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ABSTRACT OF THE DISSERTATION

High Order Numerical Methods for Hyperbolic Balance Laws: Well-Balanced
Discontinuous Galerkin Methods and Adjoint-Based Inverse Algorithms

by

Jolene A. Britton

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2020

Dr. Yulong Xing, Chairperson

Hyperbolic balance laws are a special class of partial differential equations that

represent various physical phenomena. Numerous scientific and engineering problems can be

modeled using balance laws. This thesis contains three parts dedicated to the advancement

of numerical methods for hyperbolic balance laws.

In the first and second parts, we construct high-order accurate well-balanced dis-

continuous Galerkin methods for two different systems of hyperbolic balance laws. The

first part is devoted to the Ripa model and the second to the arterial blood flow model.

The schemes were developed to preserve zero velocity and non-zero velocity steady states.

The methods are an extension of the schemes used for the shallow water equations. Special

attention is paid to the projection of the initial conditions into piecewise polynomial space,

the approximation of the source term, and the construction of the numerical fluxes. High

order and well-balanced methods have been previously developed for zero velocity steady

states, however little work has been done on the more general non-zero velocity steady

states. Numerical examples are given to demonstrate the well-balanced property, accuracy,
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non-oscillatory behavior at discontinuities, and ability to resolve small perturbations to

steady states. This approach can be generalized to other balance laws.

In the third part, we develop an adjoint approach for recovering the topographical

function included in the source term of one dimensional hyperbolic balance laws. We focus

on a specific system, namely the shallow water equations, in an effort to recover the riverbed

topography. The novelty of this work is the ability to robustly recover the bottom topog-

raphy using only noisy boundary data from one measurement event and the inclusion of

two regularization terms in the iterative update scheme. The adjoint scheme is determined

from a linearization of the forward system and is used to compute the gradient of a cost

function. The bottom topography function is recovered through an iterative process given

by a three-operator splitting method which allows the feasibility to include two regulariza-

tion terms. Numerous numerical tests demonstrate the robustness of the method regardless

of the choice of initial guess and in the presence of discontinuities in the solution of the

forward problem.
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Chapter 1

Introduction

1.1 Hyperbolic Balance Laws

Hyperbolic conservation laws are a class of time-dependent partial differential

equations (PDEs) that have a simple structure and are used to model various physical

phenomena. A one-dimensional scalar conservation law can be expressed by the following

notation,

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0. (1.1)

The variable u is the state variable or conserved variable. It represents a conserved quantity,

common examples include mass, momentum, and energy. A state variable is conserved if

the total quantity in a fixed spatial domain remains constant over time. In one dimension,

the total quantity of u in the interval [x0, xL] at time t is represented by the integral∫ xL
x0

u(x, t) dx. The quantity of u can neither be created nor destroyed in an isolated

system, the only manner in which the quantity of u can vary is due to flow across the
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spatial boundaries x0 and xL. This is represented by the flux term f(u), thus the rate of

change in the total quantity of u with respect to time is

d

dt

∫ xL

x0

u(x, t) dx = f(u(x0, t))− f(u(xL, t)). (1.2)

Integrating in time from t1 to t2 and rearranging terms results in the equivalent formulation

∫ xL

x0

[u(x, t2)− u(x, t1)] dx =

∫ t2

t1

[f(u(x0, t))− f(u(xL, t))] dt. (1.3)

Under the assumption that u(x, t) is differentiable in both space and time, (1.3) is equivalent

to ∫ t2

t1

∫ xL

x0

[
∂

∂t
u(x, t) +

∂

∂x
f(u(x, t))

]
dxdt = 0. (1.4)

Lastly, the integrand itself must be zero since this integral equation holds for all values of

x0, xL and t1, t2, thus the conservation law (1.1) is satisfied.

More generally, one can express a system of m conservation laws in arbitrary

dimensions as follows,

∂tU +∇ · F (U) = 0, (1.5)

where U = [U1,U2, ...,Um]T is a vector and F is a vector-valued function. We will only

examine one-dimensional systems throughout this thesis, therefore we will only use one-

dimensional notation from this point on.

Conservation laws are representative of physical properties that do not change over

time in isolated systems. However, if the system is not isolated and sources or sinks are

present, the system (1.1) is no longer valid because the right hand side becomes non-zero.

A system with a non-zero right hand side representing a source or a sink in the system is

referred to as a conservation law with a source term, or a balance law. The formulation for
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a system of m balance laws takes the form

∂tU + F (U)x = S(U , x). (1.6)

A source term may arise as a result of a friction component, a change in topography,

chemical reactions, atomic excitations, etc.

The flux terms in the formulations (1.1) and (1.6) are convective. It is also possible

for the flux of a conservation or balance law to be diffusive [93]. However, for problems

modeling compressible flows, one can often ignore diffusion. Conservation and balance laws

with purely convective fluxes are known as hyperbolic whereas a conservation law written

as an advection-diffusion equation is parabolic [93]. The hyperbolicity of (1.6) can be more

clearly realized by rewriting the system in the quasi-linear form

∂tU + J (U)∂xU = S(U). (1.7)

In one dimension, J (U) = ∂F
∂U is the m×m Jacobian matrix of the flux function. The system

is called hyperbolic if J has all real-valued eigenvalues and the matrix is diagonalizable,

implying m linearly independent eigenvectors. This property allows one to decompose the

Jacobian

J = RΛR−1, (1.8)

where Λ = diag (λ1, λ2, ..., λm) is a matrix with the eigenvalues along the diagonal in in-

creasing order and R = [r1|r2|...|rm] is a matrix of the corresponding right eigenvectors.

Furthermore, when the eigenvalues are all distinct, the system is called strictly hyperbolic.

Solutions of hyperbolic PDEs have a wave-like behavior. A disturbance in the

solution propagates with finite speed along characteristics, as opposed to a disturbance im-

pacting the solution at every point instantaneously. This is a property unique to hyperbolic
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PDEs and does not occur with elliptic and parabolic PDEs. Another distinctive property of

hyperbolic PDEs is the emergence of discontinuities in the solution even with smooth initial

conditions. These unique properties exhibited by hyperbolic PDEs have led to numerous

numerical challenges. Such challenges have catalyzed the development of specialized nu-

merical schemes specifically designed for hyperbolic PDEs. These challenges and numerical

schemes will be further discussed in Section 1.2.

Balance laws are important to study for many reasons. LeVeque [93] suggests three

reasons. First, there are unique difficulties, such as shock formations, for conservation and

balance laws, that require careful attention when designing numerical methods. Second, the

theory and mathematical ‘structure’ is well understood. Since few exact solutions are known

analytically, the theoretical knowledge can be used to when designing numerical schemes to

help address the numerical difficulties. Lastly, many science and engineering problems can

be modeled using balance and conservation laws. Some common examples include the Euler

equations and shock tube problem of gas dynamics, traffic flow, astrophysical modeling, the

Buckley-Leveret equation for modeling saturation of water in rocks and sand, flow of glacier,

and separation of chemical species by chromatography. We will more thoroughly study two

groups of hyperbolic balance law models in this thesis: the shallow water equations (and

related systems) and the arterial blood flow model.

1.1.1 The Shallow Water Equations

The one-dimensional shallow water equations (SWEs) were originally derived in

1871 by Adhémar Jean Claude Barré de Saint-Venant [3], and thus often referred to as the
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Figure 1.1: Visualization of the water height (h), velocity (u), and bottom topography (b).

Saint-Venant equations. The SWEs in one dimension take the form
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + 1
2gh

2) = −gh∂xb,

(1.9)

where h(x, t) ≥ 0 represents the height of the water, u(x, t) ∈ R describes the velocity, b(x)

represents the bottom topography, and g = 9.812 is the gravitational constant. The term

hu represents water discharge. Figure 1.1 is a representation of the system’s state variables.

The source term of (1.9), used in this thesis, is due only to the bottom topography function,

however it may also include a friction term.

The corresponding state variables, flux terms, and source term are

U =

 h
hu

 , F (U) =

 hu

hu2 + 1
2gh

2

 , S(U , b) =

 0

−gh∂xb

 . (1.10)

Thus, the Jacobian matrix can be determined

J (U) =
∂F

∂U
=

 0 1

gh− u2 2u

 , (1.11)

which has eigenvalues λ1 = u −
√
gh and λ2 = u +

√
gh. Since λ1 and λ2 are real-valued,

we see that (1.9) is hyperbolic
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There are at least two schools of thought in regards to motivating the deriva-

tion of the SWEs. Adhémar Jean Claude Barré de Saint-Venant [3] first derived the one-

dimensional system by considering Newton’s first and second laws with mass and momentum

conservation. A more common method, recently, involves deriving the system by depth-

averaging the Navier-Stokes equations along with the assumption that the horizontal length

scale is far greater than the vertical.

The SWEs are used in atmospheric modeling and have been exceptionally bene-

ficial to the tsunami modeling community [6, 5]. Hydro-dynamical issues are well suited

for the SWEs, such as simulating storm surges [45], river flooding and dam break problems

[112]. Furthermore the SWEs can be used to model avalanches and landslides [67]. This

model will be the focus of Chapter 4.

There are numerous extensions of the SWEs. One of them is the shallow water

equations with temperature fluctuations. This system was introduced by Pedro Ripa in

1993 [43, 128, 129] and is often referred to as the Ripa system. The system was introduced

for the purpose of modeling ocean currents. The introduction of temperature is advanta-

geous because the movement and behavior of ocean currents are impacted by forces such

as temperature acting upon the water.

The one-dimensional Ripa equations take the form

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + 1
2gh

2θ) = −ghθ∂xb,

∂t(hθ) + ∂x(hθu) = 0,

(1.12)

where θ(x, t) > 0 is a potential temperature field and gh2θ/2 is the pressure depending
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on the water temperature. The potential temperature field θ is defined to be the reduced

gravity g∆Θ/Θref [32], where ∆Θ is set to be the difference in potential temperature from

a reference value Θref. Notice that, when the potential temperature field θ = 1 in the Ripa

model (1.12), the SWEs (2.2) are recovered. This model will be further explored in Chapter

2.

Other common systems from the shallow water family are the two-layer shallow

water systems and the shallow water equations with varying channel widths. Additionally,

the model can be modified to include a time-dependent bottom topography function. Many

other extensions and modifications to the original SWEs exist that serve varying purposes.

1.1.2 Blood Flow in Arteries Model

Blood flow models have been extensively used to mathematically understand and

numerically simulate the human cardiovascular system. In 1775, Euler [48] derived a one-

dimensional model of the human arterial system from the conservation of the mass and

momentum of the flow. Without the understanding of the wave-like nature of the flow, he

noticed that the problem was too difficult to solve. Young [162] was the first to identify

blood flow with wave-like behavior by finding analogous behavior between arterial blood

flow wave speed and Newton’s sound speed in air theories. Blood movement in arteries

have flow with periodic variations known as pulsatile flow, which has been understood and

explained by Lighthill [98] and Pedley [114]. Nowadays, three-dimensional mathematical

models for the blood flow in arteries already exist, but the simpler one-dimensional models

with averaged quantities are still of great importance [54, 136, 137]. The low computational

cost of a one-dimensional model as compared to higher dimensional models allows for one
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to study the wave effects within isolated segments of an artery or within the entire vascular

system (i.e in the aorta and systemic arteries) [111, 119, 118, 135]. Another usage of

one-dimensional models is the ability to study the effects of arterial modifications, such as

placements of stents and prostheses, on pulse waves [22, 54]. Lastly, one-dimensional models

can also be easily coupled with lumped parameter models [122] and three-dimensional fluid-

structure models [52, 53]. A systematic comparison of computational hemodynamics in

arteries between one-dimensional and three-dimensional models with deformable vessel walls

was carried out in [149], where they observed good agreement between the two models,

especially during the diastolic phase of the cycle.

The one-dimensional partial differential equation (PDE) model for the blood flow

through arteries [135, 54, 105] takes the form,
∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
α
Q2

A

)
+
A

ρ
∂xp = 0,

(1.13)

where A(x, t) = πR2(x, t) is the cross-sectional area with R(x, t) > 0 being the radius.

The variable Q(x, t) = A(x, t)u(x, t) is the discharge, u(x, t) denotes the flow velocity, and

the constant ρ is the blood density. The parameter α is the momentum-flux correction

coefficient that depends on the assumed velocity profile, and in this chapter, we take α = 1,

which means a blunt velocity profile. The source terms representing the viscous resistance

of the flow and gravitational effect could be added to the system. We refer to [55] for the

full description of this model.

To close the system, one needs an additional equation to link the pressure with

the displacement of the vessel. A simple law describing the elastic behavior of the arterial
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Figure 1.2: Diagram of the one-dimensional blood flow model with the cross-sectional radius
at rest (R0), cross-sectional radius (R), and velocity (u).

wall is given by

p = pext +K(R−R0), or equivalently, p = pext +
K√
π

(√
A−

√
A0

)
, (1.14)

where pext stands for the external pressure (assumed to be constant), the constant K rep-

resents arterial stiffness, and A0(x) = πR2
0(x) is the cross-section at rest (when u = 0) with

R0(x) being its radius. Other complex nonlinear relationship could be introduced as well.

With the simple elastic law (1.14), the one-dimensional model (1.13) for the blood flow

through arteries can be rewritten in the form of hyperbolic balance laws
∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+

K

3ρ
√
π
A

3
2

)
=

KA

2ρ
√
π
√
A0
∂x(A0),

(1.15)

which will be studied in this chapter. A stent or other physical variations may cause a

non-constant cross-sectional at rest A0(x), introducing a non-zero source term. A diagram

of the one-dimensional blood flow model with the cross-sectional radius at rest (R0), cross-

sectional radius (R), and velocity (u) is presented in Figure 1.2. For simplicity, we denote

β = K
ρ
√
π

in the rest of the chapter.
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The PDE model (1.15) for the blood flow through arteries can be written in the

convenient hyperbolic balance laws notation

∂tU + ∂xF (U) = S(U , A0),

where

U =

A
Q

 , F (U) =

 Q

Q2

A + β
3A

3
2

 , S(U , A0) =

 0

βA
2
√
A0
∂x(A0)

 ,
are the state variables, the flux, and the source term, respectively. The Jacobian matrix

J (U) is given by

J (U) =

 0 1

c2 −
(
Q
A

)2
2Q
A

 ,
with c =

√
β
√
A

2 . The eigenvalues of the Jacobian matrix are Q
A ± c, which are real-valued

[104]. This implies that the system is hyperbolic. This system with be the focus of Chapter

3.

1.2 Mathematical & Numerical Challenges of Hyperbolic Bal-

ance Laws

In this section, we summarize the mathematical and numerical challenges associ-

ated with solving balance laws. LeVeque discusses such topics in great detail, see [93] for

further information. The first mathematical problem that arises with balance laws is the

possibility of non-unique solutions. Since such systems often represent physical phenomena,

only one solution can be physically accurate. One method for addressing this concern is to

introduce a diffusive term and let the coefficient of the diffusive term go to zero. However,
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imposing extra terms makes the system more complicated and is thus not the optimal ap-

proach. Instead, appealing to entropy conditions and weak solutions is typically a favored

method for determining the unique and physically relevant solution.

A second distinctive mathematical challenge of hyperbolic balance laws is the emer-

gence of discontinuous solutions. Even with smooth initial data and flat bottom topography

functions (that is, no source term due to topography), systems may develop discontinuities.

In the classical sense, discontinuous solutions cannot satisfy the system of PDEs. However,

when a weak or integral form of the PDEs are used, discontinuous solutions are valid. One

downside of the use of integral forms is that weak formulations may be more challenging to

work with when it comes to the discretization in the numerical schemes.

Numerical challenges arise in the treatment of discontinuities. Smearing of dis-

continuities due to numerical viscosity of some schemes, such as the first order Godunov

method, is one issue. On the other hand, dispersive effects of second order methods, like

the Mac-Cormack scheme, may lead to oscillations near the discontinuity. One approach

for addressing the numerical challenges of keeping discontinuities sharp is known as shock

tracking where jump conditions are used to supplement the numerical scheme across the

discontinuities. This method can become too complicated in higher dimensions. For sec-

ond and higher order accurate methods, an alternative that does not involve explicit use of

jump conditions is known as shock capturing. Additionally, such a method does not result

in smearing or spurious oscillations. Slope limiters are also used to eliminate oscillations

near discontinuities.

The preservation of steady states or flows in near equilibrium is a task that can
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be surprisingly difficult to achieve numerically. A method that can preserve a steady state

must perfectly balance the flux and source terms and is referred to as a well-balanced

method. Well-balanced schemes are advantageous because they are capable or resolving

small perturbations to steady state solutions, even on a coarse mesh. Often, the error that

arises in a non-well-balanced scheme can be larger than the magnitude of the perturbation

to the steady state. However a scheme that satisfies the well-balanced property can aptly

handle such perturbations and achieve high resolution solutions without computationally

expensive mesh refinement [85]. Numerous well-balanced methods have been developed for

balance laws in [91, 82, 86, 57, 131, 96, 109, 26, 101, 110, 133, 51, 9, 31]. Well-balanced

methods will be further discussed in Chapters 2 and 3.

The need to accurately model bounded or non-negative variables can be a numer-

ical challenge in regards to conservation laws. Examples include modeling dry fronts with

the SWEs or preserving the positivity of density for traffic flow models. Numerical schemes

may not be able to maintain the positivity of water height or car density, thus positivity-

preserving limiters have been developed to address such challenges [115, 116, 1, 142, 56, 87,

10, 127, 164, 165, 160, 13, 140, 12, 126, 7, 100].

Lastly, one must take extra care when implementing various limiters and trying

to preserve the well-balanced property simultaneously. In some cases, a slope limiter and

positivity-preserving limiter do not work well together because the time step sizes become

so small that the scheme comes to a halt [20, 47]. On the other hand, in some cases the

total variation bounded (TVB) [138, 36] slope limiter and positivity-preserving limiter work

well together, but do not preserve the well-balanced property [160]. Thus, one has to make
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adjustments [160] so that the numerical limiters are not in conflict.

1.3 Review of Numerical Methods for Hyperbolic Equations

Solutions of hyperbolic balance laws are often understood in a weak or integral

sense so that discontinuous solutions are well-defined. Schemes based on the weak formu-

lation, such as finite-volume and discontinuous Galerkin (DG) methods, are appropriate

frameworks for complicated and discontinuous solutions [85].

1.3.1 Finite Volume Methods

There are three main methods for computing finite volume solutions: upwind

methods, central methods, and central-upwind methods. The first finite volume upwind

scheme is due to Godunov in 1959 [63]. The main idea of the method involves discretizing

the domain into cells, approximating the solution in each cell by a constant, and evaluating

the flux integrals which requires one to solve the Riemann problem. While the method

is advantageous for stabilizing computation of flux integral, the requirement of solving

the Riemann problem is complicated and computationally expensive [85] for some models.

Central schemes, in contrast to upwind schemes, do not require a Riemann solver and are

often more simple. The method is achieved by carefully selecting the control volume so

that the discontinuities of the piecewise constant approximations of the solution do not line

up with the cell boundaries. The first order Lax-Friedrichs scheme [92] and second order

scheme due to Nessyahu and Tadmor [107] are common choices. A shortcoming of the

central schemes is the high amount of numerical dissipation. Such diffusion is particularly
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noticeable when the time step size is small or when a steady state for a long-term temporal

period is computed [85]. The third choice is the central-upwind method. This method uses

the local speeds of propagation to determine non-uniform control volumes. This method is

at least second order accurate and does not suffer from dissipation or require one to solve

the Riemann problem.

1.3.2 Discontinuous Galerkin Methods

The DG method is another solver that has gained much attention in the last few

decades. This is the numerical solver used in all numerical examples for this thesis. The

DG methods can be viewed as a generalized version of the finite volume methods. The

DG method takes key concepts from the finite volume framework (numerical fluxes, slope

limiters, etc.) and inserts them into the finite element framework with the assumption that

solutions are possibly discontinuous across the discretized cell interfaces [33]. There are

many advantages that the finite element framework in the DG method provide in compar-

ison to finite volume or even finite difference methods. Some advantages include the high

order accuracy of the DG method (accuracy depends on the polynomial degree of the ap-

proximated solution), the parallelizable nature of the DG methods, DG’s ability to handle

complex geometries and adaptivity [33].

The DG method was first presented for the neutron transport equation in 1973

by Reed and Hill [124]. Early applications of this numerical method besides the neutron

transport equation included ODEs [90], wave propagation by Oden and Wellford [147],

and optimal control by Delfour and Trochu [42]. Later, the method was popularized when

applied to nonlinear hyperbolic systems. However, finding an appropriate time discretiza-
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tion proved to be a challenge. Cockburn and Shu were the first to introduce the Runge

Kutta Discontinuous Galerkin (RKDG) method, which were stable, second-order accurate

in smooth regions, kept discontinuities sharp without oscillations, and converged to the

entropy solution [34]. The DG method has now been expanded to non-hyperbolic systems

and many variations on the method are heavily used. A more in depth description of the

development of the DG method can be found in [33].

There are many variations of the DG method available. We employ the modal DG

methods in this thesis, as opposed to the nodal DG scheme. The derivation of the scheme

in one dimension will now be described.

First, one determines the semi-discrete form. We must discretize the computa-

tional domain I into cells Ij = [xj− 1
2
, xj+ 1

2
], and denote the size of the jth cell by ∆xj .

Furthermore, we let τ = maxj ∆xj . We seek an approximation Uτ which belongs to the

finite dimensional DG space:

Vkτ = {v : w|Ij ∈ P k(Ij), j = 1, ..., J}, (1.16)

where P k(I) is the space of polynomials of degree up to k in the domain I, and J is the total

number of cells. In addition, sτ denotes the projection of the source parameter function

s into Vkτ . For example, in the case of the SWEs s = b, the bottom topography function,

and in the case of the blood flow model s = A0, the cross-sectional area at rest. We denote

U+
τ,j+ 1

2

and U−
τ,j+ 1

2

as the limit values of Uτ at the element interface xj+ 1
2

from the right

cell Ij+1 and from the left cell Ij , respectively. The conventional DG scheme in each cell

can be formulated as∫
Ij

∂tUτv dx−
∫
Ij

F (Uτ )∂xv dx+ F̂j+ 1
2
v−
j+ 1

2

− F̂j− 1
2
v+
j− 1

2

=

∫
Ij

S(Uτ , sτ )v dx, (1.17)
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where v(x) is a test function from the test space Vkτ and

F̂j+ 1
2

= f

(
Uτ

(
x−
j+ 1

2

, t

)
,Uτ

(
x+
j− 1

2

, t

))
,

with f(a, b) being the numerical flux. It has been shown that for high order DG methods,

the effect of different fluxes on the accuracy of methods is relatively small [120]. Therefore,

in this chapter, we will employ the use of the simple Lax-Friedrichs flux:

f(a, b) =
1

2
(F (a) + F (b)− α(b− a)) , (1.18)

where α is the maximum of the largest eigenvalue and the maximum in the calculation of

α is taken either globally (Lax-Friedrichs flux) or locally (local Lax-Friedrichs flux).

In an effort to convert the semi-discrete method (1.17) into a fully discrete form,

we must discretize in time. The total variation diminishing (TVD) Runge-Kutta (also

known as Strong-Stability Preserving Runge-Kutta) time discretization is used to increase

temporal accuracy and stability [66]. The third order TVD Runge-Kutta method described

as

U (1)
τ = Un

τ + ∆tF(Un
τ ),

U (2)
τ =

3

4
Un
τ +

1

4

(
U (1)
τ + ∆tF

(
U (1)
τ

))
,

Un+1
τ =

1

3
Un
τ +

2

3

(
U (2)
τ + ∆tF

(
U (2)
τ

))
,

(1.19)

is used throughout this thesis, where F is the spatial operator.

1.4 Organization of Thesis

This thesis is organized as follows. Well-balanced methods for the Ripa model

are developed in Chapter 2. Sections 2.2 and 2.3 are dedicated to still-water steady states
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while Sections 2.4 and 2.5 are dedicated to moving-water steady states. In Chapter 3, well-

balanced methods for the one-dimensional blood flow through arteries model is discussed.

The man-at-eternal-rest steady states both with zero and non-zero pressure are the focus

of Sections 3.2 and 3.3 will the preservation of the living-man steady state is the focus of

Sections 3.4 and 3.5. A numerical algorithm targeting an inverse problem for the SWEs is

presented in Chapter 4. The aim of the chapter is to recover the bottom topography function

from the boundary data in one measurement event. The inverse problem is achieved via an

adjoint approach and a three-operator splitting scheme to iteratively update the solution.

Lastly, concluding remarks and future work is discussed in Chapter 5.
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Chapter 2

High Order Still-Water and

Moving-Water Equilibria

Preserving Discontinuous Galerkin

Methods for the Ripa Model

2.1 Introduction

The one-dimensional Ripa equations, introduced in Section 1.1.1, take the form:

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + 1
2gh

2θ) = −ghθ∂xb,

∂t(hθ) + ∂x(hθu) = 0,

(2.1)
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where h(x, t) ≥ 0 represents the height of the water, u(x, t) ∈ R describes the velocity,

θ(x, t) > 0 is a potential temperature field, b(x) represents the bottom topography, and g

is the gravitational constant. The term hu represents water discharge and gh2θ/2 is the

pressure depending on the water temperature. The potential temperature field θ is defined

to be the reduced gravity g∆Θ/Θref [32], where ∆Θ is set to be the difference in potential

temperature from a reference value Θref. Additional source terms that model the friction

along the bottom and surface or variations in the width of the channel could be included.

In this thesis, we only consider the source term that accounts for the bottom topography.

The Ripa system is a generalized model of the SWEs. The one dimensional SWEs

take the form: 
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + 1
2gh

2) = −gh∂xb.

(2.2)

Notice that, when the potential temperature field θ = 1 in the Ripa model (2.1), the

SWEs (2.2) are recovered. The SWEs consist of the conservation of mass and momentum,

with the assumption that the density is constant. Two-layer and multi-layer shallow water

equations [15] have been studied to model the flows in the shallow water regime where

several layers with different densities appear. Such a model assumes a piecewise constant

density inside each layer, and allows for different densities across the layers. Challenges in

studying such models arise from the complicated eigenstructure, non-conservative terms,

and conditional hyperbolicity, etc. Despite these challenges, there have been many studies

on various numerical methods for multi-layer shallow water equations. The Ripa model

can be obtained by vertically averaging each variable (including the density) over all layers

from the bottom to the top, therefore, we lose the information of the interface between

19



layers, but the resulting model has a simpler eigenstructure and is always hyperbolic in the

conservative form. The horizontal temperature gradients are introduced in the Ripa model

to represent the variations in the fluid density.

Both the Ripa system (2.1) and the SWEs (2.2) belong to the family of hyperbolic

balance laws, which have gained growing attention in the last few decades. In the one

dimensional setting, such models usually take the form of

∂tU + ∂xF (U) = S(U).

Due to the existence of the source term S(U), hyperbolic balance laws introduce new

computational challenges beyond the existing challenges of hyperbolic conservation laws.

Balance laws often admit non-trivial steady state solutions in which the source term balances

the effect of the flux gradients. The balance of fluxes and the source term as well as small

perturbations of steady state solutions cannot be captured well by standard numerical

methods with a straightforward implementation of the source term, unless a much refined

mesh is used. Therefore, the well-balanced methods, which can exactly preserve steady

state solution at the discrete level, are introduced to provide an accurate solution on a

relatively coarse mesh and resolve small perturbations to steady state solutions accurately.

The steady state solutions of the Ripa model (2.1) occur when ∂tU = 0, that is

∂x(hu) = 0,

∂x

(
hu2 + 1

2gh
2θ
)

= −ghθ∂xb,

∂x(hθu) = 0.

(2.3)

In the case of still-water, when the velocity u is zero, the steady state system (2.3) reduces
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to 
u = 0

∂x

(
1
2h

2θ
)

= −hθ∂xb,

(2.4)

which is an underdetermined PDE system. In order to reach a solution for (2.4), additional

assumptions for h, θ or b must be enforced. There are three cases to consider if we require

one of these variables to be constant. This raises one discrepancy between the Ripa model

and the SWEs. The first case is the still-water steady state, which corresponds to a flat

water surface under constant temperature:

(
u, θ, h+ b

)
=
(
0, C1, C2

)
, (2.5)

where C1, C2 are constants. This is the same lake-at-rest steady state solution of the SWEs.

The second case is the isobaric steady state, which corresponds to a wave in which the height

and temperature jump but velocity and pressure remain constant:

(
u, b, h2θ

)
=
(
0, C1, C2

)
. (2.6)

The last case is the constant water height steady state:

(
u, h, b+

1

2
h ln θ

)
=
(
0, C1, C2

)
. (2.7)

The more general case occurs when the velocity u does not vanish. The moving-

water equilibrium is given by:

hu = constant,

θ = constant,

u2

2 + gθ(h+ b) = constant,

(2.8)
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where the momentum hu and potential temperature field θ are constant. It is easy to

observe that the lake-at-rest still-water steady state (2.5) is simply a special case of the

moving-water steady state (2.8). Well-balanced methods for the moving-water equilibrium

can automatically preserve the lake-at-rest steady state, but not vice versa.

Well-balanced numerical methods for SWEs are far more studied in the literature,

and can serve as a foundation of well-balanced methods for Ripa models. A vast amount

of well-balanced methods for the still-water steady state [8, 91, 86, 1, 152, 127] have been

studied, and we refer to the survey papers [158, 85] for a complete list of existing literature on

this topic. Well-balanced methods for the moving-water equilibrium are more complicated

and it is much more difficult to design such methods. Comparison of well-balanced methods

for the still-water and moving-water steady state solutions has been provided in [159], where

some numerical examples are shown to demonstrate the advantage of moving-water well-

balanced methods, especially for solutions near a moving-water equilibrium. Some moving-

water well-balanced methods been proposed in [131, 14, 31, 30], and high order accurate

well-balanced weighted essentially non-oscillatory (WENO) methods can be found in [110,

132, 25]. In [150], well-balanced and positivity-preserving DG methods were developed for

the SWEs with moving-water equilibrium.

Designing well-balanced methods for the Ripa model (2.1) can be a challenging

task, because its steady states are more complicated than those of the SWEs [32]. In

the last few years, there have been some studies on well-balanced methods for the Ripa

models, mostly focusing on the zero-velocity steady-state solutions (2.5) and (2.6). The

first well-balanced scheme for the Ripa system is developed in [32]. The proposed scheme
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is well-balanced, positivity preserving and does not develop spurious pressure oscillations

in the neighborhood of temperature jumps. A second-order well-balanced finite volume

scheme for the Ripa system in one and two dimensions is designed in [143]. High-order

well-balanced WENO schemes that possess sharp shock transition were designed for the

Ripa system in [69], by extending the well-balanced technique developed in [152] for the

SWEs. Other related works can be found in [44, 73, 134].

High order accurate numerical schemes such as finite difference and finite volume

WENO schemes, spectral methods, and DG methods have been developed to reduce the

number of computational cells and thus reduce the computational time, while still achieving

high order accuracy. Specifically, the DG method is a class of finite element methods in

which the numerical solutions and test functions live in a discontinuous piecewise polynomial

space. A review of the method can be found in [33]. The DG method combines the flexibility

of the finite element method and the stability of the finite volume method. Additionally, DG

methods enjoy advantages including high order accuracy, high parallel efficiency, flexibility

for hp-adaptivity and arbitrary geometry and meshes, etc.

The main objective of this chapter is to develop high order well-balanced DG

methods for the Ripa system (2.1), which can preserve the still-water equilibrium solution

(2.5) and moving-water steady state solution (2.8) exactly at the discrete level. This will

be the first moving-water well-balanced method for the Ripa model, to our best knowledge.

To achieve this goal, we start with a transformation between the conservative variables and

the equilibrium variables (to be defined in Section 2.4). For the finite element methods,

the initial conditions are projected into a polynomial solution spaces to provide a numerical
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initial condition. Even though the exact initial conditions are in moving-water equilibrium,

the numerical initial conditions may no longer be. One challenge in designing well-balanced

methods is the recovery of the well-balanced states from the numerical initial condition,

which is achieved by a new choice of projection operator. Then, we can decompose the

numerical solution into an equilibrium part and the fluctuation part, and show that the

fluctuation part is zero at the steady state. Following the idea of hydrostatic reconstruc-

tion, one can carefully design well-balanced numerical fluxes. A well-balanced source term

approximation is achieved by treating the equilibrium and fluctuation parts in different

ways.

The methods presented here are extensions of the ones in [150] for the moving-

water equilibrium of the SWEs. In this work, several improvements over the well-balanced

methods in [150] have been presented to improve the algorithm. First, the recovery of the

well-balanced states in [150] are obtained by solving nonlinear equations, which could be

complicated. A special projection of the exact initial condition is proposed in this chapter in

order to provide a much easier way to recover the well-balanced states. This also leads to a

more simple way to evaluate the well-balanced components of the solutions at each time step.

Second, due to the existence of the potential temperature field, extra attention is provided

to accommodate more components in the conservative and the equilibrium variables. Lastly,

we simplify the procedure to evaluate the updated cell boundary values resulted from the

hydrostatic reconstruction. This leads to a more efficient and simple way to compute the

well-balanced numerical fluxes than those computed in [150]. Furthermore, the same idea

can be generalized to preserve other steady state solutions of the Ripa system, including
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the isobaric and constant water height equilibria which do not appear in the SWEs.

This chapter is organized as follows. In Section 2.2, we introduce some notation

and discuss the well-balanced DG method for still-water lake-at-rest equilibrium. Numerical

examples using the methods outlined in Section 2.2 are found in Section 2.3 to demonstrate

the accuracy and well-balanced property of the scheme as well as show that it can aptly

handle perturbations of the still-water steady state and provide good resolution for discon-

tinuous solutions. Although our main focus is on moving-water well-balanced methods, it is

useful to present the still-water preserving DG methods in Sections 2.2 and 2.3. The purpose

is twofold. First, the well-balanced DG method for still-water equilibrium is not available

in the literature and a simple method achieving such a goal is interesting by itself. Second,

this would serve as a basis for the design of the moving-water well-balanced methods for

the Ripa system, which is presented in Section 2.4. We will also show that when applied

to still-water equilibrium, the proposed moving-water well-balanced methods reduce to the

still-water well-balanced method in Section 2.2. Additionally, we show how the method can

be modified to preserve the constant water height and isobaric steady states. In Section

2.5, numerical examples of our methods for the one-dimensional Ripa system are provided,

to demonstrate the high order accuracy, well-balanced property, and good resolution for

smooth and discontinuous solutions.
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2.2 Still-Water Well-Balanced DG Methods

A variety of well-balanced DG methods for the SWEs with still-water steady state

solutions

u = 0, h+ b = constant (2.9)

have been developed. In this section, we extend the method introduced in [155, 160] to

provide still-water well-balanced methods for the Ripa system (2.1), with the still-water

steady state solution (2.5). The same structure will be generalized in Section 2.4 for the

moving-water case. The still-water well-balanced DG methods are much simpler than the

moving-water well-balanced methods, and would be useful if one’s target is to simulate a

small perturbation of the still-water equilibrium state. The still-water well-balanced method

presented can be extended to two-dimensional Ripa models easily. However, there is no

general form of the moving-water equilibrium in two dimensions, hence no two-dimensional

moving-water well-balanced methods are available.

2.2.1 Notation and DG Numerical Scheme

We seek an approximation Uτ which belongs to the finite dimensional DG space

Vkτ where k is the polynomial degree. We refer the reader to Section 1.3.2 for details on the

function and mesh discretization as well as the formulation for the traditional DG scheme.

However, we note that α = max(|u| +
√
ghθ) in the definition of the Lax-Friedrichs flux

where the maximum can either be taken locally in each cell or globally over the entire

domain.

We aim to preserve the lake-at-rest still-water solution (2.5). The well-balanced
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numerical scheme, as described in [160] for the SWEs, has the form:∫
Ij

∂tU
n
τ v dx−

∫
Ij

F (Un
τ )∂xv dx+ F̂ l

j+ 1
2

v−
j+ 1

2

− F̂ r
j− 1

2

v+
j− 1

2

=

∫
Ij

S(Un
τ , bτ )v dx. (2.10)

The design of F̂ l
j+ 1

2

and F̂ r
j− 1

2

, known as the well-balanced numerical fluxes, are defined

below in Section 2.2.2. The source term approximation will be discussed in Section 2.2.3.

This method is equivalent to∫
Ij

∂tU
n
τ v dx−

∫
Ij

F (Un
τ )∂xv dx+ F̂j+ 1

2
v−
j+ 1

2

− F̂j− 1
2
v+
j− 1

2

=

∫
Ij

S(Un
τ , bτ )v dx+ (F̂j+ 1

2
− F̂ l

j+ 1
2

)v−
j+ 1

2

− (F̂j− 1
2
− F̂ r

j− 1
2

)v+
j− 1

2

,

(2.11)

and the terms F̂j+ 1
2
− F̂ l

j+ 1
2

and F̂j− 1
2
− F̂ r

j− 1
2

are at the level of O(τk+1) (independent of

the smoothness of the solution U) when the bottom topography b is smooth, and can be

viewed as high order correction terms to the source term approximation.

2.2.2 Well-Balanced Numerical Fluxes

The conservative variable can be decomposed into a reference equilibrium state

U e
τ and a fluctuation part U f

τ . In each computational cell Ij , the equilibrium state U e
τ (x)

can be computed from the constant equilibrium variables defined as (setting H = h+ b)

V̂j =


Ĥj

m̂j

θ̂j

 =


(hτ + bτ )

(
x−
j+ 1

2

)
(hu)τ

(
x−
j+ 1

2

)
θτ

(
x−
j+ 1

2

)

 , (2.12)

and the bottom function bτ in the form of

U e
τ,j(x) =


heτ,j(x)

(hu)eτ,j(x)

(hθ)eτ,j(x)

 =


Ĥj − bτ (x)

m̂j(
Ĥj − bτ (x)

)
θ̂j

 , (2.13)
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which belongs to the DG space Vkτ . The fluctuation part U f
τ is then determined by the

decomposition

Uτ = U e
τ +U f

τ . (2.14)

It is easy to observe that at the still-water steady state (2.5), the reference equilibrium state

U e
τ is equal to Uτ , and U f

τ reduces to 0.

The numerical fluxes are constructed following the approaches in [155, 160]. After

computing the boundary values U±
τ,j+ 1

2

at the time step tn, we set

b∗
τ,j+ 1

2

= max
(
b+
τ,j+ 1

2

, b−
τ,j+ 1

2

)
, (2.15)

by utilizing the idea of hydrostatic reconstruction in [1]. A new hydrostatic reconstruction

method has been presented in [29], which performs better in some cases, for example, when

water runs down a hill. Next, the height function at the cell interface can be redefined as:

h∗,±
τ,j+ 1

2

= max
(

0, h±
τ,j+ 1

2

+ b±
τ,j+ 1

2

− b∗
j+ 1

2

)
, (2.16)

or equivalently,

h∗,−
τ,j+ 1

2

= max
(

0, Ĥj − b∗τ,j+ 1
2

+ (hf )−
τ,j+ 1

2

)
, h∗,+

τ,j+ 1
2

= max
(

0, Ĥj+1 − b∗τ,j+ 1
2

+ (hf )+
τ,j+ 1

2

)
,

(2.17)

by using the new defined Ĥj and hf . This results in following updated boundary values of

U :

U∗,±
τ,j+ 1

2

=


h∗,±
τ,j+ 1

2

h∗,±
τ,j+ 1

2

u±
τ,j+ 1

2

h∗,±
τ,j+ 1

2

θ±
τ,j+ 1

2

 . (2.18)
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Finally, the left and right fluxes are given as:

F̂ l
j+ 1

2

= f
(
U∗,−
τ,j+ 1

2

,U∗,+
τ,j+ 1

2

)
+ F

(
U−
τ,j+ 1

2

)
− F

(
U∗,−
τ,j+ 1

2

)
,

F̂ r
j− 1

2

= f
(
U∗,−
τ,j− 1

2

,U∗,+
τ,j− 1

2

)
+ F

(
U+
τ,j− 1

2

)
− F

(
U∗,+
τ,j− 1

2

)
.

(2.19)

At the steady state (2.5), although the original cell boundary values h+
τ,j+ 1

2

, h−
τ,j+ 1

2

may not

be the same, we have h±
τ,j+ 1

2

+b±
τ,j+ 1

2

= constant. Then following the definition in (2.16), this

implies h∗,+
τ,j+ 1

2

= h∗,−
τ,j+ 1

2

. Since u±
τ,j+ 1

2

= 0 and θ±
τ,j+ 1

2

= constant at the steady state (2.5),

we can conclude that U∗τ is continuous at cell interfaces, i.e. U∗,+
τ,j+ 1

2

= U∗,−
τ,j+ 1

2

. Furthermore,

due to the consistency of the numerical flux f , it can be shown that F̂ l
j+ 1

2

= F
(
U−
τ,j+ 1

2

)
and

F̂ r
j− 1

2

= F
(
U+
τ,j− 1

2

)
, which is a desirable quality for achieving the well-balanced property.

2.2.3 The Source Term Decomposition

The source term can be decomposed similarly as in (2.14), because S(U , b) =

−ghθbx is linear with respect to the conservative variable hθ:

∫
Ij

S
(
Uτ , bτ

)
v dx =

∫
Ij

S
(
U e
τ , bτ

)
v dx+

∫
Ij

S
(
U f
τ , bτ

)
v dx. (2.20)

Notice that the second term on the right hand side can be directly computed by any quadra-

ture rule with sufficient accuracy. On the other hand, since U e
τ ,j

(x) is the equilibrium state,

the first term on the right hand side can be expanded as

∫
Ij

S
(
U e
τ , bτ

)
v dx = −

∫
Ij

F
(
U e
τ

)
vx dx+ F

(
U e,−
τ,j+ 1

2

)
v−
j+ 1

2

− F
(
U e,+

τ,j− 1
2

)
v+
j− 1

2

, (2.21)

where U e
τ ∈ Vkτ is a polynomial. On the numerical level, when all these integrals are replaced

by numerical integrations, this equality holds exactly if one uses a quadrature rule which

is accurate for polynomial of degree 3k − 1. If a less accurate quadrature rule is used, the
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equality holds approximately, up to the accuracy of the quadrature rule. Thus the source

term can be evaluated using the following form:∫
Ij

S
(
Uτ , bτ

)
v dx

= −
∫
Ij

F
(
U eτ

)
vx dx+ F

(
U e,−
τ,j+ 1

2

)
v−
j+ 1

2

− F
(
U e,+

τ,j− 1
2

)
v+
j− 1

2

+

∫
Ij

S
(
U f
τ , bτ

)
v dx.

(2.22)

Since the only non-zero source term is in the momentum equation, we can plug in the

definition of the flux and U e
τ to obtain the following equivalent source term approximation

−
∫
Ij

ghτθτ (bτ )xv dx =
1

2
gθ̂j

((
Ĥj − bτ

)2
v
)−
j+ 1

2

− 1

2
gθ̂j

((
Ĥj − bτ

)2
v
)+

j− 1
2

−
∫
Ij

1

2
gθ̂j
(
Ĥj − bτ

)2
vx dx−

∫
Ij

g
(
hτθτ + (Ĥj − bτ )θ̂j

)
(bτ )xv dx

= gθ̂j

(b2τ
2
v − Ĥjbτv

)−
j+ 1

2

− gθ
(b2τ

2
v − Ĥjbτv

)+

j− 1
2

−
∫
Ij

gθ̂j

(b2τ
2
− Ĥjbτ

)
vx dx−

∫
Ij

g
(
hτθτ + (Ĥj − bτ )θ̂j

)
(bτ )xv dx.

(2.23)

This formulation is exactly the extension of the source term approximation introduced in

[154] for the SWEs. However, a different well-balanced approach was used in that paper,

the source term was decomposed as −ghbx = −g(h+ b)bx + g(b2)x/2.

Remark 1. As we explained, the equality (2.21) holds exactly when a quadrature rule

accurate for polynomial of degree 3k − 1 is used. If this is the case, we can simply replace

the source term approximation (2.22) by the direct numerical integration of the source term

−
∫
Ij
ghτθτ (bτ )xv dx with this sufficiently high accurate quadrature rule. In other words, the

numerical integration of the source term is automatically well-balanced, without any special

treatment. The same conclusion has been observed in [155] for the SWEs.
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Remark 2. In this chapter, we only consider a source term due to the bottom topography,

which is linear with respect to the conservative variable U . When other nonlinear source

terms (for instance the Manning friction term) are included, the source term decomposition

(2.20) will not hold any more, but one can introduce the following decomposition in a similar

manner

∫
Ij

S(U , b)v dx =

∫
Ij

S(U e, b)v dx+

∫
Ij

(S(U , b)− S(U e, b)) v dx. (2.24)

Note that when S is linear, i.e., S(U , b) − S(U e, b) = S(U − U e, b) = S(U f , b), this

decomposition reduces to (2.20). The first term on the right hand side of (2.24) can be

approximated as in (2.21), and the second term on the right hand side is computed by a

straightforward numerical integral. This will provide well-balanced source term approxima-

tion.

Remark 3. When the bottom topography is flat (i.e., b(x) = constant C), the traditional

DG methods are recovered from our well-balanced DG scheme, that is, the source term

approximation reduces to 0 exactly and the left and right numerical fluxes reduce to the

original fluxes. First, when b(x) = C is a constant, one has bτ (x) = C, therefore the source

term approximation presented in (2.23) simply reduces to zero. Second, when b(x) = C,

b∗
τ,j± 1

2

defined in (2.15), is also the same constant, which leads to

h∗,±
τ,j+ 1

2

= max
(

0, h±
τ,j+ 1

2

+ b±
τ,j+ 1

2

− b∗
j+ 1

2

)
= h±

τ,j+ 1
2

.

More generally we have U∗,±
τ,j+ 1

2

= U±
τ,j+ 1

2

. Therefore the left and right numerical fluxes

defined in (2.19) reduce to the original DG fluxes: F̂ l
j+ 1

2

= F̂j+ 1
2
, F̂ r

j− 1
2

= F̂j− 1
2
.
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At the end of this section, we show that the proposed numerical methods are

well-balanced for the still-water steady state solutions.

Proposition 4. The DG scheme (2.10) for the Ripa system (2.1), paired with the numer-

ical fluxes (2.19) and source term approximation (2.22), is well-balanced for the still-water

steady state (2.5).

One can easily verify this holds by observing that U f
τ = 0 at the lake-at-rest

still-water steady state, and thus the well-balanced numerical fluxes reduce to F̂ l
j+ 1

2

=

F
(
U−
τ,j+ 1

2

)
and F̂ r

j− 1
2

= F
(
U+
τ,j− 1

2

)
.

Remark 5. Although the description is for one dimensional problem only, the proposed well-

balanced methods for the still-water steady state (2.5) can be extended to the two-dimensional

problem in a straightforward way.

2.3 Numerical Tests for the Still-Water Well-Balanced Meth-

ods

In this section, we present numerical results of our still-water well-balanced DG

methods, described in Section 2.2, for the Ripa system (2.1). Piecewise quadratic polyno-

mials (k = 2) in space, paired with the third order TVD Runge-Kutta time discretization

(1.19), are used in the tests. The CFL number is taken to be 0.1. The constant M in

the TVB limiter is taken to be 0, except for the accuracy test, in which no slope limiter

was implemented. The gravitational constant g is fixed to be 9.812m/s2. We compute

multiple types of tests: an accuracy test, verification of the well-balanced property, small
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perturbations of steady states, and tests for discontinuous solutions.

2.3.1 Test for Accuracy

In this subsection, we test the accuracy of our still-water well-balanced scheme for

smooth solutions. The initial conditions in the domain x ∈ [0, 1] are given by

h(x, 0) = 5 + esin(2πx),

(hu)(x, 0) = sin(cos(2πx)),

θ(x, 0) = sin(2πx) + 2,

(2.25)

with the bottom function b(x) = sin2(πx) and periodic boundary conditions. We run the

simulation until time 0.02, while the solution is still smooth. Since there is no explicitly

known solution in this case, the errors are computed by comparing numerical results of

uniform meshes with size J and 2J . Figure 2.1 displays the numerical solutions at time

0.02 with 200 uniform cells. Table 2.1 contains the L1 errors and numerical orders or

accuracy. We can observe that the third order convergence rate is achieved which matches

our expectation of order k + 1 accuracy.

2.3.2 Tests for the Well-Balanced Property

The following tests are chosen to verify that the DG methods preserve the still-

water steady state (2.3) with a non-flat bottom. For these examples, the errors are calculated

by comparing the numerical results to the initial conditions.

33



Figure 2.1: Solutions of well-balanced methods for the accuracy test in Section 2.3.1 at time
t = 0.02.

h hu hθ

No. of Cells L1 Error Order L1 Error Order L1 Error Order

25 0.001347 0.012963 0.001480
50 0.000205 2.7137 0.001757 2.8829 0.000206 2.8442
100 2.9801e-05 2.7842 0.000226 2.9580 3.2526e-05 2.6638
200 4.0093e-06 2.8939 2.9190e-05 2.9539 5.1699e-06 2.6534
400 5.0280e-07 2.9953 3.6862e-06 2.9852 7.3483e-07 2.8146

Table 2.1: L1 errors and orders of accuracy for the test in Section 2.3.1, using the still-water
well-balanced method.

First, we will consider the following still-water steady state for x ∈ [0, 1]

h+ b = 2, u = 0, θ = 10. (2.26)

The bottom function is discontinuous and defined as

b(x) =


1, if 0.3 < x < 0.7,

0, otherwise,

and transmissive boundary conditions are employed. We plot the numerical results at time

t = 1 with 200 uniform cells in Figure 2.2, with the L1 and L∞ errors shown in Table 2.2.

From the error table, it can be concluded that the well-balanced property is achieved.
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Test Error Type h hu hθ

(2.26) L1 Error 9.9959e−16 7.6925e−15 3.9599e−15
L∞ Error 2.6401e−13 4.2333e−12 1.9380e−12

(2.28) L1 Error 6.9148e−17 1.6519e−15 2.7659e−16
L∞ Error 2.8422e−14 4.2056e−12 1.1369e−13

Table 2.2: L1 and L∞ errors for the well-balanced test to preserve the still-water equilibria.

Figure 2.2: Solution of well-balanced methods for the still-water steady state problem (2.26)
at t = 1. The steady state is preserved as h+ b, hu, and θ are constant.

Second, we consider another lake-at-rest still-water steady state problem in which

the bottom function defined on the interval domain [−2, 2] consists of two humps and is

defined as

b(x) =



0.85(cos(10π(x+ 0.9)) + 1), if − 1 ≤ x ≤ −0.8,

1.25(cos(10π(x− 0.4)) + 1), if 0.3 ≤ x ≤ 0.5,

0, otherwise.

(2.27)

The initial conditions are set as:

h(x, 0) = 6− b(x), u(x, 0) = 0, θ(x, 0) = 4. (2.28)

We run the simulation until time t = 1. The numerical results are shown in
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Figure 2.3: Solution of well-balanced methods for the still-water steady state flow over two
bumps (2.28) at t = 1, with 200 uniform cells.

Figure 2.3, and the L1, L∞ errors of the numerical solution with 200 uniform cells are

presented in Table 2.2, which shows that the well-balanced property is again maintained.

For comparison, we also run the same test with the traditional DG method (i.e., the standard

numerical fluxes and the straightforward integration of the source term). The numerical

results are presented in Figures 2.4 and 2.5, where we can observe that the steady state is

not preserved. It can be seen that, at the region where the bottom function is non-zero,

h+ b does not preserve the constant steady state, and the solution hu is non-zero.

2.3.3 Tests of Small Perturbations

The tests in this subsection are selected to demonstrate that perturbations to the

still-water steady states are aptly captured by the proposed well-balanced scheme. We

will also compare the performance of well-balanced and traditional DG schemes. Prior to
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Figure 2.4: Solution of non-well-balanced methods for the still-water steady state flow over
two bumps (2.28) with 200 uniform cells. It can be seen that the steady state for h + b is
not preserved, as the water height is not flat above the not-constant portions of the bottom
function. The bottom figures show zoomed in images of h+ b where b is non-constant.

Figure 2.5: Solution for hu of the non-well-balanced methods for the still-water steady state
flow over two bumps (2.28) with 200 uniform cells. It can be seen that the steady state
solution of hu is not preserved as it is non-zero.
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defining the perturbations, let us denote χ as the indicator function on an interval:

χ[a,b] =


1, if x ∈ [a, b],

0, otherwise,

(2.29)

and denote the still-water steady state initial conditions (2.28) in Section 2.3.2 as

(
heq, (hu)eq, (hθ)eq

)
(x, 0).

We will examine the numerical results with three different perturbations outlined below.

(a) Small perturbation to both h and hθ: First, perturbations of sizes 0.01, 0.04 are applied

to the initial conditions of h and hθ, respectively, in the interval [−1.5,−1.4]:

(
h, hu, hθ

)
(x, 0) =

(
heq, (hu)eq, (hθ)eq

)
(x, 0) + [0.01, 0, 0.04]χ[−1.5,−1.4]. (2.30)

(b) Small perturbation to h: Second, a small perturbation of size 0.01 is applied to the

initial condition of h in the interval [−1.5,−1.4]:

(
h, hu, hθ

)
(x, 0) =

(
heq, (hu)eq, (hθ)eq

)
(x, 0) + [0.01, 0, 0]χ[−1.5,−1.4]. (2.31)

(c) Large perturbation to h: Third, a larger perturbation of size 1 is applied to the initial

condition of h in the interval [−1.5,−1.4]:

(
h, hu, hθ

)
(x, 0) =

(
heq, (hu)eq, (hθ)eq

)
(x, 0) + [1, 0, 0]χ[−1.5,−1.4]. (2.32)

The numerical test with the initial condition (2.32) is considered in [32, 143] and

will be compared to the other tests (2.30), (2.31) in this section. The perturbation of the

test (2.30) splits into two waves moving away from the point of origin. On the other hand,
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the perturbation of the tests (2.31) and (2.32) split into three waves. The two outer waves

move away from the point of origin, as expected, while there is a third wave in the center

which remains unmoved in the perturbed region. The amplitude of this wave reduces until

it reaches a total water height of approximately 6.005 for the test (2.31) and 6.479 for the

test (2.32). In the same interval, the value of hθ converges to a value of approximately

23.980 for the test (2.31) and 22.215 for the test (2.32). It is easy to verify that, in this

region, the solution converges to an isobaric steady state (2.6) as h2θ stays constant inside

and outside of the interval.

We run the test until time t = 0.125. At this point for all perturbation examples,

the downstream moving wave has passed through both bumps of the bottom topography

function and the upstream moving wave has exited the domain. Figures 2.6 and 2.7 com-

pares the numerical results of three perturbation tests for h + b using well-balanced DG

methods with mesh sizes of 200 and 800 uniform cells. It can be observed that the solutions

are well captured by our methods. Figure 2.8 compares the results of three cases for hu

and hθ. We would like to point out that the solutions contain the isobaric steady state in

the interval [−1.5,−1.4] (for examples (2.31) and (2.32)), and our methods perform well for

these test cases.

Next we examine the performance of the traditional DG scheme on the same

test cases. Figure 2.9 includes the numerical results for these tests. It can be seen that

the traditional DG scheme does not handle the perturbation as well as the well-balanced

scheme. It is evident for (2.30) and (2.31) in which the initial perturbations were small.
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Figure 2.6: Initial conditions and numerical solution of water surface h+ b for the pertur-
bation tests (2.30), with 200 and 800 uniform cells. The initial perturbation split into two
waves moving away from the point of origin. At time t = 0.125, the downstream moving
wave has passed over the two bumps in the bottom topography and the upstream wave has
exited the domain. The bottom left plot contains the original perturbation and the bottom
right plot contains a zoomed in image of the remaining downstream moving wave.

2.3.4 Tests for Riemann Problems

In this subsection, we consider problems that contain discontinuities in the initial

conditions, known as Riemann problems or dam break problems for the SWEs.

First, we consider the dam break problem in the computational domain [−200, 400]

with the initial conditions

(h, u, θ)(x, 0) =


(5, 0, 20), when x < 0,

(10, 40, 5), when x ≥ 0.

(2.33)

The bottom function is given as b(x) = 0 and we employ transmissive boundary conditions.
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Figure 2.7: Initial conditions and numerical solution of water surface h + b for the per-
turbation tests (2.31) (left plots) and (2.32) (right plots), with 200 and 800 uniform cells.
The initial perturbation split into three waves, one unmoved in the center and the others
moving away from the point of origin. At time t = 0.125, the downstream moving wave has
passed over the two bumps in the bottom topography and the upstream wave has exited
the domain. The bottom plots contain zoomed in images of the remaining waves.

This example is computed using the still-water well-balanced DG method with a uniform

mesh of 200 cells. Figure 2.10 displays the numerical results at times t = 1, 2, and 3, and

the solutions are captured well by our methods.

Next, we look at the dam break problem over a non-flat bottom. We define the

bottom topography on the domain [−1, 1] to include two bumps:

b(x) =



0.5 cos (10π(x+ 0.3)) + 1, when − 0.4 ≤ x ≤ −0.2,

0.75 cos (10π(x− 0.3)) + 1, when 0.2 ≤ x ≤ 0.4,

0, otherwise.

(2.34)
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Figure 2.8: Initial conditions and numerical solution of hu, hθ for the perturbation tests
(2.30) (top row), (2.31) (middle row), (2.32) (bottom row), with 200 and 800 uniform cells
at time t = 0.125. Although the shape of hu is similar for all cases, the amplitude varies.

The initial conditions are defined as:

(h, u, θ)(x, 0) =


(5, 0, 3), when x < 0,

(2, 0, 5), when x ≥ 0.

(2.35)

We test the problem until time 0.05. Figure 2.11 shows the results at the final time,

compared to the initial conditions. We see that the potential temperature field at the final

time is a horizontal translation of the initial condition. The proposed DG methods can
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Figure 2.9: Solutions of perturbation tests (2.30) (top row), (2.31) (middle row), and (2.32)
(bottom row), using the traditional DG method. In all cases, the traditional DG scheme
doesn’t handle perturbations as well as the still-water well-balanced scheme. The larger the
perturbation, the closer the results of the traditional DG methods are to the well-balanced
method.

capture the discontinuity very well even on a coarse mesh of 200 uniform cells.

2.4 Moving-Water Well-Balanced DG Methods

The objective of this section is to present well-balanced methods which maintain

the general moving steady state (2.8). Compared with the still-water equilibrium, the
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Figure 2.10: Numerical solutions of the well-balanced DG methods for (2.33) at various
times with 200 uniform cells.

Figure 2.11: Initial conditions and numerical solutions of test (2.35) at time t = 0.05 using
200 uniform cells. The total water height h+b, bottom topography b, potential temperature
field θ, and pressure p = 1

2gh
2θ are plotted. The result for θ is a horizontal translation of

the initial condition.

moving-water steady state is more complex, therefore, special care is provided to the re-

covery of the well-balanced states, the source term approximation, and the construction of

well-balanced numerical fluxes. We also show how the well-balanced methods for the gen-

eral moving steady state can be extended to the isobaric (2.6) and constant water height

(2.7) steady states.
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2.4.1 Numerical Initial Conditions

Recovery of the well-balanced states from the numerical initial conditions in the

piecewise polynomial space Vkτ can be a challenging task. Usually, the initial conditions of

the modal DG method are taken to be the L2 projection of the true initial conditions U0,

which works well for the lake-at-rest still-water preserving methods. However, the projected

polynomial, denoted as U0,τ , may not be in the equilibrium state when the moving-water

equilibrium is considered. As a result, the cell boundary values U±
τ,j+ 1

2

may not be in

equilibrium. This is problematic because the cell boundary values are used to compute the

numerical fluxes and thus increases the difficulty in designing a well-balanced scheme.

This difficulty has been observed in [150] in which well-balanced methods were

designed for the SWEs with moving-water equilibrium state. It was resolved there by

defining the well-balanced states as the solutions of nonlinear equations and then solving

them using Newton’s method, which could be complicated. In this work, we propose a

different and much simpler method to define the numerical initial conditions and to recover

the well-balanced states, thanks to the flexibility of the DG methods.

The initial conditions of the DG method should be polynomials that approximate

the exact solutions with enough accuracy. Thus we introduce a new projection (known as

the Radau projection) of the initial condition by defining Pτω to be a projection of ω into

Vkτ , such that ∫
Ij

Pτωv dx =

∫
Ij

ωv dx (2.36)

for any v ∈ P k−1 on Ij , and

(Pτω)(x−
j+ 1

2

) = ω(xj+ 1
2
), (2.37)
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at the right boundary value xj+ 1
2

of the cell Ij . The polynomial Pτω for each cell Ij can be

determined by solving a local linear algebra problem of the size (k + 1) × (k + 1) derived

from the discretized versions of (2.36) and (2.37).

We define the projection of the initial condition U0,τ and the projection of the

bottom function bτ (x) to be

U0
τ (x) = PτU0(x), bτ (x) = Pτ b(x), (2.38)

and it can be shown that

U0
τ (x−

j+ 1
2

) = U0(xj+ 1
2
), bτ (x−

j+ 1
2

) = b(xj+ 1
2
), for all j. (2.39)

Thus, at the right boundary point of each cell Ij , the equilibrium states (2.8) are recovered

using the piecewise polynomial projections of the exact solutions, i.e.,

(
u2
τ

2
+ gθτ (hτ + bτ )

)(
x−
j+ 1

2

)
= constant, for all j.

Notice that the numerical initial condition is only in perfect equilibrium at the right bound-

ary point of each cell.

Remark 6. The choice of the projection Pτ is not unique. Instead of requiring the projected

function match the original function at the right end point xj+ 1
2

as in (2.37), we could choose

any other point in the cell Ij, except the center xj. Such projection with the choice of xj

has been presented in [95]. However, we noticed that projection is only optimal when the

polynomial degree k is even, and it is suboptimal when k is odd.
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2.4.2 Conservative and Equilibrium Variables

We denote the moving-water equilibrium variables from (2.8) as:

V =


E

m

θ

 =


u2

2 + gθ(h+ b)

hu

θ

 , (2.40)

which become constants at the steady state (2.8). It is necessary to transform the conserva-

tive variables U into equilibrium variables V , and vice versa in the process of maintaining

the well-balanced property. Given U and the bottom function b, the equilibrium variables

can be easily computed, and we denote it by V = V (U , b). On the other hand, suppose V

and the bottom function b are given, we can evaluate U = U(V , b) in the following way.

Let us rewrite E as

E =
m2

2h2
+ gθ(h+ b), (2.41)

which leads to the cubic polynomial

m2

2
+ (gθb− E)h2 + (gθ)h3 = 0. (2.42)

To recover the water height h, we find the correct root of this cubic polynomial. The three

roots of a cubic polynomial can be found analytically. If the polynomial returns three real-

valued roots, one of them is negative, and the other two correspond to the subsonic and

supersonic cases. We choose h(V , b) as the root that is closest to hτ (x̂i), where x̂i is either

a quadrature point or a cell-boundary value. In the other case when the polynomial has one

real-valued root and two complex-valued roots, the only real-valued root is negative and we

choose h(V, b) to be the real part of the complex roots. Once h is obtained, m and hθ can

be easily recovered from V .
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Next, we propose to decompose the solution Uτ , into the reference equilibrium

state U e
τ and the fluctuation part U f

τ , with the expectation that U f
τ reduces to 0 at the

moving-water equilibrium (2.8). Note that this decomposition will be computed not only

for the initial conditions, but also at each time step. In each computational cell Ij , the

equilibrium state U e
τ (x) can be computed from the constant equilibrium variables

V̂j =


Êj

m̂j

θ̂j

 =


Eτ (x−

j+ 1
2

)

mτ (x−
j+ 1

2

)

θτ (x−
j+ 1

2

)

 , (2.43)

and the bottom function bτ in the form of

U e
τ (x) =


heτ (x)

(hu)eτ (x)

(hθ)eτ (x)

 := PτU(V̂j , bτ ). (2.44)

Unlike the still-water case in (2.13), the functions U(V̂j , bτ ) may not be piecewise poly-

nomials as a result of the nonlinear mapping, even though V̂j is constant and bτ ∈ Vkτ .

Therefore, the same projection Pτ is used to project them into the DG space Vkτ . Lastly,

we can decompose the numerical solution Uτ as follows:

Uτ = U e
τ +U f

τ , (2.45)

where U f
τ = Uτ−U e

τ ∈ Vkτ . If the initial condition U0(x) is in the moving-water equilibrium

(2.8), the reference equilibrium state U e
τ (constructed in the way above) is identical to the

solution Uτ , and therefore U f
τ = 0.
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2.4.3 Well-Balanced Numerical Fluxes

The semi-discrete moving-water well-balanced DG method for (2.1) is defined as

follows: we seek the DG solution Uτ satisfying∫
Ij

∂t(Uτ )v dx−
∫
Ij

F (Uτ )∂xv dx+ F̂ l
j+ 1

2

v−
j+ 1

2

− F̂ r
j− 1

2

v+
j 1
2

=

∫
Ij

S(Uτ , bτ )v dx, (2.46)

for any test function v(x) ∈ Vkτ . In order to determine the well-balanced numerical fluxes,

we extend the hydrostatic reconstruction approach presented in Section 2.2.2 for the still-

water equilibrium. After computing the boundary values U±
τ,j+ 1

2

at the time step tn, we

again set

b∗
τ,j± 1

2

= max
(
b+
τ,j± 1

2

, b−
τ,j± 1

2

)
. (2.47)

However, other generalizations of the hydrostatic reconstruction could also be used. Next,

the height function at the cell interface can be redefined as:

h∗,−
τ,j+ 1

2

= max

(
0, h

(
V̂j , b

∗
τ,j+ 1

2

)
+ hf,−

τ,j+ 1
2

)
,

h∗,+
τ,j+ 1

2

= max

(
0, h

(
V̂j+1, b

∗
τ,j+ 1

2

)
+ hf,+

τ,j+ 1
2

)
,

(2.48)

where the values V̂j are given in (2.43) and hfτ is given in (2.45). This results in following

updated boundary values of U :

U∗,±
τ,j+ 1

2

=


h∗,±
τ,j+ 1

2

m±
τ,j+ 1

2

h∗,±
τ,j+ 1

2

θ±
τ,j+ 1

2

 . (2.49)

Finally, the well-balanced numerical fluxes can be computed:

F̂ l
j+ 1

2

= f
(
U∗,−
τ,j+ 1

2

,U∗,+
τ,j+ 1

2

)
+ F

(
U−
τ,j+ 1

2

)
− F

(
U∗,−
τ,j+ 1

2

)
,

F̂ r
j− 1

2

= f
(
U∗,−
τ,j− 1

2

,U∗,+
τ,j− 1

2

)
+ F

(
U+
τ,j− 1

2

)
− F

(
U∗,+
τ,j− 1

2

)
,

(2.50)
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where f(a, b) is a consistent numerical flux, such as the Lax-Friedrichs flux defined in (1.18).

Again, at the moving-water equilibrium (2.8), we have V̂j = constant and hfτ = 0, therefore,

h∗,+
τ,j+ 1

2

= h∗,−
τ,j+ 1

2

following the definition in (2.48). This leads to the continuity of U∗τ at cell

interfaces, i.e. U∗,+
τ,j+ 1

2

= U∗,−
τ,j+ 1

2

. As a result, we can show that

F̂ l
j+ 1

2

= F (U−
j+ 1

2

), F̂ r
j− 1

2

= F (U+
j− 1

2

), (2.51)

due to the consistency of the numerical flux f(a, b).

Remark 7. The recovery of h from the equilibrium variable V via solving a cubic polynomial

is needed twice at each time step, namely in (2.44) and (2.48) described above. Numerically,

the cubic polynomial computations allot for approximately 10− 12% of total computational

time. One could further reduce the computational cost if redefining the variable b∗ in (2.47)

to

b∗
τ,j± 1

2

= b−
τ,j± 1

2

, (2.52)

which matches the definition of the Radau projection in (2.37). Therefore, h(V̂j , b
∗
τ,j+ 1

2

)

reduces to h−
τ,j+ 1

2

, and the updated cell boundary value h∗,± in (2.48) becomes

h∗,−
τ,j+ 1

2

= max

(
0, h−

τ,j+ 1
2

+ hf,−
τ,j+ 1

2

)
, h∗,+

τ,j+ 1
2

= max

(
0, h−

τ,j+ 1
2

+ hf,+
τ,j+ 1

2

)
, (2.53)

which now does not involve the step to solve the cubic polynomial.

2.4.4 The Source Term Approximation

To maintain the well-balanced property, we introduce the following way to de-

compose the source term, by directly extending the idea in Section 2.2.3 for the still-water
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equilibrium. We first decompose the source term into the equilibrium and fluctuation parts

∫
S(Uτ , bτ )v dx =

∫
S(U e

τ , bτ )v dx+

∫
S(U f

τ , bτ )v dx. (2.54)

As before, we use a quadrature rule to compute the second term on the right hand side.

For the first term, we notice that the equality

∫
Ij

S
(
U(V̂j , bτ ), bτ

)
v dx (2.55)

= −
∫
Ij

F
(
U(V̂j , bτ )

)
vx dx+ F

(
U(V̂j , bτ )(x−

j+ 1
2

)
)
v−
j+ 1

2

− F
(
U(V̂j , bτ )(x+

j− 1
2

)
)
v+
j− 1

2

,

holds when the exact integration is used, since U(V̂j , bτ ) is the equilibrium solution in the

cell Ij . In (2.44), U e
τ is defined as the projection of U(V̂j , bτ ) with approximation error

O(τk+1). Taking in consideration of this error, the equation (2.55) becomes

∫
Ij

S(U e
τ , bτ )v dx+O(τk+1) = −

∫
Ij

F (U e
τ )vx dx+F (U e,−

τ,j+ 1
2

)v−
j+ 1

2

−F (U e,+

τ,j− 1
2

)v+
j− 1

2

, (2.56)

in which the integrals can also be computed via quadrature rule with the same errorO(τk+1).

Unlike the still-water case in Section 2.2.3, the term F (U e
τ ) is no longer a polynomial, even

though U e
τ is, and we cannot compute these integrals exactly with a sufficiently accuracy

quadrature rule. To this end, the source term can be evaluated using the following form:

∫
Ij

S(Uτ , bτ )v dx = −
∫
Ij

F (U e
τ )vx dx+F (U e,−

τ,j+ 1
2

)v−
j+ 1

2

−F (U e,+

τ,j− 1
2

)v+
j− 1

2

+

∫
Ij

S(U f
τ , bτ )v dx.

(2.57)

2.4.5 Slope Limiter

When the solution contains discontinuities, a slope limiter procedure may be nec-

essary after each inner stage of the Runge-Kutta time stepping procedure. We use the
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standard total variation bounded (TVB) slope limiter [138] presented below. The TVB

corrected minmod function is defined by

m̃(a1, ..., al) =


a1, if |a1| ≤Mτ2,

m(a1, ..., al), otherwise,

(2.58)

where M is the TVB parameter, and the minmod function m(a1, ..., al) is defined as:

m(a1, ..., al) =


smin(|a1|, ..., |al|), if s = sign(a1) = ... = sign(al),

0, otherwise .

(2.59)

The slope limiter procedure involves two steps. First, one must check if any limiting

in needed in a specific cell. If the corrected minmod function returns the first argument,

i.e.,

m̃
(
Uτ (x−

j+ 1
2

)− Ūτ,j , Ūτ,j − Ūτ,j−1, Ūτ,j+1 − Ūτ,j
)

= Uτ (x−
j+ 1

2

)− Ūτ,j ,

m̃
(
Ūτ,j −Uτ (x+

j− 1
2

), Ūτ,j − Ūτ,j−1, Ūτ,j+1 − Ūτ,j
)

= Ūτ,j −Uτ (x+
j− 1

2

),

(2.60)

with Ūτ,j standing for the cell average of Uτ in the cell Ij , the limiting is not necessary in

this cell. Otherwise, we need to apply the limiter to all the variables in that cell, which is

the second step of the slope limiter procedure. We define the modified cell boundary values

to be

U (mod)
τ (x−

j+ 1
2

) = Ūτ,j + m̃
(
Uτ (x−

j+ 1
2

)− Ūτ,j , Ūτ,j − Ūτ,j−1, Ūτ,j+1 − Ūτ,j
)
,

U (mod)
τ (x+

j− 1
2

) = Ūτ,j − m̃
(
Ūτ,j −Uτ (x+

j− 1
2

), Ūτ,j − Ūτ,j−1, Ūτ,j+1 − Ūτ,j
)
,

(2.61)

A P 2 polynomial that preserves the original cell average in Ij can then be recovered from

the updated cell boundary values (2.61) and the cell average Ūτ,j .

This limiting procedure may not preserve the moving-water equilibrium state (2.8).

Therefore, to maintain the well-balanced state when using the slope limiter, we perform the
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first step (2.60) to determine if limiting is necessary in each cell, based on the fluctuation

part of the variables U f
τ . If limiting is required in a specific cell, the slope limiting procedure

is performed on the conservation variables Uτ . If the steady state solution is reached, the

fluctuation part satisfies U f
τ = 0, hence no TVB limiter is needed in any cell. Therefore

the well-balanced property will not be affected by the limiter procedure. Unlike in [150],

we cannot use the equilibrium variable Vτ in the first step (2.60), due to the possibility of

the cell average V̄τ not being in equilibrium even at the moving-water steady state.

2.4.6 Well-Balanced Property

Proposition 8. The proposed DG scheme (2.46) for the Ripa system (2.1), paired with nu-

merical fluxes (2.50) and source term approximation (2.57), is well-balanced for the smooth

moving-water equilibrium (2.8).

Proof. : Suppose the initial data are moving-water steady state equilibria. The special

projection Pτ ensures that the equilibrium state is maintained at the cell boundary x−j+1/2

for all j for the numerical initial conditions. Therefore, from the definition of (2.43), we

have V̂j = constant for all j. This implies the equilibrium part U eτ , computed from V̂j and

bτ in (2.44), is equivalent to Uτ and that U f
τ = 0. The source term approximation (2.57)

becomes

∫
Ij

S(Uτ , bτ )v dx = −
∫
Ij

F (Uτ )vx dx+ F (U−
τ,j+ 1

2

)v−
j+ 1

2

− F (U+
τ,j− 1

2

)v+
j− 1

2

(2.62)
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At the same time, since U f
τ = 0, the modified cell boundary values satisfy

U∗,−
τ,j+ 1

2

=


max

(
0, h(V̂j , b

∗
j+ 1

2

)
)

m̂−
j+ 1

2

max
(
0, h(V̂j , b

∗
j+ 1

2

)
)
θ̂−
j+ 1

2

 =


max

(
0, h(V̂j+1, b

∗
j+ 1

2

)
)

m̂+
j+ 1

2

max
(
0, h(V̂j+1, b

∗
j+ 1

2

)
)
θ̂+
j+ 1

2

 = U∗,+
τ,j+ 1

2

.

(2.63)

Due to the consistency of the Lax-Friedrichs flux and (2.63), it can be shown that

F̂ l
j+ 1

2

= F (U−
τ,j+ 1

2

), F̂ r
j− 1

2

= F (U+
τ,j− 1

2

), (2.64)

and the flux terms at the left hand side of (2.46) reduce to

−
∫
Ij

F (Uτ )∂xv dx+ F (U−
τ,j+ 1

2

)v−
j+ 1

2

− F (U+
τ,j− 1

2

)v+
j− 1

2

.

It thus follows that the flux terms exactly balance the source term approximation, and the

well-balanced property is proven.

We finish this section with some remarks about the moving-water equilibrium

preserving well-balanced RKDG method.

Remark 9. When the bottom topography is flat (i.e., b(x) = constant C), the traditional

DG methods are recovered from our well-balanced DG scheme, that is, the source term

approximation reduces to 0 exactly and the left and right numerical fluxes reduce to the

original fluxes. First of all, in each cell Ij, V̂j defined in (2.43) is a scalar number. When

b(x) = C is a constant, the value of h(V̂j , C) is also a constant which does not depend on

x within each cell Ij. The same observation holds for U e
τ (x) ≡ PτU(V̂j , C). Therefore, we

have

∫
Ij

S (U e
τ , bτ ) v dx = −

∫
Ij

F (U e
τ ) vx dx+ F

(
U e,−
τ,j+ 1

2

)
v−
j+ 1

2

− F
(
U e,+

τ,j− 1
2

)
v+
j− 1

2

= 0.
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Also, the numerical integral
∫
Ij
S
(
U f
τ , bτ

)
v dx = 0, since bτ (x) = C leads to (bτ )x = 0.

Together, this implies the source term approximation presented in (2.57) is zero.

Second, we show that the well-balanced numerical flux reduces to the standard DG

flux. Note that, when b(x) = C is a constant, b∗
τ,j± 1

2

defined by (2.47) or (2.52) is also the

same constant C. Therefore,

h∗,−
τ,j+ 1

2

= max

(
0, h(V̂j , C) + hf,−

τ,j+ 1
2

)
= max

(
0, he,−

τ,j+ 1
2

+ hf,−
τ,j+ 1

2

)
= h−

τ,j+ 1
2

. (2.65)

Similarly, it can be shown that h∗,+
τ,j+ 1

2

= h+
τ,j+ 1

2

and more generally that U∗,±
τ,j+ 1

2

= U±
τ,j+ 1

2

.

Therefore the left and right numerical fluxes defined in (2.50) reduce to the original DG

fluxes: F̂ l
j+ 1

2

= F̂j+ 1
2
, F̂ r

j− 1
2

= F̂j− 1
2
.

Remark 10. Our well-balanced methods are designed to preserve the moving-water equi-

librium (2.8). When applied to the still-water steady state (2.5), which is a special case of

the moving-water equilibrium with m = 0, they should automatically preserve this simpler

equilibrium. In fact, they reduce to the same still-water well-balanced methods presented in

Section 2.2 with the exception of the choice of projection.

2.4.7 Well-Balanced Methods for the Constant Water Height and Iso-

baric Equilibria

The proposed framework to balance the moving-water equilibrium can also be

extended to preserve the constant water height steady state (2.7) and the isobaric steady

state (2.6) of the Ripa model. For each given equilibrium, one well-balanced method to

balance this equilibrium can be designed, but we cannot combine these into a unified well-

balanced method. Below, we will discuss how to design such scheme briefly with some
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necessary details provided.

First, let’s consider the constant water height steady state solution (2.7). Let the

equilibrium variables be denoted

V̂j =


ĥj

m̂j

L̂j

 =


hτ

(
x−
j+ 1

2

)
(hu)τ

(
x−
j+ 1

2

)
(
bτ + 1

2hτ ln θτ
)(

x−
j+ 1

2

)


, (2.66)

then the equilibrium parts can be determined as follows:

U e
τ,j(x) =


heτ,j(x)

(hu)eτ,j(x)

(hθ)eτ,j(x)

 =


ĥj

m̂j

ĥjPτ
(

exp
(

2
ĥj

(L̂j − bτ (x))
))

 , (2.67)

where Pτ is the same Radau projection described in (2.36) and (2.37). The fluctuation

part U f
τ is again determined by the decomposition Uτ = U e

τ +U f
τ . Next, we determine the

modified cell interface values as

(hθ)∗,−
τ,j+ 1

2

= max

(
0, ĥj exp

(
2

ĥj

(
L̂j − b∗τ,j+ 1

2

))
+ (hθ)f,−

j+ 1
2

)
,

(hθ)∗,+
τ,j+ 1

2

= max

(
0, ĥj+1 exp

(
2

ĥj+1

(
L̂j+1 − b∗τ,j+ 1

2

))
+ (hθ)f,+

j+ 1
2

)
,

(2.68)

where b∗
τ,j+ 1

2

= max
(
b+
τ,j+ 1

2

, b−
τ,j+ 1

2

)
. We let h∗,±

τ,j+ 1
2

= h±
τ,j+ 1

2

and (hu)∗,±
τ,j+ 1

2

= (hu)±
τ,j+ 1

2

.

Then at the steady state we have U∗,−
τ,j+ 1

2

= U∗,+
τ,j+ 1

2

since h, hu are both constant and

Ufτ = 0 at the steady state. Lastly, let the choices of left and right fluxes as well as the

source term approximation be the same as for the moving-water schemes. The numerical

methods designed in this way can be shown to preserve the constant water height state

exactly.

56



Secondly, the isobaric steady state solution (2.6) is considered. Let us denote the

equilibrium variables as

V̂j =

m̂j

Ŝj

 =


(hu)τ

(
x−
j+ 1

2

)
hτ (hθ)τ

(
x−
j+ 1

2

)
 , (2.69)

then the equilibrium parts can be determined as

U e
τ,j(x) =


heτ,j(x)

(hu)eτ,j(x)

(hθ)eτ,j(x)

 =


hτ,j(x)

m̂j

Pτ
(

Ŝj
hτ,j(x)

)

 , (2.70)

and the fluctuation part is defined by U f
τ = Uτ − U e

τ . Now, if we let h∗
τ,j+ 1

2

= h∗,±
τ,j+ 1

2

=

max

(
h−
τ,j+ 1

2

, h+
τ,j+ 1

2

)
and set (hu)∗,±

τ,j+ 1
2

= (hu)±
τ,j+ 1

2

, we can determine the last conservative

variable as

(hθ)∗,−
τ,j+ 1

2

= max

0,
Ŝj

h∗
τ,j+ 1

2

+ (hθ)f,−
τ,j+ 1

2

 , (hθ)∗,+
τ,j+ 1

2

= max

0,
Ŝj+1

h∗
τ,j+ 1

2

+ (hθ)f,−
τ,j+ 1

2

 .

(2.71)

The numerical scheme is completed by using the formulations for the source term as well as

the left and right fluxes found in the moving-water scheme. It then follows that the scheme

exactly preserves the isobaric steady state.

2.5 Numerical Tests for Moving-Water Well-Balanced Meth-

ods

In this section, we present numerical results of our moving-water well-balanced

DG methods for the one-dimensional Ripa system (2.1), using the well-balanced technique
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described in Section 2.4. We implement our scheme using piecewise quadratic polynomials

(k = 2) in space, paired with the third order TVD Runge-Kutta time discretization (1.19).

The CFL number is again taken to be 0.1. The constant M in the TVB limiter is taken

to be 0, except for the accuracy test in which no slope limiter was used. The gravitational

constant g is fixed to be 9.812m/s2. Multiple types of numerical tests have been carried

out in this section to demonstrate the capacity of our proposed moving-water well-balanced

methods.

2.5.1 Test for Accuracy

In this subsection, we will check the accuracy of our moving-water well-balanced

scheme for smooth solutions. The same setup of the initial conditions and boundary condi-

tions, as in Section 2.3.1, is used here. We run the numerical simulation until time t = 0.02,

while the numerical solution is still smooth. Table 2.3 contains the L1 errors and numer-

ical orders for the moving-water well-balanced DG method. It is easy to observe that the

expected high order accuracy is obtained by the proposed methods.

h hu hθ

No. of Cells L1 Error Order L1 Error Order L1 Error Order

25 7.3659e-04 6.7798e-03 7.8134e-04
50 1.1235e-04 2.7129 9.0751e-04 2.9013 1.1063e-04 2.8201
100 1.5781e-05 2.8317 1.1708e-04 2.9544 1.8243e-05 2.6004
200 2.0662e-06 2.9331 1.5041e-05 2.9606 2.7879e-06 2.7101
400 2.5592e-07 3.0132 1.8865e-06 2.9951 3.8607e-07 2.8522

Table 2.3: L1 errors and orders of accuracy for the test in Section 2.5.1, using the moving-
water well-balanced method.
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2.5.2 Tests for the Well-Balanced Property

The following tests are chosen to verify that the proposed DG methods preserve

the moving-water steady states (2.8) when a non-flat bottom topography b(x) exists. For

these examples, the errors are calculated by comparing the numerical results to the initial

conditions.

We present the test cases of both sub-critical and trans-critical flows. These tests

are extensions of widely used numerical experiments for verifying the performance of nu-

merical schemes for the SWEs in [145, 110, 152, 150]. The bottom function is given by:

b(x) =


0.2− 0.05(x− 10)2, if 8 ≤ x ≤ 12,

0, otherwise,

(2.72)

for a channel of length 25 meters. Two types of moving-water steady states solutions,

corresponding to sub-critical and trans-critical flows, will be investigated below.

(a) Sub-critical flow : The initial conditions are given by



m = 4.42
√

5

E = 22.06605 · 5

θ = 5

(2.73)

with the boundary conditions of m = 4.42
√

5 at the upstream and h = 2 at the

downstream.
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(b) Trans-critical flow : The initial conditions are given by:

m = 1.53
√

5

E = 11.09098731433671 · 5

θ = 5

(2.74)

with the boundary conditions of m = 1.53
√

5 at the upstream and

h = 0.405737258401203 at the downstream. The flow moves from subsonic to supersonic

at x = 10, which occurs at the peak of the bottom topography function.

For both test cases, the moving-water steady state solutions should be preserved

exactly. We run both cases until time the stopping time of t = 1, using a coarse mesh

of 200 uniform cells and a finer mesh of 800 cells for comparison. The L1 and L∞ errors

in Table 2.4 demonstrate the well-balanced property is maintained up to round-off error

when using the moving-water preserving method. The numerical results are presented in

Figures 2.12 and 2.14. For comparison, we also compute these moving-water steady states

using the still-water well-balanced methods presented in Section 2.2. Figures 2.13 and 2.15

display the difference between the numerical solution and the initial conditions. It can be

seen from the plots that the moving-water steady states are not preserved by the still-water

preserving method.
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Test Error Type h hu hθ

(2.73) L1 Error 3.9850e−13 6.0707e−13 4.0459e−13
L∞ Error 1.5654e−13 4.2100e−13 1.5965e−13

(2.74) L1 Error 7.2879e−14 3.0429e−13 7.2849e−14
L∞ Error 8.0269e−14 1.8407e−13 7.6161e−14

Table 2.4: L1 and L∞ errors for the well-balanced tests of different moving-water equilibria,
at time t = 1 with 200 uniform cells.

Figure 2.12: Numerical solutions for sub-critical flow (2.73) at time t = 1 with 200 and 800
uniform cells. The steady state is preserved for both mesh sizes when the moving-water
well-balanced scheme is used.

2.5.3 Tests of Small Perturbations

The tests in this subsection are selected to demonstrate that small perturbations

to the moving-water steady states are well captured by the proposed moving-water well-

balanced DG scheme. Similar tests have been presented in [159, 150] for the SWEs. We will

consider two perturbation sizes to the sub-critical and trans-critical moving-water steady

states.
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Figure 2.13: The difference between the solutions h, hu, hθ for the sub-critical flow problem
(2.73) at time t = 1 and the corresponding steady state solutions. Both the moving-water
and still-water scheme results are plotted.

The initial conditions are given by the sub-critical and trans-critical flow (2.73) and

(2.74) in Section 2.5.2, with an added perturbation to h and hθ in the interval [5.75, 6.25].

That is, if we denote the moving-water steady state initial conditions in Section 2.5.2 as(
heq, (hu)eq, (hθ)eq

)
, the initial conditions of the perturbed tests are given by

(a) Larger Perturbation:

(
h, (hu), (hθ)

)
(x, 0) =

(
heq, (hu)eq, (hθ)eq

)
(x, 0) + [0.05, 0, 0.25]χ[5.75,6.25]

. (2.75)

(b) Smaller Perturbation:

(
h, (hu), (hθ)

)
(x, 0) =

(
heq, (hu)eq, (hθ)eq

)
(x, 0) + [0.0001, 0, 0.0005]χ[5.75,6.25]

. (2.76)

The value χ[5.75,6.25] is defined to be 1 in the region [5.75, 6.25] and 0 everywhere else in the

domain.

It is expected that the perturbation will split into two waves traveling in opposite

directions away from their point of origin. We run the test until the stopping time of

t = 0.75. At this time, the downstream moving wave will have passed the bump of the
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Figure 2.14: Numerical solutions for trans-critical flow (2.74) at time t = 1 with 200 and
800 uniform cells. The steady state is preserved for both mesh sizes even with the flow
changing from sub-critical to super-critical when the moving-water well-balanced scheme is
implemented.

Figure 2.15: Same as Figure 2.13, except for the trans-critical flow problem (2.74).

bottom topography function. The numerical results for the large perturbation of the sub-

critical flow problem are shown in Figures 2.16 and 2.17, where we compare the results

of moving-water well-balanced DG method on mesh sizes of 200 and 800 uniform cells.

One can observe that the propagation of these small perturbations is well captured by our

methods, and there are no visible numerical oscillations in the solutions. We demonstrate

the numerical results of the larger perturbation for the trans-critical flow problem in Figures
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2.18 and 2.19, and similar observations can be found.

Figure 2.16: Water height h of the well-balanced methods for the larger perturbation test
of sub-critical flow (2.73) at time t = 0.75 with mesh sizes of 200 and 800 uniform cells.
The bottom row contains zoomed in images of the waves of h.

Next, we present the numerical results from the smaller perturbation tests, and

compare the performance of the moving-water and still-water preserving schemes on a mesh

of 200 uniform cells. Figure 2.20 contains plots of the difference between the solutions

h, hu, hθ at the final time 0.75 and the corresponding steady states for the sub-critical flow

problem. It can be seen that the still-water preserving DG scheme does not handle per-

turbations to the moving-water steady state nearly as well as the moving-water preserving

scheme. Similar results have been observed for the trans-critical flow problem, see Fig-
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Figure 2.17: Numerical solutions of hu and hθ for the larger perturbation test of sub-critical
flow problem (2.73) at time t = 0.75 with mesh sizes of 200 and 800 uniform cells.

ure 2.21. These results demonstrate the importance of moving-water preserving method in

capturing the propagation of these small perturbations.

2.5.4 Tests for Riemann Problems

In this subsection, we consider three Riemann problems that contain discontinu-

ities in the initial conditions, to demonstrate the performance of our proposed methods

when the solutions contain discontinuity.

First, we consider a problem with no initial velocity, a flat bottom (b(x) = 0), and

the following initial conditions for x ∈ [−1, 1]:

h(x, 0) =


5, when x < 0,

1, when x ≥ 0,

u(x, 0) = 0, θ(x, 0) =


3, when x < 0,

5, when x ≥ 0.

(2.77)

Transmissive boundary conditions are employed for all variables. We run the

simulation until time t = 0.04, and both shock and rarefaction waves appear in this test.
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Figure 2.18: Water height h of the well-balanced methods for the larger perturbation test
of trans-critical flow (2.74) at time t = 0.75 with mesh sizes of 200 and 800 uniform cells.
The bottom row contains zoomed in images of the waves of h.

Figure 2.22 displays the numerical results of our methods with 200 uniform cells, and we

also include the numerical results of 1600 cells as the “reference” solutions for comparison.

One can observe that the numerical solutions agree well with the “reference” solutions, and

both the shock and rarefaction wave are captured well by the moving-water well-balanced

DG methods.

Second, we consider a dam break problem over a flat bottom, in which all initial

conditions are non-zero. The initial conditions in the computational domain [−1, 1] are set
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Figure 2.19: Numerical solutions of hu and hθ for the larger perturbation test of trans-
critical flow problem (2.74) at time t = 0.75 with mesh sizes of 200 and 800 uniform cells.

as

(
h(x, 0), u(x, 0), θ(x, 0)

)
=


(2, 0.5, 1), when |x| < 0.5,

(1, 0.75, 1.55), otherwise,

(2.78)

with b(x) = 0. Transmissive boundary conditions are employed for all variables. We run

the simulation until time t = 0.075, and six waves including both shock and rarefaction

waves appear. Figure 2.23 displays the numerical results of our methods with 200 uniform

cells, and the “reference” solutions obtained with refined 1600 uniform cells. Again, one

can observe that the numerical solutions agree well with the “reference” solutions, and all

these waves are captured well by the moving-water well-balanced DG methods.

Lastly, we consider a dam break problem over a non-flat and discontinuous bottom

topography. We set our computational domain to be [0, 600] in which the bottom function
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Figure 2.20: The difference between the solutions h, hu, hθ for the smaller perturbation
of the sub-critical flow problem (2.73) at time 0.75 and the corresponding steady state
solutions. A uniform mesh of 200 cells has been used for both the still-water and moving-
water schemes.

and initial conditions are defined as:

b(x) =


8, when |x− 300| < 75,

0, otherwise,

(2.79)

and

(
h, u, θ

)
(x, 0) =


(
20− b(x), 1, 10

)
, when x < 300,

(
15− b(x), 5, 5

)
, when x ≥ 300.

(2.80)

Transmissive boundary conditions are employed for all variables. The simulation is ran until

the stopping time t = 3, and the solution demonstrate a complicated structure, due to the

interaction of the waves with the discontinuous bottom function. The conservative variables

(h, hu, hθ) as well as velocity u, temperature θ, and pressure p = 1
2gθh

2 are displayed in

Figure 2.24. The numerical results of both 200 and 1600 uniform cells are presented in

these figures. We can observe that the numerical solutions agree well with the “reference”

solutions.
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Figure 2.21: The difference between the solutions h, hu, hθ for the smaller perturbation
of the trans-critical flow problem (2.74) at time 0.75 and the corresponding steady state
solutions. A uniform mesh of 200 cells has been used for both the still-water and moving-
water schemes.

Figure 2.22: Numerical solution for the Riemann problem (2.77) at time t = 0.04 with 200
and 1600 cells using the moving-water well-balanced method.

Figure 2.23: Numerical solution for the Riemann problem (2.78) at time t = 0.075 with 200
and 1600 cells using the moving-water well-balanced method.
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Figure 2.24: Numerical solution for the Riemann problem (2.80) at time t = 3 with 200
and 1600 cells using the moving-water well-balanced method. Both the water surface h+ b,
momentum hu, hθ, and the velocity u, θ, pressure p are shown.

70



Chapter 3

High Order Man-at-Eternal-Rest

and Living-Man Equilibria

Preserving Discontinuous Galerkin

Methods for the Blood Flow Model

3.1 Introduction

The one-dimensional blood flow through arteries can be described by the system

of equations 
∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+
β

3
A

3
2

)
=

βA

2
√
A0
∂x(A0),

(3.1)
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where A(x, t) = πR2(x, t) is the cross-sectional area of the artery with radius R(x, t) and

Q(x, t) = A(x, t)u(x, t) is the discharge with u(x, t) representing the flow velocity. The

parameter β = K
ρ
√
π

is a constant with K denoting the wall stiffness and ρ the blood density.

In the source term, A0(x) = πR2
0(x) is the cross-sectional area at rest. More details of the

model are provided in Section 1.1.2 where the model is introduced.

The system (3.1) representing the blood flow through arteries is similar to the

SWEs model. This model is widely used for modeling rivers, river networks, lake flows,

tides, and tsunamis. The SWEs model and the blood flow model both have two equations

representing mass and momentum conservation. They belong to the family of hyperbolic

balance laws, and such equations often admit non-trivial steady state solutions. These

equilibria involve the perfect cancellation of the source term and the flux gradients in the

PDE level, which may not be satisfied numerically due to different numerical approximations

to these two terms. As a result, standard numerical methods may not be able to maintain the

steady state nor capture the nearly equilibrium flow (small perturbation of the equilibrium

state) well, unless a much refined mesh is used in the simulation. To resolve this issue, well-

balanced methods [8] are introduced to exactly preserve the steady state solutions at the

discrete level. They are often found to be efficient in capturing nearly equilibrium flow on a

coarse mesh. There have been extensive studies on designing well-balanced methods for the

SWEs over non-flat bottom topography [1, 158, 85] and Euler equations under gravitational

fields [156, 28].

The one-dimensional blood model through arteries (3.1) admits non-trivial steady

state solutions. By definition, the steady state solutions appear when the conservative
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variables (A,Q) do not change over time, or equivalently, ∂tA = 0 and ∂tQ = 0 which leads

to 
∂xQ = 0,

∂x

(Q2

A
+
β

3
A

3
2

)
=

βA

2
√
A0
∂x(A0).

(3.2)

A simple steady state occurs when the velocity becomes 0, known as the (non-zero pressure)

man-at-eternal-rest steady state or dead-man equilibrium in the literature

(
u,
√
A−

√
A0

)
= (0, constant). (3.3)

A special case of this steady state appears when the pressure in (1.14) is zero. This implies

that A reduces to A0, that is,

(u,A) = (0, A0). (3.4)

We will refer to this steady state as the zero pressure man-at-eternal-rest steady state. The

more general case occurs when the velocity u does not vanish. By some simple algebra, the

general equilibrium state, denoted as the living-man equilibrium, can be derived as

(
Q,

Q2

2A2
+ β

(√
A−

√
A0

))
= constant. (3.5)

One case in which this steady state might occur is in small arteries that are extremely

constricted by stenosis. In this case, there is so much flow resistance that the flow loses

pulsatility and approaches a steady state with non-zero velocity [60].

Various numerical methods have been designed for the one-dimensional blood flow

model. A recent study [11] provides a systematic comparison of six commonly used numer-

ical schemes for one-dimensional blood flow modelling. The numerical results are compared

with theoretical results, as well as three-dimensional numerical data in compatible domains,
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and good agreement was observed. Recently, well-balanced methods for the blood flow

through arteries which are efficient in capturing nearly equilibrium flows have gained more

attention. In [41], Delestre and Lagree developed well-balanced first-order and second-order

finite volume schemes for the blood flow system in elastic tubes with the man-at-eternal-rest

equilibrium. They also showed the appearance of spurious flows when a simple, non-well-

balanced, numerical method is used. Müller et al. [106] constructed high order well-balanced

Weighted Essentially Non-Oscillatory (WENO) scheme for blood flow in elastic vessels with

varying mechanical and geometrical properties. A modified version of the Dumbser-Osher-

Toro Riemann solver was introduced to treat the nonconservative term, and they show

the resulting methods preserves the man-at-eternal-rest equilibrium exactly. The numerical

methods are then extended to networks of elastic vessels with satisfying performance. An

upwind discretization for the source term to create a energy-balanced numerical solver was

introduced by Murillo et al. [104]. Wang et al. [146] derived high order well-balanced

finite difference WENO schemes that possess sharp shock transition. The main idea was

to split the source term into two parts and approximate them with compatible WENO

operators. In [94], the authors extended the hydrostatic construction idea (commonly used

in the design of well-balanced methods for the SWEs) to develop high order DG and fi-

nite volume WENO scheme for the blood flow. Most of these well-balanced methods are

designed to preserve the stationary man-at-eternal-rest steady state. As explained in [60],

such steady states may not be that relevant for blood flow as they only occur in “dead

men”. For the more general living-man equilibrium state (3.5), well-balanced methods are

first studied in [105], where a generalized hydrostatic reconstruction technique was used to
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construct the well-balanced numerical flux. In [60], Ghigo et al. presented a simple second

order well-balanced method for the one-dimensional blood flow in large arteries, with two

well-balanced hydrostatic reconstruction techniques designed to preserve the general steady

state solutions. Numerically, the proposed methods outperform the well-balanced methods

for the man-at-eternal-rest steady states based on the original hydrostatic reconstruction

technique.

This work in this chapter aims to develop high order well-balanced DG methods

for both the man-at-eternal-rest (3.3), (3.4) and living-man (3.5) steady states of the one-

dimensional blood flow model. High order accurate numerical methods are developed to

provide accurate simulation on a relatively coarse mesh. DG methods, which combine the

flexibility of the finite element method and stability of the finite volume method, have

gained increased attention recently. Another reason we choose DG methods in this study

is due to their flexibility to treat the junctions for network problems, as pointed out in

[23, 19], which would be important in the simulation of the human cardiovascular system.

Specific advantages of the DG scheme include straightforward implementation of junction

coupling conditions due to compactness and preservation of high order accuracy. Other high

order methods may require stencils (wide or one-sided) that negatively impact the accuracy

and stability of the scheme [23]. We start by presenting two simple approaches to design

well-balanced methods for the man-at-eternal-rest steady state solution. The first approach

is based on the decomposition of the numerical solution and the hydrostatic reconstruction

technique, while the second one is based on the well-balanced technique in [152] to split the

source term (as done in [146]). We will show the link of these two approaches, although
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they are derived based on different motivations. The main component of this chapter is on

how to design efficient well-balanced DG methods for the general living-man steady state.

Special attention is paid to the projection operator to define the numerical initial condition

(piecewise polynomials) of finite element methods. With a carefully chosen projection,

one can recover the nonlinear living-man equilibrium states from these numerical initial

conditions. Next, the numerical solutions are decomposed into two parts, one corresponding

to the equilibrium component, and the other corresponding to the fluctuation. We can

show that, if the living-man equilibrium is reached, this decomposition is exact in the sense

that the fluctuation part becomes zero. Note that the equilibrium component is computed

from the numerical solution at the current time step, and is not given a priori. With this

decomposition, the modified solution values at the cell interface can be defined, which can

recover the exact equilibrium solutions when the equilibrium state is reached. The general

hydrostatic reconstruction idea is then adopted to provide the well-balanced numerical flux.

Together with a careful choice of the source term approximation, well-balanced DG methods

for the general living-man equilibrium can be designed.

The chapter is organized as follows. In Section 3.2, the necessary notations are

introduced and well-balanced DG methods to preserve the man-at-eternal-rest steady state

are discussed. Section 3.3 presents the numerical performance of the DG methods in Section

3.2. The well-balanced DG methods that maintain the more general living-man equilibrium

state of the blood flow model are discussed in Section 3.4. In Section 3.5, numerical ex-

amples are given to demonstrate the high-order accuracy, well-balanced property, and good

resolution for smooth and discontinuous solution of the methods described in Section 3.4.
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3.2 Man-at-Eternal-Rest Well-Balanced DG Methods

We start by presenting well-balanced DG scheme for the simpler man-at-eternal-

rest steady states (3.3), (3.4). The proposed methods will be extended to the general

living-man equilibrium (3.5) in Section 3.4.

3.2.1 Notations and Discontinuous Galerkin Methods

Similarly to Chapter 2, we seek to find approximate solutions Uτ to the state

variables U by use of the DG numerical method. We note that the cross-sectional area at

rest, A0, will also be approximated and denoted by (A0)τ . We denote U+
τ,j+ 1

2

=

A+
τ,j+ 1

2

Q+
τ,j+ 1

2



as the limit from the right cell Ij+1 and U−
τ,j+ 1

2

=

A−τ,j+ 1
2

Q−
τ,j+ 1

2

 as the limit from the left cell

Ij . Details on the traditional DG scheme are found in Section 1.3.2. In this context the

Lax-Friedrich numerical flux term α is derived from one of the eigenvalues of the Jacobian

matrix of F (U), α = max
Uτ

(
Qτ
Aτ

+

√
β
√
Aτ

2

)
. The maximum in the calculation of α can be

taken either over the entire computational domain or locally.

Our goal is to design well-balanced DG methods which can preserve the man-at-

eternal-rest steady states (3.3) and (3.4). Many different approaches to design well-balanced

methods have been studied in the literature, mostly for the SWEs with non-flat bottom

topography. The key idea of well-balanced methods in this chapter is to decompose the

numerical solution at each time step into the equilibrium part and the fluctuation part,

which has also been studied in [150]. We carefully choose the decomposition so that, if

the steady state is reached, the equilibrium part recovers the steady state perfectly. Then
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by approximating the contribution of the equilibrium part and the fluctuation part in the

source term in a different way, one can achieve well-balanced property. The details are given

below. We would like to comment that this approach is somehow similar to that of solving

the new PDE with the unknown being the perturbation to the equilibrium state. The main

difference is that our approach does not assume the explicit knowledge of the equilibrium

state a priori, and we recover that equilibrium part (more specifically, the constant values

in (3.5)) numerically.

In the framework of DG methods, all of the numerical solutions (including Uτ and

(A0)τ ) are discontinuous at the cell interfaces, even at the steady state. To address this,

we follow the idea of hydrostatic reconstruction, and present our well-balanced numerical

scheme in the form that was introduced in Section 2.2.1 as

∫
Ij

∂tU
n
τ v dx−

∫
Ij

F (Un
τ )∂xv dx+ F̂ l

j+ 1
2

v−
j+ 1

2

− F̂ r
j− 1

2

v+
j− 1

2

=

∫
Ij

S(Un
τ , bτ )v dx. (3.6)

A similar form has been described to obtain well-balanced methods for the SWEs [160] and

for the blood flow model [94].

The focus of the following subsections will be on defining the left and right fluxes

as well as presenting how the source term is evaluated. To illustrate the approaches, we

will start with the simpler zero pressure man-at-eternal-rest case (3.4) in Section 3.2.2. The

non-zero pressure man-at-eternal-rest case (3.3) will be discussed in Section 3.2.3.

78



3.2.2 The Zero Pressure Man-at-Eternal-Rest Well-Balanced Scheme

Well-Balanced Numerical Fluxes

First, at each time step, we decompose the conservative unknown variables Uτ

into the sum of a reference equilibrium state U e
τ and a fluctuation part U f

τ . Taking the

zero pressure man-at-eternal-rest steady state (3.4) in consideration, we can define the

equilibrium part of the conservative variables in Ij by

U e
τ,j(x) =

Aeτ,j(x)

Qeτ,j(x)

 =

(A0)τ,j(x)

0

 , (3.7)

since the equilibrium state is explicitly given. The fluctuation part U f
τ can be determined

by the decomposition of the summation

Uτ = U e
τ +U f

τ , (3.8)

which leads to

U f
τ,j(x) =

A
f
τ,j(x)

Qfτ,j(x)

 =

Aτ,j(x)− (A0)τ,j(x)

Qτ,j(x)

 . (3.9)

When the solution is at a steady state, one can observe that the equilibrium parts U e
τ are

equivalent to Uτ , hence U f
τ = 0. The notations of U e

τ and U f
τ are introduced here to be

consistent with those in the living-man well-balanced methods in Section 3.4, and are not

necessary for this simpler man-at-eternal-rest steady state problem.

The idea of hydrostatic reconstruction is used for computing the numerical fluxes.

It was first introduced by Audusse in [1]. At time step tn, the cell interface values U±
τ,j+ 1

2

are computed first. We construct the cell interface value of A0 as

(A0)∗
τ,j+ 1

2

= max

(
(A0)+

τ,j+ 1
2

, (A0)−
τ,j+ 1

2

)
, (3.10)
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and use it to evaluate the modified cell interface values of Aτ

A∗,−
τ,j+ 1

2

= max

(
(A0)∗

τ,j+ 1
2

+Af,−
τ,j+ 1

2

, 0

)
= max

(
A−
τ,j+ 1

2

− (A0)−
τ,j+ 1

2

+ (A0)∗
τ,j+ 1

2

, 0

)
,

A∗,+
τ,j+ 1

2

= max

(
(A0)∗

τ,j+ 1
2

+Af,+
τ,j+ 1

2

, 0

)
= max

(
A+
τ,j+ 1

2

− (A0)+
τ,j+ 1

2

+ (A0)∗
τ,j+ 1

2

, 0

)
.

(3.11)

The new cell boundary values for U are then defined as

U∗,±
τ,j+ 1

2

=

A
∗,±
τ,j+ 1

2

Q±
τ,j+ 1

2

 . (3.12)

Lastly, the left and right fluxes are determined in the following manner

F̂ l
j+ 1

2

= f

(
U∗,−
τ,j+ 1

2

,U∗,+
τ,j+ 1

2

)
+

 0

β
3 (A−

τ,j+ 1
2

)
3
2 − β

3 (A∗,−
τ,j+ 1

2

)
3
2

 ,

F̂ r
j− 1

2

= f

(
U∗,−
τ,j− 1

2

,U∗,+
τ,j− 1

2

)
+

 0

β
3 (A+

τ,j− 1
2

)
3
2 − β

3 (A∗,+
τ,j− 1

2

)
3
2

 .

(3.13)

The choice of U∗,±
τ,j+ 1

2

was defined in the way such that they are the same at

the cell interfaces when steady state is reached, which is desirable for achieving the well-

balanced property. Notice that at the steady state, the left and right fluxes simplify to

F̂ l
j+ 1

2

= F

(
U−
τ,j+ 1

2

)
and F̂ r

j− 1
2

= F

(
U+
τ,j− 1

2

)
as a result of the numerical flux f being

consistent.

The Source Term Approximation

In an effort to balance the source term with the numerical fluxes, an approxi-

mation of the source term will be discussed in this section. The source term S(U , A0) =

βA
2
√
A0

(A0)x = βA(
√
A0)x is linear with respect to the variable A. As a result of this linearity
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and the decomposition of Uτ in (3.8), the source term can be decomposed as

∫
S (Uτ , (A0)τ ) v dx =

∫
S (U e

τ , (A0)τ ) v dx+

∫
S
(
U f
τ , (A0)τ

)
v dx. (3.14)

The second term on the right hand side can be directly computed by a quadrature rule. On

the other hand, since the function U e
τ (x) is the equilibrium state, we recall the following

relation

∫
Ij

S (U e
τ , (A0)τ ) v dx = −

∫
Ij

F (U e
τ ) vx dx+F

(
U e,−
τ,j+ 1

2

)
v−
j+ 1

2

−F
(
U e,+

τ,j− 1
2

)
v+
j− 1

2

, (3.15)

holds. When quadrature rule is used for numerical integration, this equality holds approx-

imately, up to the accuracy of the quadrature rule. For the purpose of well-balancedness,

we cannot use (3.14) with quadrature rule to approximate the source term, instead, the

approximation for the source term will be evaluated by∫
Ij

S (Uτ , (A0)τ ) v dx

= −
∫
Ij

F (U e
τ ) vx dx+ F

(
U e,−
τ,j+ 1

2

)
v−
j+ 1

2

− F
(
U e,+

τ,j− 1
2

)
v+
j− 1

2

+

∫
Ij

S
(
U f
τ , (A0)τ

)
v dx.

(3.16)

Taking the choice of U e
τ in (3.7), the decomposition of the source term (3.14)

becomes

∫
βAτ (

√
(A0)τ )xv dx =

∫
βA0(

√
(A0)τ )xv dx+

∫
β(Aτ − (A0)τ )(

√
(A0)τ )xv dx, (3.17)

and the approximation for the source term in (3.16) reduces to

∫
Ij

βAτ (
√
A0)xv dx =−

∫
Ij

β

3
((A0)τ )

3
2 vx dx+

β

3

(
(A0)−

τ,j+ 1
2

) 3
2

v−
j+ 1

2

− β

3

(
(A0)+

τ,j− 1
2

) 3
2

v+
j− 1

2

+

∫
Ij

(Aτ − (A0)τ )(
√

(A0)τ )xv dx. (3.18)
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Remark 11. The source term used in this chapter is due to only the cross-sectional area

at rest. The decomposition (3.14) will not hold if the source term also included a friction

term or another term that is not linear with respect to the conservative variables. However,

one could consider a similar decomposition for the source term as follows

∫
S (Uτ , (A0)τ ) v dx =

∫
S (U e

τ , (A0)τ ) v dx+

∫
(S (Uτ , (A0)τ )− S (U e

τ , (A0)τ )) v dx.

(3.19)

The first term on the right hand side,
∫
S (U e

τ , (A0)τ ) v dx, can be approximated by (3.15).

The second term on the right hand side can be computed using numerical integration with an

appropriate quadrature scheme. It is interesting to note that S (Uτ , (A0)τ )−S (U e
τ , (A0)τ ) =

S (Uτ −U e
τ , (A0)τ ) = S

(
U f
τ , (A0)τ

)
when the source is linear, this leads to the original

source decomposition formulation.

Remark 12. In the well-balanced methods designed for the SWEs in [153], a straightforward

numerical integration of the source term by a quadrature rule accurate for polynomial of

degree 3k − 1 is sufficient. This is due to the fact that the equation (3.15) holds exactly

with sufficiently accurate quadrature, therefore, equations (3.14) and (3.16) are equivalent.

For the blood flow with a source term of the form S(Uτ , (A0)τ ) = βAτ

2
√

(A0)τ
((A0)τ )x, a

direct numerical integral with quadrature rules does not yield a well-balanced method, because√
(A0)τ is no longer a polynomial, hence any numerical integration may not be exact. For

the steady state problem, the numerical error would be dominated by the integration error,

which becomes non-negligible, especially on a coarse mesh.

We conclude this subsection by showing the scheme indeed satisfies the well-

balanced property.
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Proposition 13. The DG scheme (2.10) for the blood flow system (1.15) with the zero pres-

sure man-at-eternal-rest steady state (3.4) is well-balanced when paired with the numerical

fluxes (3.13) and the source term decomposition (3.16).

Proof. At the steady state, we have U f
τ = 0 and U e

τ = Uτ . The approximation (3.16) to

the source term becomes∫
Ij

S (Uτ , (A0)τ ) v dx = −
∫
Ij

F (U e
τ ) vx dx+ F

(
U e,−
τ,j+ 1

2

)
v−
j+ 1

2

− F
(
U e,+

τ,j− 1
2

)
v+
j− 1

2

= −
∫
Ij

F (Uτ ) vx dx+ F

(
U−
τ,j+ 1

2

)
v−
j+ 1

2

− F
(
U+
τ,j− 1

2

)
v+
j− 1

2

.

(3.20)

Additionally, the left and right fluxes (3.13) simplify to F̂ l
j+ 1

2

= F

(
U−
τ,j+ 1

2

)
and F̂ r

j− 1
2

=

F

(
U+
τ,j− 1

2

)
at the steady state. Therefore, we have shown the fluxes and source term

balance, which implies the scheme is indeed well-balanced.

An Alternative Zero Pressure Man-at-Eternal-Rest Well-Balanced DG Scheme

In this subsection, we present an alternative well-balanced DG method for the zero

pressure man-at-eternal-rest steady state (3.4). This follows the idea of decomposing the

source term, proposed first in [152] for the SWEs, and later in [95, 154] for a general class of

hyperbolic balance laws. The same idea has been studied in [146] to develop well-balanced

finite difference WENO scheme for the blood flow model.

The key idea is to introduce the following source term decomposition,

βA

2
√
A0
∂x(A0) = β(A−A0)∂x

√
A0 + ∂x

(
β

3
A

3
2
0

)
, (3.21)

and we refer to [154] for the motivation of such decomposition. Note that this coincides

with the source term approximation (3.18), although they arise from different approaches.
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We can then move the term ∂x

(
β
3A

3
2
0

)
to the left side and combine it with the flux to

achieve the updated equation of the form
∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(Q2

A
+
β

3
A

3
2 − β

3
A

3
2
0

)
= β(A−A0)∂x

(√
A0

)
,

(3.22)

It is clear that at the zero pressure man-at-eternal-rest steady state (Q,A) = (0, A0), the

system of PDEs (3.22) has both zero flux and source term, hence the traditional DG scheme

(1.17) is automatically well-balanced when the Lax-Friedrichs fluxes defined in (1.18) is

updated to be

f(U−τ ,U
+
τ ) =

1

2

F (U−τ ) + F (U+
τ )− α


A+

τ − (A0)+
τ

Q+
τ

−
A−τ − (A0)−τ

Q−τ



 , (3.23)

so that the added numerical diffusion term disappears at the steady state. Note that F

in (3.23) now corresponds to the flux in the updated form (3.22). The proof of the well-

balanced property is rather straightforward and is not included here.

This is a simple approach to achieve well-balanced property, and there is no need

to introduce the hydrostatic reconstruction idea when constructing the numerical fluxes.

However, this cannot be extended to the more complicated living-man equilibrium case.

3.2.3 The Non-Zero Pressure Man-at-Eternal-Rest Well-Balanced Scheme

In this section, we present well-balanced DG methods for the man-at-eternal-rest

steady state with non-zero pressure (3.3).

We start with the description of well-balanced numerical fluxes. For the non-zero

pressure man-at-eternal-rest steady state (3.3), the choice of the decomposition into U e
τ
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and U f
τ , as well as the definition of A∗,±

τ,j+ 1
2

must be modified from those presented in the

previous subsection. The decomposed variables will be computed based on the steady state

solution (3.3), therefore we denote V =

Q
E

 =

 Q

√
A−
√
A0

 to be the equilibrium

variables. The reference equilibrium values V̂ in each cell Ij are defined by the following,

V̂j =

Q̂j
Êj

 =


Qτ

(
x−
j+ 1

2

)
(√

Aτ,j −
√

(A0)τ,j

)(
x−
j+ 1

2

)
 , (3.24)

which will be constant for all j if the system is at a steady state. It follows that the

equilibrium part U e
τ,j can be defined using V̂j and the true value of A0(x),

U e
τ,j(x) =

Aeτ,j(x)

Qeτ,j(x)

 =

P
((

Êj +
√
A0(x)

)2
)

Q̂j

 , (3.25)

where the operator P can be taken as any projection into the piecewise polynomial space Vkτ

as long as it is the same projection that was used to evaluate the numerical initial condition.

The fluctuation part, U f
τ,j , is again defined as in (3.8). With this, the cell interface value

of A0 takes the form of

(A0)∗
τ,j+ 1

2

= max

(
(A0)+

τ,j+ 1
2

, (A0)−
τ,j+ 1

2

)
, (3.26)

and the modified cell interface values of Aτ become

A∗,−
τ,j+ 1

2

= max

((
Êj +

√
(A0)∗

τ,j+ 1
2

)2

+Af,−
τ,j+ 1

2

, 0

)
,

A∗,+
τ,j+ 1

2

= max

((
Êj+1 +

√
(A0)∗

τ,j+ 1
2

)2

+Af,+
τ,j+ 1

2

, 0

)
.

(3.27)

The definition of U∗,±
τ,j+ 1

2

, as well as the left and right fluxes F̂ l
j+ 1

2

, F̂ r
j− 1

2

, are defined in the

same way, as in (3.13). These well-balanced numerical fluxes are consistent with those for

the living-man equilibrium which will be presented in Section 3.4.
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Alternatively, one may also follow the approach in [94] by letting

√
(A0)∗

τ,j+ 1
2

= max

(√
(A0)+

τ,j+ 1
2

,

√
(A0)−

τ,j+ 1
2

)
, (3.28)

and then redefining Aτ at the cell interfaces as√
A∗,−
τ,j+ 1

2

= max

(√
A−
τ,j+ 1

2

−
√

(A0)−
τ,j+ 1

2

+
√

(A0)∗
τ,j+ 1

2

, 0

)
,√

A∗,+
τ,j+ 1

2

= max

(√
A+
τ,j+ 1

2

−
√

(A0)+
τ,j+ 1

2

+
√

(A0)∗
τ,j+ 1

2

, 0

)
,

(3.29)

without involving U e
τ and U f

τ in the definition of the numerical fluxes.

As for the source term approximation, we note that the source term decompo-

sition (3.16) still holds. While U e and U f are defined differently in this subsection, the

decomposition approach presented in Subsection 3.2.2 can still be applied. Note that the

direct numerical integration may not give well-balanced methods, as explained in Remark

12. This completes our description of well-balanced methods for the non-zero pressure man-

at-eternal-rest steady state (3.3). One can show that the living-man well-balanced method

in Section 3.4 can reduce to this man-at-eternal-rest well-balanced method. Furthermore,

one can show (3.29) and (3.27) each simplify to (3.11) when A = A0.

Proposition 14. The DG scheme (2.10) for the blood flow system (1.15) with the non-zero

pressure man-at-eternal-rest steady state (3.3) is well-balanced when paired with (3.29) or

(3.27), the numerical fluxes (3.13), and the source term decomposition (3.16).

The proof is similar to the the zero-pressure case and is thus omitted here.

Remark 15. When the cross-sectional area at rest, A0, is constant, the traditional DG

scheme is recovered, i.e., the numerical fluxes reduce to standard flux and the source term
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approximation is simply zero. First, it is easy to observe that the source term approximation

(3.18) reduces to exactly 0, since (A0)τ is constant. Second, we will show that the left

and right numerical fluxes reduce to the original DG fluxes. When A0 is constant, then

(A0)∗
τ,j+ 1

2

= (A0)+
τ,j+ 1

2

= (A0)−
τ,j+ 1

2

, so the calculation of A∗,±τ by definitions (3.11), (3.29)

or (3.27) reduces to

A∗,±
τ,j+ 1

2

= max

(
A±
τ,j+ 1

2

, 0

)
= A±

τ,j+ 1
2

. (3.30)

More generally, we have that U∗,±
τ,j+ 1

2

= U±
τ,j+ 1

2

. Therefore, by definition of the left and right

fluxes, we obtain F̂ l
j+ 1

2

= F̂j+ 1
2

and F̂ r
j− 1

2

= F̂j− 1
2
.

3.3 Numerical Tests for the Man-at-Eternal-Rest Well-Balanced

Methods

In this section, we present some numerical examples by testing the well-balanced

DG scheme designed for the man-at-eternal-rest steady state in Section 3.2. The third

order TVD Runge-Kutta time discretization (1.19) is used in conjunction with piecewise

quadratic polynomials (k = 2) in space, unless otherwise stated. The CFL number is taken

to be 0.15.

3.3.1 Test for Accuracy

Our first numerical example tests the accuracy of our man-at-eternal-rest well-

balanced scheme on a problem with smooth solutions. The initial conditions for x ∈ [0, 10]

are

A(x, 0) = sin
(π

5
x
)

+ 10, Q(x, 0) = ecos(π
5
x), (3.31)
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with the cross-sectional area at rest

A0(x) =
1

2
cos2

(π
5
x
)

+ 5,

and K = 108 Pa/m, ρ = 1060 kg/m3. Periodic boundary conditions are employed. We

compute until time t = 0.01 when the solution is still smooth. Since there is no explicitly

known solution in this case, the errors are computed by iteratively comparing results from

meshes of uniform cell widths h and h/2. Table 3.1 contains the L1 errors and orders of

accuracy for P 0, P 1 and P 2 polynomials. For each polynomial degree k, we see that (k+1)th

order accuracy is achieved.

k = 0 k = 1 k = 2

Variable J L1 Error Order L1 Error Order L1 Error Order

25 6.1718e-01 4.0986e-02 1.7291e-03
50 4.0692e-01 0.6009 1.0077e-02 2.0241 2.2503e-04 2.9418

A 100 2.4564e-01 0.7282 2.5017e-03 2.0093 2.8740e-05 2.9690
200 1.3642e-01 0.8485 6.2420e-04 2.0028 3.6297e-06 2.9851
400 7.2062e-02 0.9207 1.5614e-04 1.9992 4.5768e-07 2.9874

25 2.5275e02 6.2128e00 3.4189e-01
50 1.4833e02 0.7689 1.5283e00 2.0233 4.1757e-02 3.0334

Q 100 8.0719e01 0.8779 3.8083e-01 2.0047 5.1194e-03 3.0280
200 4.2203e01 0.9356 9.5287e-02 1.9989 6.3175e-04 3.0185
400 2.1582e01 0.9676 2.3935e-02 1.9931 7.8696e-05 3.0050

Table 3.1: L1 errors and convergence orders of the accuracy test in Section 3.3.1, using P 0,
P 1 and P 2 piecewise polynomials and the man-at-eternal-rest well-balanced method. In
each case, k + 1 order of accuracy is achieved.
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3.3.2 Tests for the Well-Balanced Property

A Zero Pressure Man-at-Eternal-Rest Steady State

In this section, we demonstrate that the proposed DG scheme aptly preserves the

zero pressure man-at-eternal-rest steady state (3.4) with a non-constant cross-sectional area

at rest. We consider the case of a dead man with an aneurysm, which implies there is no

blood flow occurring in a section of an artery that has a non-constant radius. An aneurysm

occurs when the arterial wall weakens and balloons outwards. The initial conditions for the

radius, R, are given by

R(x, 0) = R0(x) =



R̃, if x ∈ [0, x1] ∪ [x4, L],

R̃+ ∆R
2

[
sin
(
x−x1
x2−x1π −

π
2

)
+ 1
]
, if x ∈ [x1, x2],

R̃+ ∆R, if x ∈ [x2, x3],

R̃+ ∆R
2

[
cos
(
x−x3
x4−x3π

)
+ 1
]
, if x ∈ [x3, x4],

(3.32)

for an artery of length L, with all the remaining parameters found in Table 3.2. The initial

conditions for the cross-sectional area and cross-sectional area at rest are thus given by

A(x, 0) = πR(x, 0)2, A0(x) = πR0(x)2. (3.33)

The initial velocity is assumed to be zero, thus Q(x, 0) = 0. We impose transmis-

sive boundary conditions at both endpoints of the domain and compute this example until

time t = 5. Since the initial condition is the man-at-eternal-rest steady state, the solution

should stay unchanged. The L1 and L∞ errors of the numerical solutions are shown in

Table 3.3 and demonstrate that the well-balanced property was maintained when using the
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R̃ ∆R K ρ

4× 10−3m 10−3m 108 Pa/m 1060 kg/m3

x1 x2 x3 x4 L

10−2m 3.05× 10−2m 4.95× 10−2m 7× 10−2m 0.14m

Table 3.2: Parameters in the initial condition (3.32) for the zero pressure man-at-eternal-rest
well-balanced tests.

man-at-eternal-rest well-balanced scheme. The errors were computed by comparing the nu-

merical solution to the numerical initial conditions. Figure 3.1 shows the area of the artery

and the velocity at t = 5 with a mesh of 200 cells.

Traditional DG Scheme MAER WB DG Scheme

Variable Error Type L1 Error L∞ Error L1 Error L∞ Error

A
Absolute 1.8404e-13 1.7712e-08 2.042e-19 2.4335e-15
Relative 3.3148e-09 3.1990e-04 3.5744e-15 3.8730e-11

Q Absolute 1.8404e-13 1.7712e-08 2.042e-19 2.4335e-15

Table 3.3: Table of absolute and relative L1 and L∞ errors for the zero pressure man-at-
eternal-rest (MAER) well-balanced test representing an aneurysm in Section 3.3.2. Errors
are given for both the traditional DG scheme and the well-balanced scheme. The well-
balanced scheme demonstrates the well-balanced property, while the traditional DG scheme
does not have the well-balanced property. Relative errors are included for A since the scale
of the problem is so small. However, relative errors are not included for Q since the exact
value is identically 0.

For comparison, we also compute the same test using the traditional DG method

in which the standard numerical fluxes are used and the source term is computed with a

straightforward numerical integration. Figure 3.2 and the errors in Table 3.3 demonstrate

that the traditional DG scheme does not preserve the steady state exactly in the discrete
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Figure 3.1: Numerical solutions of the man-at-eternal-rest problem in Section 3.3.2, at time
t = 5 with quadratic basis functions and mesh of size 200 uniform cells.

level.

Figure 3.2: The difference between A,Q at the final time t = 5 and the numerical initial
conditions, when the traditional DG scheme is used for the man-at-eternal-rest problem in
Section 3.3.2.

A Non-Zero Pressure Man-at-Eternal-Rest Steady State

In this subsection, we consider the case of a dead man with stenosis. Stenosis

occurs when the artery narrows and it leads to reduced blood flow from the heart to the

rest of the body. Stenosis can be caused by a congenital heart defect, calcium buildup,or
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rheumatic fever which is a result of a strep throat infection. The radius at rest, R0, for an

artery of length L is given by

R0(x) =



R̃+ ∆R, if x ∈ [0, x1] ∪ [x4, L],

R̃− ∆R
2

[
sin
(
x−x1
x2−x1π −

π
2

)
− 1
]
, if x ∈ [x1, x2],

R̃, if x ∈ [x2, x3],

R̃− ∆R
2

[
cos
(
x−x3
x4−x3π

)
− 1
]
, if x ∈ [x3, x4],

(3.34)

where all the parameters are found in Table 3.4.

R̃ ∆R K ρ L x1 x2 x3 x4

4× 10−3m 10−3m 108 Pa/m 1060 kg/m3 0.14m 9L
40

1L
4

3L
4

31L
40

Table 3.4: Parameters in (3.34) for the non-zero pressure man-at-eternal-rest well-balanced
tests.

Then the initial conditions are determined by the equilibrium values, that is

A(x, 0) =
(
C +

√
πR0(x)

)2
, Q(x, 0) = 0. (3.35)

where we set the constant C = 10−3. We impose transmissive boundary conditions and run

the scheme until the final time of t = 1 on mesh sizes of 50 and 200 uniform cells. The errors

are found in Table 3.5 and demonstrate that the well-balanced property is preserved even

on the coarse mesh of 50 cells. We also compare the results of the traditional DG scheme

and non-zero pressure man-at-eternal-rest scheme well-balanced DG scheme in Figure 3.3.

It is clear from the figures that the use of a well-balanced scheme is especially important

for preserving the non-constant area A.
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(a)Non-zero pressure man-at-eternal-rest well-balanced DG scheme

(b)Traditional DG scheme

Figure 3.3: Plots of the errors at time t = 1 for the non-zero pressure man-at-eternal-rest
problem from Section 3.3.2. The results using the non-zero pressure man-at-eternal-rest
well-balanced scheme (top row) are compared with the results when using the traditional
DG scheme (bottom row).
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Traditional DG Scheme MAER WB DG Scheme

J Variable Error Type L1 Error L∞ Error L1 Error L∞ Error

50
A

Absolute 6.5745e-09 3.2637e-05 6.9075e-17 1.7727e-13
Relative 2.0676e-07 1.0273e-03 2.1538e-15 5.5236e-12

Q Absolute 6.9733e-13 7.5473e-08 2.0062e-17 5.8616e-14

200
A

Absolute 2.1580e-10 4.1932e-06 8.1454e-17 8.3574e-13
Relative 6.7907e-09 1.3198e-04 2.5398e-15 2.6044e-11

Q Absolute 2.1929e-15 1.3615e-09 2.5451e-17 2.7981e-13

Table 3.5: Table of absolute and relative L1 and L∞ errors for non-zero pressure man-at-
eternal-rest (MAER) well-balanced test representing stenosis in Section 3.3.2. Errors are
given for the traditional DG scheme and the well-balanced scheme for both J = 50 and
J = 200 uniform spatial cells. The well-balanced scheme demonstrates the well-balanced
property, while the traditional DG scheme does not have the well-balanced property.

3.3.3 Tests for Small Perturbations of the Man-at-Eternal-Rest Steady

States

In this section, we examine multiple tests in which the initial conditions of a man-

at-eternal-rest steady state are perturbed in a small region. The initial perturbation will

split into two waves moving away from the source in opposite directions. We compare the

man-at-eternal-rest well-balanced and traditional DG schemes to demonstrate the advantage

of well-balanced methods in handling the propagation of these small perturbations.

Different wave propagation behaviors arise in arteries with constant and variable

cross-sectional areas. We will first discuss the expected behaviors before exploring specific

examples. Suppose an incident pulse is introduced at the left arterial end (with cross-

sectional area A1) and then travels towards the right (with cross-sectional area A2). When

the pulse crosses into the region of the vessel with cross-sectional area A2 it generates a

transmission pulse propagating in the same direction, and also a reflected pulse propagating

to the left. The speed and wavelength of the reflected pulse is the same as the incident pulse
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because both pulses are traveling in the same medium. The amplitude of the reflected pulse

is smaller and can be either inverted or non-inverted depending on the shape of the cross-

sectional area. The reflection pulse is inverted when A1 < A2, and non-inverted when

A1 > A2. See Figure 3.4 for a visualization of this process. The ratio of the amplitude

of the reflected pulse and the incident pulse, known as the reflection coefficient R, can be

computed exactly and is given by

R =
A1/C1 − A2/C2

A1/C1 + A2/C2

. (3.36)

where the Moens-Korteweg coefficients Ci corresponding to A1 and A2 are defined as Ci =√
K
√
Ai

2ρ
√
π

for i = 1, 2. The transmission coefficient, T , given by T = 1 + R represents the

ratio of the amplitude of the transmission pulse to the incident pulse.

The numerical example in Section 3.3.3 portrays an artery with constant cross-

sectional area. Therefore, the waves resulting from the perturbation will propagate through

the domain and after they exit the domain, the radii will return to the unperturbed state.

On the other hand, the examples in Sections 3.3.3 and 3.3.3 represent arteries with non-

constant cross-sectional area, resulting in the appearance of reflection and transmission

pulses.

Wave Equation

We start with the following wave equation example with constant cross-section at

rest, which has been studied in [41] by Delestre et al. It is a small perturbation test, in

which an “approximate” solution can be found analytically. The initial conditions are given
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Case 1: A1 < A2


A1 – Region with Smaller Area 	 A2 – Region with Larger Area 	

Case 2: A1 > A2




A1 – Region with Larger Area 	 A2 – Region with Smaller Area 	

Initial Perturbation Pulse


Prior to crossing into 
region with area A2


Reflection Pulse
 Transmission Pulse


After crossing into 
region with area A2


Initial Perturbation Pulse


Prior to crossing into 
region with area A2


Reflection Pulse


Transmission Pulse


After crossing into 
region with area A2


Figure 3.4: An initial perturbation pulse splits into a transmission and reflection pulse when
it moves from a region of area A1 to a region of area A2. The transmission pulse continues
in the same direction of the original pulse while the reflection pulse moves in the opposite
direction.

by

A(x, 0) =


π(R0)2, if x ∈ [0, x2] ∪ [x3, L],

π(R0)2
[
1 + ε sin

(
π x−x2x1

)]2
, if x ∈ [x2, x3],

Q(x, 0) = 0,

(3.37)

on the computational domain [0, L]. The cross-section at rest is given by A0(x) = πR0(x)2.

The parameters used in our simulation are listed in Table 3.6.

R0 K ρ x1 x2 x3 L ε

4× 10−3m 108 Pa/m 1060 kg/m3 2L
10

4L
10

6L
10 0.16m 5× 10−3

Table 3.6: Parameters for the wave equation problem (3.37).

As shown in [41], when neglecting all the high order terms of ε, its solution can be
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expressed as 
R(x, t) = R0 + ε

2 [φ(x− C0t) + φ(x+ C0t)],

u(x, t) = −εC0
R0

[−φ(x− C0t) + φ(x+ C0t)],

(3.38)

where φ(x) = R0 sin
(
π x−x2x1

)
1[x2,x3] with 1 being the indicator function and the constant

C0 is the Moens-Korteweg wave velocity

C0 =

√
K
√
A0

2ρ
√
π

=

√
KR0

2ρ
≈ 13.73. (3.39)

We employee transmissive boundary conditions at the endpoints of the domain.

Figure 3.5 shows the numerical results at times t = 0.002, 0.004, and 0.006 with a mesh

of 200 cells. Comparison with the analytical exact solution (3.38) demonstrates that these

small perturbations are well captured.

Figure 3.5: Solutions of the radius R and velocity u of the wave equation problem at various
times with quadratic basis functions and a uniform mesh of 200 cells and the exact solutions
at the same times.
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Propagation of a Pulse to and from an Expansion

In the examples below, we consider the reflection and the transmission of a small

wave in an aneurysm, when the cross-section at rest is not a constant. Following the setup

in [41], we consider the radius of the cross-section at rest given by

R0(x) =



R̃+ ∆R, if x ∈ [0, x1],

R̃+ ∆R
2

[
1 + cos

(
x−x1
x2−x1π

)]
, if x ∈ [x1, x2],

R̃, otherwise,

(3.40)

where the necessary parameters are listed in Table 3.7.

R̃ ∆R K ρ x1 x2 L

4× 10−3m 10−3m 108 Pa/m 1060 kg/m3 19L
40

L
2 0.16m

Table 3.7: Parameters for (3.40) in the propagation of a pulse to and from an expansion
problems.

First, we consider a pulse propagating towards an expansion. The perturbation is

applied to the region of the artery with smaller radii and given by the following

R(x, 0) =


R0(x)

[
1 + ε sin

(
100

20L
π

(
x− 65L

100

))]
, if x ∈

[
65L
100 ,

85L
100

]
,

R0(x), otherwise.

(3.41)

The parameter ε = 5.0 × 10−3 and the momentum Q(x, 0) = 0 m3/s. The boundary con-

ditions are transmissive at the endpoints of the domain. The initial state and numerical

solutions at times t = 0.002 and t = 0.006 are presented in Figure 3.6. Figure 3.7 demon-

strates how the wave propagates as a function of time for all time.
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Figure 3.6: Initial conditions and solution of the propagation of a pulse to an expansion
problem at various times with a mesh of 200 uniform cells. The reflection pulse, visible at
time t = 0.006, is inverted.

Second, we consider a pulse propagation from an expansion. In this case, the

perturbation is initiated in the region of the vessel with larger area. The perturbed radius

now becomes

R(x, 0) =


R0(x)

[
1 + ε sin

(
100

20L
π

(
x− 15L

100

))]
, if x ∈

[
15L
100 ,

35L
100

]
,

R0(x), otherwise,

(3.42)

where ε = 5.0 × 10−3. As before, the fluid is at rest, Q(x, 0) = 0 m3/s, and transmissive

boundary conditions are imposed at the endpoints of the domain. In Figure 3.8, we see the

initial state and numerical results at times t = 0.002 and t = 0.006. Figure 3.9 demonstrates

how the wave propagates as a function of time for all time.

Perturbation of a Non-Zero Pressure Man-at-Eternal-Rest Well-Balanced Prob-

lem

In this subsection, we impose a small perturbation to a non-zero pressure man-at-

eternal-rest steady state problem representing stenosis in a ‘dead man’. We show that the
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Figure 3.7: Propagation of the pulse to an expansion over all time. The plots show the
difference between the numerical solution at time t and the initial conditions. A mesh of
200 uniform cells was used to compute the solution. Around time t = 0.003 the left-moving
wave meets the expansion and the inverted reflection wave forms.

well-balanced scheme aptly handles the perturbation. We also compute the same test using

the traditional DG scheme and compare the results.

The radius at rest is given by (3.34) and the original initial conditions are given

by (3.35). We impose a small perturbation at the center of the artery to the cross-sectional

radii in the following manner,

Rpert(x, 0) =


R0(x)

[
1 + ε sin

(
100
10Lπ

(
x− 45L

100

))]
, if x ∈

[
45L
100 ,

55L
100

]
,

R0(x), otherwise.

(3.43)

The initial condition for the perturbed cross-sectional area is then defined as Apert(x, 0) =

πRpert(x, 0)2. The scheme is run until time t = 8× 10−4, before the traveling perturbation

waves exit the domain.

We test this problem with ε = 10−3 and ε = 10−4 for two different sizes of mesh,

J = 50 and J = 200 uniform cells. The results for the well-balanced DG scheme are

presented in Figure 3.10 and the results for the traditional DG scheme are found in Figure

100



Figure 3.8: Initial conditions and solution of the propagation of a pulse from an expansion
problem at various times computed with a mesh of 200 uniform cells. The reflection pulse,
visible at time t = 0.006, is non-inverted.

3.11. The well-balanced scheme aptly handles the perturbation for either mesh size and for

either size perturbation. On the other hand, the traditional DG scheme does not work as

well. In the case where J = 50 uniform cells, then the undesirable behavior arises for either

perturbation size. In the case where J = 200 uniform cells, the scheme has similar results

for the perturbation with smaller amplitude (i.e. ε = 10−4), however the scheme improves

when the amplitude of the perturbation is larger (i.e. ε = 10−3). However, in either case,

the scheme is still out-performed by the well-balanced method.

3.4 Living-Man Well-Balanced DG Methods

In this section, well-balanced methods for maintaining the general living-man

steady state (3.5) will be described. Due to the complexity of the steady state, extra

attention is given to the projection of the initial conditions, as well as the source term and

numerical flux calculations.
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Figure 3.9: Propagation of the pulse from an expansion over all time. The plots show the
difference between the numerical solution at time t and the initial conditions. A mesh of 200
uniform cells was used to compute the solution. Around time t = 0.003 the right-moving
wave meets the expansion and the non-inverted reflection wave forms.

3.4.1 Numerical Initial Conditions

In general, the L2 projection of the true initial condition U0 is taken to be the

numerical initial condition U0
τ for modal DG schemes, as was done for the man-at-eternal-

rest well-balanced DG scheme in Section 3.2. However, the projected polynomial U0
τ may

not be in the equilibrium state. Thus the cell boundary valuesU±
τ,j+ 1

2

, as well as the function

values at the quadrature points used to evaluate the volume integral, may also not be in

equilibrium. This contributes to the challenges of how to recover the equilibrium information

from these polynomials. We would like to comment that this difficulty disappears for the

finite difference methods, because the points values of the initial condition in any finite

difference methods, by design, automatically satisfy the equilibrium.

The same difficulty also appears in high order well-balanced finite volume methods,

whose numerical initial condition is simply the cell average. In [110] where well-balanced

methods were designed for the SWEs with moving-water equilibrium state, this difficulty
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(a)J = 50 cells, ε = 10−3

(b)J = 200 cells, ε = 10−3

(c)J = 50 cells, ε = 10−4

(d)J = 200 cells, ε = 10−4

Figure 3.10: Perturbation of non-zero pressure man-at-eternal-rest well-balanced problem
in Section 3.3.3 for all time up until t = 0.008 using the non-zero pressure well-balanced DG
scheme. The scheme performs well for both mesh sizes and for both perturbation sizes.
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(a)J = 50 cells, ε = 10−3

(b)J = 200 cells, ε = 10−3

(c)J = 50 cells, ε = 10−4

(d)J = 200 cells, ε = 10−4

Figure 3.11: Perturbation of non-zero pressure man-at-eternal-rest well-balanced problem
in Section 3.3.3 for all time up until t = 0.008 using the traditional DG scheme. The scheme
performs poorly on the coarse mesh of 50 uniform cells for either size perturbation. For the
refined mesh of 200 uniform cells, the scheme improves slightly for the larger perturbation,
but still does not perform as well as the well-balanced scheme.

104



was identified. The issue was addressed in that paper by defining the well-balanced states

as the solutions of nonlinear equations and then solving them using Newton’s method. The

same idea was later extended to construct numerical initial conditions of well-balanced DG

methods in [150]. A simpler approach, without involving the nonlinear equations and the

Newton’s method, is proposed in [95], by introducing a special projection of the initial

condition to take advantage of the flexibility of the DG method. A further modification

of the projection from [95] is proposed in this chapter to produce the numerical initial

condition U0
τ .

We introduce the following projection Pτω of any function ω into the space Vkτ

satisfying, on each interval Ij ,

∫
Ij

Pτωv dx =

∫
Ij

ωv dx, (3.44)

for any v ∈ P k−1 on Ij , and

(Pτω)

(
x−
j+ 1

2

)
= ω

(
x−
j+ 1

2

)
, (3.45)

at the right boundary value xj+ 1
2

of the cell Ij . This projection is known as the Radau

projection. The polynomial Pτω for each cell Ij can be determined by solving a local linear

algebra problem of the size (k + 1)× (k + 1) derived from the discretized versions of (3.44)

and (3.45). This is a local projection defined on each interval Ij . One can show that the

error of this projection has optimal order of hk+1.

The projections of the initial condition U0
τ and the cross-sectional area at rest

(A0)τ (x) are defined to be

U0
τ (x) = PτU0(x), (A0)τ (x) = PτA0(x). (3.46)
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At the right boundary point of each cell, it can be shown that

U0
τ (x−

j+ 1
2

) = U0(x−
j+ 1

2

), (A0)τ (x−
j+ 1

2

) = A0(x−
j+ 1

2

), for all j, (3.47)

which means that the equilibrium states (3.49) are recovered at these points

(
u2
τ

2
+ β

(√
Aτ −

√
(A0)τ

))(
x−
j+ 1

2

)
= constant, for all j.

This information will be very useful when decomposing the solutions into the equilibrium

and fluctuation parts in the following section.

Remark 16. In [95], a slightly different projection was introduced to compute the numerical

initial conditions. That was defined by the formula (3.44), combined with

(Pτω)(xj) = ω(xj), (3.48)

which requires the projected polynomial overlaps with the original function at the center xj

of each cell Ij. However, this projection may not be optimal for some polynomial degree k,

therefore we introduce a different projection Pτ in this work. Note that the choice of this

projection is not unique. Alternatively, we could have also chosen to fix the numerical initial

conditions to be equal to the true solution at the left side of each computational cell.

3.4.2 Conservative, Equilibrium Variables and the Decomposition of So-

lutions

The living-man equilibrium variables from (3.5) will be denoted as

V =

Q
E

 =

 Q

Q2

2A2 + β
(√

A−
√
A0

)
 . (3.49)
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We need to transform the conservative variables U to the equilibrium variables V and vice

versa, during the construction of well-balanced numerical flux. The equilibrium variables

can be easily computed from U and the cross-sectional area at rest A0, and we denote it

by V = V (U , A0). On the other hand, suppose V and the cross-sectional area at rest A0

are given, we can evaluate U = U(V , A0) (or simply A = A(V , A0) as Q can be directly

obtained from V ) in the following way. The equilibrium variable E is defined as

E =
Q2

2A2
+ β

(√
A−

√
A0

)
,

which is equivalent to

βA
5
2 −

(
β
√
A0 + E

)
A2 +

1

2
Q2 = 0. (3.50)

The conservative variable A can be recovered by finding the root of the equation (3.50).

One can use Newton’s method to find the root, by using Aτ (xi) as the initial guess, where

xi is either a quadrature point or a cell-boundary value depending on where we are solving

the problem. Müller et al. [105] address the recovery of A from the living-man equilibrium

by solving the similar nonlinear equation and considering the subcritical, supercritical, or

critical cases. In [60] by Ghigo et al., they assume that values for Q are small enough that

living-man equilibrium variables (3.5) can be approximated by (3.3). This eliminates the

need to recover A from a fractional-degree equality.

Next, we propose the decomposition of the solution Uτ into the the reference

equilibrium state U e
τ and the fluctuation state U f

τ . The reference equilibrium values V̂j in

cell Ij are defined as

V̂j =

Q̂j
Êj

 =


Qτ

(
x−
j+ 1

2

)
Eτ

(
x−
j+ 1

2

)
 . (3.51)
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The equilibrium state U e
τ (x) can then be computed from these values and the true function

A0(x) (not (A0)τ (x))

U e
τ,j(x) =

Aeτ,j(x)

Qeτ,j(x)

 = PτU
(
V̂j , A0(x)

)
, (3.52)

in each cell Ij . The projection Pτ is used to ensure that U e
τ ∈ Vkτ , since the functions

U
(
V̂j , A0(x)

)
may no longer be piecewise polynomials due to the nonlinear mapping.

Finally, we can decompose the numerical solution Uτ as

Uτ = U e
τ +U f

τ (3.53)

with the fluctuation part U f
τ = Uτ − U e

τ ∈ Vkτ . Note that this decomposition will be

computed at each time step tn. Both U e
τ and U f

τ will be used in the computing the well-

balanced fluxes and source term approximations.

3.4.3 Well-Balanced Numerical Fluxes

As explained in Section 3.2, the well-balanced DG scheme takes the form of

∫
Ij

∂tU
n
τ v dx−

∫
Ij

F (Un
τ )∂xv dx+ F̂ l

j+ 1
2

v−
j+ 1

2

− F̂ r
j− 1

2

v+
j− 1

2

=

∫
Ij

S(Un
τ , (A0)τ )v dx. (3.54)

However, to achieve living-man well-balanced method, different ways to construct the well-

balanced numerical flux and source term from those in Section 3.2 are needed.

Here, we would like to avoid the usage of Gauss-Lobatto nodes, and use the idea

of hydrostatic reconstruction to determine the numerical fluxes, following the study in

[153, 150, 160] in the context of the SWEs.
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Prior to redefining the boundary values and constructing our fluxes, we first define

the unique cell interface value of A0 as

(A0)∗
τ,j+ 1

2

= max
(

(A0)+
τ,j+ 1

2

, (A0)−
τ,j+ 1

2

)
, (3.55)

for all j. This choice of (A0)∗
τ,j+ 1

2

will aid in guaranteeing continuity across the cell interface

at the equilibrium state for the conservative variables. Now we set the redefined boundary

values to be

U∗,±
τ,j+ 1

2

=

A
∗,±
τ,j+ 1

2

Q∗,±
τ,j+ 1

2

 =

max
(

0, A(V̂j , (A0)∗
τ,j+ 1

2

)
)

Q̂±
τ,j+ 1

2

+U f
τ (x±

j+ 1
2

)

=

max
(

0, A(V̂j , (A0)∗
τ,j+ 1

2

)
)

+Afτ (x±
j+ 1

2

)

Q±
τ,j+ 1

2

 ,

(3.56)

where the values V̂j are given in (3.51) and U f
τ is given in (3.53). When the system is in

equilibrium, Afτ
(
x±
j+ 1

2

)
= 0 and V̂j = V̂j+1, hence U∗,−

τ,j+ 1
2

= U∗,+
τ,j+ 1

2

for all j.

It would also be satisfactory to define (A0)∗
τ,j+ 1

2

= min

(
(A0)+

τ,j+ 1
2

, (A0)−
τ,j+ 1

2

)
, or

other combinations of (A0)±
τ,j+ 1

2

following the generalization of the hydrostatic reconstruc-

tion idea and designed to ensure continuity across the cell interfaces. One possible choice

is to let (A0)∗
τ,j+ 1

2

= (A0)−
τ,j+ 1

2

, then one can show that A
(
V̂j , (A0)∗

τ,j+ 1
2

)
= A−

τ,j+ 1
2

which

eliminates the need to employ Newton’s method to recover A.

Lastly, the well-balanced numerical fluxes can be computed in the same way as

was introduced for the man-at-eternal-rest well-balanced scheme

F̂ l
j+ 1

2

= f
(
U∗,−
τ,j+ 1

2

,U∗,+
τ,j+ 1

2

)
+ F

(
U−
τ,j+ 1

2

)
− F

(
U∗,−
τ,j+ 1

2

)
,

F̂ r
j− 1

2

= f
(
U∗,−
τ,j− 1

2

,U∗,+
τ,j− 1

2

)
+ F

(
U+
τ,j− 1

2

)
− F

(
U∗,+
τ,j− 1

2

)
,

(3.57)
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where f(a, b) is a numerical flux, such as the Lax-Friedrichs flux defined in (1.18). Notice

that when U∗,+
τ,j+ 1

2

= U∗,−
τ,j+ 1

2

, then the fluxes reduce to

F̂ l
j+ 1

2

= F (U−
τ,j+ 1

2

), F̂ r
j− 1

2

= F (U+
τ,j− 1

2

) (3.58)

as a result of the numerical flux f(a, b) being consistent.

3.4.4 Well-Balanced Source Term Decomposition

The source term approximation for the living-man well-balanced scheme is ap-

proached in the same manner as in Section 3.2.2 for the man-at-eternal-rest well-balanced

scheme. Due to the fact that the source term is linear with respect to the variable A, the

source term can take on a decomposition similar to the form found in (3.53)

∫
S(Uτ , (A0)τ )v dx =

∫
S(U e

τ , (A0)τ )v dx+

∫
S(U f

τ , (A0)τ )v dx. (3.59)

The second term on the right hand side can be directly computed by any quadrature rule

with sufficient accuracy. Since U e
τ is the equilibrium state, we can follow the discussion in

Section 3.2.2 to approximate the first term. Thus the approximation for the source term

takes the form∫
Ij

S(Uτ , (A0)τ )v dx

= −
∫
Ij

F (U e
τ )vx dx+ F (U e,−

τ,j+ 1
2

)v−
j+ 1

2

− F (U e,+

τ,j− 1
2

)v+
j− 1

2

+

∫
Ij

S(U f
τ , (A0)τ )v dx.

(3.60)

The details of the derivation and some explanations can be found in Section 3.2.2.
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3.4.5 A TVB Slope Limiter

In this section we discuss the implementation of a slope limiter, which is necessary

when the solution contains discontinuities. We employ the modified minmod slope limiter

with a total variation bounded (TVB) parameter M , defined as

m̃(a1, ..., al) =


a1, if |a1| ≤M∆x2,

minmod(a1, ..., al), otherwise,

(3.61)

with the minmod function given by

minmod(a1, ..., al) =


smin(|a1|, ..., |al|), if s = sign(a1) = ... = sign(al),

0, otherwise .

(3.62)

At each cell Ij , we define the modified cell boundary values to be

U (mod)
τ (x−

j+ 1
2

) = Ūτ,j + minmod
(
Uτ (x−

j+ 1
2

)− Ūτ,j , Ūn
τ,j − Ūn

τ,j−1, Ū
n
τ,j+1 − Ūn

τ,j

)
,

U (mod)
τ (x+

j− 1
2

) = Ūτ,j −minmod
(
Ūτ,j −Uτ (x+

j− 1
2

), Ūn
τ,j − Ūn

τ,j−1, Ū
n
τ,j+1 − Ūn

τ,j

)
,

(3.63)

where Ūn
j is the cell average in cell Ij at time tn. Note that the slope limiting procedure

may not be required in every cell. If m̃(a1, ..., al) = a1 (i.e., U
(mod)
τ

(
x±
j∓ 1

2

)
= Uτ

(
x±
j∓ 1

2

)
)

in cell Ij , which implies that the solution is smooth, then limiting is not necessary in that

cell. Otherwise, limiting is required and we can recover a new P k polynomial Un
τ,j(x) from

the cell average Ūn
τ,j and the updated cell boundary values (3.63) for k ≥ 2 that preserves

the original cell average in Ij . This new polynomial then replaces the old one in this cell

and will be used in the computation.

Note that when the living-man equilibrium state (3.5) is reached, the equilibrium

may not be preserved if the slope limiter is activated. Therefore we wish to carefully
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determine which cells need limiting by applying the above procedure to the fluctuation part

of the variables U f
τ . If limiting is required in a cell, the slope limiting procedure is then

performed on Uτ . Recall that when a steady state is reached, U f
τ,j = 0 for all values of

j. Therefore, limiting is not required and the limiter has no affect on the well-balanced

property.

It is important to note this procedure meets the necessary conditions of a limiter:

it does not change the solution in smooth and well-balanced regions, and it does not change

cell averages (hence maintains the mass conservation property of the DG method).

3.4.6 Verification of the Living-Man Well-Balanced Property

Proposition 17. The proposed RKDG scheme (2.10) with numerical fluxes (3.57) and

source term approximation (3.60) is exactly well-balanced for the living-man equilibrium

(3.5).

Proof. We assume the initial data are in the living-man equilibria state, and the same

analysis applies when the solution reaches the living-man equilibria at the time step tn.

The projection Pτ guarantees the numerical initial conditions will satisfy the equilibrium

condition at the values x−
j+ 1

2

for all j. This implies that V̂j = constant for all j. Therefore,

the equilibrium part, U e
τ , computed from V̂j and A0(x) is equivalent to the conservative

variable Uτ , and this further implies that U f
τ = 0. The source term approximation (3.60)

can then be rewritten as

∫
Ij

S(Uτ , (A0)τ )v dx = −
∫
Ij

F (Uτ )vx dx+ F (U−
τ,j+ 1

2

)v−
j+ 1

2

− F (U+
τ,j− 1

2

)v+
j− 1

2

(3.64)
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The modified cell boundary values become

U∗,−
τ,j+ 1

2

=

max
(
0, A(V̄j , (A0)∗

j± 1
2

)
)

m̄+
j± 1

2

 = U∗,+
τ,j+ 1

2

, (3.65)

as a result of U f
τ = 0. Due to the consistency of the Lax-Friedrichs flux and the definition

of the left and right fluxes, it can be shown that

F̂ l
j+ 1

2

= F (U−
τ,j+ 1

2

), F̂ r
j− 1

2

= F (U+
τ,j− 1

2

) (3.66)

at the steady state. Therefore, one can easily observe that the flux terms exactly balance

the source term approximation, which shows the well-balanced property.

This section concludes with two remarks about the well-balanced RKDG methods

for the arterial blood flow model when the cross-sectional area at rest is constant, and the

comparison of living-man and the man-at-eternal-rest well-balanced methods.

Remark 18. When the cross-sectional area at rest, A0, is constant, the traditional DG

scheme is recovered, that is, the source term approximation reduces to 0 and the left and right

numerical fluxes reduce to the original fluxes. First, we look at the source term. Definition

(3.52) implies that U e
τ,j = PτU(V̂j , A0) = constant in each cell Ij when A0 = constant.

Therefore, it can be shown that

∫
Ij

S (U e
τ , (A0)τ ) v dx = −

∫
Ij

F (U e
τ ) vx dx+ F

(
U e,−
τ,j+ 1

2

)
v−
j+ 1

2

− F
(
U e,+

τ,j− 1
2

)
v+
j− 1

2

= 0.

Additionally, ((A0)τ )x = 0, hence, the numerical integral
∫
Ij
S
(
U f
τ , (A0)τ

)
v dx = 0. To-

gether, this implies the source term approximation is zero.

Second, we will show that the left and right numerical fluxes reduce to the original

DG fluxes. When A0 is constant, then (A0)∗
τ,j+ 1

2

= (A0)+
τ,j+ 1

2

= (A0)−
τ,j+ 1

2

which implies that
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A
(
V̂j , (A0)∗

τ,j+ 1
2

)
recovers the original value of Aeτ at the cell interface exactly. Therefore,

A∗,±
τ,j+ 1

2

= max

(
0, A(V̂j , (A0)∗

τ,j+ 1
2

) +Af,±
τ,j+ 1

2

)
= max

(
0, Ae,±

τ,j+ 1
2

+Af,±
τ,j+ 1

2

)
= A±

τ,j+ 1
2

.

(3.67)

More generally that U∗,±
τ,j+ 1

2

= U±
τ,j+ 1

2

. Therefore the left and right numerical fluxes reduce

to the original DG fluxes: F̂ l
j+ 1

2

= F̂j+ 1
2
, F̂ r

j− 1
2

= F̂j− 1
2
.

Remark 19. Although the well-balanced methods presented in this section were designed

to preserve the living-man equilibria, it also preserve the simpler man-at-eternal-rest steady

state. Notice that when Q = 0, the equilibrium values V̂j become

V̂j =

Q̂j
Êj

 =

 0

β
(√

Aτ −
√

(A0)τ

)(
x−
j+ 1

2

)
 , (3.68)

and the decomposition of U , as in (3.52) and (3.53) becomes

U e
τ,j =

Pτ
(
Êj
β +

√
(A0)τ

)2

Q̂j

 , U f
τ,j =

Aτ,j
Qτ,j

−
Pτ

(
Êj
β +

√
(A0)τ

)2

Q̂j

 . (3.69)

Therefore, the living-man well-balanced scheme reduces to the man-at-eternal-rest well-

balanced scheme presented in Section 3.2.3.

3.5 Numerical Tests for the Living-Man Well-Balanced Meth-

ods

In this section, we present numerical results for the one-dimensional blood flow

system (1.15) using the generalized living-man well-balanced methods described in Section

3.4. We implement our scheme using piecewise quadratic polynomials (k = 2) paired with
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the third order TVD Runge-Kutta time discretization (1.19). The CFL number is take to

be 0.15 and the constant M in the TVB limiter is taken to be 0, unless otherwise stated.

Multiple types of tests: accuracy test, well-balanced test, perturbations of steady states,

and tests for discontinuous solutions, are presented in this section.

3.5.1 Test for Accuracy

In this section, we will test the accuracy of our living-man well-balanced DG

scheme for smooth solutions with non-zero velocity. We have chosen strictly positive func-

tions for both A and A0 to avoid difficulties with square roots and division by a small

number. The initial conditions in the domain x ∈ [0, 10] are given by

A(x, 0) = sin
(π

5
x
)

+ 10, Q(x, 0) = ecos(π
5
x), (3.70)

with the cross-sectional area at rest

A0(x) =
1

2
cos2

(π
5
x
)

+ 5,

and K = 108 Pa/m, ρ = 1060 kg/m3. Periodic boundary conditions are employed in this test.

We run the simulation until time t = 0.01 when the solution is still smooth. Since there is

no explicitly known solution in this case, the errors are computed by comparing results from

meshes of uniform cell widths h and h/2. Table 3.8 contains the L1 errors and numerical

orders of accuracy for P 0, P 1 and P 2 polynomials. For each polynomial degree k, (k+ 1)th

order is observed, which indicates the optimal convergence rate is achieved.
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k = 0 k = 1 k = 2

Variable J L1 Error Order L1 Error Order L1 Error Order

25 6.1773e-01 4.0942e-02 1.7301e-03
50 4.0751e-01 0.6002 1.0068e-02 2.0237 2.2514e-04 2.9420

A 100 2.4607e-01 0.7278 2.5003e-03 2.0097 2.8747e-05 2.9693
200 1.3667e-01 0.8484 6.2353e-04 2.0036 3.6285e-06 2.9860
400 7.2197e-02 0.9207 1.5570e-04 2.0017 4.5571e-07 2.9932

25 2.5275e02 6.2138e00 3.4179e-01
50 1.4838e02 0.7684 1.5290e00 2.0229 4.1730e-02 3.0340

Q 100 8.0758e01 0.8776 3.8080e-01 2.0055 5.1098e-03 3.0297
200 4.2223e01 0.9356 9.5164e-02 2.0005 6.2939e-04 3.0212
400 2.1591e01 0.9676 2.3794e-02 1.9998 7.8033e-05 3.0118

Table 3.8: L1 errors and convergence orders of the accuracy test in Section 3.5.1, using P 0,
P 1 and P 2 piecewise polynomials and the living-man well-balanced method. In each case,
k + 1 order of accuracy is achieved.

3.5.2 Test for Well-Balanced Property

In this section, we will demonstrate that the proposed living-man well-balanced

DG scheme preserves the steady state (3.5) with non-zero velocity. We will examine three

examples that represent the physiological conditions of an aneurysm, stenosis, and a decreas-

ing step. The initial conditions for each of the examples in this section will be determined

from the equilibrium variables of the steady state, which take the form

Qs = Qin, Es =
Q2
in

2(Aout)2
+ β

(√
Aout −

√
(A0(L)

)
, (3.71)

where the subscript ‘in’ represents the value at the inlet or left side of the domain, ‘out’

represents the value at the outlet or the right side of the domain, and L is the length of the

artery. The function for A(x, 0) can be determined from (3.71) and the cross-sectional area

at rest, which is unique to each example.

The values of Ain and Aout are given by

Ain = A0(0)[1 + Sin]2, Aout = A0(L)[1 + Sin]2, (3.72)
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where Sin is the Shapiro number at the inlet. The Shapiro number is the equivalent of the

Froude number for the SWEs and is determined by the formula S = u/C where C is the

Moens-Korteweg wave velocity. The Shapiro number determines whether the system is in

subcritical (S < 1), critical (S = 1), or supercritical (S > 1) flow. Blood flow is typically

subcritical, hence that is the only case we will consider in the numerical examples. We will

consider Sin = {0.5, 0.1, 0.01} in our numerical examples. The Moens-Korteweg velocity at

the inlet is defined as

Cin =

√
K
√
Ain

2ρ
√
π
. (3.73)

Finally, the value for Qin can then be determined as a function of the Shapiro number in

the following way

Qin = AinSτ,inCin. (3.74)

We also introduce the notation ∆R to represent the wall deformation parameter. Other

important parameters in this section are found in Table 3.9. In each of the examples, we

fix the boundary conditions to be Qin at the inlet and Aout at the outlet of the domain.

Rin ∆R K ρ L

4× 10−3 m 1× 10−3 m 108 Pa/m 1060 kg/m3 0.16 m

Table 3.9: Parameters for well-balanced living-man problems.

Table 3.10 contains the some of the important constants used in the following

examples. The constants all depend on the Shapiro number at the inlet. It can be seen

that the smaller the Shapiro number, the slower the discharge value Qin. We expect the

living-man well-balanced scheme to maintain the steady states with machine zero error.

The man-at-eternal-rest well-balanced scheme may not be able to preserve the non-zero
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velocity steady states. However, we expect the man-at-eternal-rest well-balanced scheme to

perform better for lower Shapiro numbers because the lower the Shapiro number, the closer

the living-man steady state will be towards the man-at-eternal-rest steady state (3.3) (i.e.

zero velocity).

Sin 0.5 0.1 0.01

Ain 1.1310× 10−4 6.0821× 10−5 5.1276× 10−5

Cin 16.8232 14.4065 13.8046

Qin 9.5133× 10−4 8.7622× 10−5 7.0784× 10−6

Table 3.10: The parameters used in the following examples that depend on the Shapiro
number at the inlet, Sin. The smaller the Shapiro number Sin, the slower the discharge
Qin.

An Aneurysm

In this subsection, we consider the living-man equilibrium (3.5) with non-zero

velocity where the choice of cross-sectional radii is meant to represent that of an aneurysm.

We set the cross-sectional radii at rest to be

R0(x) =



Rin, if x ∈ [0, x1] ∪ [x4, L],

Rin + ∆R
2

[
1− cos

(
x−x1
x2−x1π

)]
, if x ∈ [x1, x2],

Rin + ∆R, if x ∈ [x2, x3],

Rin + ∆R
2

[
1 + cos

(
x−x3
x4−x3π

)]
, if x ∈ [x3, x4],

(3.75)

with x1 = 9L
40 , x2 = L

4 , x3 = 3L
4 , x4 = 31L

40 and the cross-sectional area at rest given by

A0(x) = πR0(x)2. The radii at rest is shown in Figure 3.12.

The living-man equilibrium state should be exactly preserved. We run the problem

using a uniform mesh of 200 cells until time t = 5. The L1 and L∞ errors shown in Table 3.11
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Figure 3.12: Radii at rest for the artery with an aneurysm defined by (3.75).

demonstrate that the well-balanced property is indeed maintained. We also demonstrate

that the man-at-eternal-rest well-balanced DG methods presented in Section 3.2 cannot

maintain this general steady state with non-zero velocity for larger Shapiro numbers. The

corresponding L1 and L∞ errors are found in Table 3.11 as well. The difference between

the numerical solution at the final time t = 5 and the numerical initial conditions is plotted

in Figure 3.13, comparing both the living-man and man-at-eternal-rest well-balanced DG

schemes when Sin = 0.5.

Stenosis

The function choice for the radius at rest representing aortic stenosis was first

introduced in [60], and we changed to the parameters in this work so that the units of

measure are consistent with the units used in all other examples. The definition for the
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(a)Living-man well-balanced DG scheme

(b)Non-zero pressure man-at-eternal-rest well-balanced DG scheme

Figure 3.13: The difference between A,Q at the final time t = 5 and the corresponding
numerical initial conditions for the artery with an aneurysm problem from Section 3.5.2.
We compare the living-man well-balanced DG method (top row) and the man-at-eternal-
rest well-balanced DG method (bottom row). Both plots were computed with a mesh of 200
uniform cells and Sin = 0.5. The man-at-eternal-rest method does not handle the non-zero
velocity equilibria as well as the living-man scheme.

radius at rest is

R0(x) =


Rin, if x ∈ [0, x1] ∪ [x2, L],

Rin

(
1− ∆R

2

[
1 + cos

(
π + 2π

x− x1

x2 − x1

)])
, if x ∈ [x1, x2],

(3.76)

where x1 = 3L
10 and x2 = 7L

10 . The radii at rest is shown in Figure 3.14.

The problem is computed until the final time t = 5 with a uniform mesh of 200

cells using both the living-man and man-at-eternal-rest well-balanced schemes. The L1 and
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L1 Error L∞ Error

Var. Error Sin = 0.5 Sin = 0.1 Sin = 0.01 Sin = 0.5 Sin = 0.1 Sin = 0.01

Living-Man Well-Balanced Scheme

A
Abs. 1.01e-18 3.49e-19 3.33e-19 8.59e-15 2.99e-15 2.87e-15
Rel. 7.36e-15 4.62e-15 5.15e-15 6.27e-11 4.01e-11 4.49e-11

Q
Abs. 9.37e-18 3.47e-19 1.47e-19 7.32e-14 2.74e-15 1.16e-15
Rel. 9.85e-15 3.96e-15 2.07e-14 7.70e-11 3.12e-11 1.64e-10

Man-at-Eternal-Rest Well-Balanced Scheme

A
Abs. 1.56e-13 4.18e-15 4.05e-17 1.90e-08 2.46e-10 1.98e-12
Rel. 1.17e-09 5.47e-11 6.16e-13 1.60e-04 3.83e-06 3.57e-08

Q
Abs. 1.95e-12 5.03e-14 4.56e-16 1.98e-07 4.01e-09 3.46e-11
Rel. 2.04e-09 5.74e-10 6.45e-11 2.08e-04 4.58e-05 4.89e-06

Table 3.11: Table of absolute and relative L1 and L∞ errors for aneurysm problem in Section
3.5.2, using the living-man well-balanced scheme and the man-at-eternal-rest well-balanced
scheme. The living-man scheme demonstrates the well-balanced property for each value
of Sin. The man-at-eternal-rest DG scheme does not preserve the more general non-zero
equilibrium state, but does improve as Sin, and thus Qin, decreases.

L∞ errors shown in Table 3.12 and Figure 3.15 displays the numerical solutions via the

living-man and the man-at-eternal-rest schemes at the final time with Sin = 0.5.

A Decreasing Step

The example in this section represents blood flow from a parent to a daughter

artery in which the transition is idealized, that is, the artery radii instantaneous changes

from one value to a smaller value. The function choice for the radius at rest representing a

decreasing step was first introduced in [60]. The radius at rest is given by

R0(x) =


Rin if x < L

2 ,

Rin (1−∆R) if x ≥ L
2 .

(3.77)

The radii at rest is shown in Figure 3.16.
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Figure 3.14: Radii at rest for the artery with stenosis defined by (3.76).

L1 Error L∞ Error

Var. Error Sin = 0.5 Sin = 0.1 Sin = 0.01 Sin = 0.5 Sin = 0.1 Sin = 0.01

Living-Man Well-Balanced Scheme

A
Abs. 9.35e-19 2.93e-19 2.56e-19 7.44e-15 2.33e-15 2.04e-15
Rel. 8.61e-15 5.00e-15 5.21e-15 7.42e-11 4.22e-11 4.42e-11

Q
Abs. 9.98e-18 5.82e-19 1.17e-20 7.80e-14 4.56e-15 9.62e-17
Rel. 1.05e-14 6.65e-15 1.66e-15 8.20e-11 5.20e-11 1.36e-11

Man-at-Eternal-Rest Well-Balanced Scheme

A
Abs. 7.15e-16 4.94e-18 1.84e-19 6.99e-11 3.17e-13 2.76e-15
Rel. 7.21e-12 8.70e-14 3.73e-15 7.31e-07 6.04e-09 6.23e-11

Q
Abs. 6.26e-15 8.61e-17 8.47e-19 4.60e-10 4.67e-12 3.97e-14
Rel. 6.58e-12 9.83e-13 1.20e-13 4.83e-07 5.32e-08 5.61e-09

Table 3.12: Table of absolute and relative L1 and L∞ errors for the stenosis problem in
Section 3.5.2, using the living-man well-balanced scheme and the man-at-eternal-rest well-
balanced scheme.

The problem is computed using both the living-man and man-at-eternal-rest well-

balanced schemes with a uniform mesh of 200 cells until the final time t = 5. The L1

and L∞ errors shown in Table 3.13 demonstrate that the well-balanced property is indeed

maintained for the living-man scheme, but not for the man-at-eternal-rest scheme. Figure

3.17 displays the numerical solutions using both schemes with Sin = 0.5. Again, we observe

that the man-at-eternal-rest well-balanced DG methods cannot maintain this general steady
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(a)Living-man well-balanced DG scheme

(b)Non-zero pressure man-at-eternal-rest well-balanced DG scheme

Figure 3.15: The difference between A,Q at the final time t = 5 and the corresponding
numerical initial conditions for the artery with stenosis problem from Section 3.5.2, when
using the living-man well-balanced DG method (top row) and the man-at-eternal-rest well-
balanced DG method (bottom row). Both plots were computed with a mesh of 200 uniform
cells and Sin = 0.5.

state with non-zero velocity well.

3.5.3 Tests for Nearly Equilibrium Flows

In this section, numerical tests are provided to demonstrate that the living-man

well-balanced DG scheme can aptly handle small perturbations to living-man steady states,

and capture the nearly equilibrium flows well. We will also compare the performance of
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Figure 3.16: Radii at rest for the artery with a decreasing step defined by (3.77).

L1 Error L∞ Error

Var. Error Sin = 0.5 Sin = 0.1 Sin = 0.01 Sin = 0.5 Sin = 0.1 Sin = 0.01

Living-Man Well-Balanced Scheme

A
Abs. 8.26e-19 2.70e-19 1.87e-19 6.85e-15 2.21e-15 1.54e-15
Rel. 8.10e-15 4.97e-15 4.04e-15 6.60e-11 4.07e-11 3.32e-11

Q
Abs. 1.04e-17 4.88e-19 1.12e-18 8.09e-14 3.82e-15 8.74e-15
Rel. 1.09e-14 5.56e-15 1.58e-13 8.51e-11 4.36e-11 1.24e-09

Man-at-Eternal-Rest Well-Balanced Scheme

A
Abs. 2.45e-11 1.03e-13 2.96e-16 4.06e-06 5.85e-08 4.77e-10
Rel. 2.35e-07 1.92e-09 6.78e-12 4.42e-02 1.19e-03 1.15e-05

Q
Abs. 2.78e-10 1.37e-12 3.94e-15 2.77e-05 7.12e-07 6.14e-09
Rel. 2.93e-07 1.57e-08 5.56e-10 2.92e-02 8.12e-03 8.68e-04

Table 3.13: Table of absolute and relative L1 and L∞ errors for the decreasing step test
of in Section 3.5.2, using the living-man well-balanced scheme and the man-at-eternal-rest
well-balanced scheme.

the living-man and man-at-eternal-rest well-balanced schemes. Since each example from

Section 3.5.2 contains arteries with non-constant area, we expect to see the formation of

transmission and reflection pulses when the perturbation wave crosses through a portion of

the domain that changes shape. The values of the reflection and transmission coefficients

in (3.36) become valid only for small Sτ,in since they were derived from linear analytic

solutions and the flow is now nonlinear.
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(a)Living-man well-balanced DG scheme

(b)Non-zero pressure man-at-eternal-rest well-balanced DG scheme

Figure 3.17: The difference between A,Q at the final time t = 5 and the corresponding
numerical initial conditions for the decreasing step problem with Sin = 0.5 from Section
3.5.2, when using the living-man well-balanced DG method (top row) and the man-at-
eternal-rest well-balanced DG method (bottom row).

Perturbation of A for the Aneurysm

We consider a small perturbation to the living-man equilibrium state for an artery

with an aneurysm, which was described in Section 3.5.2. The initial conditions can be

determined from (3.71) and the cross-sectional radii at rest given by (3.75). The original

initial condition for the cross-sectional area is denoted A(x, 0) and we denote the perturbed

initial conditions of A by

Apert(x, 0) = A(x, 0) + πp(x)2,
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where

p(x) =


ε sin

(
100

10L
π

(
x− 45L

100

))
, if x ∈

[
45L
100 ,

55L
100

]
,

0, otherwise,

(3.78)

with ε = 5 × 10−5. The wave splits in two and moves in opposite directions away from

the initial perturbation. The test is run with 200 uniform cells until the stopping time

t = 0.005 and the solutions are shown in Figure 3.18 for the living-man well-balanced

scheme and in Figure 3.19 for the man-at-eternal-rest well-balanced scheme. It can be seen

that only in the case with Sin = 0.5, the man-at-eternal-rest well-balanced scheme does not

handle the perturbation very well. This is because, for small Shapiro number, the living-

man equilibrium state is near to a man-at-eternal-rest equilibrium, so the error in using

the man-at-eternal-rest well-balanced scheme is smaller than the error that arises from the

perturbation.

Inflow Pulse to Q for an Artery with Stenosis & a Discontinuous Step

In this section we will simulate a pulse inflicted on the flow Q at the inlet of the

domain. This pulse will be applied to both the stenosis and discontinuous step problems

in Section 3.5.2. The initial conditions for both A and Q are determined in the same way

as in Section 3.5.2, however we will introduce a different boundary condition for Q which

simulates a pulse to the flow of blood. The boundary condition for Q at the inlet, denoted

Q̃in, is defined in the following way
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(a)Sin = 0.5

(b)Sin = 0.1

(c)Sin = 0.01

Figure 3.18: The perturbation to the aneurysm problem for different values of Sin when the
living-man well-balanced scheme is used. The two types of plots include snapshots of the
solution at times t = 0, 0.0025, 0.005, as well as plots that demonstrate how the perturbation
propagates throughout the domain as a function of time. It can be seen that the larger the
Shapiro number, the faster the perturbation propagates, especially the right moving wave.
We can also see the formation of reflection waves.
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(a)Sin = 0.5

(b)Sin = 0.1

(c)Sin = 0.01

Figure 3.19: The perturbation to the aneurysm problem for different values of Sin when the
man-at-eternal-rest well-balanced scheme is used. The two types of plots include snapshots
of the solution at times t = 0, 0.0025, 0.005, as well as plots that demonstrate how the
perturbation propagates throughout the domain as a function of time. It can be seen that
the smaller the Shapiro number, the better the scheme performs because the living-man
steady state becomes nearer to a non-zero pressure man-at-eternal-rest steady state.
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Q̃in(t) =


Qin

(
1 + ε sin

(
2π

t

T

))
if t ≤ T

2 ,

Qin otherwise,

(3.79)

where the pulse is inflicted until halfway through the computational time T , and then no

more pulse is inflicted after that. This problem is similar to the one introduced in [60] with

some modifications and the introduction of parameter ε. The value for Qin is defined in

(3.74) and depends on the Shapiro number Sin = {0.5, 0.1, 0.01}. We set the amplitude

parameter ε = 1 × 10−7 for the artery with stenosis and ε = 5 × 10−2 for the decreasing

step problem. The boundary condition is shown in Figure 3.20.

Figure 3.20: The boundary condition (3.79) with Sin = 0.1, ε = 5× 10−2, and T = 0.01.

All tests in this section are run until the final time of t = 0.01 with a mesh of

200 uniform cells. For each variation of the test, we will compare the performance of the

living-man and man-at-eternal-rest well-balanced DG schemes. We present the results for

an artery with stenosis in Figures 3.21 and 3.22. Similarly to the aneurysm perturbation

problem, the man-at-eternal-rest scheme handles the perturbation as well as the living-man

scheme for Sin = 0.1 and 0.01. When Sin = 0.5, obvious error is observed in the numerical
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results of the man-at-eternal-rest well-balanced scheme. In Figures 3.23 and 3.24, we list

the numerical results for the decreasing step problem, using both living-man and man-at-

eternal-rest well-balanced DG schemes. Similar behavior can be observed.

3.5.4 Tests for Discontinuous Initial Conditions

Two Riemann problems with discontinuous initial conditions will be considered

in this section. We test the performance of the well-balanced DG methods in capturing

discontinuous solutions.

The Ideal Tourniquet

Dam break problems are frequently studied for the SWEs. For the blood flow

problem, the analogue is the ideal tourniquet problem. We consider a tourniquet that

is applied and instantaneously removed. The computational domain for this problem is

[−0.04, 0.04] and the initial conditions are given by

A(x, 0) =


π(Rin)2, if x ≤ 0,

π(Rout)
2, otherwise,

Q(x, 0) = 0, (3.80)

with the parameters listed in Table 3.14. The cross-sectional area at rest is defined as

A0(x) = π(Rout)
2. Transmissive boundary conditions are implemented at the endpoints of

the computational domain. The numerical solution is computed up to time t = 0.005. The

discontinuity in the center becomes a shock wave propagating to the right and a rarefaction

wave moving to the left. The numerical results with 200 uniform cells are presented in Figure
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(a)Sin = 0.5

(b)Sin = 0.1

(c)Sin = 0.01

Figure 3.21: The perturbation to the stenosis problem for different values of Sin when
the living-man well-balanced scheme is used. The two types of plots include snapshots
of the solution at times t = 0.004, 0.007, 0.01, as well as plots that demonstrate how the
perturbation propagates throughout the domain as a function of time. It can be seen that
the larger the Shapiro number, the faster the perturbation propagates.
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(a)Sin = 0.5

(b)Sin = 0.1

(c)Sin = 0.01

Figure 3.22: The perturbation to the stenosis problem for different values of Sin when
the non-zero pressure man-at-eternal-rest well-balanced scheme is used. The two types of
plots include snapshots of the solution at times t = 0.004, 0.007, 0.01, as well as plots that
demonstrate how the perturbation propagates throughout the domain as a function of time.
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(a)Sin = 0.5

(b)Sin = 0.1

(c)Sin = 0.01

Figure 3.23: The perturbation to the decreasing step problem for different values of Sin
when the living-man well-balanced scheme is used. The two types of plots include snapshots
of the solution at times t = 0.004, 0.007, 0.01, as well as plots that demonstrate how the
perturbation propagates throughout the domain as a function of time.
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(a)Sin = 0.5

(b)Sin = 0.1

(c)Sin = 0.01

Figure 3.24: The perturbation to the decreasing step problem for different values of Sin when
the non-zero pressure man-at-eternal-rest well-balanced scheme is used. The two types of
plots include snapshots of the solution at times t = 0.004, 0.007, 0.01, as well as plots that
demonstrate how the perturbation propagates throughout the domain as a function of time.
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3.25. For comparison, we also present the simulation results with refined 1600 uniform cells

as a “reference” solution. We can see that the numerical solution agree well with the refined

solutions. Our well-balanced DG methods can capture the shock wave well, and the slope

limiter removes oscillatory near the discontinuities.

Rin Rout K ρ

5× 10−3 m 4× 10−3 m 107 Pa/m 1060 kg/m3

Table 3.14: Parameters for the ideal tourniquet problem (3.80) and the Riemann problem
(3.81).

Figure 3.25: Numerical solutions at time t = 0.005 with quadratic basis function and mesh
sizes of 200 and 1600 uniform cells for the ideal tourniquet problem (3.80).

Riemann Problem with Non-Flat Radius at Rest and Non-Zero Velocity

Next, we consider a problem similar to the ideal tourniquet problem, but with a

non-zero velocity and discontinuous cross-sectional area at rest given by

A(x, 0) =


π(4× 10−3)2, if x ≤ 0,

π(3.5× 10−3)2, x > 0,

Q(x, 0) =


1.5× 10−3, if x ≤ 0,

1× 10−3, if x > 0,

(3.81)
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and

A0(x) =


π(2.5× 10−3)2, if x ≤ 0,

π(3× 10−3)2, x > 0,

, (3.82)

The computational domain for this problem is [−0.04, 0.04] and the test is run until time

t = 0.008. The numerical results with 200 uniform cells and TVB minmod limiter are

presented in Figure 3.26, and compared with the “reference” solution obtained with refined

1600 uniform cells. We can see that the numerical solution agrees well with the refined

solutions. The minmod limiter marks the troubled cells based on U f
τ and performs the

actual limiting procedure on Uτ . We also plotted the figures of the decomposed solutions

U f
τ and U e

τ at the final time in Figure 3.27 in which the troubled cells marked by the limiter

are distinguished from the non-limited cells. We have compared minmod slope procedure

with the results of the standard minmod limiter (both trouble cell indicator and limiting on

Uτ ), and observed the same results. In these figures, it can be seen that the shock profiles

are smeared with 200 cells. For comparison, we also included the numerical results in Figure

3.28 when WENO limiter is used instead, and this gives a sharp shock profile on the same

mesh (200 cells).
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Figure 3.26: Numerical solutions at time t = 0.008 with quadratic basis function and mesh
sizes of 200 and 1600 uniform cells for the Riemann problem (3.81). TVB minmod limiter
is used.

Figure 3.27: Numerical solutions of U e
τ (top row) and U f

τ (bottom row) at time t = 0.008
with quadratic basis function and mesh size of 200 uniform cells for the Riemann problem
(3.81). Cells in which the minmod limiter was applied after the last RK step are colored in
blue and non-limited cells are colored red.
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Figure 3.28: Numerical solutions at time t = 0.008 with quadratic basis function and mesh
sizes of 200 and 1600 uniform cells for the Riemann problem (3.81). The WENO limiter is
used.
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Chapter 4

Recovery of a Time-Dependent

Bottom Topography Function from

the Shallow Water Equations via

an Adjoint Approach

4.1 Introduction

Various phenomena arising frequently in natural, engineering and socio-economical

applications can be modeled by hyperbolic conservation and balance laws. Examples of

conservation laws include models for traffic flow [58], fluid dynamics [46] and supply chains

[18]. Moreover, conservation laws with source terms, also known as balance laws, are used

in different models, e.g. the gas pipeline flow [68], shallow water flow [151, 85], gas dynamics
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under gravitational field [157], and blood flow through arteries [163]. A variety of theoretical

studies have been conducted to understand the underlying mathematical structure and a

wide range of numerical approaches dedicated to solving for the state variables have been

developed in the past few decades. On the other hand, optimization, control, and recovery

of the system parameters is a problem of great interest due to its high practical value.

In this work, we derive an inverse problem algorithm for a specific system of hyperbolic

balance laws, in which a time-dependent topographical profile is recovered based on the

measurement from the boundary.

Various optimization and control methods have been developed for conservation

and balance laws such as backstepping [144, 62], Lyapunov-based [144], derivative-free [88],

and optimal control methods [79]. In this work we employ an adjoint approach, which is

often praised for its efficiency. Its computational cost (of each iteration) is comparable

to that of solving a partial differential equation (PDE) once, instead of depending on the

number of control variables or design parameters as in other optimization methods.

Adjoint methods were introduced for optimal control problems in 1971 by Lions

[99] in the context of shape optimization of aerodynamic bodies. A few years later the

methods were extended to fluid dynamics by Pironneau [117]. Jameson popularized the

techniques for potential flow and the Euler equations [80, 81]. The methods have also been

applied to biological systems in the search of parameter identification [123]. Estimation of

open water states [24] and traffic states on the freeways [78] have also been accomplished

via the adjoint optimization method. With regards to scalar conservation laws, Holden et

al. [75] developed a reconstruction procedure for the coefficient inverse problem in which a
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spatially dependent coefficient of the flux term is recovered. Bürger et al. [21] solved the

inverse scalar conservation law modelling sedimentation numerically by assuming a varia-

tional form of the problem. The flux function of a scalar conservation law was reconstructed

using the information from the shock that forms in the work by Kang and Tanuma [83]. In

a more general setting for balance laws, Montecinos et al. [103] derived a unified scheme

for solving the forward and adjoint problems simultaneously. Methodology for the scalar

Burger’s equation was presented by Lellouche et al. [89] in which the authors aimed to

find the best approximation for the measured data by means of boundary control and an

adjoint approach. Ferlauto [49] obtained optimal geometric shapes for aerodynamic bodies

by solving an inverse problem for the three-dimensional incompressible Euler equations.

Numerical computation of the optimization problems for conservation laws have

been studied extensively due to the theoretical and numerical challenges that arise. As

the exact solution of conservation laws often contains discontinuities, one challenge in the

related optimization problems is that non-negligible numerical errors may occur in capturing

the discontinuities. Some of these difficulties are mitigated via introduction of the Lax-

Friedrichs schemes [61] or relaxation methods [2], for instance. Convergence analyses have

been provided for optimization problems in the aforementioned works. The fact that many

conservation laws are nonlinear presents another challenge because this can lead to non-

convex formulations of the optimization problem. One method to tackle this difficulty is

to use linear programming methods once the discretization scheme is ‘relaxed’ [64, 166].

This allows for a global optimum to be found and reduces computational cost, but the

linearization may not be a good physical representation of the original system [125]. To
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maintain the nonlinearity of the system, a more expensive method, such as gradient descent,

can be used but may not ensure a global optimum is achieved.

In this chapter, we focus on the inverse problem that arises in first order non-

linear hyperbolic balance laws. Many difficulties arise in this research field as a result of

uncertainties in data, measurements, and the use of complex data. It is very important to

develop highly accurate, easy to implement, and cost-efficient methods with high resolution

to study fluvial environments numerically. Although the method we employ can be quite

general, for the sake of simplicity and better illustrative purposes, we focus on a prototype

example of hyperbolic balance laws in this work, namely the nonlinear SWEs, also referred

to as the Saint-Vernant equations. This system models fluvial environments such as flood

plane dynamics, coastal and tidal flows, and flow and sediment transport. It has wide ap-

plications in ocean, environmental, hydraulic engineering and atmospheric modeling. The

model parameter we aim to recover in this context is the riverbed topography, however

other terms such as friction may also be of interest to reconstruct.

Ground surveys of riverbeds or direct topographical data collection are not always

effective for determining underwater topography because the operations are costly and

time consuming. Numerical techniques of constructing riverbed topography can offer many

benefits over aerial and ground techniques in terms of cost reduction, efficiency, as well

as flexibility. Heining and Aksel [70] used a direct approach to reconstruct the bottom

topography of steady-state thin-film flow. Castaings et al. [24] presented an automatic

differentiation technique and free surface information to reconstruct river bed topology.

Honnorat et al. [76] derived a method for recovering channel topology from a steady-state
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solution of the forward problem using an optimization technique called variational data

assimilation. A direct approach from the one-dimensional SWEs was used by Gessese et

al. [59] to reconstruct the river bed from free surface data. Lastly, a stable finite volume

scheme in the presence of wetting-drying fronts and inverse computational algorithms (based

on variational approach) were presented in [102]. All methods developed in these studies

dealt with time-independent bottom topography functions.

The main objective of this chapter is to develop a robust algorithm that requires

less data to reconstruct a dynamic bottom function, thereby allowing the construction of a

more accurate and inexpensive model. We assume the measurements, possibly with noise,

are taken only on two boundaries of the spatial domain in a given time period. Traditionally,

the bottom topography in the SWEs is a function of space alone within the framework of the

inverse problem construction. Here, we consider the time-dependent bottom topography

function, which allows for the recovery of the bottom topography with less data considering

the fact that movement in the forward problem solution coming from the change of the

bottom topography allows more information propagation to the boundary measurements.

Usually inverse problems are more difficult when we need to recover both the temporal and

spatial profile. In this work, as a first step, we assume a special form of the topographical

profile which represents two known spatial profiles and an unknown temporal interaction.

This time-dependent bottom topography can practically describe a physical phenomenon

when two platonic plates with known topography are moving against one another, e.g. an

earthquake, underwater volcanic buildup, or a moving sand bottom. We aim to recover only

the temporal profile representing, e.g. the pulse of the earthquake. After constructing the
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adjoint formulation, we present the cost function with two regularization terms added to

suppress noise and to handle the ill-posedness of this problem. An iterative update scheme

based on a three-operator splitting scheme is employed to update the targeting function.

This splitting scheme requires each operator to be computed only once per iteration and is

straightforward to implement.

This chapter is organized as follows. In Section 4.2 we introduce the primal equa-

tions used throughout this work. The DG numerical scheme is also presented as the method

used for solving the forward problem. Section 4.3 includes a discussion on the formulation

of the inverse problem. The adjoint equations are derived from a linearized system and

used to derive the gradient formulation of the cost function. This section also contains the

description of the iterative updating procedure for determining the desired source term, as

well as a discussion on the choice of regularization terms. Numerical examples are presented

in Section 4.4.

4.2 Forward Problem

In this section, we present the hyperbolic PDE system used to define the forward

(or primal) problem. The forward system will be used in Section 4.3 to determine the

adjoint formulation, which in turn is employed to derive the gradient of a cost function and

iteratively update the time-dependent bottom topography function. We will discuss the

PDE system as well as the numerical scheme used to solve the forward problem.
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4.2.1 Forward Problem Formulation

Hyperbolic balance laws are conservation laws with a source term. A few examples

of such systems include the nonlinear SWEs, the arterial blood flow model, the Euler

equations under gravity, and the telegrapher’s equations. A source term might arise as

a result of many factors, such as a friction term or a topographical term.

In this work, we only consider the one-dimensional systems of m hyperbolic balance

laws which take the form
∂tU + ∂xF (U) = Ŝ(U ,B), (x, t) ∈ (x0, xL)× (0, T ],

U(x, 0) = U0(x), x ∈ (x0, xL),

(4.1)

where U are the state variables, F (U) are the fluxes, and U0(x) are the initial conditions.

The vector B represents the model parameters we aim to recover in the inverse problem

and is only present in the source term, Ŝ(U ,B). The source term can be rewritten in the

form of Ŝ(U ,B) = S(U ,B)U , in which S(U ,B) ∈ Rm × Rm is a matrix.

Alternatively, the system can be written in quasi-linear form using the Jacobian

matrix A(U) = ∂F
∂U ,
∂tU +A(U)∂xU = S(U ,B)U , (x, t) ∈ (x0, xL)× (0, T ],

U(x, 0) = U0(x), x ∈ (x0, xL).

(4.2)

To determine the solution of a forward problem, one seeks to determine the state variables

U with the model parameters B given. In this work, we will only consider the case when

we have a single topographical function, denoted by B. While the information in B is

traditionally a function of space alone, here we consider B as a function depending on both
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space and time as follows:

B(x, t) = B0(x) + p(t)B1(x), (4.3)

where we assume B0(x) and B1(x) to be known and p(t) to be the component we wish to

recover.

In this chapter we will focus on the SWEs with a non-flat bottom topography, one

of the most well known systems of hyperbolic balance laws. In particular, we aim to recover

the riverbed topography function, denoted by b. This term occurs only in the source term

of the momentum equation in the form of its derivative, ∂xb, so we define

B = ∂xb(x, t) = ∂xb0(x) + p(t)∂xb1(x). (4.4)

The state variables, flux terms, and source term for the SWEs are given by

U =

 h
hu

 , F (U) =

 hu

hu2 + 1
2gh

2

 , Ŝ(U , B) =

 0

−ghB

 =

 0

−gh∂xb

 , (4.5)

by following the form (4.1). Here, h(x, t) ≥ 0 is the water height, (hu)(x, t) is the water

discharge with u(x, t) being the depth averaged velocity, and g = 9.812 is the gravitational

constant. On the other hand, under the quasi-linear formulation, we write

A(U) =

 0 1

gh− u2 2u

 , S(U , B) =

 0 0

−g∂xb 0

 . (4.6)

Time-dependent bottom topography functions have been considered in the liter-

ature. In a more complicated model, e.g. [139, 72, 77, 97, 85], the change of the bottom

function in the SWEs may depend on other state variables. For instance, the bottom func-

tion may be determined by erosion, sediment transport, dam breaks, or landslides due to
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floods. In such cases, additional equations to model the evolution of bottom topography

may arise in the system in order to better describe these dependence. However, these models

are different from the one we consider in this work.

4.2.2 Discontinuous Galerkin Method for the Forward Problem

The DG method will be used to solve the forward problem (4.6). It is a high order

accurate scheme that has gained significant attention in the last decade. The method is

advantageous for hyperbolic conservation laws because it is both stable, similar to the finite

volume method, and flexible, like the finite element method. The arbitrary order feature of

the DG method can provide accurate results on a coarse mesh. In particular, in an inverse

problem algorithm, a forward solver is usually employed during each iteration, hence the

use of a coarser mesh is ideal in an effort to reduce computation cost in the iterative process.

Lastly, the DG scheme is able to capture the discontinuous solutions well and help us locate

the interfaces accurately.

We seek an approximation Uτ of the solution U , in which U
(i)
τ for i = 1, ...,m

belongs to the finite dimensional piecewise polynomial space Vkτ . The DG scheme takes

the form (1.17) where we use the Lax-Friedrichs flux (1.18). In the case of the SWEs, let

α = max (|u|+
√
gh). The scheme is advanced in time using the SSP-RK3 method (1.19).

The full details of the method are presented in Section 1.3.2.
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4.3 Inverse Problem

In this section, we describe the inverse problem of our focus, which is the recon-

struction of the topographical source function B from boundary data of the hyperbolic

conservation law (4.1) from a single measurement event. We reduce the inverse problem

to an optimization problem of a residual functional coming from boundary measurements,

with an addition of two regularization terms, which will be described more concretely later

in the section.

In our work, we adopt the adjoint method to numerically obtain a gradient of

our functional. We will describe the cost function we wish to minimize, the derivation of

the adjoint formulation for the gradient calculation, and the iterative update scheme for

determining the time component, p(t), of the source function B. The numerical solution to

the adjoint problem will be calculated using the DG method.

We assume that noisy measurements of U are taken only on both boundaries of

the spatial domain, given a period of time [0, T ] in one single measurement event. During

the numerical reconstruction process, we assume that only these noisy solutions at the

boundary of the spatial domain is known to us. For notational sake, we denote these

noisy measurements as Λ̂noisy = Λ̂µ where the multiplicative noise is uniformly distributed,

µ ∼ U
[
1− 1

2ηmeas, 1 + 1
2ηmeas

]
, with a given noise level ηmeas. The goal of the inverse

scheme is to find the function, p(t), that provides the best approximation Λ(B(p)) ≈ Λ̂noisy.

The map Λ(B(p)) = U |{x0,xL}×[0,T ] represents the forward map with the input, B(p), as the

topographical function and the output as the solutions, U , at the boundary points, {x0, xL},

over the time interval [0, T ]. Finding the best approximation reduces to minimizing the
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error or residue of the predicted and measured data for all time at the boundary of the

computational domain. This corresponds to minimizing the functional

J(p) := J0(p) +R(p) :=

∫ T

0

1

2
|[E(p)] (x0, t)|2 +

1

2
|[E(p)] (xL, t)|2 dt+R(p), (4.7)

where the error function, E , for a given p is defined as

[E(p)] (x, t) = Λ(B(p))(x, t)− Λ̂noisy(x, t). (4.8)

The term R(p) is a regularization term that will be discussed in Section 4.3.3.

The optimization problem becomes

minimize J(p) := J0(p) +R(p) subject to (4.2). (4.9)

We employ a descent method to minimize the above functional, in which the (formal)

gradient ∇J will be obtained via the adjoint method following a linearization process of

the equation (4.2).

4.3.1 Gradient Derivation

In an effort to determine ∇J0, we begin by calculating the variational derivative

(in the sense of the Gateaux differential) of J0 and dualize it using L2-pivoting. In what

follows, we would like to denote, for a functional F , the variational derivative of F at p

along p̃ as

δF(p; p̃) := lim
ε→0

F(p+ εp̃)−F(p)

ε
(4.10)

whenever it exists. Furthermore, whenever δF(p; p̃) is linear with respect to p̃, we (formally)

dualize the variational derivative δF(p; p̃) using L2-pivoting and define the gradient, ∇F(p),
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such that it satisfies the relation

δF(p; p̃) :=

∫ T

0
[∇F(p)] (t) p̃(t) dt. (4.11)

With these notions at hand, we readily compute that

δJ0(p; p̃) = lim
ε→0

J0(p+ εp̃)− J0(p)

ε

=

∫ T

0

([
δET (p; p̃) E(p)

]
(x0, t) +

[
δET (p; p̃) E(p)

]
(xL, t)

)
dt ,

(4.12)

where the superscript T now represents the transpose of a matrix (and not the adjoint

operator). From the definition of E , we quickly realize that δE(p; p̃)(x, t) = δΛ(B(p);B(p̃)).

Hence, (4.12) reduces to

δJ0(p; p̃) =

∫ T

0

([
δΛT (B(p);B(p̃)) E(p)

]
(x0, t) +

[
δΛT (B(p);B(p̃)) E(p)

]
(xL, t)

)
dt .

(4.13)

We now see the necessity of evaluating the term δΛ(B(p);B(p̃)) explicitly. Albeit seemingly

complicated, the difficulty of the evaluation will be mitigated via solving a related adjoint

equation, which will be described in the next subsection.

4.3.2 Linearization & Adjoint Formulation

The adjoint formulation can be understood from multiple perspectives. One way

is the Lagrange framework in which the adjoint variables are Lagrange multipliers. This

method is commonly used in the aeronautical community, popularized by Jameson [80],

because it provided a solid connection to theories of constrained optimal control and opti-

mization. Another type of approach, the duality framework, requires one to linearize the

system in order to derive the adjoint equations. We will use the duality framework in this

work, however the Lagrange framework provides the exact same adjoint formulation.
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Linearization of the forward system

In this subsection, we aim to linearize the forward system (4.2) as follows. We

consider an ε-perturbation of B, Bε := B + εB̃ along the direction B̃, and see how the

resulting U that satisfies (4.2) is perturbed. We denote U ε as the solution to (4.2) given

Bε and define

Ũ := lim
ε→0

U ε −U
ε

whenever it exists. Now we quickly realize that

Ũ(x, 0) = lim
ε→0

U ε(x, 0)−U(x, 0)

ε
= 0 (4.14)

as the initial conditions of U ε and U shall coincide. Moreover, taking the differences of the

respective equations coming from (4.2) for U ε and U directly gives

0 = lim
ε→0

1

ε
(∂t[U

ε −U ] + [A(U ε)∂xU
ε −A(U)∂xU ]− [S(U ε, Bε)U ε − S(U , B)U ]) ,

(4.15)

and each term in the bracket can be simplified whenever they exist. For instance, we directly

have

lim
ε→0

1

ε
∂t (U ε −U) = ∂tŨ . (4.16)
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Meanwhile, via product rule, together with the fact that the symmetry relationship ∂UkAij(U) =

∂Uk∂UjFi(U) = ∂UjAik(U) holds, we may simplify the flux term as

lim
ε→0

1

ε
(A(U ε)∂xU

ε −A(U)∂xU) (4.17)

= A(U)∂xŨ +

(
m∑
k=1

∂UkA(U) Ũk

)
∂xU

= A(U)∂xŨ +

 m∑
j=1

∂UjA(U)∂xU

 Ũ
= A(U)

[
∂xŨ

]
+ [∂xA(U)] Ũ

= ∂x

[
A(U)Ũ

]
.

Likewise, we can simplify the source term and obtain

lim
ε→0

1

ε
(S(U ε, Bε)U ε − S(U , B)U) (4.18)

= S(U , B)Ũ + lim
ε→0

1

ε

(
S(U + εŨ , B + εB̃)− S(U , B)

)
U ε

= S(U , B)Ũ +

(
m∑
i=1

∂UiS(U , B)Ũi + ∂BS(U , B)B̃

)
U

:= (S(U , B) +C(U , B)) Ũ + ∂BS(U , B)U B̃,

where C denotes the matrix Cij =
∑m

k=1
∂Sik
∂Uj

Uk. Substituting (4.16), (4.17) and (4.18)

into (4.15), and combining that with the initial condition (4.14), we therefore obtain the

following linear system for Ũ
(∂t − S −C) Ũ + ∂x

(
AŨ

)
= (∂BS(U , B)U) B̃, (x, t) ∈ (x0, xL)× (0, T ],

Ũ(x, 0) = 0, x ∈ [x0, xL] ,

(4.19)

which serves as the linearization of the forward system (4.2).
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The adjoint system

With the linearization process given in the previous subsection, we may proceed to

obtain δΛ(B(p);B(p̃)) at the boundary points, and thereby evaluate δJ0(p; p̃) appropriately.

We start by considering σ which satisfies the following adjoint system with final

time condition and boundary conditions

(∂t +AT∂x + ST +CT )σ = 0, x ∈ (x0, xL)× (0, T ],

σ(x, T ) = 0, x ∈ (x0, xL),

σ(x0, t) = −(AT )−1(x0, t) [E(p)] (x0, t), t ∈ (0, T ],

σ(xL, t) = (AT )−1(xL, t) [E(p)] (xL, t) t ∈ (0, T ] .

(4.20)

In the particular case of the SWEs, the matrices appearing in (4.20) are given by

AT =

0 gh− u2

1 2u

 , ST =

0 −g∂xb

0 0

 , CT = 0. (4.21)

Taking the inner product of the solution σ of (4.20) and the weak formulation of

the linearized system in (4.19), we get∫ T

0

∫ xL

x0

σT (∂BS(U , B)U) B̃ dxdt

=

∫ T

0

∫ xL

x0

σT (∂t + ∂xA− S −C) Ũ dxdt

= −
∫ T

0

∫ xL

x0

ŨT
(
∂t +AT∂x + ST +CT

)
σ dxdt

+

∫ xL

x0

ŨTσ

∣∣∣∣t=T
t=0

dx+

∫ T

0
ŨTATσ

∣∣∣∣x=xL

x=x0

dt,

(4.22)
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where we simplify further, with (4.20), to obtain∫ T

0

∫ xL

x0

σT (x, t) (∂BS(U , B)U) (x, t)B̃(x, t) dxdt

=

∫ T

0

[
δΛT (B(p); B̃(p)) E(p)

]
(xL, t) dt

+

∫ T

0

[
δΛT (B(p); B̃(p)) E(p)

]
(x0, t) dt.

(4.23)

Here the last equality follows from the choice of boundary conditions described in (4.20) and

the fact that U = Λ(B(p)) implies Ũ = δΛ(B(p); B̃(p)). We may now readily substitute

(4.23) into the expression (4.13) to obtain

δJ0(p; p̃) =

∫ T

0

∫ xL

x0

σT (x, t) (∂BS(U , B)U) (x, t)B̃(x, t) dxdt. (4.24)

By utilizing the fact that

[
B̃(p)

]
(x, t) = δB(p; p̃) = [δ(B0 + pB1)](p; p̃) = B1(x) p̃(t), (4.25)

we further simplify (4.24) to

δJ0(p; p̃) =

∫ T

0

(∫ xL

x0

σT (x, t) (∂BS(U , B)U) (x, t)B1(x) dx

)
p̃(t) dt. (4.26)

Therefore from definition (4.11), we obtain the following (formal) gradient from (4.26)

∇J0(p)(t) =

∫ xL

x0

σT (x, t) (∂BS(U , B)U) (x, t)B1(x) dx . (4.27)

We again remark that, in the case of the SWEs, we have

∂BS(U , B)U =

 0 0

−g 0


 h
hu

 =

 0

−gh

 , B1 = ∂xb1, (4.28)
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and therefore the gradient is simplified to the form

∇J0(p) =

∫ xL

x0


σ1

σ2


T  0

−gh


 (x, t)∂xb1(x) dx

=

∫ xL

x0

−gσ2(x, t)h(x, t)∂xb1(x) dx,

(4.29)

where σ =

σ1

σ2

 is the solution of the adjoint equation (4.20).

4.3.3 Numerical Scheme for the Inverse Problem

In this subsection we will discuss the numerical algorithms for the inverse problem.

The DG scheme will be employed to solve the adjoint problem (4.20) and an iterative method

will be presented to update the function p with the suitably chosen regularization terms.

Discontinuous Galerkin Method for the Adjoint Problem

Noting that the spatial derivative in the adjoint problem (4.20) is not in the con-

servative form, we start by reformulating the adjoint problem as a balance law of the form

∂tσ + ∂x
(
ATσ

)
= (∂xA

T − ST −CT )σ, (4.30)

where A = A(U) does not depend on the unknown σ. Following the same discretization

strategy as presented in Section 4.2.2, we seek an approximate solution στ in which σ
(i)
τ for

i = 1, ...,m belong to Vkτ . The DG method in cell Ij becomes∫
Ij

∂tστv dx−
∫
Ij

A(Uτ )Tστ∂xv dx+ Ĝj+ 1
2
v−
j+ 1

2

− Ĝj− 1
2
v+
j− 1

2

=

∫
Ij

(
∂xA

T (Uτ )− ST (Bτ )−CT
)
στv dx,

(4.31)
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where v ∈ Vkτ is a vector of test functions and the Lax-Friedrichs numerical flux takes the

form

Ĝj+ 1
2

=
1

2

(
A(U−

τ,j+ 1
2

)Tσ−
τ,j+ 1

2

+A(U+
τ,j+ 1

2

)Tσ+
τ,j+ 1

2

− α
(
σ+
τ,j+ 1

2

− σ−
τ,j+ 1

2

))
, (4.32)

with the value of α being the same as in the forward DG scheme, described in Section 4.2.2.

Regularization & Update Scheme

In this subsection, we describe the numerical method designed to recover the func-

tion p(t) via an iterative scheme. Usually, either a descent type [27], Newton type [74], or a

trust region algorithm [141] is employed. A Newton type algorithm usually provides a cer-

tain acceleration to the convergence, but as a trade off, it is usually more computationally

expensive. In this work, we employ a descent type algorithm, in light of the fact that our

functional is highly non-linear and highly non-convex, applying a higher order method may

result in getting stuck at a local optimum even more easily.

We employ an operator splitting algorithm to update the function p(t). The scheme

is initialized with a random initial guess for p, denoted by p0,noisy. We use multiplicative

noise following a uniform distribution, i.e., p0,noisy = p0ν, where ν ∼ U
[
1− 1

2ηp, 1 + 1
2ηp
]
,

to define the random initial guess. Not only is the update of p dependent on ∇J0, but it also

relies on a regularization term. The regularization term ensures the optimization problem is

locally convex and makes it possible to solve an ill-posed problem efficiently by incorporating

a-priori knowledge of the profile to be reconstructed. Various regularization terms have

been constructed for different purposes. For instance, L1 regularization [161, 65] results

in a simpler sparse solution. On the other hand, TV regularization [130] favors piecewise
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constant functions of the coefficients to be recovered, whereas Sobolev regularization [50]

favors smoothness of the coefficients to be reconstructed.

Before we focus on our choice of regularization, we first discuss the update algo-

rithm. To better motivate our choice of algorithm, we start by simplifying our discussion

and considering the situation when there is only one regularization term. In this case, the

proximal gradient descent method (or the forward-backward splitting) [4, 113] is a common

choice. The explicit term is usually assigned as the term coming from the gradient of a

more complicated functional. The implicit term is typically chosen so that the proximal

map is easy to evaluate and the stability of the algorithm is increased. Consequently, the

kth iteration is given by

pk+1 = pk − `k∇J0

(
pk
)
− `k∂R

(
pk+1

)
, (4.33)

where `k is the step size or learning rate and ∂ represents the subgradient when the proximal

map of R can be computed. In our work, we will choose a constant step size, i.e., `k = `

for all k. The scheme can be rewritten so that the update for iteration k + 1 only depends

on the information from iteration k,

pk+1 = (I + `∂R)−1
(
pk − `∇J0

(
pk
))

, (4.34)

where I is the identity matrix and

(I + `∂R)−1 (w) = argminy

{
R(y) +

1

2`
‖w − y‖22

}
= proxR,`(w). (4.35)

This leads to the formulation

pk+1 = argminy

{
R(y) +

1

2`
‖pk − `∇J0(pk)− y‖22

}
. (4.36)
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A common choice for the regularization is L1 regularization, where R(y) = γ‖y− p0‖1 with

p0 being a chosen coefficient of homogeneous background and γ a scalar parameter, aiming

to impose sparsity of the difference between the resulting optimum and p0. The proximal

gradient method coming from this choice of regularizer is

pk+1 = argminy

{
γ‖y − p0‖1 +

1

2`
‖pk − `∇J0

(
pk
)
− y‖22

}
= Sγ`

(
pk − `∇J0

(
pk
)
− p0

)
+ p0,

(4.37)

where the shrinkage operator Sγ` [39, 38, 161] is given as follows

Sγ` (p) = sign (p) max {|p| − `γ, 0} . (4.38)

After briefly describing the simple motivating example which carries only one

regularization term, we now describe the combination of regularization terms that we use

in our work, and how we perform the operator splitting in our algorithm. In this work, the

regularization term is taken as a sum of two regularizers

R(p) = RL1(p− p0) +RH1(p), (4.39)

where RL1(p) = ‖p‖1 represents L1 regularization and RH1(p) = ‖∇p‖22 represents H1

regularization. The L1 regularization term will aid in removing the noise by sparsifying it,

while the H1 regularization term will be beneficial for the purpose of smoothing out the

noisy data, an advantage over total variation (‖∇p‖1) regularization. H1 regularization has

been shown to be good for flow control problems [37, 71] as well as image reconstruction

and deblurring [108, 84].

Now, we wish to minimize J0(p) +RL1(p) +RH1(p), which reduces to finding p

so that

0 ∈ ∇J0(p) + ∂RL1(p) +∇RH1(p). (4.40)
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We must be careful in our approach and employ a more complicated splitting scheme than

the proximal gradient descent since we now have an additional operator. In our work,

we adapt the three-operator splitting algorithm [40], which we will describe in detail in

Algorithm 1. For simplicity, we introduce the following notation corresponding to each

regularization term

J`γLRL1 (ω) = (I + `γLRL1)−1 (ω)

= sign(ω − p0) max {|ω − p0| − `γL, 0}+ p0,

(4.41)

and

J`γHRH1 (ω) = (I + `γHRH1)−1(ω) = (I − `γH∆)−1 (ω), (4.42)

where γL is the L1 regularization parameter and γH is the H1 regularization parameter.

Furthermore, we would like to note that the gradient of the cost function is time-dependent,

i.e. ∇J0(pk, t), but we denote it as ∇J0(pk) for the sake of simplifying notation. The update

becomes

pk+1 = J`γLRL1 ◦
[
zk + λk

(
J`γHRH1 ◦

[
2pk − zk − `∇J0(pk)

]
− pk

)]
, (4.43)

where z0 is originally initialized to be p0 and λk is the relaxation parameter which can be

used to help speed up the rate of convergence of the iterative solutions. We are now ready

to introduce our algorithm.

159



Algorithm 1: Three-Operator Splitting Algorithm

initialize p0 to be the random initial guess;

initialize z0 = p0 ;

set regularization parameters γL, γH ;

set relaxation parameter (λk)k≥0;

set learning rate `;

for k = 0, 1, ... do

compute Λ(B(pk)) from B(pk) by solving the forward problem (4.2) ;

compute σ from (B(pk),Λ(B(pk))) by solving the adjoint problem (4.20) ;

evaluate ∇J0(pk) =
∫ xL
x0
σT (x, t) (∂BS(U , B)U) (x, t)B1(x) dx;

define κk = 2pk − zk − `∇J0(pk) ;

evaluate ωk = J`γHRH1 (κk) = (I − `γH∇2)−1(κk);

update zk+1 = zk + λk(ω
k − pk);

update pk+1 = J`γRL1 (zk+1) = sign(zk+1 − p0) max{|zk+1 − p0| − `γL, 0}+ p0;

end

4.4 Numerical Examples for the Shallow Water Equations

In this section, we will be considering the one-dimensional nonlinear SWEs (4.5).

We aim to recover the temporal component p(t) in the bottom topography function b(x, t),

see (4.3).

In all the numerical tests, we use a relaxation parameter of λk = 1, a noise pa-

rameter for the measured data of ηmeas = 0.1 or 5% noise, a noise parameter for the initial
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guess p0 of ηp = 0.25 or 12.5% noise. A coefficient of homogeneous background is assumed

to be known and taken as p0 = 1. Each test is ran for 1000 iterations. The iteration with

the smallest residue, J0(pk), is selected as the best recovered representation for the true

temporal component of the bottom function p(t). The measured data is computed using a

high order accurate DG method with a uniform mesh of 400 cells and P 3 piecewise poly-

nomials, with noise added to the DG solutions to represent noisy measurement. A mesh

of 50 uniform cells with P 2 piecewise polynomials are used to solve the forward problem

and a uniform mesh of 25 cells with P 1 piecewise polynomials are used to solve the ad-

joint problem. The measured data, forward, and adjoint solvers are designed with different

meshes and polynomial degree approximations in an effort to avoid committing “inverse

crime”[148]. The adjoint solver is chosen to be less accurate than the forward solver since

it has a helpful regularization effect.

4.4.1 Tests for Recovering Different Time Profiles of p(t)

In this subsection, we will perform numerical experiments aiming to recover several

unknown time profiles, ptrue(t), from noisy boundary measurements.

We solve the forward problem (4.1) with the DG method described in Section 4.2.2

where our computational domain is chosen to be [x0, xL] = [0, 1], the initial conditions are

given by

h(x, 0) = 7 + exp(sin(2πx)), hu(x, 0) = cos(2πx), (4.44)

and the spatial components of the bottom topography function are defined as

b0(x) = cos(sin(2πx), b1(x) = sin2 (πx) . (4.45)
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The final time is set as T = 0.05 and periodic boundary conditions are used.

We examine several choices for the true value of p(t) and the corresponding initial

guesses, which are outlined in Table 4.1. A constant learning rate of ` = 0.6 is used in

each test. The regularization parameters are fixed with γL = 1× 10−6 in all examples and

γH = 5× 10−8 in cases (4.4.1a),(4.4.1b), (4.4.1d), (4.4.1e), γH = 1× 10−8 in cases (4.4.1c),

(4.4.1d) and γH = 5× 10−9 in case (4.4.1f).

Case ptrue(t) p0(t)

(4.4.1a) eβ(t−
1
3
T)

2

+ 1 eβ(t−
2
3
T)

2

+ 1

(4.4.1b) eβ(t−
2
3
T)

2

+ 1 eβ(t−
1
3
T)

2

+ 1

(4.4.1c) e2β(t− 1
4
T)

2

+ e2β(t− 3
4
T)

2

+ 1 3
2e
β(t− 1

2
T)

2

+ 1

(4.4.1d) eβ(t−0.3T )2 + 3
2e

2β(t−0.7T )2 + 1 3 cos2
(

10π
T t
)

+ 3
4

(4.4.1e) 3
2e
β(t−0.3T )2 + e2β(t−0.7T )2 + 1 3 cos2

(
10π
T t
)

+ 3
4

(4.4.1f) e4β(t− 1
4
T)

2

+ 3
2e

4β(t− 1
2
T)

2

− 1
2e

4β(t− 3
4
T)

2

+ 1 3 cos2
(

10π
T t
)

+ 3
4

Table 4.1: The true function for p(t) denoted as ptrue and the corresponding initial guess
used, p0 with β = −10, 000. Multiplicative noise is applied to p0 in the simulations.

Cases (4.4.1a) and (4.4.1b) represent the situation in which the true value of p(t) is

a bump function that is non-centered with respect to the time interval and the corresponding

initial guess is a noisy horizontal shift of ptrue(t). The numerical results are shown in Figures

4.1 and 4.2. In both cases, the amplitude and shape of the true function and recovered

numerical approximation are very close. The figures demonstrate that the scheme is robust

even in the presence of multiplicative noise and the ill-posedness of the problem.

In case (4.4.1c), we examine a true function p that has two bumps of equal am-

plitude with an initial guess consisting of one bump with a larger amplitude. The results

can be found in Figure 4.3. Cases (4.4.1d) and (4.4.1e) also include a true p function of two

bumps, however they have different amplitudes and the corresponding initial guesses are
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highly oscillatory trigonometric functions. The corresponding results are shown in Figures

4.4 and 4.5. In the examples with two bumps, the reconstructed function was also able to

identify the two crests. The effect of the parameter γH is explored in these cases. The value

γH = 1×10−8 is used for Cases (4.4.1c) and (4.4.1d). We can see that this smaller choice of

γH results in a less smooth solution in comparison with the results from Cases (4.4.1d) and

(4.4.1e) when γH = 5 × 10−8 is used. However, the plots corresponding to γH = 5 × 10−8

while more smooth, are more flattened.

The case (4.4.1f) contains two crests of different amplitudes and a trough for the

true function with a highly oscillatory trigonometric function as the initial guess. Plots

of the results corresponding to this case can be found in Figure 4.6. Additionally, for

case (4.4.1f) we show the solutions of the forward problem in Figure 4.7 at different times

(t = T
4 ,

T
2 ,

3T
4 , and T ). The water surface height, bottom topography, and water discharge

of the measured data and the numerical solution at the iteration with the smallest residue

are compared. The recovered bottom topography along with the recovered state variables

match the true functions well, even for some more complicated choices of p(t).

Figures 4.1-4.6 each contain a plot of the residues J0, defined by (4.7) and (4.8),

at the endpoints of the spatial domain for each iteration on a log-log scale. We see in each

case a similar behavior occurs in which an ‘elbow’-like shape appears. The portion of this

residue curve with a steeper slope corresponds to the situation when the term J0 has a

greater impact on the update of the function p, which happens for the beginning iterations.

The flat portion of the residue curve corresponds to the situation when the iteration starts to

enter a small neighborhood where the regularization term R(p) convexifies the optimization
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problem and dominates the update.

Figure 4.1: Results for Case (4.4.1a). Left: plots of the true p and the numerically recovered
p at iteration 151, corresponding with the smallest residue; Middle: plots of the true p, the
noisy initial guess, and various iteration values for p; Right: iteration errors on a log-log
scale.

Figure 4.2: Results for Case (4.4.1b). Left: plots of the true p and the numerically recovered
p at iteration 234, corresponding with the smallest residue; Middle: plots of the true p, the
noisy initial guess, and various iteration values for p; Right: iteration errors on a log-log
scale.

4.4.2 Tests for Recovering p(t) from Different Initial Guesses

In this subsection, we run simulations with different initial guesses of p0(t) to

recover the same ptrue(t). The goal is to demonstrate that the ability of our algorithm in

recovering ptrue(t) does not depend on the initial guess.

We consider the forward problem with the initial conditions in (4.44) and the

spatial bottom topography functions described in (4.45). The true time component of the
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Figure 4.3: Results for Case (4.4.1c). Left: plots of the true p and the numerically recovered
p at iteration 278, corresponding with the smallest residue; Middle: plots of the true p, the
noisy initial guess, and various iteration values for p; Right: iteration errors on a log-log
scale.

Figure 4.4: Results for Case (4.4.1d). Top row: γH = 1×10−8. Bottom row: γH = 5×10−8.
Left Column: plots of the true p and the numerically recovered p at iteration 715 (top row)
and 151 (bottom row), corresponding with the smallest residue; Middle Column: plots of
the true p, the noisy initial guess, and various iteration values for p; Right Column: iteration
errors on a log-log scale.

bottom topography function is fixed to be

p(t) = exp
(
β(t− 0.3T )2

)
+

3

2
exp

(
2β(t− 0.7T )2

)
+ 1, (4.46)

with β = −10, 000. Four different representative initial guesses, p0(t), listed in Table 4.2,

will be tested. In all cases the final time is T = 0.05 (while the solution is still smooth) and

periodic boundary conditions are used. The remaining hyperparameters include a learning

rate of ` = 0.6, γL = 1× 10−6, and γH = 1× 10−8.

The numerical results for Cases (4.4.2a), (4.4.2b), and (4.4.2c) are shown in Figures
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Figure 4.5: Results for Case (4.4.1e). Left: plots of the true p and the numerically recovered
p at iteration 337, corresponding with the smallest residue; Middle: plots of the true p, the
noisy initial guess, and various iteration values for p; Right: iteration errors on a log-log
scale.

Figure 4.6: Results for Case (4.4.1f). Left: plots of the true p and the numerically recovered
p at iteration 1000, corresponding with the smallest residue; Middle: plots of the true p,
the noisy initial guess, and various iteration values for p; Right: iteration errors on a log-log
scale.

4.8 - 4.10, while the results for Case (4.4.2d) can be found in Figure 4.4. In all four cases,

the scheme was able to identify that ptrue(t) was a function consisting of two bumps, with

the left bump (occurring earlier in time) having a smaller amplitude than the right bump

(occurring later in time). This indicates the true function p(t) can be recovered with the

initial condition chosen from a wide range of functions. The numerical performances are

similar in appearance and convergence rate. Cases (4.4.2a) - (4.4.2c) all achieve their best

guess in less than 300 iterations. The true p and corresponding p with smallest residue error

tend to have the some discrepancy near the final time T . The exception is Case (4.4.2a) in

which the initial guess for p at time T is near to ptrue(T ).
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Figure 4.7: Comparison between the measured forward solutions and the results from the
best iteration for SWEs Case (4.4.1f) at times t = T

4 ,
T
2 ,

3T
4 , and T . In the top row the

bottom topography function, b, and the water surface heights, h+ b, are compared. In the
bottom row, the water discharge, hu, is compared. The measured data and results from the
iterative scheme are well matched for all functions in for each of the selected time snapshots.

4.4.3 Recovering p(t) with Spatial Discontinuities in the Solutions of the

Forward Problem

In the previous two subsections, the final stopping time is chosen to ensure that the

solutions are smooth over the entire computational region. One well-known fact of hyper-

bolic conservation laws is that discontinuities may appear even when the initial conditions

are smooth. In this subsection, we explore the capability of the proposed inverse algorithms

when the solutions contain spatial discontinuities. We use the same initial conditions as in

(4.44) and spatial components of the bottom topography functions as in (4.45). We run the

forward problem for a longer time so that discontinuities form in the solutions. Here, we

set the final time as T = 0.2. We consider two choices for ptrue(t) in this subsection, which

167



Case p0(t)

(4.4.2a) 1
(4.4.2b) 4 sin2

(
π
T t
)

(4.4.2c) −2 sin2
(
π
T t
)

+ 2
(4.4.2d) 3 cos2

(
10π
T t
)

+ 0.75

Table 4.2: The corresponding initial guesses used, p0 with T = 0.05. Multiplicative noise is
applied to p0 in the simulations.

Figure 4.8: Results for Case (4.4.2a). Left: plots of the true p and the p corresponding with
the smallest residue error, at iteration 116; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

are listed in Table 4.3 along with their corresponding initial guesses.

Case ptrue(t) p0(t)

(4.4.3a) eβ(t−
1
2
T)

2

+ 1 1

(4.4.3b) e4β(t− 1
4
T)

2

+ 3
2e

4β(t− 1
2
T)

2

− 1
2e

4β(t− 3
4
T)

2

+ 1 1

Table 4.3: The true function for p(t) denoted as ptrue and the corresponding initial guess
used, p0 with β = −700. Multiplicative noise is applied to p0 in the simulations.

To capture the discontinuities well and remove the possible oscillations, a slope

limiter is often employed in the DG method. We implement two different slope limiters

for generating the measured data, as well as for solving the forward problem in the inverse

scheme. The simple minmod limiter [35] is employed along the characteristic direction to

generate the measured data. On the other hand, the WENO limiter, introduced by Qiu and

Shu in [121] is used for the forward solver within the iterative inverse scheme. This limiter

is known to be robust and it is able to capture the sharp transition of the discontinuities.
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Figure 4.9: Results for Case (4.4.2b). Left: plots of the true p and the p corresponding with
the smallest residue error, at iteration 103; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

Figure 4.10: Results for Case (4.4.2c). Left: plots of the true p and the p corresponding
with the smallest residue error, at iteration 262; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

The implementation of two different slope limiters was in an effort to avoid ‘inverse crime’.

A learning rate of ` = 0.02 was implemented with the regularization parameters

γL = 1× 10−4 and γH = 1× 10−6. Results for case (4.4.3a) are found in Figures 4.11 and

4.12 while Figures 4.13 and 4.14 contain the results for test (4.4.3b). Note that periodic

boundary conditions are employed, therefore the discontinuities can pass the right boundary

and re-enter the domain through the left boundary at some time between 3T/4 and T ,

which means the measured data include the information of discontinuities. In both cases,

we observe that our algorithm can recover the exact function ptrue(t) well, and the results

are comparable with those containing smooth data only. We have included the comparison

between the measured data of the water surface height, bottom topography function, water

discharge, and the corresponding numerical solutions at the iteration with the smallest

residue, at different times t = T
4 ,

T
2 ,

3T
4 , and T , from which we can observe the numerical
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Figure 4.11: Results for Case (4.4.3a). Left: plots of the true p and the p corresponding
with the smallest residue error, at iteration 788; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.

solutions match the measured data well. This elucidates the numerical scheme developed

for the inverse problems can recover the true p(t) well even when discontinuities develop in

the solutions of the forward problem and hence in the measured data.
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Figure 4.12: Comparison between the measured forward solutions and the numerical results
from the iteration with the smallest residue error for Case (4.4.3a). The results shown are
for 4 different time snapshots. The bottom topography function, b, water surface height,
h+ b (top row), and the water discharge, hu (bottom row), are compared.

Figure 4.13: Results for Case (4.4.3b). Left: plots of the true p and the p corresponding
with the smallest residue error, at iteration 882; Middle: plots of the true p, the noisy initial
guess, and various iteration values for p; Right: iteration errors on a log-log scale.
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Figure 4.14: Comparison between the measured forward solutions and the numerical results
from the iteration with the smallest residue error for Case (4.4.3b). The results shown are
for 4 different time snapshots. The bottom topography function, b, water surface height,
h+ b (top row), and the water discharge, hu (bottom row), are compared.
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Chapter 5

Conclusions & Future Work

5.1 Chapter Summaries

In Chapter 2, well-balanced DG methods for the shallow water equations with hor-

izontal temperature gradients, also known as the Ripa model, are designed and tested. We

presented two types of well-balanced methods, one for the the simpler still-water equilib-

rium (2.5) and the other for more complicated moving-water equilibrium (2.8), and showed

that the former one is a special case of the latter. We also demonstrated the same frame-

work can be extended to design well-balanced methods for the isobaric steady state (2.6)

and the constant water height steady state (2.7), with different definitions of U e
τ (x) and

U∗,±
τ,j+ 1

2

following the equilibria to be preserved. The proposed method is an extension of

the well-balanced method [150] for the shallow water equations, but with several improve-

ments to simplify the algorithms. To achieve the well-balanced property, special attention

was paid to the approximation of the source term and the construction of the numerical

fluxes. Numerical examples were given to demonstrate the accuracy, well-balanced prop-
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erty, perturbations to steady states, and non-oscillatory behavior near discontinuities. This

approach is rather general and can be applied to design well-balanced methods for other

hyperbolic balance laws.

In Chapter 3 we constructed and tested DG methods for the one-dimensional

arterial blood flow system with the man-at-eternal-rest and living-man equilibria. Well-

balanced DG methods are designed to efficiently capture the nearly equilibria flow which

are small perturbation of these equilibrium states. We focus on the living-man equilibrium

states which are more relevant to the practical problem. To construct well-balanced meth-

ods, special attention was paid to the projection of the initial conditions into piecewise

polynomial space, the approximation of the source term, and the construction of the nu-

merical fluxes. Extensive numerical examples were given to demonstrate the well-balanced

property, accuracy, non-oscillatory behavior at discontinuities, and ability to resolve small

perturbations to steady states. DG methods have been shown to be efficient for the hyper-

bolic balance laws on network, and it would be interesting to test the performance of the

proposed methods on the arterial network blood flow simulations, which will be our future

work.

Finally, in Chapter 4 we constructed and validated an adjoint-based approach for

recovering the bottom topography function in the source term of the one dimensional SWEs,

from the noisy measurement data at two boundaries of the domain. One novelty of this

work is that the reconstruction of the bottom topography function is accomplished with

only boundary data from a single measurement event. The adjoint scheme was determined

by a linearization of the forward system, and has been derived for general hyperbolic balance
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laws. Another contribution of this work is the inclusion of two regularization terms. These

extra regularization terms in the numerical approach aided in convexifying and handling

the ill-posedness of problem. The bottom topography function was recovered through an

iterative process using a three-operator splitting descent method. Extensive numerical tests

were carried out, which demonstrated that a variety of shapes for the true p(t) function

could be recovered regardless of the noisy initial guess.

All numerical tests presented in this thesis were commuted in the programming

language Matlab. Each code base was written by the author of this thesis. Access to the

code for each chapter is available from the author upon request.

5.2 Future Work

The work in Chapters 2 and 3 focused on developing well-balanced methods for

various steady states (with zero and non-zero velocity) for two different systems of balance

laws. We aim to extend this work by applying our methods to the model on networks, i.e.

networks of rivers or arteries. We have begun working on extending the methods developed

by [19] on networks of traffic laws to a system of equations from the family of shallow water

equations in which the channel width can vary. The extension of this method to a network

of arteries could be beneficial for coupling with higher dimensional models. The PDE model

itself could be extended to improve its biological relevance.

There are numerous directions in which we aim to extend the inverse project

presented in Chapter 4. First, we wish to test the scheme on other hyperbolic balance laws

to see how it performs on systems with more equations or more complicated topographical
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functions that arise in the source term. The second extension we would like to pursue is

the inclusion of discontinuities in time in the numerical tests. The introduction of temporal

discontinuities may require a more careful choice of regularization terms. Thus, the third

component of future work includes a more robust study of regularization terms. Lastly, we

would like to develop an inverse algorithm to recover the general bottom topography B(x, t)

and its extension in higher dimensional problems.
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