate operands of XOR instructions. Their assessment that

RIM’s diversification methods incur less than a 1% overhead for Tamarin on Windows XP
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SP3 should be evalated with that in mind. If RIM were applied to all immediate-operand

instructions, the overhead would be much higher, especially because of the pushes and

pops needed to save and restore the scratch register. It should also be noted that RIM does

not implement true register randomization or random NOP insertion. The only register

that is randomized is the scratch register, and the only potential NOP insertion sites are

between the pairs of immediate-operand XOR instructions.

JITSafe

JITSafe [19], which also deploys transient memory protection (Section 8.2.2),

performs diversification of immediate-operand arithmetic and bitwise instructions using

weakened variants of random NOP insertion, constant blinding, and register randomiza-

tion. JITSafe stores untrusted constants in heap memory. It then replaces instructions

that would have used them as immediate operands with a memory load into a random

register followed by the register-operand version of the original instruction. A NOP

instruction of random length is randomly placed between the load instruction and the

new register-operand instruction to break apart any potential unintended instructions that

might straddle the load and arithmetic/bitwise instruction.

This solution offers less entropy than true constant blinding since some of the

bits in the memory addresses that are encoded into the instruction stream may be shared

or predictable. The authors of JITSafe evaluated its performance overheads on Tamarin

for Windows 7. The overhead of replacing the immediate-operand instruction with a

memory load and register-operand instruction is 1.6%. Random register and random

NOP insertion incurs an overhead of 0.7%, and the overall performance overhead of

JITSafe, with both transient memory protection and diversification enabled, is 2.8%.
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librando

Homescu et al. [31] set their sights on the challenge of deploying diversification

defenses to JIT engines without having to replicate engineering effort across each engine.

Librando is a runtime library that applies constant blinding and random NOP insertion

to the JIT code emitted by any x86 JIT compiler without requiring modifications to the

compiler.

Librando employs lazy diversification; it prevents undiversified code emitted by

the JIT compiler from executing and only diversifies it once it is executed for the first time.

To do this, librando intercepts calls to virtual memory allocation functions (e.g., mmap)

and removes execute permissions from the allocated memory. The JIT engine using

librando writes undiversified JIT code to the non-executable memory region as usual.

Since the JIT code is non-executable, whenever execution branches to it—even under

benign conditions—a segmentation fault is raised, triggering execution of a segmentation

fault handler provided by librando.

If librando’s signal handler encounters a piece of code it has not seen before,

it begins the process of diversification. Librando disassembles the undiversified code,

using the segfaulting address as the starting point and following direct branches to

traverse the control flow graph. Each basic block is diversified and tracked by librando

independently of other basic blocks in the control flow graph. A copy of the code with

diversification defenses applied is written to a separate memory region and given RX

memory permissions, and once diversification is complete, the segmentation fault handler

branches to the diversified code.

To support and detect modification and garbage collection of JIT code, librando

keeps the undiversified code in place and marks its memory pages as read-only. Any

attempt to modify a read-only page will invoke a librando segmentation fault handler
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which will enable write permission on the page and tag all blocks in the page as dirty.

The next time the segmentation fault handler catches an execution attempt for a dirty

block, librando hashes all dirty blocks and checks a hash table to determine which have

been modified and therefore require re-diversification. After re-diversification of dirty

blocks, all blocks are returned to the read-only state.

Librando implements random NOP insertion in the following manner. For each

instruction in a basic block, librando decides whether or not to insert a random NOP

before it with 50% probability. If it does insert a NOP, it chooses randomly from a 1-byte,

2-byte, or 3-byte NOP.

Constant blinding is implemented for the following instructions with 32- and 64-

bit immediate fields: mov, push, imul, test, and arithmetic instructions. Instead of using

bitwise XOR to blind values, librando uses composed addition and subtraction via the

lea instruction, which does not set the processor flags. The authors provide the example

of loading an immediate into a register by loading the values (constant−secret) and

secret into separate registers then using the lea instruction to add them. They do not

show how they blind other types of instructions; but they do state that they “implemented

different blinding code manually for each type of instruction.” This may indicate that

either 1) other instruction types were converted to their register-operand variants and

prefixed with a mov that is blinded as described above; or 2) they use other methods for

non-addition instructions and only used the lea method for the mov instruction. It would

be unwise to blind addition and subtraction instructions by composition with lea because

it could lead to masking real under/overflows or create unwarranted under/overflows.

Consider the example shown in Listing 8.6; if the initial value of eax is 0x10 or greater,

the addition of the constant value 0xfffffff0 should cause the overflow flag to be set,

and under no circumstances should the underflow flag be set. However, in the diversified

code, the underflow flag could be set if the initial value of eax is 0xe or less, and the
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; Undiversified

add eax , 0xfffffff0

; Diversified

push ebx

sub eax , 0xf

mov ebx , 0xffffffff

lea eax , [eax + ebx]

pop ebx

Listing 8.6. Demonstration of diversified code in which the lea instruction can mask
overflow conditions and create an unwarranted underflow when used to blind addition by
composition.

overflow flag cannot be set.

In addition to inserting random nops and applying constant blinding, librando

modifies direct and indirect branches. Direct branches are rewritten to target diversified

code so that unnecessary segmentation fault handling is avoided. In order to make

the runtime stack appear as though execution were occuring in the undiversified code,

librando converts CALL instructions into an instruction sequence that pushes the undiver-

sified address of the instruction following the CALL instruction then jumps to the callee’s

diversified address. Consequently, subroutine returns will target undiversified addresses.

To accelerate indirect branches, all of which target undiversified addresses, librando

provides a lookup table from the addresses of undiversified block entry points and call

return sites to their diversified counterparts and rewrites indirect branches to check the

lookup table first.

The authors evaluated the performance impact of librando on the V8 JavaScript

engine and the HotSpot Java JIT on an x86 Linux machine. They evaluated librando on

V8 using the V8 benchmark suite and HotSpot using the Computer Language Shootout

Game benchmarks. Table 8.5 shows the slowdown percentages, which indicate that the

majority of the overhead incurred comes from juggling the separate copies of JIT code.

However, diversification still contributed substantial overhead.
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Table 8.5. Librando slowdown percentages

Rewriting only Full diversification

V8 170% 250%
HotSpot 8% 15%

When librando executes in “black box” mode, the JIT compiler whose code is

being diversified never directly calls librando. We found that this operating mode has a

severe flaw under certain circumstances. Librando learns basic block boundaries within

JIT code by starting at an undiversified address that was the target of a branch into

undiversified code and disassembling forward from that point. An illicit branch (caused

by a control flow vulnerability) targeting what would be a ROP gadget or an unintended

instruction stream in a JIT spray payload will cause librando to disassemble, diversify (an

operation which preserves functional semantics), and execute the malicious instruction

stream.

If librando’s signal handler tracks and matches entire ranges of undiversified code

that have already been diversified, it could detect that an illegal branch target has been

used, as long as librando may assume that an indirect branch into the middle of a basic

block is abnormal. Such a lookup would require either a slower or less space efficient

lookup structure than the hash map described by librando’s authors and would still not

protect a JIT compiler that eagerly compiles functions before they are ever invoked

legitimately.

Librando has a “white box” version in which diversification of code starting at a

particular address is requested by the JIT engine via an API call into librando, obviating

librando’s handling of segmentation faults. The diversification API call returns the

address of the diversified code, which the JIT engine uses to execute it. This closes

the vulnerability we raised above but creates a attractive target for a return-to-libc-style

attack.
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Adaptive JIT Code Diversification

Jangda et al. [32] offer a diversification strategy which periodically rediversifies

JIT code and adaptively reduces the diversification overhead in “hot” code. The objective

of rediversification is to cause a time-of-check time-of-use condition that favors the

defender. If the attacker is attempting to use an information leak vulnerability to defeat

code diversification, by the time the attacker diverts control to her payload, the code may

have already been replaced. If the attacker’s information leak vulnerability is slow or

carries a high risk of crashing the victim process, she may miss her window of opportunity

or crash the process trying to monitor the state of JIT code.

Adaptive overhead reduction capitalizes on rediversification to optimize the

performance of diversified code where it stands to have the most impact. Adaptive JIT

code diversification injects a randomly-chosen semantic NOP before each instruction

with a probability inversely proportional to the relative hotness of the enclosing function.

The objective is not to increase the number of random NOPs in cold functions, but rather

to decrease the number of random NOPs in hot functions. The performance of very

hot functions is further optimized by excluding execution counters in functions whose

execution count has exceeded some threshold. Very hot functions are not exempt from

rediversification and random NOP insertion; they share in having the lowest probability

of random NOP insertion before any particular instruction.

Periodic rediversification occurs in a separate thread, so it does not block normal

execution of JIT code. The length of the interval between rediversifications is drawn

uniformly at random from 0 up to some maximum sleep time. During each round

of rediversification, functions are recompiled in order of decreasing hotness so that

optimizations can take effect sooner in hotter functions.

A prototype of adaptive JIT code diversification was implemented on the Jikes
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Research Virtual Machine, an open source Java Virtual Machine written in Java. The

prototype was evaluated on an x86-64 machine running Fedora 17 using the DaCapo

2009 Benchmarks. Through experimentation, Jangda et al. arrived at the conclusion that

a max sleep time of 1000 seconds and a threshold of 1000 for considering a function

“very hot” provide the best performance. The remainder of their performance evaluation

uses those parameters. The performance results that they report speak well to the value

of reducing the NOP insertion probability in hot code. For non-adaptive NOP insertion

probabilities of 50% and 30%, overheads were 10% and 9%, respectively. With adaptive

NOP insertion probability ranges of 10-50% (10% for the hottest functions and 50% for

the coldest) and 0-30%, the overheads were 6% and 5%, respectively.

The maximum sleep time of 1000 seconds is problematic for security, as the

average time between rediversifications is over 8 minutes. For comparison, Snow et

al.’s Just-In-Time code reuse attack [51], which constructs a ROP payload by using a

memory leak to read one byte of memory at a time, is able to exploit Internet Explorer

8 in under 25 seconds. With a max sleep time of 1000 seconds, fewer than 1 in 40

recompilations are expected to expire before Just-In-Time code reuse could construct an

exploit for IE8. The adaptively inserted NOPs could make finding enough useful gadgets

more difficult, but the attacker can improve her chances by executing her spray functions

enough times for them to be classified as very hot in order to minimize the number of

inserted NOPs. Ironically, increasing the frequency of rediversification can actually be a

boon to a Just-In-TIme code reuse attacker, as it gives the attacker more opportunities for

all the gadgets she needs to appear in JIT code simultaneously during a given period of

time. In order to properly defend against Just-In-Time code reuse attacks, a max sleep

time of less than a minute is probably necessary.
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8.3 State of Mitigation Deployment

Although there is an enormous quantity of work concerned with defensive JIT

code emission, performance concerns prevent all but a very limited set of ideas from

the research community from making their way into the systems we use on a daily

basis. Even then, many implementations make unacceptable security tradeoffs to reduce

performance overhead. In this section, we provide a critical analysis of the defensive JIT

code emission practices deployed by the following four open-source JavaScript engines:

JavaScriptCore, V8, SpiderMonkey, and Chakra. The lack—and shortcomings—of JIT

spraying mitigations in all of these JavaScript engines except Chakra sustain our argument

that the current state of JIT spraying mitigation deployment needs to be revisited.

8.3.1 JavaScriptCore

As of the version embedded in WebkitGTK version 2.2.2-1 port for Debian,

JavaScriptCore deploys random NOP insertion and constant blinding. However, their

implementations fall short due to either a mis-estimation of how JIT spraying can manifest

itself on the ARM architecture or a reluctance to sacrifice performance in exchange for

robust coverage.

Random NOP Insertion

JavaScriptCore’s non-optimizing Baseline JIT performs a rudimentary form of

random NOP insertion. Instead of inserting NOP instructions randomly throughout the

emitted code, it emits a single NOP instruction at the beginning of each compiled function

with 50% probability on a per-function basis. The semantic NOP used is always the

16-bit Thumb NOP instruction. The optimizing DFG JIT does not insert random NOP

instructions under any circumstances.

First and foremost, the lack of random NOP insertion in the DFG JIT is a major
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oversight. Optimized code looks and behaves more like ahead-of-time compiled code

and affords the attacker far greater control over executable memory than unoptimized

code, whose function is typically to shuffle values around between the stack and registers

before calling into a stub which performs the actual computation. In fact, all three of

our attacks presented in this dissertation relied on code generated by the JavaScript

engines’ optimizing compilers, and Blazakis’ [13] original attack—although it targeted

the ActionScript JIT—could only be adapted to JavaScriptCore if it were to target the

DFG JIT.

Suppose the Baseline JIT’s random NOP insertion were deployed on the DFG

JIT. A Blazakis-style x86 self-sustaining payload would of course have no trouble in the

face of a single NOP randomly inserted at the beginning of the function. We argue that it

could be defeated on the ARM architecture with a gadget chaining attack that includes a

read gadget encoded in the second half of an intended 32-bit Thumb instruction, so long

as the intended return sequence in the sprayed function can be used to correctly return

to the gadget’s caller. For example, if the attacker is able to corrupt the code pointer for

a JIT-compiled function’s entry point, the gadget could be invoked via a JavaScript-to-

JavaScript call rather than a JavaScript-to-C call; consequently, the intended JavaScript

return in the gadget could be used instead of having to write a new return instruction as

was necessary in the gadget chaining attacks described in Sections 5.2 and 6.2.

Suppose the attacker sprays her read gadget along with any others needed by her

attack and assumes that a random NOP will not be inserted when guessing the address

of the read gadget. She then invokes her read gadget and passes the address of the read

gadget itself as the memory location to read. If a NOP was not inserted, the read gadget

will return its own encoding. If a NOP was inserted, the chosen address will not point to

the unintended read instruction, and the read gadget will fail to return its own encoding.

In either case, the attacker learns whether or not a NOP was inserted and can adjust
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Table 8.6. Blinded operations and blinding methods used in JavaScriptCore. Operations
listed with more than one method may be blinded differently depending on the context.

Operation Blinding methods

Addition addition, XOR
Subtraction addition, XOR
Multiplication XOR
Register assignment rotation, XOR
Memory store rotation, XOR
int to double cast XOR
branch XOR
bitwise AND AND, XOR
bitwise OR OR, XOR
bitwise XOR XOR

Table 8.7. Conditions under which JSC will never blind a constant value V .

Condition

V == 0xffff

V == 0xffffff

V ≤ 0xff

V ≥ 0xffffff00

her address guess accordingly. Since the NOP is only inserted at the beginning of each

function, other gadgets sprayed in the same function will reside at a predictable offset

from the unintended read instruction.

The Baseline JIT’s random NOP insertion even fails to impact the relative offset

between the entry points of sequentially-compiled functions because JSC rounds up

allocation sizes to the nearest 32 bytes. If the attacker crafts her payload in such away

that its size does not fall near a multiple of 32, rounding will absorb any increase in the

size due to the single random NOP.
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Constant blinding

JavaScriptCore performs constant blinding for operations for all the operations

shown in Table 8.6, but it does not blind all constants. Certain constants are considered

“safe”; Table 8.7 lists the conditions under which a constant value V will never be blinded;

if any one of the conditions is met, the constant is ineligible for blinding. Furthermore,

each eligible constant constant is only blinded with 1/64 probability.

Occasional constant blinding is perhaps suitable for preventing JIT spraying

on x86, since the canonical attack was to chain together long sequences of immediate-

operand instructions. Randomly disrupting approximately 1 in 64 of these operands might

be enough to prevent the attack from succeeding at minimal expense to performance.

Using gadget chaining, however, very few immediates are needed to form the desired

gadgets. Therefore, a higher constant blinding rate is needed. Moreover, the “safe” values

that JSC does not blind are not necessarily safe on ARM. The R2-disclosure gadget we

presented in Section 4.5 uses 16 as a constant, which is considered “safe” by JSC. In

order to defend against JIT spraying, every constant needs to be blinded.

In addition to the canonical XOR blinding, JavaScriptCore uses rotation blinding

for some operations. Rotation blinding moves a version of the untrusted constant that

has been bitwise rotated a random number of bits to the right into a register, then rotates

that register to restore the untrusted constant’s value. Compared to the XOR blinding

method, which provides 32 bits of entropy, the rotation blinding method only provides

log232 = 5 bits of entropy.

JavaScriptCore uses composed addition blinding under some conditions to blind

addition and subtraction instructions and takes no measures to prevent unwarranted

overflows. It also uses AND and OR blinding to blind bitwise AND and OR instructions,

respectively. As we warned in Section 8.2.3, AND and OR blinding produce blinding
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operands with predictable set and unset bits, respectively.

8.3.2 V8

Memory protection

V8 does not implement any of the memory protection defenses discussed in

Section 8.2.2, but recent work by the V8 team takes the first steps towards eliminating

the need to make JIT code writable by introducing non-patching ICs. In V8’s orig-

inal implementation of polymorphic inline caching, each property access site calls a

dynamically-generated stub which essentially implements a switch statement that tail

calls to the appropriate fast path handler on IC hit or calls into the runtime on IC miss.

The stub and fast path handlers are dynamically generated and allocated in RWX memory.

Whenever there is an IC miss, a new fast path handler is compiled, as is a new version of

the stub that includes a branch in the switch statement for the new handler. The call to

the old stub at the property access site is patched to point to the new stub’s address.

V8’s non-patching ICs do not encode previously-observed types and properties in

stub code. Instead, this information is stored in a data structure called a type feedback

vector. Type feedback vectors are allocated in non-executable memory and are accessed

by generic stubs which then tail call to dynamically-generated handlers. Generic stubs

are dynamically-generated, but each instance of the runtime only needs one copy of

the generic stub for each type of non-patching IC; they can be shared across different

property access sites of the same type and even across functions. Since each property

access site utilizing a non-patching IC will always call the same generic stub, it is not

necessary for the stub-calling code at the access site to be writable for patching.

Currently, the only types of non-patching ICs that are implemented in V8 are

for loads (i.e., obj.x), keyed loads (i.e., obj[x]), stores, keyed stores, and function

calls. Through communication with members of the V8 team, we have learned that
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non-patching ICs are between 1.5× (monomorphic sites) and 3× (polymorphic sites)

slower than their patching predecessors; however these performance regressions have

been offset by other work which creates more opportunities to compile code with V8’s

optimizing JIT, Crankshaft.

Partial deployment of non-patching ICs, unfortunately, does not eliminate the need

for JIT code memory to be writable after compilation. Other IC types such as those for

binary operations and comparisons appear frequently and necessitate modifiable JIT code.

However, due to performance concerns, JIT vendors may be unwilling to part with patch-

ing ICs. For example, the V8 team has explained to us that binary operation ICs are cur-

rently considered too performance-sensitive to be converted to non-patching ICs. More-

over, static pre-compilation of fast path handlers is challenging, because their contents

sometimes rely on detailed knowledge of the runtime state of objects’ prototype chains.

Diversification

V8 only implements constant blinding; and it is only enabled for x86-32 and x86-

64. V8’s constant blinding implementation does not blind untrusted immediate operands

used in all instructions; it only blinds constants >0x1ffff that are being moved into a

register or pushed onto the stack. Arithmetic and bitwise instructions—even bitwise

XOR, the instruction used in Blazakis’ original JIT spray attack—are not protected by

constant blinding.

Because V8’s non-optimizing Full Codegen JIT always implements binary op-

erations on untrusted constants as a move followed by a call to an IC stub (e.g., mov

eax, 3c909090h, call BINOP IC), all untrusted constants in unoptimized code are

blinded, and it is protected from Blazakis-style JIT spraying payloads on x86. Crankshaft,

V8’s optimizing JIT, on the other hand, uses adaptive optimization to emit binary opera-

tion instructions that operate directly on untrusted immediate operands (e.g., xor ebx,
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3c909090h). Since V8 never blinds untrusted constant operands to binary operation

instructions, Crankshaft-emitted code remains completely vulnerable to JIT spraying as

described by Blazakis’ 2010 attack against the x86 [13].

V8 for the ARM architecture does not implement any diversification defenses.

This is most likely because JIT spraying was only seen as a threat against the x86

architecture.

8.3.3 SpiderMonkey

For a long time, SpiderMonkey has not deployed JIT spraying mitigations. In the

past, the SpiderMonkey team developed experimental mitigation patches [41] based on

recommendations by Rohlf and Ivnitsky [44], but those patches were never deployed to

production due to concerns that the mitigations lacked security value commensurate with

their performance costs. Recently, the SpiderMonkey team changed their mind on one

defense and launched transient memory protection. Each unit of JIT code compilation is

normally RX, and whenever it needs to be modified, it is temporarily reprotected RW.

The SpiderMonkey team reports runtime overhead < 1% on the Kraken and Octane

JavaScript benchmark suites and no more than 4% overhead on the SunSpider benchmark

suite.

SpiderMonkey’s implementation of inline caches inherently favors low-overhead

transient memory protection because Baseline code does not require code patching in the

event of an IC miss. New handlers are added to IC call sites by appending a pointer to a

list in non-executable heap memory rather than patching or recompiling an executable IC

stub. The first handler in the list for each call site is invoked via an indirect branch; this

indirect branch never needs patching. Each handler checks whether the runtime types of

its inputs match, and if they do not, it finds the next handler in the list and branches to it.

If the end of the list is reached, the handler calls the slow path in the runtime. Although
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IonMonkey’s ICs require patching, they are less prevalent than Baseline ICs.

The addition of transient memory protection is a step in the right direction, but it

is still vulnerable to a race condition attack [52]. Moreover, the lack of diversification

defenses and default RX protection status leaves SpiderMonkey’s JIT code vulnerable to

JIT spraying attacks that do not rely on code corruption.

8.3.4 Chakra

The Chakra JavaScript engine is used by the Microsoft Edge web browser (the

replacement to Microsoft Internet Explorer). Chakra was initially closed-source, but

Microsoft recently opened the source code of its core components under the name Chakra-

Core. Chakra implements random NOP insertion and large integer constant blinding for

x86-32, x86-64, and ARM. Chakra decides when to insert NOPs by generating a counter

and decrementing it after every instruction. When the counter reaches zero, a NOP is

inserted, and the counter is re-generated. Fresh counter values are drawn uniformly at

random from 1 to n, where n defaults to 8.

Chakra’s random NOP insertion implementation also randomizes the location of

the first instruction in each function by randomly inserting up to 15 NOP instructions

before it. Although this mechanism could be labeled as base offset randomization, it is

unlikely to be a sufficient implementation thereof due to allocation size rounding. We do

not have intimate knowledge of Chakra’s executable memory allocator, but if it is like

SpiderMonkey’s or V8’s, it rounds up the size of each unit of code compilation to some

granularity (e.g., 32 bytes). Since a NOP instruction can be as short as a single byte, the

increased size of functions due to this form of base offset randomization can be hidden

by the allocator’s size rounding.

Chakra blinds addresses, memory access displacements, and integer constants that

it considers “large” using bitwise XOR. Chakra uses the term “large,” but it is somewhat
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of a misnomer. What Chakra really blinds are information-rich values. Chakra does not

blind 64-bit constant integers, which would be considered large by most definitions of

large. A value is not considered “large” if and only if its upper or lower 16 bits (after

being cast to a 32-bit integer) are all 0’s or all 1’s. As we mentioned in our examination of

JSC’s constant blinding implementation, which also ignores information-poor constants,

even small constants can be useful to an attacker. However, in combination with code

layout randomization (i.e., random NOP insertion), their utility to a blind attacker is

considerably diminished.

Notable exceptions to Chakra’s constant blinding policy are 64-bit integers, float-

ing point nubers, call/branch offsets, and call frame metadata. The first two exceptions

leave Chakra vulnerable to the obvious Blazakis-style JIT spraying payload, and as

shown by Maisuradze, Backes and Rossow [36], unblinded PC-relative call and branch

offsets can be used by a non-blind attacker to encode ROP gadgets. Call frame metadata

presents a unique threat that, to our knowledge, has yet to be exploited in the literature.

Function callers must convey to the callee the number of actual arguments provided in a

call. Consequently, at each call site, the number of arguments (up to a Chakra-chosen

maximum of 224) appears as part of a 32-bit immediate in the JIT code. An attacker

could exploit her control of these immediate bits by compiling function calls with large

argument counts. A shortcoming of this method is that since only 24 bits of the immediate

are needed to encode the argument count, the upper 8 bits of the immediate are used for

other metadata not easily manipulated by the attacker.

Of the JavaScript engines we have examined, Chakra’s JIT hardening defenses

are the most robust. Its random NOP insertion and constant blinding implementations

cut far fewer corners than JSC’s and V8’s. Helpfully, the source code for Chakra’s

defenses is consolidated into a single Security class, and the design of the backend

lends itself much better to easily integrating random NOP insertion than SpiderMonkey’s.
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We base this assessment on our experiences implementing random NOP insertion for

SpiderMonkey on both x86-64 and 32-bit ARM, which we will describe in the next

section.

8.4 Understanding the costs and benefits of diversifica-
tion mitigations

As we saw in Section 8.3, very few JIT spraying mitigations that have been

proposed have been deployed in production browser releases, and those like constant

blinding and random NOP insertion that are deployed have been severely limited to

the point that their effectiveness has been nullified. We argue that blind JIT code

reuse can be effectively mitigated via a suite of fully-functional diversification defenses

whose overhead, while modest, is less than that of capability confinement and effective

memory protection defenses. However, the questions of how much performance overhead

diversification defenses incur and to what extent they improve security have not been

answered clearly in the literature. Various incarnations of the diversification mitigations

described in Section 8.2.3 are mixed and matched to compose a multitude different

defense systems mentioned in the literature. Many of these implementations are not

fully specified, and what descriptions exist often vary considerably from author to author.

Moreover, performance evaluations of diversification mechanisms are often reported

as aggregates with each other and other unrelated mitigations; and the hardware and

benchmarking suites on which the implementations are evaluated vary by author.

Thus, there has been no clear source in the literature providing detailed implemen-

tation descriptions and measurements of their associated runtime overheads on consistent

hardware and benchmarks. The purpose of this section is to provide that information

so that JIT compiler authors considering adopting these defenses can more comfortably

weigh the costs and benefits of diversification defenses. To better understand the benefits
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of each defense, we also analyze each defense with respect to concrete JIT spraying

attacks to quantify the factor by which the probability of a successful attack is reduced.

To this end, we implemented all five diversification defense techniques described

in Section 8.2.3 on the SpiderMonkey JavaScript engine for both its non-optimizing

(Baseline) and optimizing (IonMonkey) JIT compilers on the ARM32 and x86-64 archi-

tectures.3 Our implementations are by no means highly optimized; instead, our priority

is to avoid cutting corners and creating corner cases that can be exploited by a wily

attacker to improve her chances of defeating the mitigation. During development, we

found that random design decisions in the JIT backend greatly impacted the difficulty

of integrating defenses into the existing system. That is not to say that these decisions

were made carelessly, but rather that they were perhaps not made with thought towards

the generality necessary to support mitigations. The source code for our mitigations is

available as a public fork of Mozilla’s GitHub repository; our work is based on top of

commit ce31ad5.4

8.4.1 Implementations

Register randomization

Implementing register randomization for IonMonkey is extraordinarily non-

invasive. IonMonkey compiles scripts to an intermediate representation (IR) and performs

analyses over the IR in order to run a register allocator. We simply permute the order in

which the allocator considers physical registers to satisfy allocation requirements. The

changes for our implementation span 6 lines of code and randomize both floating point

and general purpose register allocations. Some IR instructions are assigned fixed operand

or result registers which cannot be randomized at the level of the register allocator; how-

3We did not implement register randomization for x86-64’s non-optimizing compiler for reasons
described later.

4The fork can be found at https://github.com/wwlian/gecko-dev.

https://github.com/wwlian/gecko-dev
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ever, these fixed assignments do not bind to actual physical registers, but rather “abstract

registers” which are mapped to physical registers. Fortunately, randomizing registers for

the Baseline JIT involves randomizing the mappings from these same abstract registers

to physical registers.

SpiderMonkey’s Baseline JIT does not use a register allocator; instead it emits

statically-defined instruction sequences for bytecode instructions. The instruction se-

quences implementing bytecodes are defined by C++ code that allocates abstract registers

as operand, result, and temporary registers used by each bytecode’s implementation. To

the C++ programmer, using an abstract register “feels” like using a physical register, but

each one is simply a variable named after the corresponding physical register that holds

an integer value identifying the physical register.

Randomizing registers for Baseline JIT code (and indirectly, some of IonMon-

key’s code) involves permuting the underlying values that are assigned to the abstract

register variables. Any uses of these variables will propagate the randomized physical

register mapping. However, additional complexity must be introduced at the call and

return control flow edges between statically-compiled native code and JIT code since

certain values are expected to be passed between native and JIT code in specific physical

registers in accordance with the architecture’s ABI. To ensure that JIT code—which is

defined in C++ under the assumption that abstract registers named after physical registers

actually refer to those physical registers—is able to conform to the architecture ABI,

we introduce a sequence of pushes and pops into the trampolines that execute at the

boundaries between native and JIT code; the pushes and pops have the effect of permuting

registers or inverting the permutation as needed.

In addition to the interoperability issues with native code, there were other cases

where assumptions regarding the bindings between abstract registers and specific physical

registers caused quite a few headaches. In these corner cases, violating these assumptions



133

via randomization leads to incorrect behavior and data corruption that causes a hard-to-

debug crash much later than the misbehavior itself. These corner cases were very difficult

to track down because the assumptions relied on very low level details that were not well

documented. For example, ARM is able to load two 32-bit values from memory into

two consecutively-numbered general purpose registers as long as the lower-numbered

register is even. If C++ code used abstract registers named after qualifying registers for

such a load, randomization can easily invalidate the consecutivity, parity, and ordering

assumptions.

Floating point register randomization is unnecessary for the Baseline JIT because

it does not generate code that operates on floating point registers (with the exception

of IC stubs, which are shared and cannot be sprayed). Instead, floating point values in

Baseline JIT code are stored in general purpose registers and passed to IC stubs or host

functions which move them into floating point registers before performing the desired

floating point operations.

Special care must also be taken to maintain abstract registers’ volatility; in other

words, we only permute volatile (a.k.a. caller-saved) registers with other volatile registers

and likewise for non-volatile (callee-saved) registers. This is necessary because there are

instances where code using an abstract register assumes that it maps to a non-volatile

register and does not save that register’s value prior to calling a subroutine. This limitation

only applies to the abstract-to-physical remapping; in IonMonkey, values that are not

bound to an abstract register are free to be allocated to any register.

Because of the many intricacies of permuting the mapping from abstract registers

to physical registers, we limited our remapping implementation to the ARM architec-

ture. We also limit randomization to registers that SpiderMonkey considers “allocatable,”

which excludes the program counter, stack pointer, link register, and a register used

internally by the compiler for very short-lived scratch values. Although it presents a
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significant weakness to our implementation, we do not randomize the abstract register

mapping that refers to the architecture ABI’s integer return register, as a considerable

amount of code assumes that it is not randomized. It should absolutely be randomized,

but this is presently left for future work.

The probability that an attacker’s payload will be emitted as expected if it requires

k out of n randomized registers to be correctly mapped is (n− k)!/n!.

Constant blinding

All of the constant blinding implementations we observed in real-world code

only blind a subset of instructions or untrusted constants, presumably under the rationale

that some instructions and constants are harmless and therefore represent unnecessary

overhead if blinded. Our implementation blinds every attacker-provided (meaning that it

appears in the JavaScript code) integer and floating point constant. Attacker-provided

constants only appear in Baseline JIT code as values that are loaded into registers;

we protect Baseline JIT code by blinding those load instructions using the canonical

mov reg, blinded val; xor reg, secret instruction sequence, where secret is

an immediate with a unique5 32-bit random value, and blinded val is an immediate

whose value is secret ⊕ untrusted constant.

We implement constant blinding for IonMonkey by injecting blinding instruc-

tions into the architecture-independent intermediate representation (IR) called MIR.

MIR is compiled from SpiderMonkey’s interpreter bytecode, optimized, lowered to an

architecture-dependent IR called LIR, then finally compiled to native code. During

lowering from bytecode to MIR, we tag numeric constants found in the bytecode as

untrusted and only blind tagged constants. After the MIR has been optimized, we replace

the untrusted constants that remain with a sequence of MIR instructions that implement

5Unlike some constant blinding implementations (e.g., V8) which share the same secret value among
constants within the same compilation unit, ours generates a fresh secret for each constant.
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constant blinding by loading a variable in two steps via bitwise XOR (in the same manner

as described above for Baseline JIT’s constant blinding) then redirecting uses of the orig-

inal untrusted constant to the constant blinding-loaded variable. It is important to apply

constant blinding only after optimizations have completed to avoid potential constant

folding optimizations, which would undo the blinding.

In order to cope with the limited size of immediate operand fields in the ARM

instruction set, IonMonkey places some constant values inline with JIT code and emits PC-

relative load instructions that move them into registers when they are needed as operands.

Multiple values are buffered and flushed into contiguous regions of memory, earning

them the name constant pools. In 2011, Pete Beck [12] presented an attack against the

Tamarin ActionScript engine ARM that exploited predictable constant pools populated

with attacker-chosen floating point values. Without constant blinding, IonMonkey is

also vulnerable to Beck’s attack. Our constant blinding implementation blinds floating

point numbers at the IR level with the bitwise XOR operation in the same way it

blinds integers and has the side effect of blinding floating point values in constant

pools. Because IonMonkey did not previously support computing the bitwise XOR of

floating point values, we extended its implementations of MIR and LIR with instructions

representing the bitwise XOR of double-precision floating point values and implemented

the corresponding backend native code generation for both 32-bit ARM and x86-64.

In order to predict the code sequences that will be generated for any given

untrusted k-bit constant, the attacker must guess each corresponding secret bit, for which

she has a success probability of 2−k. Since all constants are blinded with unique secrets,

the attacker’s probability of predicting the code for the n untrusted constants, each k bits

long, needed for her JIT spraying payload is 2−kn.
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Limitations We only blind constants that appeared in the JavaScript source code.

Implicit values generated by the compiler are not blinded. As we showed in our discussion

of an attacker’s vectors for influencing JIT code in Section 4.2, PC-relative branch offsets,

which never appear in high level language code, can be manipulated by changing the

sizes of basic blocks. Random NOP insertion indirectly diversifies branch offsets by

perturbing the sizes of blocks, but the range of potential block sizes is a function of

the undiversified block size and is far smaller than the 32-bit space offered by constant

blinding.

Maisuradze, Backes, and Rossow [36], who also demonstrated the construction

of ROP gadgets with branch offsets on x86, proposed a branch offset randomization

technique in which the branch target address is loaded into a register via two partial

additions, and the PC-relative branch is replaced with a register-indirect branch. In partic-

ular, they add the values (offset & secret) and (offset &∼ secret). The observant reader

may recognize that this blinding method suffers from the same problem as composing

bitwise ANDs to blind an AND instruction. Namely, bitwise AND only has the ability

to randomly unset bits in the untrusted value that were already set to begin with; it will

never randomly set a bit that was unset. Consequently, untrusted values with more unset

bits are more likely to appear as desired by the attacker. A more secure version of branch

offset blinding could be implemented using bitwise XOR to load the offset into a register

in two steps before adding that register to the PC and performing a register indirect

branch.

Another example of an implicit value under attacker control that may appear in

JIT code is the argument count for a function call. SpiderMonkey pushes stack arguments,

followed by the number of stack arguments onto the stack when making a function call.

Since the number of stack arguments pushed at each function callsite is fixed at compile

time, the count value is hardcoded into the callsite and is entirely under the control of the
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attacker. There is no IR-level object that represents the argument count; the argument

count push is simply emitted as part of lowering the LIR call instruction to native code.

Consequently, it is not possible to blind this value in an architecture-independent manner

while traversing the MIR graph.

Under the threat model we defined in Section 2, the risk posed by undiversified

implicit constants is significantly diminished when other diversification defenses are in

place. This is largely because implicit constants are more difficult for an attacker to place

close to one another than explicit constants because implicit constants make up only a

small part of a high-level operation such as setting up a call or performing a conditional

branch. Their low density makes them less useful for self-sustaining payloads in the

presence of random NOP insertion, which will increase the difficulty of jumping from one

instruction encoded by an implicit constant to the next; and code layout randomization

diversification defenses make gadget chaining more difficult by disrupting the heap feng

shui needed to execute gadgets blindly.

Call frame randomization

SpiderMonkey’s Baseline JIT and IonMonkey JIT use very different call frame

conventions requiring different treatment to randomize. The Baseline JIT uses a frame

pointer relative to which all call frame elements are accessed and pushes outgoing func-

tion arguments onto the stack as part of its implementation of a stack-based virtual

machine. IonMonkey, on the other hand, performs frame pointer omission (i.e., call

frame elements are accessed relative to the stack pointer) and pre-allocates enough stack

space during each function prologue to fit the maximum number of outgoing function

call arguments across all calls within that function. For both Baseline and IonMonkey

call frames, we randomly shift the frame pointer and stack pointer, respectively, relative

to the call frame elements. Whenever possible, we also permuted call frame elements
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Figure 8.1. Baseline JIT call stacks with and without call frame randomization. Stacks
grow downward.

of the same type, and when neither of the above was possible, we performed a process

similar to constant blinding to the load/store instructions accessing the call frame.

Baseline JIT Figure 8.1a illustrates the layout of an unrandomized Baseline JIT call

frame. All elements shown are accessed at statically-computed frame pointer-relative

offsets. Baseline JIT code stores three types of local variables on the stack above the

frame pointer, and we randomize their offsets by permuting their orders within each type

and randomly increasing the size of the bookkeeping data structure pushed onto the stack

before them, shown as the dotted box in Figure 8.1b labeled “Random Padding.” The

size of this padding is determined for each function at JIT compile time and is between

0 and 15, inclusive, units of stack alignment (the size of which is 8 bytes for ARM32

and MIPS32 and 16 bytes otherwise). Because that does not change the frame pointer’s

relative offset to the incoming function arguments and “Previous Frame Info,” we modify
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instructions that access them in a manner similar to constant blinding. Rather than

accessing those elements at fixed offsets relative to the frame pointer, each access site

populates a scratch register with the value of the frame pointer minus a unique random

multiple of 4 in the range [0,64)6 and performs the access using the scratch register and

a new offset that corrects for the shifted base register value. For example, the instruction

ldr r0, [fp, #12] ; r0 = Mem[fp + 12]

might be replaced with the following two instructions:

sub lr, fp, #48 ; lr = fp - 48

ldr r0, [lr, #60] ; r0 = Mem[fp - 48 + 60]

We do not shift the incoming arguments by injecting stack padding between them

and the frame pointer location because the great complexity of the code that traverses and

unwinds the call stack makes doing so difficult. Similarly, we do not permute incoming

arguments on the stack because of the complex interactions between their stack positions

and SpiderMonkey’s implementation of JavaScript features like rest parameters, default

parameters, and the arguments object. However, permuting call frame elements is

secondary to shifting their offsets since permutation without shifting is vulnerable in the

corner case where there is only one element to permute.

An attacker is only able to predict the blinding offset of an incoming argument

or Previous Frame Info element access site with probabiity 1
16 . Therefore, if an attack

relies on reusing n incoming argument access sites, there is only a 1
16n chance that she

will be able to predict all necessary access site offsets. The deviation of the frame

pointer offset of a local variable or body/block-level lexically-scoped variable from its

unrandomized value can be interpreted as the linear combination of independent discrete

6We use a multiple of 4 because the ARM code generation backend can compile an optimized instruction
sequence for certain cases where the offset is a multiple of 4.
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Figure 8.2. IonMonkey call stacks with and without call frame randomization. Stacks
grow downward.

uniform random variables. In particular, if there are n variables of a certain type (local,

body-level lexical, or block-level lexical), the offset shift of the ith (0≤ i < n) variable

of that type, is given by Zi =−(Xi +Y ), where Xi is the shift due to permutation and is

distributed as Xi ∼ 8 ·(U{0,n−1}− i); and Y is the shift due to padding the bookkeeping

data structure and is distributed as Y ∼ a ·U{0,m−1}, where a is the size of a unit of

stack alignment in bytes, and m is the number of possible padding amounts (m = 16 for

our implementation).

IonMonkey JIT Figure 8.2a shows the IonMonkey call frame layout. Since IonMon-

key performs frame pointer omission, and all call frame elements are below the stack

pointer, we can shift all call frame accesses by pushing a random amount of padding—

whose size is determined once for each compilation unit at JIT compile time—on top of

the call frame. The size of the padding is between 0 and 15, inclusive, units of stack align-

ment (the size of which is 8 bytes for ARM32 and MIPS32 and 16 bytes otherwise). Ion-

Monkey does not store local values on the stack unless they must be spilled due to register
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contention; we permute the order that these spilled values are allocated to stack slots. Fig-

ure 8.2b illustrates the application of these randomizations to an IonMonkey call frame.

Since the stack pointer-relative offset of all non-spill values is shifted by a

common value, an attacker’s probability of guessing any number of non-spill value

offsets is reduced by a factor of 16. Spilled values have their values shifted according to

a distribution similar to the one described above for Baseline JIT locals and lexically-

scoped variables. One difference is that spilled values may have varying sizes that are a

multiple of 4 bytes, so the permutation distribution is not uniform.

Random NOP insertion

Our implementation of random NOP insertion places a single NOP instruction

before each intended instruction with probability p = 1
8 . There is a small handful of

exceptions where random NOP insertion must be disabled due to assumptions in the JIT’s

implementation regarding the precise layout of a section of emitted code (e.g., when

emitting a branch table). To aid in identifying these situations, we took advantage of

the fact that constant pools, which can normally be flushed into the instruction stream

at any time, are not allowed to be flushed while the JIT code’s layout is expected to be

statically-predictable. We added a function which allows us to determine whether or

not constant pools are allowed at any point during code emission and only emit random

NOPs when they are not disabled.

The design of SpiderMonkey made implementing random NOP insertion non-

trivial. Even at the level of LIR, the lowest-level, architecture-dependent IR, it is not

possible to insert random NOPs between every machine instruction by injecting LIR

NOPs. This is because even LIR instructions represent high-level actions that may be

expanded into multiple machine instructions.

To achieve potential random NOP insertion between every machine instruction,
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we instrumented the low-level backend functions that write instruction encodings into the

code buffer. For ARM, SpiderMonkey only has two such functions; adding fine-grained

random NOP insertion was trivial once these functions were identified.

For x86-64, however, there are more than a handful of instruction emission

functions. There are 26 opcode emission functions in the x86 backend; we instrumented

all of them to randomly insert a NOP before emitting the opcode with 1
8 probability.

Although this potentially allows every instruction’s opcode to be preceded by a NOP, this

behavior is not completely correct because some x86 instructions have a prefix before

their opcode. Inserting a NOP between the prefix and opcode interrupts the intended

instruction. To remedy this, we temporarily disable random NOP insertion in the 79

instruction emission functions that emit an insruction prefix.

As we mentioned in Section 8.3, the design of Microsoft Chakra’s code emission

backend simplifies the task of implementing random NOP insertion. Instructions in

Chakra’s IR are stored in a doubly-linked list, and as they are lowered towards native

code, new lower-level nodes are inserted into the list until each final machine instruction

corresponds to at least one node in the linked list. Once that stage has been reached, but

before the nodes are lowered to machine code, a random NOP insertion subroutine can

traverse the linked list and insert NOPs. Since NOPs are inserted before final translation

to machine code, Chakra’s random NOP insertion implementation can be used by all

architecures.

Random NOP insertion’s security benefit depends on the attacker’s needs. If the

attacker needs to predict the offset of the nth instruction from the beginning of its unit of

code compilation, she must predict the number of NOPs that will be inserted before it,

given by the random variable X ∼ B(n, 1
8). The attacker’s best guess is the mode of X ; the

probability that this best guess will be correct as a function of n is shown in Figure 8.3.

The attacker might abandon guessing the precise offset of a useful instruction in
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Figure 8.3. Probability that attacker’s best guess correctly predicts the number of random
NOPs inserted in n instructions, when the probability of random NOP insertion between
each instruction is 1

8 .

JIT code in favor of spamming that instruction throughout its unit of code compilation

and trying to jump randomly to it. Under these circumstances, the attacker’s success

probability against undiversified code is 1
b , where b is the number of valid instruction

boundaries between each instance of the useful instruction. For example on x86, b is

the number of bytes between them; in Thumb mode on ARM, it is the number of bytes

divided by 2, etc. Against random NOP insertion, the attacker’s success probability is

reduced to 1
b+np in expectation, where n is the number of intended instruction boundaries

(i.e., potential NOP insertion sites) between each instance of the useful instruction. This

probability assumes the inserted NOP instructions have the same length as the minimum

instruction length; in other words, each inserted NOP is assumed to only add a single

valid instruction boundary.

Lastly, an attacker might require n consecutive instructions with no random NOPs

inserted between them (e.g., when the payload uses instructions decoded at unintended

instruction boundaries as in [13]), which occurs with probability (1− p)n−1 =
(7

8

)n−1
.

Because the only added benefit of Wei et al.’s INSeRT’s trapping snippets [58, 59]
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Figure 8.4. Diagram of breakpoint instruction encodings as they might appear in an
INSeRT-style trapping snippet on ARM.

over normal random NOP insertion is enabling the protected process to catch exploitation

attempts that branch into the middle of a trapping snippet (creating an intrusion detection

system, we did not implement or measure them. Designing a trapping snippet for the

ARM architecture requires careful attention to detail due to the potential for a control flow

vulnerability that enables the attacker to execute the trapping snippet in an unintended

instruction set mode. After the initial instruction that branches over the remainder of

the trapping snippet, the x86 trapping snippet contains back-to-back 1-byte breakpoint

instructions. On the ARM architecture, this is a poor design because it requires the snippet

to encode many breakpoints when executed in both ARM and Thumb execution modes.

Figure 8.4 shows that it is possible to encode a Thumb breakpoint instruction in the

lower half of an ARM breakpoint instruction; but because ARM breakpoint instructions

must have an Always condition code (11102), the upper half of the ARM breakpoint

instruction must contain the prefix 1110000100102, which encodes a Thumb PC-relative

branch instruction of at least 576 bytes.

If an attacker’s control flow vulnerability lands in the middle of a trapping snippet

composed of instructions as shown in Figure 8.4 while in ARM mode, a breakpoint

instruction will execute, and the IDS will be tripped. However, if the attacker lands at

a random address in the trapping snippet in Thumb mode, she has only a 50% chance
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Figure 8.5. Diagram of pseudo NOP instructions that can be used to construct a pseudo
NOP sled in an ARM/Thumb trapping snippet.

of landing on a breakpoint instruction. Since trapping snippets are usually shorter than

576 bytes, landing instead on the 576+ byte branch will skip the rest of the trapping

snippet without tripping the IDS. If the attacker can control the least-significant two bits

of the control flow vulnerability’s target address, she can ensure that she never lands

on a Thumb breakpoint instruction by taking advantage of the fact that the breakpoint

instruction is formed by the lower 2 bytes of a 4-byte aligned ARM instruction. “Safe”

addresses for the attacker have least significant two bits equal to 102, which guarantee

landing on a branch in a trapping snippet.

Rather than attempting to fill the trapping snippet with breakpoint instructions,

one could instead construct a NOP sled that leads into a breakpoint instruction. The

encoding of the NOP sled need only avoid encoding instructions that cause control flow to

skip the breakpoint instruction. Figure 8.5 illustrates a simple ARM instruction encoding

and its corresponding Thumb decoding that can be used to construct a pseudo NOP sled

which can be followed by the breakpoint encoding from Figure 8.4. These instructions

do not form a true NOP sled, as they have side effects. This may be undesirable if the

IDS intends to reconstruct the state of the machine. The R0 register will not necessarily

contain its true value at the time the control flow vulnerability was triggered. Those

who wish to implement trapping snippets for ARM should consider finding a NOP sled
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encoding that does not clobber the machine state. The NOP sled approach has a second

disadvantage that the IDS cannot identify the precise address in the snippet that the

control flow vulnerability targeted since the breakpoint will always come from the end of

the trapping snippet.

Base offset randomization

Whenever SpiderMonkey needs to find space to place a unit of code compilation,

it rounds up the size of the JIT code to an architecture-specific alignment granularity

G and searches memory pools of allocated code memory for free space to accomodate

the rounded size. We randomize the base offsets of each unit of code compilation by

randomly increasing the size of the allocation’s header by rG where r ∈ {0,1,2, ...,15}.

This has the effect of increasing the size of the allocation request and shifting the code

rG bytes further into the allocation.

The attacker’s probability of guessing the base offset shifts for n consecutive units

of code compilation is
( 1

16

)n
.

8.4.2 Evaluation

Benchmark results

We evaluated the performance overheads of our implementations on x86-64 and

32-bit ARM using the SunSpider 1.0.1, Kraken 1.1, and Octane v.2 benchmarks suites.

Results for x86-64 were gathered on a quad-core Intel Core i7-870 2.93GHz processor

with 16GB RAM running Ubuntu 14.04.2 LTS with kernel version 3.13.0-49-generic.

Results for 32-bit ARM were gathered on an octa-core AppliedMicro APM883208-X1

ARMv8 2.4GHz processor with 16GB RAM running 32-bit Debian 8.0 in a chroot jail

on APM Linux with kernel version 3.12.0-mustang sw 1.12.09-beta.

To evaluate our implementations, we built an unmodified version of SpiderMon-
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Table 8.8. Performance overheads for diversification defenses. Bold typeface in non-
geometric mean columns denotes statistically-significant impact on the mean benchmark
score of each 100-execution sample (Welch’s unequal variances t-test, p <0.05); and
negative overheads indicate improved performance. *Register randomization overhead
for x86-64 only includes IonMonkey randomization.

(a) Performance overhead of diversification defenses on x86-64

x86-64

SunSpider Kraken Octane G. Mean

Register randomization* -1.94% -0.829% -0.404% -1.06%

Constant blinding -1.36% 2.65% 2.93% 1.39%

Call frame frandomization -1.68% -0.199% 0.324% -0.523%

Random NOP insertion -0.762% 2.12% 1.44% 0.922%

Base offset randomization -2.38% -0.207% -0.846% -1.15%

All 1.71% 5.70% 6.33% 4.56%

(b) Performance overhead of diversification defenses on 32-bit ARM

32-bit ARM

SunSpider Kraken Octane G. Mean

Register randomization 1.62% 0.456% 0.265% 0.777%

Constant blinding 1.62% 6.02% 4.39% 3.99%

Call frame frandomization 0.138% -2.26% -1.05% -1.06%

Random NOP insertion 1.67% 1.76% 1.35% 1.59%

Base offset randomization 0.498% 0.302% 0.223% 0.341%

All 4.44% 5.48% 4.71% 4.88%

key and a separate binary for each diversification mechanism. We also built a binary

that deploys all implemented defenses. We executed each benchmark suite 100 times for

each binary and computed the arithmetic means for each group of 100 benchmark scores.

We computed the overhead imposed on the results of “smaller-is-better” benchmarks

(SunSpider and Kraken) as v̄/ū−1, where v̄ is the arithmetic mean of the 100 benchmark
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Table 8.9. Geometric mean of code size increases incurred by diversification defenses
when executing benchmark suites

x86-64 32-bit ARM

Register randomization -0.008% 1.01%

Constant blinding 0.433% 1.56%

Call frame randomization 2.79% 1.31%

Random NOP insertion 2.67% 12.58%

Base offset randomization 2.39% 2.52%

All 8.57% 18.15%

scores for a particular modified binary, and ū is the arithmetic mean of the 100 benchmark

scores for the unmodified binary. Octane is a “bigger-is-better” benchmark whose scores

are derived from a “smaller-is-better” measurement by dividing a constant value by the

measurement, so we compute the overhead on its results as ū/v̄−1.

The measured overheads of our implementations are shown in Table 8.8. We used

Welch’s unequal variances t-test to test the mean benchmark score from each variant’s

100 execution sample against the mean benchmark score from the unmodified binary’s

100 execution sample and indicate statistically-significant (p <0.05) changes to the mean

by printing the corresponding overhead with boldface type. Note that overheads are not

independent and cannot necessarily be added.

Code size increase

To measure the impact of our mitigation implementations on the memory demands

of the JIT, we instrumented SpiderMonkey to emit the file name, line number, and number

of JIT code bytes used each a time unit of code compilation is compiled. We executed the

Sunspider, Kraken, and Octane benchmark suites once on each binary variant. Let v̄i be

the average code size of the ith file name-line number pair, as emitted by a binary variant

implementing one or more diversification defenses; let ūi represent the average code
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size for the ith file name-line number pair, as emitted by an unmodified SpiderMonkey

binary. We compute the increased memory usage for each variant as n
√

∏
n
i=1(v̄i/ūi)−1.

Table 8.9 shows the code size increases for each mitigation, broken down by architecture.

Our measurements indicate that most diversification defenses can be deployed

at full strength with only modest memory overhead. A noteworthy exception is random

NOP insertion for the ARM instruction set. Since our implementation inserts a NOP

between each instruction with 12.5% probability, and all ARM instructions have the

same size, we observe a ≈12.5% code size increase. The x86-64 architecture, in contrast,

is able to achieve a much lower memory overhead thanks to its 1-byte NOP instruction

encoding and variable-length instructions. JIT developers may wish to consider carefully

lowering the probability of random NOP insertion on platforms with limited memory

and fixed-width instructions. To establish a lower bound on memory overhead when

random NOP insertion is dialed back, we measured the memory overhead for ARM32

when all diversification defenses except random NOP insertion are enabled and found it

to be 6.15%.

A shortcoming of these measurements is that we did not have a reasonable method

to measure the increased stack usage incurred by random padding introduced for call

frame randomization.

Concrete security analysis

In order to give concreteness to the security benefits offered by our diversification

defense implementations, we report on our analysis of the estimated relative success

probability of four concrete JIT spraying attacks when launched against individual diver-

sification mitigations. In particular, we analyzed Blazakis’ original JIT spraying and the

three attacks presented in this dissertation. The results are shown in Table 8.10. Remem-

ber that since some defenses may interact with one another, these relative probabilities
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may not necessarily be combined by multiplication.

Our estimates are conservative; in order to make the relative probabilities concrete,

we have made assumptions in the attacker’s favor when necessary. For example, random

NOP insertion can disrupt Blazakis’ JIT spray by causing its NOP sled to resynchronize

to the intended instruction stream, but the probability of at least one NOP interrupting

execution depends on how many uninterrupted instructions the attacker requires, includ-

ing the NOP sled. This in turn depends on where in the NOP sled the attacker’s control

flow vulnerability happens to divert control. Therefore, we conservatively assume that

the attacker’s control flow vulnerability directs execution to the head of the shellcode

and only compute the probability that a NOP will not be inserted into the sequence of

instructions needed to encode a very short 10-instruction shellcode. We consider minor

adaptations to the existing attacks that allow them to use the most likely diversification

outcome when possible, but we do not claim to have adapted each attack optimally.

Lastly, the values shown in Table 8.10 only reflect the relative success rate of blindly

executing a single instance of the sprayed function.

Constant blinding, which incurs the greatest runtime overhead among the sur-

veyed diversification defenses, performs tremendously well to mitigate Blazakis attack

and our JSC and SpiderMonkey attacks, which rely on attacker-chosen constants appear-

ing in JIT code. We also observe that register randomization and call frame randomization

complement constant blinding by diversifying compiler-chosen operands, relied upon by

the ARM V8 gadget chaining attack.

We were surprised to find that register randomization provided little defense

against Blazakis’ attack. The reason it is able to fare well against register randomization

is because the attacker’s payload is an unintended instruction stream that skips over

intended instruction opcodes (the XOR opcode, in the case of Blazakis’ attack) as long

as the number of bytes to be skipped is correctly predicted. The x86 XOR instruction’s
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Table 8.10. Estimated relative success probabilities for concrete attacks against single
diversification defenses. Lower values indicate better mitigation.

(a) Intra-instruction randomization

Register
randomization

Constant
blinding

Call frame
randomization

Blazakis 2010 [13] (x86-32) 92.9% 6.84e−47% 100%

JSC gadget chaining (ARM) 1.79% 1.53e−3% 100%

V8 gadget chaining (ARM) 0.909% 100% 6.25%
SpiderMonkey self-sustaining
payload (ARM) 2.51e−5% 4.15e−461% 100%

(b) Code layout randomization

Random NOP
insertion

Base offset
randomization

Blazakis 2010 (x86-32) [13] 30.1% 100%

JSC gadget chaining (ARM) 3.74% 0.391%

V8 gadget chaining (ARM) 3.70% 0.229%
SpiderMonkey self-sustaining
payload (ARM) 7.95e−21% 100%

opcode is either 1 byte long when XORing against %eax or 2 bytes long when XORing

against any other register. The attacker can therefore assume with highest probability

that the XOR opcode will be 2 bytes long and adjust her payload to skip over a 2-byte

intended instruction opcode.

Random NOP insertion provides good protection across the board by both disrupt-

ing the unintended instruction streams used by Blazakis’ attack and the SpiderMonkey

self-sustaining ARM payload as well as diversifying the locations of useful code gadgets

used by the gadget chaining attacks. Base offset randomization, on the other hand, only

defends against the latter pair of attacks by interfering with heap feng shui. Base offset

randomization offers better defense than NOP insertion against a hypothetical attack in

which the attacker needs to predict the offset of an instruction near the beginning of a
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unit of code compilation. If the instruction is one of the first 372 instructions7 in a unit

of code compilation, the attacker has a greater probability of predicting the number of

random NOPs inserted before it (and by proxy its offset) than predicting the base offset

randomization of a unit of code compilation.

Parameter selection

Here we consider the performance impact of varying randomization parameters

for random NOP insertion, call frame randomization, and base offset randomization. Our

findings may be beneficial to developers deploying and fine-tuning these defenses.

We evaluated each parameter value by executing the modified binary 100 times

for each benchmark and taking the arithmetic mean of the 100 benchmark scores. Each

arithmetic mean is normalized by dividing by the arithmetic mean of 100 executions of

an unmodified binary on the same benchmark. In order to consistently normalize Octane,

whose scores are interpreted as “bigger-is-better,” we do not invert the ratio as we did

previously to compute overheads. We plot normalized mean scores along with error bars

representing the normalized standard error of the mean as a function of the randomization

parameter. The value at x = 0 on each plot represents the unmodified binary; hence its

normalized benchmark score of 1.

Random NOP insertion We varied the probability of inserting a NOP at each instruc-

tion boundary by selecting negative powers of 2 from 1
32 through 1

2 . The results are

shown in Figure 8.6.

As one might expect, performance suffers for all benchmarks as the probability

of random NOP insertion at each instruction boundary increases. On ARM32, we see

that performance drops off consistently for the Kraken benchmark suite; and the Octane

7This figure is a function of the probability of random NOP insertion and the number of potential base
offsets.
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Figure 8.6. Normalized mean benchmark scores over 100 benchmark executions, across
varying random NOP insertion frequencies. Error bars denote one standard error of the
mean (normalized).

benchmark suite shows a large dip in performance from 1
8 to 1

4 , making 1
8 a good stopping

point for ARM32. Likewise, on x86-64, Kraken and Octane overheads begin to approach

5% beyond 1
8 . In practice, the NOP insertion rate on ARM32 should be guided by

the amount of memory overhead that the JIT developers are willing to tolerate, as we

discussed previously.

Call frame randomization First, we varied the maximum magnitude of the blinding

secret used to shift the call frame register when accessing incoming arguments and

previous frame info in Baseline JIT call frames. One might expect increased overhead

for larger blinding secrets due to varying encoding requirements for the blinding secret

and blinded memory offset. The set of possible blinding secrets can be expressed as

{0,4 ·1,4 ·2,4 · (n−1)}. On ARM, we tested power-of-2 values of n from 16 up to 512.

Using larger blinding secrets causes SpiderMonkey’s code generation backend to generate

a code sequence that loads the blinded memory offset into a scratch register, but our use

of an additional scratch register to shift the call frame register exhausts the available
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Figure 8.7. Normalized mean benchmark scores over 100 benchmark executions, across
varying sizes of call frame blinding candidate pools. Error bars denote one standard error
of the mean (normalized).

scratch registers. Additional modification of SpiderMonkey’s ARM assembler is needed

to permit larger blinding secrets. Since x86-64 supports much larger, immediates and

memory displacements, we do not expect large blinding constants to affect performance.

For x86-64, we varied n in such a way that 4 ·(n−1) is the largest multiple of 4 that can be

encoded in 1, 2, 3, and 4 bytes ({26,214,222,230}); we also evaluated power-of-2 values

of n from 16 through 213. Figure 8.7 shows normalized ARM32 and x86-64 benchmark

overheads as functions of n. Neither ARM32 nor x86-64 show a trend towards declining

performance as the magnitude of blinding secrets increases.

We varied the set of possible call frame padding sizes, expressed as

{0,k,2k, ...,(n− 1)k} where k is the size of a unit of stack alignment, by varying n in

power of 2 increments from 16 to 256. During these measurements, the blinding of

incoming arguments and previous frame info offsets for Baseline JIT frames was enabled,

but the blinding amount was fixed at 0. Figure 8.8 shows the mean benchmark scores for

32-bit ARM and x86-64, normalized.
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Figure 8.8. Normalized mean benchmark scores over 100 benchmark executions, across
varying sizes of call frame padding candidate pools. Error bars denote one standard error
of the mean (normalized).

The results were surprising. On ARM32, more aggressive call frame randomiza-

tion had approximately no effect on SunSpider and improved benchmark performance for

Kraken and Octane. On x86-64, we see widely-varying results for SunSpider, improved

performance for Kraken, and slight performance decreases for Octane as randomization

aggressiveness increases. It is unclear what is causing the improved performance.

Base offset randomization We varied the set of possible base offset padding sizes,

expressed as {0,G,2G, ...,(n− 1)G} where G is the size of a unit of code alignment

granularity, by varying n in power of 2 increments from 16 to 256. Figure 8.9 shows the

mean benchmark scores for 32-bit ARM and x86-64, normalized.

Our measurements indicate that our implementation of base offset random could

be made more aggressive by a factor of 16 without incurring more than 1% total per-

formance overhead. More frequent exhaustion of free JIT code memory pools and the

resulting memory allocation requests most likely account for the increase in memory

overhead. However, the slight performance boost at 16 units on SunSpider and Octane
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Figure 8.9. Normalized mean benchmark scores over 100 benchmark executions, across
varying maximum code alignment units. Error bars denote one standard error of the
mean (normalized).

on x86-64 is inconsistent with this hypothesis, and its cause remains unknown.

Chapter 8, in part, is a reprint of the material as it appears in Proceedings of

the 2015 Network and Distributed System Security Symposium. Wilson Lian, Hovav

Shacham, and Stefan Savage, Internet Society, 2015. The dissertation author was the

primary investigator and author of this paper.

Chapter 8, in part, has been submitted for publication of the material as it may

appear in appear in Proceedings of the 2017 Network and Distributed System Security

Symposium. Wilson Lian, Hovav Shacham, and Stefan Savage, Internet Society, 2017.

The dissertation author was the primary investigator and author of this paper.



Chapter 9

Conclusion

JIT compilers offer untrusted parties immense control over the contents of exe-

cutable memory. The lax response to this threat has prompted a considerable amount

of attention from attackers. In this dissertation, we demonstrated that JIT spraying is

a general and pervasive threat by extending the attack to the ARM architectures. We

analyzed vectors by which an attacker can control JIT code and encode payloads; and we

used our findings to devise JIT spraying attacks against three different popular JavaScript

engines.

We surveyed and analyzed the state of JIT spraying mitigations in the literature

and appraised those deployed by four open source JavaScript engines. Our findings were

less than encouraging. All four JavaScript engines cut corners in one way or another, and

many defenses were rendered useless as a consequence.

We implemented our own versions of several diversification defenses on the

SpiderMonkey JavaScript engine, with the explicit goal to avoid cutting corners. Our

implementations have been made publicly available online. We conducted empirical

evaluations of our defenses using industry-standard JavaScript benchmarks and found

that our implementations can drastically reduce the success probabilities of known blind

JIT spraying attacks with a performance penalty of <5%. We urge JavaScript engine

developers to consider integrating robust JIT spraying defenses to finally mitigate the

157
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threat of blind JIT spraying.

Future Directions and Final Thoughts

Once attacker-provided constants are blinded and registers are randomized, what

remains to be controlled by an attacker are the choices of opcodes and implicit constants

not provided directly in high level language code, but generated internally by the compiler.

These parts of the instruction stream are of limited utility to a blind attacker facing base

offset randomization and random NOP insertion, but they can be exploited by a more

powerful attacker with a memory disclosure vulnerability.

Against an attacker with memory reading capabilities, JIT compilers can benefit

from defenses built to counteract Snow et al.’s Just-In-Time code reuse attack (JIT-

ROP) [51]—which, incidentally, need not involve code emitted by a Just-In-Time com-

piler. JIT-ROP allows an attacker to defeat fine-grained ASLR by abusing an arbitrary

memory read capability to disassemble memory and discover the randomized addresses

of ROP gadgets. In light of this threat, many new defenses have been proposed which

prevent memory from being both disclosed and executed [60, 10, 21, 22, 29, 14].

However, a recent attack [36] has shown that reading a JIT-sprayed gadget is not

necessary to confirm its address and, by proxy, its contents (when those contents are a

PC-relative call to a fixed target). This attack highlights the importance of eliminating

attacker influence on JIT code under stronger attack models. Beneficial future work may

involve ferreting out attacker-influenced instructions and ensuring that they are properly

diversified.

JIT compiler design could also be improved in a way that makes integrating

security mechanisms less painful. We sang Chakra’s praises during the discussion of our

implementation of random NOP insertion. The design of its IR and lowering pipeline

makes diversification considerably easier than what we encountered in SpiderMonkey.
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New JIT compilers should take heed and improve upon, or at least follow Chakra’s

example.

Starting with the iPhone 5S and iOS 7, Apple began deployment 64-bit ARMv8-A

processors in its smartphone line. Similarly, Android introduced 64-bit support with

Android 5.0 Lollipop, and newer model Android devices are being manufactured with

ARMv8-A chips. Future work should investigate the feasibility of JIT spraying on

ARMv8-A. Instruction decoding ambiguity will be more challenging to exploit if the

language runtime under attack is running in 64-bit mode. The 64-bit ARM instruction

set (called A64) uses fixed-width, aligned 32-bit instructions; therefore same-mode in-

struction decoding ambiguity is not possible. Furthermore, ARMv8-A does not support

interworking between 64- and 32-bit modes the same way it does ARM-Thumb inter-

working. Instead, it requires an change from one protection ring to another; and 32-bit

mode can only be entered when changing to a less-privileged ring.
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