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Abstract 
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Doctor Jasenka Rakas, Co-Chair  

 

 

 

The use of airport gate electrification infrastructure in the form of ground power (GP) and pre-

conditioned air (PCA) systems can reduce energy and maintenance costs, emissions, and health 

risks by limiting the use of aircraft auxiliary power unit (APU) engines at the gate. However, 

their benefits can be gained only when they are actually being used, otherwise pilots keep APUs 

on to fulfill their aircraft’s demands of electrical power and air conditioning. GP and PCA 

systems require a large initial infrastructure investment in the name of energy efficiency, and 

they are installed with the assumption that they will be used as much as possible. In this 

dissertation, a method is developed to examine how much and why they are not used to their full 

potential when they are already available.  

 

Maximizing the use of gate electrification infrastructure is a fragmented, interdependent, and 

dynamic management challenge. The processes of using GP and PCA are fit tightly in an 

intricate sequence of connected and concurrent activities required to complete an aircraft 

turnaround operation. Each process depends on close communication, collaboration, and shared 

responsibility among airports, airlines, ground crews, and pilots. The circumstances and schedule 

of each operation can change unexpectedly while it unfolds, with limited time to react. The lack 

of responsiveness in such a tangled system allows for any issue to interfere with the effective use 

of GP and PCA (e.g., technical problems, resource constraints, scheduling conflicts, and 

behavioral issues). Many unique circumstances that result in APU overuse can be blamed on the 

unexpected incident that caused it. However, these incidents should not be interpreted as isolated 

accidents; they are recurrent symptoms of neglect, lack of prioritization, or lack of adaptability 

for maximizing energy efficiency at airport gates. 

 

A case study on San Francisco International Airport (SFO), using 2019 databases, confirms that 

underuse of ground power is a broad and heterogeneous problem. More than 83% of turnaround 

operations analyzed used their APUs more than 15 minutes while at the gate, a common 

threshold found in other relevant papers and stringent airport policies. 20% of turnaround 
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operations never used gate electrification infrastructure throughout their turnaround. GP 

utilization rates of individual operations were associated with the aircraft model and gate. Most 

interestingly, performance across large samples of operations varied a lot depending on the 

airline, with the best performing airline having a utilization rate up to approximately 5 times 

greater than the second worst (the worst one barely used GP at all).  

 

The lack of energy use monitoring and data sharing among airports, airlines, pilots, and ground 

crew workers perpetuates inefficiencies. Without measurements to hold individual operations 

accountable for their energy use, any enforcement and policy remains short-sighted and 

ineffective. Without being able to track long-term performance or set a standard, successful 

practices or systematic problems remain hidden. Without a way to predict and manage the 

energy being used at the gate, highly fluctuating energy demand from airport gates becomes an 

additional challenge. An integrated monitoring solution would enable airports not only to enforce 

policies to restrict the use of APUs, but also to gain a pro-active management role in the airline’s 

use of gate electrification infrastructure. By ensuring all gate turnarounds abide by a maximum 

APU use time of 15 minutes, airports could achieve a further 70% reduction in airline fuel costs 

and carbon emissions from current levels at airport gates, with an average fuel cost saving of $50 

and 180 kg CO2 per turnaround operation.  

 

The monetary and environmental savings of gate electrification are not independent from many 

other costs of turnaround operations. Maximizing energy efficiency at the gate should not come 

at the expense of other priorities. There are many factors in assessing the performance of a 

turnaround operation, some being far more consequential than the use of gate electrification 

infrastructure such as safety, on-time departure, or passenger experience. For this reason, it is 

important to assess turnaround operations with a method that is both comprehensive enough to 

represent the multifaceted costs and simple enough to be systematically applied. Furthermore, 

the costs involved apply differently to each responsible party (i.e., airline, airport, ground crews, 

pilots). With an understanding of the relationship between inputs (e.g., equipment, schedule, 

work sequence, staffing) and the costs in an operation, the groundwork is laid to predict, 

optimize, and incentivize effective energy management for ground handling operations. In this 

dissertation, a method is developed that formulates a life cycle inventory on GP, PCA and APU 

use, and evaluates energy use for turnaround operations in terms of their financial, global, and 

local impact. The method was applied to SFO as a case-study. Each operation was associated 

with a breakdown of monetary and CO2 costs, including initial and non-operational costs. In 

addition, a dispersion analysis and health risk assessment are used to estimate the health impact 

of local air pollutants on apron workers.  

 

The value of being able to monitor, predict, and optimize operations depends on how quickly 

these tasks can be performed to provide actionable results. With a retrospective assessment of 

historical data, a broadly optimized management of a turnaround operation can provide moderate 

savings, satisfying the need for resiliency by placing contingencies in the plan. A turnaround 

operation manager can coordinate the ground crew as the operation unfolds, but all humans are 

limited in their ability to monitor, predict, and optimize. By streamlining the process of data 

acquisition, prediction, optimization, and simulation through a real-time computerized system, it 

is possible to design a decision support tool that can quickly adapt to the unfolding 

circumstances of each operation. This dissertation outlines the architecture of an automated 
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computerized system that can support scheduling and decision making for turnaround operations. 

By prototyping and running the system in a simulated environment, this dissertation 

demonstrates that computerized adaptive scheduling can unlock monetary and environmental 

savings through increased resiliency, reduced uncertainty, and increased collaboration between 

stakeholders. 

 

This research lays down the foundations for data-driven monitoring, modeling, and management 

of gate operations, specifically with focus on GP use. It shows how airport databases can be 

integrated to produce insightful results in an immediately feasible and replicable way. It tests 

several modelling and evaluation techniques that dissect turnaround operations with 

unprecedented detail. It indicates how maximizing GP use is in part a risk management problem, 

and proposes an active solution to address it within the framework of a larger interconnected 

system. Furthermore, it proposes future research directions to advance and expand the body of 

knowledge in improving aircraft turnaround operations.  
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Glossary  
 

Actuator 

The means by which machines and software can have an impact on the real world. 

 

Airport Collaborative Decision Making (ACDM) 

“Improving the efficiency and resilience of airport operations by optimizing the use of resources 

and improving the predictability of air traffic,” achieved by “encouraging the airport partners 

(airport operators, aircraft operators, ground handlers and ATC) and the Network Manager to 

work more transparently and collaboratively, exchanging relevant accurate and timely 

information.” (Eurocontrol, 2023a). 

 

Apron Area 

The airport airside areas used for parking and handling aircraft between flights, typically next to 

the terminal building. 

 

Criteria Air Pollutants 

Pollutants that are determined to be hazardous to human health according to the EPA. 

 

Digital Twin 

An updated digital representation of a physical system for decision support and management. 

 

Percept 

The means by which machines and software can infer what is occurring in the real world. 

 

Pull System 

A lean management principle that involves drawing resources when they are needed, rather than 

processing them as soon as possible (i.e., push system).  

 

Turnaround Time  

The time between a flight arrival and departure, marked by the in block and off block times. 

 

Utilization Rate 

The ratio between the actual use time of a certain resource and the maximum time it could have 

been used. 
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1. Introduction  
 

“Ninety percent of aviation is on the ground. Only ten percent is in the air.”                                                 

Glenn Curtiss (1878-1930), entrepreneur and aviation pioneer 

 

Aviation is one of the most difficult transportation sectors to decarbonize. To date, most attention 

has been given to reducing carbon dioxide (CO2) emitted by flying aircraft whose engines burn 

conventional (jet and aviation gas) fuels, and therefore impact climate globally. Radically 

increasing efficiency for the processes responsible for the largest part of aviation emissions may 

appear like the most effective strategy for decarbonization. However, smaller yet more attainable 

opportunities for improvement can be just as important and should be explored in conjunction 

with long-term goals. Airports are one of the most complex and critical elements of aviation, and 

significant contributors to overall flight emissions. As such, they present many opportunities to 

decarbonize aviation. Furthermore, a component of aviation emissions relates to criteria 

pollutants, such as nitrogen oxides (NOx), sulfur oxides (SOx) carbon monoxide (CO), volatile 

organic compounds (VOC) or hydrocarbon (HC), and particulate matter (PM). These emissions 

are not only largely produced at airports, but they are also important for their impact on airport 

airside surface areas and surrounding communities. Overall, feasible mitigation strategies for 

airport emissions are a salient concern for aviation sustainability.  

 

Although airports in the United States (U.S.) do not control directly local emissions generated by 

aircraft operating on airfields and in the non-movement area (aprons and gates), U.S. airports do 

make efforts to become more sustainable. Airport sustainability reports and climate action plans 

are effective means to strategically plan for sustainability and reduction in emissions. Airports 

also explore options and invest in infrastructure for reducing aircraft emissions generated in the 

apron areas, including emissions at gates. However, due to the management nature of U.S. 

airports and their airport-airline relations, airports lease terminal buildings and gates to airlines. 

As a result, airlines are responsible for the management of their operations in the non-movement 

area of their leased sections of a terminal building, where each airline executes its own business 

decisions. Information sharing with the airport and other airlines is not fully engrained, as each 

airline focuses on limiting liabilities and maximizing its own profit. Therefore, the overall 

emission mitigation strategies of operations at gates are fragmented among airlines, and 

consequently, emission mitigation is not done on the airport system’s level. 

 

While parked at gates, aircraft can generate electrical power and compressed air (bleed air) 

through their auxiliary power unit (APU), a thrustless turbine that generates tail-pipe emissions, 

which is located at its tail end with the primary purpose of starting main aircraft engines. Even 

when the aircraft is idle at a gate, many of its electrical subsystems and its air conditioning must 

stay active for some amount of time, especially for intraday turnarounds with a short duration. 

Instead of having aircraft default to the APU, an airport may provide more efficient external 

energy sources for power and air conditioning. Mobile equipment such as ground power units 

(GPU) and pre-conditioned air units (PCU) may satisfy these needs, and these are typically 

powered by a diesel generator. Alternatively, a growing number of airports have installed highly 

efficient gate electrification infrastructure in the form of fixed ground power (GP), and fixed pre-

conditioned air systems (PCA), as illustrated in Figure 1. 
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Figure 1: Pre-conditioned air, ground power cable, and auxiliary power unit  

During aircraft turnaround operations, pilots and ground crew use external systems achieving 

different levels of energy efficiency. After an aircraft arrives at a gate and it is parked, ground 

crew connect the cable(s) and hose(s) provided by the airport to the receptacle(s) that are 

typically located underneath the aircraft fuselage. A pilot can then switch off the APU engine 

and use the external electrical power (i.e., GP). Prior to departure, while the aircraft is at a gate, a 

pilot initiates the APU engine. Once the APU can generate power and bleed air, the pilot 

switches the power source from the GP to the APU, after which the ground crew can physically 

unplug the GP cable(s) and PCA hose(s) and stow them away from the aircraft. GP use is 

increased by shutting down the APU as soon as possible and turning it on before departure as 

late as possible.  

 

In the complex and dynamic ecosystem of airport operations, (i) technical issues, (ii) resource 

constraints, (iii) scheduling conflicts, and (iv) behavioral choices can impact efficient use of GP 

and PCA systems. When gate infrastructure is not adequately monitored, pilots and ground crews 

interpret circumstantial failures as isolated accidents, while systematic issues remain 

unmitigated. Fragmented management practices and inconsistent policies between airports and 

airlines further exacerbate the lack of enforcement standards and mechanisms. Ultimately, GP 

use of individual turnaround operations cannot be evaluated or benchmarked, sustaining 

practices that result in unreliable performance and inefficient energy use. 

 

This dissertation pursues the following research goals: 

1. Predicting GP instantaneous power demand for individual turnaround operations. 

2. Advocating for the measurement of GP use for individual turnaround operations. 

3. Identifying trends for GP use across large samples of operations. 

4. Estimating APU fuel costs and emissions for individual turnaround operations. 

5. Estimating air quality impacts and health hazards posed by APU emissions. 

6. Performing a granular life cycle cost assessment for the use of GP, PCA, and APU. 

7. Designing and demonstrating a scheduling system that improves GP and PCA use. 

8. Identifying future solutions for improved GP, PCA, and APU management. 

 

This dissertation addresses the problems associated with gate operations by (i) providing an 

airport centric data-driven foundation for a monitoring system, (ii) defining a holistic cost 

assessment methodology, and (iii) proposing an adaptive ground handing management system 

that leverages artificial intelligence and includes sustainability as a decision making criterion. 
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Although these sections are elaborated independently, they are highly interrelated and meant to 

be applied in concerted effort by airports. A case study on San Francisco International Airport 

(SFO) is used to illustrate and validate the research. This research is the first attempt to show the 

benefits of centralized monitoring, modeling, and management of gate electrification 

infrastructure, so that emission mitigation can be done on the airport system’s level. Through 

transparency, accountability, and collaboration, aviation stakeholders can define a unified 

approach towards addressing the efficiency and sustainability of gate turnaround operations.  

 

The body of the dissertation is composed of seven sections. After the introduction (Section 1), a 

literature review illustrates the inspiration and importance of this work (Section 2). A thorough 

analysis of GP use highlights the magnitude and complexity of the problem, while providing a 

foundation for an airport monitoring system (Section 3). A cost assessment and health risk 

evaluation further expand on the impacts of variable use of PC and PCA systems (Section 4). 

Then, a real-time computerized scheduling system as a potential solution is defined (Section 5). 

An overarching discussion describes the synergies and challenges associated with the 

implementation of the proposed systems (Section 6). The conclusion summarizes the most 

important results, outlines the contributions to knowledge, and discusses further avenues for 

related research (Section 7).  
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2. Literature Review  
 

The provision of ground support equipment for improving aircraft turnaround operations has been 

an industry topic for decades. Many articles and documentation have been developed on the topic, 

especially to justify the initial investment in the infrastructure. Monitoring, modelling, and 

managing ground support equipment is at the forefront of current research due to advancements in 

integrated data collection and increased sensitivities towards aviation sustainability. To 

contextualize this dissertation, a review of academic literature, some current industry projects, and 

relevant methodologies is provided.  

 

2.1 Sustainability at Airports  

Airports are a vast, diverse, and vital component of our modern society, with their societal 

importance spanning past their critical role in today’s transportation network. The world hosts 

around 40,000 airports (CIA, 2016), of which the top 2,500 have accommodated over 4 billion 

passengers (IATA, 2018). In 2019, the number of domestic and global airline flights was 38 

million (IATA, 2021). Despite the major setbacks through the Covid-19 pandemic, commercial 

aviation is set to recover, with passenger traffic predicted to grow annually by 3.6% over the next 

20 years (Airbus, 2023). Air-cargo transports $6 trillion worth of goods, or approximately 35% 

of world trade value (IATA, 2022), and is set to grow annually by 3.2% (Airbus, 2023). Some 

airports have grown to become as large as cities, and function as a catalyst for economic, 

logistical, and social development of their region (Appold & Kasarda, 2013). As a critical 

spearhead of worldwide and regional growth, airports are top players in our society’s Triple 

Bottom Line: environmental stewardship, economic growth, and social responsibility. 

Environmental stewardship, in some ways, is a relatively new concern for airports. The biggest 

environmental issues faced by airports are aircraft noise, carbon emissions and local air 

pollution. Over the last 20 years, the following milestones occurred regarding regulations of 

aviation emissions: (1) 2004 - the airline industry started addressing carbon emissions (ICAO, 

2004); (2) 2009 - the Guidance Manual on Airport Greenhouse Gas Emissions Management was 

released (ACI, 2010); and (3) 2016 - ICAO issued an agreement for controlling carbon emissions 

from international flights (ICAO, 2016).   

On the ground, the sustainability efforts are unique and tailored around the specific nature of 

each airport and region (SAGA, 2019). Several worldwide research institutions and programs to 

promote sustainability developed metrics based upon which airports can assess their performance 

and set new goals. Airport Council International (ACI) uses the EONS categorization (i.e., 

economic viability, operational efficiency, natural resource conservation, social responsibility). 

Airport communities recognize the key role that they play in promoting beneficial environmental 

and human health outcomes, but the way the public sector addresses airport sustainability is 

fragmented and lacks rigorous appraisal of suggested best practices (Greer et al., 2020). Despite 

the newfound relevance of sustainability at airports, the current state and outlook are not as 

hopeful as one would wish.  

Without radical systematic and technological changes, the growing and energy-intensive aviation 

industry will continue to increase its impact on climate change (Lee et al., 2009; Bravo et al., 
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2022). The problem is that current aviation emissions not only contribute to 2.5% of greenhouse 

gas emissions and 5% of global anthropogenic radiative forcing, but they also have regional air 

quality impacts that are detrimental to human welfare (Grobler et al., 2019). It is expected that 

such emissions will increase in the future due to increases in travel demand and the continued 

use of traditional fossil-fuel-based aircraft engines (Gössling et al., 2009; ICAO, 2010; IATA 

2017).  

 

A significant and somewhat neglected portion of the problem occurs at airports. Airports 

contribute approximately 15% of aviation greenhouse gas (GHG) emissions (Greer et al., 2020), 

but this percentage varies depending on the scope of analysis. To date, most attention has been 

given to reducing carbon dioxide (CO2) emitted by aircraft engines that burn conventional (jet 

and aviation gas) fuels, due to its impacts on climate. However, another large part of the problem 

lies in local air pollutants such as NOx, SOx, CO,  HC and PM (Greer et al., 2020). 

 

Masiol & Harrison (2014) found that operational emissions of local air pollutants from engine 

exhaust and non-exhaust sources have not received adequate attention in the literature despite 

their high negative impact on ground level air quality. Repeated occupational exposure of ground 

workers to criteria pollutants could cause cancer, heart disease, mental illness, and respiratory 

symptoms, but insufficient epidemiological data and studies prevent these risks from being 

quantified (Merzenich et al., 2021; Møller et al., 2017). The exposure and impact of criteria 

pollutants on the communities surrounding airports remain underexamined despite measurements 

of high down-wind concentrations of ultrafine PM2.5 particles and nitrogen dioxide (NO2) 

concentrations that exceeded those measured at regulatory monitoring sites (Hudda et al., 2020). 

The environmental and health costs are a major drawback to an airport’s triple bottom line, so 

they must be studied further, accounted for, and addressed. 

Some of the negative externalities of airport operations are difficult to address because they lie at 

the interface of many different stakeholders with intersecting spheres of influence (Perez, 2015). 

In contrast, some can be easily controlled and attributed to a specific party. Airport Carbon 

Accreditation (ACA) is a voluntary emission reporting and certification program that has 

categorized airport emissions into 3 scopes, as shown in Table 1 (Airport Carbon Accreditation, 

2020). Emissions from facilities owned and operated by the airport (Scope 1) can be directly 

attributed to and influenced by the airport, and for that reason, they are one of the first to be 

mitigated according to ACA’s multi-step certification. Emissions from purchased electricity 

(Scope 2), are not directly managed by the airport, but they can be directly managed and 

mitigated. Outside the scope of airports, many externalities associated with aircraft flights can be 

directly attributed to airlines. In contrast, it is those emissions that are associated with airport 

processes but not controlled by them (Scope 3) that are more challenging to mitigate. Scope 3 

emissions lie in a grey area where airports do not directly own or control certain sources of 

emissions, but they can influence their mitigation. These sources include emissions from the 

Landing and Takeoff cycle (LTO), aircraft operations in non-movement areas (i.e., aprons), 

ground support equipment, and vehicles circulating on airside premises (e.g., sweeper trucks, 

crew buses, catering trucks, cargo tractors).  
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Table 1: Airport emission sources by scope (Airport Carbon Accreditation, 2020) 

Scope 1  

Emissions from Airport  

Controlled Sources 

Scope 2  

Emissions from 

Purchased Electricity 

Scope 3  

Emissions from Other Sources 

Related to the Activities of an Airport 

 

● Vehicles/ground support 

equipment belonging to 

the airport 

● On-site waste 

management  

● On-site wastewater 

management 

● On-site power generation 

● Firefighting exercises 

● Boilers, furnaces 

 

Off-site electricity 

generation from: 

● Heating 

● Cooling  

● Lighting 

● Landing and Takeoff (LTO) 

Cycle: aircraft landing, taking off, 

ground movements 

● Auxiliary power units 

● Third-party vehicles/ground 

support equipment  

● Staff commute 

● Passenger travel to and from the 

airport 

● Off-site waste management 

● Off-site water and wastewater 

management  

● Staff business travel 

One airport process lies at a dynamic intersection among scopes 1, 2, and 3: providing energy 

and air conditioning for stationary aircraft. That makes it one of the hardest processes to attribute 

to a responsible party, measure with relevant performance indices, and address. The next sections 

of the literature review further magnify work regarding the use of energy use at airport gates.  
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2.2 Apron and APU Emissions  

Although aircraft operations from the LTO cycle represent the largest contributor to airport air 

pollution, as defined by scope 3, ground handling operations are the second largest, representing 

approximatively 8-28% of total emissions, depending on the emission type (Fleuti & Hofmann, 

2005). Many of these sources are stationary, concentrating harmful chemicals in small volumes 

where breathing could become more hazardous than airport-wide daily-average measurements 

indicate. For example, at Copenhagen International Airport significantly higher concentrations of 

ultrafine particles were measured next to the gates, where ground-handlers work, demonstrating 

strong exposure across the airport (Møller et al., 2014). Chouak et al. (2022) performed 

dispersion modelling to show how plumes of exhaust emissions next to terminal buildings may 

create persistent hot spots with high concentrations of pollutants depending on wind direction 

and airport configuration.  

Exhaust from APUs is one of the most concerning sources of fuel emissions and costs during 

ground handling operations. APUs require a high fuel flow to operate, but have a low operational 

efficiency (approximately 10%) at the gate (Fleuti & Ruf, 2018; Renouard-Vallet et al., 2010). 

For example, a stationary A320 aircraft will consume 80-130 kg/hr of fuel depending on its 

setting (Padhra, 2018). Larger aircraft and older APU models typically require higher fuel flows, 

up to an average of 220 kg/hr for jumbo-wide body aircraft (ACRP et al., 2012). In 2023, the 

price of jet fuel is $0.91/kg (IATA, 2023), implying that APUs running at the gate are burning 

approximately $70-250/hr for each aircraft. The longer the APUs run, the more they require 

maintenance work, exacerbating the direct costs incurred by airlines. Indirect external costs are 

caused by CO2 emissions and other criteria air pollutants, such as NOx, CO, VOC, SOx, and PM 

(ACRP et al., 2012; Balli & Caliskan, 2022; Lobo et al., 2015; Padhra, 2018; Xu et al., 2020). 

APUs are designed to run at high energy load when they serve to start up the main engines. 

When these powerful engines run at a fraction of their maximal output, and start out at cold 

temperatures, the incomplete combustion leads to disproportionately high emission rates, as 

exemplified by their contribution to 53% of inner apron PM emissions (Winther et al., 2015). 

According to the Alternative Aviation Fuel Experiment campaign conducted by NASA, the 

APU’s highest emission index was measured for CO, ahead of SOx, NOx, HC, and PM (Kinsey 

et al., 2012). An additional harmful APU impact on human health is the noise caused by 

combustion of APUs that can lead to cardiovascular, hearing, and psychological damages 

(Münzel et al., 2014; Tubbs, 2000). 

 

Overall, APUs are a critical component of modern aircraft; simply removing them would reduce 

safety and operational redundancy. However, APUs may also be used for the non-critical 

purpose of providing electrical power and conditioned air when parked at airport gates. Within 

the scope of turnaround operations, concern with APU fuel costs, GHG emissions, air quality 

implications, noise, and health impacts are warranted.  
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2.3 Gate Electrification  
 

Gate electrification in the form of ground power and preconditioned air provides a feasible and 

cost-effective alternative to the use of APUs (Greer et al., 2021). It is a successful energy 

efficiency and cost reduction strategy for airport operations (ACRP et al., 2010). ACRP et al. 

(2012) provided a method to make and airport-wide estimate of the fuel and emissions savings 

from the use of these systems that justify installation costs.  

 

Similarly, but from an environmental standpoint, gate electrification is an important GHG and 

local pollution reduction strategy (Barrett, 2019). Even though the emission footprint of gate 

equipment depends on original airport electricity energy and installation, GP and PCA systems 

consistently outperform APUs in terms of life cycle monetary and GHG costs (Greer et al., 

2021). Mobile diesel-powered GPUs and PCUs mitigate the fuel costs and the emissions of some 

APU pollutants, but they still produce significant tail-pipe emissions on the apron area (Altuntas 

et al., 2014). Especially at a local level, gate electrification reduces APU exhaust and its air 

quality and health implications (ACRP et al., 2019; Benosa et al., 2018; Fleuti, 2018; Sadati & 

Cetin, 2020).  

 

Replacing APU times with fixed GP and PCA results in highly fluctuating loads on the airport 

electricity demand. Gate electrification infrastructure can contribute up to 87% to an airport’s 

peak demand for power, having significant implications on the design of the airport’s energy grid 

and on electricity pricing (Sadati & Cetin, 2020). Overall electricity costs contribute to 

approximately 10-15% of an airport’s annual operational expense (ACRP et al., 2010; Sadati & 

Cetin, 2020), excluding the infrastructure installation and maintenance costs. Because gate 

electrification is an on-demand resource, its unpredictable and drastic fluctuations can result in a 

financial and infrastructure challenge for airports.  

 

The benefits of gate electrification infrastructure can be obtained only if such infrastructure is 

used. Gwilliam (2010) identified a systematic problem with inefficient ground operation 

procedures and APU use times that have “not been reduced more aggressively”. Few airports 

have policies to limit APUs reflected in their gate lease agreements, and most have no effective 

monitoring and enforcement mechanisms (ACRP et al., 2012). Padhra (2018) stated that some 

airports have restricted APU usage to 5 minutes after arrival and 5 minutes before departure, 

although different airports have different policies. He calculated that compliance with airport 

APU regulation occurs only on average in 6% of aircraft turnaround operations. Padhra dissected 

the problem using the data from A320 aircraft from two airlines, showing how the emission rates 

were highly dependent on the circumstances of each operation (timing, APU setting, ambient 

temperature). In addition, he found that most of the excessive APU use times and emissions 

occur in the pre-departure phase of a turnaround operation, often because of lacking coordination 

from the stakeholders involved. By conducting a high-resolution analysis of the consumption 

data of single operations, he quantified inefficiencies in detail, identified and compared trends, 

and formulated strategies to solve them. His method should be extended to include more aircraft 

models and airlines, but the current state of airline data collection and sharing does not enable 

that. A method to evaluate APU impacts that is both representative of the broader aviation 

industry and granular enough to assess individual operations has yet to be developed.  
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ACRP et al. (2019) provided a comprehensive list of challenges with the use of ground power, 

and proposed a framework for resolving them. They identified use tracking as a useful near-term 

solution that can help assess the problem, but their suggested method lacks the resolution to look 

at individual operations (i.e., they constructed a ratio between the average time of equipment use 

and the average estimated time the equipment could be used for every gate at an airport). They 

suggested that a long-term solution would be to use sensors that could enable real-time 

monitoring, automated tracking, reporting, and dissemination of use data, but they did not 

provide a blueprint for such a system. This dissertation aims at providing a feasible foundation 

for such a system that is both detailed and comprehensive, leveraging data directly available to 

airports from existing systems.  

 

The progress made in increasing gate electrification use should be benchmarked to provide a 

standard on which to improve. However, current benchmarking studies in aviation do not capture 

this well. Benchmarking studies on airport management, airport operating efficiency, and ground 

handling do not mention APUs and ground power at all (Adler et al., 2013; Oum & Yu, 2004; 

Schmidberger et al., 2009). Kilkiş & Kilkiş (2016) specifically focused on benchmarking airport 

sustainability using energy consumption across the airport as a metric for efficiency but did not 

consider the fact that the gate electrification infrastructure is a positive driver for sustainability at 

the airport. Kilkiş & Kilkiş (2017) also analyzed airline and aircraft sustainability but did not 

consider APU use at the airport as a metric, rather focusing on the overall fuel use. Despite being 

a key factor of efficiency and sustainability, GP use and APU use remain a neglected sub-

problem or a grey area in terms of benchmarking because it is a unique process involving many 

stakeholders.  

 

The literature clearly indicates that gate electrification infrastructure is an alluring upgrade for 

any airport gate, promoting the investment in such systems. However, there is limited 

quantitative research on the day-to-day operation of those systems, despite indications that their 

use might be suboptimal. The potential missed savings and environmental impact warrant further 

research and supervision.  

 

2.4 Monitoring  
 

To provide the details necessary to assess individual turnaround operations, airports need a 

reliable and systematic way to collect relevant data. Airports and aircraft have a wealth of data 

that is already available to better dissect the progression of a turnaround operation. With the 

advances in Internet of Things (IoT) technologies and artificial intelligence applications, leaps 

forward have been made in the ability to leverage these data acquisitions. As real time data 

acquisition methods at airport gates are proliferating, the feasibility of a detailed and 

comprehensive monitoring of gate electrification infrastructure keeps increasing. Currently, no 

standard method exists to monitor ground power use and the flow of activities for ground 

handling for stakeholders involved. Listing current techniques used by airport professionals and 

data acquisition methodologies by relevant studies will demonstrate what is currently possible. 

 

Airports already implement some state-of-the-art monitoring technologies. As complex logistics 

hubs with the highest level of safety in transportation, airports showcase real time data collection 

and dissemination, systems integration, and many artificial intelligence (AI) applications 
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(Koroniotis et al., 2020; Sims, 2019). Airports can monitor in real time (i) electricity cost and 

emission rates (Forsyth, 2004; Janić, 2011), and (ii) air quality, with criteria air pollutants 

(Popoola et al., 2018; Shirmohammadi et al., 2017; Wu et al., 2017). On the airside, airports use 

computer vision techniques to track the movements of aircraft and other vehicles across runways, 

taxiways, and the apron area (Aguilera et al., 2006; Girshick et al., 2016; Li et al., 2018; Wang et 

al., 2021). On the landside, airports collaborate with airlines to track the movements of their 

passengers at check in, security, and gate boarding phases (Schultz & Fricke, 2011; Mrňa et al., 

2021). On the apron and at the gate, events and activities can be monitored with computer vision 

using cameras that may already be installed at the gate and used for other purposes. Early 

developments focused on larger events (e.g., aircraft arrival, pushback, taxiing), but the 

technology is evolving to perform high-accuracy image recognition of increasingly fine-grained 

processes (e.g., collision detection, tracking equipment, service detection, time stamping of 

actions) (Aguilera et al. 2006; Lu et al., 2016; Thai et al., 2020; Wang et al., 2021; Wang et al., 

2022; Yıldız et al., 2022; Thai et al., 2022). The startup Assaia is applying these concepts to 

collect timestamps of operational milestones in real time and track turnaround operation 

workflow (Assaia, 2023; Hen, 2023). These computer vision systems can visually confirm 

whether GP and PCA are physically connected to the aircraft in real time, although they do not 

provide information on their use times and magnitudes. Zhang et al. (2014) filed for a patent that 

describes how infrared-thermal cameras can be used to see high-temperature exhaust from the 

APU as a method to monitor it, but such a system would require the installation of infrared 

cameras at all gates.  

 

The monitoring of GP and PCA at airports is possible, but current solutions are fragmented, not 

integrated, and not applied at scale. ACRP (2012) laid out a clear theoretical basis for the 

monitoring of APU, GP, and PCA use for the purpose of estimating costs of turnaround 

operations. The report identified that monitoring (i) the aircraft type, (ii) the APU times and 

modes of use, (iii) temperature conditions, and (iv) airport utility costs provide the critical user-

supplied data for their estimate. They also suggested several sources to procure these data bases, 

such as: 

 

• Commercially available data sources, such as OAGaviation.com or airlinedata.com,  

• The Airport’s Noise and Operations Monitoring Systems,  

• The Federal Aviation Administration’s (FAA’s) Enhanced Traffic Management 

Systems database,  

• The FAA’s Performance Data Analysis and Decision System,  

• Form T-100 Reports, available from the Bureau of Transportation Statistics, 

• Other FAA or airport-specific datasets. 

 

However, they fell short of explaining how to monitor individual operation times, and rather 

focused on how to manipulate the relevant data once it has been already acquired. Especially 

when it comes to monitoring APU use time, they direct an airport to “note the amount of time on 

arrival and departure that the APU is in use.” Such a task is complex since every operation is 

vastly different. That is why the above-mentioned data modules default values to use in the 

estimate as an alternative, which goes against the purpose of monitoring operations. ACRP 

(2019) also had this gap in data acquisition, stating that in the ideal scenario, (i) “all electric GP 

and PCA units are equipped with hourly meters” and (ii) “the user already has actual APU use 
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times available”. Even if GP and PCA systems had hourly energy meters, how would those be 

able to monitor the use times of equipment that is used for fractions of an hour? How would they 

differentiate gate operations that fall within the same hour? There is a gap of information on how 

to source the data from the airport’s perspective. 

 

The simplest level of APU monitoring is that of a human inspector or manager on the apron 

floor. There are cases in which airports, airlines, government officials walk out on the apron to 

inspect and ensure that APUs are turned off whenever possible. To provide a rough diagnosis 

across a larger sample of operations airport officials have manually recorded APU use times 

(SeaTac, 2019). Such approaches lack the breath, detail, and data recording capabilities required 

to understand the problem in detail. However, manual input of data from humans on the apron 

can be effective. The ground handlers and pilots have been directly involved in generating data 

by self-reporting the completion of their activities through handheld devices that communicate to 

centralized data acquisition software (Wu, 2008; Makhloof et al., 2014).  

 

The best data to understand the APU power setting, emission rates, usage times of GP and PCA 

at airport gates can be collected directly from aircraft. Existing aircraft sensors are highly 

precise, measure direct consumption quantities, collect data regularly on an integrated system, 

and can transmit that information in real time (Amrutha et al., 2019; Wu, 2008). Padhra (2018) 

and Sadati & Cetin (2020) performed their detailed analyses by leveraging data shared 

retrospectively by airlines on a subset of operations. Some airlines have developed streamlined 

proprietary software to track APU, GP, and PCA use while sharing it with all relevant airline 

stakeholders (Alaska Airlines, 2019). Application programming interface (API) solutions like 

APiJET’s Turnaround Management tool would enable more airlines to self-monitor their APU, 

GP, and PCA performance (APiJET, 2023). However, airlines do not consistently record this 

data and are often unable, unmotivated, or reluctant to share it. In the future, adoptions of open 

real-time sharing of aviation data between all stakeholders might unlock this direct data with 

exciting potential (Lootens & Efthymiou, 2021).  

 

If APU use times cannot be measured from the aircraft directly, they can be inferred by 

measuring the power being supplied to the aircraft by the airport. Monitoring the energy 

consumption from airport ground handling equipment can provide reasonable approximations of 

GP and PCA use times, which are directly related to APU use times and modes. Airport 

electrical meters record data on an hourly, daily, or yearly basis, often for the purpose of pricing 

airlines for their energy use. However, for the purpose of monitoring use, sufficient granularity 

in the data is required to identify events that could happen in minutes. If that data can be 

combined with the airport’s aircraft monitoring database, which provides data on the aircraft and 

their movement, enough data is present to dissect the energy use during the operation. Achatz 

Antonelli et al. (2019) applied this concept on a case study on San Francisco International 

Airport (SFO) to validate the problems with gate electrification use by using 5-minute energy 

metering data. That is also the methodology behind estimating current average utilization rates of 

gate electrification (70%) at CDG airports in Greer et al. (2021), who then expanded the scope to 

determine the global impact of gate electrification while considering different airport 

circumstances and use scenarios.  
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Airport equipment manufacturers are exploring a similar idea. John Bean Technologies (JBT), 

specifically its Aerotech branch, is developing a real-time monitoring system for gate operations 

that use their gate infrastructure called iOPS (JBT AeroTech, 2023). Their product has already 

been successfully applied to large scale hub airports including Houston International Airport. 

Their IoT-enabled gate infrastructure has precise interconnected sensors that collect data on the 

power consumption from GP systems, PCA systems, jet bridge systems, and more. They can 

collect the timestamps of activation of each individual system. This information helps to identify 

breakages or immediately reveal an operation that is not using gate resources correctly so that the 

relevant stakeholders (typically the ground crews) can be contacted to correct the situation. They 

use the data to approximate APU consumption and estimate the relative costs. Another ground 

equipment manufacturer, ITW GSE, is developing their own similar power management solution 

named Intelligent Power Management (IPM) that would monitor energy use and proactively 

limit power loads during an operation (Aviation Pros, 2023; ITW GSE, 2023). Neither iOPS nor 

IPM integrate with airport databases with information about the aircraft and the airline. Despite 

being effective at monitoring energy use and providing strategies to address gate issues in real-

time, they do not offer the ability to monitor the larger trends of apron operations, such as the 

airline’s performance, their emissions, and their regard for airport policy.  
 

A promising technique to monitor engine use at the gate is real time sound analysis using 

artificial intelligence. Different engines in the apron area that produce diverse characteristic 

sounds not only reveal the use rates but also provide diagnostics on engine malfunctions (Tam et 

al., 2013; Ahmed et al., 2021). With an array of microphones installed across the apron area, 

artificial intelligence algorithms can determine the source and location of noise (Ogata et al., 

2000; Von den Hoff et al., 2021), providing an effective way to monitor APU use at the gate. 

This is being applied in practice by University of Washington in collaboration with Microsoft X 

and Seattle-Tacoma International Airport (SEA) (Liang, 2023). Assaia, in combination with their 

computer vision system, also uses microphones as their way to infer APU use at airport gates as 

part of their APU Emissions Detector software service (Assaia, 2023). 

 

Solutions already exist to monitor GP, PCA and APU use at airport gates, without the need for 

new technological advancements. Some of them provide greater insight, some require low initial 

investment, some do not require airline data sharing. Establishing feasible, consistent, insightful, 

and integrated monitoring for the use of gate electrification infrastructure is an emerging and 

fertile opportunity in the aviation industry. 

 

2.5 Energy Prediction Modelling  
 

Monitoring provides value by generating information on the past and present, and by yielding 

data on which predictions can be made about the future. Predicting energy consumption is of 

importance to design, the control and optimization of airport energy systems. Several studies 

focus on predicting electrical loads on the terminal buildings, especially in relationship to the 

heating, ventilation, and air conditioning systems, the building design, and the weather 

conditions (Chen & Xie, 2013; Huang et al., 2015). Kang et al. (2017) used regression models to 

show how the Pittsburg International Airport (PIT) building energy demand is related to weather 

conditions and the flight schedule, which is representative of passenger flow. Interestingly, PIT 

is equipped with GP and PCA systems at all gates, which consume airport power depending on 
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flight schedule and ambient temperature, which could be a significant confounding factor for 

power demand prediction. Airports have been able to effectively predict many of their more 

consistent energy loads, while the highly variable loads coming from the gates have been less of 

a focus towards forecasting energy demand.  

 

In the context of airport gate electrification, Sadati & Cetin (2020) applied multiple linear 

regressions to identify trends in the consumption from GP and PCA systems. They stated that 

both their research with manufacturers and their data-driven analysis points to the fact that 

ground power consumption is correlated mostly to the aircraft subtype, although their results are 

“not consistent with the typical power demand of GPU provided for different aircraft types, 

which states that the larger the aircraft size, the higher the typical electricity demand”. In the 

article, they hypothesized that the difference could be due mostly to different electrical 

equipment. However, they did not consider confounding implications of (i) the variable use 

times of GP vs APU, (ii) the variable consumption rate within each operation which often peaks 

at the beginning and end, and (iii) the variable duration of the overall turnaround operation which 

is often correlated with aircraft size. For the PCA consumption, the researchers were able to fit 

regressions to show how the ambient temperature affects the total demand, both for heating and 

cooling functions. The ability to predict consumption, accurately store energy, manage multiple 

energy sources, and even out erratic consumption patterns could lead to monetary and 

environmental benefits for airports.  

 

Monitoring, predicting, and managing energy consumption is a developing field of study that 

leverages data-driven machine learning methods. Amasyali & El-Gohary (2018) reviewed many 

of the different model types that can be used and explain their advantages and disadvantages. All 

the energy consumption prediction model types described are made through supervised machine 

learning algorithms on historical data, and their performance can be assessed using metrics 

related to accuracy, precision, and overfitting. Since machine learning models have not been 

applied for the purpose of predicting power demand from GP systems at airport gates, several 

models should be evaluated to see which one is most representative for this dissertation’s scope. 

The model structures that are developed and tested in this dissertation are: (1) decision tree 

regression, (2) neural net regression, (3) k-nearest neighbors regression, (4) linear regression, (5) 

lasso regression, (6) support vector machine regression, and (7) random forest regression. Table 

2 lists succinct explanations and reference papers that inspire the application of each modelling 

technique for the problem of aircraft gate power prediction.  
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Table 2: Supervised machine learning models used to predict GP demand  
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Energy is one of the many resources that can be predicted regarding turnaround operations, 

although it appears to be currently studied in the least detail. In the following subsection, the 

literature on the prediction of activity durations, labor, and equipment use will be reviewed to 

provide a more complete picture on what can be predicted in this dissertation’s scope.  

 

2.6 Scheduling Simulation, Optimization, and Control  
 

Punctuality control over irregular operations is a major concern in aviation, as it directly relates 

to the throughput and economics of most flights (Scala et al., 2020; Balli & Caliskan, 2022). 

Flight delays, which may stem from delays on turnaround operations, is a major concern 

especially because of its interdependent and propagating nature (Sternberg et al., 2021). The 

simulation, optimization, and control of aviation schedules is a broad and evolving topic that 

addresses this concern.  

 

Turnaround operations are project delivery processes characterized by their fast pace, the high 

variability in the durations of their activities, and likelihood of last-minute unexpected changes. 

For these reasons, turnaround operations management is a major component of the larger 

challenge of punctuality control. Current literature and industry practice describe three main 

simultaneous methods to address the problem: (i) placing contingencies, (ii) identifying and 

mitigating the causes of schedule variability, and (iii) establishing adaptive management 

procedures. This section of the literature review shows how turnaround operations time 

prediction, simulation modelling with stochastic approaches, scheduling optimization, and 

machine learning are methods that are used to improve the performance of airport ground 

handling operations. Although these methods have been extensively applied on major 

components to the problem (i.e., passenger handling, luggage handling, refueling, catering, apron 

management, and air traffic control (ATC)), the non-critical issue of energy efficiency through 

APU, GP, and PCA use has been oversimplified or omitted.  

 

Simulation, optimization, and streamlined control of turnaround operations have been of growing 

interest since the beginning of the 21st century, catalyzed by increased detail in data collection, 

the integration of systems, and the application of new technologies (Liu et al., 2023). However, 

the need to make reliable and effective turnaround operations schedules has been essential since 

the beginning of commercial aviation. That is why aircraft manufacturers provide airport 

planning manuals (e.g., Boeing, 2023) that describe typical schedules for ground handling using 

the critical path method. These schedules provide the probable sequence and the duration of the 

activities for each aircraft type. Although these recommended schedules often include 

contingency time, they do not capture the highly variable nature of each operation and the 

propagating nature of delay. Since the activity durations are closely weaved together and their 

durations are uncertain, the activities that constitute the critical path often change throughout 

each operation, leading to uncertainty in the cause of each operation’s delay (Sánchez & Eroles, 

2018). Although the critical path method can provide a clear schematic schedule, deviations from 

the schedule are to be expected.  

 

Predicting the occurrence of delay before it occurs enables turnaround operations stakeholders to 

customize their schedules and mitigate the risk of delay propagation. Machine learning models 

for the relationships between operational features and on-time performance can be used to 
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estimate the probability and duration of turnaround operations delay, even if the sub-process 

logistics of the operations are treated as a blackbox (Gao et al., 2015 ; Thiagarajan et al., 2017; 

Yu et al., 2019; Halmesaari, 2020; Dalmau et al., 2021; Rodríguez-Sanz & De la Cruz, 2021). 

Detailed, comprehensive, real-time data acquisition systems on turnaround operations are 

challenging to implement so estimating delay from easily obtainable features (e.g., arrival delay, 

weather, airport congestion level, passenger count) can be an effective early stage strategy 

toward placing buffers and controlling overall delay.  

 

Dissecting turnaround operations in its interdependent and variable subprocesses can provide 

much more insight, precision, and accuracy into predicting possible schedules. Analysis of the 

component activities of an operation highlights the bottlenecks and inefficiencies associated with 

each activity (Schultz and Fricke, 2011; Norin et al., 2012; Schultz, 2018). Furthermore, fine-

grained prediction models can be developed for individual activities in accordance with their 

influence factors and constraints (Schultz & Reitmann, 2019; Luo et al. 2021, Luo et al., 2022). 

These subprocess models are inherently uncertain, often being represented as or resulting in a 

probability distribution of the duration of activities. The subprocess models can then be used as 

the building blocks of more comprehensive and integrated models. 

 

Simulation methods can be used to assimilate stochastic models on individual activities into 

larger interdependent structures, which can then be evaluated (Khoury et al.,2006; Bevilacqua et 

al., 2015; Mota et al., 2017; Schmidt, 2017; Korkis-Kanaan & Ramy Sfeir, 2019; Salihu et al. 

2021). The most common discrete-event methods are Monte Carlo simulations (Wu & Caves, 

2004a; Wu & Caves, 2004b; Sheibani, 2020; Guimarans & Padrón, 2022), fuzzy critical path 

simulations (e.g., Asadi & Fricke, 2022) and petri-nets simulations (Narciso et al., 2009; 

Vidosavljevic et al., 2010; Sng & Hansman 2019). The resulting instances of these simulations 

are almost always a very large list of potential schedules. In average instances, the randomness in 

duration of individual subprocesses annuls itself and the cumulative operation duration evens out 

into a smooth distribution (i.e., central limit theorem). In less common but equally important 

instances, delays align to produce concerning edge case scenarios. Generally, since turnaround 

operations present a merge bias (Wu & Caves, 2003), the most probable total operation duration 

is greater than the one obtained by using the critical path method.  

 

With a representative distribution in the probable duration for a turnaround operation, strategic 

planners and managers can decide how much contingency time to allocate to an operation 

(Adeleye & Chung, 2006, Fricke & Schultz, 2009). They need to balance the need to maximize 

the efficient use of gate resources with the pressure to avoid propagating delays. One of the most 

important problems is determining the expected total turnaround operations time (and 

consequently the expected pushback time), because that milestone is critical to gate assignment, 

airside management (i.e., taxiway use, runway use, ATC) (Simaiakis et al. 2014; Narciso & 

Piera, 2015; Smith & Bilir, 2022), and turnaround operations resource allocation (Wu & Caves, 

2003). With too much contingency time, flights are scheduled too far apart, leading to missed 

revenue opportunities. With little contingency time, an unexpected delay or incident might kick 

off a domino effect of resource demands that cannot be met, leading to scrambled management 

and uncontrollable costs. Since turnaround operations planners and managers do not have the 

benefit of hindsight, they need to speculate on the best contingency time on the basis of all 

possible outcomes and the average expected cost.  
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Cost metrics are fundamental to weigh different hypothetical turnaround operations schedules 

against each other and make decisions (Wu & Caves, 2000). The totalized cost rates of a 

turnaround operation can be circumstantial to each operation and depend on stakeholder 

perspectives (Becu et al., 2003). Different cost factors can be vastly different in magnitude so 

time can often be a misleading metric for comparison. For example, the cost of using the APU 

for an extra 10 minutes is often several orders of magnitude smaller than the cost of delaying a 

turnaround operation by 10 minutes. In particular, measuring the considerable cost of delay is 

challenging because of its stochastic and propagating nature (Evler et al. 2020). By taking a 

schedule and collapsing it into a relative cost with a holistic cost function, it is possible to weigh 

different scenarios against each other and make data-driven decisions based on multiple 

objectives, such as selecting the optimal contingency time and performing schedule recovery 

(Fitouri-Trabelsi et al., 2015; Evler et al. 2021). The combination of a simulation model and a 

relative cost function are in such a way the two pillars of turnaround operation optimization.  

 

The operation optimization problem can be expanded to include many of the decisions that occur 

during a turnaround operation. The procurement and time windows for ground handling 

equipment and activities are all control variables that face the same challenge of balancing 

efficient utilization with schedule adaptability (Andreatta et al., 2014a; Padrón et al., 2016; 

Padrón & Guimarans, 2019). For every decision added, the optimization problem increases in 

opportunity but also complexity, quickly reaching very large solution spaces. Whereas 

optimizing one variable with a convex cost function is fairly simple, adding more variables 

renders the problem that becomes far less intuitive and calculable. Including stochasticity to the 

optimization problem adds even further complexity, as it requires many more iterations to 

associate a set of decision variables with an expected cost.  

 

There are many methods to improve complexity of the search-simulation-optimization challenge 

to cut down on the solution space and computational demand. Gradient descent is a fundamental 

tool in systematically lowering total costs from an initial set of decision variables. This method is 

computationally fast due to its greedy-search nature of prioritizing immediate cost savings, but 

without some randomization it directs the search towards local minimums (Resende et al., 1995; 

Lagodimos & Leopoulos, 2000). Linear programming can be used to identify a set of decision 

variables within a deterministic environment that can then be evaluated for robustness within a 

discrete-event simulation model that includes the variability in activity duration (Lim et al. 2005; 

Tomasella et al., 2019; Gök et al., 2020a; Gök et al., 2020b; Wang et al., 2021; Liu et al. 2022).  

Genetic algorithms inspired by evolutionary biology can be used to hybridize sets of decision 

variables and find new effective combinations (Kumar et al., 2010; Liang, 2020; Fei et al., 2022; 

Bao et al., 2023). Cost heuristics can help expand the optimization search in the right direction 

(Deroussi et al. 2006; Andreatta et al., 2014a; Tabares & Drouin, 2021). Computational cost can 

also be reduced by intelligently cutting down on the number of simulations (Chen et al., 2000). 

All these methods can inspire and combine to tackle very complex problems and produce a less 

computationally expensive and less localized optimum. 

 

Once data acquisition, processing, and result delivery are streamlined, simulation and search 

optimization can be leveraged in real time. As real time systems progressively incorporate 

circumstantial data, uncertainty in the inputs is reduced, and the results gain both precision and 
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accuracy. Digital twins can be developed to integrate data from various sources and then be used 

to simulate various scenarios and optimize operations (Conde et al., 2022). Real time monitoring 

and decision support tools can assist in dynamic management of systems with high uncertainty 

and variability (Wilkins et al., 2008; Pohling et al., 2022; Kuster & Jannach, 2006; Saha et al., 

2021). The solutions that can be developed to support turnaround operations management 

depend greatly on the technologies that are available and can be effectively integrated. Some of 

the technologies considered for real time monitoring and or information sharing are: radio (Wu, 

2008), radio frequency identification (RFID) (García Ansola et al., 2012), mobile phone texts 

(Makhloof et al., 2014), smart sensors (Fei, 2022), and computer vision (Thai et al., 2020; 

Assaia, 2023). The continuously developing technologies are often determining the problem 

scope and system architecture. 

 

Airport Collaborative Decision Making (ACDM) framework is a leading effort in real time 

optimization and management at airports. Some European and Asian airports use the ACDM 

framework as an information system to allow multiple stakeholders to optimize the operational 

efficiency across the airport through transparency, data sharing and centralized management 

(Ball et al., 2007; Wilkins et al., 2008; ACRP, 2015; Eurocontrol, 2023a). That has been possible 

thanks to the endorsement of Eurocontrol, the European Organization for Civil Aviation 

Equipment (EUROCAE), and strong government regulations on airports, which have pushed 

airport stakeholders to accept a top-down management on airport operational efficiency. By 

continuously updating predictions and timestamping operational milestones, airports can 

optimize the use of their facilities while being resilient to deviations from the schedule. Such a 

collaborative and transparent process is not being implemented consistently in the US because of 

contractual, practical, and cultural differences (Okwir & Correas, 2014). Eurocontrol’s 

Collaborative Environmental Management (CEM) takes the principles of ACDM further, 

focusing on the management of aviation networks to reduce environmental impacts (Eurocontrol, 

2023b). These decision making structures are excellent frameworks in which the use of resources 

can be rendered more efficiently, and they drive other initiatives towards further data integration 

and scope expansion.  

 

There is a growing drive to integrate ACDM and CEM frameworks with turnaround operations 

management. ACDM focuses primarily on the ramp control and airside operations involving the 

aircraft, where the highest stakes are in terms of costs and emissions. However, turnaround 

operations are a central component of airside operations interconnected with all other airport 

processes. On one side, real time monitoring and simulation are fundamental to estimate the 

completion of turnaround operations and consequently manage air traffic efficiently (Oreschko et 

al., 2012; Schultz et al., 2012; Schultz et al., 2013; Evler et al. 2018; Asadi et al., 2020; Saggar et 

al., 2021; Schultz et al., 2022; Assaia, 2023). On the other side, effective air traffic management 

needs to inform turnaround operations stakeholders so that their resources can be allocated 

effectively (Okwir et al., 2017; Tabares & Drouin; 2021). Harmonizing the bidirectional 

relationships between turnaround operations and all of its interdependent systems is great 

opportunity within the field of Aviation 4.0 (Schmidt et al., 2016; Tabares & Mora-Camino, 

2017; Bubalo et al., 2017; Scala, 2019, Tabares, 2022), a term used to describe the integration of 

real time data acquisition, predictive systems, decision support tools, and automation in aviation.  
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Integrated, centralized, and optimized management are paradigms of increasing system 

efficiency that need to be complemented with organic and decentralized solutions. A unique 

system that is able to optimize global air traffic flow, all airport airside operations, all gate 

turnaround operations, while accounting for ubiquitous variability is not realistic. As previously 

described, even much smaller scopes of centralized management present challenges with 

computability, implementation, and connection to the realities of airport management. 

Segmenting problems by reducing the scope, isolating variability, removing variables that cannot 

be influenced, and making assumptions is fundamental towards making systems that can be 

actually developed. Agent-based modelling and simulations are effective at segmenting  and 

decentralizing management problems such as turnaround operations management, enabling 

stakeholders to independently develop robust schedules, limit the sharing of sensitive data, and 

also interface with centralized systems like ACDM (Ip et al., 2010; Kabongo et al., 2016; Zhang 

et al., 2018; Baer et al., 2019, Gök et al., 2023). In such decentralized systems, the hierarchy, or 

prioritization of decision making becomes determining (Weigert et. al., 2019; Jalilvand et al., 

2023). To some degree, sequencing the optimization of decision variables one by one is similar 

to performing a gradient descent search, and hence it has similar attributes: it is fast, it is 

representative of the decision making of individual stakeholders, but it will also likely get stuck 

in a local minimum. Balancing centralized and decentralized strategies is an essential challenge 

in the management of large interdependent and dynamic systems. 

 

In the plethora of above papers about simulation, optimization and scheduling of turnaround 

operations, the management of APUs, GP, and PCA is either oversimplified, omitted, or 

neglected. Especially when it comes to the departure sequence, the startup of the APU and the 

disconnection of GP and PCA are either simplified into short finalization procedures, merged 

with the pushback procedure, or ignored altogether. No paper has yet to address the question of 

when the APU should be started up, highlighting the need for more detailed data collection and 

relative simulation models. ACRP (2019) provided the most extensive review of potential causes 

for addressing gate electrification infrastructure but did not touch upon the crucial issue of 

schedule punctuality. Although resource allocation, communication between stakeholders, 

training crews, data collection and automation are discussed, ACRP did not detail that the 

uncertainty and dynamic nature of scheduling and managing turnaround operations could be one 

of the main drivers for the suboptimal use of gate infrastructure and therefore a considerable 

opportunity for improvement. Furthermore, the integrated management of APUs, GP, and PCA 

at the gate is a unique scope for development of ACDM and CEM frameworks that warrants 

more research. 

 

2.7 Policy  
 

Policy, regulation, and incentives can influence the importance of sustainable and efficient 

operation across many industries. For example, regulation by the California Air Resources Board 

(CARB) has greatly accelerated the use of hybrid and electric vehicles, while setting 

progressively more stringent requirements on vehicle emissions (Shaheen et al., 2020; Shaheen 

& Lipman, 2007). Their authority to define policy, enforce it, and incentivize change has shifted 

trends for the car industry, not only in California but also worldwide. In contrast, aviation lies in 

a grey area that resists scalable change. The regulatory landscape in aviation is fragmented and 

inconsistent because it is an industry whose operations span across different cities, regions, and 
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countries, each with their standards and interests. The main drivers of regulation and incentive 

systems in aviation are airlines, airports, government bodies and grant programs, research 

institutions, the United Nations, and certification programs. This section describes how policy 

and external incentive systems are relevant to APU, GP, and PCA use at airport gates. 

 

The ACRP (2012) survey found that no airport mandates the use of GP and PCA by airlines, 

even when the equipment is available. However, some airports have policies encouraging their 

use. Zurich International Airport (ZRH) in Switzerland is the only airport surveyed that requires 

airlines to use GP and PCA instead of APUs (Fleuti, 2018). Federal regulations, such as the 

Clean Air Act of 1977, also apply to airport activity, and the U.S. Environmental Protection 

Agency (USEPA or EPA) has established National Ambient Air Quality Standards (NAAQS) for 

pollutants like carbon monoxide, nitrogen dioxide, and particulate matter. Areas that exceed 

NAAQS levels are considered nonattainment areas and are subject to controls to achieve 

attainment. Under the CAA Amendments of 1990, federal agencies are required to comply with 

State Implementation Plans (SIPs) that are designed to bring nonattainment areas into 

compliance with the NAAQS. For most airport projects that receive federal funding or approval, 

the "General Conformity" regulations apply. These regulations require an assessment to 

determine if a proposed project in a nonattainment or maintenance area would result in total 

direct and indirect emissions that exceed the annual de minimis emissions levels specified in the 

regulations.  

 

Although NAAQS regulation directly affects the installation of GP and PCA systems, it does not 

ensure their use afterwards. If an airport is located in a nonattainment or maintenance zone, is 

subject to state air quality regulations, or has ambitious air quality and greenhouse gas emissions 

reduction goals, there may be more incentive to implement policies that encourage or require the 

use of gate electrification systems by airlines. Conversely, airports in regions with good air 

quality and no political or community pressure to address air quality may place less emphasis on 

strict use of gate electrification systems. Airport operators use lease and use agreements to 

enforce policies that apply to tenants in different administrative and operational aspects. These 

policies aim to minimize emissions and noise exposure, and they may differ among airports. For 

instance, around 25 airports in the U.S. have implemented regulations on the use of auxiliary 

power units (APUs) as a means of reducing emissions and noise exposure (ACRP et al., 2012). 

 

ACRP et al. (2012) elaborated on the National Environmental Policy Act (NEPA), which 

mandates federal agencies to evaluate the environmental consequences of any federal decision. 

The FAA is obliged to abide by NEPA requirements before undertaking any federal action. 

According to FAA guidelines, there are three avenues to fulfill NEPA standards, namely, 

categorically excluded projects, Environmental Assessments (EA), and Environmental Impact 

Statements (EIS). The usage of APUs alone does not fall under the category of a federal action. 

However, the installation of PCA or gate-based ground power at an airport may be considered a 

federal action as it could require modifications to the passenger terminal facilities and airport 

layout plan. While FAA Order 1050.1E does not explicitly exempt the installation of PCA and/or 

ground power from NEPA review, the installation of alternative systems is comparable to other 

actions that are categorically excluded, which is often used to fulfill NEPA requirements. 
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ACRP et al. (2012) also discussed the Voluntary Airport Low Emissions (VALE) program, 

established in 2004, which helps commercial service airports in designated nonattainment and 

maintenance areas implement emission reduction actions. The program allows airport sponsors 

to use the Airport Improvement Program (AIP) and Passenger Facility Charges (PFCs) to fund 

eligible emission reduction projects. There are conditions to obtain a VALE grant: the project 

must be quantifiable, the emissions would need to be surplus from other regulation, the reduction 

needs to be permanent, there must be sufficient support and funding, and the project must be 

federally enforceable. GP and PCA fall within this domain, which is why VALE is a critical 

driver of the requirements of those systems. As of March 2011, the FAA had funded the 

installation of PCA and/or ground power at 11 airports through the VALE program. However, 

the fulfillment of criteria of quantifiable is debatable since the current monitoring and emission 

estimating methodologies have low resolution. Calculating monetary and emissions savings with 

the methodologies in ACRP (2012) and ACRP (2019) might provide a broad approximation of 

airport-wide savings that justify initial investment in the infrastructure, but when considering the 

infrastructure of individual gates and individual operations, there is a gap in information to make 

sure VALE investments are quantifiable, supported, and enforceable. Requiring detailed 

monitoring and reporting of GP and PCA use to satisfy VALE grants would ensure that their 

money is used to their fullest potential and represent the real savings at airports.  

 

Overall, regulation and incentive systems could provide pressure for turnaround operations 

stakeholders to improve their gate electrification. However, without a consistent approach in the 

international and fragmented business of airport operations, regulatory approaches might prove 

challenging. Furthermore, regulatory approaches lose their influence without a systematic way to 

monitor and enforce them.  
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3. Ground Power Use Monitoring  
 

This section of the dissertation contains the original study that prompted a deeper investigation 

into the problem of gate electrification use. An initial exploratory analysis of SFO energy data in 

2018-2019 revealed that approximately 20% of turnaround operations were not using any of GP 

provided and many others were using it for much less time than their total turnaround operations 

time (Achatz Antonelli et al., 2019). I have since redesigned the analysis, further detailed the 

dissection of each turnaround operation, and applied the method to new data. I also provided 

SFO with a prototype analysis software in a Python script that could automatically perform the 

analysis on their databases. Although in an ideal scenario data acquisition for GP use monitoring 

would happen in real time, this retrospective analysis provides insight and the foundation for the 

design of a real time airport GP monitoring system. 
 

3.1 Introduction  
 

Deciphering the GP under-use problem is the first step towards fixing it. Existing literature 

provides insights on its failure mechanisms and estimates of its importance towards airport 

sustainability. However, any approach that is either too narrow or too broad is more of an 

acknowledgement than an attempt to mitigate it. Only a deeper dive reveals that the problem is a 

highly heterogeneous one, consisting of several complex details and a significant variability in 

output performance. An integrated, recurrent, comprehensive, and high-resolution monitoring 

system may offer a step towards improving the use of gate electrification infrastructure. It is the 

key towards enabling benchmarking, accountability, enforcement mechanisms, and 

policymaking for airports. By identifying and mitigating negative practices, while making 

positive practices more consistent across the industry, it is feasible to shift the overall 

performance regarding maximizing the use of gate electrification.  

 

The following sections will describe a detailed method towards analyzing GP use (Section 3.2), 

results from a case study on SFO (Section 3.3), a discussion on the relevance of this work 

(Section 3.4), and conclusions and future work regarding GP monitoring (Section 3.5). 
 

3.2 Methods  
 

A detailed analysis of the consumption of GP energy aims to assess real-world gate 

electrification use patterns for individual operations. Instead of estimating average utilization 

rates for each gate, this research monitors individual operations, before aggregating all the 

results. Although this approach greatly increases the number of inputs, it offers valuable insights 

not obtainable otherwise. 

 

The methods used to conduct this analysis include: (i) data collection and cleaning, (ii) data 

fusion, (iii) prediction modelling, (iv) operation analysis, and (v) emission analysis. Figure 2 

outlines the framework of the method, connecting databases, scripts, models, and reports. Each 

component is described in the following sections, both theoretically and practically. The methods 

are first developed generally so they can be replicated at any airport with the relevant data, and 

then applied to San Francisco International Airport (SFO) as a case study. 
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Figure 2: Framework for monitoring, predicting, and assessing GP use.                          

Numbering refers to sections with further explanation. 
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3.2.1 Data Collection  
 

After identifying a case study airport, the first step is to acquire the relevant databases. This 

analysis can be replicated for any airport that provides access to the following databases. 

 

Gate Energy Consumption Database  

The gate energy use database is recorded from meters that measure the cumulative energy 

consumption for the 400Hz GP supply for a single gate (Figure 3). Metering is done in timesteps, 

e.g., every 5 minutes. The average power consumption for each timestep can be computed from 

the cumulative energy at each timestep. These data points need to be recorded in intervals 

smaller than or equal to the typical durations of GP use and the minimum time between two 

consecutive gate operations, otherwise it is impossible to differentiate whether the power was 

consumed by two aircraft that share the same metering timestamp. GP meters have often been 

installed at gates for electricity pricing purposes, and often only record data every hour, which is 

not sufficiently granular. I recommend data points that represent at most an interval of 10 

minutes, otherwise the interval might include consumptions from separate operations.  

 

Additionally, note that this metering does not include any electricity supplied by potential mobile 

GP units (GPUs). If a gate is being powered significantly with mobile GPUs, inferring APU use 

by the lack of GP use would not be appropriate. Furthermore, measurement outliers and system 

errors are common. A simple diagnostic of the consumption can help identify any broken or 

flatlining meters, which must be excluded from the analysis. The times for which the power 

consumption measurements spike to unrealistic magnitudes (extremely large or negative for a 

brief period) and the hours surrounding a daylight savings change should be marked as 

measurement errors and be excluded from the analysis.  

 

 
Figure 3: Sample power metering data for 12 hours of operations at a single gate 
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Meter-to-Gate Mapping Database 

The meter-to-gate mapping database maps a gate name to its respective GP meter. This 

information can be found in airport documentation or by inquiring with the electrical engineers 

responsible for the 400Hz GP systems. It must consider any name changes in the data collection 

period, should there be any.  

 

Aircraft Gate Operations Database  

The aircraft gate operations database describes aircraft movements across the airport, from gates 

to runways. Each arrival or departure is represented by a row in the database with reference 

numbers, flight information, aircraft model, gate, airline, flight reference numbers, scheduled in 

block and off block times, actual in block and off block times. In block and off block times refer 

to the times at which the chocks for the aircraft wheels are inserted and removed, respectively, 

and they mark the beginning and end of a turnaround operation. The aircraft operation database 

typically provides separate rows for the arrival operation and the departure operation, so they 

need to be combined into a single row so that gate and reference numbers match. Any operation 

without the required data needs to be excluded from the analysis. Turnaround operations with 

durations greater than 3 hours should also be excluded from the analysis, because in such cases it 

is likely that an aircraft is shut down entirely.  

 

3.2.2 Data Fusion  
 

Both the metering and operational databases index their data based on their event time and gate 

at which the event occurs. By mapping gate names to their respective energy meters, aircraft 

operations at the gate and their energy use can be merged. As a result, if energy is consumed in a 

time interval, it can be directly associated with a specific aircraft reference number, aircraft 

model, gate, airline, scheduled in block and off block times, and actual in block and off block 

times. 

 

The in block and off block times of a gate turnaround operation often do not align with the time 

intervals from the metering database, leading to some intervals being only partially occupied. To 

address this misalignment, a new parameter called Ratiogate is added to represent the fraction of 

time within a time interval for which an aircraft was present at the gate. For example, if an 

aircraft parked at 10:03, the data point representing the time interval between 10:00 and 10:05 

will have a gate in ratio of 0.4. 

 

The merged database describes the effective measurement of GP utilization rates. All data points 

representing time intervals in which significant power was drawn indicate that GP was being 

used. By inspecting the lowest consumption rates across many gates, 2 kW was identified as an 

effective threshold to differentiate base fluctuations from idle systems from times power is being 

drawn. This database can be used (i) to provide statistics on power use for single or multiple 

operations and (ii) to estimate GP use for an operation by adding up all the time intervals in 

which its use was recorded. However, detail can be lost using this simple sum because of the 

granularity of the data. If some electrical meters collect data every 15 minutes, the uncertainty 

with the beginning and end of GP use would be large, especially when considering operations 

under an hour. Any time interval with partial power consumption would be associated with full 

GP consumption, systematically overestimating the actual GP use time. Additionally, such a 
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procedure leaves little room for consideration on the actual magnitude of power demand. Any 

interval with partial GP consumption would be represented by a measurement of energy 

consumed that is less than the actual power demand. Predicting the instantaneous magnitude of 

GP demand will provide the missing information to address this granularity problem. 

 

3.2.3 GP Prediction Modelling 
 

Using machine learning techniques, a procedure is proposed to estimate the utilization rates of 

GP with a higher precision than the granularity of the metering data. Accurate prediction models 

enable airports to forecast future power demand, to then estimate the instantaneous power 

consumed without a direct input from the metering systems. If the consumption rate of GP for a 

certain operation can be effectively predicted, it is possible to interpolate the exact time at which 

it was turned on and off, and therefore make a detailed estimate for GP utilization rate.  

 

Before introducing any prediction models for the aircraft instantaneous power, it is important to 

select the appropriate data to train them. Only data points that confidently represent full power 

demand across their time interval should be included in the training data. Any interval that has 

Ratiogate<1 should be excluded because the cumulative energy consumption measurement would 

not represent power used if the aircraft is not present. Any interval with a reading under a 

threshold 2 kW should also be excluded because it might represent times in which the aircraft is 

likely relying on the APU for its power demand. Additionally, time intervals immediately 

preceding or following other intervals with readings under 2 kW should be excluded because 

they might represent times in which GP is only partially used. Figure 4 displays the selection of 

training data from a sample operation. Given these exclusions, we can assume the remaining 

intervals contain cumulative energy measurements that can be translated into GP demand. 

 

If the dataset includes nightly data of operations occurring between 12 AM and 5 AM, the 

system filters out the data points that show standby GP consumption. An aircraft that stays at the 

gate overnight sometimes shuts down partially or completely, reducing the aircraft’s power 

demand to quantities not higher than a threshold of 7 kW. 7 kW is an arbitrary value obtained by 

visually inspecting nightly GP consumption. Nightly data is relevant, but it could also make the 

prediction for intraday power demand less accurate. If the nightly data is removed, intervals 

immediately preceding or following other intervals with readings under 7 kW should be 

excluded for consistency because they could represent times in which GP was only used 

partially. Figure 5 displays a typical nightly operation in which GP drops to approximately 5 kW.  
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Figure 4: Selection of prediction data for a sample intraday turnaround operation at SFO 

 

 

 
Figure 5: Selection of prediction data for a sample overnight turnaround operation at SFO 
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To construct prediction models, it is necessary to define each time interval as a vector that 

contains readings for power consumed, and other relevant features. Some of the most relevant 

features are shown in Table 3, although only those italicized were used. To justify the testing of 

each feature, the right column of the table shows the potential influence mechanism that can 

describe the causal relationship between the feature and GP demand.  

   

Table 3: Relevant features to predict energy demand  

Feature Name Feature Type Influence Mechanism 

Aircraft Model Categorical Aircraft Design 

Airline Categorical Airline Systems and Management 

Gate Number Categorical Gate Systems and Management 

Domestic/International Categorical Aircraft Configuration 

Time after In Block Time Numerical Turnaround Arrival Sequence 

Time before Off Block Time Numerical Turnaround Departure Sequence 

Total Turnaround Time Numerical Operation Length 

Time of Day Categorical Hourly schedules 

Day of Week Categorical Weekly staffing 

Ambient Temperature Numerical 
Aircraft Heating Ventilation and 

Air Conditioning (HVAC) systems 

Actual-Predicted Off Block Time Numerical Delay 

 Note: Italicized features were used to construct prediction models.   

 

With a large set of refined and labeled data, machine learning models can be trained and tested, 

as can be seen in Section 3.3.5. We test 7 models: (1) decision tree regression, (2) neural net 

regression, (3) k-nearest neighbors regression, (4) linear regression, (5) lasso regression, (6) 

support vector machine regression, and (7) random forest regression. For obtaining better 

predictive models, one must use large amount of training data combined with cross-validation 

through random sampling. The dataset needs to be split into a training set, a test set, and a 

validation set. For each model, the validation set was used to tune the models’ hyperparameters 

to optimize accuracy as dictated by the Root Mean Squared Error (RMSE) (Eq. 1) and Mean 

Absolute Error (MAE) (Eq. 2). Other criteria may also be introduced. An assessment must be 

made of which model performs best.  

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖 − 𝑦𝑑𝑎𝑡𝑎,𝑖)
2𝑛

𝑖=1

𝑛
 (Eq. 1) 

 

 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =  
1

𝑛
∑ |𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖 − 𝑦𝑑𝑎𝑡𝑎,𝑖|

𝑛

𝑖=1
 (Eq. 2) 
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Once the models are trained, providing the features of a certain time interval from an operation 

should output a predicted power demand, even for time intervals that were originally not 

included in the training set. When GP is being used, the order of magnitude of the predicted vs. 

actual power should be similar. In contrast, when GP is not used or is disconnected, the 

magnitude of predicted power demand should not resemble the one for measured GP. The RMSE 

and MAE are used to determine the best prediction model, which is then applied on the whole 

data set, not only the vectors that were used to train the models (JJ, 2016). 

 

3.2.4 GP and APU Utilization Rate and Energy  
 

Even if the data granularity is insufficiently detailed, it is possible to make estimates on the exact 

time GP started to be used by observing the ratio between actual power and predicted power. For 

example, if the expected power consumption during a 5 minute interval was 20 kW but instead 

was measured as 8 kW, one could estimate the power that was being drawn for 40% of the time 

or 2 minutes. With this logic, the observer can estimate the beginning and end of GP use for 

every operation. The error in this estimation will be proportional to the error in GP demand 

prediction. For each time interval, RatioGP,i is defined as the fraction of time that GP was used, 

and presented as the ratio of the measured 𝑃𝑜𝑤𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖  and the predicted 𝑃𝑜𝑤𝑒𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 

(Eq. 3). 

 

𝑅𝑎𝑡𝑖𝑜𝐺𝑃,𝑖 =
𝑃𝑜𝑤𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖  

𝑃𝑜𝑤𝑒𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 
 (Eq. 3) 

 

Since the predicted power can be estimated for each time interval i, one can calculate the 

predicted cumulative energy EnergyGP for its n time intervals using Equation 4. 

 

 

𝐸𝑛𝑒𝑟𝑔𝑦𝐺𝑃 = ∑ 𝑃𝑜𝑤𝑒𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 × 𝑅𝑎𝑡𝑖𝑜𝐺𝑃,𝑖

𝑛

𝑖=0
 (Eq. 4) 

 

The cumulative energy consumption was already provided in the original data, so it can be 

compared to the predicted energy consumption to assess the validity of the prediction model. 

 

If GP cables are installed at all gates, and alternative GP unit use is rare, the observer can assume 

that whenever an aircraft does not use GP, it must be using its APU. RatioAPU,i is defined to be 

the fraction of a time interval for which GP was not used and is calculated across the whole 

dataset. Based on this assumption, Equation 5 is used. 

 

𝑅𝑎𝑡𝑖𝑜𝐴𝑃𝑈,𝑖 =  𝑅𝑎𝑡𝑖𝑜𝑔𝑎𝑡𝑒,𝑖 − 𝑅𝑎𝑡𝑖𝑜𝐺𝑃,𝑖 (Eq. 5) 

 

This enables us to estimate the times for both GP and APU use within each time interval i of 

duration di. Equations 6 and 7 show the calculation for GP and APU cumulative use times for n 

time intervals, TGP and TAPU, respectively.  
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 𝑇𝐺𝑃 = ∑ 𝑑𝑖 × 𝑅𝑎𝑡𝑖𝑜𝐺𝑃,𝑖

𝑛

𝑖=0
     (Eq. 6) 

 

𝑇𝐴𝑃𝑈 = ∑ 𝑑𝑖 × 𝑅𝑎𝑡𝑖𝑜𝐺𝑃,𝑖

𝑛

𝑖=0
 (Eq. 7) 

 

Similarly, the energy demand from the APU EnergyAPU can be estimated from n time intervals by 

using Equation 8. 

 

𝐸𝑛𝑒𝑟𝑔𝑦𝐴𝑃𝑈 =  ∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 × 𝑅𝑎𝑡𝑖𝑜𝐴𝑃𝑈,𝑖  
𝑛

𝑖=0
 

   

(Eq. 8) 

I estimate the number of times the APU was initiated by determining the number of times there 

is a switch in power consumed. Before APU power is consumed, the APU needs to start so that 

the turbine can reach the required rotations per minute (rpm) or electrical power generation. This 

process can take up to 3 minutes, depending on the APU type. Based on this estimate, 3 minutes 

of APU time on a no-load condition were added to each operation for every time the APU was 

started, although the power consumed in those times originated from GP.  

 

Figure 6 illustrates this dissection of power consumption for a partially successful operation 

(solid blue line), as compared to the neural network prediction model from Section 3.2.3 (solid 

red line). The Ratiogate describes the total time the aircraft is at the gate (dotted purple line), 

which can be associate with either APU use (dotted light blue line) or GP use (dotted yellow 

line) depending on whether the actual power was lower or greater than the threshold power (solid 

green line), respectively.  
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Figure 6: Power analysis for sample operation of a Boeing 737-900 aircraft with total GP time 

of 32.7 min and APU time of 45.28 min 

 

Two metrics were created to assess the performance of each operation with regards to GP: 

• GP Utilization Rate, which refers to the ratio of time GP was used versus the total time 

the aircraft was at the gate between the in block and off block time.  

• Total APU time, which refers to the number of minutes, both in normal and start mode, 

that the turbine was operating.  

 

3.2.5 APU Fuel and Emissions  
 

The data from Section 3.2.4 can be used to estimate the total tailpipe emissions and the excess 

fuel consumption of the APU used at the gate by combining the deduced APU used times with 

APU emission rates specific to different aircraft categories. ICAO (2011), ACRP (2012), and 

Winther et al. (2015), provide the data for fuel flows and emissions rates, shown in appendix 

Tables A1, A2, A3, and A4. The pollutants were: NOx, NO2, CO, HC (soot), and PM. The total 

emission estimates include both the emissions from the “start” or “no-load (NL)” modes from 

Winther (2015) and the equivalent “normal” or “environmental control systems (ECS)” modes of 

operation of the APU described in ACRP (2012). An APU startup time of 3 minutes was 

assumed, since there are no data inputs to measure this value (ACRP et al., 2012). The total 

emission estimate does not capture the full cost-benefit assessment or life-cycle assessment of 

the gate operation, but it does provide insight into the most significant tail-pipe emissions that 

occur at the gate.  
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3.2.6 Scenario Comparison 
 

Alternative hypothetical scenarios can be used to evaluate the potential for improvement in GP 

use in each operation. This dissertation proposes 2 scenario models: (i) a worst-case scenario in 

which the operation uses the APU through the whole turnaround and (ii) an ideal scenario in 

which the operation uses GP for most of the turnaround except 5 minutes after in block time and 

10 minutes before off block time (including the 3 minute spin-up). For each of these scenarios 

the relative fuel and emissions were calculated. The data from the two scenarios provide a 

baseline to calculate the currently achieved saving and the potential savings for each operation. It 

is uncommon yet possible for a turnaround operation to use APU even less than assumed in the 

ideal target scenario of 15 minutes, for which minimum potential savings needs to be limited by 

0 (no negative savings). 

 

3.2.7 Aggregated Database 
 

In the last step, a single comprehensive database should aggregate all the information from the 

gate operations that is analyzed. This database can be filtered on attributes such as gate, aircraft 

model, and airline, to provide customizable groupings and samples, for which values can be 

compared or summed. The most relevant parameters to observe are GP demand, GP utilization 

rate and total APU use. Different metrics can be plotted and compared against each other to 

show relationships between them. Sections 3.3.4, 3.3.6, and 3.3.7 show the results that can be 

obtained by manipulating the aggregated database.  

 

3.3 Results of SFO Analysis 
 

The results section applies the selected methods to a data set containing 343,721 5 minute data 

vectors representing 21,486 operations. All the results are indicative of the sample of operations 

that is analyzed and not the entire population of SFO operations.  

 

3.3.1 Databases 
 

SFO provided detailed data from several databases for a continuous time interval between April 

1st, 2019, and January 31st, 2020. This provides a large sample of operations during which the 

airport is operating near its highest capacity, before the Covid-19 pandemic drastically curbed air 

traffic. 

 

Ground Power (GP) Metering Database 

Schneider Electric collects raw data on energy consumption from meters measuring the 

individual GP systems for most gates at SFO. In March 2019, for the purpose of this research, 

SFO reprogrammed their meters to sample total cumulative energy consumption at each meter 

every 5 minutes instead of every hour. Forty-nine meters were successfully identified, and their 

data were collected. During the data collection period, SFO had 120 commercial gates, but many 

were either under construction or did not have a GP meter needed for this analysis. For each 

gate, the average power consumption in kW was computed from the cumulative energy. A 
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diagnostic of the consumption was used to identify any broken or flatlining meters, which were 

excluded from the analysis. The rare times for which the power consumption was unrealistic 

(extremely large or negative for a brief period) and the hours surrounding a daylight savings 

change were marked as measurement errors and excluded from the analysis.  

 

Meter to Gate Mapping  

This database is a map between gate name and the respective GP meter. This information can be 

found in airport documentation or by inquiring with the electrical engineers responsible for GP 

systems. It must consider any naming changes in the data collection period, such as the airport-

wide gate renaming SFO executed on October 16, 2019.  

 

Aircraft Operations Database 

Aerobahn collects real data on the operations of aircraft at SFO through several sensors and 

image recognition technologies. For each arrival and departure movement at the airport, 

Aerobahn records the metadata of the flight and the times at which specific operations were 

performed.  

 

3.3.2 Gate Diagnostics 
 

The initial results obtained in the analysis pertain to the metering data. They revealed the poor 

reliability of the data, the limited scope of the analysis, and the somewhat deficient state of 

metering GP at SFO.  

 

The first observation regarding gate metering data was that a lot of data were missing. I initially 

assumed that the data were missing because Terminal 1 was undergoing major renovations. 

However, many operating gates were either absent from the metering database or their readings 

were completely flatlining, meaning that their damaged data were not measured or lost.  

 

Another observation was the presence of a continuous “phantom” energy load at all functioning 

gates. This phantom load varied for different gates but was typically around 0.88 kW 

consistently throughout the metering when an aircraft was not present at the gate. Table A14 in 

the appendix lists the phantom load for each gate. It is not possible to infer whether the phantom 

load also occurs when the GP system is in use. This is a small power load in comparison to that 

of GP systems that are in use, but because it is continuous, it represents between 10% and 30% 

of the overall yearly energy demand of a GP system depending on the gate. 

 

Figure 7 shows the probability distribution of all GP readings across the whole dataset. Up to 2 

kW power consumption, the power is assumed not to be drawn. Upon inspection, power 

consumptions between 2 kW and 7 kW were either nightly standby operations or associated with 

regional jets CRJ-200, CRJ-700, or Embraer 175 aircraft. For this reason, a threshold of 7 kW 

was chosen to separate nightly standby power from typical intra-day power consumption for 

most aircraft models (see Sections 3.2.3 and 3.3.5). 
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Figure 7: Probability distribution of GP measured across the sample 

Throughout the metering data, occasional spikes occur in consumption beyond the reasonable 

limits of aircraft power demand. In some cases, the power reading becomes negative for a brief 

time interval, which is not realistic. Although they are rare, these measurement errors raise 

doubts about the reliability of data acquisition from the meter. 

 

The granularity of the data from the metering system is not consistent. Gates record energy 

consumption at different intervals (1 h, 30 min, 15 min, 10 min, 5 min, and more) and even 

single meters could switch between different granularities. However, 98.8% intervals were 5-

minutes long, allowing for sufficiently consistent data to train a model to perform the analysis. 

 

3.3.3 Single Operations 
 

Each operation is summarized with a graph and a table indicating results. The operation in Figure 

8 was a well-performing example, with GP being used during the interval that lasted between 7 

min after on block time and 11 min before off block time. Tables 4 and 5 represent the relative 

estimates for energy, fuel, and emissions. Notice that when compared to the estimates for the 

worst-case scenario, the amount of CO and HC emission measured are higher. This is because 

the worst-case scenario does not include the APU engine startup, which is responsible for a large 

part of the incomplete combustion and soot generated.  

2 kW 7 kW 
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Figure 8: Sample operation of an Airbus A319 aircraft from airline J with GP use time of 36.1 

minutes and APU use time of 17.9 minutes 

 

Table 4: Energy totals for the sample operation in Figure 8 

Power Prediction Data (kWh) Value 

Total Real Energy 14.76 

Total GP Energy Predicted 14.08 

Total APU Energy Predicted 6.924 

Grand Total Energy Predicted 21.01 
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Table 5: Emission and fuel totals for the sample operation in Figure 8   

Rate 

Source 

Emission 

Type 

Calculated from Operation Data Scenario Totals 

No Load (kg) ECS (kg) 
Totals 

(kg) 

Worst 

(kg) 
Best (kg) 

Winther et 

al. (2015) 

NOx 0.036 0.240 0.280 0.725 0.179 

NO2 0.012 0.082 0.094 0.248 0.061 

CO 0.370 0.120 0.500 0.377 0.271 

HC 0.270 0.028 0.290 0.085 0.152 

PM 0.0031 0.0092 0.0120 0.0279 0.0077 

Fuel 10.00 30.00 40.00 90.00 25.00 

ACRP 

(2012) 

 
(EI=Equivalent) 

Fuel 7.56 35.39 42.95 106.92 27.54 

EI-CO2 23.85 111.64 135.49 337.33 86.89 

EI-CO 0.240 0.202 0.442 0.612 0.442 

EI-HC 0.049 0.015 0.065 0.046 0.035 

EI-NOx 0.041 0.242 0.284 0.732 0.183 

 

3.3.4 Power Consumption Statistics 
 

By integrating 5 minute power measurements from thousands of operations, the resulting 

database can generate statistics on the consumption patterns. Figures 9 and 10 show the 

consumption trends relative to different aircraft models and aircraft design groups, respectively. 

They do not include data with power lower than 7 kW, as that would represent standby power 

demand that typically occurs at night. Figure 9 provides the number of data points for each 

aircraft model in the axis, showing that some aircraft models have few data points.  

 

On a broad level, larger aircraft consume more power, although there is a large variability for 

each aircraft model and even for each individual operation. Figure 11 shows a scatterplot 

between the passenger capacity of the operations and the observed GP demand, which 

demonstrates an approximately logarithmic relationship.  
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Figure 9: Ground power (GP) consumption over 7 kW for different aircraft models                  

(data in appendix Table A6)  

 

 

 
Legend Regional Jet Narrow Body Wide Body Jumbo-Wide Body 

Body Body 



38 

 

  
Figure 10: Ground power (GP) consumption over 7 kW for different aircraft design groups.  

(data in appendix Table A8)  

 
Figure 11: Ground power (GP) consumption vs. passenger capacity (with power>7 kW) 
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The data can also be grouped by gate as shown in Figure 12. International gates (G91-G100) 

have greater power demands because they often accommodate the largest aircraft. Specific gates 

can accommodate the largest aircraft (A5). Energy spikes may generate outliers. 

 
 

 

Figure 12: Ground power (GP) consumption for different gates (data in appendix Table A7) 

Legend                                Single Airline                                       Mixed Use 
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GP demand statistics are shown for ten airlines in Figure 13. The distribution of power 

consumption for each airline is largely related to their fleet mix; airlines with many international 

long-range flights tend to have larger aircraft and therefore consume more power, as seen by 

comparing Figures 13 and 14. 

  
Figure 13: Ground power (GP) consumption statistics of airlines A through J                        

(data in appendix Table A9)  

 
Figure 14: Aircraft design group (ADG) fleet mix for each airline A through J 
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3.3.5 Prediction Modelling 
 

I trained and tuned seven machine learning models using each model’s hyperparameters. Each 

model was optimized using cross-validation and compared using RMSE and MAE as measures 

of accuracy. A visual representation of the models on a sample operation is shown in Figure 15. 

Table 5 summarizes performance of each of these models over the set of valid GP consumption 

data. I chose the neural network as the most responsive model to predict GP demand across the 

whole dataset. Its hyperparameters are a Limited-memory Broyden Fletcher Goldfarb Shanno 

(LBFGS) solver, a maximum iteration of 2,000, and a Rectified Linear Unit (ReLU) activation 

function. The neural network performs best with two hidden layers, each with five neurons.  

 

 

 
Figure 15: Time graph of predicted vs. actual GP for a sample B738 gate operation 
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Table 6: Summary of performance for models trained to predict power against the measured 

data, ordered by increasing MAE. Coloring scheme is consistent with Figure 15. 

Model                    

Type 

Model 

Hyperparameters 

Root Mean Squared 

Error (RMSE) 

Mean Absolute 

Error (MAE) 

Neural Net Regressor 

Solver = LBFGS 

Activation = ReLU 

Hidden Layers = 5,5 

Max Iterations = 2000 

10.882 7.715 

Decision Tree Regressor Max Depth = 20 11.230 7.853 
Lasso Regression Alpha= 0.1 12.393 8.025 

Linear Regression  11.652 8.146 

Model Average  11.942 8.227 

K-Nearest Neighbors 

Regressor 
K=30 12.016 8.363 

Support Vector Machine 

Regressor 
Kernel = RBF 

Degree = 3 
13.155 8.914 

Random Forest Regressor 
Estimators = 100 

Max Depth = 20 
14.081 9.567 

 

 

3.3.6 GP Utilization Rate and Total APU Time 
 

GP utilization rate and total APU time are performance indicators used to indicate if gate 

electrification infrastructure is being utilized to its fullest potential. 

 

Figures 16 and 17 show GP utilization rates for the whole dataset. Figure 16 displays that 

approximately 36% of operations use no GP at all. Figure 17 focuses on the remaining 64% of 

operations and shows their smoother distribution of GP utilization rates.  
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Figure 16: GP utilization rate per operation across the whole dataset with an average of 40.3% 

and a standard deviation of 34.4%. The y intercept of the CDF is 36.2%, showing operations 

that used no GP at all.  

 

 

 

 
Figure 17: GP utilization rate per operation that consume at least some GP across the whole 

dataset with an average of 62.5% and a standard deviation of 21.2% 
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Similarly, Figures 18 and 19 represent the distribution of APU use time across the whole dataset. 

Whereas Figure 18 shows the total APU time for each operation, Figure 19 shows the APU time 

prior to the off block time. Both distributions were fitted to a lognormal distribution function. 

Only 15.38% of operations used GP less than 15 minutes, which is an ideal use time policy 

applied at some European airports. Less than 35% of operations use the APU less than 25.63 

min, which is the maximum default use time suggested in ACRP (2012) to estimate APU costs 

and emissions.  

 

 
Figure 18: Total APU time per operation across the whole dataset with an average of 43.98 min 

and a standard deviation of 38.36 min 

 
Figure 19: APU use time before off block time per operation across the whole dataset with an 

average of 21.18 min and a standard deviation of 14.27 min 
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Figure 20 plots the APU time before off block time against the recorded delay, which is the 

difference between the scheduled off block time and the actual off block time. The results are 

shown in a range of delays between -15 minutes and 55 minutes, which capture 92% of the 

results. A negative delay is possible, as the scheduled off block time may be altered to optimize 

airside traffic; the aircraft do not leave before they are told to do so, rather the schedules are 

dynamic. The average APU use before off block time shows a strong positive logarithmic 

relationship with the delay. Between a delay of -10 minutes and 10 minutes, each additional 

minute of delay is likely to result in half a minute of additional APU use. This gradient peters out 

with larger delays. This result highlights how GP use is not resilient to the shifting schedules of 

turnaround operations, especially with short-term variability in off block time. 

 

 
Figure 20: APU use time before off block time versus off block time delay 

 

In an analogous way that power consumption statistics were presented (Section 4.4), the metrics 

of GP utilization rate and total APU use time can be grouped by aircraft model and gate. Figures 

21 to 24 illustrate the variability of these performance metrics, accompanied by their data shown 

in appendix Table A9, A10, A11, and A12. On a broad scale, Figures 21 and 22 show that most 

narrow body aircraft have the highest GP utilization rates and the lowest APU use times. Some 

outliers, such as the low GP utilization rate of the Airbus A320 Neo or Airbus A330-200, raise 

concerns on what could be the cause of their inferior performance and warrant further 

investigation. Most wide body and jumbo wide body operations not only show a lower GP 

utilization rate, but they have the longest APU use times and the highest emission rates. Smaller 

regional aircraft show some of the poorest GP utilization rates in the data set, although the APU 

use times are only a fraction of wide body aircraft, and their emission rates are smaller.  
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Figure 21: Ground power (GP) utilization rate of different aircraft models (Appendix Table A10) 

 

 

 
Legend Regional Jet Narrow Body Wide Body Jumbo-Wide Body 

Body Body 



47 

 

 

 
Figure 22: Total auxiliary power unit (APU) time of different aircraft models                    

(Appendix Table A12)  
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Figure 23: Ground power (GP) utilization rate for different gates (Appendix Table A11) 

 

Legend                                Single Airline                                       Mixed Use 
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Figure 24: Total auxiliary power unit (APU) time of different gates (Appendix Table A12) 

 

Legend                                Single Airline                                       Mixed Use 
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Figures 23 and 24 show that the gate also has an important impact on GP use. Really low GP 

utilization rates at specific gates such as F79 and A3 warrant further investigation in their cause, 

which may be attributed to a malfunction, maintenance, or measurement problem. Figure 24 

groups single-use gates by airline to show how the GP utilization rate at gates is usually highly 

dependent on the airline that manages them. For shared use gates, the GP utilization rate is 

highly variable, although typically lower than the best performing single-use gates. These results 

suggest that GP under-use is an issue rooted in inconsistent gate management, rather than an 

intrinsic problem associated with every operation.  

 

To evaluate this hypothesis, the operations across the entire dataset were grouped by airline. 

Tables 7 and 8 summarize how different airlines show vastly different performances according to 

every metric. Airline B not only had the best overall GP utilization rates, but they also had the 

lowest rate of operations that failed to use any GP and the lowest average APU use time. Airline 

D shows almost no GP use, attributed not only to the fact that most of their operations fail to use 

any GP, but also to the fact that operations that do use GP have low GP use and long APU use 

times. Furthermore, different airlines show very different APU use times before off block time 

(assuming at least some GP use), indicating very different procedures to manage the departure 

sequence. No clear pattern is evident when comparing these results to the airline’s average delay. 

Since these results are indicative of very different standards and resulting performance of use of 

sustainable infrastructure, the airline names had to be withheld. These results underline the 

importance of having airport-airline accountability and the current discrepancy between expected 

and actual performance.  
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Table 7: Average GP utilization rate for different airlines                                                                  

(Conditional formatting: green gradient for positive metrics, red gradient for negative metrics) 

Airline 
Number of 

Operations 

Overall Average GP 

Utilization (%) 

Overall Average GP 

Utilization of 

Operations With no 

GP Use (%) 

Average GP 

Utilization for 

Operations that use 

GP (%) 

A 1,076 36 41 61 

B 4,356 50 18 61 

C 1,732 28 54 60 

D 330 1 97 30 

E 284 11 78 53 

F 508 14 80 68 

G 372 15 72 53 

H 61 47 20 59 

I 111 39 30 56 

J 12,656 43 33 64 

 

Table 8: Average APU use times for different airlines                                                      

(Conditional formatting: red gradient for negative metrics) 

Airline 

Average APU Use Time (min) 

Average 

Delay 

(min) 
All Operations 

Operations with 

no GP Use 

Operations that use some 

GP 

Total Across 

Operation 

Before Off 

Block 

Time 

A 35 43 27 5 16 

B 34 56 29 9 9 

C 51 66 31 11 14 

D 106 107 50 24 7 

E 58 65 34 11 29 

F 67 76 26 4 16 

G 74 94 35 15 22 

H 75 136 61 30 1 

I 75 128 55 26 19 

J 41 63 29 10 6 
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3.3.7 Aggregated Results 
 

Although analyzing individual operations reveals the intricacies and variability of the GP use 

problem, the aggregation of all the results provides a way to estimate its size and represent it 

with average values. Table 9 provides the total results for APU fuel consumed and relative 

emissions released, whereas Table 10 provides the averages for a single operation.  
 

Table 9: Total APU related fuel consumption and emissions across the entire dataset 

Rate 

Source 

Emission 

Type 

Calculated from Operation Data Scenario Totals 

No Load (kg) ECS (kg) 
Totals 

(kg) 

Worst 

(kg) 
Best (kg) 

Winther et 

al. (2015) 

NOx 643 11,959 12,602 21,810 3,572 

NO2 219 4,090 4,309 7,457 1,221 

CO 5,134 7,779 12,913 13,162 5,242 

HC 3,341 1,152 4,493 2,164 2,287 

PM 48 488 536 870 162 

Fuel 155,527 1,585,984 1,741,512 2,827,649 523,161 

ACRP 

(2012) 

 
(EI=Equivalent) 

Fuel 123,202 1,654,361 1,777,562 3,037,148 528,956 

EI-CO2 388,701 5,219,508 5,608,209 9,582,203 1,668,858 

EI-CO 3,200 8,508 11,708 15,811 11,708 

EI-HC 652 668 1,320 1,233 577 

EI-NOx 707 11,808 12,515 21,698 3,540 
 

Table 10: Average APU fuel consumption and emissions across the entire dataset 

Rate 

Source 

Emission 

Type 

Calculated from Operation Data Scenario Totals 

No Load (kg) ECS (kg) 
Totals 

(kg) 

Worst 

(kg) 
Best (kg) 

Winther et 

al. (2015) 

NOx 0.030 0.557 0.587 1.015 0.166 

NO2 0.010 0.190 0.201 0.347 0.057 

CO 0.239 0.362 0.601 0.613 0.244 

HC 0.156 0.054 0.209 0.101 0.106 

PM 0.002 0.023 0.025 0.040 0.008 

Fuel 7.24 73.81 81.05 131.60 24.35 

ACRP 

(2012) 

 
(EI=Emission 

Index) 

Fuel 5.73 77.00 82.73 141.35 24.62 

EI-CO2 18.09 242.93 261.02 445.97 77.67 

EI-CO 0.149 0.396 0.545 0.736 0.545 

EI-HC 0.030 0.031 0.061 0.057 0.027 

EI-NOx 0.033 0.550 0.582 1.010 0.165 

 

When comparing the current average scenario to the idealized scenario of 15 minutes of APU 

use per operation, the difference in average fuel consumed is 56.70 kg and 58.11 kg of fuel per 

operation according to Winther et al. (2015) and ACRP rates, respectively. The relative EI-CO2 

savings would be 179 kg and 183 kg per operation, respectively.  
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The installation of GP systems with current use rates has enabled an estimated 40% reduction in 

both APU fuel and CO2 emissions. Although a 100% GP utilization rate is technically impossible 

with current equipment and practices, ensuring that a realistic yet stringent policy like a 15 

minute maximum APU time is consistently respected would lead to a further 70% reduction from 

current rates. If the gate electrification infrastructure is already installed, these are immediately 

realizable savings.  

 

Considering the above figures as representative, they could be used to roughly estimate the 

magnitude of the problem across the entirety of the aviation sector. With a fuel price of $0.91/kg 

(IATA, 2023) and 38 million worldwide flights in 2019 (IATA, 2021), the approximate size of 

the potential yearly savings is $2 billion in direct APU fuel costs and 6.3 million mTons-CO2, or 

0.016% of 2019 global CO2 emissions (IEA, 2021).  

 

 

3.4 Discussion 
 

The average missed savings of $50 in fuel per operation may seem infinitesimal for an airline 

whose costs for each flight are several orders of magnitude greater. High GP use is a non-critical 

aspect of turnaround operations, whereas most other turnaround processes are critical and highly 

consequential. Although pilots, ground crews, and airlines might be willing to use GP whenever 

it is possible, $50 dollars in fuel savings might not be a great enough incentive to guarantee the 

equipment reliability, sufficient labor, tight schedule coordination, and trust between 

stakeholders that optimal GP use requires. However, not only do these preventable costs scale up 

quickly, they also do not include the environmental externality in the form of global and local air 

pollution. To ensure that gate electrification infrastructure is used and to mitigate APU use as 

much as possible, pilots, ground crews and airlines need to have additional incentive or 

oversight.  

 

A fundamental characteristic of this method is that it is airport centric. Although airline self-

management can directly increase GP use, there is no system to ensure transparency and 

accountability. In an ideal world, data sharing agreements between airports, airlines, and 

governments would provide an integrated solution to monitor, predict, and manage individual 

gate operations. However, the current technology and fragmentation of interests and 

responsibilities between the stakeholders means that GP use data is either confidential or absent. 

The analysis presented in this chapter shows how an airport can independently and immediately 

overhaul its GP  monitoring, policy, and enforcement strategy. With a high-resolution 

comprehensive monitoring system, they can customize their gate lease agreements to provide the 

financial and legal structures to influence gate emissions. Governments and institutions like 

Airport Carbon Accreditation should guide and support airports in their drive to establish gate 

infrastructure monitoring systems, as they provide the essential line of contact between the 

regulatory frameworks and actual industry practice.  

 

This analysis did not include PCA in the scope since the data was unavailable. However, PCA 

use is highly intertwined with GP use. Typically, PCA is plugged in right after GP for the arrival 

sequence, and removed right before GP is unplugged for the departure sequence. Since APUs 

supply both power and bleed air, they are often kept on until both GP and PCA are ready to be 
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used during the arrival sequence, or switched on before either GP is disconnected. Additionally, 

in elevated temperature conditions PCA systems might not have sufficient capacity, prompting 

pilots to turn on the APU much earlier than off block time to provide comfortable passenger 

experience. For example, at ZRH such conditions occur for up to 30% of the year (Fleuti, 2018). 

These PCA use cases imply that APUs could be turned on for even greater durations than those 

calculated in my GP-focused method. Only detailed monitoring, modeling, and management of 

PCA will provide further airport centric insights into energy efficiency of turnaround operations.  

 

The drive to increase gate electrification infrastructure comes with the need to ensure the 

reliability of the airport’s energy systems. The use of GP and pre-conditioned air can demand 

more than half of the peak energy use for an airport. This highly variable load is not being 

centrally predicted or managed, as the gate equipment is always ready to be used by the airlines 

according to their everchanging needs. There is a significant variability in GP demand magnitude 

down to individual operations. One part of the variability is caused by the fluctuating demand for 

power from the aircraft. The other part of the variability is caused by the use times of GP. This 

analysis presented in this chapter demonstrates that both the fluctuations in energy demand and 

the behavior of the ground crews and pilots can be monitored for trends analyzed and forecasted.  

 

Regarding other publications on the subject, the analysis supports certain conclusions, offers 

further insight, and sheds light on some inconsistencies within the industry. In reference to Sadati 

& Cetin (2020), this research provides evidence that the use times of GP have a considerable 

influence on the power consumed at the gate. The lower utilization rates of larger aircraft could 

have been the cause of their result that larger aircraft consumed less power. To predict overall 

loads on the airport’s grid precisely, more complex, and granular models need to incorporate a 

model for human behavior. Regarding Padhra (2018), this study provides insights for how power 

consumption and behavior are dependent on the gate, airline, and model type. Although a similar 

result for APU use times and GP utilization rates are observed across large samples of 

operations, these metrics vary considerably depending on the features of single operations. 

Regarding ACRP (2012) and ACRP (2019), this work lays a tested detailed approach toward 

performing the monitoring and cost analysis that they suggest as a long-term strategy towards 

optimizing the use of gate electrification infrastructure.  
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3.5 Conclusions 
 

Despite the apparent incentive to use less expensive power, gate turnaround operations appear to 

use GP at a fraction of its potential. 64% of operations use GP for an average of 62.5% of their 

turnaround time, and 36% do not use any GP at all. The assumption that an airline will 

independently optimize the use of GP to save on fuel is false and actual performance is 

heterogenous; different aircraft models, gates and airlines show vastly different GP utilization 

rates and total APU use times. Although approximately 40% of APU fuel and CO2 emissions are 

already being achieved with the current use of GP, a further 70% reduction from current rates 

can be feasibly achieved through more aggressive regulation and enforcement. The APU was 

turned on an average of 21 minutes before off block time, although this quantity was positively 

related to the delay of each operation, showing the lack of resilience of GP with dynamic airport 

schedules.  

 

One step towards reducing APU use at gates is implementing an airport centric monitoring 

system capable of modelling operation behavior and evaluating it. This can be achieved by 

diving into the circumstances of single operations while also being able to identify trends across 

many operations. Having such a detailed analysis enables airports to discern the causes of 

inefficiency in the use of GP, rather than solely understanding the average or total impact of the 

problem across the airport. This is fundamental as it provides insight into the efficacy of ground 

handling practices, allowing for actionable changes. An increase in accountability between 

airlines, ground crews and infrastructure providers would help in understanding and reducing the 

large variability in energy efficiency at airport gates. With an improved understanding of the 

technical issues, the behavioral drivers and overall consumption patterns, clear challenges can be 

defined and subsequently mitigated. In future developments of a monitoring system, it is 

fundamental that monitoring, policy, and enforcement work in unison to progressively restrict 

APU use. The monitoring system should inform how to set a realistic but ambitious goal and 

provide the information required to enforce it. As the airport’s wide performance improves and 

becomes consistently ingrained, the policy can be pushed towards more ambitious targets. 
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4. Operation Assessment 
 

This section of the dissertation expands its focus on APU, GP, and PCA systems to perform a 

more rigorous assessment for each operation. The analysis of GP use in Section 3 enabled a 

detailed yet narrow insight into turnaround operations. It underlined how important it is to 

monitor operations individually and generated detailed estimates for fuel cost and tailpipe 

emissions associated with APU use. However, the estimates were only a component within the 

larger scope of evaluating turnaround operations both monetarily and environmentally. This 

section complements the previous one by constructing a more comprehensive assessment 

methodology.  

 

4.1 Introduction 
 

Monitoring turnaround operations provides the detailed data required to assess their 

performance. The use of GP and APU need to be contextualized before making quantitative 

comparisons and holistic conclusions. That requires a systematic accounting methodology that 

leverages both the available data and estimates on the absent data.  

 

ACRP (2012) proposed a systematic accounting methodology to estimate the costs associated 

with APU, GP, and PCA systems. The report compiled estimates for the installation, operation, 

and maintenance of the systems with the associated monetary and environmental APU savings. 

These estimates are broad averages across many airports in the world; although they provide data 

where it is not available, they lack precision. The report explicitly recommended using more 

precise data when available, however it did not elaborate in detail on how the methodology can 

be strengthened. On a broad level, ACRP (2012) laid out a methodology that accurately 

estimates the clear benefits of installing gate electrification equipment making it an excellent tool 

for airports that are considering such large capital investments. However, to accurately assess the 

actual operation of the equipment once it is in place, a more fine-grained methodology is 

necessary, especially considering the high variabilities outlined in Section 3.  

 

Life Cycle Assessment (LCA) is a standardized methodology that helps to uncover the true costs 

of systems and products for holistic decision making. It is outlined in International Organization 

for Standardization (ISO) 14040, for estimating the environmental impacts throughout a product, 

project, or service’s life-cycle phases (i.e., raw material extraction, processing and 

manufacturing, transportation and logistics, operations, maintenance, and end-of life) (ISO, 

2006). The structure of a LCA typically includes: (1) system boundaries, (2) data collection, (3) 

life cycle inventory, (4) impact assessment, and (5) interpretation. Chester & Horvath (2009) 

used the LCA method to determine the footprint of aviation travel on a broad level, while 

including the operation of the APU, airport infrastructure, aircraft manufacturing, and 

maintenance in its scope. Altuntas et al. (2014) applied LCA methodology to compare the 

operation of APU engines and mobile GPUs to provide GP to aircraft. Greer et al. (2021) 

focused the LCA methodology on turnaround operations across commercial airports, while 

considering different gate infrastructure use scenarios and equipment. Greer et al. (2023) applied 

a holistic LCA methodology to airport terminal buildings, showing how it is the first step 
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towards helping stakeholders make decisions that will lead to healthier and more sustainable 

airports. 

 

To feasibly apply LCA on a specific scope, the method must balance the ideal to reach accurate, 

precise, and comprehensive conclusions with the practical constraints of doing so (e.g., 

assumptions, data availability, complexity). As more circumstantial data become accessible to 

airports with developing equipment and technologies, they gain the ability to evaluate individual 

gate operations for their monetary, environmental, and health costs. A granular analysis of costs 

not only provides a more detailed estimate for the costs of the entire system, but also reveals the 

variability associated with each circumstance. Furthermore, detailed cost life cycle assessment is 

useful to set performance targets, to establish clear-cut pricing strategies in leasing agreements, 

and to enable the sharing of costs and resources between different stakeholders and companies.  

 

This section of the dissertation aims to contribute to the topic of gate electrification infrastructure 

by constructing an LCA analysis focusing on single operations. The analysis methodology is 

showcased through the SFO data that was used in Section 3 combined with estimates available in 

the literature. Since exact circumstantial data was not available, different scenarios are used to 

showcase variability and estimate monetary and GHG costs. Additionally, a broad dispersion 

analysis and health risk assessment showcase how local air pollutants can be accounted for 

within the scope of APU negative externalities. Figure 25 shows how the different sections of the 

operation assessment section are related. 

 

 

 

  GP Monitoring Data  

Life Cycle Inventory for Different 

Scenarios 

Section 4.3,4.4 

 

Criteria Air Pollutants Emissions 

(NOx, CO, HC, PM) 

Section 3.3 

 

Health Risk Assessment 

Section 4.6 

Turnaround Time, GP Use Time, 

Aircraft Category 

Section 3.3 

Dispersion Analysis 

Section 4.5 

Monetary and GHG Costs 

Section 4.4 

Figure 25: Structure of operation assessment section   
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4.2 Scope and Assumptions 
 

Since the use of electrification infrastructure for turnaround operations is highly interdependent 

with many other airport processes, it is fundamental to establish clear and consistent boundaries 

for a life cycle assessment. The objective of this section is to provide a comparison of different 

use cases for GP, PCA, and APU. The variability associated with different equipment types 

available in the industry and the relationship to other turnaround processes are not within the 

scope. 

 

The LCA presented here assumes that PCA systems are never used more than GP systems. 

Although it is technically possible to run the APU on power-only mode while using external 

PCA, this case rarely occurs for several reasons. First, ground crews prioritize GP use by 

plugging PCA hoses after GP cables during arrival cycles, and vice-versa for departure cycles. 

Second, some airlines have internal policies to prevent this mode from occurring (Delta, 2020). 

 

This LCA will consider only the fixed GP and PCA systems that are available at SFO gates to 

reflect the input data. The passenger boarding bridge is excluded. GP and PCA systems are all 

decentralized and powered by electricity, not natural gas. The electricity transmission efficiency 

from the grid to the equipment will be assumed to be 100%; further research is necessary to 

derive an accurate efficiency multiplier.  

 

The costs associated with local air pollutants consumed will be omitted. Section 3 shows how 

tailpipe emissions for NOx, CO, PM, HC can be calculated for the APU. Calculating these 

emissions relative to other elements would require data that was not available, so they were not 

included in the LCA. However, Sections 4.2.4 and 4.2.5 investigate the impact of local air 

pollutants.  

 

The LCA will omit end-of-life costs. The use period will be assumed to be 15 years following 

the example of ACRP (2012) although the systems can have longer lifespans. The changes in 

costs due to inflation will not be reflected as they constitute a very minor component of 

variability. The environmental costs associated with the production and installation of GP, PCA 

and APU systems will be omitted.  

 

This analysis will only consider fast turnaround operations with a maximum duration of 3 hours. 

This assumption is in place to remove the confounding circumstances of  standby times, 

overnight operations, and complete aircraft shutoffs.  

 

Although turnaround delay and opportunity cost are highly related to GP, PCA and APU use 

(described in Section 5), they will be omitted in this LCA. The available data were insufficient to 

determine if the processes involving GP, PCA and APU were the direct cause for a delay.  

 

The fuel flow to the APU and the relative emissions are highly variable (Kinsey et al., 2012; 

Padhra, 2018). It is challenging to establish what the instantaneous fuel flow is at any moment in 

time unless it is being measured directly from the aircraft. It is even more challenging to measure 

instantaneous emissions, which are not proportional to the fuel flow, and require an experimental 
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setup. Although it is desirable to have as much granularity as possible on fuel flow and 

emissions, assumptions must be made to make a calculable estimate. For fuel flow, the APU’s 

ECS loading condition (ACRP et al., 2012) represents a blend of different loading conditions that 

are better distinguished in Padhra (2018). Whereas ACRP (2012) effectively provides an 

estimate for fuel flow and emissions for different categories of aircraft, Padhra (2018) provides 

an estimate of the different fuel flow rates for each loading condition specific to A320 aircraft. 

Table 11 was constructed by applying the proportions of fuel flow of Padhra’s (2018) loading 

conditions on ACRP (2012) fuel estimates for each aircraft category. For the no-load condition 

fuel flow and for all emission rates, the values from ACRP (2012) are used (Appendix A1, A3, 

A4). If the APU is started up at the gate, a 3 minute no-load condition will be assumed following 

the example of ACRP (2012).  

 

Table 11: Fuel flow estimates for different aircraft categories and loading conditions  

Aircraft 

Category 

ACRP (2012) 

Values (kg/s) 

Electrical 

Power Only 

(kg/s) 

Bleed Air for 

AC Only (kg/s) 

Electrical 

Power and 

Bleed Air for 

AC (kg/s) 
A320 Padhra (2018) n/a 0.025 0.028 0.030 

Narrow Body 0.033 0.028 0.031 0.033 

Wide Body 0.052 0.043 0.049 0.052 

Jumbo Wide 0.061 0.051 0.057 0.061 

Regional Jet 0.019 0.016 0.018 0.019 

Turbo Prop 0.019 0.016 0.018 0.019 

 

In the dispersion analysis for local air pollutants, the measured point-source emissions were 

assumed to be released at a constant rate throughout the data’s date range. Since not all 

operations and gates were included in the analysis, and since the actual emissions are not 

uniformly distributed, the true values for pollutant concentrations may be systematically greater 

than those estimated.  

 

4.3 Scenarios 
 

With the data available in this dissertation, the use times of PCA are uncertain. In Section 3, the 

estimation of APU use times hinged on the assumption that if GP was not being used, then the 

power was being supplied from the APU. Although this is largely true, it does not imply that the 

inverse is true (if GP is being used, then the APU is off). In fact, there are many situations in 

which this may happen. The pilot could leave the APU in idle mode for an extended period even 

while the aircraft sources its power from GP. If there is need for conditioned air, and the PCA is 

not available or insufficient, the APU may be used even if electrical power is being sourced 

through GP system. To eliminate this uncertainty, further monitoring data would be necessary. 

To perform an assessment with the uncertainty in APU and PCA use times, eight scenarios will 

be applied to each operation’s original data as presented in Section 3. The following section 

provide the qualitative rationale for each scenario. 
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Scenario 1 

The APU was kept on throughout the whole operation to supply both power and bleed air. GP 

and PCA were never plugged in because they were not available. No labor costs were incurred.  

The purpose of this scenario is to represent the theoretical case in which neither the airport nor 

the airline invested in gate electrification equipment (including mobile units). 

 

Scenario 2 

The APU was kept on throughout the whole operation to supply both power and bleed air. GP 

and PCA were never plugged in despite their availability. Labor costs were omitted. The purpose 

of this scenario is to represent the case in which the gate electrification infrastructure is never 

successfully connected to the aircraft. This scenario occurs often (Section 3), e.g., when no 

ground crew is present to perform the connection on time in coordination with the pilot. An 

airline that might not invest in maintaining a responsive ground crew is likely to run into this 

problem. 

 

Scenario 3 

GP was used as measured, however the PCA was not available. The APU was kept on bleed air 

only mode whenever it was not on electrical power and bleed air mode to enable comfortable 

passenger boarding, deboarding, and servicing. The purpose of this scenario is to represent the 

case in which only GP is installed. Although PCA is not necessary required with ideal ambient 

conditions, any time air conditioning is needed in this case, the APU must be used.  

 

Scenario 4 

GP was used as measured, however the PCA was not sufficient or was not used despite being 

available. The APU was kept on bleed air only mode whenever it was not on electrical power 

and bleed air mode to enable comfortable passenger boarding, deboarding, and servicing. The 

purpose of this scenario is to represent operations in which the PCA systems were insufficient to 

maintain a comfortable cabin temperature, forcing the pilot to use the APU. This is a common 

occurrence on hot days.  

 

Scenario 5 

GP was used as measured. The PCA was used for 10 minutes less than GP (with a minimum of 0 

min). The APU was on bleed air only mode whenever GP was used. The APU was on electrical 

power and bleed air mode whenever both GP and PCA were not used. The APU was idle for 3 

minutes on startup and on electrical power and bleed air mode for the remaining time. The 

purpose of this scenario is to represent a realistic and conservative use of gate electrification 

equipment when the PCA system is barely sufficient. Although GP can still be used during 

passenger boarding, the additional passenger heat can exceed the cooling power of the PCA, 

forcing the pilot to turn on the APU early to maintain comfortable boarding conditions.  
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Scenario 6 

GP and PCA systems were used for the same amount of time, as measured by GP data. The APU 

was idle for 3 minutes on startup and on electrical power and bleed air mode for the remaining 

time. The purpose of this scenario is to represent a typical case in which the switch from APU to 

GP and PCA and vice versa occurs (almost) simultaneously. This would be the best case scenario 

according to the measured data.  

 

Scenario 7 

GP and PCA systems were used for the same amount of time, as measured by GP data. The APU 

was idle for 3 minutes on startup and on power and bleed air mode for the remaining time. GP 

and PCA systems are shut down when there is no aircraft at the gate to avoid non-operational 

costs as opposed to being kept ready on-demand continuously. The purpose of this scenario is to 

represent a theoretical yet realistic case in which the operation flows exactly like in scenario 6, 

but GP and PCA systems are shut off when there is no aircraft at the gate to save on idle costs.  

 

Scenario 8 

GP and PCA systems were used for the same amount of time, for the entire duration of the 

turnaround time minus 15 minutes. The APU was idle for 3 minutes on startup and on power and 

bleed air mode for 12 minutes. GP and PCA systems are shut down when there is no aircraft at 

the gate to avoid non-operational costs. The purpose of this scenario is to represent an idealized 

yet practically achievable use case for gate electrification equipment. Not only are the APU use 

times in line with the most stringent APU airport policies in Europe, but the gate equipment is 

shut off when there is no aircraft at the gate to save on idle costs.  

 

4.4 Life Cycle Inventory 
 

The Life Cycle Inventory (LCI) involves estimating the input and output processes included in 

the analysis according to each scenario. Figure 26 shows the categorized costs included within 

the scope of the LCI. Table 12 shows whether each cost element is included for each scenario.  
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Figure 26: LCI scope for individual turnaround operations 

Table 12: LCI cost elements included for each scenario 

LCI Element 
Scenario 

1 2 3 4 5 6 7 8 

APU Fuel X X X X X X X X 

APU Emissions X X X X X X X X 

APU Damage X X X X X X X X 

GP Electrical Power   X X X X X X 

PCA Electrical Power     X X X X 

Labor (GP or PCA)   X X X X X X 

GP Idle  X X X X X   

PCA Idle  X  X X X   

Maintenance  X X X X X X X 

GP Capital  X X X X X X X 

PCA Capital  X  X X X X X 

 

  

Operational APU Costs 
 

Input: Jet Fuel 

 

Outputs: GHG Emissions,  

APU Use Damage 

Operational GP Costs 
 

Inputs: Electrical Power, Labor 

Operational PCA Costs 
 

Inputs: Electrical Power, Labor 

Capital Costs 
 

Inputs: GP and PCA Capital Costs 

Non-Operational Costs 
 

Inputs: GP Idle, PCA Idle, Maintenance 
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4.4.1 Operational Costs 
 

This section describes a method for estimating each cost element from the available operational 

data.  

 

APU Fuel  

 

First, the time of APU use (∆𝑡)𝑚𝑜𝑑𝑒 in each mode needs to be determined. Table 13 provides a 

method for each scenario that uses results for turnaround time and GP use time from Section 3. 

 

Table 13: Time for each APU loading condition 

Scenario 
APU Time for Loading Condition (min) 

Idle / Startup Bleed Air for AC Only Electrical Power and Bleed Air for AC 

1 0 0 Turnaround Time 

2 0 0 Turnaround Time 

3 0 GP Use time Turnaround Time – GP Use Time 

4 0 GP Use time Turnaround Time – GP Use Time 

5 3 10 Turnaround Time – GP Use Time 

6 3 0 Turnaround Time – GP Use Time 

7 3 0 Turnaround Time – GP Use Time 

8 3 0 7 

 

The amount of fuel is estimated using equation 9 and 𝐹𝑢𝑒𝑙𝑅𝑎𝑡𝑒𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦,𝑚𝑜𝑑𝑒 values from Table 

13. 

 

𝐴𝑃𝑈𝑓𝑢𝑒𝑙,𝑘𝑔 = ∑ 𝐹𝑢𝑒𝑙𝑅𝑎𝑡𝑒𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦,𝑚𝑜𝑑𝑒 ∗ (∆𝑡)𝑚𝑜𝑑𝑒

𝑡=𝑜𝑓𝑓 𝑏𝑙𝑜𝑐𝑘

𝑡=𝑖𝑛 𝑏𝑙𝑜𝑐𝑘
 

 

 

The current price of jet fuel is $0.91/kg (IATA, 2023).The price of fuel 𝐴𝑃𝑈𝑓𝑢𝑒𝑙,$ is estimated 

using equation 10: 

 

𝐴𝑃𝑈𝑓𝑢𝑒𝑙,$ =  𝐴𝑃𝑈𝑓𝑢𝑒𝑙,𝑘𝑔 ∗ 𝐹𝑢𝑒𝑙𝑃𝑟𝑖𝑐𝑒 

 

The energy density of jet fuel is 43.5 MJ/kg (SMU, 2009). The well-to-pump (WTP) emissions 

for jet fuel in the U.S. are 19 gCO2e/MJ (Speth et al., 2016). The total WTP emissions 

𝐴𝑃𝑈𝑓𝑢𝑒𝑙,𝑊𝑇𝑃 𝐶𝑂2𝑒𝑞 are estimated using equation 11: 

 

𝐴𝑃𝑈𝑓𝑢𝑒𝑙,𝑊𝑇𝑃 𝐶𝑂2𝑒𝑞 =  𝐴𝑃𝑈𝑓𝑢𝑒𝑙,𝑘𝑔 ∗ 43.5
MJ

kg
∗ 0.019

kgCO2e

MJ
 

 

 

(Eq. 9) 

(Eq. 10) 

(Eq. 11) 
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APU Emissions 

 

The tailpipe GHG emissions and the local criteria emissions will be computed using separate 

methodologies. The tailpipe GHG emission estimate is obtained using equation 12: 

 

𝐴𝑃𝑈𝑓𝑢𝑒𝑙,𝐶𝑂2𝑒𝑞 =  𝐴𝑃𝑈𝑓𝑢𝑒𝑙,𝑘𝑔 ∗ 3.155
𝑘𝑔𝐶𝑂2

𝑘𝑔𝐹𝑢𝑒𝑙
 

 

 

APU Use Damage  

 

When APUs are used, they accumulate wear and tear, and eventually require maintenance. 

Unexpected breakages could cause large costs, but regular maintenance is expensive as well. 

According to Ahmed et al. (2021), “An aircraft APU that requires maintenance after 7,000 flight 

hours, would require a maintenance cost of nearly $0.4 Million. (...) Aircraft APUs are found to 

be replaced more than 50% of the time whenever a fault is reported”. That implies an 

approximate use cost of $57/hr of APU use. In this LCI, the use of APU at the gate (∆𝑡)𝐴𝑃𝑈 𝑂𝑁 

will be considered as a part of the flight hours that contribute to APU maintenance expenses. 

Equation 13 is used to estimate the APU damage cost 𝐴𝑃𝑈𝑑𝑎𝑚𝑎𝑔𝑒,$. 

 

 

𝐴𝑃𝑈𝑑𝑎𝑚𝑎𝑔𝑒,$ =
$57

ℎ𝑟
∗ ∑ (∆𝑡)𝐴𝑃𝑈 𝑂𝑁

𝑡=𝑏𝑙𝑜𝑐𝑘 𝑜𝑢𝑡

𝑡=𝑏𝑙𝑜𝑐𝑘 𝑖𝑛
 

 

 

GP Electricity 

 

To calculate the total GP energy relative to each operation, I used the measured and predicted 

kWh derived in Section 3. Depending on the scenario, I applied GP energy quantities according 

to Table 14. 

 

 Table 14: GP energy for each scenario 

Scenario GP Energy (kWh) 

1 0 

2 0 

3 Measured GP Energy 

4 Measured GP Energy 

5 Measured GP Energy 

6 Measured GP Energy 

7 Measured GP Energy 

8 Predicted GP Energy 

 

The pricing strategy for GP use depends on the lease agreements between the airport and airline. 

In the case of SFO, the electrical power from Public Utilities Commission (PUC) is resold to 

airport tenants according to Pacific Gas and Electric (SFO, 2020). The average PG&E rate for 

(Eq. 12) 

(Eq. 13) 
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industrial customers in 2019 was $0.16/kWh (PG&E, 2019). This estimate does not consider the 

variable pricing dependent of total power demand. Equation 14 is used to estimate the monetary 

cost of GP electricity 𝐺𝑃$ from the total energy GPtotal. 

 

𝐺𝑃$ =
$0.16

kWh
∗ GPtotal 

 

The total energy consumption from GP must be multiplied by the life-cycle emission index for 

the grid’s electricity to obtain an environmental cost. In the case of SFO airport, the sources of 

the electricity are 99% hydroelectric and 1% solar (CEC, 2020). The life cycle emission factor 

for hydroelectric and solar energy are 0.055 kgCO2eq/kWh and 0.064 kgCO2eq/kWh 

respectively (Horvath & Stokes, 2011). Therefore, the weighted footprint of SFO’s electricity is 

0.055 kgCO2eq/kWh. Equation 15 is used to calculate the total GHG footprint associated with 

GP energy usage 𝐺𝑃𝐶𝑂2𝑒𝑞 . 

 

𝐺𝑃𝐶𝑂2𝑒𝑞 =
0.055 kg CO2𝑒𝑞

kWh
∗ GPtotal 

 

 

PCA Electricity 

 

Each scenario has a PCA use time (∆𝑡)𝑃𝐶𝐴,𝑚𝑜𝑑𝑒 according to Table 15. 

 

Table 15: PCA use time for each scenario 

Scenario PCA Use Time (min) 

1 0 

2 0 

3 0 

4 0 

5 Max (GP Use Time – 10 , 0) 

6 GP Use Time 

7 GP Use Time 

8 Turnaround Time – 7 

 

PCA systems require variable power, primarily depending on the size of the aircraft that is being 

serviced, the ambient temperature, and the humidity (ACRP et al., 2012). Below approximately 

10°C, the PCA will be used to heat the aircraft; above approximately 12°C, the PCA will be used 

for cooling (Greer et al., 2021; Sadati & Cetin, 2020). The exact demand from these systems 

depends on the temperature gradient, however that data is not available. Table 16 is used as a 

source for PCA requirement 𝑃𝑜𝑤𝑒𝑟𝑃𝐶𝐴,𝑚𝑜𝑑𝑒. Since SFO ambient temperature is mostly over 

12°C, the cooling rates are applied (highlighted in blue).  

 

(Eq. 14) 

(Eq. 15) 



66 

 

Table 16: Point-of-use electricity requirements for different aircraft categories (ACRP, 2012) 

Category Ground Power (kW) Cooling PCA (kW) Heating (kW) 

Narrow Body 23.88 68.64 46.71 

Wide Body 37.12 174.04 96.71 

Jumbo Wide 53.21 189.95 113.73 

Regional Jet 13.30 39.33 16.68 

Turbo Prop 26.60 31.16 12.72 

 

 

With this information, Equation 16 is used to calculate the total PCA energy demand 𝑃𝐶𝐴𝑡𝑜𝑡𝑎𝑙. 

 

𝑃𝐶𝐴𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑜𝑤𝑒𝑟𝑃𝐶𝐴,𝑚𝑜𝑑𝑒 ∗ (∆𝑡)𝑃𝐶𝐴,𝑚𝑜𝑑𝑒

𝑡=𝑜𝑓𝑓 𝑏𝑙𝑜𝑐𝑘

𝑡=𝑖𝑛 𝑏𝑙𝑜𝑐𝑘
 

 

Similarly to the GP calculation, PCA monetary costs 𝑃𝐶𝐴$  and CO2eq footprint 𝑃𝐶𝐴𝐶𝑂2𝑒𝑞  are 

calculated with equations 17 and 18.  

 

𝑃𝐶𝐴$ =
$0.16

kWh
∗ 𝑃𝐶𝐴total 

 

𝑃𝐶𝐴𝐶𝑂2𝑒𝑞 =
0.055 kgCO2𝑒𝑞

kWh
∗ 𝑃𝐶𝐴total 

 

 

Labor 

 

To use GP and PCA systems, a worker must physically connect and disconnect the hoses and 

cables at the beginning and end of each operation. Although the actual tasks do not take more 

than a couple of minutes, the responsible ground crew worker needs to travel to the gate and be 

available to perform the task. Often, workers are responsible for other tasks in the turnaround 

operation outside the scope of this LCI. In this LCI, a 30 minute shift is assumed for any 

turnaround operation that uses GP, PCA, or both. The wage for an airport ground staff in San 

Francisco is $42/hr (ZipRecruiter, 2023). That implies an estimated $21 labor cost per 

turnaround operation. The carbon footprint for the labor is omitted.  

 

4.4.2 Non-Operational Costs 
 

Non-operational costs refer to costs that accumulate continuously whether the gate equipment is 

being used or not, whether an aircraft is present at the gate or not. These costs are intrinsic to 

maintaining functioning GP and PCA systems, so they must be appropriately distributed to each 

turnaround operation. The distribution can be done based on the time of use, or the energy 

consumed, depending on the data available.  

 

(Eq. 16) 

(Eq. 17) 

(Eq. 18) 
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In this LCI, the non-operational costs are distributed proportionally to the ratio between the 

turnaround time 𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and the total turnaround time across the expected 

lifetime of the equipment. To estimate the expected lifetime use of gate equipment 

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙, equation 19 is used. A gate utilization rate of 60% is assumed across 

the expected lifetime using the data from Section 3. 

 

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 = (15 𝑦𝑒𝑎𝑟𝑠) ∗ (525600
𝑚𝑖𝑛

𝑦𝑒𝑎𝑟
) ∗ (0.6

𝑡𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
) 

 

= 4,730,400 𝑚𝑖𝑛 

 

GP Electricity Idle 

 

As discussed in Section 3, a continuous phantom electrical load is measured on GP systems even 

if there is no aircraft at the gate. This power is consumed to keep GP systems up and running, 

ready to use on-demand. Table A14 shows the phantom power 𝑃𝑜𝑤𝑒𝑟𝐺𝑃,𝑖𝑑𝑙𝑒 associated with each 

gate in the analysis. With this information, equations 20, 21, and 22 are used to estimate GP 

phantom energy 𝐺𝑃𝑖𝑑𝑙𝑒,𝑡𝑜𝑡𝑎𝑙, monetary cost 𝐺𝑃𝑖𝑑𝑙𝑒,$ and GHG cost 𝐺𝑃𝑖𝑑𝑙𝑒,𝐶𝑂2𝑒𝑞 for each 

turnaround operation, respectively. 

 

𝐺𝑃𝑖𝑑𝑙𝑒,𝑡𝑜𝑡𝑎𝑙 =
𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙
∗ 𝑃𝑜𝑤𝑒𝑟𝐺𝑃,𝑖𝑑𝑙𝑒 ∗ (15 𝑦𝑟) ∗ (8760

ℎ

𝑦𝑟
)  

 

𝐺𝑃𝑖𝑑𝑙𝑒,$ =
$0.16

kWh
∗ 𝐺𝑃𝑖𝑑𝑙𝑒,𝑡𝑜𝑡𝑎𝑙 

 

𝐺𝑃𝑖𝑑𝑙𝑒,𝐶𝑂2𝑒𝑞 =
0.055 kgCO2𝑒𝑞

kWh
∗ 𝐺𝑃𝑖𝑑𝑙𝑒,𝑡𝑜𝑡𝑎𝑙 

 

PCA Electricity Idle 

 

Decentralized PCA systems also have a significant idle cost because they need to maintain a 

temperature so that they can be used on-demand. As (Sadati & Cetin, 2020) shows, even when 

no aircraft is at the gate, the PCA system intermittently turns on and off to maintain the desired 

output temperature. Without direct PC metering data and further research, this highly variable 

load can only be assumed. This LCI assumes that the continuous idle load 𝑃𝑜𝑤𝑒𝑟𝑃𝐶𝐴,𝑖𝑑𝑙𝑒 is 

equivalent to 10% of the in-use power load indicated in Table 16. 

 

Similarly to GP idle cost, PCA idle cost needs to be distributed for individual turnaround 

operations. The energy cost 𝑃𝐶𝐴𝑖𝑑𝑙𝑒,𝑡𝑜𝑡𝑎𝑙, monetary cost 𝑃𝐶𝐴𝑖𝑑𝑙𝑒,$, and GHG cost 𝑃𝐶𝐴𝑖𝑑𝑙𝑒,𝐶𝑂2𝑒𝑞 

for idle PCA are calculated with equations 23, 24, and 25 respectively.  

 

𝑃𝐶𝐴𝑖𝑑𝑙𝑒,𝑡𝑜𝑡𝑎𝑙 =
𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙
∗ 𝑃𝑜𝑤𝑒𝑟𝑃𝐶𝐴,𝑖𝑑𝑙𝑒 ∗ (15 𝑦𝑟) ∗ (8760

ℎ

𝑦𝑟
)  

 

(Eq. 19) 

(Eq. 20) 

(Eq. 21) 

(Eq. 22) 

(Eq. 23) 
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𝑃𝐶𝐴𝑖𝑑𝑙𝑒,$ =
$0.16

kWh
∗ 𝑃𝐶𝐴𝑖𝑑𝑙𝑒,𝑡𝑜𝑡𝑎𝑙 

 

𝑃𝐶𝐴𝑖𝑑𝑙𝑒,𝐶𝑂2𝑒𝑞 =
0.055 kgCO2𝑒𝑞

kWh
∗ 𝑃𝐶𝐴𝑖𝑑𝑙𝑒,𝑡𝑜𝑡𝑎𝑙 

 

GP and PCA Maintenance 

 

GP and PCA require proper maintenance to function. ACRP (2012) estimates a maintenance cost 

of $5698 per gate per. The true cost is highly variable and dependent on factors such as the 

provider, the location, the number of units, and inflation which will not be considered in this 

estimate. Similarly to idle costs, the maintenance cost needs to be distributed to each turnaround 

operation. Equation 26 is used to calculate the monetary cost of maintenance 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒$ for 

either GP, PCA, or both. 

 

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒$ =
𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙
∗

$5,698

1 𝑦𝑟
∗ (15 𝑦𝑟) 

 

4.4.3 Installation Costs 
 

Similarly to non-operational costs, capital costs for the installation of GP and PCA systems, 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐺𝑃,$ and 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐴𝑃𝑈,$ respectively, need to be distributed to each turnaround operation. 

The true capital costs depend on each specific project and airport. In this LCI, ACRP’s (2012) 

estimates will be used, shown in Tables 17 and 18. Both basic installation costs and the two 

levels of electric installation costs are included. In both tables, the category refers to the largest 

aircraft category that the gate can accommodate, not the category of the aircraft being serviced, 

as listed in appendix Table A15.  

 

Table 17: Point-of-use capital costs for GP per gate (ACRP, 2012)  

Max Category 
Equipment and 

Basic Install ($) 

Level 1 Electric 

($) 

Level 2 Electric 

($) 
Total ($) 

Narrow Body 49,000 15,000 15,000 79,000 

Wide Body 74,000 30,000 30,000 134,000 

Jumbo Wide 134,000 60,000 60,000 254,000 

Regional Jet 42,000 15,000 15,000 72,000 

Turbo Prop 42,000 15,000 15,000 72,000 

 

Table 18: Point-of-use capital costs for PCA per gate (ACRP, 2012) 

Max Category 
Equipment and 

Basic Install ($) 

Level 1 Electric 

($) 

Level 2 Electric 

($) 
Total ($) 

Narrow Body 87,000 15,000 15,000 117,000 

Wide Body 108,833 43,333 43,333 195,499 

Jumbo Wide 293,900 103,500 103,500 500,900 

Regional Jet 70,500 15,000 15,000 100,500 

Turbo Prop 70,500 15,000 15,000 100,500 

  

(Eq. 24) 

(Eq. 25) 

(Eq. 26) 
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Th installation cost is highly variable and dependent on factors such as the provider, the location, 

the number of units, and inflation which will not be considered in this estimate. With these 

quantities, equations 27 and 28 is applied to derive the capital costs distributed to each operation. 

 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐺𝑃,$ =
𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙
∗ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐺𝑃, max 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦,$   

 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑃𝐶𝐴,$ =
𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙
∗ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑃𝐶𝐴, max 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦,$   

 

 

Each scenario was applied to every operation in the dataset presented in Section 3. Each 

operation can receive its own LCI applied to each scenario. The results were aggregated to 

produce average cost estimates for each operation. Table 19 shows the average LCI cost 

elements according to each scenario. 

 

Table 19: Average LCI cost elements for different scenarios from the dataset 

Cost Element 
Scenario 

1 2 3 4 5 6 7 8 

APU (kg) 141.35 141.35 137.10 137.10 97.82 81.03 81.03 25.04 

APU ($) 128.63 128.63 124.76 124.76 89.02 73.73 73.73 22.79 

APU WTP (kgCO2eq) 116.83 116.83 113.32 113.32 80.85 66.97 66.97 20.70 

APU Tailpipe (kgCO2) 445.97 445.97 432.56 432.56 308.63 255.64 255.64 79.01 

Damage ($) 71.30 71.30 71.30 71.30 52.47 42.97 42.97 14.25 

GP (kWh) 0.00 0.00 13.18 13.18 13.18 13.18 13.18 28.67 

GP ($) 0.00 0.00 2.11 2.11 2.11 2.11 2.11 4.59 

GP (kgCO2eq) 0.00 0.00 0.73 0.73 0.73 0.73 0.73 0.73 

PCA (kWh) 0.00 0.00 0.00 0.00 31.90 39.10 39.10 75.21 

PCA ($) 0.00 0.00 0.00 0.00 5.10 6.26 6.26 12.03 

PCA (kgCO2eq) 0.00 0.00 0.00 0.00 1.75 2.15 2.15 4.14 

Labor ($) 0.00 0.00 21.00 21.00 21.00 21.00 21.00 21.00 

GP Idle (kWh) 0.00 1.10 1.10 1.10 1.10 1.10 0.00 0.00 

GP Idle ($) 0.00 0.18 0.18 0.18 0.18 0.18 0.00 0.00 

GP Idle (kgCO2eq) 0.00 0.06 0.06 0.06 0.06 0.06 0.00 0.00 

PCA Idle (kWh) 0.00 14.72 0.00 14.72 14.72 14.72 0.00 0.00 

PCA Idle ($) 0.00 2.35 0.00 2.35 2.35 2.35 0.00 0.00 

PCA Idle (kgCO2eq) 0.00 0.81 0.00 0.81 0.81 0.81 0.00 0.00 

Maintenance ($) 0.00 1.36 1.36 1.36 1.36 1.36 1.36 1.36 

GP Capital ($) 0.00 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

PCA Capital ($) 0.00 2.22 2.22 2.22 2.22 2.22 2.22 2.22 

 

(Eq. 27) 

(Eq. 28) 
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Figure 27 shows the aggregated monetary costs from Table 19. Although APU fuel cost and 

damage account for the majority of the cost, the other elements are non-neglegible. An airline is 

usually directly responsible for APU and labor costs. The airline may be responsible for other 

costs depending on their gate lease agreement, although these costs are typically not dependent 

on circumstancial use (ACRP et al., 2012; ACRP et al., 2019).  

 
Figure 27: Average monetary cost LCI for different scenarios 

 

Figure 28 shows the aggregated GHG costs from Table 19. The GHG costs from gate equipment 

operation are neglegible in comparion to the APU tailpipe and well-to-pump GHG costs.  

 
Figure 28: Average GHG cost LCI for different scenarios 
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To make a holistic comparison between scenarios that considers both monetary and 

environmental costs, the social cost of carbon emissions (SCC) needs to be calculated. 

According to (Greer et al., 2021), the approximate SCC in 2019 with a 3% discount rate was 

$52/mTCO2eq. This rate is multiplied by the LCI GHG emissions shown in Table 19. Figure 29 

shows the addition of the total SCC and the monetary cost of each scenario.  

 

 
Figure 29: Average monetary cost LCI for different scenarios including SCC cost 
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4.5 Dispersion Analysis 
 

The LCI focused on monetary and GHG costs of operations while omitting a significant part of 

the problem: the local impact of APU tailpipe emissions. This section showcases the use of 

dispersion analysis to add to the overall assessment. The purpose of this dispersion analysis is to 

see how measured point-source APU emissions translate to worsened air quality, measured as 

concentrations of the pollutants at select locations like the apron area and surrounding 

communities. Airports and research institutions typically perform dispersion modelling using the  

FAA’s Aviation Environmental Design Tool (AEDT) (FAA, 2023), which is comprehensive 

software used to assess noise pollution and air quality emissions for an airport. The inputs 

required to run the AEDT are outside of scope for this dissertation. However, the principle 

underlying the AEDT software is the Gaussian plume model. Equations 29, 30, and 31 are the 

governing equations for the Gaussian plume model (Cheng, 2021; Connolly, 2023): 

 

𝐶 =
𝑄

𝜋𝑈𝜎𝑦𝜎𝑧
𝑒

−𝑦2

2𝜎𝑦
2
 

 

𝜎𝑦(𝑥) = exp (𝐼𝑦 + 𝐽𝑦 ln(𝑥) + 𝐾𝑦[ln(𝑥)]2) 

𝜎𝑧(𝑥) = exp (𝐼𝑧 + 𝐽𝑧 ln(𝑥) + 𝐾𝑧[ln(𝑥)]2) 

Where: 

C = ground-level concentration of pollutant (µg/m3) 

U = average wind speed (m/s) 

y, z = dispersion parameters in the crosswind direction (m) 

I, J, K = logarithmic empirical parameters (built into the model) 

 

The Gaussian plume model was applied to average emissions rates for each gate obtained from 

the data from Section 3 (appendix Figure A1) to produce heat maps for the concentration of 

dispersed pollutants. A 3.3 m/s wind is assumed to continuously be in the south-west direction, 

towards the inhabited areas of the San Francisco Peninsula where pollutants are likely to have 

the greatest impact. This is exemplified in Figures 30, 31, and 32 for of NOx, CO, HC, and PM 

emissions from Achatz Antonelli et al. (2020a). Since the emissions were associated with either 

the northern or southern part of SFO airport, the Figures show two distinct plumes. The plume at 

a crosswind distance of 300 m represents the aggregated concentrations due to Terminal D, E, F, 

and G whereas the plume located at -200 m represents the pollutant sources from Terminal A. 

Improving the geolocation of each gate would enable more accurate dispersion modelling on the 

airport area, whereas further locations would have comparable results. The dispersion analysis 

shows that for each of the pollutants tracked, the concentrations of NO2, NOx, CO, and HC, 

dissipate to less than 1 ppb and the PM concentration is below 0.2 µg/m3 at downwind distances 

of 1,000 m, which is negligible in comparison to typical ambient levels. However, the 

concentration in the immediate vicinity of the airport (less than 100 m downwind) may pose an 

air quality issue. A different methodology needs to be used to estimate pollutant concentrations 

on the apron. 

(Eq. 29) 

(Eq. 30) 

(Eq. 31) 
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Figure 30: SFO layout and assumed wind direction (Google Maps, 2023) 

 

  
Figure 31: NOx and CO emissions dispersion plumes (Achatz Antonelli et al., 2020a) 

  
Figure 32: HC and PM emissions dispersion plumes (Achatz Antonelli et al., 2020a) 

A 
B 

C 

D 

E 

F 

G 
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Table 20: Concentrations of pollutants downwind (µg/m3) (Achatz Antonelli et al., 2020a) 

Pollutant 
South-West Distance from SFO (m) 

500 1,000 1,500 2,000 

Nitrogen Oxides (NOx) 31.7 14.1 8.3 5.6 

Carbon Monoxide (CO) 15.5 7.7 4.8 3.3 

Hydrocarbons (HC) 4.4 2.2 1.4 0.97 

Particulate Matter (PM) 0.89 0.40 0.24 0.17 

 

A simplified model was created to determine the steady-state concentration of each pollutant at 

the terminals. This model assumes a control volume with dimensions of a Boeing 737 (36.4 m x 

28.9 m) and a wind speed of 3.3 m/s. Figure 33 presents a schematic of the calculation to 

estimate the steady-state concentrations.  

 
Figure 33: Mass balance schematic used to calculate steady-state concentrations at each 

terminal building (Achatz Antonelli et al., 2020a) 

 

Where: (Achatz Antonelli et al., 2020a) 

Qin, Qout = Flow in, Flow out (m3/s) 

C, Cin, Css = Volume Concentration, Input Concentration, Steady State Concentration 

(µg/m3) 

E = Emission Rate (µg/s) 

L, W, H = Length, Width, Height (m) 

V = Volume (m3) 

ū = wind speed (m/s) 
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The steady state concentrations, shown in Table 21, were used to conduct the health risk 

assessment for NOx, CO, and HC (Section 4.6 and appendix Figure A1). This is a highly 

simplified estimate, which suffices to provide values that can be used in the health risk 

assessment in Section 4.6. Chouak et al. (2022) shows how high resolution dispersion modelling 

can be applied for more accurate results. 

 

Table 21: Concentrations of pollutants around terminals (Achatz Antonelli et al., 2020a) 

Terminal NOx (µg/m3) CO (µg/m3) HC (µg/m3) 

A 321.2 106.7 46.3 

D 132.2 112.4 48.2 

E 121.9 103.9 56.7 

F 133.2 180.4 22.7 

G 264.5 69.9 29.3 

 

4.6 Health Risk Assessment 
 

The purpose of the health risk assessment is to examine if the concentrations of criteria air 

pollutants pose a health risk to apron workers or surrounding communities. Since apron workers 

likely have the highest exposure to APU exhaust, they are the focus of this section originating 

from Achatz Antonelli et al. (2020a). This section shows how health risk can be evaluated 

numerically, although its accuracy is limited by a simplified dispersion analysis and a limited 

number of dose response studies. The standard methodology used is described in EPA (2023). 

 

In this assessment, crews are assumed to work for an average of 8 hours/day, spend 1 hour near 

the airport premises (500 m away), 1 hour during transit (1,000 m away), and spend 14 hours in 

the surrounding communities (2,000 m away). The ground crews are assumed to work for 30 

years during their assumed 70 years of life. Exposures to those chemicals were calculated by 

summing all the concentrations multiplied by the Environmental Protection Agency (EPA)’s 

recommended daily inhalation volume (16.3m3) and their respective hours of exposure for each 

concentration. The total exposure mass is then divided by bodyweight (70kg) and 24 hours per 

day (EPA, 2020) to obtain a steady concentration. 

 

NOx, CO, and HC are analyzed for their health risk on the ground crew around the terminals. 

Nitrogen oxides induce respiratory inflammatory response; carbon monoxide causes heart 

disease; volatile organic compounds from fuel burn can produce malignant tumor response.  

Dose-response modeling is conducted on the chemicals by using data gathered through animal 

and human dose response studies in the literature. The dose response studies selected include: 

Preziosi et al. (1970) for CO, Sandstrom et al. (1991) for NOx, and Mauderly et al. (1987) for 

HC. The dose-response curves constructed in Achatz Antonelli et al. (2020a) are available in 
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appendix Figures A2, A3, and A4. Extracted and assumed parameters for the criteria pollutants 

are summarized in appendix Tables A16, A17, and A18.  

 

The no/low observed adverse effect levels (NOAEL/LOAEL) were extracted from the curve for 

non-carcinogens and the cancer slope factors (CSF) were extracted for carcinogens. The 

uncertainty factor (UF) and modification factor (MF) were determined based on the nature of the 

data sources (e.g., using animal dose response studies for evaluating human risk increases both 

UF and MF). The reference dose (RfD) was calculated by dividing the NOAEL/LOAEL by the 

MF and UF. The exposure was then compared to the results from the dose-response modeling: 

for non-cancer responses, the exposure was divided by the reference dose for the Hazard Index 

(HI), and a HI higher than 1 indicates significant risk; for cancer responses, the exposure was 

multiplied by the generated Cancer Slope Factor (CSF) to determine the lifetime risk of cancer 

from exposure to the chemical. 

 

According to appendix Table A19 and A20, the HI for NOx and CO are all either above 1 or 

close to 1, indicating a significant hazard for the crew. The calculated HI and lifetime cancer risk 

from HC for the ground crew at terminal A, D, E, F, G are summarized in appendix Table 

A21. These results indicate that air quality from APUs may be a significant concern, and that 

further research is warranted.  

 

4.7 Discussion 
 

Without direct data on PCA use, the LCI of possible scenarios (2-6) show large variability in 

cost, especially pertaining to APU fuel and damage costs. This highlights the importance of 

integrating PCA monitoring with GP monitoring before making any strong inference on APU 

use and costs. Airlines may have access to direct information on APU fuel costs, but it accounts 

for less the 50% of overall LCI costs.  

 

Whereas all LCI components are significant in a monetary cost evaluation, only the APU tailpipe 

and WTP emissions are significant from a GHG perspective. This might not be true of other 

airports that do not source 99% of their electrical power for hydroelectric sources, unlike SFO.  

 

Comparing the saving potential of each scenario reveals that improved gate electrification use 

brings relatively higher environmental savings than monetary savings. Although reducing APU 

costs is the cardinal strategy towards reducing overall costs, the monetary costs of installing and 

using gate infrastructure are a relatively important concern with well-performing operations. 

Pricing strategies in airport-airline lease agreements should reflect the operational costs 

proportionally to provide transparency and incentives for using the equipment. This is 

particularly true of shared equipment and gates where multiple airlines should have detailed 

accounting of costs. 

 

An expected conclusion from the LCI analysis is that turnaround operations that do not 

successfully use GP and PCA have a higher monetary and environmental cost than if the gate 

electrification was never present in the first place. This conclusion does not suggest that the 

systems should not be installed, rather that there is a further incentive to monitor and enforce the 

use of the infrastructure.  
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The dispersion analysis revealed that APU emissions are irrelevant in determining the air quality 

of communities that surround the airport but crucial in determining air quality on the apron area. 

Further from the airport, APU emissions are dwarfed by those associated with other airport 

processes. Next to the gates, with limited air volume to dissipate the emissions from stationary 

APUs, air quality can severely worsen. Airport-wide air quality studies and daily averages of 

pollutant concentration may not capture the spikes in exposure apron workers might receive, 

suggesting the need for a more robust dispersion.  

 

The health risk assessment reveals that APU pollution may have a significant impact on worker 

health. A high repetitive exposure to APU exhaust significantly increases respiratory distress and 

cancer risk. This conclusion was reached by only accounting for a fraction of overall emissions 

quantities and types, implying that the actual health risk could be even greater. However, a large 

uncertainty originates from the simplified dispersion analysis and by using solely 3 dose 

response studies (some of which were on animals) to determine the risk potential.  

 

4.8 Conclusions 
 

Although the operation assessment performed in this dissertation makes broad assumptions, it 

reveals that detailed airport-centric life cycle analysis for APU, GP and PCA costs and impacts is 

possible and warranted. This dissertation suggests how it could be accomplished, though further 

detailed data and research is required to truly perform a holistic life cycle assessment.  

 

LCA, dispersion analysis, and health risk assessment are all methodologies that reveal and detail 

those external costs; they are a way to introduce supervision and incentive structures that 

promote positive social, environmental, and health outcomes. Furthermore, these methodologies 

provide the foundation for the responsible sharing of resources between stakeholders and the 

basis for holistic decision making.  

 

The use of APU is a classic example of a negative economic externality, where the costs carried 

by the users of the system are lower than the overall global costs. In a free and unsupervised 

market, the equilibrium between supply and demand equates to a greater volume of use than if 

the equilibrium accounted for negative externality costs. In contrast, the use of GP and PCA 

systems (including the labor and processes required to use them) are a positive economic 

externality which ends up being used less than it should if global costs were accounted for.  
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5. Adaptive Scheduling  
 

This section of the dissertation proposes an active solution towards improved gate electrification 

use. Sections 3 and 4 are fundamental towards measuring and evaluating ground power 

operations, but they are reactive in nature. Improved supervision and accountability might add 

pressure to pilots, ground crews, and airlines to implement better practices and prioritize energy 

efficiency. However, improved supervision and accountability do not directly help in improving 

efficiency. Retrospective reports on performance, no matter how detailed, are not going to 

improve the efficiency of the reported operations. Furthermore, stringent oversight and an 

aggressive regulatory approach might be antagonizing in airport-airline relationships and poorly 

welcomed in the overall aviation industry. In contrast, solutions that propose increased 

sustainability and profits while also making airport worker’s lives easier and safer may be more 

likely to gain traction. This section reframes monitoring, prediction modelling, and cost 

evaluation as processes that can be centralized, automated, and streamlined to provide immediate 

value to turnaround operation stakeholders. 

 

5.1 Introduction  
 

In essence, turnaround operations are a project delivery system like many others. An ensemble of 

interdependent resources and activities interact with each other to provide a final service or 

product, while incurring a certain cost. A manager in this role needs to understand the constraints 

of the project, formulate possible scenarios and schedules, estimate the associated costs, and 

decide how to proceed in a way to best balance the desires to maximize the expected value and to 

minimize the expected costs.  

 

Turnaround operations are characterized by both high variability and fast pace. On one end of the 

spectrum, industrial manufacturing systems often rely on standardization and low variability to 

achieve a fast pace without much managerial intervention (e.g., a soda manufacturing plant). On 

the opposite end of the spectrum, highly unique projects rely on continuous managerial 

intervention to deal with the everchanging uncertainties of the project (e.g., a skyscraper’s 

construction). A human manager needs time to observe a project, assess the risks, and make 

decisions. For a construction project, reaching a holistic managerial conclusion takes several 

hours, days, or weeks, but the duration of the project is still much greater than the time lag in 

intervention. In contrast, turnaround operations, many of which last less than an hour, are too 

short to apply the same holistic decision making process. The human delay in observing, 

estimating, and reacting may constitute a large fraction of the overall time, making the project 

delivery system less reactive to variability, especially regarding processes that are not critical to 

the overall gate turnaround operation.  

 

Sections 3 and 4 of the dissertation showed the variable performance and impact of the use of 

gate electrification infrastructure. To maximize energy savings, GP and PCA need to be used as 

long as possible instead of the APU; they need to be connected as early as possible and 

disconnected as late as possible. Padhra’s-(2018) analysis of airline data determined that 

excessive, non-compliant use of APU is widespread, especially in the longer pre-departure phase 

as opposed to post-arrival where its emissions are also disproportionately greater. In its 
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conclusion (p. 443), the paper “hypothesizes that more accurate estimates of departure time, 

efficiently communicated between air traffic controllers and flight crew would enable APU fuel 

and emissions savings”. Figure 20 in Section 3.3.6 supports this conclusion, showing how 

turnaround operation has a strong positive relationship between delay and APU use time prior to 

departure. Padhra’s article provided a rigorous way to measure the ground power use problem, 

and it points to the conclusion that actively improving the situation requires a logistical, practical 

solution that alters the schedules and behaviors of pilots and ground crews.  

 

The field of lean management provides a suite of principles that can be used to improve the 

management of turnaround operations. Taiichi Ohno, a Toyota industrial engineer and executive, 

laid the foundations for the field of lean management to improve efficiency and cut waste in car 

manufacturing processes (Womack & Jones, 1996). Ohno classified 7 categories of waste in 

production delivery systems and Womack & Jones (1996) added an 8th waste: goods and services 

that do not meet the customer’s needs. The 8 wastes are listed in Table 22 and associated with a 

specific example within the scope of this dissertation. Lean philosophy presents the antidote to 

such waste with 5 main principles (Womack & Jones, 1996): (1) specify customer value, (2) 

identify the value stream, (3) improve value-creating flow, (4) implement pull management 

systems to deliver the right amount of work just in time, (5) record performance and 

continuously pursue perfection. All these principles are integrated in this section of the 

dissertation as guiding principles for a computerized management system.  

 

Table 22: Lean management waste categories and examples 

# 
Category of Waste 

 Womack & Jones (1996) 

Examples of Waste in APU,  

GP, and PCA Operations 

1 Defects in products Unexpected breakages; Unreliable GP  

2 Overproduction of goods not needed 
Idle GP and PCA when no aircraft is present 

at the gate; keeping APU on when using GP 

3 
Inventories of goods awaiting further 

processing or consumption 

Passengers waiting inside the aircraft for 

other processes to complete; parked ground 

handling equipment awaiting future use  

4 Unnecessary processing 
Turning the APU on early when GP and PCA 

are available 

5 Unnecessary movement of people 

Ground crew member moving between 

aircraft and passenger bridge to move 

equipment and connect each cable 

individually 

6 Unnecessary transport of goods 
Contingency fuel being added to aircraft for 

uncertain APU consumption  

7 

Waiting by employees for process 

equipment to finish its work or for an 

upstream activity to complete 

Waiting on jet bridge movement before GP 

and PCA can be operated or before the 

aircraft can leave 

8 
Design of goods and services that fail to 

meet user's needs 

GP or PCA is incompatible or insufficient for 

the parked aircraft 
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Pull systems are lean management principle that involves drawing resources when they are 

needed, rather than processing them as soon as possible (e.g., Tommelein, 1997). The concept of 

pull driven management systems is especially relevant to turnaround operations. Since the 

schedules of ground operations are dynamic and full of uncertainty, the lack of tight management 

might lead individual stakeholders to have a “just-in-case” approach rather than a “just-in-time” 

approach. If there is no clear indication of when to perform an activity, it might seem safer to act 

as soon as possible rather than too late. Such performance might safeguard individual workers 

from being the cause of large mistakes or delays, but it overall leads to suboptimal performance. 

Pull systems that work within an uncertain schedule are critical towards cutting waste, but they 

require a reliable and swift flow of information.  

 

Digital twins are computerized models of physical systems that enable integrated decision 

making and effective transmission of information. Data acquisition processes provide the inputs 

required to keep the model updated, while the model can be used to record, analyze, predict, or 

simulate scenarios that provide actionable conclusions with which the physical system can be 

managed. Conde et al. (2022) showed how digital twins of turnaround operations can be 

generated and used for improved turnaround operations management. 

 

Most of the literature about turnaround operations management focuses on optimizing overall 

completion of the turnaround operation because that is where the greatest value lies. There are 

plenty of savings from effectively managing the fleet of ground equipment and workers so that 

fewer resources are required to achieve the same turnaround operations performance. Integer 

linear programming and simulation optimization are effective and tested numerical methods for 

equipment scheduling (see Section 2.6). However, once the equipment is at the gate, the rule is to 

perform an activity as soon as possible, and it is normal to model the system as a “push” system. 

This makes sense for most activities in a turnaround operation, where there is barely any loss in 

value by performing a task too early (e.g., refueling, cleaning) but a substantial risk in 

performing them too late. GP, PCA, and APU management are the exception to this rule, which 

is likely why they are excluded from most of the relevant literature.  

 

This section of the dissertation shows that it is possible to include a pull management system for 

GP, PCA, and APU that produces energy savings without compromising the rest of the 

turnaround operation. A computerized adaptive scheduling system is first described in theory, 

and then a prototype is presented to deliver proof of concept. 
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5.2 Detailed Process Description  
 

To showcase the use of gate electrification equipment as a project-production management 

problem, this section maps out turnaround operations in further detail and expands the scope. 

Luggage handling, passenger movement, and refueling are some of the numerous processes that 

happen concurrently and promptly so that aircraft can get back to flying and generating value. 

These processes are part of the same system that involves the use of GP, PCA and APU.  

 

Turnaround operations at gates have similar activities, but there can be significant variation in 

the procedures, resources, infrastructure, and standards. To showcase the concept of adaptive 

scheduling and to isolate confounding variables, this section of the dissertation makes the 

following assumptions: 

1. Operations occur at a fully functional gate where the stationary PCA hose and the GP 

cables are connected to the passenger jet bridge and source their power from the airport’s 

electrical grid (Figure 34).  

2. As a safety precaution, the jet bridge is allowed to move only when the PCA hose and 

the GP cable have been fully stowed.  

3. The narrow body aircraft that are serviced at this gate have an APU at their tail end. 

4. The ambient temperature is such that the aircraft requires air conditioning when 

passengers are boarding, aboard, or deboarding.  

5. Although it is practically possible, the external ground power cannot be used if the APU 

is being used to generate bleed air for air conditioning. No testing or maintenance 

procedures are performed. 

 

 
Figure 34: Jet bridge with GP cable connected to a pulley system at SFO international airport 

(Achatz Antonelli, 2019) 
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Before the aircraft arrives at the gate, all relevant parties (Air Traffic Control (ATC), airline, 

ground crew, pilots) are informed on the gate assignment and expected duration for the 

turnaround operation. This information is uncertain, but it enables everyone to better schedule 

their tasks while having a set completion time to strive for. When the aircraft arrives at the gate, 

the ground crew and apron managers are assumed to be already present to assist the pilots in 

parking the aircraft in the right spot and to place blocks behind the wheels. The block-in action 

signals the beginning of the turnaround operation. Subsequently, a ground crew worker can 

slowly move the jet bridge towards the cabin door and lock it in position. Then, they lower the 

GP cable from the jet bridge, drag it to the bottom of the aircraft, and connect it to the GP 

receptacle (Figure 35). The aircraft automatically runs a series of tests on the supplied GP, and if 

every test is successful, a signal light appears in the pilot’s cabin. The pilot can then switch over 

the aircraft power supply from the APU to GP. Depending on ambient conditions, to ensure a 

pleasant passenger experience, the pilot sometimes needs to keep the APU on to generate the 

pressurized air needed to produce conditioned air. Meanwhile, the ground crew member who 

connected GP returned to the jet bridge to lower the PCA hose, drag it into place, connect it to 

the aircraft, and turn on the PCA. As soon as this happens, the pilot can turn off the APU, which 

slowly spins down to rest.  

 

 
Figure 35: GP connector and receptacle at SFO international airport (Achatz Antonelli, 2019) 

When the turnaround operation has started, the other tasks are initiated as soon as possible: 

passenger deboarding and boarding, crew switch, luggage handling, cabin cleaning, refueling, 

catering service, water, and wastewater servicing. These tasks need to be completed as quickly as 

possible so that the aircraft can go back to flying and making revenue. Although there may be 

some dependencies between these processes (e.g., boarding usually starts after cabin cleaning is 
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complete), they can happen mostly independently until the finalization of the turnaround. The 

completion will be determined by the longest processes. During the execution of these tasks, all 

parties are directed to complete their tasks by a certain time so that ATC can know when to 

schedule the aircraft’s taxiway and runway use times appropriately.  

 

Before the scheduled off block time interval, the aircraft needs to disconnect from GP and PCA, 

ideally at the last responsible moment. To do so, the pilot first needs to start the APU, which 

takes a few minutes to spin up to an rpm capable of generating power and conditioned air. Once 

this is achieved, the pilot can switch over to APU power and conditioned air. Only at this point 

can the ground crew disconnect the GP cable and PCA hose, drag them towards the jet bridge, 

and stow them appropriately (Figure 36). With everything stowed away safely, the jet bridge can 

be moved away from the plane and the blocks behind the wheels can be removed. Finally, with 

approval from ATC and apron managers, the tow truck can push the aircraft back away from the 

gate so that it can proceed towards the runways. 

 

 
Figure 36: Ground crew worker disconnects a GP cable  from a 787-900 which requires 2 GP 

cables for higher current supply (Achatz Antonelli, 2019) 
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5.3 Problem Statement  
 

Maximizing the fraction of time that ground power is used is in the interest of all aviation 

stakeholders and has been a clear objective for decades. ACRP (2019) identified numerous 

challenges with the process described earlier and suggests several solutions to address them. The 

report described how insufficient resources, inconsistent practices, lack of oversight, and 

maintenance issues can lead to ground power being underused and proposes a standardized 

method for tracking airport-wide utilization rates. The focus of the ACRP report was 

understanding the causes for operations that fail to use any ground power or PCA at all. It did not 

focus on understanding how GP use for partially successful operations can be improved. 

 

The ACRP report acknowledged that “pilots make the decision whether, when, and how long to 

use electric PCA and ground power and when to use the APU.” However, the report did not dive 

into the critical decision making process of the pilots in the moment that it happens. Since pilots 

are the ultimate decision makers, they are responsible for assessing the state of the turnaround 

operation, predicting the consequences of their decisions and actions, and then taking 

responsibility for them. This can be a challenging and stressful task alone, and it is even harder 

when considering the other duties the pilot is executing simultaneously.  

 

The pilot’s decision of switching the APU off to increase ground power use is straightforward. 

The sooner the APU gets substituted with GP and PCA, the better; as soon as that action is made 

possible, it should be executed. In contrast, the decision of when to turn the APU on before 

departure is not so simple. Turning on the APU has no prerequisite, and the pilot can do it 

anytime. If they turn it on early, they will cause the APU to burn expensive and polluting fuel 

beyond the necessary time. If they turn it on late, they risk causing a delay to the whole 

operation, perhaps losing their departure slot time. In addition to this tradeoff between energy 

inefficiency and delay risk, turnaround operations processes are unpredictable (e.g., delays, 

maintenance issues) and depend on other stakeholders (ground crews) and external decision 

makers (ATC, ACDM). In addition, the pilot experiences new combinations of equipment and 

ground crews with each airport, some of which can be faulty, late, or absent. With all this risk, 

variability, and sometimes unreliability, a pilot will likely make conservative decisions. In 

practice, if the pilot does not know with certainty when the aircraft can be pushed back, and the 

task of disconnecting from the jet bridge both takes some time and is dependent on ground 

workers they do not know, they will choose to turn on the APU early. On a systematic level, 

such behavior decreases the potential use of GP and PCA, increasing costs and emissions that 

could otherwise be saved. If instead pilots were to be assisted in predicting the everchanging 

schedule of turnaround operations and weighing the risks associated with turning the APU on, 

they would be enabled to do so at the last responsible moment.  

 

The root of this problem lies in optimizing a turnaround operations schedule that mitigates the 

inefficiencies created by unexpected variability in the completion of its component tasks. On one 

side, the standardization that comes with preplanning and choreographing is instrumental in 

minimizing costs and wait times a priori. On the other side, a detailed preset schedule makes it 

vulnerable to unforeseen challenges and delays. That is why human turnaround operations 

managers with years of experience navigate the variable circumstances of each operation and 

adapt their team’s schedules in real time. They use experience-based heuristics based on a 
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limited set of data available to make their decisions. The turnaround operations managers are not 

the pilots that make the ultimate decision of turning the APU off or on. Everyone is limited by 

their human nature in their ability to perceive the unfolding of the many parallel operations they 

manage, predict changing schedules and outcomes according to their experience, and 

communicate instantly to all relevant parties. Nevertheless, they perform the real-time 

management role that is critical toward mitigating unexpected variability, one that can be used as 

a blueprint for a computerized monitoring and management system.  

 

How can the best time to turn the APU on before departure be determined with an 

implementable, data-driven, and scalable method? This section proposes a framework for a 

computerized intelligent agent system that can monitor, predict, and optimally schedule ground 

operations at every step of the evolving operation. To do so, the percepts (inputs), the agent-

based architecture (algorithm), and actuators (outputs) of a real time AI system that would assist 

turnaround operations stakeholders need to be defined. Figure 37 shows a conceptual blueprint 

for such a system with the following components:  

• A process model is needed to make sense of the dependencies in activities, 

• An integrated sensing must fuse the precept data with the model to interpret the 

circumstances of the problem, 

• A long-term memory must accumulate historical data for future analysis, 

• Multiple prediction models trained on historical data must make predictions on potential 

turns of events, 

• A simulation optimization must fuse the dependencies of the process model, the 

circumstances of present state, and the stochastic predictions of future states to determine 

which actuator minimizes the expected cost. 

 

 
Figure 37: Blueprint for adaptive scheduling management system 
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5.4 Percepts  
 

The first step towards developing an automatic and computerized management of turnaround 

processes is understanding what data inputs (percepts) such a system can leverage to collect data 

in real time and use to monitor the operation. Percepts that can be used include, but are not 

limited to: 

1. Energy Monitoring 

2. Position Tracking 

3. Visual Monitoring 

4. Acoustic Monitoring 

5. Weather Monitoring 

6. Thermal Imaging  

7. Air Quality Monitoring 

8. Human Signaling 

9. External Information Systems 

 

The wider the scope of the monitoring system’s percepts is, the more the data will allow for 

integrated and comprehensive conclusions. The more frequently the percepts feed data to the 

system, the more detailed and precise those conclusions can be. The following section will 

discuss potential methods in which data collection for gate operations can happen systematically 

and automatically. Many of these percepts are redundant or not critical toward the functioning of 

a monitoring system, nevertheless all will be listed and described as potential inputs.  

 

5.4.1 Energy Monitoring 
 

Turnaround operations have many energy sources and loads, from that of the aircraft to that of 

the ground support equipment. Where and how that energy is consumed may not be tracked in 

detail by a central system. Each source of energy has its cost and emission rates. For each 

operation, the different sources are used at variable rates, and their use rates are dependent on 

each other. If a supposed computerized system must make nuanced conclusions that minimize 

the expected aggregate cost, it needs to know precisely what the use rates and costs are for each 

source. Looking at average rates or average consumption over extended intervals of time would 

not provide actionable data for individual operations. 

 

Information on energy use can be used for two purposes: accounting and prediction. Accounting 

refers to the systematic recording and addition of all energy costs once all the data is recorded. 

Prediction refers to leveraging previous data and trends to estimate probable energy uses and 

costs rates before any real data is available. 
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5.4.1.1 Source Use & Magnitude 
 

5.4.1.1.1 Aircraft Power 
 

An aircraft has several engines at its disposal to generate its electrical power. It is most common 

to use the APU as the power source during idle times at the gate. The main engines can be used 

at the gate but are usually turned off. Most aircraft models are already fully equipped to record 

all fuel consumption and energy consumption in detail. This data is being used by several airline-

facing companies that leverage AI analytics for evaluation, prediction, and optimization to the 

airlines. In this case, the aircraft data is envisioned as a potential real-time percept of the 

centralized monitoring system. It would need to be transmitted from the airline to the monitoring 

system in real time.  

 

5.4.1.1.2 Gate GP Power  
 

The software and manual described in Achatz Antonelli et al. (2020b; 2020c) showed how power 

consumed through metered ground power cables can be leveraged to predict future energy 

demand. Assuming no other source of energy was used to continuously power aircraft during 

short turnaround operations, the system infers when and how many APUs were being used at the 

gate, without any direct data from the aircraft and airline (Section 3). The data collected by the 

gate meters describe the amount of cumulative energy consumed at every gate at 5 minute 

intervals. This data was collected and analyzed retrospectively, but in theory it could have been 

collected in real time as a component of a central monitoring system.  

 

There is no standard for the collection of energy data from ground power systems; the airports 

that meter their ground power often do so with proprietary software. Whereas some airports have 

installed electrical meters that exclusively measure the consumption from ground power from 

individual gates (SFO and CDG for example), not all airports have gate-level meters (SEA for 

example). Ideally, all gates would be metered independently, but it is understandable that 

changing or upgrading existing infrastructure comes at a large and sometimes unreasonable cost 

for the benefits it could provide.  

 

5.4.1.1.3 GPU Power 
 

Many operations use mobile ground power units that provide power with a diesel generator 

(ACRP, 2019). Although their cost and emission rates are not as low as those of ground power 

cables from the terminal, they are still an excellent alternative to APU use during idle times 

(Greer et al. 2021). They are mobile and can be relocated where they are most necessary.  

 

In Achatz Antonelli et al. (2020b), GPUs were excluded from the analysis, as they are not  

common for gate operations at SFO, since GP is provided at all gates. However, this exclusion 

would be invalid for many other airports. In a comprehensive monitoring system, it would be 

important to understand the supply of power from GPUs just as well as GP. To do so, GPUs need 

to meter their fuel consumption and supply of electrical energy at regular intervals and transmit it 

in real time through an IoT architecture. Once again, upgrading existing GPUs to perform these 
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tasks might prove expensive and challenging, but this should be considered in the design of 

future mobile GPUs. 

 

5.4.1.1.4 PCA Power 
 

Pre-conditioned air systems are often paired with ground power systems because their use is 

correlated. For example, an APU can be turned off if both functions it provides, power and air 

conditioning, can be substituted by external sources. Gate-installed air systems can either have 

their heating and cooling unit installed at each gate independently or centralized within the 

terminal and then distributed to each gate. For independent units, the power consumption of the 

unit should be measured at regular intervals and shared in real time to a centralized data 

acquisition platform, just like for GP. For centralized systems, it is more challenging to dissect 

which gate is using how much power to power the PCA, but it is at least possible to identify the 

times air is flowing or not. Independently of the configuration and sensory capabilities, the 

objective of a PCA is to monitor when and how much it is used.  

 

5.4.1.1.5 PCU Power 
 

Just like for ground power, preconditioned air can be supplied through stationary gate 

infrastructure or mobile PCUs. Similarly to GPUs, the power consumption and air flow from 

these units would need to be collected at regular intervals and shared in real time.  

 

5.4.1.1.6 Jet bridge 
 

The jet bridge that connects the terminal to the aircraft consumes power. During its movements 

at the beginning and end of gate operations, it requires more power. Some jet bridges consume a 

base power for the electrical equipment in them even while stationary. The energy used should 

be collected at regular intervals and shared in real time. 

 

5.4.1.1.7 Ground Service Equipment (GSE) 
 

Ground service equipment (GSE) encompasses a vast number of vehicles that can be used for 

turnaround operations. The most noteworthy are the tow, luggage trolleys, luggage loading 

equipment, catering trucks, refueling trucks, water servicing, and wastewater servicing. This 

equipment uses energy. The ability to collect and analyze energy consumption would be crucial 

towards having a comprehensive understanding of energy uses at the gate. These vehicles are 

often diesel powered and do not have sophisticated data collection and sharing as part of their 

design, making it challenging to know how much power they are using at any point. Many of 

these vehicles are being modernized and electrified, making such a data collection more feasible. 

Ideally, the centralized monitoring system would receive data on energy consumption for each 

vehicle, but already being able to recognize which vehicle is on, idle, or off would provide a 

foundation for insightful decision making.  

 

To exemplify the relevance of GSE energy monitoring, consider a tow truck at a gate. A typical 

tow with no sensors could not share information on instantaneous fuel consumption with the IoT 
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system. However, if such a tow were able to communicate when it is ON or OFF, it would 

provide a percept crucial towards understanding if the tow is in use or idle with its engine on. 

One might say that this is a negligible detail in the overall picture of gate power consumption, 

but such detail sets the foundation for a comprehensive life-cycle assessment, energy prediction, 

and new management possibilities. Being able to estimate how much power the tow truck 

consumes per operation can help predict and optimize charging and usage times to lower energy 

costs and energy loads on airport infrastructure. 

 

5.4.1.1.8 Estimation of Unknown Quantities  
 

Many of the precepts for energy monitoring described above are not always attainable for all 

operations and all airports. However, there are two ways that can be used to bridge that gap in 

information: by leveraging historical data or literature data.  

 

If a monitoring system were implemented at numerous airports, the data from some airports with 

the necessary precepts can be used to estimate the energy consumption at airports without those 

same precepts. For example, SEA airport does not have independent electrical energy meters at 

each gate. However, they are landing mostly the same aircraft models as SFO, which instead 

does have the capacity to measure energy consumption for each operation. Within a reasonable 

margin of error, it would not be inappropriate to expect similar levels of energy consumption 

rates for similar conditions, and therefore work with a reasonable estimate.  

 

When there is a complete absence of historical data, the system can use values from the literature 

or provided by the manufacturer of the equipment. This data will lack precision but can function 

as a placeholder for a missing percept. 

 

5.4.1.1.9 Switch Time Estimation from Metering 
 

A fundamental precept of the monitoring system is understanding when a certain power usage is 

ON versus OFF. In some cases, the switch can be instantly detected and transmitted to a 

centralized system as a precise timestamp. Sometimes, that information is not available. In most 

energy meters, cumulative power is only recorded at consistent predefined intervals that do not 

necessarily match the time at which the switch occurs. However, even in such a scenario, if the 

data is granular enough, it is possible to estimate the switch time. If enough data has been 

accumulated on the power usage trends of a certain equipment, it is possible to formulate 

prediction models that can estimate the power rate of that equipment within the interval of time 

at which the switch occurred. By comparing how much energy was consumed versus how much 

was expected to be consumed, it is possible to estimate the proportion of time that the power was 

used within the interval, and consequently infer the switch time. This is a valid estimation 

process for any power use that does not have a delay between the time of use and the time of 

energy consumption (i.e., PCA has a delay). It can be used as an artificial percept of the 

centralized monitoring system. 
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5.4.1.2 Source Cost Rates 
 

Each energy use is associated with a monetary cost and emission cost that is variable depending 

on the source and time of use. The clearest example is that of APU versus GP, where to provide 

the same electrical power needs to the aircraft, the APU is clearly more expensive and polluting. 

All uses of energy abide by equation 32 to find the overall cost: 

 

𝐶𝑜𝑠𝑡 = ∑ (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡 ∗ 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡 ∗ 𝑃𝑜𝑤𝑒𝑟𝑡 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑡)𝑡            (Eq. 32) 
 

Where: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡 is the duration of time interval t 

Utilizationt is the fraction of time power was consumed during interval t 

Powert is the instantaneous non-zero power consumed for interval t 

EnergyCostRatet is the average cost per unit energy during interval t 

 

Understanding the detailed costs of all energy uses is an ambiguous task, which requires a clear 

definition of the problem’s boundaries. In a comprehensive life-cycle cost assessment the cost 

rate of power would have to include the varying monetary and environmental costs of the 

electricity mix and fuel along with the costs of the processes and infrastructure built to provide it. 

However, this report suggests limiting the scope to the operational monetary and emissions costs. 

Of the emissions costs, the most relevant pollutants towards airport air quality and emissions are 

CO2, CO, NOx, SOx, HC, PM. 

 

The monetary and environmental costs of electricity and fuel are variable data, so they need their 

own percept. This is a realistic implementation as most airports detail their energy consumption 

mix and some even have APIs that update the variable rates in real time. Similarly, there is 

public information on jet fuel and diesel monetary and environmental costs by airports and 

regions, some of these available through APIs.  

 

5.4.2 Position Tracking 
 

Another fundamental percept is understanding where any event or resource consumption is 

occurring. 

 

For stationary equipment and sources, the position is predefined and does not change. This is 

true for stationary GPs, PCAs, jet bridges. Their location can simply be manually input to the 

central monitoring system. 

 

For mobile equipment, personnel, and resources, it is fundamental that their location is tracked 

frequently. This information needs to be shared in real time with the central monitoring system. 

For example, if a GPU is producing power for an aircraft, it will be challenging to attribute that 

power consumption to the operation it is servicing unless that GPU is geolocated to be next to 

the operation it is servicing.  

 

There are several methods to keep track of the position. The first one is to have a geotag on the 

equipment that constantly sends updates on its new coordinates. Based on the proximity of those 
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coordinates to any specific gate, it is possible to connect the resource use to that gate. Another 

method is to use image recognition systems to track the movement of equipment through the 

apron area, which is already being done for the aircraft and GSE in the apron. Another option is 

to use IoT capabilities to infer the location. If a particular IoT-connected resource (e.g., GSE, 

personnel) is connected to a specific set of neighboring devices, the location can be inferred. 

 

5.4.3 Visual Monitoring 
 

The last decade has seen leaps in the capabilities of image recognition technologies that can now 

be applied toward monitoring airport operations. Aircraft are already being visually tracked by 

integrated camera systems at many large airports around the world. The AODB, which was a 

major data set used in the software of the Phase 1 report, was largely generated using Aerobahn's 

visual monitoring software. The uses of image recognition are still improving and expanding, 

and they have terrific potential in assessing ground operations. 

 

An excellent example of how visual monitoring is an outstanding percept for gate operations is 

that of the startup Assaia. They developed their Apron AI product, an information system that 

allows visual data collected from apron cameras to be translated into a set of timestamps for each 

event observed. Assaia went a step further and understood the value of being able to digitally 

monitor and model gate operations to inform decision making processes. On top of the 

timestamps collected from their cameras, they built a supervised machine learning model that 

predicts the push back time of aircraft as an operation is being completed. Their product directly 

interfaces with CDM systems, informing of this prediction, allowing them to optimize schedule 

ramp movements, predict gate availability and avoid queuing. Their work is already recognized 

and applied in the industry, with major sponsors such as EuroControl, International Air 

Transport Association (IATA), and Airport Council International (ACI); many clients such as 

Seattle Tacoma Airport, Gatwick, Toronto International Airport; and pilot projects in a multitude 

of other locations including SFO.  

 

In the scope of this report, visual monitoring provides two fundamental pieces of information: 

the timestamps of visually recognizable operational milestones (e.g., block-in time, cable 

connected, doors open,) and the recognition of which resources are being used (e.g., GP or GPU? 

Jet bridge or mobile staircase?). 

 

5.4.4 Acoustic Monitoring 
 

Sound is a relatively unexplored percept that can be used for ground operations. Several events 

in ground operations are better recognized from sound than from visual feedback. For example, 

sound can be a way to recognize the states of the main engines and the APU engine, which 

produce recognizable frequencies dependent on their spin rates. A directional microphone 

installed at a gate in combination with a trained machine learning system can recognize the 

moment at which an APU is initially started to spin up, the moment the APU has reached the 

rpm it requires to generate power, and the moment in which the APU is generating power. A 

well-positioned array of microphones would be able to distinguish where the sound is coming 

from. As a percept, it would essentially provide states and timestamps for the shutdown and 

startup sequence of aircraft engines at single gates.  
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5.4.5 Weather Monitoring 
 

Weather can have significant impacts on ground operations, and therefore should be monitored 

as a percept of the system. Extreme weather events, despite being rare, can hinder certain 

activities, cause delays, and affect the performance of the overall operation. Temperature also 

has a major impact on operations, especially on the use of pre-conditioned air systems. For 

example, in high heat environments, some preconditioned air systems might be insufficient at 

cooling down the aircraft, forcing pilots to turn on APUs earlier than planned. Considering a 

human manager would take weather into account in the management of the operation, it should 

also be a percept of the computerized monitoring system.  

 

This is a simple percept to implement. Weather APIs are commonplace and can be connected to 

the monitoring system. At regular time intervals, data should be collected on wind speed, 

precipitation, and temperature. 

 

5.4.6 Thermal Imaging 
 

Thermal imaging is a potential percept that can be used to identify which engines are in use. The 

fumes released by combustion engines can be recognized by image recognition software. This 

percept would provide the times of use of the engines. This is a challenging and expensive 

percept to implement, and this report speculates that it would also be inaccurate, as there is a 

delay between the heating and cooling of engines and the times that they switch on and off. 

However, it is still worth mentioning as a potential percept. 

 

5.4.7 Air Quality Monitoring 
 

One of the primary drives for this project is the reduction of pollutants at airport gates, which 

would have a measurable impact on air quality. A potential percept of gate operations would be 

the continuous measurement of criteria air pollutant concentrations at the airport. This is a data 

collection that some airports already perform to assess their environmental impact. However, for 

the purposes of ground handling management, such a percept would not really provide actionable 

information.  

 

5.4.8 Human Signaling 
 

A potential percept for a computerized monitoring system is that of signals and data provided 

directly by the human workers in the operation. In theory, a human can deliver any valuable data 

to a system by using a button, a smartphone or any device that can be connected. This is contrary 

to the goal of making gate monitoring autonomous, but it might prove to be a valuable and 

necessary percept at times. This percept could take many forms, and for such it will not be 

detailed in its designed goals.  

 

To provide an example, malfunctions of equipment are an unfortunate but common occurrence in 

airport aprons which demand circumstantial decision making and actions. In the event of a 
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breakage or maintenance routine, a human could inform the centralized monitoring software that 

a non-standard procedure is occurring. 

 

5.4.9 External Information Systems 
 

Gate operations are interdependent with many other processes in the airport ecosystem, so it is 

fundamental that a centralized gate monitoring system can integrate data from other external real 

time information systems.  

 

Apron managers and air traffic controllers are the decision makers for when a gate operation 

begins and ends. Their decision making depends on air, runway, and taxiway traffic, which are 

outside the scope of a gate monitoring system. ATCs and apron managers need to consider the 

predefined schedule and the unfolding of a turnaround operation to make decisions on the spot, 

but in many cases these decisions are independent of gate activities or the original schedule. 

There are sophisticated real time information systems to aid them in the decision-making process 

and in communicating it to all relevant parties, such as the ACDM framework. These existing 

systems would also provide the necessary percepts for improved gate monitoring and 

management. For example, if there is a large queue for the runways, an ATC might delay the 

pushback of an aircraft from a gate. That information can be used to instantaneously reschedule 

turnaround processes to avoid idle time and inefficient energy usage. In short, the pushback time 

and departure time slot are critical real-time percepts that need to be sourced from external 

information systems.  

 

Passenger and luggage movements cannot be monitored directly at the gate apron, but they may 

influence a turnaround operation. Luggage and passenger handling could be the cause of delay. 

The passenger movements have direct dependencies with other critical turnaround processes 

such catering, cleaning, and jet bridge operation. The moment passengers are on the aircraft, 

there is a need to ensure a pleasant temperature, which has direct consequences on the use of 

energy for the operation. This critical information is very consequential on the gate turnaround 

and should be used as an external percept. There are already sophisticated luggage and passenger 

tracking information systems that can be used to source the data in real time. The most relevant 

times that would need to be continuously reported would be: 

 

● Predicted & Recorded Passenger Deboarding Start & Completion 

● Predicted & Recorded Passenger Boarding Start & Completion 

● Predicted & Recorded Cargo Offloading Start & Completion 

● Predicted & Recorded Cargo Loading Start & Completion 
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5.5 Process Model  
 

To make valuable conclusions from the continuous data supply from percepts, a computerized 

system needs a model to represent how an operation unfolds. Ideally, an AI system would be 

able to learn the activities and their dependencies as needed to construct a model. However, it is 

presumed that a modeler formulates a model design. 

 

The process model is a module that establishes the activity sequences and rules that govern a 

process. In essence, it is code that describes the physics of the whole turnaround operation. It is 

primarily composed of a list of dependencies between activities and resources (i.e., GP can be 

provided only after GP connector has been plugged in).  

 

The modeler is the person who decides what is the best model to implement. Their goal is to 

make a model that is comprehensive enough to make precise, accurate, and actionable 

conclusions. However, it is unreasonable and incomputable to replicate all the complexities and 

physics of reality, making it important that a modeler identifies what to include and what to 

exclude. The modeler must build the model keeping in mind the available percepts and actuators 

that the system can leverage in its algorithm.  

 

To understand how a model can be designed, the dependency mechanism between activities 

needs to be defined. Activities are delimited by two events: their start and their completion. The 

start time of an activity solely depends on the completion of all predecessor activities; it starts as 

soon as all its prerequisites are complete. The completion time of an event can be either 

simulated or observed in real time. If it is being simulated, the completion time can be 

determined by a constant, a random variable, or a function (described in Section 5.8). If the 

activity is observed, the completion will be signaled by a percept, and the duration can then be 

unequivocally deduced. The model’s dual representation between observation and simulation is 

fundamental, because in an adaptive scheduling framework any past activity will have been 

observed whereas future activities need to be simulated. As an operation unfolds in time, more of 

the model’s durations for activities will be replaced by observed durations and fewer future 

activities will need to be simulated. That is why the durations within the model are described 

through variables. 
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5.5.1 Simple Model Example 
 

This dissertation uses a simple model to explain how this architecture could work, an example 

upon which more comprehensive models can be built and demonstrated. It will look at an 

operation occurring at a single gate, where all workers and equipment are already present to 

service the aircraft (no procurement). Only a handful of gate-handling processes are assumed to 

hold back an aircraft from departing, and the scheduling interaction with ATC is ignored. It is 

assumed that the percepts available are: 

 

● Image recognition cameras that can identify the completion of the following operational 

milestones: 

○ Aircraft Parked  

○ Jet bridge Connected 

○ GP Connected 

○ GP Disconnected 

○ Jet Bridge Disconnected 

○ Aircraft Pushback 

○ Refueling Initiated 

○ Refueling Concluded 

○ Luggage Unloading Initiated 

○ Luggage Unloading Completed 

○ Luggage Loading Initiated 

○ Luggage Loading Completed 

● The Airport Operations Database AODB will provide: 

○ Predicted Pushback Time / Gate Hold 

○ Airline 

○ Aircraft Model 

● External Data  

○ Opportunity Cost of turnaround operation 

○ Marginal Cost of GP Power based on use duration 

○ Marginal Cost of APU Power based on use duration 

 

Assume that the only actuators available are: 

● An informational signal that tells the pilot to turn on the APU 

● An estimated time for disconnecting the cable given to ground crews and pilots 

● An estimated pushback time dependent solely on gate processes 

 

Knowing what percepts and actuators can be used, a model can be designed accordingly. In this 

case, only a limited number of processes is included, depicted in the flow chart in Figure 38. The 

percepts provide information only to infer the completion of large milestones from specific 

activity paths: the ground power usage, the luggage handling and the refueling. An external 

actuator, Gate Hold, can be considered an additional activity path that can allow Air Traffic 

Control (ATC) to schedule the minimum duration of the whole operation.  
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Figure 38: Dependencies of the simple model. Actuator activities that can be influenced are 

shaded orange, whereas normal activities that can only be observed are not shaded. 

Table 23: Random variable distributions for the durations within the model 

Activity 
Normal Distribution 

Average (min) 

Normal Distribution 

Standard Deviation 

(min) 

Normal Distribution 

Minimum Cutoff 

(min) 

Park 2 0.5 1 

Jet Bridge Connect 2 0.5 1 

GP Connect 2 0.5 1 

APU to GP Switch 2 0.5 1 

GP to APU Switch Actuator Y: GP Hold Release (initially set to 0 min) 

GP Disconnect 2 0.5 1 

Luggage Unload 12 2 1 

Luggage Load 12 2 1 

Refuel 20 5 1 

Gate Hold External Actuator X: Authorized Pushback (initially set to 0 min) 

Pushback 2 0.5 1 
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The simple model in Figure 38 captures the parallelized processes of ground power management, 

luggage handling, and refueling. Although not all processes are included, these activity paths 

mirror those described in the process description. Because the model physics indicates that 

activities start as soon as all their predecessors are completed, this model implies that luggage 

loading begins right after luggage unloading is completed and refueling starts as soon as the 

aircraft parks. This is not necessarily correct; those activity paths have constraints that are not 

modeled but for the sake of simple explanation. A discussion on which further complexities can 

be introduced to the model to make it more realistic is discussed in Sections 5.11 and 5.13.  

 

Table 23 lists arbitrary distributions in activity durations associated with the model in Figure 38. 

These arbitrary values are in line with typical durations observed in the literature to showcase the 

stochastic nature of the model.  

 

The activity “Gate Hold” is a non-tangible activity that describes the external decision making 

and scheduling that would lead the aircraft to stay at the gate; its completion would allow the 

aircraft to be pushed back if all other activity paths are completed. In reality, this is an actuator 

that airlines and ATC/ACDM can use for optimization and scheduling, but its specifics are 

outside the scope of this model. They can change the predicted and actual pushback time while 

the operation unfolds for reasons such as runway management, airline scheduling, and 

maintenance. This external decision has a defining impact on the scheduling of the ground 

handling and is a major contributor to variability. Initially, this model ignores this external agent 

by setting the hold duration to 0, but Section 5.11 discusses how it could be better integrated.  

 

This simple model is designed purposefully around the percepts and actuators that were stated as 

available. Each activity can be monitored for completion from the percepts so that the 

computerized system can know at what stage of the activity flow it is during an operation. The 

start of each activity is determined by the completion of its predecessors as shown. Table 24 lists 

the dependencies and completion for the model. 
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Table 24: Conditions for activity start and completion 

Activity Predecessors Completion Condition Percept Source 

Park n/a 
Chocks placed behind 

wheels 
Video Recognition 

Jet Bridge Connect Park 
Jet bridge stationary 

and attached to aircraft. 
Video Recognition 

GP Connect Jet Bridge Connect 
Cable connected in 

receptacle 
Video Recognition 

APU to GP Switch GP Connect 
Power being consumed 

through GP 
GP Power Metering 

GP to APU Use GP Switch 
Actuator Y: 

GP Hold Release 
n/a 

GP Disconnect GP to APU Use 
GP disconnected and 

stowed away 
Video Recognition 

Jet Bridge Disconnect GP Disconnect 

Jet bridge stationary 

and detached from 

aircraft. 

Video Recognition 

Luggage Unload Park 
Luggage stops coming 

out of cargo hold 
Video Recognition 

Luggage Load Luggage Unload Cargo Doors Closed Video Recognition 

Refuel Park 
Refueling line 

disconnected 
Video Recognition 

Gate Hold Park 

External Actuator X: 

Authorized Pushback 

(Initially set to 0) 

AODB/ATC/ACDM 

Pushback 

Jet bridge Disconnect 

AND Luggage Load 

AND Refuel 

AND Gate Hold 

Aircraft moves away 

from parking 
Video Recognition 

 

With the dependency mechanics and structure defined, the rest of the adaptive scheduling 

architecture can be built. The only remaining step is encoding the physics and dependencies in an 

event-based simulation engine such as MIT’s SimPy (Scherfke & Lünsdorf, 2020). 
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5.6 Integrated Sensing  
 

Percepts generate data that needs to be merged and analyzed before it can be useful information. 

The objective of the integrated sensing module is to clean data from the percepts and create a 

consistent database that indicates the state of the operation within the pre-defined process model.  

 

Integrated sensing starts with systematically fusing acquired data. The percepts do not 

necessarily collect or transfer data with the same granularity; they are likely out of phase. For 

example, energy meters could transfer data every minute, and image recognition every ten 

seconds. The question arises; at what rate should the integrated sensing database be updated? If 

its refresh rate is slow, detail will be lost, and time will be wasted to make actionable 

conclusions. If its refresh rate is fast, inputs might not receive new data, or the full algorithm 

might not have the time to run before receiving a new input. Finding the optimal rate is crucial 

towards the functioning of the overall algorithm and will be discussed in the Simulation 

Optimization module (Section 5.9).  

 

At any iteration through operation, the integrated sensing database needs to describe exactly 

what is known about the state of the model and percept data available. Whenever a percept is 

updated, the unchanging part of the integrated sensing data should not simply be copied. That 

would introduce false certainty in a state that has not yet been perceived fully. So, it is important 

that the data being copied carries the timestamp of when it was last updated. For example, 

consider activity B in Figure 39 is recorded in the integrated sensing database. Whereas the long-

term memory updates every 10s, the completion percept for activity B only updates at 15 s and 

35 s, while the actual activity ends at 27 s . If this precept is described as true or false at each 

integrated sensing update and is copied to fill in missing data, the copy would incorrectly infer 

that there was new information indicating whether at a later step in time the cable was connected 

or not. At 30s, although the percept did not observe it yet, activity B was completed; it would be 

wrong to say activity was not completed at 30s seconds because the last data input was at 15s. 

According to the integrated sensing activity B may or may not have been completed in the time 

since the last percept update. To carry that ambiguity while also reporting a complete integrated 

sensing database update, the percept for event A must be described by two variables: both a 

binary true or false and a timestamp describing when the measurement was made (Table 25). 
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Figure 39: Example of integration of out-of-phase percepts 

Table 25: Example of integration of out-of-phase percept with arbitrary values 

Integrated Sensing Timestamp Activity B Completed? Percept Update Timestamp 

10 False n/a 

20 False 15 s 

30 False 15 s 

40 True 35 s 

 

The next step of integrated sensing is merging all the data. On a database indexed by timestamp, 

each row would contain all the features describing what is known at that timestamp. The data for 

previous timestamps would not be modified according to new data acquisitions. As the operation 

proceeds through real time, more rows are appended to the database.  

 

Once the percept data is integrated at every timestamp, the dependencies and assumptions 

described in the process models can be used to further understand the state of the model. First, 

the completion conditions from Table 24 may be verified. When a completion condition is 

triggered, that indicates its corresponding activity has been completed at that time. Based on the 

dependencies also defined in Table 24, one can conclude that any activity that has its predecessor 

activities completed, has been started. By applying this logic, all activities can be labeled as not 

started, in process, or completed. One ambiguity remains: it is not possible to conclude whether a 

“not started” activity has started or if a “in process” activity has been completed, because the 

relevant percept data might not yet have been acquired yet. An activity recorded as not started 

could have started and an activity that is in process could have already finished.  

 

To account for this time lag in between capturing and recording data, the latest percept update 

time for each completion condition of each activity needs to be recorded. In such a way, any 

information that is carried in the integrated sensing database is accompanied by a timestamp that 

clarifies its currency. 

 

To make sense of the timeline of the operation, each completed activity must be given a start 

time, a completion time, and an observed duration each time. The completion time will be 
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directly sourced from the percepts that fulfill the completion conditions, and the start time can be 

sourced as the maximum completion on the predecessor activities. Similarly, each activity label 

“in process” can be given a definite start time.  

 

This process is exemplified in Figure 39 and Table 25 with a focus on activity B. First, at each 

integrated sensing update, the state of predecessor activities A and B is assessed. At 32s and 35s, 

the completion percepts for activities A and B respectively are triggered. That data is recorded at 

the integrated sensing update at 40s, noting the time of data acquisition. Since the predecessor 

activities A and B are complete, the ISD at 40s knows activity C started at 35 s. At 80 s, the ISD 

also records that the completion percept for activity C was triggered at 72 s. With this 

information, it is possible to infer the start, end, and duration of activity C as precisely as the 

percepts allow.  

 

Table 26: Example of integrated sensing updates for activities A, B, and C in Figure 39 

Integrated 

Sensing 

Update 

Predecessor Activity 

A 

Predecessor Activity 

B 
Activity C 

State 

Latest 

Percept 

Update 

State 

Latest 

Percept 

Update 

Predecessors 

Completed? 
State 

Latest 

Percept 

Update 

Start 

Time 

End 

Time 
Duration 

0 s 
In 

Progress 
n/a 

In 

Progress 
n/a False 

Not 

Started 
n/a n/a n/a n/a 

10 s 
In 

Progress 
n/a 

In 

Progress 
n/a False 

Not 

Started 
12 s n/a n/a n/a 

20 s 
In 

Progress 
17 s 

In 

Progress 
15 s False 

Not 

Started 
12 s n/a n/a n/a 

30 s 
In 

Progress 
17 s 

In 

Progress 
15 s False 

Not 

Started 
28 s n/a n/a n/a 

40 s Completed 32 s Completed 35 s True 
In 

Progress 
28 s 35 s n/a n/a 

50 s Completed 48 s Completed 35 s True 
In 

Progress 
42 s 35 s n/a n/a 

60 s Completed 48 s Completed 55 s True 
In 

Progress 
58 s 35 s n/a n/a 

70 s Completed 62 s Completed 55 s True 
In 

Progress 
58 s 35 s n/a n/a 

80 s Completed 78 s Completed 75 s True Completed 72 s 35 s 72s 37 s 

 

The greater the update rate of the integrated sensing database and data acquisitions are, the 

smaller the discrepancy between the real-world behavior and the recorded observations gets. 

Nonetheless, it is important to recognize that the computerized system works with imperfect 

information. Even when the time lag between data capture and recording  becomes too small for 

a human to notice, it is still relevant to a computerized system. Just as cleaning data is a critical 

part of a data analysis, carefully designing the mechanisms of the integrated sensing database is 

fundamental towards the system described in this dissertation.  

 

In addition, the integrated database needs to append any concurrent metadata that could be used 

to assess an operation, not only for its activity durations and timeline. Any relevant cost rate 

provided by the percepts will be essential in evaluating the cost effectiveness of the operation. 

Any categorical information (i.e., aircraft type, airline, gate) is also relevant towards predicting 

future behavior.  
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5.7 Long-Term Memory  
 

Each time an operation is finished, the integrated sensing database created to describe it will be 

completed. The reported activity durations, rates, and metadata at the last observation for an 

operation can be stored in a long-term memory. This is essentially a database containing 

consistent and organized data describing how past operations unfolded. No computations need to 

be made in this module; it simply produces a database that can be leveraged for assessment and 

prediction purposes.  

 

The acquisition of data for the long-term memory only needs to occur once at the conclusion of 

each operation. There is no need to collect the incomplete information in the middle of the 

operation, as the data from the long-term memory will only be used for future operations. 

 

Since gate operations have a lot of variety, only a large amount of previous data will be able to 

sufficiently represent the potential outcomes of operations. If the system is not provided with 

data, it will take time to collect enough observations to provide an accurate representation. 

 

In the case of the explanatory model in Figure 38, a snippet of the long-term memory is shown in 

Table 27.  

 

Table 27: Example for long-term memory in reference to model in Figure 38 with 10 operations 

Op 

# 

Activity Duration 

(min) 

Actuator 

(min) 

Cost Rate 

($/min) 

A B C D E F G H I J X Y GP APU Opportunity 

1 1.3 1.7 1.2 0.8 3.2 5.3 15.4 21.2 25.3 1.2 0.0 20.5 0.04 1.5 60 

2 2.4 1.9 1.7 1.2 2.0 2.0 17.3 19.4 23.9 1.1 0.0 26.3 0.04 1.5 60 

3 2.1 1.9 1.3 0.9 2.3 2.9 21.1 19.8 22.2 2.2 0.0 29.4 0.04 1.5 60 

4 1.6 2.8 1.9 0.8 4.2 2.3 13.9 20.9 24.6 1.9 0.0 21.8 0.04 1.5 60 

5 1.7 1.7 1.8 1.0 1.9 3.4 16.9 18.9 19.0 1.5 0.0 24.7 0.04 1.5 60 

6 1.7 2.2 1.1 0.9 3.9 2.0 16.2 24.7 22.0 1.5 0.0 27.9 0.04 1.5 60 

7 2.0 2.4 2.0 1.3 3.4 4.9 20.3 21.8 22.7 2.8 0.0 27.6 0.04 1.5 60 

8 1.4 1.9 1.3 1.1 2.7 3.5 17.2 16.3 25.2 1.3 0.0 20.8 0.04 1.5 60 

9 1.9 2.5 1.4 0.9 3.0 4.1 14.0 23.6 21.1 1.2 0.0 22.8 0.04 1.5 60 

10 2.3 2.1 1.8 1.0 4.2 3.8 18.7 20.7 24.2 1.5 0.0 24.8 0.04 1.5 60 
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5.8 Prediction Models  
 

To be able to make decisions that minimize expected costs, the computerized system needs to be 

able to predict the use and cost rates of resources during an operation. Only the limited number 

of parameters in the integrated sensing database and the set of historical data from the long-term 

memory are available to make the predictions. A modeler can formulate segmented models to 

predict any missing future values, using historical data to train their models and the integrated 

sensing data to apply their models on the operation that is occurring. In this module, the 

prediction models are trained, so that they can be applied in the simulation optimization module 

sections. The data and type of models can vary significantly, and it is the modeler’s role to make 

the predictions as realistic and accurate as possible.  

 

Predicting the duration of the activities in a turnaround operation is crucial towards simulating 

how they will unfold. To predict the missing information from activities that are in process or 

have not started, the first step is to assume that past results for similar operations will be good 

indicators for what will occur in the future. The simplest model to do this would be to use the 

averages for the durations of each activity, but the stochasticity of the activity durations would be 

lost. This dissertation uses a particle scattering method towards making duration predictions, also 

called Monte Carlo method. It is achieved by describing the durations of each activity as 

predictor functions that work by randomly sampling from the list of durations for each activity in 

the long-term memory. When running simulations with such predictor functions, only a specific 

duration would be returned for each function.  

 

The representative list of activity durations drawn from the long-term memory would contain a 

set of all durations that respect the conditions of the present time. At any point during an 

operation, the computerized system can conclude one of three things about any activity duration: 

● If the activity is labeled completed, its duration will be equal to what has been observed. 

No need to predict what has already occurred.  

● If the activity is labeled in process, its duration will be greater than the interval of time 

between its start and its latest percept update, otherwise it would be already completed.  

● If the activity is labeled as not started, there is no bound on its duration.  

 

As an activity is in process, the population of potential durations that would represent the 

duration for that activity would progressively decrease, as shown in Figure 40. It could occur that 

the activity’s duration exceeds all previously observed values, in which case there would be no 

historical data to sample from. In this edge case scenario, the system would default to using the 

minimum possible duration, equal to the present time minus the start time.  
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Figure 40: Decreasing sample of durations for an activity as the operation progresses 

 

The other data that is provided within the long-term memory (e.g., cost rates, consumption rates) 

can also be valuable to create informative predictions. This can be seen in Section 3 where a 

neural network is used to predict future power demand from aircraft. The type of prediction 

model can be chosen by the modeler, with the overarching trait of leveraging the long-term data 

as representative/training data. In the case of (Achatz Antonelli, Walia, et al., 2020), several 

machine learning models (e.g., neural networks, linear regressions, random forests) were trained, 

tested, and compared to predict GP power demand based on aircraft model, airline, and gate.  

 

For simplicity, this section will use the assumption that cost and consumption rates are constant. 

Based on the Phase 1 research, the cost rate used for APU use will be assumed to be $90/hr, 

which is representative of the typical monetary and environmental cost of running the APU at the 

gate for a narrow body aircraft. Similarly, the cost rate for GP will be considered $2.4/hr. The 

opportunity cost will be considered $60/min. These are ball-point values that can be used to 

demonstrate the adaptive scheduling system, without entertaining the variability of different 

aircraft, changing electricity costs, changing fuel costs, etc.  

 

In an actual application, it is important to leverage all the long-term data available to make 

accurate predictions, customized for the circumstances of each operation. In the case of activity 

durations, the models can be improved by having them branch out depending on filters on the 

data used from the long-term database. That will reduce the size of the training data that can be 

leveraged for each filter combination, but it will provide more representative. Some examples of 

these filters could be aircraft subtype and airline, as they have a substantial impact on the 

resource consumption rates and activity durations.  
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It is also possible to use the durations of previous activities as features in the prediction models 

to represent how different activities might have dependent durations. For example, a modeler 

might want to model that the duration for “Jet Bridge Disconnect” is dependent on the duration 

for “Jet Bridge Connect” and use that as a feature in the model. For simplicity, this dissertation 

will assume that activity durations are independent. 

 

In some cases, the prediction on a specific variable can be provided by an external information 

system. If those predictions a shared in real time, like a percept, they can be directly leveraged 

within the system described by this dissertation. The expected duration of the “Gate hold” 

activity is determined by external decisionmakers and could not be predicted solely by the data 

in the integrated sensing database. However, those external decision makers can provide real 

time predictions of the duration of the activity. A scheduled pushback time on the continuously 

updated AODB is a prediction of the end of the “Gate Hold” process. This becomes an especially 

important concept when considering how the system discussed in this dissertation works in 

conjunction with other real-time decision making systems already existing in airports.  
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5.9 Simulation Optimization  
 

The simulation optimization module integrates the process model, the prediction models, and the 

integrated sensing modules to determine whether any percept should be triggered. The 

simulation optimization module is run every time there is an update in the integrated sensing 

database. As the whole operation unfolds, any new information will generate a new optimal 

solution, only for it to be replaced as more information comes in.  

 

The purpose of using simulation is to make realistic scenarios of what could occur in the future 

by leveraging available information of the past and present. The future scenarios that are 

generated are highly variable because the simulation is based on stochastic models. By 

themselves, those scenarios of the future would seem random, making it hard to determine what 

is the best action for an uncertain future. However, a large population of probable future 

scenarios would show a trend that can allow the system to decide on the best action.  

 

In practice, the simulation optimization module runs many simulations each time it is activated 

to predict what is the best actuator. By running numerous simulations with constant initial 

parameters, it is possible to observe how those parameters perform on average. If the parameters 

are altered, the results from those simulations can be used to measure how those parameters 

compare to each other, and which parameter works best. The parameters that are being tested for 

should be the same that can be practically influenced, namely the actuators. This approach is 

“scenario picking,” a simple depth-first search strategy that could then be improved by using 

more elaborate search methods and heuristics.  

 

In the initial example used in this dissertation (Figure 38), the only parameter that can be 

influenced with an actuator is the time at which the pilots and ground crews receive a signal to 

start up the ground power disconnection. This is the condition “GP Hold Release” that would be 

triggered as an actuator within the computerized system. So, the objective of the entire adaptive 

scheduling system is to identify when that trigger should go off. Each time the simulation 

optimization is completed, it should provide the timestamp at which the release would achieve 

the minimum expected cost. If this timestamp is greater than the present time, the release will not 

be triggered. If the timestamp is equal or less than the current timestamp, it should be 

immediately triggered. However, there is no way to influence the past so the only timestamps 

that need to be considered are those equal or greater than the present time. 

 

To find the best parameter values, the algorithm behind the simulation optimization module 

needs to be able to (i) generate a deterministic scenario and then (ii) evaluate it. In other words, 

before any cost analysis can be applied, every instance of the simulation needs to be complete 

with all relevant numerical data (activity duration, cost rates, parameter values) that describe it 

from start to finish. The instance of the simulation needs to be constructed from a combination of 

the results that have already been observed and the values that are yet to be decided or observed.  

First, an independent copy of the latest line in the integrated sensing database needs to be 

created. Then, the duration of the parameter that is being tested for needs to be set. Some of the 

activities will be completed and will have a defined start time, end time, and duration, so 

alterations will be limited. Some activities will be in process and will have a defined start time, 

but their end time is yet to be determined. To determine their duration, the prediction model for 
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those specific activities may be leveraged to return a single numerical duration. Once that is 

done, those activities that were in process can be marked as complete. That enables successor 

activities to start once all dependencies are fulfilled. Similarly, those newly started activities will 

be associated with a specific duration and will be marked as complete. This algorithm proceeds 

iteratively all the way until the end of the whole instance of the operation, where every activity 

can be marked as complete. Following the dependency structure from Table 22, a simple forward 

pass using the determinate durations of all activities will provide the exact schedule of that 

instance. This process is illustrated in the flow chart in Figure 41. By the end of the instance of 

the simulation, a single parameter value will be associated with a single schedule. 

 

 
 

 

 

Figure 41: Flow chart for running simulation for a single scenario instance 

  Legend Action Decision Input Source 
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Along with the schedule, the other variables such as cost rates and consumption rates need to be 

determined for each simulated scenario. For past quantities, the values can simply be copied 

over. For unknow future quantities, their relative prediction model will need to once again be 

leveraged to provide an estimate. 

 

Every determinate schedule can be used to generate a cost estimate. Real world costs can come 

in many forms, and it is the modeler’s responsibility to best represent them in their estimation 

method. It is crucial that the scope and method for the cost estimate are: 

● Comprehensive enough to represent the problem and its interdependencies 

● Calculable from the data available in the integrated sensing database for each complete 

operation 

● Objective enough to make quantitative comparisons between different metrics of costs 

 

The cost function provides the foundation on which different parameters may be compared. With 

the cost function set, individual instances of the operations can be associated with a specific 

numerical cost that can be used as a metric for comparison. Comparing single instances would 

not be useful, as the variability caused by the stochasticity of the model would overshadow the 

influence of the parameter/actuator. To be able to provide a good estimate for expected cost, 

many independent simulation instances need to be run for the same parameter, and the average 

cost will be used for comparison. Additionally, the standard deviation in the total cost for each 

parameter can describe the variability in cost. Repeating the process for a range of different 

parameters will provide a curve showing the trend between the parameter and the expected cost, 

as shown in Figure 42. 

 

 
Figure 42: Conceptual diagram for identifying time with minimum expected cost  
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The range of parameters that are tested and compared need to be considered. It is important that 

the range has a domain large enough that is representative of all possible values. There should 

also be as many parameters spaced together as close as possible to provide a granular insight into 

the shape of the expected cost. The precision in the optimal parameter that is being tested can be 

defined as the step size of the parameter.  

 

The simulation process is by far the most computationally expensive part of the adaptive 

scheduling algorithm. For every time the integrated sensing database is updated, for many 

possible parameters in continuous space, the simulation needs to be calculated many times. This 

is an infinitely large search space and there is a limited amount of time for the computation to 

produce a result before a new integrated sensing update is delivered. Only a finite number of 

scenarios can be generated and compared, at the cost of losing precision. As a real-time machine, 

the overall software needs to compromise the precision of the result with its calculability. Its 

search function needs to strategically balance the search space and number of iterations. There 

are several ways to cut computing time to make the adaptive scheduler perform better: 

• Parallelizing the calculations of expected cost independent simulation; running separate 

simulations on separate CPU cores or leveraging the power of cloud computing. 

• Avoiding unnecessary precision in the calculation of a parameter until its value has a 

practical impact. For example, there is no need to know the optimal “GP to APU Switch” 

time with a certainty of 30 seconds if that action occurs in more than 30 minutes. Such 

precision is only necessary closer to that event time. A cutoff value for the precision in 

the duration of parameter can be set by the following function: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐶𝑢𝑡𝑜𝑓𝑓 = 𝛼 ∗ (𝑡𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 𝛽)   (Eq. 33) 

Where α and β are constants. 

• Using a slowly magnifying search space that follows the gradient of the cost curve, not 

all parameters are expanded with the same number of simulations. For example (Figure 

43), the search function can run an imprecise estimate across a sample range parameter, 

identify the parameters that produce the lowest 30% of expected costs, and repeat the 

simulation within that smaller range of parameters with twice the number of simulations. 

Then, repeat the same process many times until the difference in the range of parameters 

becomes smaller than the precision cutoff, and return the average parameter. 

 
Figure 43: Progressively magnifying the search space while increasing precision 
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5.9.1 Simple Model Example  
 

For the process model in Figure 38, the cost function considers only the costs that are most 

impactful to the GP use process and are within the scope of gate decision making. Operational 

costs for providing power are a major component. Opportunity cost will be constant through 

time, representing the value lost from keeping an aircraft at the gate. The cost of delay will be 

excluded. Labor costs are excluded since the team for each operation is assumed to be always 

present. Table 28 summarizes how to calculate the different components of cost. Table 29 

provides an example for 10 simulation runs; thousands more would be necessary to identify the 

best actuator value. 

 

Table 28: Simple cost estimate methodology for model in Figure 38 

Cost Description Calculation Method 

Operational Cost of 

GP 

The monetary cost of GP used, 

assuming the cost is based on 

duration of usage 

Cost = CostRateGP ∗ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑌 

 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐺𝑃 = $2.4/ℎ𝑟 

Operational Cost of 

APU 

The monetary cost of the APU 

used, assuming the cost is based 

on duration of usage 

Cost = CostRateAPU

∗ (𝑇𝑜𝑡𝑎𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
− 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑌) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈 = $90/ℎ𝑟 

Opportunity Cost of 

Turnaround 

Operation 

The lost monetary gains by 

keeping aircraft at the gate. 

Cost = CostRateOpportun.

∗ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑂𝑝𝑝𝑟𝑡𝑢𝑛. = $3600/ℎ𝑟 

 

Table 29: Example for application of the cost function for model in Figure 38 

Op 

# 

Total 

Duration 

(min) 

Actuator Y 

Duration 

(min) 

Cost Rate 

($/min) 

Cost 

($) 
Total 

Cost 

($) 
GP APU Opportunity GP APU Opportunity 

1 39.1 20.5 0.04 1.5 60 0.82 28 2346 2375 

2 40.2 26.3 0.04 1.5 60 1.05 21 2412 2434 

3 45.2 29.4 0.04 1.5 60 1.18 24 2712 2737 

4 38.3 21.8 0.04 1.5 60 0.87 25 2298 2324 

5 39 24.7 0.04 1.5 60 0.99 21 2340 2362 

6 44.1 27.9 0.04 1.5 60 1.12 24 2646 2671 

7 46.9 27.6 0.04 1.5 60 1.10 29 2814 2844 

8 36.2 20.8 0.04 1.5 60 0.83 23 2172 2196 

9 40.7 22.8 0.04 1.5 60 0.91 27 2442 2470 

10 43.2 24.8 0.04 1.5 60 0.99 28 2592 2621 
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5.10 Actuators  
 

Actuators are the means by which the computerized system has an influence on the real world. 

Understanding which actuators may be leveraged is crucial towards designing the real-time 

computerized system.  

 

Actuators vary considerably in their form and effectiveness. Even if all other modules of the 

computerized system work perfectly, there is still no guarantee that the actuators will work 

reliably in the intended way. The functional and behavioral mechanisms behind any actuator, 

along with their shortcomings need to be understood for the actuator to be better designed and 

interpreted.  

 

In the case of this dissertation, the actuators that have an impact on the real world are all triggers 

for satisfying a condition or initiating an activity.  

 

5.10.1 Informational Signals for Humans 
 

One of the simplest actuators is an instantaneous signal or a communication that affects the 

human-centered management of an operation. A radio message sent to a pilot, a symbolic light 

signaling an action to the ground crews, an informal knock on the aircraft hull, are all examples 

of communications that affect the behavior of the agents in an operation and therefore its 

execution. If some of these communication strategies can be implemented and standardized, they 

can serve as the actuators of the computerized system. The algorithm can take charge of when to 

send those signals, and they can have a direct impact on the schedule.  

 

With these informational signals, there is no guarantee that action will take place as modeled. 

There are several factors that could get in the way of an idealistic cause-effect relationship 

between actuators and reality. For example, the signals could be unseen, unheard, or 

misunderstood. The appropriate actuator response could be delayed or the people that interact 

with any signal could decide not to abide by it for external reasons (ex. safety, maintenance). In 

the design of the actuating mechanism and standardization of gate processes, these discrepancies 

may be mitigated, but not completely avoided. The signal should be provided in an immediate, 

noticeable, unmistakable way. The actuator should ideally focus on the act of providing that 

signal, and not the actions that follow, so that it can be instantaneous.  

 

In the context of gate operations and the model in this dissertation, the main actuator is a simple 

signal that tells the pilots to start spinning up the APU engine. This could be either a signal that 

indicates not to perform the action just yet or to perform it right away, as it is the same 

information either way. The signal should be continuous, so that it gets instant attention but also 

does not get missed. Although further user research would be required, this dissertation proposes 

one of the following strategies could be used: 

• A light within the cockpit, although that could be easily missed 

• A flashing light on the apron area, visible to the pilot from the cockpit 

• A beeping sound with incremental volume 

• A radio message to the cockpit 
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In the model in Figure 38, the actuator GP to APU power is simple. It assumes that the moment 

the actuator is triggered, the APU immediately turns on, skipping several steps in between. In a 

realistic operation, when the actuator signal is started, the pilot needs to notice and decide to turn 

on the APU, and only after a few minutes the APU will have reached a spinning rate sufficient 

for providing power. If there were percepts available to determine the pilot’s reaction time and 

the spinning time of the APU, the actuator signal could be separated from these additional 

activities in a more complex model. This dissertation chooses to keep the model and actuator 

simple for the purpose of explanation.  

 

5.10.2 Confidence Interval Countdown 
 

An actuator does not need to be limited to a signal that is given at the optimal trigger time. 

Asking human agents to react immediately to a trigger that could go off at any moment would 

lead to stress and uncertainty, the opposite goal of what adaptive scheduling means to achieve. 

Providing the agents with an estimate of when their action is needed is crucial to allow them to 

prepare and not be caught off-guard, enabling them to take value from the signal. 

 

A regularly updated countdown or a time estimate for each relevant trigger would need to be 

communicated to the relevant actors. That could be provided through a display, such as that of a 

phone app or dashboard. As the schedule adapts, the time on the countdown would fluctuate, and 

would converge on its final value as the time is reached. Once the time is reached, the same 

mechanisms as described in 5.10.1.1 would occur.  

 

To provide further insight into the changing schedule to the agents, they can also be provided 

with a confidence interval for the actuator time. As the operation progresses, the uncertainty 

decreases and so would the confidence interval. This would enable the actors to know how much 

their schedule could deviate from their expectation, so that they can plan accordingly and 

mitigate the risk of unexpected challenges.  

 

5.10.3 Iteratively Updated Schedule 
 

Since the computerized system already goes through the effort of simulating many scenarios and 

generating a cost optimal schedule, it is valuable to show its results as intuitively and 

comprehensively as possible. Not every agent needs to know the actuators for every other agent 

of the operation; that could lead to unnecessary confusion. However, a visual representation of 

the probable schedule provides a wholistic view of the operation that could provide value. A 

schedule would facilitate communication, understanding of the interrelated activities and agents, 

and a more insightful understanding of how the adaptive computerized system is changing the 

operation.  

 

The changing schedule would have to be shown digitally, through an app or a dashboard. A 

Gantt chart with the most probable scenario would be able to show the activity flows and times, 

although the cascading variability in the activity times would be more difficult to represent. An 

interactive activity flow chart could show those variabilities, where any activity can be selected 

to show the distribution of its start and end times.  
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5.11 Multiagent Simulation  
 

So far, the concept of an adaptive scheduling AI has only been applied to the simple decision of 

when to turn on the APU. Besides the bold assumptions that were made, the model in Figure 38 

is not representative of the complex processes occurring at the gate. It ignores the influence of 

other concurrent decision making mechanisms. The model simplifies the percepts and activities 

to the extent that there are few data points that can be used to adapt the schedule, limiting the 

cost savings. To apply adaptive scheduling effectively, the process model needs an upgrade that 

will dissect the operation further and that will consider the influence of other decisions.  

 

This section proposes two improvements on the same system architecture described in Sections 

5.5 through 5.10, but with a different model structure and complexity. This is to show how the 

adaptive scheduling framework is modular in its components and customizable depending on the 

scope and focus of the problem.  

 

5.11.1 Including Gate Hold 
 

In real airport operations, there is a schedule that gate operations need to abide by so that the 

airport can maximize airside turnaround processes through gate assignment, taxiway movements 

and runway usage. There is a dichotomy present; airports want to bolster their operation 

frequency as much as possible to increase airport capacity, but they do not want to schedule 

operation so tightly that they end up with chaotic delay and congestion. That real-time deciding 

management role is fulfilled by airline, ATC, or ACDM systems at airports. Their decision to 

hold an aircraft at the gate is far more consequential towards total costs than the decision of 

when to initiate the APU. However, those decisions are intertwined. Holding an aircraft to the 

gate changes the optimal time at which to start the APU and waiting to start the APU could affect 

the gate hold by causing a delay. While these decisions are being made by different parties, their 

impact is interdependent.  

 

In the model in Figure 38, Actuator X, the “Gate Hold”, was originally set to 0 min. Aircraft 

would leave as soon as it was detached from the jet bridge, refueled, and had the luggage 

handled. In this section, “Gate Hold” is introduced as a second actuator that somewhat imitates 

the role of ATC. The goal of this actuator is to set an expected completion time to the operation, 

and resist changes to the schedule unless they are necessary. Aside from actuator X, no new 

activities and percepts are introduced.  

 

The cost function needs to change to be representative of the new model and behavior of ATC. 

Aside from the cost elements from the previous model, two new elements are introduced. The 

first is the monetary cost to reassign the gate hold time, which requires keeping a count of the 

reassignments in the ISD. The second is the additional monetary cost of missing the gate-hold 

time given by ATC, causing a further delay. Table 30 shows the calculation method for each cost 

element.  
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Table 30: Simple cost estimate methodology for model in Figure 38 

Cost Description Calculation Method 

Operational 

Cost of GP 

The monetary cost of GP 

used, assuming the cost is 

based on duration of usage 

Cost = CostRateGP ∗ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑌 

 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐺𝑃 = $2.4/ℎ𝑟 

Operational 

Cost of APU 

The monetary cost of the 

APU used, assuming the cost 

is based on duration of usage 

Cost = CostRateAPU ∗ (𝑇𝑜𝑡𝑎𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
− 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑌) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈 = $90/ℎ𝑟 

Opportunity 

Cost of 

Turnaround 

Operation 

The lost monetary gains by 

keeping aircraft at the gate. 

Cost = CostRateOpportun.

∗ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑂𝑝𝑝𝑟𝑡𝑢𝑛. = $250/ℎ𝑟 

Slot Time 

Reassignment 

Cost 

The cost of changing the gate 

hold time once it was 

assigned 

Cost = CostRateSlot ∗ 

(# 𝑜𝑓 𝑅𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 − 1) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑆𝑙𝑜𝑡 = $1,000 

Original Cost of 

Delay 

 

The cost of remaining at the 

gate past the gate hold time 

originally scheduled 

Cost = CostRateOriginalDelay

∗ 𝑀𝑎𝑥(0, OffBlockTime
− OriginalGateHoldEnd) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑒𝑙𝑎𝑦 = $12,000/ℎ𝑟 

Marginal Cost 

of Delay 

The cost of remaining at the 

gate past the latest gate hold 

time that was scheduled 

Cost = CostRateMarginalDelay

∗ 𝑀𝑎𝑥(0, OffBlockTime
− FinalGateHoldEnd) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐷𝑒𝑙𝑎𝑦 = $6,000/ℎ𝑟 

 

In this upgraded model, two actuators need to be determined to optimize the expected cost. 

Instead of solving a 2 variable optimization problem to find an absolute minimum cost, the 

approach this dissertation suggests is to optimize each variable independently, iteratively. The 

percepts, the process model, and the prediction models remain the same. In Section 5.9, the 

Actuator X “Gate Hold” is optimized last as it has greatest influence on the total cost. The 

simulation optimization runs through while keeping Actuator Y constant, initially at 0. Once an 

optimal X is found, it is held constant, and the same process is repeated for Actuator Y. Once 

new information comes in, the process is repeated, and the combination of X and Y will slowly 

migrate towards scenarios with lower expected cost.  

 

Although the same model and information is used to optimize both actuators, this process can be 

seen as two independent agents. Each agent is performing a single-variable optimization based 

on the same data. The actuators of one agent are the percept of the other, and vice versa; they 

communicate their results.  
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5.11.2 Complex Multiagent Model 
 

With a wider array of percepts to infer what is happening during the operation and actuators to 

influence it, complex models can be formulated. These models can start resembling the real 

world much more closely and in detail, while also considering the interdependencies of several 

decision makers. Therefore, they are more effective at using the adaptive scheduling framework.  

 

Figure 44 shows a complex model with 10 different actuators. This model expands the scope to 

include the approach to the gate, and several new ground handling processes: Safety chock 

handling. PCA handling, Passenger Movements, Catering, Cleaning, Water Servicing. It is 

assumed that passengers require a working PCA when they are onboard.  

 

The underlying assumption of the model is that there are effective percepts and actuators 

available to infer the state of each activity in the model. Similarly to Table 22, each activity can 

be associated with a completion percept using one of the percepts in Section 5.4. 

 

The cost function becomes more complex. In this model, different cost rates for different APU 

use rates were dissected: only bleed air, only electricity, both, and idle. Several cost factors were 

also added to the other ground handling activities, favoring activities that are completed at the 

latest responsible moment. The cost function is summarized in Table 31. The exact cost 

multipliers can be altered to represent the circumstances and priorities defined by specific 

airports and airlines.  
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Figure 44: Complex process model with multiple actuators 
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Table 31: Cost function for complex model 

Cost Description Calculation Method 

GP 

The monetary cost of GP used, 

assuming the cost is based on duration 

of usage 

Cost = CostRateGP ∗ (𝐺𝑃𝑡𝑜𝐴𝑃𝑈𝑒𝑛𝑑
− 𝐴𝑃𝑈𝑡𝑜𝐺𝑃𝑒𝑛𝑑) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐺𝑃 = $2/ℎ𝑟 

PCA 

The monetary cost of the PCA used, 

assuming the cost is based on duration 

of usage 

Cost = CostRateGP

∗ ((𝑃𝐶𝐴𝑡𝑜𝐴𝑃𝑈𝑒𝑛𝑑
− 𝑇𝑢𝑟𝑛𝑃𝐶𝐴𝑂𝑛𝑒𝑛𝑑)
+ (𝑇𝑢𝑟𝑛𝑃𝐶𝐴𝑂𝑓𝑓
− 𝐴𝑃𝑈𝑡𝑜𝑃𝐶𝐴𝑒𝑛𝑑)) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐺𝑃 = $10/ℎ𝑟 

APU No 

Load 

The monetary cost of the APU used on 

the no-load setting, assuming the cost is 

based on duration of usage 

Cost = CostRateAPUNL ∗ ((𝐴𝑃𝑈𝑂𝑓𝑓𝑠𝑡𝑎𝑟𝑡 −
max(𝐴𝑃𝑈𝑡𝑜𝐺𝑃𝐶𝑒𝑛𝑑, 𝐴𝑃𝑈𝑡𝑜𝑃𝐶𝐴𝑒𝑛𝑑)) +
(min(𝐺𝑃𝑡𝑜𝐴𝑃𝑈𝑒𝑛𝑑, 𝑃𝐶𝐴𝑡𝑜𝐴𝑃𝑈𝑒𝑛𝑑) −

𝐴𝑃𝑈𝑂𝑛𝑠𝑡𝑎𝑟𝑡)) 

 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈𝑁𝐿 = $50/ℎ𝑟 

APU Air 

Only 

The monetary cost of the APU used on 

the air only setting, assuming the cost is 

based on duration of usage 

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈𝐴𝑖𝑟

∗ (max(0, 𝐴𝑃𝑈𝑡𝑜𝑃𝐶𝐴𝑒𝑛𝑑
− 𝐴𝑃𝑈𝑡𝑜𝐺𝑃𝑒𝑛𝑑)
+ max(0, 𝐺𝑃𝑡𝑜𝐴𝑃𝑈𝑠𝑡𝑎𝑟𝑡
− 𝑃𝐶𝐴𝑡𝑜𝐴𝑃𝑈𝑠𝑡𝑎𝑟𝑡)) 

 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈𝐴𝑖𝑟 = $75/ℎ𝑟 

APU Power 

Only 

The monetary cost of the APU used on 

the power only setting, assuming the 

cost is based on duration of usage 

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈𝑃𝑜𝑤𝑒𝑟

∗ (max(0, 𝐴𝑃𝑈𝑡𝑜𝐺𝑃𝑒𝑛𝑑
− 𝐴𝑃𝑈𝑡𝑜𝑃𝐶𝐴𝑒𝑛𝑑)
+ max(0, 𝑃𝐶𝐴𝑡𝑜𝐴𝑃𝑈𝑠𝑡𝑎𝑟𝑡
− 𝐺𝑃𝑡𝑜𝐴𝑃𝑈𝑠𝑡𝑎𝑟𝑡)) 

 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈𝑃𝑜𝑤𝑒𝑟 = $70/ℎ𝑟 

APU Air and 

Power 

Combined 

The monetary cost of the APU used on 

the air and power combined setting, 

assuming the cost is based on duration 

of usage 

𝐶𝑜𝑠𝑡
= 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑

∗ (min(𝐴𝑃𝑈𝑡𝑜𝐺𝑃𝑒𝑛𝑑, 𝐴𝑃𝑈𝑡𝑜𝑃𝐶𝐴𝑒𝑛𝑑)
− 𝐶ℎ𝑜𝑐𝑘𝐼𝑛𝑒𝑛𝑑 + 𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡
− max (𝐺𝑃𝑡𝑜𝐴𝑃𝑈𝑒𝑛𝑑, 𝑃𝐶𝐴𝑡𝑜𝐴𝑃𝑈𝑒𝑛𝑑)) 

 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐴𝑃𝑈𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = $100/ℎ𝑟 

Boarding 

Decay 

The indirect cost associated with 

hosting passengers within the aircraft 

before departure 

Cost = CostRateBoard ∗ (𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡
− 𝐵𝑜𝑎𝑟𝑑𝑠𝑡𝑎𝑟𝑡) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒Board = $30/ℎ𝑟 

Catering 

Decay 

The indirect cost associated with 

holding catering resources prior to 

departure. 

Cost = CostRateCater ∗ (𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡
− 𝐶𝑎𝑡𝑒𝑟𝑠𝑡𝑎𝑟𝑡) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒Cater = $20/ℎ𝑟 

Cleaning 

Decay 

The indirect cost associated with 

keeping the aircraft clean before 

departure 

Cost = CostRateClean ∗ (𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡
− 𝐶𝑙𝑒𝑎𝑛𝑠𝑡𝑎𝑟𝑡) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒Clean = $1/ℎ𝑟 

Refuel Decay 

The indirect cost associated with 

holding fuel in the aircraft before 

departure 

Cost = CostRateRefuel ∗ (𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡
− 𝑅𝑒𝑓𝑢𝑒𝑙𝑠𝑡𝑎𝑟𝑡) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒Refuel = $1/ℎ𝑟 
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Water Decay 

The indirect cost associated with 

holding water in the aircraft before 

departure 

Cost = CostRateWater ∗ (𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡
− 𝑊𝑎𝑡𝑒𝑟𝑠𝑡𝑎𝑟𝑡) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒Water = $1/ℎ𝑟 

Luggage 

Decay 

The indirect cost associated with 

holding the luggage in the aircraft 

before departure 

Cost = CostRateLuggage ∗ (𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡

− 𝐿𝑢𝑔𝑔𝑎𝑔𝑒𝐿𝑜𝑎𝑑𝑒𝑛𝑑) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐿𝑢𝑔𝑔𝑎𝑔𝑒 = $40/ℎ𝑟 

Opportunity 

Cost of 

Turnaround 

Operation 

The lost monetary gains by keeping 

aircraft at the gate. 

Cost = CostRateOpportun. ∗ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑂𝑝𝑝𝑟𝑡𝑢𝑛. = $250/ℎ𝑟 

Slot Time 

Reassignment 

Cost 

The cost of changing the gate hold time 

once it was assigned 

Cost = CostRateSlot ∗ 

(# 𝑜𝑓 𝑅𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 − 1) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑆𝑙𝑜𝑡 = $1,000 

Original Cost 

of Delay 

The cost of remaining at the gate past 

the gate hold time originally scheduled 

Cost = CostRateOriginalDelay

∗ 𝑀𝑎𝑥(0, 𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡
− OriginalGateHoldEnd) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑒𝑙𝑎𝑦 = $12,000/ℎ𝑟 

Marginal 

Cost of Delay 

The cost of remaining at the gate past 

the latest gate hold time that was 

scheduled 

Cost = CostRateMarginalDelay

∗ 𝑀𝑎𝑥(0, 𝐶ℎ𝑜𝑐𝑘𝑂𝑢𝑡𝑠𝑡𝑎𝑟𝑡
− FinalGateHoldEnd) 

Where 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐷𝑒𝑙𝑎𝑦 = $6,000/ℎ𝑟 

 

5.11.3 Hierarchy of Actuator Parameters 
 

The computability of the adaptive scheduling framework becomes more challenging as more 

actuators are introduced in the model. In theory, it becomes a multivariable optimization problem 

which can be approached in diverse ways.  

 

One of the most computationally feasible ways to approach the problem is to iteratively optimize 

each parameter independently while keeping the others constant, just like in Section 5.11.1. The 

algorithm described would still be able to perform a gradient descent on the search space, but 

there would be no guarantee that the result would be an absolute minimum for expected cost 

rather than a local minimum.  

 

The simulation optimization section still needs to be computed before new data comes in. With 

more parameters to optimize, the limited computation is a spread thing and therefore needs to be 

approached strategically.  

 

It is important to define the hierarchy in the parameters that are being sequentially optimized. 

The parameters that are most consequential to the cost should be optimized last in each iteration 

to obtain the best cost savings with limited computation. For example, the “Gate Hold” has the 

most consequence and should be optimized last.  
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5.12 Numerical Demonstration  
 

The system behind adaptive scheduling is explained in a modular and abstract way. To show it 

provides value, it needs to be tested numerically, and eventually in relationship to real 

operations. In this section, I test a prototype for turnaround operation adaptive scheduling that 

uses the model in Figure 36. 

 

5.12.1 Simulating Reality 
 

Adaptive scheduling describes how a real-time computer can parse reality through percepts, 

update its model of that reality, and then control it. Before the system can be applied in the real 

world it needs to be tested in a simulated environment. To simulate the real world, an 

independent model for gate turnaround operations needs to be used.  

 

For simplicity, the model for the real world would be structured the same way as the model that 

the computer uses to understand that reality. One model represents what happens, and the other 

represents what the computer thinks is happening. The only way these two models communicate 

to each other is through the percepts that the computer uses to infer reality and by the actuators 

on the reality that the computer enacts at every timestep (Figure 45).  

 

The simulated real word model can sample activity duration directly from random-variable 

distributions, whereas the computer model can only collect lists of activity durations, while never 

knowing what the original random variable is. Table 32 shows the random variable distributions 

used to simulate the real model, many of which were sourced from Asadi et al. (2020). 

 

 

 
Figure 45: Relationship between real model and computer model 
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Table 32: Random variable distributions for the durations within the model 

Activity 

Name 
Description 

Distribution of Duration for 

Real World Simulation (min) 

Distribution 

Cutoff (min) 

Land Aircraft lands on runway 0 0 

Taxi In Aircraft moves from runway to apron Normal (10, 2) 2 

Park 
Aircraft moves from apron to final 

position 
Normal (2, 1) 1 

Chock In 
Safety chocks are placed behind the 

wheels 
Normal (1, 0.5) 0.5 

Jet Bridge In Jet bridge is connected to the aircraft Normal (2, 1) 1 

Cable In 
GP Cable is lowered and connected to 

the aircraft 
Normal (2, 1) 1 

APU to GP Pilot switches power source to GP Normal (1, 0.5) 0.5 

Hose In 
PCA Hose is lowered and connected to 

the aircraft 
Normal (4, 2) 1 

APU to PCA Pilot switches to PCA conditioned air Normal (1, 0.5) 0.5 

Door Open Passenger door is opened Normal (1, 0.5) 0.5 

Deboard All passengers deboard Gamma ( 6.81, 1.47) 2 

Turn APU 

Off 
The APU is shut down and comes to rest Normal (1, 0.5) 0.5 

Turn PCA 

Off 

The PCA is turned off to save on air 

conditioning costs when not necessary 
Normal (1, 0.5) 0.5 

Turn APU 

On 

The APU is started and progressively 

reaches its operational rpm 
Normal (2, 1) 1 

Turn PCA On 
The PCA is turned back on for passenger 

boarding 
Normal (1, 0.5) 0.5 

GP to APU The pilot transitions to APU power Normal (1, 0.5) 0.5 

Cable Out 
Ground crews disconnect the cable and 

drag it to the jet bridge 
Normal (3, 1) 0.5 

PCA to APU 
The pilot transitions to bleed air for air 

conditioning 
Normal (1, 0.5) 0.5 

Hose Out PCA hose is disconnected and stowed Normal (3, 1) 0.5 

Clean Aircraft interior is cleaned Weibull (2.16, 1) * 11.29 6 

Cater Catering services switch out food carts Weibull (2.18, 1) * 17.37 4 

Board Passengers board Gamma (9.12, 1.64) 4 

Jet Bridge 

Out 
Jet bridge disconnects and moves away Normal (2, 1) 1 

Luggage Prep 
Ground vehicles set up for luggage 

handling 
Normal (2, 1) 1 

Luggage 

Unload 
Luggage is unloaded from aircraft Gamma (11.29, 1.24) 6 

Luggage 

Load 
Luggage is loaded in the aircraft Gamma (15.34, 1.24) 8 

Refuel Aircraft is refueled Gamma (9.12, 1.64) 4 

Water 
Wastewater is cleared and new water is 

added 
Normal (6, 2) 2 

Chocks Out 
Safety chocks are removed from behind 

the wheels 
Normal (1, 0.5) 0.5 

Pushback Tow pushes the aircraft out of the gate Normal (3, 1) 1 
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To illustrate that adaptive scheduling is lowering expected costs, it will be necessary to run the 

simulation model shown in Figure 44 above N times with a timestep of Δt. For each simulation, 

the expected cost from the computer model will be recorded at every timestep. The cost at the 

conclusion of the operation will show the final cost affected by adaptive scheduling for each 

simulation. If the activity duration at the conclusion of the operation is combined with the 

actuator durations at t=0, the cost will be representative of a pre-planned operation with no 

adaptive rescheduling. If all the actuators are fixed at 0, the cost will be representative of a 

“push” managed operation. These different outcomes can be compared to see the savings that 

adaptive scheduling can bring to each operation. 

 

5.12.2 Testing with an Extensive Long-Term Memory 
 

First, adaptive scheduling is tested with a computerized system with a long-term memory that is 

already rich with results, representing a late-stage function of the  system. To create the long-

term memory, it is sufficient to run the real world simulations, the percept module, the process 

model module, the integrated sensing module, and the long-term memory module (Figure 46). 

This serves to quickly acquire data while skipping the computationally heavy simulation 

optimization module; it is the equivalent of a training and observation period.  

 
Figure 46: Training for long-term memory (only highlighted modules are necessary) 

In this demonstration section, the training period involved 1,000 operations, meaning that each 

activity has a list of 1,000 durations to pick from. Since there are 30 non-actuator activities, there 

are 1,00030 combinations of activity durations that this long-term memory can simulate, more 

than the number of atoms in the universe. Each combination of actuator plus possible activity 

durations was simulated a minimum of 600 times and a maximum of 4,000 times, depending on 

the smart search algorithm described in Section 5.9. Although this number is incredibly small in 

comparison to the total possible schedules, it demonstrated to produce a converging average 

expected cost. 
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Appendix Figure A5 and Table A22 illustrate the whole run of a single operation that lasts 72 

minutes, estimating the expected cost as it optimizes each actuator every minute. By the end of 

the operation, all activity durations are known, regardless of the management method. However, 

the different management methods produce different holds and therefore different schedules, as 

summarized in Table 33, Figures 47, 48, and 49:  

 

Table 33: Schedules for different management for a sample operation (all quantities in minutes) 

Activity Duration 
Adaptive Schedule Pre-planned Schedule Push Schedule 

Start End Start End Start End 

Land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Taxi In 12.34 0.00 12.34 0.00 12.34 0.00 12.34 

Park 1.07 12.34 13.41 12.34 13.41 12.34 13.41 

Chock In 0.96 13.41 14.37 13.41 14.37 13.41 14.37 

Jet Bridge In 1.23 14.37 15.60 14.37 15.60 14.37 15.60 

Cable In 1.67 15.60 17.27 15.60 17.27 15.60 17.27 

APU to GP 0.50 17.27 17.77 17.27 17.77 17.27 17.77 

Hose In 3.32 15.60 18.91 15.60 18.91 15.60 18.91 

APU to PCA 0.50 18.91 19.41 18.91 19.41 18.91 19.41 

Door Open 0.67 15.60 16.26 15.60 16.26 15.60 16.26 

Deboard 10.03 16.26 26.29 16.26 26.29 16.26 26.29 

Turn APU Off 0.72 19.41 20.13 19.41 20.13 19.41 20.13 

Turn PCA Off 0.81 26.29 27.10 26.29 27.10 26.29 27.10 

Turn APU On 1.00 59.60 60.60 42.36 43.36 27.10 28.10 

Turn PCA On 0.50 30.26 30.76 27.10 27.60 27.10 27.60 

GP to APU 2.08 60.60 62.68 43.36 45.44 28.10 30.18 

Cable Out 2.52 62.68 65.20 45.44 47.96 30.18 32.70 

PCA to APU 1.24 60.60 61.84 43.36 44.60 28.10 29.34 

Hose Out 1.91 61.84 63.75 44.60 46.51 29.34 31.24 

Clean 9.63 26.29 35.92 26.29 35.92 26.29 35.92 

Cater 14.02 26.29 40.31 26.29 40.31 26.29 40.31 

Board 27.57 40.31 67.88 40.31 67.88 40.31 67.88 

Jet Bridge Out 3.24 67.88 71.12 67.88 71.12 67.88 71.12 

Luggage Prep 3.40 14.37 17.77 14.37 17.77 14.37 17.77 

Luggage Unload 10.55 17.77 28.32 17.77 28.32 17.77 28.32 

Luggage Load 20.13 30.26 50.39 28.32 48.44 28.32 48.44 

Refuel 18.02 36.36 54.37 28.72 46.74 14.37 32.38 

Water 6.29 56.16 62.45 14.37 20.66 14.37 20.66 

Chocks Out 0.94 71.12 72.06 71.12 72.06 71.12 72.06 

Pushback 2.03 72.06 74.09 72.06 74.09 72.06 74.09 
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Figure 47: Gantt chart for sample operation when managed by the adaptive scheduler 
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Figure 48: Gantt chart for sample operation when managed through data-driven pre-planning 
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Figure 49: Gantt chart for sample operation when managed with a “push” mentality 
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It can be inferred that the adaptive scheduler was able to extend the durations of holds in 

comparison to a preplanned schedule. Increasing the hold durations in the preplanned schedule 

would be a mistake because there would be too much risk involved with delaying the turnaround 

operation. The adaptive scheduler is uniquely effective at seizing opportunities for savings as 

information is acquired. This does not guarantee that the adaptive schedule will always result in 

savings; exceptions can still happen, and the adaptive scheduler is not all-knowledgeable. 

However, it does iteratively follow savings wherever they appear, leading to overall savings. 

Table 34 shows the difference in cost when comparing initial hold times of a pre-planned 

schedule with the holds obtained with an adaptive scheduler.  

 

Table 34: Costs of sample operation with different management (in $ unless specified) 

Cost Category 
Pre-Planned 

Schedule 

Adaptive 

Schedule 
Savings Savings (%) 

Opportunity Cost of Turnaround 

Operation 
214.97 214.97 0.00 0.00 

APU No Load 2.09 2.09 0.00 0.00 

APU Air Only 0.18 0.18 0.00 0.00 

APU Power Only 0.00 0.00 0.00 n/a 

APU Air and Power Combined 53.51 24.78 28.73 53.69 

GP 0.65 1.22 -0.57 -88.46 

PCA 3.05 5.39 -2.35 -77.02 

Boarding Decay 32.50 32.50 0.00 0.00 

Catering Decay 12.03 12.03 0.00 0.00 

Cleaning Decay 0.60 0.60 0.00 0.00 

Refuel Decay 0.86 0.86 0.00 0.00 

Water Decay 0.86 0.86 0.00 0.00 

Luggage Decay 2.25 0.95 1.29 57.60 

Slot Time Reassignment 0.00 0.00 0.00 n/a 

Original Cost of Delay  859.72 859.72 0.00 0.00 

Marginal Cost of Delay 429.86 429.86 0.00 0.00 

Total 1613.13 1586.02 27.10 1.68 

 

For this specific operation, the adaptive scheduler was able to save $29 in APU costs while 

incurring an additional $3 in GP and PCA costs. The overall operation was not delayed at all 

while GP and PCA use almost doubled. This is exactly the desired behavior out of the adaptive 

scheduler. However, not all runs necessarily show this behavior. Only testing long-term trends 

can demonstrate the effectiveness of the adaptive scheduling method. Table 35 shows the long-

term savings in each cost category across 20 operations. On average the total GP, PCA and APU 

costs can be reduced by $33 for each operation by using the adaptive scheduler with the given 

cost rates and activity duration distributions, without large losses due to increased delay or 

missed opportunity.  
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Table 35: Cost saving using adaptive scheduling instead of pre-planning for 20 operations  

Cost Category Mean ($) 
Standard 

Deviation ($) 

Opportunity Cost of Turnaround Operation -0.02 0.07 

APU No Load 0.12 0.24 

APU Air Only 0.00 0.00 

APU Power Only 2.76 3.59 

APU Air and Power Combined 33.89 6.58 

GP -0.79 0.22 

PCA -2.61 0.73 

Boarding Decay -0.59 1.25 

Catering Decay -0.40 0.83 

Cleaning Decay -0.02 0.04 

Refuel Decay -0.02 0.04 

Water Decay -0.02 0.04 

Luggage Decay 1.70 2.69 

Slot Time Reassignment 0.00 0.00 

Original Cost of Delay  -1.06 3.17 

Marginal Cost of Delay -0.53 1.58 

Total 32.41 9.57 

 

5.12.3 Testing Without Initial Long-Term Memory 
 

How much long-term data is sufficient to reliably provide savings? The adaptive scheduler learns 

to predict better with every operation it observes, but in the initial phases of its training, it 

leverages relatively few data points to represent a highly stochastic environment. If the model is 

not able to make holistic predictions, the chances of making a risky are wrong decisions are 

higher. Section 5.12.2 showed that after 1,000 runs the adaptive scheduler can find cost savings 

without making a mistake that causes huge losses.  

 

This section shows how an adaptive scheduler is a learning system that makes mistakes with a 

decreasing recurrence as it runs. Figures 50 and 51 show the evolution of cost savings achieved 

from the adaptive schedule instead of a pre-planned schedule. The simulations are run starting 

with no initial memory for 200 operations. Figure 51 shows that APU cost savings can be 

achieved very quickly; although each operation’s savings have a lot of noise, average savings 

above $25 per operation appear almost immediately after the first 10 operations. This is 

understood since the effectiveness of a pull-management of APU, GP, and PCA only needs a 

rough schedule to understand how long the APU can stay off. In contrast, the evolution in total 

savings in Figure 50 shows a very problematic initial learning phase. The first few runs show 

very large losses associated with operation delay caused by the adaptive schedule. This is 

because although it is easier to take a riskier decision to increase GP and PCA use, there is not 

enough data to quantify the vast losses that they could cause in edge-case scenarios. Even if the 

adaptive scheduler may usually save $20-40, even a single exceptional $2,000 loss due to excess 

delay may annul those savings. Fortunately, as those edge cases appear, the system starts using 

those data points in the simulations and starts being risk-averse to those high-loss scenarios. By 
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200 runs, the long-term total expected savings become positive, and as observed in Section 

5.12.2, by 1,000 runs the adaptive scheduler can run to produce reliable net savings.  

 

 
Figure 50: Total cost savings from using adaptive scheduling instead of preplanning for 200 

operations with no initial long-term memory. 

 

 
Figure 51: APU cost savings from using adaptive scheduling instead of preplanning for 200 

operations with no initial long-term memory.  
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5.13 Discussion  
 

The main conclusion that this section of the dissertation drives is that the concept of how 

adaptive scheduling works. The technology used to implement the required percepts and 

actuators exists, the architecture is defined, and the simulated demonstration of the system shows 

that net savings are achieved. With a clear value proposition, the system has a foundation on 

which it can be improved, detailed, and used in the industry.  

 

The algorithms and hardware used in this dissertation were the minimum viable solution to 

demonstrate adaptive scheduling in relationship to GP, PCA, and APU management. The single-

variable gradient descent used in the demonstration is slow and can easily get stuck at a sub-

optimal local minimum. Academic literature already proposes much more powerful search 

optimization algorithms (e.g., genetic algorithms) that may improve the speed and precision of 

the overall system. Cloud computing and parallelization offer ever greater opportunities to 

increase speed and precision. In turn, improved computability opens opportunities to increase the 

complexity of the optimization problem.  

 

The complex process model and its relative cost function barely represent the complexity of 

turnaround operations. The greater the detail and the flow of information, the more the adaptive 

scheduling system gains the ability to infer circumstances and seize opportunities for savings. In 

the complex model, entire processes are represented with single activities, which could be split 

up into smaller modules. A more complex process model not only enables more information 

flow, but also allows predictions for single activities to be more precise. If the relative percepts 

exist, activities like passenger boarding, luggage loading, and catering can provide information 

about their progress in several milestones, rather than solely providing information on their 

completion. The representation of ATC and ACDM decision making through the Gate Hold 

actuator are overly simplistic, and could be broken down further or connected to real-time 

systems. More actuators can be included to represent other critical decision making processes.  

 

The greatest advantage of adaptive scheduling is that it is highly customizable, modular, and 

flexible. In this dissertation, a specific process model, specific random variable distributions for 

activity durations and specific cost rates were chosen to perform the demonstration. In practice, 

all these components can be altered, and the system will still work. A process model can be 

redesigned depending on exact airport equipment configurations. Activity durations do not need 

to be specified or associated with specific random variable distribution; they simply need to be 

observed by the percepts and recorded in the long-term memory. Cost rates can be customized 

depending on airport and airline priorities, or they can be connected to their own percept inputs. 

Additionally, the adaptive scheduler can be applied to a mixed fleet of aircraft and equipment if 

the data entries in the long-term memory are labeled and filtered with the identifying data. 

Generally, adaptive scheduling is a structure for data-driven decision support, not restricted to 

any data set or problem.  

 

Despite being a powerful decision support tool, adaptive scheduling is not perfect and can still 

make mistakes. It is important to recognize both the fact that initially it requires a learning period 

and the fact that even a well-trained system is not going to produce saving for all operations. The 

mitigation of unexpected variability goes hand in hand with accepting the lack of full control.  
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5.14 Conclusion  
 

An adaptive scheduling system can blend contingency planning, active management, and cost 

estimation under one system. By collapsing probable turnaround operations schedules into their 

relative costs, the system can balance the probability and cost associated with each decision it 

makes. As the system gains more circumstantial information, what could have been a very risky 

cost saving decision could become a very reasonable one. By making the best decision according 

to the data available in real time, an adaptive scheduler provides net benefits in the long-term 

across many operations.  

 

Evaluating the performance of operations with hindsight ignores the fact that operation 

stakeholders make their decisions in real time and with limited information. For example, if an 

airport sets a stringent policy of turning on an APU 10 minutes prior to off block time, it might 

be easy for them to use their monitoring system to retrospectively see if that policy was respected 

or not. However, such a policy does not capture the risky decision making that pilots and ground 

crews are faced with. Perhaps, using an APU for 25 minutes prior to departure might be justified 

if there is high uncertainty in the off block time, whereas using an APU 10 minutes prior to 

departure time might be unjustified if all other processes are complete and the off block time is 

certain. An arbitrary APU use time policy is a worthwhile airport strategy that may help 

stakeholders strive for improved performance, but it is also somewhat detached from the 

complexity of reality. If an airport implemented an adaptive scheduling system, they would not 

only be able to provide net savings to airlines, but they would also have the insight to build more 

circumstantial and responsive policies and incentive mechanisms.  

 

Adaptive scheduling is not a new concept in the airport management world. Many interconnected 

systems are already using it to support a transportation network that needs to be both robust and 

flexible. This dissertation makes a unique contribution by including GP, PCA, and APU 

management into the larger framework of adaptive scheduling. It demonstrates that energy 

savings and sustainability can be furthered in a smaller scope without jeopardizing the function 

of the larger system, rather contributing to it.  
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6. Discussion  
 

Even if hypothetical perfect monitoring, assessments, and adaptive scheduling systems were 

used at every airport, APU over-use would still be a problem. This dissertation outlines some of 

the strategies that can help turnaround operations stakeholders strive for perfection, while 

acknowledging that they are only a component of the solution. Making turnaround operations 

even slightly better, rather than perfect, may be the most feasible way to provide immediate 

value. Overall turnaround operations performance is a heterogenous spectrum, independently of 

which metric is used to define it. Shifting that spectrum by identifying and decreasing the 

likelihood of poor performance, while supporting and increasing the likelihood of good 

performance, will inevitably improve the average performance.  

 

Although each section of the dissertation is presented independently, there are a lot of synergies 

among them. The GP use section provides critical input data for the operation assessment and is 

a critical percept for the adaptive scheduling section. The assessment section contextualizes the 

results of GP use while providing a detailed methodology to make cost estimates that can be 

leveraged in the adaptive scheduling section. The adaptive scheduling section provides a 

schedule and operational data that can be critical towards predicting power demand in the GP use 

section, and provides a basis to evaluate GP use without the benefit of hindsight. Since these 

systems depend on the same percepts and the availability of a real time computer system, it 

makes sense to implement them jointly to maximize value from the investment in such a system.  

 

Developing and adopting technology in large and highly established industries is an exceedingly 

difficult goal. Aviation’s top priorities are security and safety, which can be large obstacles and 

liabilities to a system that proposes real-time data sharing and AI-assisted management as a 

foundation. Aviation stakeholders are highly fragmented and have different priorities, making 

challenging to suggest a centralized solution. Aviation is an inherently international business, 

making it challenging to approach legally and organizationally. But perhaps the greatest barrier 

to adoption is changing the way people have worked for decades; individual airlines, ground 

crew workers will resist change because learning to use and trust a new tool takes education, 

time, and effort. However, with a clear value proposition and by striving to make people’s lives 

easier, it is possible for improved monitoring, assessment, and adaptive scheduling to gain 

traction.  

 

Each turnaround stakeholder can be a catalyst towards adoption. Governments and worker’s 

unions can push for a regulatory approach that would require airports and airlines to improve and 

monitor their performance, forcing them to implement effective solutions. Airports can develop a 

centralized system to overhaul their gate management, to attract airlines, and to further their 

sustainability agenda. Airlines can develop the systems to improve their cost savings and overall 

operational efficiency. Ground handling equipment manufacturers may develop the systems as a 

software augmentation that makes their products more competitive. Independent ground handing 

organizations might want to use the systems for improved resource and schedule management. 

Additionally, any of these stakeholders might have a marketing incentive to develop green 

technology since sustainability is a sensitive topic, especially to flying customers.  
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7. Conclusion  
 

Increasing the use of existing gate electrification infrastructure is a desirable outcome for all 

stakeholders. Financial success and sustainability often find themselves at odds in many 

industrial problems, but when it comes to GP, PCA, and APU use, those goals go hand in hand 

with each other. Increasing energy efficiency for turnaround operations increases airline profits, 

reduces global emissions, improves airport air quality, and safeguards the health of apron 

workers.  

 

As much as it is theoretically desirable for all stakeholders, maximizing the use of GP and PCA 

is challenging and often not a priority. This dissertation reveals that a discrepancy exists between 

the use of gate electrification infrastructure assumed by airports (and their funding organizations 

such as VALE) and the use that truly occurs. In an unsupervised environment, some airlines use 

gate electrification infrastructure far more than others. Some airlines seem to almost neglect the 

resource completely. As disheartening as this might be, it also suggests that improvement is 

possible. If every turnaround operation respected a stringent but realistic APU use time of 15 

minutes, an average of $50 in jet fuel and 180 kg CO2 could be saved in comparison to current 

utilization rates. With approximately 200,000 flights at SFO per year (Greer et al., 2021) , the 

total for the airport would amount to $10M in fuel and 36,000 mTCO2. 

 

This dissertation creates a framework for monitoring, assessment, and adaptive scheduling and 

provides strategies to achieve improved energy efficiency. Establishing a system to closely 

monitor GP, PCA and APU use is the foundation for any form of accountability, policy 

enforcement, data-driven decision making, and predictive management. An airport centric 

monitoring system can be implemented with existing databases for GP systems to predict power 

demand and identify performance patterns. Assessment impact methods reveal the costs and 

health risks associated with GP, PCA, and APU management. A computerized adaptive 

scheduling system can actively support pilots and ground crews in managing risk and seizing 

opportunities for savings without compromising the overall progress of the turnaround operation. 

Together, these strategies may synergize to mitigate the problem of APU overuse while also 

bringing value to the overall turnaround operations procedure and airport management (Figure 

52 and 53).  

 

The following sections describe the contributions to knowledge (Section 7.1) and potential future 

focuses (Section 7.2) for the research.  
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Figure 52: Generalized monitoring, modeling, and management framework  

 

 

 

Figure 53: Schematic summary of the framework to improve GP use and reduce APU use 
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7.1 Research Contributions  
 

This research contributes to the body of knowledge of aviation and sustainability in the following 

ways: 

● By compiling and reviewing literature and industry projects, this dissertation encourages 

further research into gate electrification use patterns, their causes, and their impacts. The 

literature review connects the concepts of GP and PCA use with the research on ground 

handling scheduling and management, demonstrating how the two typically independent 

topics are highly related and synergetic.  

● By developing a detailed and replicable airport centric method to analyze GP use, and 

then demonstration it with SFO airport data. A thorough explanation of the data 

acquisition, cleaning, integration, analysis, and modelling complements the proposed 

ACRP methodologies to evaluate the benefits and use of GP and PCA. GP use data can 

be used to evaluate or benchmark different equipment, strategies, and stakeholders. 

● By producing extensive GP demand statistics for different aircraft types that can be used 

to estimate airport power demand. These results can be combined with flight schedules to 

predict and optimize total airport electrical loads. 

● By training and evaluating 8 supervised machine learning models to predict instantaneous 

power demand. Machine learning models can be used to provide further detail in data that 

lacks granularity and to infer the source of power when airlines do not share aircraft data. 

● By showing how integrated and labeled datasets can reveal insightful patterns on GP use. 

These results can inform stakeholders and policymakers on the issues that need to be 

addressed to improve GP and PCA use.  

● By assessing current GP use at SFO and estimating achievable savings. This dissertation 

shows that gate electrification infrastructure has already successfully mitigated costs and 

emissions, and even further benefits could be achieved by improving GP use.  

● By developing a potential framework to apply the life cycle assessment method on the 

GP, PCA, and APU use problem. The method provides an assessment for every operation 

and includes non-operational and capital costs. Although the dissertation underlines the 

importance of detail in the application of LCA method, it uses many assumptions and 

approximations that can be addressed by future research. 

● By demonstrating that APU emissions are a health hazard to apron workers through a 

dispersion analysis and health risk assessment. Although the method is not exact, it is 

conservative at every step, and still obtains a concerning conclusion. Further research 

would be necessary to determine the true magnitude of the impact.  

● By describing the possible percepts and actuators that can be used to implement artificial 

intelligence management for turnaround operations. Any computerized system that 

interacts with turnaround operations would use a combination of these percepts and 

actuators. 

● By outlining the modular architecture of a real-time adaptive scheduling system that 

includes a controlled management of GP, PCA and APU within the larger framework of 

optimizing turnaround and airport operations. The prototyped and adaptive scheduling 

system in Python code simulated its behavior to demonstrate the effectiveness of an 

adaptive scheduler to provide energy savings. 
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7.2 Future Research  
 

The subject matter of the dissertation is highly rooted in the present-day circumstances. Twenty 

years ago, the IoT and artificial intelligence technologies that are discussed did not exist. In 

another twenty years, the whole problem might look completely different. In this section, I 

suggest some important follow-ups to this field of research. 

  

 

7.2.1 PCA Monitoring, Modelling, and Management 
 

A topic omitted from this dissertation due to lack of granular data was PCA monitoring. PCA 

systems usually consume more power than GP systems and are equally interdependent with APU 

use.  

 

The models to predict PCA consumption would be more complex than those for GP systems. GP 

power demand is instantaneous; the aircraft draws as much power as it needs at any moment. 

PCA is used as much as is required to keep the cabin at the right temperature. The magnitude 

depends on the ambient temperature, solar irradiation, passenger heat, input air temperature, and 

the overall heat capacity of the aircraft. Not only would a prediction model need to leverage all 

these variables, but it would also need to cope with a time lag between demand and supply of 

PCA.  

 

Nevertheless, modelling PCA systems, predicting power demand, assessing PCA use, and 

improving PCA management strategies is a worthwhile research effort. Having a predictive 

management approach on PCA systems would reduce surprises and waste. For example, consider 

a turnover on a hot summer day, where air conditioning is necessary. If a PCA system is 

insufficient to maintain a comfortable cabin temperature the APU will be used regardless of the 

PCA supply. The entire process of connecting the hose, turning off the APU, letting the 

temperature rise, and turning the APU back on is unnecessary and preventable by predictive 

management.  

 

7.2.2 Resource Pooling  
 

This dissertation analyses individual gates as independent and isolated systems, whereas 

concurrent turnaround operations at different gates are highly related. Ground crews are often 

responsible for several operations at once to reduce personnel downtime and leverage economies 

of scale. In U.S. airports, adjacent gates are often leased to the same airline so that they can 

effectively pool their labor and equipment and customize their management. Airlines that have 

few operations at an airport might rely on a third-party ground handling subcontractor. There 

might be further untapped economies of scale by sharing equipment and personnel across all gate 

operations, rather than fragmenting the system. Some of the greatest objections to such sharing 

proposal could be: (i) how costs would be split for shared resources, (ii) different airlines have 

different management priorities, and (iii) who would manage and prioritize resources. 

Interestingly, this is not a hypothetical problem but one that already occurs. Some gates at 

airports are shared by several airlines, where these questions already arise. How do the airlines 
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split the energy bill if the use is not monitored? Who is responsible for equipment breakages? It 

is not surprising that Section 3 shows that GP use at shared gates is worse than at a single airline 

gate. However, what can be seen as a current problem could be an opportunity.  

 

Integrated monitoring, detailed assessment, and predictive centralized management could make 

pooling of resources more desirable. For example, simply monitoring GP use at each gate for 

each operation enables to split GP energy costs fairly and proportionally to use. If enough 

percepts, integrated management systems, and actuators are introduced, the argument for sharing 

resources could be extended to more equipment types, to individual workers and to every 

operation. IoT systems and artificial intelligence might enable the transition from an ownership-

centered management of resources to a modular service-centered management of resources 

(similarly to how phones enabled car-pooling services like Uber have replaced private or 

fragmented transportation methods). 

 

Researching this hypothetical future in the context of airport ground handling and fleet 

management is an interesting and worthwhile project. A viable way to begin approaching this 

vast scope would be to extend the concepts described in the adaptive scheduling section to many 

gates, while also modelling the resources used that are shared by different processes. 

Computationally, this becomes a far more complex problem to optimize, however it would likely 

be easy to achieve savings in comparison to applying adaptive scheduling to several independent 

gate schedules.  

 

7.2.3 Different Equipment and Future Technologies 
 

Ground handling and more broadly aviation are continuously evolving industries. New aircraft, 

equipment, and technologies are continuously introduced. Some bring vast improvements and 

others might be problematic. Monitoring, assessing, and benchmarking performance are essential 

in dealing with continuous changes and seek continuous improvement. This dissertation only 

focused on the equipment used at SFO gates in 2019-2020. However, similarly detailed analysis 

should be replicated at many other airports with all the different possible types and 

configurations of equipment. 

 

The long-term future might hold radical changes in airport ground handling operations. Current 

trends towards electrification have the potential to drastically reduce costs and emissions, but 

they also present increasing challenges for power prediction and management. The possible 

proliferation of small electric regional air transportation will pose new challenges for ground 

handling. For example, the smart charging of aircraft during turnarounds might be a critical 

determinant of turnaround operations frequency and airport capacity. The automation of ground 

handling processes is another radical change that could come to airports and lower costs and 

improve reliability. Whatever the future holds, further research on integrated monitoring, 

detailed assessment, and adaptive management is an excellent way to prepare for it.  
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Appendix 
 

Table A1:  Subtype code, APU group, AAC, ADG, model, pax, category (Part 1 of 2) 

Aircraft 

Subtype 

Code 

APU  

Emissions 

Group 

Aircraft 

Approach 

Category 

(AAC) 

Airplane 

Design 

Group 

(ADG) 

Model Name 

Passenger 

Capacity 

(approx.) 

Category 

319 100-200 new C III Airbus A319 126 Narrow Body 

320 100-200 new C III Airbus A320 160 Narrow Body 

321 100-200 new C III Airbus A321 195 Narrow Body 

328 100-200 new C III Airbus A320 160 Narrow Body 

739 100-200 new D III Boeing 737-900 178 Narrow Body 

19C 100-200 new C III Airbus A319 126 Narrow Body 

19F 100-200 new C III Airbus A319 126 Narrow Body 

19G 100-200 new C III Airbus A319 126 Narrow Body 

19S 100-200 new C III Airbus A319 129 Narrow Body 

20C 100-200 new C III Airbus A320 160 Narrow Body 

20S 100-200 new C III Airbus A320 160 Narrow Body 

37K 100-200 new D III Boeing 737-900 178 Narrow Body 

3SE 100-200 new C III Airbus A320 160 Narrow Body 

73C 100-200 new D III Boeing 737-900 178 Narrow Body 

73H 100-200 new D III Boeing 737-800 170 Narrow Body 

73J 100-200 new D III Boeing 737-900 178 Narrow Body 

73Q 100-200 new D III Boeing 737-800 170 Narrow Body 

73R 100-200 new D III Boeing 737-900 178 Narrow Body 

73Y 100-200 new D III Boeing 737-800 170 Narrow Body 

75B 100-200 old C IV Boeing 757-200 200 Narrow Body 

75E 100-200 old C IV Boeing 757-300 243 Narrow Body 

75K 100-200 old C IV Boeing 757-200 200 Narrow Body 

75S 100-200 old C IV Boeing 757-200 200 Narrow Body 

76A 200-300 D IV Boeing 767-300 260 Wide Body 

76C 200-300 D IV Boeing 767-300 260 Wide Body 

77E 200-300 C V Boeing 777-200 340 Wide Body 

77G 200-300 C V Boeing 777-200 340 Wide Body 

77J 200-300 C V Boeing 777-200 340 Wide Body 

77M 200-300 C V Boeing 777-200 340 Wide Body 

77N 200-300 C V Boeing 777-200 340 Wide Body 

77Q 200-300 C V Boeing 777-200 340 Wide Body 

77U 200-300 C V Boeing 777-200 340 Wide Body 
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Table A2:  Subtype code, APU group, AAC, ADG, model, pax, category (Part 2 of 2) 

Aircraft 

Subtype 

Code 

APU  

Emissions 

Group 

Aircraft 

Approach 

Category 

(AAC) 

Airplane 

Design 

Group 

(ADG) 

Model Name 

Passenger 

Capacity 

(approx.) 

Category 

77W 200-300 C V Boeing 777-300ER 340 Wide Body 

77X 200-300 C V Boeing 777-300ER 340 Wide Body 

77Y 200-300 C V Boeing 777-200 340 Wide Body 

78H 200-300 C V Boeing 787-8 230 Wide Body 

78J 200-300 C V Boeing 787-10 330 Wide Body 

78V 200-300 C V Boeing 787-9 290 Wide Body 

78Z 200-300 C V Boeing 787-9 290 Wide Body 

A20N 100-200 new C III Airbus A320Neo 160 Narrow Body 

A21N 100-200 new C III Airbus A321Neo 215 Narrow Body 

A319 100-200 new C IV Airbus A319 126 Narrow Body 

A320 100-200 new C III Airbus A320 160 Narrow Body 

A321 100-200 new C III Airbus A321 195 Narrow Body 

A332 200-300 C V Airbus A330-200 230 Wide Body 

A333 200-300 C V Airbus A330-300 380 Wide Body 

A343 >300 new C V Airbus A340-300 359 Wide Body 

A359 >300 new C V Airbus A350-900 330 Wide Body 

A388 >300 new D VI Airbus A380-800 700 Jumbo-Wide Body 

B736 100-200 new C III Boeing 737-600 113 Narrow Body 

B737 100-200 new C III Boeing 737-700 145 Narrow Body 

B738 100-200 new D III Boeing 737-800 170 Narrow Body 

B739 100-200 new D III Boeing 737-900 178 Narrow Body 

B744 >300 new D V Boeing 747-400 550 Wide Body 

B752 100-200 old C IV Boeing 757-200 200 Narrow Body 

B763 200-300 D IV Boeing 767-300 243 Wide Body 

B772 200-300 C V Boeing 777-200 340 Wide Body 

B77L 200-300 C V Boeing 777-200LR 340 Wide Body 

B77W 200-300 D V Boeing 777-200ER 340 Wide Body 

B788 200-300 C V Boeing 787-8 230 Wide Body 

B789 200-300 C V Boeing 787-9 290 Wide Body 

CR7 BJ/RJ C II CRJ-700 70 Regional Jets 

CRJ BJ/RJ C II CRJ-200 50 Regional Jets 

CRJ9 BJ/RJ C III CRJ-900 76 Regional Jets 

E75 BJ/RJ C III Embraer 175 76 Regional Jets 

E75L BJ/RJ C III Embraer 175 76 Regional Jets 

MD83 100-200 old D III MD-83 160 Narrow Body 
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Table A3: APU fuel and emissions indices for the no-load condition (ACRP, 2012) 

Category 
Fuel Flow 

(kg/s) 

EICO2 

(g/kgfuel) 

EICO 

(g/kgfuel) 

EIHC 

(g/kgfuel) 

EINOx 

(g/kgfuel) 

Narrow Body 0.021 3,155 31.75 6.53 5.45 

Wide Body 0.035 3,155 10.26 0.87 7.55 

Jumbo Wide 0.033 3,155 9.38 0.88 7.41 

Regional Jet 0.012 3,155 6.26 1.69 6.14 

Turbo Prop 0.012 3,155 6.26 1.69 6.14 
 

 

 

 

Table A4: APU fuel and emissions indices for the ECS condition (ACRP, 2012) 

Category 
Fuel Flow 

(kg/s) 

EICO2 

(g/kgfuel) 

EICO 

(g/kgfuel) 

EIHC 

(g/kgfuel) 

EINOx 

(g/kgfuel) 

Narrow Body 0.033 3,155 5.72 0.43 6.85 

Wide Body 0.052 3,155 1.14 0.19 10.99 

Jumbo Wide 0.061 3,155 0.53 0.12 10.3 

Regional Jet 0.019 3,155 6.47 0.49 4.93 

Turbo Prop 0.019 3,155 6.47 0.49 4.93 

  

Table A5: APU fuel and emissions rates (Winther, 2015; ICAO, 2011) 

M
et

ri
cs

 

APU Group BJ/RJ 200-300 
100-200 

old 

100-200 

new 
>300 old >300 new 

S
ta

rt
 

NOx (kg/hr) 0.274 0.798 0.565 0.364 1.137 1.21 

NO2 (kg/hr) 0.094 0.273 0.193 0.124 0.389 0.414 

CO (kg/hr) 1.019 0.982 1.289 3.734 5.4 1.486 

HC (kg/hr) 0.107 0.243 0.105 2.662 0.302 0.18 

PM (kg/hr) 0.016 0.033 0.034 0.031 0.04 0.031 

Fuel (kg/hr) 50 105 110 100 300 235 

N
o

rm
a
l 

NOx (kg/hr) 0.452 1.756 1.064 0.805 2.071 2.892 

NO2 (kg/hr) 0.155 0.601 0.364 0.275 0.708 0.989 

CO (kg/hr) 0.799 0.248 0.336 0.419 3.695 0.149 

HC (kg/hr) 0.044 0.07 0.036 0.094 0.153 0.078 

PM (kg/hr) 0.028 0.058 0.034 0.031 0.037 0.032 

Fuel (kg/hr) 90 187 110 100 283 240 
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Table A6: GP consumption (kW) over 7 kW grouped by aircraft model 

Model 
0% 

(Min) 

5% 

(Perc.) 

25% 

(Perc.) 
50% 

(Median) 
75% 

(Perc.) 

95% 

(Perc.) 

100% 

(Max) 
Mean STD 

Airbus A319 7.1 13.4 21.5 23.2 25.2 33.6 61.4 23.7 5.5 

Airbus A320 7.1 13.8 22.1 24.5 26.6 35.0 90.8 24.7 6.0 

Airbus A320Neo 16.9 17.0 17.7 38.3 38.8 39.8 40.0 32.4 10.1 

Airbus A321 7.1 13.7 23.6 25.4 27.5 30.8 87.4 24.8 4.9 

Airbus A321Neo 7.1 12.7 19.6 21.1 23.4 30.0 35.9 21.6 4.6 

Airbus A330-200 8.8 11.5 22.7 24.6 25.2 25.6 25.7 21.4 7.1 

Airbus A330-300 11.0 27.2 41.9 48.2 58.5 59.4 64.3 47.1 12.0 

Airbus A350-900 7.3 16.1 32.6 42.8 53.1 64.9 92.4 42.6 14.4 

Airbus A380-800 17.8 21.8 35.2 61.0 68.7 76.9 80.3 55.1 19.3 

Boeing 737-600 16.0 17.1 19.2 20.5 23.2 24.4 24.7 20.8 2.6 

Boeing 737-700 7.3 10.9 18.6 22.0 23.8 27.7 32.0 20.9 4.9 

Boeing 737-800 7.1 11.9 17.0 19.4 23.6 29.0 38.5 20.2 5.0 

Boeing 737-900 7.1 11.4 16.2 19.6 23.3 28.7 74.4 19.9 5.1 

Boeing 747-400 7.7 29.6 42.9 52.8 72.9 75.2 80.8 54.2 17.4 

Boeing 757-200 7.4 16.2 21.6 23.6 26.6 30.0 39.5 23.7 4.5 

Boeing 757-300 7.2 17.4 20.4 22.2 25.2 30.0 31.7 22.6 3.9 

Boeing 767-300 7.6 22.0 31.9 37.1 41.2 48.8 54.7 36.2 8.2 

Boeing 777-200 7.1 26.7 42.9 48.2 56.6 74.7 86.5 49.5 13.6 

Boeing 777-200ER 7.2 20.2 47.6 60.5 69.1 75.8 105.4 56.6 16.3 

Boeing 777-200LR 19.7 21.7 29.6 39.6 40.8 41.8 42.0 33.8 12.3 

Boeing 777-300ER 7.3 26.2 45.4 54.8 64.7 81.6 99.6 54.9 15.9 

Boeing 787-8 7.1 18.1 27.6 71.6 76.9 92.5 99.8 59.7 25.2 

Boeing 787-9 7.1 20.9 62.5 70.9 76.2 88.1 138.5 64.3 20.8 

CRJ-200 7.1 7.1 7.2 7.6 8.0 11.5 12.2 8.1 1.4 

CRJ-700 7.2 7.9 9.2 9.6 10.4 11.0 11.5 9.7 1.0 

CRJ-900 7.2 7.9 11.2 12.5 13.1 14.2 15.1 11.9 1.8 

Embraer 175 7.1 7.9 10.3 10.8 11.2 12.5 79.9 10.7 2.3 

MD-83 9.5 11.9 25.6 26.0 26.6 28.0 28.3 23.5 6.5 
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Table A7: Power consumption (kW) over 7 kW grouped by gate 

Gate 
0% 

(Min) 

5% 

(Perc.) 

25% 

(Perc.) 

50% 

(Median

) 

75% 

(Perc.) 

95% 

(Perc.) 

100% 

(Max) 
Mean STD 

A11A 8.2 12.5 15.9 16.7 17.2 18.9 19.1 16.2 2.1 

A1B 10.0 12.2 13.4 15.8 18.5 20.9 21.0 15.9 3.2 

A2 7.2 12.7 19.6 23.4 25.9 32.5 42.4 22.8 5.5 

A3 7.3 8.9 13.7 18.2 25.1 29.2 32.0 18.9 7.0 

A4 7.1 12.3 17.2 22.7 26.2 39.2 90.8 23.3 9.9 

A5 9.2 29.0 50.9 61.0 68.9 80.2 90.6 58.5 14.8 

A6 7.1 15.5 23.3 27.0 47.4 74.6 89.6 34.6 18.9 

A7 7.3 21.7 40.8 62.0 70.0 75.7 87.8 54.5 19.3 

A8 7.2 12.3 18.8 25.3 29.7 52.5 105.4 27.6 13.7 

A9 14.2 32.7 50.7 58.3 69.2 76.5 79.0 57.7 14.0 

D50A 7.1 8.8 10.8 14.4 24.1 32.2 43.0 17.6 7.8 

D50B 7.1 8.4 10.7 14.1 23.8 31.6 42.5 17.2 7.8 

D51A 7.1 10.0 12.8 22.4 25.7 33.4 41.6 21.0 7.5 

D51B 7.1 9.6 12.4 21.4 25.1 33.4 40.7 20.3 7.4 

D52 7.1 10.2 13.7 22.7 25.9 33.5 40.6 21.0 7.3 

D53 7.1 9.0 11.0 19.6 24.1 32.1 58.8 18.7 7.5 

D54A 7.1 11.6 19.2 23.3 25.9 33.6 62.5 22.6 6.5 

D54B 7.1 9.4 13.6 21.6 25.2 33.6 74.4 20.6 7.5 

D55 7.1 9.5 13.2 22.1 25.4 33.3 41.6 20.8 7.4 

D56A 7.1 12.0 20.6 24.7 26.8 29.9 44.2 23.3 5.4 

D56B 7.2 10.7 19.8 24.4 26.2 29.4 87.4 22.8 5.7 

D57 7.1 13.3 22.4 25.6 27.7 30.5 53.3 24.5 5.5 

D58A 7.1 13.2 22.2 24.6 27.0 29.4 38.2 23.7 4.8 

D58B 7.1 11.4 22.9 26.5 28.3 34.0 42.8 25.1 6.0 

D59 7.1 10.0 22.8 24.5 26.3 35.6 41.9 24.3 6.9 

E60 7.1 13.2 16.6 19.7 23.5 29.6 39.8 20.2 5.0 

E61 7.1 13.0 17.4 20.9 23.6 30.4 40.3 20.8 5.0 

E62 7.1 12.4 17.0 20.9 23.5 29.8 70.7 20.5 5.1 

E63 7.1 12.0 16.9 20.5 23.5 30.2 44.9 20.5 5.1 

E64 7.1 12.3 17.0 20.5 23.9 32.0 74.0 21.0 6.3 

E66 7.1 13.0 18.1 22.1 25.1 32.2 97.3 22.0 6.2 

E67 7.1 12.7 18.7 22.8 25.8 32.0 56.2 22.5 5.6 

E68 7.1 12.5 18.6 22.2 25.1 31.0 61.4 22.0 5.3 

E69 7.1 12.8 17.9 21.7 24.6 31.1 40.3 21.5 5.4 

F70 7.1 9.1 12.8 19.6 23.8 30.6 39.8 19.1 6.7 

F71A 7.1 8.5 10.7 11.8 20.9 26.5 41.0 15.5 6.4 

F71B 7.1 7.7 9.8 10.8 11.0 12.4 28.3 10.5 1.4 

F77B 9.0 9.1 9.5 10.0 10.2 10.4 10.4 9.8 0.7 

F79 8.3 17.3 30.9 33.2 46.4 47.1 79.9 37.0 11.2 

G100 7.3 18.0 27.4 54.4 70.7 83.6 101.2 51.3 22.4 

G91 7.1 11.9 21.5 24.8 29.6 72.9 118.1 28.8 16.4 

G92 7.1 12.7 22.1 25.9 54.7 78.2 97.4 36.9 22.3 

G93 7.1 15.7 23.9 33.1 68.6 82.1 138.5 43.4 24.1 

G94 7.1 15.3 23.8 37.6 62.5 78.5 99.8 42.6 22.3 

G95 7.2 15.9 24.0 35.9 62.1 78.6 101.5 42.1 22.1 

G96 7.1 15.1 23.9 46.3 67.4 81.9 109.9 46.1 23.1 

G97 7.1 14.6 23.9 41.5 73.1 84.0 110.9 47.3 25.9 
G98 7.2 14.9 24.7 43.2 71.0 81.7 99.6 47.2 24.1 
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Table A8: Power consumption (kW) over 7 kW grouped by aircraft design group (ADG) 

ADG 
0% 

(Min) 

5% 

(Perc.) 

25% 

(Perc.) 

50% 

(Median) 

75% 

(Perc.) 

95% 

(Perc.) 

100% 

(Max) 
Mean STD 

II 7.1 7.2 7.7 9.2 10.3 11.2 12.2 9.1 1.4 

III 7.1 10.1 16.0 21.2 24.7 31.6 90.8 20.6 6.6 

IV 7.1 13.7 22.2 23.9 26.5 35.0 59.4 24.6 6.1 

V 7.1 20.6 45.1 63.8 73.2 84.4 138.5 58.3 20.1 

VI 17.8 21.8 35.2 61.0 68.7 76.9 80.3 55.1 19.3 

 

Table A9: Power consumption (kW) over 7 kW grouped by airline 

Airline 
0% 

(Min) 

5% 

(Perc.) 

25% 

(Perc.) 

50% 

(Median

) 

75% 

(Perc.) 

95% 

(Perc.) 

100% 

(Max) 
Mean STD 

A 7.1 12.6 23.5 25.8 35.7 75.6 99.8 32.4 18.1 

B 7.1 9.4 12.0 21.4 25.2 33.1 74.4 20.1 7.6 

C 7.1 11.9 21.2 25.0 27.2 30.1 87.4 23.8 5.5 

D 7.1 7.9 12.0 15.7 25.1 25.4 25.6 17.7 7.5 

E 7.3 11.4 16.9 18.7 25.6 62.3 90.8 25.3 15.9 

F 7.1 17.2 24.1 25.8 27.7 34.6 42.4 25.9 4.8 

G 7.2 11.6 19.9 23.5 28.7 72.9 89.6 30.0 18.1 

H 7.4 22.1 53.5 65.5 70.8 76.6 105.4 60.1 15.7 

I 7.3 13.4 25.2 39.8 53.2 68.5 92.4 39.8 18.0 

J 7.1 10.4 16.6 21.2 24.6 42.7 138.5 22.8 12.3 
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Table A10: GP utilization rate (%) grouped by aircraft model 

Model 
0% 

(Min) 

5% 

(Perc.) 

25% 

(Perc.) 

50% 

(Median) 

75% 

(Perc.) 

95% 

(Perc.) 

100% 

(Max) 
Mean STD 

Airbus A319 0.0 0.0 50.0 68.8 80.0 92.4 100.0 59.4 29.1 

Airbus A320 0.0 0.0 43.8 68.8 81.3 93.3 100.0 58.1 30.8 

Airbus A320Neo 0.0 0.0 0.0 0.0 10.0 61.3 100.0 11.6 24.2 

Airbus A321 0.0 0.0 3.4 10.0 65.0 90.0 100.0 31.4 33.6 

Airbus A321Neo 0.0 0.0 0.9 58.1 76.5 90.3 100.0 46.6 34.5 

Airbus A330-200 0.0 0.0 0.0 0.0 0.0 10.0 31.6 2.3 7.9 

Airbus A330-300 0.0 1.3 5.9 9.1 38.4 70.3 77.8 24.8 31.1 

Airbus A350-900 0.0 0.2 37.7 55.2 71.0 83.3 100.0 50.1 27.2 

Airbus A380-800 0.0 1.1 5.6 21.9 44.1 56.3 59.4 26.2 25.3 

Boeing 737-600 0.0 0.0 0.0 7.1 8.3 58.5 60.0 12.2 20.2 

Boeing 737-700 0.0 0.0 0.0 10.0 60.0 78.1 100.0 29.4 31.1 

Boeing 737-800 0.0 0.0 7.7 65.0 81.8 92.9 100.0 51.3 35.5 

Boeing 737-900 0.0 0.0 50.0 72.7 84.6 93.8 100.0 61.4 30.7 

Boeing 747-400 0.0 0.8 33.1 66.7 72.9 77.8 78.6 51.0 34.3 

Boeing 757-200 0.0 0.0 7.7 66.7 82.1 89.5 95.7 51.7 34.4 

Boeing 757-300 0.0 3.9 72.0 78.6 84.0 93.5 94.1 68.2 30.4 

Boeing 767-300 0.0 0.0 33.6 63.8 79.8 91.3 100.0 56.3 32.0 

Boeing 777-200 0.0 0.0 8.9 50.0 77.8 90.5 94.4 47.1 32.9 

Boeing 777-200ER 0.0 0.0 16.0 60.6 71.4 80.2 100.0 49.0 29.5 

Boeing 777-200LR 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8  

Boeing 777-300ER 0.0 20.2 58.5 72.5 83.2 89.2 96.9 67.1 21.8 

Boeing 787-8 0.0 0.0 5.1 27.3 52.5 74.3 81.8 30.1 27.0 

Boeing 787-9 0.0 0.0 3.8 28.6 57.8 78.6 100.0 32.0 28.6 

CRJ-200 0.0 0.0 0.0 0.0 11.1 58.3 95.0 9.8 18.5 

CRJ-700 0.0 0.0 0.0 4.6 22.2 75.7 85.7 15.9 24.3 

CRJ-900 0.0 0.0 9.1 14.3 22.2 50.0 100.0 17.6 16.4 

Embraer 175 0.0 0.0 0.0 12.5 61.1 83.3 100.0 29.4 31.7 

MD-83 0.0 0.9 4.5 9.1 50.0 82.7 90.9 33.3 50.1 
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Table A11: GP utilization rate (%) grouped by gate 

Gate 
0% 

(Min) 

5% 

(Perc.) 

25% 

(Perc.) 

50% 

(Median) 

75% 

(Perc.) 

95% 

(Perc.) 

100% 

(Max) 
Mean STD 

A11A 0.0 0.0 0.0 0.0 9.4 68.7 79.6 15.2 28.5 

A1B 76.4 76.7 77.6 78.8 79.9 80.8 81.1 78.8 3.3 

A2 0.0 0.0 0.0 47.7 64.2 87.8 99.8 39.9 32.1 

A3 0.0 0.0 0.0 0.0 13.0 99.1 100.0 15.6 32.3 

A4 0.0 0.0 0.0 29.8 62.1 95.9 100.0 33.8 33.7 

A5 0.0 0.0 0.0 0.0 49.7 71.2 79.7 19.0 28.5 

A6 0.0 0.0 19.8 47.5 65.7 95.0 99.2 45.6 31.5 

A7 0.0 0.0 0.0 55.2 68.7 84.9 95.3 43.9 31.1 

A8 0.0 0.0 9.4 58.3 75.6 98.0 100.0 50.5 36.2 

A9 0.0 0.0 0.0 0.0 0.0 48.6 70.9 4.9 15.5 

D50A 0.0 0.0 13.9 55.2 71.3 85.9 99.1 46.7 30.8 

D50B 0.0 0.0 25.1 55.9 73.9 87.3 98.7 48.3 30.4 

D51A 0.0 0.0 31.6 59.5 72.3 87.7 100.0 50.7 29.2 

D51B 0.0 0.0 33.3 59.0 75.7 87.1 98.1 51.6 28.9 

D52 0.0 0.0 33.1 55.5 70.4 87.3 98.2 49.5 27.4 

D53 0.0 0.0 25.9 56.7 72.8 86.1 96.7 48.4 30.0 

D54A 0.0 0.0 48.9 66.4 80.2 91.5 97.5 60.6 26.0 

D54B 0.0 0.0 0.0 54.6 72.4 88.7 98.7 46.0 32.1 

D55 0.0 0.0 39.1 60.7 73.6 87.8 96.9 53.3 27.5 

D56A 0.0 0.0 0.0 0.0 60.3 86.5 99.8 28.7 33.7 

D56B 0.0 0.0 0.0 0.0 60.3 86.4 96.8 27.4 34.0 

D57 0.0 0.0 0.0 0.0 46.2 82.9 97.6 20.8 31.1 

D58A 0.0 0.0 0.0 0.0 61.6 86.0 97.0 29.6 33.6 

D58B 0.0 0.0 0.0 50.9 69.8 87.9 98.9 41.3 33.5 

D59 0.0 0.0 42.1 57.9 76.8 87.2 95.4 55.2 26.3 

E60 0.0 0.0 55.4 71.8 83.6 93.0 100.0 65.4 25.4 

E61 0.0 0.0 60.5 76.5 86.5 94.6 100.0 69.4 23.9 

E62 0.0 0.0 56.0 71.1 81.6 91.6 98.2 64.8 24.6 

E63 0.0 0.0 36.9 65.3 79.6 88.8 97.7 55.3 30.7 

E64 0.0 0.0 35.4 60.8 75.5 88.8 96.9 52.6 29.6 

E65 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.1 

E66 0.0 0.0 51.0 67.9 80.1 90.3 97.6 60.5 27.0 

E67 0.0 0.0 50.8 68.5 81.4 90.6 100.0 61.8 25.6 

E68 0.0 0.0 53.3 71.0 82.4 92.7 99.5 64.0 25.8 

E69 0.0 0.0 56.9 73.2 83.1 92.7 99.3 66.7 23.4 

F70 0.0 0.0 37.2 62.3 79.4 90.6 99.9 55.0 29.5 

F71A 0.0 0.0 7.0 42.7 67.8 87.1 98.1 40.2 30.7 

F71B 0.0 0.0 4.7 32.4 60.5 79.6 95.5 34.8 28.4 

F77B 0.0 0.0 0.0 0.0 0.0 0.0 8.8 0.0 0.3 

F79 0.0 0.0 0.0 0.0 0.0 0.0 77.7 0.3 4.1 

G100 0.0 0.0 35.3 56.0 71.9 89.9 96.3 51.0 28.6 

G91 0.0 0.0 0.0 0.0 63.5 85.0 99.4 30.2 33.3 

G92 0.0 0.0 0.0 36.1 67.3 86.2 96.7 35.0 33.4 

G93 0.0 0.0 20.5 55.2 71.6 87.4 99.1 47.2 30.1 

G94 0.0 0.0 34.1 55.6 73.0 86.2 94.7 50.7 27.5 

G95 0.0 0.0 19.6 56.0 74.6 87.1 100.0 48.7 30.4 

G96 0.0 0.0 38.4 57.0 76.4 87.2 94.7 53.0 28.0 

G97 0.0 0.0 7.2 51.2 71.1 83.9 96.0 43.7 31.7 

G98 0.0 0.0 26.3 51.2 67.6 87.7 98.9 46.6 28.1 
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Table A12: Total APU time (min) grouped by aircraft model 

Model 
0% 

(Min) 

5% 

(Perc.) 

25% 

(Perc.) 

50% 

(Median) 

75% 

(Perc.) 

95% 

(Perc.) 

100% 

(Max) 
Mean STD 

Airbus A319 1.1 7.7 16.3 24.3 38.3 73.0 174.0 30.7 22.5 

Airbus A320 0.0 7.5 16.4 25.4 41.3 76.0 178.0 31.7 22.4 

Airbus A320Neo 0.0 32.1 58.1 71.5 83.3 92.9 133.0 69.0 25.6 

Airbus A321 0.1 11.4 30.4 54.1 71.0 111.0 174.0 54.9 30.5 

Airbus A321Neo 1.5 10.7 22.4 36.7 98.0 127.2 142.0 54.6 40.5 

Airbus A330-200 72.0 81.7 121.5 129.0 144.3 177.3 178.0 131.9 30.0 

Airbus A330-300 22.6 35.5 79.6 97.0 105.5 116.3 119.0 86.3 34.6 

Airbus A350-900 4.8 27.2 48.3 70.7 102.9 153.7 171.0 77.2 39.2 

Airbus A380-800 68.5 71.8 85.0 102.3 127.9 163.2 172.0 111.1 40.5 

Boeing 737-600 23.0 25.0 52.0 60.0 68.5 85.3 88.0 58.9 18.0 

Boeing 737-700 0.0 16.5 30.1 49.0 60.0 75.0 121.0 46.5 20.3 

Boeing 737-800 0.0 8.5 16.4 29.2 56.0 111.0 178.0 41.3 33.0 

Boeing 737-900 0.0 8.1 15.4 25.2 44.0 92.0 178.0 34.2 27.5 

Boeing 747-400 34.0 37.2 47.0 53.6 93.9 161.3 176.0 77.9 52.9 

Boeing 757-200 10.0 13.8 21.9 35.1 69.0 93.6 125.0 44.5 28.4 

Boeing 757-300 4.2 7.7 15.7 21.1 34.3 80.8 130.0 33.5 31.0 

Boeing 767-300 6.9 10.2 19.0 34.0 53.4 83.0 102.0 39.6 24.8 

Boeing 777-200 11.4 23.2 34.8 64.6 101.4 132.0 146.0 69.9 37.9 

Boeing 777-200ER 1.3 30.9 45.1 61.6 98.0 145.0 165.0 73.8 38.3 

Boeing 777-200LR 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7  

Boeing 777-300ER 12.3 20.8 32.5 43.2 61.1 108.1 165.4 52.2 31.4 

Boeing 787-10 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0  

Boeing 787-8 8.0 23.9 45.3 66.0 81.0 104.4 144.0 64.6 26.5 

Boeing 787-9 2.0 29.3 54.4 87.4 123.2 155.3 179.0 89.6 41.4 

CRJ-200 11.5 23.0 32.2 47.0 64.0 101.0 174.0 51.6 25.4 

CRJ-700 20.5 23.0 40.6 67.0 87.0 125.0 160.0 67.6 32.5 

CRJ-900 0.9 22.0 29.0 35.0 41.3 56.0 109.0 36.2 11.3 

Embraer 175 2.5 16.3 27.1 39.0 58.0 101.0 179.0 46.4 27.4 

MD-83 13.1 16.7 31.0 49.0 61.5 71.5 74.0 45.4 30.6 
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Table A13: Total APU time (min) grouped by gate 

Gate 
0% 

(Min) 

5% 

(Perc.) 

25% 

(Perc.) 

50% 

(Median) 

75% 

(Perc.) 

95% 

(Perc.) 

100% 

(Max) 
Mean STD 

A11A 8.3 24.4 56.8 68.0 78.8 117.6 137.4 67.8 31.1 

A1B 14.0 14.2 14.9 15.7 16.6 17.3 17.4 15.7 2.4 

A2 0.2 8.0 20.7 34.3 52.3 76.6 109.0 38.6 22.6 

A3 0.0 0.2 46.0 61.0 89.0 143.0 164.0 67.0 41.7 

A4 0.0 6.2 23.9 45.0 60.6 89.5 112.0 45.2 25.3 

A5 14.4 39.4 56.0 70.6 98.0 143.2 172.0 78.8 34.0 

A6 1.0 8.7 25.5 42.5 54.1 123.3 152.0 49.8 35.1 

A7 4.5 17.0 45.1 54.8 85.1 141.1 176.0 66.3 37.6 

A8 0.0 6.0 23.1 32.8 52.3 82.8 106.9 38.8 24.4 

A9 33.9 41.0 60.6 88.0 111.5 143.1 151.0 87.8 32.0 

D50A 0.8 9.3 19.6 29.4 41.2 66.1 151.0 32.6 18.0 

D50B 0.7 9.8 18.8 29.0 40.6 70.5 120.0 32.5 19.3 

D51A 0.0 9.1 19.1 27.0 40.0 72.5 140.0 32.3 20.6 

D51B 0.3 10.5 19.1 28.0 40.2 70.7 176.5 32.6 20.8 

D52 1.0 10.5 21.9 31.3 43.1 75.8 163.0 35.2 21.7 

D53 2.0 12.6 21.1 30.3 43.0 67.0 161.0 34.3 19.4 

D54A 0.6 8.7 18.7 26.5 40.4 74.1 111.0 32.1 20.0 

D54B 3.0 10.5 20.7 32.3 50.0 90.8 171.0 38.8 25.9 

D55 2.0 10.1 19.5 27.7 39.6 68.0 160.0 32.1 19.1 

D56A 0.1 12.5 29.8 49.0 61.6 92.4 154.0 48.7 24.8 

D56B 2.2 10.8 28.3 52.5 66.0 94.2 172.5 50.8 27.0 

D57 1.0 13.7 41.3 55.0 68.0 101.8 152.0 54.9 25.5 

D58A 2.9 12.8 30.2 51.0 64.0 98.5 178.0 51.2 27.3 

D58B 0.6 9.1 20.6 37.2 64.0 95.0 173.0 43.8 29.7 

D59 3.3 12.9 25.0 30.0 41.3 60.9 70.0 33.2 14.6 

E60 0.0 6.6 14.0 22.0 35.3 65.6 160.0 26.9 19.4 

E61 0.0 5.6 11.4 17.6 26.7 52.7 161.0 21.9 16.6 

E62 2.6 8.5 14.8 20.4 30.3 65.0 174.0 25.9 19.5 

E63 1.7 10.6 16.1 24.9 42.0 87.8 171.0 33.4 25.3 

E64 3.5 10.7 19.9 30.1 45.0 86.0 174.0 36.2 24.5 

E65 29.0 42.0 56.0 75.0 97.5 137.9 178.0 79.9 30.4 

E66 3.1 8.7 16.0 23.4 36.0 75.0 166.9 29.7 21.9 

E67 0.0 7.6 14.6 22.0 34.5 58.8 129.0 26.9 17.6 

E68 0.5 6.2 13.2 20.7 33.3 57.5 178.0 25.8 19.7 

E69 1.0 7.1 12.9 19.6 28.0 49.8 172.0 23.2 16.5 

F70 0.0 8.0 14.5 23.9 36.8 72.2 139.3 29.6 21.7 

F71A 1.5 10.8 21.4 30.9 48.4 95.9 174.9 38.9 26.7 

F71B 2.5 13.5 24.1 35.0 55.8 104.9 172.0 44.3 29.0 

F77B 17.0 24.0 36.0 53.0 73.0 112.0 177.0 58.0 27.9 

F79 14.0 26.0 37.0 53.0 72.0 121.1 179.0 59.0 29.5 

G100 4.8 14.2 32.4 52.3 76.9 128.4 162.0 57.2 33.9 

G91 0.4 9.3 21.4 30.8 39.0 63.0 154.0 32.8 20.4 

G92 3.1 13.3 27.0 36.9 54.9 117.6 175.0 46.6 31.5 

G93 0.8 7.9 20.2 39.4 70.0 123.2 177.0 48.9 37.2 

G94 7.0 12.9 27.0 39.3 76.2 131.3 171.0 54.7 37.5 

G95 0.1 11.1 25.4 40.1 67.8 122.4 169.7 51.3 36.1 

G96 5.3 10.8 26.8 41.4 75.0 130.5 174.0 54.8 38.4 

G97 1.1 7.6 26.6 46.8 96.8 154.9 179.0 61.4 45.4 

G98 2.0 17.0 31.5 55.0 78.0 109.4 141.0 57.3 31.0 
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Table A14: Phantom power loads for SFO gates 

Gate Phantom Power Consumption (kW) 

A11A 0.84 

A1B 0.84 

A2 0.48 

A3 0.12 

A4 0.84 

A5 0.84 

A6 0.84 

A8 0.84 

A9 0.84 

D50A 0.48 

D50B 0.48 

D51A 0.48 

D51B 0.48 

D52 0.84 

D53 0.48 

D54A 0.48 

D54B 0.48 

D55 0.84 

D56A 0.84 

D56B 0.6 

D57 0.84 

D58A 0.48 

D58B 0.84 

E60 0.6 

E61 0.6 

E62 0.48 

E63 0.48 

E64 0.84 

E65 0.24 

E66 0.84 

E67 0.96 

E68 0.72 

E69 0.48 

F70 0.36 

F71A 0.48 

F71B 0.48 

G100 0.84 

G91 0.84 

G92 0.96 

G93 0.84 

G94 0.36 

G95 0.84 

G96 0.84 

G97 0.84 

G98 0.84 

Other (Assumed) 0.84 
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Table A15: Largest aircraft category that each gate accommodated 

Gate Category 
A1 Wide Body 

A10 Wide Body 

A11A Narrow Body 

A12 Wide Body 

A1B Narrow Body 

A2 Wide Body 

A3 Wide Body 

A4 Narrow Body 

A5 Jumbo-Wide Body 

A6 Jumbo-Wide Body 

A7 Wide Body 

A8 Wide Body 

A9 Jumbo-Wide Body 

D50A Narrow Body 

D50B Narrow Body 

D51A Narrow Body 

D51B Narrow Body 

D52 Narrow Body 

D53 Narrow Body 

D54A Narrow Body 

D54B Narrow Body 

D55 Narrow Body 

D56A Wide Body 

D56B Narrow Body 

D57 Wide Body 

D58A Narrow Body 

D58B Narrow Body 

D59 Narrow Body 

E60 Narrow Body 

E61 Narrow Body 

E62 Narrow Body 

E63 Narrow Body 

E64 Wide Body 

E65 Narrow Body 

E66 Wide Body 

E67 Narrow Body 

E68 Narrow Body 

E69 Narrow Body 

F70 Narrow Body 

F71A Narrow Body 

F71B Regional Jets 

F77B Regional Jets 

F79 Regional Jets 

G100 Wide Body 

G91 Wide Body 

G92 Wide Body 

G93 Wide Body 

G94 Wide Body 

G95 Wide Body 

G96 Wide Body 

G97 Wide Body 

G98 Wide Body 
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Figure A1: Total criteria air pollutant emissions at each gate in the dataset (kg) (Achatz 

Antonelli et al., 2020a) 
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Figure A2: Dose-response curve constructed for CO using gamma model and 5% extra risk 

(Preziosi et al., 1970) (Achatz Antonelli et al., 2020a) 

 

 
Figure A3: Dose-response curve constructed for NOx using log-probit model and 5% extra risk 

(Sandstrom et al., 1991) (Achatz Antonelli et al., 2020a) 
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Figure A4: Dose-response curve constructed for HC using multistage degree 2 model with 5% 

extra risk (Mauderly et al., 1987) (Achatz Antonelli et al., 2020a) 

 

Table A16: Parameters for CO analysis (Achatz Antonelli et al., 2020a) 

Bodyweight 70kg 

Breathing Volume 16.3 m3 

Nature of Study Sub chronic Animal Study 

Uncertainty Factor (UF) 1000 

Modification Factor (MF) 1 

NOAEL 7 mg/kg-day 

Reference Dose (RfD) 0.007 mg/kg-day 

 

Table A17: Parameters for NOx health risk assessment (Achatz Antonelli et al., 2020a) 

Bodyweight 70kg 

Breathing Volume 16.3 m3 

Nature of Study Sub chronic Human Study 

Uncertainty Factor (UF) 100 

Modification Factor (MF) 1 

LOAEL 1.05 mg/kg-day 

Reference Dose (RfD) 0.0105 mg/kg-day 
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Table A18: Parameters for HC health risk assessment (Achatz Antonelli et al., 2020a) 

Bodyweight 70 kg 

Breathing Volume 16.3 m3 

Cancer Slope Factor (CSF) 0.01994814 

  

Table A19: Worker’s exposure to CO and corresponding hazard indices at terminal A, D, E, F, 

and G (Achatz Antonelli et al., 2020a) 

Terminal Exposure (mg/kg-day) Hazard Index 

A 9.49E-3 1.36 

D 9.93E-3 1.42 

E 9.27E-3 1.32 

F 1.52E-2 2.17 

G 6.63E-3 0.95 

 

Table A20: Worker’s exposure to NOx and corresponding hazard indices at Terminal A, D, E, F, 

and G (Achatz Antonelli et al., 2020a) 

Terminal Exposure  

(mg/kg-day) 

Hazard Index 

A 2.61E-2 2.49 

D 1.15E-2 1.09 

E 1.07E-2 1.02 

F 1.15E-2 1.10 

G 2.17E-2 2.07 
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Table A21: Worker’s exposure to HC and corresponding hazard indices at terminal A, D, E, F, 

and G (Achatz Antonelli et al., 2020a) 

Terminal Exposure 

(mg/kg-day) 

Risk Cases/Million 

A 3.82E-3 3.27E-5 32.7 

D 3.97E-3 3.39E-5 33.9 

E 4.63E-3 3.96E-5 39.6 

F 1.99E-3 1.70E-5 17.0 

G 2.50E-3 2.14E-5 21.4 

 

Table A22: Evolution of hold durations and expected cost for a simulated sample operation that 

uses adaptive scheduling (Part 1 of 2) 

Time 

(minutes) 

Taxi In 

Hold 

APU 

Off 

Hold 

PCA 

Off 

Hold 

Board 

Hold 

Cater 

Hold 

Clean 

Hold 

Luggage 

Hold 

Refuel 

Hold 

Water 

Hold 

Gate 

Hold 

Total 

Cost 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.2 50.6 12238 

1.0 0.0 0.0 2.6 7.6 0.0 0.0 4.7 0.0 8.2 50.6 2125.6 

2.0 0.0 24.3 5.8 4.3 0.0 0.0 4.7 15.5 8.2 50.6 2148.7 

3.0 0.0 18.3 7.0 4.3 0.0 0.0 1.9 15.5 8.2 50.6 2119.0 

4.0 0.0 19.3 4.7 4.3 0.0 0.0 2.8 11.3 8.2 50.6 2070.4 

5.0 0.0 19.3 7.6 8.9 0.0 0.0 2.8 11.3 24.5 50.6 2092.8 

6.0 0.0 19.3 4.6 8.9 0.0 0.0 4.9 14.5 24.5 50.6 2130.5 

7.0 0.0 19.3 4.6 8.9 0.0 0.0 4.9 14.5 29.6 50.6 2127.0 

8.0 0.0 11.8 4.9 5.9 0.0 0.0 2.1 22.2 24.6 50.6 2098.5 

9.0 0.0 11.8 4.9 3.7 0.0 0.0 2.1 22.2 24.6 50.6 2153.6 

10.0 0.0 18.3 3.6 3.7 0.0 0.0 2.1 12.8 15.5 50.6 2103.2 

11.0 0.0 19.6 3.6 2.0 0.0 0.0 2.1 12.8 15.5 50.6 2076.8 

12.0 0.0 19.6 3.7 2.0 0.0 0.0 5.1 18.6 19.8 50.6 2116.2 

13.0 0.0 17.5 3.7 2.0 0.0 0.0 5.1 18.6 28.0 50.6 2131.4 

14.0 0.0 17.5 5.2 5.8 0.0 0.0 3.5 17.1 15.6 50.6 2129.7 

15.0 0.0 17.5 5.2 5.8 0.0 0.0 4.3 17.1 15.6 50.6 2175.7 

16.0 0.0 17.5 5.2 4.9 0.0 0.0 4.3 17.1 18.4 50.6 1933.8 

17.0 0.0 21.4 5.1 4.9 0.0 0.0 4.3 13.0 15.7 50.6 1878.9 

18.0 0.0 24.8 5.1 4.9 0.0 0.0 4.3 13.0 15.7 50.6 1862.8 

19.0 0.0 23.9 5.1 4.9 0.0 0.0 4.3 13.2 15.7 50.6 1949.5 

20.0 0.0 18.5 5.8 4.4 0.0 0.0 4.3 20.6 15.7 50.6 1887.2 

21.0 0.0 18.5 2.5 3.0 0.0 0.0 2.4 20.6 18.7 50.6 1901.5 

22.0 0.0 22.7 2.5 3.0 0.0 0.0 2.3 22.2 18.7 50.6 1918.6 

23.0 0.0 20.7 2.5 3.0 0.0 0.0 2.3 22.2 18.7 50.6 1940.2 

24.0 0.0 26.5 4.4 3.0 0.0 0.0 2.3 23.5 24.0 50.6 1958.8 

25.0 0.0 23.0 5.9 3.0 0.0 0.0 2.3 23.5 19.5 50.6 2028.4 

26.0 0.0 23.0 5.9 8.0 0.0 0.0 4.8 20.5 19.5 50.6 2116.2 

27.0 0.0 21.2 5.9 8.0 0.0 0.0 4.8 19.0 19.5 50.6 1857.2 

28.0 0.0 26.3 5.9 8.0 0.0 0.0 3.0 19.0 27.1 50.6 1888.2 

29.0 0.0 26.3 7.7 6.3 0.0 0.0 3.0 21.3 28.3 50.6 1739.9 

30.0 0.0 26.3 7.2 9.0 0.0 0.0 3.0 21.3 24.9 50.6 1807.4 

31.0 0.0 26.3 5.8 7.5 0.0 0.0 6.1 21.3 27.5 50.6 1796.6 
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Table A23: Evolution of hold durations and expected cost for a simulated sample operation that 

uses adaptive scheduling (Part 2 of 2) 

Time 

(minutes) 

Taxi 

In 

Hold 

APU Off 

Hold 

PCA 

Off 

Hold 

Board 

Hold 

Cater 

Hold 

Clean 

Hold 

Luggage 

Hold 

Refuel 

Hold 

Water 

Hold 

Gate 

Hold 

Total 

Cost 

33.0 0.0 26.4 5.8 9.3 0.0 0.0 6.8 20.4 27.5 50.6 1808.4 

34.0 0.0 24.2 5.8 9.3 0.0 0.0 6.8 20.4 27.5 50.6 1814.7 

35.0 0.0 24.2 5.8 9.3 0.0 0.0 8.6 20.4 27.5 50.6 1873.9 

36.0 0.0 26.2 5.8 9.3 0.0 0.0 10.8 20.4 27.5 50.6 1739.1 

37.0 0.0 26.2 5.8 9.3 0.0 0.0 10.2 20.4 35.4 50.6 1759.1 

38.0 0.0 26.2 5.8 9.3 0.0 0.0 10.2 20.4 35.4 50.6 1806.4 

39.0 0.0 26.2 5.8 9.3 0.0 0.0 10.2 20.4 34.1 50.6 1816.5 

40.0 0.0 24.9 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1891.7 

41.0 0.0 24.9 5.8 9.3 0.0 0.0 10.2 20.4 34.0 50.6 1011.4 

42.0 0.0 24.9 5.8 9.3 0.0 0.0 10.2 20.4 34.5 50.6 1010.9 

43.0 0.0 24.9 5.8 9.3 0.0 0.0 10.2 20.4 34.1 50.6 1009.8 

44.0 0.0 29.6 5.8 9.3 0.0 0.0 10.2 20.4 34.1 50.6 1036.4 

45.0 0.0 31.5 5.8 9.3 0.0 0.0 10.2 20.4 34.1 50.6 1009.1 

46.0 0.0 31.5 5.8 9.3 0.0 0.0 10.2 20.4 35.7 50.6 1023.1 

47.0 0.0 31.5 5.8 9.3 0.0 0.0 10.2 20.4 35.6 50.6 972.3 

48.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 37.1 50.6 1029.5 

49.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1021.6 

50.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1024.9 

51.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1026.1 

52.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1034.9 

53.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1001.7 

54.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 974.9 

55.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1021.2 

56.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1014.7 

57.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1009.9 

58.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 997.0 

59.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 942.3 

60.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 957.7 

61.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 949.5 

62.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 998.9 

63.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1162.7 

64.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1320.2 

65.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1555.5 

66.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 1790.7 

67.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2053.6 

68.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2123.7 

69.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2150.3 

70.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2261.2 

71.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2484.4 

72.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2530.6 

73.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2469.8 

74.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2469.8 

75.0 0.0 30.6 5.8 9.3 0.0 0.0 10.2 20.4 36.5 50.6 2469.8 
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Figure A5: Evolution of expected cost in a sample operation 




