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Abstract This paper presents a systematic analysis of a longitudinal control law for a platoon
of non-identical vehicles using a non-linear model for the vehicle dynamics. The basic idea is to
take full advantage of recent advances in communication and measurement and use these advances
in the longitudinal control of a platoon of vehicles: in particular, we assume that for i = 1,2,. . .
vehicle i knows at all times VI and al (the velocity and acceleration of the lead vehicle) in addition
to the distance between vehicle i and the preceding vehicle, i - 1.
A control law is developed and is tested on a simulation of a platoon of 16 vehicles where the lead
vehicle increases its velocity at a rate of 3 m.secs2; it is shown that the distance between successive
vehicles does not change by more than 0.12 m in spite of variations in the masses of the vehicles
(from the nominal), of communication delay and of noise in measurements.

1 Introduction

Even though much effort has been spent on various control laws for longitudinal control of a
platoon of vehicles [Hauk.l,Hobe.2,Rous.l,Shla.2,Sheik.l], this paper presents a systematic analysis
of the longitudinal control for a platoon of non-identical vehicles using a non-linear model to
represent the vehicle dynamics.

The basic concept of this study is: using exact linearization methods [Isid.l,Sast.l] to linearize
and normalize the input-output behavior of each vehicle in the platoon; taking full advantage of
recent advances in communication and measurement[Wal.l] and using these advances in longitudinal
control of a platoon of vehicles.

To examine the behavior of a platoon of vehicles as a result of a change in the lead vehicle’s
velocity, simulations for platoons consisting of 16 non-identical vehicles were run. For the nominal
case, these simulation results show that through the appropriate choice of coefficients in the control
law for each vehicle in the platoon the deviations in vehicle spacings from their respective steady-
state values do not get magnified from the front to the end of the platoon. An important feature of
the design is that such deviations do not exhibit oscillatory time-behavior and their time-variations
are well within passengers’ comfort limits[Hobe.l].

2 Platoon Configuration

Figure 1 shows the assumed platoon configuration for a platoon of 4 vehicles. The platoon is
assumed to move from left to right in a straight line. The position of the i-th vehicle’s rear bumper
with respect to a fixed reference point 0 on the roadside is denoted by zi. The position of the
lead vehicle’s rear bumper with respect to the same fixed reference point 0 is denoted by xl. Each
vehicle is assigned a slot of length L along the road. As shown, Ai is the deviation of the i-th
vehicle position from its assigned position. The subscript i is used because Ai is measured by the
sensors located in the i-th vehicle.

Given the platoon configuration in Figure 1, elementary geometry shows that: for i = 2,3,.  . .

A;(t)  := xi-l(t) - xi(t) - L (2.1)

The corresponding kinematic equation for the lead vehicle and the first vehicle are as follows:

A,(t) := xl(t) - xl(t)  - L (2.2)
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2; is the abcissa of the i-th vehicle
21 is the abcissa of the lead vehicle
This figure defines A,, As,. . . , and L.

Figure 1: Platoon of 4 vehicles

direction of motion

Measurements We assume that Ai is measured in vehicle i and, together with its first and
second derivatives, is used in the i-th vehicle’s control law. We assume that for each vehicle
in the platoon the lead vehicle’s velocity (v[) and acceleration (al) are known.(This requires
a communication link from lead vehicle to each vehicle of the platoon.)

3 Vehicle Model

Figure 2 shows the vehicle model of the i-th vehicle in the platoon; the block (m;g sin 19)  specifies
the component of the i-th vehicle’s weight parallel to the road surface, where m; denotes the i-th
vehicle’s mass, g denotes the acceleration of gravity, and 9 denotes the angle between the road
surface and a horizontal plane (0 positive corresponds to uphill travel); the block (-(ii +
Vw;,d)2sgn(k;  + Vwind)) specifies the force due to the air resistance, where p denotes the specific
mass of air, A; denotes the cross-sectional area of the i-th vehicle, C’di denotes the i-th vehicle’s
drag coefficient, and I&&d  denotes the velocity of the wind gust; the constant d,; denotes the
mechanical drag of the i-th vehicle; the block (& = -.A + m,:\i-i))  models the i-th vehicle’s
engine dynamics, where ri(?i) denotes the i-th vehicle’s engine time-constant when the i-th vehicle
is traveling with a speed equal to 5i; pi denotes the throttle input to the i-th vehicle’s engine;
F; = mi[;  denotes the force produced by the i-th vehicle’s engine.

The summing node at the bottom of Figure 2 represents Newton’s second law for the i-th
vehicle, namely

Fi - m;g sin 9 - PAiCdi~(i?; + vw;&)2sgn(ii  + Vwind) - d,; = TTZ;zi

Simplified model In this preliminary study we assume that the road surface is horizontal
(0 = 0) and tlrere is no wind @lSt(V&&  = 0). Figure 3 shows the simplified vehicle model of the
i-th vehicle in the platoon : I<di denotes 9., since the vehicles are assumed to travel in the same
direction at all times, sgn(fi)  = 1 for i = 1,2,. . . . Consequently, the dyna,mics  of the simplified
model are described by two nonlinear differential equations, namely,
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e- m;g sin 0 w(k, + &,;,d)2sg+; + Vwind) Vwind

u; + &=-&J+*
engine
input engine dynamics

d,; (mechanical drag)

vehicle dynamics

Figure 2: Vehicle model of the i-th vehicle in the platoon

uigi.J ii=-*+*
input engine dynamics vehicle dynamics

Fi = engine force applied to vehicle i
[i = commanded acceleration of vehicle i

Figure 3: Simplified model of the i-th vehicle in the platoon
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. .mix; = miti - ICdikf - d,i
ii = -L

Ti(Lii) +
Ui

m;Ti(Lii)

(3.2)

(3.3)

4 Exact Linearization of Vehicle Dynamics

In the following section we will use exact linearization methods [Isid.l,sec.4.2,pp.156-159Sast.11
to linearize the input-output behavior of each vehicle in the platoon. A formal derivation of the
following results is included in the appendix at the end of this paper.

Analysis In the following we consider exclusively the simplified model (3.2) and (3.3). From
(3.2) we obtain

(44
Substituting the expression for Ii from (4.1) in (3.3) gives

i;=-1 Icdi .2 &ifi + -xi + - + ui
7;.(ki) mi 7% 1 m;T;(iT;) (4.2)

Differentiating both sides of (3.2) with respect to time and substituting the expression for ii
from (4.2) we get

Icdi 1jj;= -2-33;  _ -
[

I(di .2 &xi

mi 7;.(ki)
ij+Gxi+K +1 Ui

m;T;(*;) (4.3)
I

Linearizing state feedback The expression in (4.3) is of the form

- ifi= b(ki, 2;) + a(ki)ui (4.4)
where

b(&,f;)  := -2it3+; -
t

and
U(i?i) :=

1
miTi( k;)

(4.5)

(4.6)
To linearize the i-th vehicle’s nonlinear dynamics, we create an exogeneous input ci which is

related to the i-th vehicle throttle input, ui, by the following equation

‘11;  = &[ci - b(ii, Z;)] (4.7)

This equation describes a nonlinear state feedback applied to the i-th vehicle’s dynamics (4.4) and
it is illustrated by Figure 4.

Substituting (4.7) into (4.4) g’Ives a system of linear differential equations representing the
dynamics of the i-th vehicle after linearization by state feedback, namely, for i = 1,2,. . .



ci -c 1
qq

A

engine/vehicle dynamics

-$x;  = i;

-gi = 2;

$2;  = b(lij, 2;) + a(i$L;

Figure 4: Block diagram showing the linearizing state feedback for the i-th vehicle in the platoon;
it is based on equations (4.4) to (4.6) and the ‘nearizing state feedback (4.7). The result is the seth
of equations (4.8)-(4.10).

Figure 5: Input/Output point of view of the i-th vehicle’s linearized model.

d .zxi = xid . .Pi = xid . .dtxi = ci

P-8)

(4.9)
(4.10)

These equations are illustrated by Figure 5: note the new input ci.
Remark The nonlinear state feedback law (4.7) has achieved two objectives:

1. It linearized the i-th vehicle dynamics;

2. It resulted in dynamics that are independent of mi, dmi, Kdi, and ri(?i); i.e., the resulting
dynamics of the vehicles are independent of their particular characteristics.
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engine/vehicle dynamics

&; = *j

$Zj = b(kj, Zj) + U(ij)uj

ii 1
5’; fi Ai

Ci Linear Controller

Figure 6: Linearized model of the i-th vehicle with control input c;, i = 1,2,. . .

Implementation Issues To compute the linearizing state feedback (4.7), we need to be able to
compute the values of the functions b(., .) and a(.). From (4.5) and (4.6) we note that computation
of b(., .) and a(.) requires sensors to measure the velocity of the i-th vehicle (ii) and the acceleration
of the i-th vehicle (Zi).  In addition, we need to be able to accurately estimate mass of the i-th vehicle
( m ; )  a n d  i - t h  h’ 1ve K e’s mechanical drag (d,;). The vehicle’s manufacturer will provide the data
regarding engine time constant (the function ri(.)), and the vehicle’s aerodynamic characteristics
(I&j := yk).

5 Platoon Dynamics

In the sequel we will use the linearized vehicle model given in (4.8)-(4.10) for analyzing the
platoon dynamics.

5.1 Proposed control law

Figure 6 shows the linearized model of the i-th vehicle with control input c;. We propose the
following linear control law for longitudinal control of vehicles: for the first linearized vehicle model
the control law is

cl := cplAl(t) + Q&I(~) t calAl t k,l [v(t) - v(O--)I t bal(t)
where v/(0-)  denotes the steady-state value of the lead vehicle’s velocity (~1);
for linearized vehicle models 2,3,.  . . the control law is

(5.1)
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Vl Vl
L

a1 al

I T I T L T al VI
3 A3 2 A2 1 AI 1

Figure 7: Platoon Configuration under the proposed control law for a platoon of 4 vehicles

ci := CPA;(t)  + c,Ai(t) + C,&;(t) + k, [vi(t) - vi(t)] + ‘t.~ [‘lCt>  - ai(t>l (5.2)

where cpl, ~1, ~1, h, &I, cp, 21, =, 21,c c k and k, are design constants. Note that the control law for
the first vehicle differs from the control law for all the other vehicles in the two rightmost terms in
(5.1). This is due to the fact that for the first vehicle q-v1 = Al and al-al = Al which are already
a part of the first vehicle’s control law; whereas, for vehicle i (i = 2,3,. . .) vl - v; = Al + * * . + Ai
and al - a; = Al + . - - + A;.

Comparison of our control law (5.2) for the i-th vehicle with the control laws in the literature
shows that using the lead vehicle’s acceleration (al) in the i-th vehicle’s control law is the new
addition to the i-th vehicle’s control laws considered in the literature. Shladover had used lead
vehicle’s velocity (vl)[Shla.l]  and Ai [Shla.2] in the i-th vehicle’s control law.

5.2 Implementation Issues

Figure 7 shows the platoon configuration under the proposed control law for a platoon of 4
vehicles: the lead vehicle’s velocity (~1) and acceleration (al) are transmitted to all the vehicles
within the platoon. In addition, sensors on each vehicle, say i, measure the deviation of the i-th
vehicle from its assigned position, namely A;. Computation of the first and the second order time
derivatives of the i-th vehicle’s deviation from its assigned position, namely Ai and Ai, can be done
in two different ways:

1. Communication of the (i - 1)-st vehicle’s velocity (gi-1) and acceleration (Zi-1) to the i-
th vehicle. Obtaining the i-th vehicle’s velocity (ii) and acceleration (Z;) from the sensors
on the i-th vehicle, then the computer in this vehicle estimates Ai (:= ii-1 - ki) and Ai
(I= ZZii-1 - iti) for use in the i-th vehicle’s control law.

2. Direct estimation of Ai and A; using the measured values for Ai.
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The communication of the position,velocity, and acceleration information is unidirectional: from
the lead vehicle to each vehicle in the platoon. Communication speed and processing of the mea-
sured data should be fast compared to the time constants of the vehicle dynamics. Preliminary
studies in [Wal.l]  suggest that such a requirement is feasible with the present communication and
data processing technology.

5.3 First vehicle dynamics

Initial Conditions Throughout the study of the platoon dynamics we assume the following: for
all t < 0, the platoon is in steady-state; for t < 0, z?;(t)  = k,(t) = ~0, A;(t) = h;(t) = A;(t) = 0.
Let WI denote the increment of velocity of the lead vehicle from its steady-state value (~0). Thus
w,(t) := w,(t) - 00.

The linear control law (5.1) applied to the linearized model results in the differential equation
(5.4) relating Or to WI.

Differentiating both sides of (2.2) three times with respect to the time variable and using the
expression for Zr from Figure 5 we obtain

Ijl, (t) =:I (t) - q(t)

Substituting (5.1) in (5.3) we obtain

(5.3)

ijl, (t) =iEl (t) - [c,lA,(t) + c,1&(t) + c,,&<q + kl1w(~) + k+)l (5.4)

Taking Laplace transforms we obtain

{s3 + c,1s2 + c,ls + cpl >
,.
A&>

= -C s2 - k,lS - k,l @l(S)
> (5.5)

where we use the symbol ““” to distinguish Laplace transforms from the corresponding time-domain
functions.

Thus:

.
hAp,(S) =

s2 - k,Is - k,l
s3 + CalS2 + GJ1s+cp1

(5.6)

Equ. (5.6) is the first basic design equation. From (5.6), we note that we can independently
select all the zeros and all the poles of ~%a,~, by choosing the design parameters c,r ,c,l,cPl,k,~,  and
kVl. It is crucial to note that the selection of zeros and poles are independent of one another.

5.4 Second vehicle dynamics

The linear control law (5.2) applied to the linearized model results in the differential equation
(5.8) relating A2 to Ar and WI.

From Figure 5 we obtain

a2 (t) = Cl(i) - C2(4 (5.7)

Substituting in (5.7) the control laws for the first and the second vehicles, namely (5.1) and
(5.2),  we obtain
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. . .
A 2  (t) = (cprAr(t)  + c,A(t) + %I&(~) + hAwr(~) + kll~@>>

- (c,Az(t)+  d2(t)+ ~&2(t))

- (kJ[~&)  - vz(t)l + b[&> - az(Ol> (5.3)

Taking Laplace transforms we obtain

{s3+ (Ca + h)s2 +(cv + k& + c,}A2(4

=
{
(c,~ - k,)s2 + (C,I - k,)s t cpl A,(s)>

A

t {Jw t kJ1) Cl(S) WV

Thus:

L,*,(s) =
(Cal - kz)~2t(cd  - k)stcp1

s3t(c,tkz)s2t(c,tkJ)stcp
(5.10)

From (5.9), we note that in addition to the transfer function from Ar to A2 there is a transfer
function from WI to A,; it differs from fia,a, by its numerator which is kars f ~&,r.

5.5 i-th vehicle dynamics (i = 3,4,. . .)

The linear control law (5.2) applied to the linearized model results in the differential equation (5.12)
relating Ai to A;-,.

From Figure 5 we obtain

. . .
A; (t) = ~-r(t) - c;(t) (5.11)

Substituting the expressions for the proposed linear control laws for the (i - 1)-st and the i-th
vehicles from (5.2) in (5.11) we obtain

& (t) = CPA;-l(t) t c,i\i-l(t) + G&;-I(~)
+ kv[vl(t)  - %1(t)]  t k&l(q - w(ql
- CPA;(t)  - &A;(t) - c,&(t)

- k,[v1(t) - v;(t)] - ~&r(~) - G(t)]

Taking Laplace transforms we obtain

{s" t (Ca t kJs2 t (G + kJs t cp} A;(s)
= 1 c,s2 + c,s f cp &-1(s)1

From (5.13),  we obtain for i = 3,4,.  . .

O(s) := fhi,*,&) = Cd2 t c,s t cp
s3 t (Ca t k)s2 t (cv t kJs t cp

(5.12)

(5.13)

(5.14)
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A1 c 4(s) A2
c !Hs)

A3
c j(s) --c-*-

Figure 8: Block diagram for a platoon of linearized vehicle models

Let
x(s) := s3 + (ca + k,)s2 + (cv + kJs + cp (5.15)

Equ. (5.14) is the second basic design equation. From (5.14),  we note that we can select
independently the poles of o(s) (by hc oosing the appropriate design parameters (ca + ka), (cv + k,),
and cp) and the zeros of 4(s) (by hc oosing the appropriate c, and cV).

Furthermore, let us set c,r = c, + Ic,, c,r = c, + kV, and cPr = c,,; then Equ.(5.6) shows that^ .
ha,,,(s) has the same poles as o(s), and Equ.iFi.10) shows that h&Al(s) has the same poles as
3(s); in other words, with these choices a(s), hAlwl(s), ^and hA2Al(s) have x(s) as denominator
polynomial.

5.6 Design considerations

We use the block diagram in Figure 8 for analyzing the platoon. Some consideration of Figure S
suggests the main design objectives for the longitudinal control law: from (5.5), (5.9),  and (5.13),
we have for i = 2,3,. . .

(5.16)

1. Since the perturbations in Ai due to changes (WI)  in the lead vehicle’s velocity from its
steady-state value should not get magnified from one vehicle to the next as one goes down
the platoon, we require that ]j(jw)] < 1 for all w > 0 and w I-+ ]j(jw)] to be a strictly
decreasing function of w for w > 0.

2. Since the inverse Laplace transform of [i( ’is the convolution of the impulse response of
4(s) with itself (i.e.,(g * g)(t)), to avoid oscillatory behavior down the platoon it is desirable
to have g(t) > 0 for all t.

The design parameters have been chosen to satisfy these two requirements.
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Figure 9: Lead vehicle’s velocity profile (vl)

6 Simulation Results

To examine the behavior of a platoon of non-identical vehicles under the above control lams,
simulations for platoons consisting of 3 different types of vehicles were run using the System Build
software package within MATRIXx.  We ran simulations for platoons of 4 and 16 vehicles. In all the
simulations conducted, all the vehicles were assumed to be initially traveling at the steady-state
velocity of ve = 17.9 msec-’ (i.e., 40 m.p.h.). Beginning at time t = 0 set, the lead vehicle’s
velocity was increased from its steady-state value of 17.9 msec-’ until it reached its final value of
29.9 msec-’ (i.e., 67 m.p.h.).

Figure 9 shows the lead vehicle’s velocity as a function of time: the curve v/(t) corresponds to
a maximum jerk of 2.0 m.secV3 and peak acceleration of 3.0 m.sec-” (i.e., roughly 0.39).

Simulations were run on a platoon of vehicles assuming different types of physical uncertainties

l Nominal system. Having exact knowledge of all the relevant parameters for applying ex-
act linearization method (4.5)-(4.7) for all of the vehicles within the platoon; assuming no
communication delays in transmitting the lead vehicle’s velocity (~1) and acceleration (al);
assuming no communication delays in using A; in the i-th vehicle’s control law (5.1)-(5.2) for
i = 1,2,. . ,; assuming no noise in the measurement of A; for i = 1,2,. . . .

l Perturbed system without push button. Allowing perturbations in the i-th vehicle’s mass (772;)
due to passengers’ mass and luggage. The value of the mass parameter used for applying exact
linearization method (4.5)-(4.7)  is the vehicle’s curb mass. All the assumptions regarding
communication delays and measurement noise are identical to the nominal system. Note that
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for vehicles with larger perturbations in vehicle’s mass, one could use a push button device
by which the driver punches in the number of vehicle occupants; but this is not assumed here.

l Perturbed system without push button, including communication delays. Allowing pertur-
bations in the i-th vehicle’s mass (mi) due to passengers’ mass and luggage. We assume
there are no push button devices. The value of the mass parameter used for applying exact
linearization method (4.5)-(4.7)  is the vehicle’s curb mass. We assume a constant communi-
cation delay in transmitting the lead vehicle’s velocity (VI) and acceleration (al) between any
two successive vehicles following the lead vehicle; a constant communication delay in using
A;, hi, and Ai in the i-th vehicle’s control law (5.1)-(5.2) for i = 1,2,. . .; and no noise in the
measurement of A; for i = 1,2, . . . .

l Perturbed system without push button, including communication delays and noisy measure-
ment. Allowing perturbations in the i-th vehicle’s mass (m;) due to passengers’ mass and
luggage. We assume there are no push button devices. The value of the mass parameter used
for applying exact linearization method (4.5)-(4.7) is the vehicle’s curb mass. We assume a
constant communication delay in transmitting the lead vehicle’s velocity (vl) and acceleration
(al) between any two successive vehicles following the lead vehicle; a constant communication
delay in using Ai, Ai, and 6; in the i-th vehicle’s control law (5.1)-(5.2) for i = 1,2,. . .; and
additive Gaussian noise in the measurement of Ai for i = 1,2,. . . .

The following types of vehicles with their relevant parameters were used in the simulations

l Daihatsu Charade CLS- curb mass= 2015 Ibs. (i.e., 916 kg); cross-sectional area (A)= 1.9
m2; drag coefficient (Cd)= 0.35 ( i.e., Kd = 0.44 I;g.m-l); engine time constant (r)= 0.2 sec.

l Buick Regal Custom- curb mass= 3220 lbs. ( i.e., 1464 kg); cross-sectional area (A)= 2.2 m2;
drag Co effic ient (Cd)= 0.35 ( i.e., Iid = 0.49 /cg.m-l); engine time constant (r)= 0.25 sec.

*BMW 75OiL- curb mass= 4235 lbs. (i.e., 1925 kg); cross-sectional area (A)= 2.25 m2; drag
Coefficient (cd)= 0.35  ( i.e., Kd = 0.51 kg.m-l);  engine time constant (r)= 0.2 sec.

The order in which the above vehicles followed the lead vehicle was as follows: Daihatsu Charade
CLS followed by Buick Regal Custom followed by BMW 750iL followed by Daihatsu Charade CLS
and so on.

The number of passengers in each vehicle and their respective weights were as follows:

l Daihatsu Charade CLS- 3 passengers each weighing 200 Zbs.

l Buick Regal Custom- 2 passengers each weighing 140 Zbs.

l BMW 75OiL- 4 passengers with the following weights (in Ibs.): 100,100,200,130.

The following values were chosen for the relevant parameters in the simulation:
C,l = 15,&r = 74, cpl = 120, kal = -3.03, kvl = -0.05
c, = 5, c, = 49, cp = 120, k, = 10, k, = 25
Using the above values for the parameters, we obtain

,.ha,,l(s) = (s + 3-ONs •t o*w
(s t 4>(s t 5)(s t  6 )
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Figure 10: A,, A,, As, As, As, A 13, and Ars vs. t: nominal system

Ll,w,(s> =
s(1.97s3 -I- 18.65~~ + 43.75s - 1.25)

[(s + 4)(s t 5)(s t 6)12

5(s t 4.9y
‘(‘) = (s t 4)(s t 5)(s t  6)

6.1 Nominal system

Figure 10 shows the deviations of the first, second, third, fifth, ninth, thirteenth, and fifteenth
vehicles from their pre-assigned positions due to the lead vehicle’s velocity profile shown in Figure 9.

Figure 11 shows the lead, first, second, third, fifth, ninth, thirteenth, and fifteenth vehicle’s
acceleration profiles due to the lead vehicle’s velocity profile shown in Figure 9 for the nominal
system.

Simulation results show that the deviations of the vehicles from their pre-assigned positions do
not exceed 0.08 m (i.e., less than 4 inches) and decrease to values which are less than 1 cm. The
acceleration profiles of the vehicles in the platoon are within the range of acceptable comfort limits
and are almost identical to the lead vehicle’s acceleration (al).

6.2 Perturbed system without push button

Figure 12 shows the deviations of the first, second, third, fifth, ninth, thirteenth, and fifteenth
vehicles from their pre-assigned positions due to the lead vehicle’s velocity profile shown in Figure 9
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Figure 11: u~,Zr,Z~,?s,  ?.5,Zs,Zr3,  and 215 vs. t: nominal system

for the perturbed system without a push button device.
Note that the perturbations in the mass parameter range from 8% to 23%.
Figure 13 shows the lead, first, second, third, fifth, ninth, thirteenth, and fifteenth vehicle’s

acceleration profiles due to the lead vehicle’s velocity profile shown in Figure 9 for the perturbed
system without a push button device.

Simulation results show that the deviations of the vehicles from their pre-assigned positions do
not exceed 0.11 m (i.e., 4 inches) and decrease to values which are less than 1 cm. Such deviations
do not exhibit any oscillatory behavior. The acceleration profiles of the vehicles in the platoon
are within the range of acceptable comfort limits and are almost identical to the lead vehicle’s
acceleration (al).

6.3 Perturbed system without push button, including communication delays

For the perturbed system without a push button device, including communication delays we
chose the delay in communicating the lead vehicle’s velocity (~1) and acceleration (~1) to the first
vehicle in the platoon to be 20 msec; we chose the delay in communicating the lead vehicle’s velocity
(q) and acceleration (al) between any two successive vehicles in the platoon to be G msec;we  chose
the communication delay in using A, A, and A to be 6 msec.

Figure 14 shows the deviations of the first, second, third, fifth, ninth, thirteenth,  and fifteenth
vehicles from their pre-assigned positions due to the lead vehicle’s velocity profile shown in Figure 9
for the perturbed system without a push button device, including communication delays.

Note that the perturbations in the mass parameter range from 8% to 23%.
Figure 15 shows the lead, first, second, third, fifth, ninth, thirteenth, and fifteenth vehicle’s
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Figure 12: A,, 02,  As, A,, A,, A 13, and AIs vs. t: perturbed system, not using push button
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Figure 13: al,~l,~,,~~,~~,~g,~~3, and 21, vs. t: perturbed system, not using push button
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Figure 14: A,, AZ, As, As, A,, A 13,  and AIs vs. t: perturbed system with communication delay in
transmitting lead vehicle’s velocity (IQ), acceleration (al), and successive vehicle deviations (A, &
and A); not using push button
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Figure 15: al, 21, $2, Zs, Zs, &,, &a, and &, vs. t: perturbed system with communication delay in
transmitting lead vehicle’s velocity (vr), acceleration (al), and successive vehicle deviations (A, A,
and A); not using push button

acceleration profiles due to the lead vehicle’s velocity profile shown in Figure 9 for the perturbed
system without a push button device, including communication delays.

Simulation results show that the deviations of the vehicles from their pre-assigned positions do
not exceed 0.11 m (i.e., 4 inches) and decrease to values which are less than 1 cm, but are noticeably
worse than in the case without communication delays. The acceleration profiles of the vehicles in
the platoon are within the range of acceptable comfort limits and are almost identical to the lead
vehicle’s acceleration (al).

6.4 Perturbed system without push button, including communication delays
and measurement noise

For the perturbed system without a push button device, including communication delays and
measurement noise we chose the delay in communicating the lead vehicle’s velocity (VI) and acccler-
ation (a[) to the first vehicle in the platoon to be 20 msec; we chose the delay in communicating the
lead vehicle’s velocity (WI) and acceleration (al) between any two successive vehicles in the pla.toon
to be 6 mseqwe chose the communication delay in using A, A, and A to be 6 msec; The va.lue of
A; used in the i-th vehicle’s control law (5.1)- (5.2) was the sum of the actual measured value of
A; delayed by 6 msec and some Gaussian noise with zero mean and standard deviation (a) of 0.05
m.

Figure 16 shows the deviations of the first, second, third, fifth, ninth, thirteenth, and fifteenth
vehicles from their pre-assigned positions due to the lead vehicle’s velocity profile shown in Fig-
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Figure 16: A,, AZ, As,As,As,  Ars, and 01s vs. t: perturbed system with noisy measurement
of A and communication delay in transmitting lead vehicle’s velocity (q), acceleration (al), and
successive vehicle deviations (A, A, and A); not using push button

ure 9 for the perturbed system without a push button device, including communication delays and
measurement noise.

Note that the perturbations in the mass parameter range from 8% to 23%.
Figure 17 shows the lead, first, second, third, fifth, ninth, thirteenth, and fifteenth vehicle’s

acceleration profiles due to the lead vehicle’s velocity profile shown in Figure 9 for the perturbed
system without a push button device, including communication delays and measurement noise.

Simulation results show that the deviations of the vehicles from their pre-assigned positions do
not exceed 0.11 m (i.e., 4 inches) and decrease to values which are less than 1 cm. The acceleration
profiles of the vehicles in the platoon are within the range of acceptable comfort limits and are
almost identical to the lead vehicle’s acceleration (a[). Note that the non-smooth variations in A
and 2 are a result of injecting uncorrelated samples of noise at intervals of 3 msec whereas the
linear controller’s time constant is on the order of i sec; thus, the system does not have enough
time to react smoothly to such fast varying inputs.

7 Conclusion

We have shown that for the nominal case through the appropriate choice of design parameters,
deviations in the successive vehicle spacings do not get magnified from the front to the back of a
pla.toon of non-identical vehicles as a result of lead vehicle’s acceleration from its initial steady-
state velocity(vn) to its final steady-state velocity; however, such deviations are noticeably worse
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successive vehicle deviations (A, A, and A); not using push button
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with delays in communication. Furthermore, for the nominal case, the deviations in the successive
vehicle spacings do not exhibit any oscillatory time-behavior.

Simulation results show that the exact linearization method used performs well in the presence
of perturbations in the vehicle’s mass (from 8% to 23%), including communication delays and
measurement noise; the magnitude of the successive vehicle spacings is well within 5 inches for a
platoon of 16 vehicles and the acceleration profiles of the vehicles in the platoon are within the
range of acceptable comfort limits.

8 Appendix

Notation In the sequel we will adopt the following notations:
CiYi := (Xj,iTi,[i)T  for i = 1,2,. . ., where vT denotes the transpose of the vector v.
Let f : R” --f R” and h : R” -+ R be infinitely differentiable functions. We will denote the Lie
derivative of h(.) along the vector field specified by f(.) by Lfh(.)  where:

Lfh : R” --f  R

We will use L$h(.) (k = 2,3,. . .) to denote the following function:

L;h : R” --f R

dLk-’ h

Analysis In the following we consider exclusively the simplified model (3.2) and (3.3). Noting
the summing node and the engine dynamics block in figure 3, we write the engine/vehicle dynamics
of the-i-th vehicle as follows:

2; = f(Liq + g(qu; w
where, from (3.2) and (3.3)

To apply the exact linearization method, we choose as output the variable x;; that is, the
output variable x; is given in terms of the state zZ~ := (xi,~?i,[i)~  by the function h(.); following
the tradition, we label this chosen output 3;

Yi I= h(Si) @4

where
h(Zi) := h(xiy  f;, &) = Xi (13.5)

Successively differentiating both sides of (8.4) with respect to the time variable and using (8.l),
(8.2), (8.3),  and (8.5) we obtain
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where

ij; = L;h(Z;)

ji;= L3fh(Zi)  + LgLyh(Si)ui

=

L;h(Zi)  =
dL2fh
Y&-(zi).f(zi)

- 2 Kdi  .= K”i(-
t

VW

and

LgL;h(?i)  =
dL2fh
~(~i)!I(~i)

1
= 7TliTi(ii)

(8.10)

Let 9i denote the following transformation of coordinates for the i-th vehicle’s state Zi :=
(2iv ?i, Ei)T:

‘I!‘; : R3 + R3

where

(1; := xi (8.11)

&i := 2?; (8.12)

t3; := -!I$;+& _ $ (8.13)
1 t

By inspection X&i  is a bijection (i.e., one-to-one and onto) from R3 onto R3. Let DQi denote the
Jacobian of the transformation !l!‘;  given by (S.ll), (8.12)
1 for all Zi in R3.

, and (8.13),  then note that det[DKQ’;(Zi)]  E

Linearizing state feedback Using the coordinates &i, &5,  and J3i, we rewrite the equations
(8.6),  (8.7), and (8.8) of the simplified model as follows:

iii = t2i (8.14)
i2i = bi (8.15)

i3i = Ytli7 E2i7 t3i) + u(tli, <2iy  (3i)Ui (8.16)

where

and

(8.17)

u(tli,  ‘t2i, ‘63i)  :=
1

7w(lzi)
(8.18)
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engine/vehicle dynamics
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i2i = t3i

i3i  = b(tli7  E2iv I3i)  + a([liy  [2i,  (3i)Ui

tli
---c

Xi

Figure 18: Block diagram showing the linearizing state feedback for the i-th vehicle in the platoon;
it is based on equations (8.14) to (8.18) and the linearizing state feedback (8.19). The result is the
set of equations (8.20)-(8.22).

Equations (8.14),  (8.15), and (8.16) describe the i-th vehicle’s dynamics. To linearize these
nonlinear dynamics, we create an exogeneous input ci which is related to the i-th vehicle throttle
input, u;, by the following equation

-
1

ui = u(tli,t2i,t3i)
ki - mi,  t2i,  6341 (8.19)

This equation describes a nonlinear state feedback applied to the system (8.14)-(8.16)  and it is
illustrated by Figure 18.

Substituting (8.19) into (8.16) g’Ives a system of linear differential equations representing the
dynamics of the i-th vehicle after linearization by state feedback, namely,

iii = [2i (8.20)
i2i  = 6; (8.21)
43;  = c; (8.22)

These equations are illustrated by Figure 19: note the new input c;.
Remark The nonlinear state feedback law (8.19) has achieved two objectives:

1. It linearized the i-th vehicle dynamics.

2. It resulted in dynamics that are independent of m;, d,;, Kdi, and r;(i;);  i.e., the resulting
dynamics of the vehicles are independent of their particular characteristics.
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Figure 19: Input/Output point of view of the i-th vehicle’s linearized model: here we note that
tri = xi a n d  (2i = gi.
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