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Abstract of the Dissertation

The AND/OR Process Model
for Parallel Interpretation of Logic rPrograms

by
John S. Conery

Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 1983

Professor Dennis Kibler, Chair

Current te‘chniques‘ for interpretation of logic programs involve a sequential
search of a global tree of procedure invocations. This dissertation introduces the
AND/OR Process Model, a method for interpretation by a system of asynchro-
nous, independent procesées that éommunicate only by messages. The method
makes it possible to exploit two distinet forms of parallelism. OR parallelism 1is
obtained from evaluating nondeterministic choices in parallel. AND parallelism
arises in the execution of deterministic functions, such as matrix multiplication or
divide and conquer algorithms, thét are inherently parallel. The two forms of
parallelism can be exploited at the same time. This means AND parallelism can
be applied to clauses "that are composed of several nondeterministic components,
and it can recover from incorrect choices in the solution of these components. In
addition to defining parallel computations, the model provides a more defined
procedural semantics for logic programs; that -is parallel interpreters. based on
this model are able to generate answers to queries that cause standard inter-
preters to go into an infinite loop. The interpretation method is intended to form
the theoretical framework of a highly parallel non von Neumann computer archi-
tecture; the dissertation concludes with a discussion of issues involved in imple-

menting the abstract interpreter on a multiprocessor.
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'CHAPTER 1

Introduction

A growing area of research in computer architecture is the design of High
Level Language Machines. The motivation is to design systems that provide

better support for the language constructs used by both apphcatron and operat-

ing system programmers.

This motive can be explained in terms of a ‘“‘semantic gap” between the for- |
malisms of the machine language and the programming language [42]. The larger

the gap, the harder it is to implement languages reliably and eﬂ'ncxently For -

:e\ample aty plcal construct in a programmmg language is the array. Implemen-

tations of arrays must take into account storage functlons which ‘map-an array

index into a location in memory, range checking (making sure that the value of I

‘in the index expression A[l] is within the bounds of the array A), representation -
of arrays of complex objects of varying sizes, and so on. If some of these func-

‘tions are implemented in the architecture, as is the case in a machine that per-

forms a range check with a single rrxach'ine instruction, then programs written in

the high level language can be interpreted more reliably, and possibly even more

efficiently.

A new and exciting line of research within the area of language oriented
architecture is the design of machines for functional programming languages.
These are languages that are based on more abstract formalisms than the von
Neumann model of the stored program. John Backus, in the 1978 ACM Turing
Award Lecture, gave an eloquent comparison of functional languages and von
Neumann languages [3]. What makes functional languages so attractive to com-
puter architects is that there is a great potential for parallel evaluation .These
languages are concerned with the definition of functions, and rules for construct-
ing complex functions from primitive functions, but not specrﬁcally with the

order in which the functions must be evaluated.
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For example, one way of writing a matrix multiplication program in the FP

language 1s

" def MM = a o IP ° Dist

‘where IP is a function that computes the inner prOduct of two lists of integers,

and Dist is a function that transforms two matrices into appropriate‘ pairs of

rows and columns [3]. The composition of functions F and G, written F ° G,
means that F should be applied to the objé__ct created by G. This program
specifies that IP is to be applied to all of the row/column pairs created by Dist,

but does not specify the order of these applications, and in fact leaves open the

possibility that a multfprocessor could evaluate the inner products in parallel.

The existence of abstract models of computation other than the stored pro-
gram model enables system desigvners_to apply the familiaf top-down methodol-
ogy to the design 61’ computer architectures. Instead of building machines to sup-
port langﬁagesthat are not much more than abstractions of earlier machi'nesr(a
rather circular approach), computer architects can start from abstract levels and
move step by step powards' a concrete implementation of that model. The steps
in ﬁhis top down approach (which has also been called the language ﬁrst philoso-

phy [53]) can be summarized as follows:
--  Select an intefesting abstract model of computation.
--  Design a high level programming ianguage based on the selected formalism.

--- Define a method for interpreting programs of the language; if parallelism is a
goal of the project, define an interpreter that can carry out a number of

steps in p.érallel.

--  Finally, design a computer architecture tuned to the requirements of the
. interpreter defined in the previous Step; if parallelism is a goal, a require-
ment of this step is to show how the independent parts of the program can

~ be delivered to the independent processing elements in the architecture.

This dissertation is a contribution to the area of language first computer
architecture, starting from the formalism of logic programming, with the long

range goal of constructing a _rﬁultiprocessor for logic programs.
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'A simplified description of logic programming is that one can use sentences

of first order logic as statements of a programming language. Many useful pro-

grams have been written in Prolog (an acronym for programming in logic), a high

level programming languége based on the formalism. Among these applications
are metacompilers [61], ‘machine learning programs [32], natural language queries
for databases {16, 62], and robot problem solving systems [58]. Prolog has also
been used as an executable specification language. The expectation i1s that since
Prolog is as abstract as inany formal specification languages, it should be possible
to write the functional specifications for new programs using the syntax of Pro-

log; the big advantage to using Prolog is that it is then possible to test the

" specifications by executing them as programs. Davis’ thesis involved generating

LISP or Pascal programs from functional specifications written in Prolog [18].
Most recently, Prolog has been identified as the major programming language for

the Fifth Generation Computer Project now starting in Japan.

Standard implementation techniques for Proldg are described in terms of a
search of a global data structure that represents possible execution paths. One
result of this dissertation research is a method of interpretation of logic programs
that allows for parallel execution. The model, named ‘the AND/OR Process
Model, is flexible enough to obtain the maximum amount of parallelism possible
in deterministic programs, and still be applicable to nondeter_ministicvprograms.
Matrix multiplication programs are examples of programs that exhibit a large

amount of inherent parallelism; it will be shown that a logic program for matrix

multiplication can work in O(n) time, instead of O(n?), which is the same.

speedup expected when matrix multiplication is performed under other parallel
models of computation [27]. This potential speedup for deterministic programs is
not possible in any other proposal for parallel execution of logic programs. Data-
base queries are examples of nondeterministic processes when there is more than
one answer to the query; there will be an example of parallel processing of a data-
base query expressed in légic.

The dissertation is organized as follows: The next chapter is an extensive

introduction to the formalism of logic programming and a discussion of the
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Prolog programming language. The AND/OR Process Model is introduced in

Chapter 3, showing how logic prb‘grams can be interpreted by sets of asynchro-

nous and independent processes instead of by one large centralized search algo-
rithm. Details for parallel execution based on the model are then given in

Chapters 4 and 5.. Chapter 6 is a discussion of issues pertaining to implementing

the model on a physical network of processors. Finally, directions for future
‘work and the relation of this work to other research in logic programming and

_parallel interpretation is the topic of the last chapter.



CHAPTER 2

Logic Programming

The phrase ‘‘logic programming” refers to the interpretation of well formed
formulas of first order predicate logic as statements of a programming language.
The first logic programming system was' developed by Colmerauer and his col-
leagues at Marseille, after it was noticed that techniques used to build a resolu-
tion based theorem prover were similar to techniques used in the implementation
of programming languages. Since then, the semantics of logic as a programming
language have been formalized, and there have been a number of implementa-
tions of Prolog, a high level language that extends the formalism of logic pro-
gramming in ways that make it more useful and efficient for solving practical

problems.

It should be stressed at the outset that the parallel control method to be
defined in the next chapters is not a model for parallel execution of Prolog pro-
grams; fat.her, it is a model for interf)reting “pui'e” logic programs. Many of the
extensions of logic programming that make Prolog a practical language are con-
structs that make sense only in von Neumann (stored program, single pro-cessor,
single memory space) systems. According to the language first design philosophy
outlined in the first chapter, it would be a mistake to force the implementation of
these single-processor oriented constructs of Prolog in the parallel model. Alter-
nativel):, one should define mechanisms for parallel control of logic, and then
implement the practical extensions to the formalism in terms of those mechan-
isms. As a concrete ekamp]e, the formalism of logic programming does not pro-
vide for conditional expressions. Conditional expressions are defined in DEC-10
Prolog, but the definition relies heavily on the assumptioxi that Prolog is being
interpreted by a single processor. Conditional expressions will be defined for the

AND/OR Process Model in Chapter 5, using the mechanisms of the parallel con-

trol instead of the constructs of Prolog.
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This chapter is an extensive discussion of logic programming. It starts with
the definition of the syntax, formal semantics, and standard (single processor)
control. Then there is a detailed descripﬁion of the Prolog language, with its
extensions to the formalism, followed by a discussion of alternative (but still sin-
gle proceésor)' control strategies found in various Prolog systems. Finally, there is

a section on potential sources of parallelism in logic programs.

The rather lengthy discussion of Prolog and logic programming is included
here for three reasons. First, it sets the context for the definition of parallel con-
trol, by defining what are minimﬁm requirements for a logic programming inter-
preter, as opposed to what are practical extensions. Second, some of the princi-
ples illustrated by the alternate control will be used in the definition of parallel
control as well. Third, an interpreter based on the AND/OR Process model has
been implemented, and it will be described in detail in Chapters 4 and 5. The
interpreter is written in DEC-10 Prolog, and sections of it are listed in the
Appendices for readers interested in the fine details of the AND/OR Proéess
Model. Hopefully this introduction to Prolog Will help readers unfamiliar with

the language to understand the interpreter.

2.1. Syntax

A logic program is a set of formulas of first order predicate calculus. Most
interpreters (including the paral]él interpreter defined in this dissertation) accept
only formulas written as Horn clauses, which are a subset of the formulas that
can be written using the full syntax of predicate calculus. Although at first this
appears restrictive, in fact any sentence of first order logic can be transformed
into a set of Horn clauses [43]. A discussion of the merits and difficulties of writ-
ing expressions using only Horn clauses can be found in Kowalski's book [34].

A clause is defined to be a’'set of positive or negative lsterals, each of the
form |

play, - - a,)

or .



play, ) |
The symbol p is a predicafe-symbbl, and the a; are the arguments of the literal.
A clause in general can have ahy number of pbsitive or negative literals, but a .
Horn clause contains at most one positive literal and zero or more negative
literals. ' |
Tﬁe arguments of a literal are ferms. A term is either a varsable, or it is an
object composed of a function symbol and arguments. Nonvariable terms are also-

written in the prefix form; as in

flzy, - 2p)
where f i.s' the function symbol. The arguments z; of a term are themselvés
terms. A term or literal with n arguments is said to be n-ary, vor‘ovf‘ arityn. A0 -
ary term is an afom, and is written without parentheses: z() 1s simply z.

In order to disambiguate the names of variables and nonvariable terms, the
names of variables will start with upper case letters. In the execution of the pro- -
gram, variables may be instantiated to other terms. When variable X is instan-
tiated to term ¢, X is said to be bound, or to have a value of t.

Terms are the basic data structures of logic programs; all objects of the
problem domain must be represented in the program as terms, juét as objects
must be represented as lists in LISP. Terms have all of the versatility of lists as
far as represent.ing'objects. In general, a LISP list such as (FOO A B) can be

written as the term

foo(a,b)
with the first item in the list used as the function symbol.

~ Syntactic sugaring is provided by allowing nonalphabetic symbols as func-
tion symbols, and letting these symbols be written as infix operators, so +(X,Y)

and X+ Y are legal terms.

Clauses in logic programs are most often written in'the form of implications,

- with the single positive literal on the left and the remaining negative literals
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forming a conjunction on the right.! Depending on whether there is a positive
literal or not, and on whether there are any negative literals, there are four possi-

ble kinds of clauses in a-logic program:

Implication

p—q&r :

One positive literal, one or more negative literals.
Unit Clause

C pe.

One positive literal, zero negatlve literals.
Goal Statement

—q&r

Zero positive llterals one or more negative hterals.
Null Clause

3.

Zero posrtne literals, zero negatlve literals;
represents a contradiction.

' The single (positive) literal to the left of the arrow is the head of the clause, and

the (negative) literals to the right comprise the body.

Finally, here is the definition of some terminology often used to explain the

execution of a logic program: .

--  An n-ary procedure for‘p is defined to be the set of all clauses which have an

~n-ary literal with predicate symbol p as the head literal.

- Quite often the execution of a logic program is explained in terms of prob-
lem solving. Clauses are referred to as goals, and literals in the body are

referred to as subgoals

- A llteral in the body of a clause is said to be a call to a procedure; if the call

succeeds the literal is solved.

-- A ground term is a term in which none of the arguments is a variable or con-

'tains variables.

! A clause is actually a disjunction of literals, e.g. the set { =p(a,b), q(X) -r(X.f(a)) } is ac-

tually -p(a,b) + ¢(X) + =r(X,f(a)). Since P+ (-Q + ﬂR) =P+ Q & R the above clause can
also be written as q(X) « p(a,b) & r(X,f(a))--
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- A simple logic program, v;hich most examples in this chapter will reference,
is given in Figure 1. This program has seven procedures, six of which are simply -
sets of unit clauses.. The seventh, paper, is.defined by two implications and one

unit clause.

2.2. Semantics

The formal semantics of logic programming were originally defined by van
Eniden and Kowalski [22]. The .denotation, or meaning, of an n-ary procedure p
is D(p), a set of n-tuples of ground terms. This definition is similar to the
definition of a relation, and in fact the denotation of a procéduré is often called a
relation. There are three ways of defining D; all three methods define the same

set.

D‘(p), the operational semantics of an n-ary procedure p, is defined to be the
set of all n-tuples <t; - - -.t,,> such that the predicate p(t, - * - t,) is provable,
given the clauses of the program as axioms. Implementations of logic program-
ming systems use a constructive proof proceduré to creaté the tuples of D'. For

example, a goal statement such as
— p(X,a).
is in fact a request that the system prove p(X,a). A constructive proof not only
satisfies the request, it generates a set of terms X such that .p(z,-, ) is provable for
any z; belonging to X. In response to the above query, an interpreter would
consruct the set . '
{<zpe>|neX}
which is the subset of D!(p) in which the atom a is the second term in the tuple.

In the model-theoretic semantics, the meaning of p is D?(p), the set of all -

tuples <t - - - t,> for which p(¢; - - - {,) is true. Since the first order predicate

 caleulus is complete and consistent (i.e. any true statement can be proven, and

any statement proven is in fact true), D? = DL

The fized point semantics D%(p) is derived from the program vthrough a

transformation that maps clauses into ground clauses, from which tuples of
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authér(fp,backus) — .
author(df arvind) « .
author(eft.kling) « .
author(pro,pereira) <—v.‘ ‘
author(sem,vanemden) «— .
author(db,warren) « .
author(sasl,turner) «— .
suthor(zform,standish) «— .

date(fp,1978) « .
date(df,1978) « .
date(eft,1978) « .
date(pro,1978) + .
date(sem,1976) «— .
date(db,1981) « .

" date(s0s),1979) «~ .

title(db,ef/icient_proceSsing_of_ir_:teractive...) - .
tille(df,an_asynchronous_prbgramhting_language...) -
title(eﬂ,valuf_co_nﬂicts_and_social_chaice...) -,
title(fp,can_programming_be_liberated...) + .
title(pro,dec—10_prolog_user_manual) « .

title(sasl, 6_new_implementation_technique...) «— .
title(sem,the_semantics_o/_predicate_logic'...) -

tillc(:tform,irvine__program_transformation_catalog) —.

loc(arvind, mit,1980) « .
loc(backus,ibm,1978) «— .
loc(kling;ucz',1978) — .
loc(pereira,lisbon,1978) «~ .

loc{vanemden,waterloo,1980). «— .

loc(turner, kent,1981) «— .
loc{warren, edinburgh,1977) « .

‘ .journal(fp,cécm) -

journal(sasl,spe) — .

- journal(kling,cacm) « .

journal(sem,jacm) « .

tr(db,edinburgh) «— .
tr(dfuci) — .

loc(ivarrtn,sri.lQSQ) -

poper(P.D,I) «— date(P,D) & author(P,X) & loc(X,1,D).
paper(P,D,I) « tr(P.I) & date(P,D).
paper(zform,1978,uci) «— .

Most binary literals p(X,Y) in this program can be read as “‘the pof XisY",
e.g. author(fp,backus) means “the author of the FP paper is Backus” and
date(eft,1978) means “‘the date of the EFT paper is 1978”. But read tr(z,y) as “‘x
is a tech report from y”. Implications p « ¢ & r are read “p if q and r”. The
first clause in the procedure for paperis “A paper P with date D was written
at institution / if the date of Pis D and the author of P is X and the location of
X was Iin year D.” ' '

Figure 1. A Logic Program
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ground terms are formed. The method of using ﬁxed points to deﬁne the seman-
tics of recursive program< in general is defined in Manna’s book [37], and the
definition of the transformation for logic programs and a proof that

D! = D? = D3 can be found in the article by van Emden and Kowalski {22].

The denotation of a procedure may be an infinite set of tuples. This is often

the case When the procedure is intended to model a function. An n-ary function

fAT - ™

~ is represented in a logic program by an (n+m}-ary procedure, for which n argu-

ments. are used for inputs. The remaining m argument positions are uninstan-
tiated variables when the procedure is called, and the net effect of executing the
procedureé is that the variables are bound to the output values of the function.
As an example, consnder the addition function of integer arithmetic. A procedure

call of the form sum(aq,b,2) means to bind the variable Z to the sum of integers a

. and b (where the integers are represented by terms). The denotation of sumis an

infinite set of 3-tuples:

<0,0,0>
<0,1,1>
<1,0,1>
<1,1,2>

Determinsstic functions have exactly one tuple for each distinct combination of -
inputs, while nondeterministic functions may have more than one such tuple.
When represented as relations in this way, all functions are'invertiblé, i.e. the

relation represents not only the function but also its inverse.

. The operational semantics of most logic programming systems is defined by the

resolution rule, a deductive inference method defined for formulas of first order

predicate calculus written as clauses [52]. By restricting the syntax to Horn

~ clauses, resolution proof can be made into a practical system. The remainder of

this section is a discussion of resolution, and the next section takes up the subject

of controlling the order of the inferences in an interpretation.
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The resolution rule states that from two clauses

{Pe Pt @ P}
{ LTI rrn—l‘ 4 Ty }

~which contain literals ¢ and —¢ with the same predicate symbol, same arity, and

no variables in common, it is possible to derive a new clause

{ P p:n—l’ pn-fl’ T Tty T T }
that has all literals except ¢ and —g from the original two clauses. The derived

clause is known as a resolvent.

The literals ¢ and —gq from the original two clauses must be unifiable; that is,
it must be possible to substitute terms for variables occurring in the literals so

that they become identical except for the - symbol. For example, ¢(f(q)) and

~¢(X) can be ﬁniﬁed, since when f(a) is substituted for X in g(X) the literals are

both ¢(f(a)); ¢(a) and q(b) are not unifiable, since neither literal contains a vari-
able and the arguments are not identical. In Qrd_er for two literals (or terms) to
be unifiable, they must have the same predicate (function) symbol and be of the
same arity, and the corresponding arguments must be unifiable. Unifying substi-

tutions are often identified by lower case Greek letters, such as §. C6 denotes the

~clause C after substitution § has been performed.

If a substitution for a variable is required in order to unify the literals, the
substitution is applied to all occurrences of that variable in the resolvent. As an

example, consider the two clauses

{pX0), (1), f(X2) ) { ~p(0,W) }

~ The literals p(X,a) and —p(0, W) are ﬁniﬁable by substituting 1 for W and 0 for

X, so the resolvent is

{4(Y0), r(0,2)}

It sometimes happens that one variable will be substituted for another dur-

ing the unification, as in the following example:
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Input clauses:

A1) 1)} {=g(LY), 7(2) )
" Resolvent: ' i
| Cp(L,X! ) r(2X7 )}

Note that X' is a new variable, and that the resolvent has no variables in com-

mon with either input clause.

Figure 2 shows many more examples of successful and unsuccessful resolu-
tions. ‘ ' | '

The requirerﬁént that literals ¢ and —¢ have no variables in corﬁmon is easily
satisfied, since it is always possible to rename the variables in one or both of the
clauses before doing the inference. This implies that the scope of a variable is
restricted to the clause in which 1t occurs. ‘This is an important point, and will

be addressed again in Chapter 3 in the discussion of parallel evaluation.

A complete resolution proof of a clause C with respect to a set of axioms A
(also e/xpressed as clauses) is the derivation of the null clause from the set of
clauses {-~C U A}, ie. negate C and then show that the negation leads to a
contradiction. Unification and substitution are the operations that make resolu-
tion a constructive prdof proceldur'e. After the null clause has been derived, it is
possible to construct terms for variables of C by using the substitutions per--
formed during the proof (more specifically, use the composition of substitutions

created in the sequence of resolutions [43]).

- 2.3. Control

The operational semantics of almost all logic progrémming systems is ‘deﬁned
be the resolution rule. That is, the meaning of a program is determined by the
tuples that can be generated by a‘resolution proof. What remains to b_é specified
is control, the mechanism that deteﬁnines the order in which the resolutions are

perform'ed.- The simplest and most common control strategy is presented in this

" section.

A logic program is started by specifying an initial goal statement Go. A
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Clauses

p(X), qo(X) }

{opla) r(Y) }

p(k a), q(X) }

-p(b,Y), r(\) }

(X) }
p(l) }

-p(f(aB)) }

p(X), a(X) } |

-p(A), r(A) }

p(X), a(X) }
~p(A), r(X) }

Clauses

p(X), q(X) }

{
{(wdn}j
{

p(X), q(Y) }
{ —~r(X}, s(Y) }

mxw«m}

-p(b) }

{
{
{ p(a)}
{

Figure 2.

Successful Resolutions

Resolvent - Substitution
{ q(a)v I’(Y) } X=a"
{ab) 1@} X=b,
. Y = a
1a X=1
{dfaB) )} - X=1f(aB)
{ Q(X), r(X) } <noté one variable

substituted for another>
{a(X). r(X2)} < note renaming

of variables>

Unsuccessful Resolutions

Reason for Failure

 must unify a positive literal
with a negative literal

no predicate symbols match
predicate symbols match, but
literals do not have same arity

arguments not unifiable

Examples of Unification and Resolution
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computation is a sequence of goal statements Gy, Gy, - - - G,, where

ns
G, 1 < i< n, is the resolvent of -G, , and one of the clauses of the program.
The computation halts with success when the null clause is derived, and halts

with failure if no inference is possible.

Recall that when clauses are written as implications, literals in the body of

- the clause are negative literals, the heads of clauses are positive literals, and a

goal statement is a clause with only negative literals. In the context of a logic

- programming system based on resolution, then, the derivation of a new goal

statement G, from G; involves the following steps:

-~ Select ahy literal L from G, (usually L is the leftmost literal in G,).

- Find a clause C in the program such that the head of C can be unified with
. , .

.- 'Rename the variables in C (since the two clauses being resolved, C and G,

cannot have variables in common).

-- Form the new goal statement G, by removing L from G; and replacing it
by the literals from the body of C.

-- If the unification requires a substitution, apply the substitution to G, ;.
When thé selected clause C is a unit clauge (when the body "does not have

any lit'erals) then G4, will have one less literal than G; G, will be the null

clause when G, contains exactly one literal, and this literal is resolved with a unit

clause.

A goal tree is a tree where each node is a clause. Immediate descendants of
a node N are clauses that can be derived from N by one inference. Steps in the
execution of a 1ogic program can be represented as a goal tree: the root of the
tree is the initial goal G, interior nodes are‘the_ intermediate goal statements,
and the leaves of the tree are either empty claﬁses or are clauses for which no

inference is possible. The latter are called fasl nodes.

The standard control strategy is a depth first search of a goal tree (see, for

example, van Emden [23]'). When the interpreter reaches a fail node, it back-
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paper(P,1978,uci)
title(P,T).
date(P,1978) :
author(P,A) title(xform, T) dattre((PP,ul‘;l;S)
loc(A,uci,1978) .« dtle(P,T)
title(P,T) : ’
author(fp,A) author(df,A) author(eft,A) | | author(pro,A) date(df '1978)
loc(A,uci,1978)] [loc(A,uci,1978)| lloc(A,uci,1978) loc(A,uci, 1978) title(d,f T)
title(fp,T) title(df,T) title(eft,T) title(pro,T) ’
loc(backus, loc(arvind, loc(kling, loc(pereira, | . :
uci,1978) uci,1978) uci, 1978) udi,1978) title(df,T)
title(fp,T) title(df,T) title(eft,T) title(pro,T) *
title(eft,T)

Portion of a goal tree generated during solution of paper(X,1978,uci).
Only the leftmost literal within a node was used to derive descendant nodes. Nodes
with an asterisk represent successful branches, i.e. the next clause generated on one of
these branches is the null clause.

Figure 3. A Goal Tree
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tracks to the most recent choice point. Note that if the goal tree contains an
infinite branch, then the standard control will not find all occurrences of the null
clause: it will miss those that are to the right of the infinite branch, and in fact

will go into an infinite loop when it encounters this branch.

Figure 3 shows a goal tree formed from the initial goal

«— paper(P,1978,uct).

and the program of Figure 1. This tree was formed by using only the leftmost
literal from any node as the literal to resolve. This selection rule (use only the
leftmost literal from the current goal statement) is used by the standard control
method, so the tree in the figure is also the tree that is searched by the standard

control.

It is possible to describe the depth first search in terms of the textual
representation of the program, without resorting to descriptions of goal trees. In
textual terms, the system solves the subgoals of a goal statement one at a time,
from left to right. To solve a single goal G, the system searches the program
from top to bottom for a clause with a head that can be unified with G. If it
finds such a clause, then it recursively solves the goals in the body, from left to
right. The same problem used to grow the goal tree of Figure 3 is given again in
Figure 4, this time accompanied by an explanation in terms of the text of the

example program.

2.4. Prolog

The particular version of Prolog described here is DEC-10 Prolog [46]; there
have been numerous other implementations, including some for microcomputers.

The syntactic differences between logic programs and DEC-10 Prolog programs

are minor:
--  The implication symbol is :- instead of « .
--  The :- symbol is not used in unit clauses, ft.e.
pe—.
1s written
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P-

- The literals in the bddy of a clause are separated by commas, not the logic

symbol &.
-~ Integers are a special type of atomic term.

-~ LISP-like lists are allowed as data structures. Lists are enclosed in square
brackets. The empty list is [, and the list [A|B] is a list with A as first ele-
m_énf (CAR in LISP terminology) and B as the tail (CDR), which is also a
list. Lists are really terms: {a,b,c] is simply shorthand for the term

.(a,.(-b,.(c,[]))), which has a period for the function symbol (CONS).

2.4.1. Evaluable Predicates

Previously, the meaning of the ternary predicate sum was defined to be the
relation containing the infinite set of 3-tuples <a,b,c>, where ¢ is the sum of a
and b. Within the form_alism of logic programming, there are two methods for
doing arithmetic. One is that the relation can be given explicitly, as a set of
assertions sum(a,b,¢), and arithmetic operations will be essentially table searches.
Obviously, the entire infinite relation cannot be realized on any physical machine,
and the subset that is defined consumes a large amount of space. Alternatively,
the relation can be computed, by defining addition and other arithmetic opera-
tions axiomatically. In using this method, the symbol 0 is used to represent the
infeger zero, the terms s(0), s(s{0)), etc. represent the positive integers, and addi-
tion is performed by i)roving that the sum exists, using the axioms of arithmetic
[33]. "

In Prolog, arithmetic is performed by metalogical evaluable predicates, which
are analogous to the built-in (predeﬁned.) primitive functions of applicative
languages. The underlying computer system performs the arithmetic operations,

simply because it is faster. This will have an effect on the semantics of programs,

~ namely some goals that are solvable using one of the formal methods may not be

solvable when the machine performs the operation. An example is
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author{fp.backus) — . date{fp,1978) «—

author{df.arvind) « . date{df,1978) «—

author{eft kitng) — . date(eft,1978) «

author{pro,pereira) «— . date(pro,1978) — ]
suthor{sem,vanemden) — . date(sem,1976) «—

author(db,warren) «— . date(db,1981) «

author(sasl turner) «— . date(sasl,1979) —

loc(arvind, mit,1980) «
loc(backus,ibm,1978) «
loc(kling,uci, 1978) —
loc{turner,kent, 1981) « .

paper{P,D.1) + dale{P,D) & author(P, X) & loc(X] D).

paper{P,D.I) — tr{PI) & date(P D) ~
paper{zform,1978,uci) « :

The above program is part of the logic program of Figure 1. This figure ex-
plains the steps in the solution of .

— paper(P,1978,uct) & title( P, T).

First, the interpreter tries to solve paper(P,1978,uci). When that literal is unified

with the head of the first clause for paper, the body (after applying the substitu-
tion) is

+— date(P,1978) & author(P,X) & loc{X,uci,1978).

Now the interpreter must solve these goals, left to right, in order to complete
the solution of paper{P,1978,uci). The first solution for date(P,1978) unifies P with
/p, so the interpreter moves on the next goal, which is now author{fp,X). The
only solution for this binds X to backus, and the remaining literal in the body of
paper is mow loc{backis,uci, 1978). This fails, and the interpreter backtracks. The
most recently solved goal was author(fp,X), so the interpreter tries to re-solve it.
That also fails, so the interpreter moves back even further, to re-solve
date(P,1978). This can be sclved a different way, by unifying X with pro, so the

interpreter moves forward again, now trying to solve author(pro,X). This back-

tracking and retrying continues until date(P,1978) is finally solved by unifying P
with eft; then author(eft,X) is solved by binding X to kling, so finally loc is solvable
with the arguments loc(kling,uci,1978). That completes the solution of paper, and

the system moves on to solve the remaining literal from the original goal, which -

is now title(eft,T) since P was bound to eft in the solution of paper. This will
succeed immediately when T is bound to value_conflicts... (Figure 1). .

Figure 4. Example Computation
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— sum{\,Y)5).
In other words, what integers X and ) have a sum of 57 This goal has many
solutions. all of which can be found if the system searches the relation for tuples

that have 5 as the third element. However, the goal fails when a machine is

.asked to add two uninstantiated variables.

Arithmetic in DEC-10 Prolog is performed by the evaluable predicate is.
This is a binary predicate, and is one of the predicates that can be used when

writing infix expressions. The second argument must be a legal arithmetic

expression, constructed from the usual operators and integer terms, and the first"

argument can be either an integer or a variable. When is is called, the expression

is evaluated. If the first argument is a variable, it will be unified with the value

of the expression. If the first argument is an integer, is will succeed only if the
integer and the value of the expression are the same. If the second argument

contains any variables (s.e. it is not a ground term) then the goal fails.

Some examples of goals that use is:

is(X, +(2.1))
N is2+1
These literals are identical; one is written in the infix style. When called,
941 is evaluated to 3, and then X is bound to the atom 3.

315 241

The expression is evaluated, and since 241 = 3, the goal succeeds.

Z is (23)+(4 )
Z is bound to 26.

e

5 ts 241
This will fail.
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518 \+3
This also fails, since X must be bound. Note that this does not mean vari-
ables cannot be used in the expression. It simply means that the variable
must be bound to an integer term as the result of solving some other literal
by the time this literal is selected for evaluation.

The idea that a goal will fail if certain argument positions contain uninstan-
tiated variables 1: expressed in DEC-10 Prolog'by I/ O modes. Each argument in
a goal has one of three modes associated with it: in input-only mode, the argu-
ment must be a ground term; in output-only‘mbde the argum'ent must be an
uninstantiated variable, which will be bound in the solution of the goal; and in
the default, don't-care, mode, arguments can be either ground or uninstantiated.
When a Prolog procedure implements an n-ary function, n argument positions of
the predicate symbol will be input-only mode, and the remaining argument posi-
tions are -.out'put-on»l).'. The DEC-10 Prolog compiler uses mode declarations sup-
plied by the user program to generate more efficient code for user-defined func-
tions. The concept of I/O modes will also be used to order goals for parallel solu-~

tion, as defined in Section 5.1.

In some Prolog systems, addition is performed by a ternary evaluable predi-
cate named sum. sum(X, Y,Z) will be true if X+Y=Z, or if there is a value can be
found for one of X; Y, or Z that will make the expression X+ Y=2Z true. In these
systems. the last .example is written sum(X,3,5), and this goal succeeds by bind-
ing X' to 2. sum is said to have a threshold of two, meaning that all that is neces-
sary for the success of sum is thzit two of the three arguments be bound to

integer values {11, 31, 65]. sum will fail if fewer than two arguments are bound.

2.4.2. Higher Order Functions

DEC-10 Prolog has constructs that allow programmers to treat clauses as
data, allowing procedures to be passed as arguments to other procedures or added

to the program as it is executing. A more extensive discussion of the necessity

‘and/or desirability of these extensions can be found in a paper by Warren [64]).

Clauses can be représen_ted-by terms if the implication stbo'l and the logi-
cal AND symbol ( .~ and comma in DEC-10 Prolog) are in the set of infix
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operators. Thus the clauses -

p- ‘J : '
pla):- q.r(a).

- can be represented by the terms

:—(M)
:—(p(a), ,(q,r(a))) l
t

where the comma above the arrow is a function symbol, not a separator of argu-

ments. -
The goal

- assert(T).

- adds the term T (whxch must be bound to a term that has the syntax of a clause)

to the program currently in the system The opposite of assert is retract

- retract(T).
finds a clause that unifies with 7 and then deletes it from the program.

A second method for handling program piece_s as data is through the evalu-

able predicate call, which is similar to the EVAL function of LISP:
— call(P).

treats the term P as if it were’a goal statement, and calls the interpreter recur-

sively to solve that goal statement

An evaluable predicate that is useful in conjunction with call is* =.. , which

constructs terms from a list of components:

- T=..[FlA].

Is a goel that succeeds if T is a term that has function symboi F and argument

list 4. For exémple, the goal

- T=.. [author,db,warr‘en].-

unifies T with the term author(db,warren).
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A 'brocedu're that uses _bok'th'of these constructs is

bmapcar(F[] ).
mapcar(]‘ (N1 Xn)i[Y1]Y7])
Goal =.. [F,Al )1]
call{ Goal),
mapcar(F,Xn,Yn.)
This is tjhe Prolog equivalent of the LISP function MAPCAR, which takes as
arguments a function and a list of elements X, and returns a list Y consisting of

the results of appiying the function to each X. If sqr_one(X,Y) binds Y to the
square of the integer X, then the goal ‘ v

- mapcar(sqr_o’ﬁe,[l,2,3,4],L)
unifies L with the list [1,4,9,16].

2 4.3. The Cut Symbol

The standard Prolog control has been descnbed as a depth first search of a
goal tree. The cut symbol, !, allows the programmer to control the search by
pruning un.want‘od‘- branches from the search tree. Cut is inserted into the body
of ﬁ clause, along with literals. When the interpreter encounters cut as a goal, it
always succeeds. However, if the interpreter ever backtracks to the point where
it has to re-solve the cut, the resulting behavior is that the head of the clause
that contains the cut fails. The net effect is that all further solutions for literals

to the left of the cut in the clause, and all clauses in the same procedure follow-

“ing the current clause, are deleted from the goal tree.

As an example, refer to the small program in Figure 5, and observe what
happens when a call is made to p. The first clause for p has a body with literals q

and r, so the system starts to solve g. The first clause for ¢ has body

o q “,>b. ‘
a and the cut are solved but b fails. Now the interpreter backtracks, and

encounters ! while backtracking. The head of the clause that contams this cut is

g, so the call to g fails. The call to ¢ was made from the first clause for p, and the _
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failure of ¢ forces the interpreter to move on to the second clause for p, where the

program f{inally succeeds.

- Common uses of the cut symbol are in finalizing choices from nondeterminis-

-tic procedures and in the definitions of conditional expressions and negation.

Consider this small prdgrar’n, which has two different definitions for a pro-

cedure p:

gla).

q(b).

p1{Y) :- q(X).
P2(N) - q(\), .

When solving the goal
- pl(X), continue.

the system eventually selects the first clause for g to solve ¢(X), and X is bound

toa If continue fails, the system backtracks into pl(X), theh g(X) is re-solved,

‘and Y m]l be bound to 6. However, when there is a cut symbol in the body, as in

the deﬁmtlon of p2, the second answer is not produced. In solvmg the goal state-

ment
- p2 (-X). covntlz'n'ue.

the first answer, X' = a, is produced as before. When the system backtracks into
p2(\) after continue fails, it encounters the cut symbol, so it does not retry g(X);
furthermore p2(\) also fails. Without the cut éymbol, p is nondeterministic pro-

cedure, since there is more than one solution to a call to p(X). When a cut syfn-

bol is added, this procedure behaves like a deterministic procedure, in that it pro-

duces one answer-and then fails when asked to produce more apsWers.
A conditional expressioﬁ in a func't.ional language has the general form of
NIX) = if p(A) then g(X) else h X)

If p(X)is true the walue of f(X) is given by g(X), otherwise it is defined by h(X).

Recall that in Prolog, n-ary functions can be deﬁned by (n+1)-ary predicates, in

a way that the result of applymg the’ functlon is unified with a variable passed in
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Program: ' Ini_tiai Goal:
Pi-q, T , - Pp.
Cp:-s. : .
q:a,l,b. _ L
qg:i:ic :
a : ,
c. ' »
r. N
. | o '
. q,r ' $
. v ' » .
s, ,b,r c, T
L, b, r r
....... .

b, r

This figure shows the effect of the cut symbol (/) on a depth first search. When
the leftmost branch ends in a fail node (no solution for b), the interpreter backs up to
where ! is the first goal in the list. The result is that the head of the clause containing
the / fails. In this example, the !/ is part of a clause for g, so the call to ¢ fails.
The only solution found by the interpreter is the one on the far right.

Figure S. Pruned Goal Tree
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the extra argument position. In Prolog, the above expression is written as two

clauses:

JNY) - p(), L g,
JXY) - h(X.Y).

~ When the function is called, for example by the goal

- f110,Y).

‘the interpretef- selects the first clause for f, and then calls p(10). If the call p(10)

succeeds, Y is bound by the call g(lO,Y). If-p(lo) fails, the interpreter back-
tracks to the second clause for f, and the value of Y is computed by the call
h(10,Y). | |

The cut symbol is necessary for those occasions when 9(X,Y) fails. The
desired cont'rol,behav»ior is that wheh p(X) is true, then f(X)Y) is defined by

, g(_\',i'); this means that if g(, Y) fails, then f(X,Y) should also fail. This situa-

tion is analogous to the definition of conditional eXpressions in FP, where f is
undefined when p is true but ¢ is undefined. An interpreter must not backtrack
to try A(X,Y) in those cases where p(X) succeeds but g(X,Y) fails. This behavior

is enforced by the cut symbol. |
The third common use of the cut is in the definition of a procedure for nega-

tion:

not(G) :- callf G)A,"!, Jail.
not(G). ;

where fail is a goal that cannot be solved. This is negation as failure, first
defined by Clark [10]. Recall that an implication

p:-¢qr
is equivalent to the Horn clause

{ p g -r}

and that the literals of the body of a clause are actually negative literals. Thus

one cannot simply write



- op(Y).
for the request “prove p(X) is> false’’, since a negated literal in- the body of a
clause would actually be a positive literal, and by definition a goal statement (or
the body of a clause) must contain only negative literals. ‘

Negation as failure means that if one fails to prove a statement, then one

can assume the statement is false. Operationally, an implementation of negation

as failure requires that if a goal G is solvable, then not(G) should fail, but if &

fails, not(G) should é_ucceed.

-Referring to the above Prolog definition of negation, when noi(G) is called,
with some goal G as the argument, the interpreter first tries to solve G, via the
statement caH(G). If this fails, then the second clause for not(G) is tried, and
since this is a unit clause, it succeeds. In other words, when G faiis, hot(G)

succeeds.

In the other case, w.hen G succeeds, the interpreter moves on to the cut and
fail literals. Cut succeeds, and fail fails. Because the cut is there, the interpreter
does not try to solve G again, and in addition causes the failure of not(G), which

is the head of the clause with the cut. Thus when G succeeds, not(G) fails.

Negation as failure is definitely a metalogical construct. In formal logic,
there is a major difference between the statements “‘Pv is false'” and “P cannot be
proven”’, especially when higher order functions are introduced into the system.
There are also practical problems in Prolog systems that use this deﬁnitioh of
negation. These problems arise when the negated goal contains variables. For
eiample, suppose the predicate p(f) can be proven, but that p(f) cannot. The
goals not(p(t)) and not(p(f)) behave as expected,v ‘with not(p(t)) failing and
not(p(f)) succeeding. But notice what happens with the goal not(p(X)): the sys-
tem tries to solve p(X), which it accomplishes by binding X to ¢, so not(p(X)) is

considered to be false. But it was just shown that not(p(X)) is true when X is.
the term f, so one can argue that the system should actually succeed in solving -

not(p(.\)) by binding X to f. Thus it is not clear at all whether not(p(X)) should

succeed or fail, and if it should succeed, how to construct the set of legal values
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for X
In spite of these shortcomings, negation as failure is used effectively in many

logic programs. A definition of negation as failure that does not rely on the cut

S}'mbol will bé given in Chapter 4.

2.5. Alternate Control Strategies

~ Control in a lokgic program has Been'characterized in the previous sections as
a tree,search. The object of the search is to find a null clause at the end of a
sequence of resolut.i.ons. The unifications used on the path from the root of the
tree (which is the starting goal statement) to the null clause define an n-tﬁple of
values for the i variables of the starting goal statement. If there is more than

one way of solving the original goal, there will be a number of null clauses at the

- leaves of the tree, with an n-t.uple defined by each path.

Every step in the expansion of the tree involves two choices: selection of o
literal in the current node, from which successor nodes will be generated, followed
by a selection of one of the successor nodes to be the root of the next tree

searched. A standard mterpreter performs a depth first search of a restricted

-space in which the leftmost literal in a node is the only one ever selected for

expansion, and the subtrees Uenerated by expanding this literal are searched left

to right.

The meaning of a procedure is a relation, which is an unordered set of tuplesv

of terms. Ideally, a control strategy helps an interpreter construct every tuple in

the relation if necessary. In practice, however, a given control method may not

‘be able to order the required resolutions so that all tuples are constructed. In

particular, a depth first interpreter never terminates when there is an infinite

branch in the search free; this control method will never construct any tuples

'deﬁned by finite branches to the righ'tv of an inﬁnite branch.

The meaning of a procedure is independent of the control mechanism. The
meaning 1s a relation, an unordered set of tuples, and a control mechanism

merely defines an order in which thoée tuples are created. Some alternatives to

the standard depth first search optimize the search by decreasing the size of the
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scarch space. Other alternative control methods generate a larger set of answers

b.\'» avoiding infinite branches. Some of these alternatives will be discussed in this

section. Although the mechanisms explained here are defined in terms of a

s~oquen'tial search of a single search space, some of the principles illustrated can

" and will be used in the definition of parallel control in Chapter 5.

The first three alternatives have to do with selecting other literals besides

the leftmost as the literal-to expand. The fourth alternative is intelligent back-

tracking, a more effective method for backtracking that prunes portions of the

search tree that cannot contain solutions.

' 2.5.1. Selection Based on a Known Number of Solutions

In general, a tree search is more efficient when the branching factor in ‘the

tree is smaller. If a search algorithm can expand nodes that generate fewer des-
cendants, then it might save itself needless work by traversing fewer unsuccessful
branches. This principle is realized in iogic programs in two ways.

The first is based on an interaction between goals determined by variable
bindings. As ah illustration, consider a program with two procedures with heads
p(X) and ¢(X), both made up (?f only ground unit clauses. There are Np clauses
for p and N clauses for ¢. Assume there are Npg terms that occur as argumeﬁts

in both p and g¢; these are the terms that are constructed in response to the goal

— p(X) & g(N).

A solution of either literal by itself will bind X to a ground term. If the
interpreter selects p(X) at this point, there will be Np descendant search trees,
each with a root of the form ¢(a), and the remaining steps consist of a search

through the descendants looking for one of the Npg occurrences of the null

clause. On the other hand, if the interpreter selects g(X), there will be Ny des-

cendants with roots p(a), but still exactly NPQ‘null cla‘uses. Whether the inter-
preter must generate all answers (i.e. find all null clauses) or just one (i.e. find
the leftmost null clause), the efficiency of the search is determined by the propor-

tion of the number of null clauses to the number of branches, and this proportion
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is better when fewer branches are generated. Thus when it is known in ad'\'ance
that \p is less than N always select p(X) for resolution first, regardless of

whether p(X) is the leftmost literal in the goal statement.

~\gam it 1s important to note that the order of selection eﬁ"ects the eﬁrcroncy

of the soarch and possibly the order in “hlch the answers are reported, biit not

‘the final result. The paths that end with a null clause in either tree lead to the

con:tructron of the same set of va]ues for X.

A second case where generatmg the fewest number of descendants pays off is

when all the descendant paths lead to fail nodes. Continuing the example, this

occurs’ when Npg is zero. When p(X) is selected, the interpreter searches Np .

branches befbre backtracking to the parent. If ¢(X) is selected, Ng branches
must be searched before the interpreter discovers that there are no null clauses in
the tree. Agaln If Npis less than N, less useless work is done 1f p(X) is selected

as the llteral on which to base the resolutlons

Thls general strategy, of selectmg lrterals that are known beforehand to have

the fewest number of solutions, is used to optimize queries in the CHAT-80 rela-

~tional database system (62, 63].

2.5.2. Selection by Number of Uninstantiated Variables

It may be possible to limit the size of the search space even when the inter-
preter does not have prior information about the number of solutions for each

literal, b\ assuming that hterals wrth fewer uninstantiated variables will generate

fe“ er branches

Consider a database of ground unit clauses of the form p(X,Y), where there

are N different terms for X and M different terms for Y, for a total of NxM unit
clauses. Figure 6 gives the branching‘l'actor of a goal statement in which p(X,Y)

is selected for expansion. The branching factor is a function of the pattern of

variable instantiation in p(X,Y). The table shows that the branching factor is

reduced when the number of umnstantlated variables is reduced
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' Goal Number of . Branching

X Pattern  Uninstantiated Factor

.. Variables

p(X,Y) 0 NxXM

I p(a,Y) B M

; o : . -
1 p(X,b) 1 N | | 1
. p(a,b) 2 1

Figure 6. Branching Factor as a Function of Variable Instantiation

o 2, gy b
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An example of where this observation improves the efficiency of a logic pro-

~ gram can be seen in a clause based on the program of Figure 1:

query(P.D) — author(P,X) & loc(X,1.D).

Given a depth first i_nt.erpretér aﬁd an initvi‘a.l goal statement
— query(eft.]). | v

the derived goal statement will be

— author(eft.X) & loc(X,1D)..

- There is just one way to solve the first subgoal, and that solution binds X to a

term that leads to only one solution for the second subgoal; the final answer has

A bound to kling, Ito uc: and D to 1978.
- If, on the other hand, the initial goal statement is
— query(P,uci). |

then the derived goal statement is -
— auth.or(.P,;\') & loc(X,uct,D).

The only answer to this query is the same as the one produced by the first exam-

ple. There are eight ways to solve the first subgoal, since any of the unit clauses

in the procedure for author are unifiable when no arguments are bound in the
call, but only one of those unifications leads to a solution for the second subgoal.
Il an interpreter could first solve the rightmost subgoal (loo_:(X,ﬁci,D) in this
derived clause), it woﬁld find just one solution for that goal, and that solution
leads immediately to a solution for the leftmost literal. In other words, the
number of misleading branches can be reduced from seven to zero by seleétingva

literal that has one instantiated variable instead of zero instantiated variables.

This strategy of first solving goals that have the fewest number of umnstan-
tiated variables was first mentioned by Kowalski [33]. The IC-Prolog interpreter

implements the strategy by allowing users to write a number of versions of the

‘same clause, and then annotate these clauses so that the interpreter selects the

most efficient one at runtime, depending on the pattern of variable instantiation

«
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in a goal [11]. The strategy will also be used by the parallél interpreter described
in Chapter 5. | v '
2.5.3. Coroutines

Consider these definitions of the procedures concat and sgr:

concat([],List,List).
concal([Car|Cdr],L1,{Car|L2]} « concat(Cdr,L1,L2).

ser(Ll)- |
sqr({X1|Xn], [Yll)n]) — Y1 is X1#Y1 & sqr(Xn,Yn).

‘The goal

“+ concat([1,2], [3 4],L) & sqr(L,S).

is a request to construct a list L that is the concatenatlon of the lists [1,2] and

[3.4]. and a list Ssuch that every element of S is the square of the correspondlng
element of L. The only solution in the goal tree with this goal at the root gives
the answers L = [1,2,3,4] and S= [1,4,9,16] Fl_gure~7). After the first step.in

the computation, the derived goal statement is -

-— conéat([?],[3,4],L ) 8’Vsqr([l|L' 1,8).

where the variable L from the original goal has been bound to the term L .
Bindings such as these, where a variable is bound to a term that contains other
variables, are known as partial bindings. |

The normal de.pth‘ first control corripletely solves the call to concat, binding
L to [1,2,3,4], before the solution of sqr is started. FA coroutine control interleaves
the steps in the solutions, by having concat make a “pieée” of the list L through
a partial binding, and then bhaving sqr use this piece. The literal
concat([1,2],{3,4),L) is called the producer of L, sqr(L,S) is a consumer of L, and

the variable L is called the communication channel betv)een the two literals.

‘The series of derivations made for the above example by a coroutine control
is shown in Figure 8. Successive goal statements are derived until a partial bind-
ing is created for L. At that point, the consumer literal is selected, and deriva-

tions continue until a call to the consumer has an uninstantiated variable in the
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concat({1.2].[3.4].L) & sqr(L.S).
concat{i2}.[3.4].L") & sqr{[1]L"].S).

concat([].[3.4].L7) & sqr(]1.2|L" ] S).

sqr(]1,2,3.4].9).
X1is 131 & <qr([.3.3,4],~

" osqr([2.3.4].5")

N2is 2*2 & s'qr([3,4],S"’).
sqr([3.4].S").

X3 is 3+3 & sqr{]4].5").
sqr([4].S""):

X4 is 424 & sqr([],S™")
sqr([].S").

.

L = [1]L]
L =[1,2]L"]
L =[1,2,3,4]
S = [X1]S]
= [1]s]
S = [1,X2]S"]
S = [1,4]S"]
§ = [1,4,X3|S"]
S = [1,4,9]S"]

S = [1,4,9,X4|S""]
S = [1,4,9,16/5""]
S = [1,4,9,16]

Figure 7. Sequence of Derivations in Depth-First Control

concat([1,2].18,4],L) & sqr(L,S).
concat([2].[3.4].L") & sqr([I|L].5).

concat({2].[3.4].L") & X1 is 141 & sqr(L",S").

concat([2],[3,4].L ") & sqr(L’,S’).

concat({].[3.4].L") & sqr([AL")],S").
concat({].[3,4].L") & X2 iz £#2 & sqr(L",S").

concat[].[3. {/1 & sqr(L S
2qr([3,4].57).

X3 is 25 & sqr(]4); § )

sqrif4].8"").

N4 is 4*4’ & sqr([] g
eqrif].S""

g

L =L
= [2IL"]
= [3,4]
S = [1,3,9]S"]

S = [1,3,9,16/S""] -
S’Y!’ pr— []
S = [1,4,9,16]

The literal selected for use in the next resolution step is in italics. Derivations
are made based on the consumer literal concat until the communication channel

~(variable L) is partially bound; then derivations based on the consumer literal
sqr are made until the first argument is a variable.

Figure 8. Sequence of Derivations in Coroutine Control
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argument position for L. Then'the producer is selected, and another piece of L is
created, and so on. To summarize, a depth first interpreter creates the entire list
L, and then calls sgr t.o.squaré every element in L,‘ making S. The coroutine

interpreter interleaves the interpretation of the two calls, creating and squaring

~ the first element, then creating and squaring the second element, ‘until the last

element has been squared.

A most interesting use of coroutines is in the definition of infinite data struc-

tures. The clause
inf(N,|N|L]) — M is N+1 & inf(M,L).

describes an infinite list of integers. The goal

. inf(1,X) & use(X, ).

is a request to unify X with the infinite list of integers starting with 1, and then

“use” this list; it results in an infinite loop when an attempt is made to solve it
with a depth first interpreter, since that interpreter tries to create the entire list
of integers‘start-ing from 1. A coroutine interpreter would create the sequence of

integers only up to the last integer required by the goal use(X,Y).

IC-Prolog [11, 12] allows the user to designate literals within a clause as pro-
ducers and éonsumers, and is an implementation of coroutines. Infinite data
structures are used in many elegant programs written in SASL [57], LUCID (2]

and other applicative programming languages.

2.5.4. Intelligent Backtracking

Consider the set of unit clauses

p(a) « .
p(b) — .
q(1) — .

- q(2) ~.
r(b,1) « .

Given the goal statement
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e p(X) € g()) & r(X)).

a depth first interpreter first solves p(X), binding X to a, then solves ¢(Y), bind-

ing Y to'l, and then tries to solve 'r('a,l). When the latter fails, the interpreter.

backtracks. The most recent choice point is in the selection of the clause for
solving ¢(Y); when this is redone, another solution is found, binding Y to 2, and

the next goal is r(a.2), which also fails.

Both of these calls to r fail because the solution of p(X) binds X to a value

that cannot be used to solve r(X,Y). When the interpreter backs up only as far

as ¢(Y), it cannot fix this erréneous choice, and by re-solving ¢(Y) it is wasting

resources.

An interpreter that uses ihteiligent backtracking analyzes the cause of a
failure, and bapktracks to the source of values that cause the failure. An inter-
preter designed and implemented by Pereira and Porto performs this kind of

analysis (47, 48]. In the example given above, it finds that any goal of the form

r(a,X) fails because of the presence of the term a in the first argument position.

Since X was bound to a in the call to p(X), the interpreter backs up past the call
to ¢(X), all the way to a-choice point in the solution of p(X). When p(X) is

solved again, binding X" to b this time, the entire goal list can be solved, without -

the wasteful attempt to solve r(a,2).

Other cases where intelligent backtracking can be helpful are in goals such

— p(A) & q(B) & r(A).

When r(A) fails, ¢(B) can be sk’i-pped‘on‘ backtracking sihce it does not produce

any values that can effect the solution of r(A). This is a case where it is not

_ necessary to analyze the exact cause of the failure; it is only necessary to notice

that a new solution of ¢(B) cannot help solve r(A), since r(A4) and ¢(B) have no

variables in common. Behavior similar to this limited form of intelligent back-

tracking will be seen in the parallel control described in Chapter 5.
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2.6. Sources of Parallelism |

A parallel control method is one where an interpreter can divide a problem

" into independent parts, and then distribute those parts to other interpreters. In -~

a multiproceésor system, this can lead to a faster solution'of the problem if the

other interpreters are running on physically different computers.

One possible parallel control is based on a pavrallel search of a goal tree. -

When a node has more than one descendant subtree, an interpreter can.continue

‘searching one of the subtrees itself, and distribute the other subtrees to other

interpreters. The expected speedup in execution will be obtained if one of the
interpreters derives the hull clause more quickly than an ‘interpreter that per-
forms a simple depth first search. The amount of time requlred in such a system
(ignoring mtercomputer communication tlme) will be proportional to the shortest
path from the initial goal to a null clause, whereas the amount of time required
by a depth first interpreter is proportional to the sum of the path lengths of
every branch to the left of the first branch that ends in a null clause. For deter-
ministic functions, the single answer is most often at the end of the leftmost (or
only) branch in the search tree. In t.heée-cases, a parallel search will not speed up

the execution at all, even when the function’is inherently parallel.

'Another,possibilit_y for parallel control stems from coroutines. Intefpreters
running on se‘parate'processors could perform the derivations based on producer
and consumer literals in parallel. For a‘program with one consumer and one pro-
ducer, the maximum speedup will be a factor of two. For larger and more com-
plicated programs, greater time savings may be realized. This form of parallelism
is static: the amount of Aparallelism, i.e. the number of processors that can be
used to solve a problem, is simply a function of the structure of the program. A
more dynamxc form of parallelism is found in the unraveling interpreter of the
Irvine Dataflow system [1, 27], where the amount of parallelism is a function of
both the structure of the program and the size of the problem. For example, in a
program for matrix mult.iplication, one coroutine might be defined to génerate
row/column pairs while another coroutine consumes the.pairs and computes inner

products. - The parallelism is independent of the size of the matrices: there will
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always be two coroutines. When matrix multiplication is done by an unraveling

interpreter, all inner products can be computed at (roughly) the same time, and -

the amount of parallelism is a function of the number of inner products that need
to be ¢computed. '

The parallel control to be defined in the remaining chapters is a form of
dynamic paralielism, sifnilar to the unraveling;interpreter, that exploits the paral-
lelism inherent in the definition of detefministic_functions. At the same time,
this control method is applicable to nondeterministic functions and more general

relations, where more than one correct value must be computed.

2.7. Chapter Summary

This chapter has introduced ldgic programming as a formal system with

- three components: a syntax that is a usable subset of first order predicate cal-

culus, a denotational semantics in which the meaning of a program is defined to
be a relation, and an bperational ‘semantics, defined by the resolution proof_ pro-

cedure, that allows one to construct relations. Control was shown to be impor-

tant for efficiency, in that it effects the order in which answers are found, but

control does not effect the correctness of a program, in that alternative control
methods do not compute different reldtions. The exception is that some control
methods are more defined, fneaning'more of the relation can be constructed. A
number of interesting alternatives to the simplest and most common control
mé_thod were discussed. These alternatives illustrate some principles that will be

used in the definition of the parallel control defined in the remaining chapters.

Research on logic programming and the Prolog language that is closely
related to the dissertation research will be discussed in Chapter 7. A deeper
treatment of other topics not s0 closel}; related can be found in the following
papers. ' | '

Resolution and4 unification were first defined by Robinson, with the intended

application of automatic theorem proving [52]. An overview of first order predi-

~cate calcuius, an algorithm for transforming a general well formed formula into a

set of clauses, and -a lengthy discussion of resolution can be found in Nilsson’s
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book [43]. Martelli and Montanari, in a recent paper, define three efficient
unification algorithms, and discuss occur checking, a tdpic not covered in this
chapter [38]. | |

| The DEC-10 Prolog system is one of the most widely used implementations
of Prolog [46]. One of its unique features is a compiler that generates .object pro-
grams that are comparable in execution speed to compiled LISP programs [59,
60]. Papers on implementing Prolog have been written by Roberts [51] Col-

merauer {13], and, most recently, van Emdem [23], among others.

The cut symbol (also known as “slash”) provokes some lively discussions
about the meanings of programs and programming style; a recent contribution to

this discussion is by van Emden [24]. Negatio_n as failure was first defined by

Clark [10]. The paper by Dahl on the CHAT database also has a complete dis-
cussion of the problems df this method for defining negation in resolution based
ldgic_ programming systems [16]. | | |

Pereira has written a number of papers on the subject‘of control iﬁ logic

programs. His work with Porto on intelligent backtracking will be discussed in a

later chapter. In addition, Pereira has defined a language called Epilog that

~allows programmers to - define control by using Horn clauses, thus effectively

allowing the definition of special-purpose control constructs for special situations

that arise in the user's program [49].

Two languages that are closely related to Prolog, yet not based on the reso-

~lution rule, are’LPL_ [28] and Relational Programming (36]. LPL was defined in

~ Haridi's thesis, and more recently Haridi and Ciepielewski have investigated pos-

sible sources of pzirallelism in this language [9]. In the relational programming
svstem of MacLennan, entire relations are computed at the same time, and opera-
tions are performed on relations as a whole instead of on individual tuples within
the relation, which is the case in Prolog.

A number of lérge and useful applications have been written in Prolog.

Among these applications are the natural language query processor of the CHAT

relational database system [16, 62, 63], Warren's problem solving program (58],
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and Kibler and Porter’s episodic léarning program [32]. The use of Prolog as a
metacompiler was described by Warren (61}, and a comparison of definite clause
gmmma_.rs (grammars in which the rules are very similar to the Horn clauses of

Prolog . programs) and augmented transition networks for processing natural

- language was given in the paper by Pereira and Warren v[45]. Finally, short',b

informal descriptions of new systems and applications are periodically published

in the international Logic Programming Newsletter [35].

N . . B
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CHAPTER 3

The AND/OR Process Model

In the parallel control method defined in this dissertation, a logic program is
solved by a set of processes that communicate via messages. A process is a data
structure, consisting of state information and a program segment. In the
AND/OR process model, there are two types of processes. An AND process is
created to solve a goal statement, a conjunction of one or more literals. An OR
process is created by an AND process to solve exactly one of those literals. A
process starts in an initial state, and through a series of discrete transformations
it is mapped into a final state. Each transformation is “‘triggered” by exactly one
input message, and any transformation may cause one or more output messages

to be sent to another process.

This chapter introduces the AND/OR Process Model by defining the basic
requirements of AND and OR processes and the kinds of messages they generate.
The processes defined in this chapter are sequential in nature: the tasks carried
out by subprocesses are done one at a time, and for any given program the
resulting computation is equivalent to a depth first interpretation, in terms of the
sequence of operations performed. The purpose of this chapter is to show that
logic programs can be. interpreted by dividing them into smaller pieces that can
be solved by independent interpreters. The next two chapters will define parallel
processes, processes that solve their piece of the problem by creating more than

one subprocess simultaneously.

3.1. Oracle

The decomposition of a logic program into a set of AND and OR processes is
based on the notion of an oracle, which is an interpreter or machine that solves

some problem in one step relative to the interpreter that consults it {30].

4]
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The use of oracles in defining independent computations can be illustrated
using the following definition of a function that computes the sum of the squares

of its two inputs:

35q(X,Y,2) « product(X, X, X2) & product(Y,Y,Y2) & sum(Xé, Y2,2).

One way to compute the sum of the squares of the integers one through four is

by the following goal statement:

— 83q(1,2,A) & s3q(3,4,B) & sum(A,B,C).

The first five derivations performed by a depth first interpreter are:

0: « s3q(1,2,A) & ssq(3,4,B) & sum(A,B,0).
I:  « product(1,1,X2) & product(2,2,Y2) &
sum(X2,Y2,A) & s3q(3,4,B) & sum(A,B,C).
2:  + product(2,2,Y2) & sum(1,Y2,A) & ss9(3,4,B) & sum(A,B,C).
3: + sum(1,4,A) & s3¢(3,4,B) & sum(A,B,C).
4 ~ ssq(3 4,B) & sum(5 B,Q).

~ After four steps, the interpreter has solved ssq(1,2,4) and bound the variable A

to the term 5. All four steps are part of the solution of ssq(1,2,A4) ; no resolutions

in this sequence are based on any other literal from the initial goal statement.

The last goal statement shown above contains every literal except 8sq(1, 2A) o

from the initial goal; ssq(1,2,4) has been resolved away.

The most important thing to notice about this sequence is the set of vari-
ables that are instantiated in goal statement 4: the oniy variables instantiated
during this sequence of resolutions are those that occur in the literal that was
resolved away. No other vafiables_ can be instantiated. In this exampie, the vari-
ables of the original goal are A, B, and C; only A was in ssg(1,2,A), the literal
that was resolved away, and A is the only variable that can possibly be bound by
these resolutions. Furthermore, the p0331ble bmdmgs for A come from the tuples

of D(ssq), the denotation of ssq.

For the general case, consider an interpreter that resolves away a literal L

from a goal statement G! by N resolutions, in the process generating a sequence
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G! - - - GV of goal statements. This interpreter could solve L in one inference
step by éonsulting an oracle to provide a tuple from .D(L), constructing a positive

literal L’ with the terms from this tuple, and then generating GV by resolving L’

- with G!. An interpreter that can consult more than one oracle has the potential

for exploiting parallelism. In order to do this, the interpreter must analyze a goal

statement and identify two or more literals that can be solved independently and

simultaneously by oracles; this topic will be discussed in Chapter 5

An overview of an intei'pretation in the AND/OR Process Model is that OR
processes are essentially oracles. They are created to answer questions about
exactly one literal. AND processes consult one oracle for each literal in the body
of the clause they solve, and coordinate the answers from the oracles until a set

of answers has been found that satisfies all literals simultaneously.

3.2. Messages
As é computation in the ANND/OR Process Model ‘pr'oceeds, a tree of

processes will be created. The initial goal statement is used to define the process

at the root of the tree. As a result of some transformations, a process may create

new processes as its descendants; these new processes will solve parts of the prob-

lem their parent was created to solve. The process tree is not the same as the

goal tree defined earlier: the subproblems solved by descendants are not the same
as the subproblems of the goal tree, and the parallel control to be described in

the next two chapters is not a parallel search of a goal tree.

All messages sent. dtiring a computation are either from a process to one of

its immediate descendants, or from a process to its parent. Messages are never

sent between siblings or any other ‘‘family tree’’ relation. Meséages sent to des-

cendants are start, redo, or cancel, and messagm;sent' to the parent are success or
fail. ' ’

The start message is self-explanatory. When a process has reached a state
where it has one or more independent subproblems to solve, it creates descendant
processes {with appropriately defined initial states to be defined later) to solve

them, and sends them all start messages.



44

A success message is sent to the parent when a process has solved the task
given to it by its parent. That task is represented as a set of literals. The suc-
cess message contains a'éopy of this set.of literals, with variables instantiated.
For example, if the subproblem is to solve the literal p(X), and it can be solved

by binding X to 0, then the success message will be the term success(p(0)).

A fail message is sent when a process cannot solve its problem. After send-
ing the fail message, the process is transformed into the final state and ter-

minates. .

When a process has received an answer from a descendant, and later finds it

cannot use that answer, it can send a redo message to the descendant, telling it

to solve its subproblem in another way. This means the parent needs a different

set of bindings for the variables in the subproblem.

Finally, a process may reach a state where it will never use any success mes-
sages that a descendant may send, in which case it sends the descendant a cancel

message. A process that reads a cancel message is transformed directly into the

final state and terminates.

3.3. OR Processes

As defined earlier, an OR proc’ess'is created to solve exactly one literal. The

basic requirements for an OR process will be described in this section. A detailed

.description of a parallel OR process, one that can have many descendants operat-

ing in parallel, is the subject of theAné)‘(t chapter.

An OR process created to solve a literal L must search the entire program -

for a clause with a head that can be unified with L. A sequential OR process

searches the program linearly, from top to Bottom, stopping when it encounters a

clause with a head that matches L. If there are no such clauses, the process .

sends its parent a fail message and terminates.

There are two cases to consider when the OR process finds a clause with a
matching head, depending on whether this clause is a unit clause or not. If L
matches a unit clause, then the OR process can immediately construct a success

message for its parent. For example, if L is p(a,X), and there is a unit clause
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plZ.b) — .

in the program, then the OR process can send success(p (aAb)). If L matches the

head of an implication, the. OR process creates a descendant AND process to
solve the body of the lmpllcatlon For example, if L is p(aX) and the program

contains the implication .

p(V. W) « q(V) & r(W).

then an AND process is created to solve the goal statemenf ,

— gla) & r(X).
When the descendant AND process sends a success message (such as
success(q(a) & r(b)), denoting the fact that X was bound to b), then the OR pro-.

cess constructs a success message for its own parent.

If an OR process recelveq a redo message from its parent, it must solve its
problem another way. Again, there are two p0551b111t1es depending on whether
or not the previous answer was created from a unit clause. If the previous
answer was formed from a unit clause, the sequential OR process must resume its
search for another clause to unify with L; if there are no more clauses that match
L. then the process sends a fail message to its parent If the previous answer was
obtained from a n_onumt clause, 1.e. it was based on a success from a descendant,
then that descendant is sent a redo message, and the OR process waits for a
response from the descendant.

When an OR précess receives a fail message from an AND descendant, it
must find another clause that niatches L. This could lead to the creation of a
new descendant (if L matches the head of another implication), an immediate
success (if L matches a unit clause), or failure (if there are no more clauses with
heads that match L ). SN

An OR process sends a cancel message to its descendant only when it

receives a cancel from its own parent.
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3.4. AND Processes

An AND process must solve all of the literals in the goal statement given to
it by its parent. The literals are solved by creating OR processes for each one. A
sequential AND process solves ‘the goal statement much the same as an inter-
preter that performs a depth -first search. An OR process 1s created for the left-

most literal of the goal statement. If the OR process sends a success message,

bindings in the answer are applied to the remaining unsolved literals, and an OR -

process is created for the very next literal in the goal statement. If the OR pro-
cess sends a fail, then the most recehtly solved literal must be redone, t.e. a redo

message 1s sent to the OR process created to solve that literal.

An AND process can send its parent' a success after all descendant OR -

processes have sent successes. A sequential AND process fails if the first literal
cannot be solved, f.e. if the OR process for the leftmost literal sends a fail mes-
sage. When an AND process receives a redo from its parent, it in turn must send
a redo to one of its own descendants; in a sequential AND procéss, this will‘, be

the process created to solve the rightmost literal.

3.5. Interpreter

An interpreter that executes a ldgic program by decomposing it into AND
and OR processes has been implemented in DEC-10 Prolog. Since both AND and
OR processes can be either parallel or sequential in nature, there are actual]y‘ four

different interpreters. The measurements and examples used in this section are

from interpreter APOP (And Parallel - Or Parallel), but in fact all four inter-

preters produce the same kinds of output. All four interpreters share the same

kernel of scheduling procedures, performance measuring routines, message passing
primitives, and other low level supporting code. Details of the implementation of

the kernel and of parallel processes are given in Appendix I.

After it solves a problem, the interpreter prints out the number of processes

created. and, for each process, the number and size of each kind of message sent.

- Associated with each process and- each message is a “tlme stamp”, represented as

an integer. The interpreter is able to use this information to create plots, such as

r
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the one shov&ﬁ ih Figurebg that show the relationship between the transforma-
tions porformed on the proce:ses The vertical axis represents the number of
processes; the transformations of one process are plotted on one line. The hor-
izontal axis represents time. The interpreter records the fact that each transfor-
mation takes one time >unit. When a message bearing time stamp T triggers a
transformation . that causes other messages to be sent, those new méssages will
have time stamp T+1. If the interpreter transforms process number P at time T,
then a dash will be plotted at coordinates (P,T). Note that if P sends a meésage
to Q as part of the transformation plotted at (P,T), there will be a dash at
(Q.T+1) as a transformétion‘of Q is triggered by this message. The plot in Fig-

ure 9 was produced by the solution of

- paper(P,1978,uci).
with 1nterpreter APOP.

The plots provide an estimate of the amount of parallellsm p0551b1e Wher-
ever-there are two dashes plotted for the same time (same column), there is the
possibility that two processmtf elements could be performing the corresponding
state transitions in parallel. The plots are not to be construed as simulation
results, giving a realistic timing of a parallel execution. In physical terms, such
plots could only be realized on a system that has an infinite number of processing
elements, each dedicatéd to solving just one process, and where each processor is
cépable of passing a message to any other processor in a constant amount of
time. This interpreter was built fo see if there is parallelism to be found in logic
programs. The answer is ‘yes” if the plots show more than one dash in a
column. The broblem of mapping processes onto processing elements, of “distri-
buting the dashes so that ‘a parallel solution is performed when problems are

actually solved by a physical network of processing elements, will be discussed in

Chapter 6.
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- == - - <- OR process for 'paper(P,1978,uci)’
i A 4 <- AND process for 2nd implication
""""""" ‘ <- AND process for lst implication

Maximum number of dashes per column = 4
15 processes executed 62 steps in 28 time units: 2.22
Messages Summary: 69 messages sent, using 573 characters.

Process Number of Size of Number of Number of Numberof Number of

ID Successes  Successes Fails - Redos Starts ~ Cancels
1 3 (91) 1- 3 1 ]
2 3 . (85) 1 2 2 0
3 1 (35) -1 4 5 4
14 1 (58) 1 5 6 5
5 4 (93) 1 -0 0. 0
6 4 (93) 1 0 0 0
7 1 (23) 1 e 0 0
8 0 (0) 1 0 0 0
9 - 0 () 1 0 0 0
1 0 (0) 1 0 0 0
1 1 (26) 0 0 0. 0
1 1 (19) - 0 0 0 0
1 -0 (0) 1 0 0 0
1 0 (0) 1 0 0 0
1 0 0 1 0 0 0

Interpreter output showing plot of solution of paper(P,1978,uci). Process 2 is
the parallel OR process created to solve that literal; the state transitions are ex-
plained in detail in Chapter 4. Processes 3 and 4 are parallel AND processes
created to solve the bodies of the implications in the procedure for paper. The
transitions of process 4 are described in detail in Chapter §.

Figure 9. Interpreter Output
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3.8. Programming Language

Many of the extensions to the formalism of logic programming included in
most Prolog systems-are meaningful only in single processor, sequential systems.
Most notable are asserl and retract, which modify the database of clauses in the

program, and the cut symbol, which is used to guide the global search process.

The language supported by the parallel interpreter also extends the formal-
ism, but only with constructs that make no assumptiéns about the number of
processors available to int-érpret the program or about whether the pro’ce'ss'ors
have access to a common memory. The eventual hardware is presumed to be a
collection of asynchronous, autonomous processing elements, each with its own
local memory and its own copy of the program being interprete(‘l. The AND/OR
Process Model may eventually be‘implemented on a multiprocessor in which pro-

cessors share a common memory, but at this time it is best to make the worst

case assumption that the processors will be completely independent. It will be

easier to optimize a model that makes no 'assumptions about shared -memory
when it is implemented on a system with shared memory; it will be much harder
to implement a model that assumes a common memory on a syStem that does not

have common mermory.
The extensions to logic programming supported by the interpreter are:

--  The evaluable predicate 1s for performing arithmetic operétions (Section

2.4.1).

- Definition of «— and ‘& as infix operators, and the evaluable predicates =..

and call, thus allowing higher order functions.
--  Negation as failure.

- Conditional expressions.

“mented in Prolog in terms of the cut symbol (see Section 2.4.3). The same

behaviors (e.g. a goal that fails when its argument is a goal that succeeds) can be
implemented in the AND/OR Process Model, but by using specially defined

| | i
The last two extensions, negation and conditional expressions, are imple-
processes instead of the cut‘symbol.

\
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\erratlon as failure is 1mplemented by a special OR process, created when-
ever the literal to be solved is of the form not(G). This OR process will create an
AND descendant to solve the goal G passed as a parameter. If ﬁhe descendant
réturns a fail message, then the OR process sends success(G) to its own parent; if
the descendant sends success(G) then the OR process sends fail to its parent and

cancel to the descendant.

)

Conditional expressions cani be written in DEC-10 Proldg,‘using — and

as infix predicate symbols:
fi-p—gq;r | |
The Prolog interpreter translates clauses of this form into-two separate clauses,

one of which has a cut sy mbo](Sectlon 2.4.3):

fi-p g
fi-r

One way of implementing conditional expressions in the AND/OR mbdel also

Involves translation into two new clauses, but neither contains a cut symbol:

J—p8q
[ — not(p) & r.

Another method for implementing conditionals, by using special AND processes, ’

is presented in Chapter 6.

3.7. Chapter Summary

The AND/OR Process Model prov1des a framework for interpretation of
logic programs that allows an interpreter to 1dent1fy subcomputatlons that can be
performed by -independent interpreters. The independent interpretefs are
processes that communicate with their parent process via m&séges. The descrip-
tion presented in this chapter was a description of the minimum behavioral
requirements of each kind of process. A global perspective of the computation
performed by these minimal processes would show the same computation carried

out by a standard depth first interpreter, since the same sequence of inferences is

generated, and in the same order.

A , .
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The depth first interpretation is defined in terms of a search of a global tree
of goal statements, strongly implying a von Neumann architecture for the under-
lving hardware. The AND/OR Process Model, on the oth_ér hand, presents a
method for interpretatidn by small, asynchronous, and logically independent‘
processes that communicate only through messages. Thus the first step in the -
design of a highly parallel architecture for logic programs has been taken: it has

been shown how a logic program can be executed by independent interpreters.

‘The next sfép is to show how these interpreters can exploit parallelism by creat-

ing a number of processes that carry out subtasks simultaneously.
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'CHAPTER 4

Parallel OR Processes

An OR process is the embodiment of an oracle, an independent interpreter
created to solve a goal statement of exactly one literal. An OR process created to
solve an n-ary literal p(Xj - - - Xn) is expected to construct the set D'(p), i.e. it

must construct sets of n-tuples <t; - - - ¢,> such that p(¢, - - - t,) is provable.

OR processes do not attempt to construct the entire relation all at once. In

- this respect, they behave in the same manner as sequential interpreters, since

they respond with the first tuple that satisfies the initial goal. After reporting

this first response, they are suspended, and. only a request for additional answers -

causes the process to send additional answers.

If a procedure p(X| - - - X,) is defined by more than one clause, sequential

OR processes (and sequential, depth first interpreters) construct D(p) by first

obtaining all tuples defined by first clause, then all tuples defined by the second
clause, and so on. When D!(p) is finite, the process fails after obfaining the last
tuple defined by the last clause. The issue of inﬁnite‘relations, and the effect of
infinite branches'on both sequential interpreters and OR proéésses, will be dis-

cussed further in the summary at the end of this chapter.

Relations have been defined to be unordered sets of tuples, so the ordering of

~ tuples defined above is not necessarily part of the meaning of a predicate. In par- -

ticular, a parallel control structure could construct D! by interleaving tuples
defined by the various clauses in the procedure. The parallel OR processes
defined in this chapter attempt to construct answers based on all clauses simul-
taneously. D! is assembled as the messages from the descendant processes arrive,

and the order of tuples depends 'only on the timing of the success messages

“received.

52
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4.1. Operating Modes

When an OR process is first created, it assumes that its parent AND process
is waiting for an answer. The first tuple constructed by the OR process should
be sent (via a success message) to the parent. After this, however, the tuples
should be saved and not sent to the parent until that process sends a redo mes-

sage.” The OR process acts as a message center, deciding when to transmit results

and when to store them.

An OR process is in waiting mode when its parent is waiting for an answer,
and is in gathering mode when the parent is busy, using the answer sent previ-

ously. Processes will switch back and forth between these two operating modes.

The rules for changing from one mode to the other are based on the order of suc-

cess and redo messages received, and on the number of tuples that have been
constructed but not yet sent to the parent.
‘4.2, State Transitions

The diagram of Figure 10"summarizes the conditions under which a process

changes states. The following sections will describe in detail how a parallel OR

process reacts to the messages it receives. Every transition in Figure 10 will be

explained. State transitions in the figure have labels of the form X/Y, méaning
that the transition was triggered because the OR process received message X, and
that as a result of the transition it is trahsmit.ting message Y. The labels can be

‘f' (for fail), ‘s’ (for success), _‘c’_(for cancel), or ‘v’ (for redo). Throughout these

" discussions, the followilig symbols will be used:

-- L will stand for the literal to be solved By the OR process.

-- 8'is the input state (the state of the process before a message is processed)

and S? is the output state.

-~ WL is the waiting list, a list of answers not yet sent to the parent, and SL is

the list of answers that have been sent.

-- DL is a list of IDs of descendant procésses.



transitions between modes are summarized here.
message type X was the input message, and message type Y is output (see text for
explanation of multiple arcs).

54
r/s
s/t o f/
gathering waiting
- <fail>
‘¢ = cancel
f = fail o
r = redo <error>

§ = success

A para]lel OR process works in one of two modes gathering or waiting. The
A label X/Y on an arc means

This figure originally appeared in "Parallel Interpretation of Logic Programs ,

by Conery and Kibler [15]

Figure 10. Operating Modes of Parallel OR Process
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4.2.1. Start Message

In its initial state, an OR process hé,s no descendants, and WL and SL are
both the empty list. When the process receives the start message from its parent,
it creates descendant AND processes for evefy implication with a head that
matches L, adds the IDs of these processes to DL, and constructs answers to send

the parent for every unit clause that matches L.

The following states may result

— If no clause has a head that unifies wnth L, then the OR proc&ss fails

immediately. 8° will be done (the final state), and a fail message is sent to

the parent.

-~ If L unifies with the heads of N > 0 implications, but no unit clauses, then
N descendant AND processes are created, and the process will be in wasting

mode in S°. SL and WL will remain empty lists.

- . If L unifies with the heads of NZ.0 implications and M > 0 unit clauses,

~then create /N descendant AND pfocesses (as above), and also éonstruct
answers from the M unit clauses. Let M1 be one of those answers, and MR
be the remaining answers. Send success(M1) to the parent. The OR process

will be in gathering mode in S?, with WL equal to MR, and SL equal to
[A].

4.2.2. Success Message

Whenever a parallel OR process receives a success message from a descen-
dant, it responds by sending that descendant a redo, causing it to immediately
start working on its next answer. Further processing depends on whether the OR
process was in gathering or waiting mode in S*. ‘

Transition marked s/s from waiting mode

When a waiting OR process receives a success message from one of its des-
cendants, it creates an answer 4 and sends success(A) to its parent. The process

switches to gathering mode in S°, with A appended to SL. WL is unchanged.



Transition marked s/ from gathering mode

If a gathering OR process receives a success message, it constructs answer A,

.but‘ does not send it; A is appended to WL, SL is unchanged, and the pfo'cess

remains in gathering mode.

'4.2.3. Fail Message

Whenever an OR process receives a fail message from a descendant, the ID
of the failed process is removed from the descendant list DL.
Transition markedAf/ from waiting mode

ny therevare still descendants working (#.e. DL is not the empty list.af"ter

removing the failed descendant), then no further action'is required; remain in

waiting mode.

~ Transition marked f/f from waiting mode

If DL is now the empty list, then send fail to the parent, since the parent is
waiting for some response, and there is now.no way to construct anothei‘ answer.
Transition .marked'f/ from gatheh'ng mode |

. No further avction is required. Remain in gathering mode, and do not _send a
fail message yet, even if DL is now the empty list, since the parent is currently

busy.

4.2.4, Redo Message

By definition, an OR process is in waiting ‘mod‘e if its parent is waiting for an
answer. A rédo message in this case denotes a system error coﬁdition.

A gathering OR proces-s handlés a redo from its pai'ent in one of three ways,
depending on the states of WL and DL: ‘
Transition markl'ed r/s:from gather:'ng mode

If WL, the list of answers notvyet sent to the parent, is not empty, then

select one answer A from WL. Send success(A) to the parent, append A to SL,

and remove A from WL. The OR process remains in gathering mode.
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Transition marked r/{ from gathering mode

If WL is empty, then check the list of descendants DL. If DL is also empty,
then there is no way to make another answer. Send the parent fail, and ter-

minate.
Transition marked v/ from gathering mode

If WL is empty but DL is not, meaning there is still a chance that an active
descendant can produce further answers, then go into waiting mode. SL and WL

are not changed.

4.3. Example

Figure 11 (the four page figure at the end of the chapter) shows the states of
the parallel OR process created to solve the literal

‘paper(P,1978,uci).

The states are from the printout produced by the trace mechanism in the inter-

preter. This process is Process 2 from the plot of Figure 9 (Chapter 3).

The first transition occurs when the process receives the start message from
process 1. There are three clauses that have heads that can be unified with
paper(P,1978,uct). One of them is the unit clause paper(zform,1978,uci), so an
answer based on that literal is sent to the parent, and the proé:ess is in gathering
mode in the next state. Processes 3 and 4 are created to solve‘the bodies of the

other two clauses. Note that SL contains the answer sent and WL is empty.

The second transition is triggered by a redo message from the parent. There
are no answers in WL, so the process goes into waiting mode until a message

arrives from either descendant.

Transition <3> occurs when one of the descendants, process 4, sends a suc-
cess message. Since the parent is waiting, this answer is sent immediately (and
also appended to SL). Process 4 is sent a redo message, and the OR process goes

back to gathering mode.

While the process is still in gathering mode, the other descendant sends a

success. This answer is appended to WL, the descendant is sent a redo message, ’
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and the process remains in gathering mode. -
Transition <5> is triggered by a redo message from the parent. There is
an answer ready for it in WL, so this answer is sent immediately. The process

remains in gathering mode.

Note: the success and the redo read in transitions <4> and <5> may be pro-
cessed in either order, and the state of the OR process will still be the same.
A redo message is received from the parent (tranmsition <6>), and WL is

empty, so the OR process goes into waiting mode.

The next transition occurs when one descendant sends a fail message. The
record of the descendant (3) is removed from DL, and the OR process remains in
waiting mode.

Note: the order of arrival of the fail and redo messages that trigger transitions

<8> and <7> is also not important.

'Finally, the last remaining descendant, process 4, sends a fail. There are

now no more active descendants, and the OR process can not make any more

answers. The parent is sent a fail message, and the output state is done.

4.4. Chapter Sﬁmmary'

Parallel OR processes have the same I/O behavior as their sequential coun-
terparts defined in the previous chapter. They are independent interpreters,
created to solve goal statements of one literal. If the goal is solvable, they
respond with a succesé message containing one tuple from the denotation of that
literal; otherwise they send back a fail message. Additional answers are not sent
until the parent process sends a redo message. The main difference between
sequential and parallel OR processes is that parallel processes are message
centers, coordinating the actions of multiple concurrent descendants, whereas

sequential processes need to monitor at most one descendant process at any one

time.

Sequential OR processes are sensitive to the order of the clauses in a pro-

gram. The order of the answers sent to a parent is a function of the relative
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order of the clauses. A side effect of this ordering is that it is possible to con-

struct a procedure for p for which D! # D% A simple example is provided by a
procedure that contains the clause

PP
When a depth first interpreter encounters such a clause in a procedure for p, it
generates an infinite subtree in the search space. This interpreter will never find
any answ ers to the rlght of the infinite subtree, answers which may be defined by
later clauses for p. Sequential OR processes will also be trapped in an infinite
computation by this clause: the body is used to start an AND process, and then

the AND process starts an OR process to solve p, and then that OR process

starts another AND process for the same clause, and so on.

Parallel OR processes, on the other hand, have the pqwer to find more

answers than either sequential OR processes or depth first interpreters. Parallel )
OR processes create the same nonterminating AND processes for the same clauses

that sequential OR processes do, but the parallel processes are able to obtain

answers from other clauses. This does not guarantee that OR processes construct
all of DY(p). It is still possible to construct a set of clauses such that the null
clause can be derived through a series of resolutions, but for which the control
strategies of the AND/OR process model are not capable of deriving any null
clause. These pathological cases will be described at the end of the next chapter

since they concern the method for solving literals in the body of a clause in paral-
lel. | .
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Key to the State Information of Parallel OR Processes

Most of the state information for an OR process is self-explanatory. The operating mode

(waiting or gathering) is given on the first line. The goal given on the second line is a copy of the’

original goal the OR process was created to solve; the variables in this copy are never bound. The
list of active descendant AND processes keeps three pieces of information about each descendant:
its process ID number, and a copy of the complete clause, both head and body, of the clause used

to create that process.

The numbers < N> stand for transition numbers.

<1>

OR Process 2 (gathering) after 'start’ from Process 1, T =
Goal:* paper(P,1978,uci)
Parent ID: 1
Descendant List [Process,Head Body}:
[ 3, paper(P’,1978,uci), [tr(P’ uci),date(P’, 1978)] ]
[ 4, paper(P'",1978,uci), [date(P",1978), author(P” A”"),loc(P”,uci)} ]

Answers Sent: ‘ Answers Wamng to be Sent:

paper(xform,1978,uci) '

Figure 11. States of a Parallel OR Process



<2>

OR Process 2 (waiting) after 'redo’ message from Process 1, T = 4
Goal:. paper(P,1978,uci)
Parent ID: 1
Descendant List [Process,Head,Body]:
| 3. paper(P",1978,uci), [tr(P’,uci),date(P’,1978)] |
[ 4, paper(P"",1978,uci), [date(P",1978), author(P"’,A"),loc(A" uci)] |

Answers Sent: ' Answers Waiting to be Sent:

paper(xform,1978,uci)

<3>

OR Process 2 (gathering) after 'success([date(eft,1978),
author(eft kling),loc(kling,uci)])’ from Process 4, T = 14
Goal: paper(P,1978,uci)
Pareat ID: 1 :
Descendant List [Process,Head,Body|:
[ 3, paper(P’,1978,uci), [tr(P’,uci),date(P’,1978)] ]
[ 4, paper(P’',1978,uci), [date(P",1978), author(P",A"),loc(A",uci)] |

Answers Sent: Answers Waiting to be Sent:

paper(eft,1978,uci)
paper(xform,1978,uci)

Figure 11 Continued
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<4>

OR Process 2 (gathering) after ’sﬁccess([tr(df,uci),date(df,1978)])"

from Process 3, T = 15
Goal: paper(P,1978,uci)
Parent ID: 1
Descendant List [Process,Head,Body}:
[ 3, paper(P",1978,uci), [tr(P’,uci),date(P’,1978)] |
[ 4, paper(P",1978,uci), [date(P",1978), author(P>',A"’),loc(A",uci)] ]

Answers Sent: Answers Waiting to be Sent:

paper{eft,1978,uci) paper(df,1978,uci)
paper(xform,1978,uci)

<5>

OR Process 2 (gathering) after 'redo’ from Process 1, T = 17

Goal: paper(P,1978,uci)
Parent ID: 1
Descendant List [Process,Head,Body]:
[ 3, paper(P',1978,uci), [tr(P’,uci) date(P’,1978)] |
[ 4, paper(P”,1978,uci), [date(P",1978), author(P"’,A""),loc(A"uci)] |

Answers Sent: Answers Waiting to be Sent:
paper{df,1978.uci)

paper(eft,1978,uci)
paper(xform,1978,uci)

Figure 11 Continued

62



(Rt i

Wiy s

v m aiinn

63

- <B>

OR Process 2 (waiting) after 'redo’ from Process 1, T = 20
Goal: paper(P,1978,uci) '
Parent ID: 1 .
Descendant List [Process,Head,Body|:
[ 3, paper(P’,1978,uci), [tr(P",uci),date(P’,1978)) ]
[ 4, paper(P"",1978,uci), [date(P",1978), author(P*",A"),loc(A"" uci)| ]

Answers Sent: . Answers Waiting to be Sent:
paper(df,1978,uci)

paper(eft,1978,uci)
paper(xform,1978,uci)

<7>

OR Process 2 (waiting) after 'fail’ from Process 3, T = 23
Goal: paper(P,1978,uci)
Parent ID: 1
Descendant List [Process,Head,Body]:
[ 4, paper(P"",1978,uci), [date(P”,1978), author(P",A""),loc(A” ,uci)] }

Answers Sent: Answers Waiting to be Sent:

paper(df,1978.uci)
paper(eft, 1978, uci)
paper(xform,1978,uci)

<8>

OR Process 2 after 'fail’ from Process 4, T = 26
done

Figure 11 Continued
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'CHAPTER 5

Parallel AND Processes

Sequential AND processes, as defined in Chapter 3, simply mimic sequential
interpreters by solving their subgoals one at a time, from left to right. A parallel
AND process is one that can solve more than one literal at any time. AND paral-
lelism involves creating more than one OR process simultaneously, and then coor-
dina.ting the responses to success and fail méssages from these descendants until

all literals have been successfully s_ol?ed.

The brute force method for AND parallelism is to immediately create a pro-
cess for every literal on the first step. There are three reasons why this will not
be effective; all three reasons are based on the fact that the solution of one literal

often binds variables that are arguments.in other literals.

The first drawback to brute force parallelism is that the AND process must
ensure that solutions for the different literals bind common variables to the same
terms, and this may be quite difficult in the general case. For example, given the

goal statement

<~—p(AB) & q( BC') 81’(04)
the AND process has to find tuples <A,B,C> that satisfy all three predlcates at
the same time.

A second argument against solving all literals at once is that by waiting
until variables in literals are bound (via the solution of other literals), the OR

process created to solve those literals may be more efficient: there are often fewer

-; solutions, and fewer fruxtless choices made in constructmg those solutions (Sec- -

tion 2.5).

Finally, and of most practical importance, some literals fas! if an atterhpt Is
made to solve them before a sufficient set of variables are instantiated; these are

the literals with thresholds or mode declarations (Section 2.4.1). For example, in
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the goal statement
— length(L,N) & X 1s 2xN.

the goal of multiplying N by two fails unless N is instantiated to an integer via

the solution of the first literal

An effective method for achieving AND parallellsm iIs thus a problem of
correctl} ordering the literals, of deciding which literals must be done sequentrally
and which can be done in parallel. The implementation of AND parallelism
defined in this chapter has three major components There 1s an ordering algo-
rithm that automatlcally decides, based on the current state of the goal list, the
order in which the literals should be solved. The forward ezecution component
actually creates the descendant OR processes; it handles success messages, and
determines which (if any) literals can. be solved as a result. The third component
is known as backward ezecution, and handles fail and redo messages to decide

which literal(s) must be re-solved before continuing forward execution.

5.1. Ordering of Literals

The basis for the ordering of literals in t'heAbody of a clause is the sharing of
variables. Whenever two or more literals have a va)riable in common, one of the
literals will be designated the generator for the variable, and it will be solved
before the others. The solution of the generator literal is intended to create a
value for the c.orresponding variable. 'After the generator has been solved\ the
other literals that contain that variable, the consumers, may be scheduled for

solution. A generator will be defined for every variable in a goal statement. It Is

possible that the solution of a generator will not bind the varlable SO that consu-

mers still have a variable in common; thls situation is discussed in sectlon 5.2.

Generators and consumers are 51mxlar to the lazy producers and eager consu-
mers of 1C-Prolog [11]. The term ‘“‘generator” is used here, since their action is
more closely related to generators in other languages (see for example, Alphard
(68]), in that they produce a sequence of independent terms as opposed. to parts
of a single complex term through a series of partial bindings. Note that a literal

can be the generator of some varidbles and a .consumer of others. This is
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especially true when the literal is a function call, when some of the arguments are

" input arguments and the others must be uninstantiated variables that will be

bound by the execution of the function.

5.1.1. Dataflow Graphs

Generator and consumer relationshi‘ps can Be shown pictorially as a dataﬂow.
graph. In these graphs there will be one node for each literal in a clause, includ-
ing the head. “There is a set of directed arcs for each variable in the clause. In
each set, the arcs go from the generator literal to each literal that consumes the
variable. An fmmediate predecessor of a literal L is defined to be a literal that is
a generator for one of the variables in L. A predeceSsor, in general, is either an

immediate predecessor or a predecessor of an immediate predecessor.

The head of tl;e' clause is a special case. It is the generator of every variable
that is bound when the process is created. The ordering algorithm of the next
section requires this information; so the head of the clause (i.e. the literal being
solved by the parent OR process) is included in the state information of a parallel
AND process (see Appendix I for details). The head literal is also the consumer
of variables that are not ihstadtiated when the clause is called. In some of the
pictures of dataflow graphs, arcs wiil be drawx; from the generators of those vari-

ables toh the head to indicate this fact.

5.1.2. The Ordering Algorithm
There are a number of rules one can use to identify generators. "The first,
mentioned aBove, is that the head of a clause is the generator for all variables

that are instantiiated when the clause is invoked.

Second, some of the literals in the body may have I/O modes (Section 2.4.1).
These méy be evaluable predicates, for which the systém already knows the
modes, or they may be user-defined functions, in which case the user must specify
a mode declaration. A good example is the evaluable predicaté ts from DEC-10

Prélog, which has the mode declaration
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-mode 1s(?,+).

This declaration shows that fs has two arguments. The question mark means

that terms in that argument position can be either variables or nonvariable

terms. The plus sign means that the corresponding argument must be a ground
term: it must not eontainiany uninstantiated variables by the time the literal is

selected for solution. Another possibility (not shown in this example) is a minus

“sign, which ‘means that the corresponding argument must be an uninstantiated

vé.riable, and that as a result of the procedure call the variable will be instan-

tiated. If there is a minus sign in the mode declaration for a predicate, then the

ordering algorithm knows that a literal with-this predicate symbol must be the .

generator for any variables used in that argument position. A plus sign means
the literal can never be the generator for any variables occurring in the

corresponding argument position. The above mode declaration indicates that a

literal ts(.X,Y) can never be a generator for any variables occurring in an expres-

sion in the second argument position, but might be the generator of a variable

that is the first argument.

The two rules just described, that the head is the generator of variables that
are bound when the pfocedure is called and that mode declarations cannot be
violated, are the only two strict rules.. By themselvés, however, they are not
sufficient to designate generators for every variable 'in the body ‘of a clause.

There are a number of heuristic rules that could be used in conjunction with the

first two rules in or'dei'\to both make sure all variables have generators and the

resulting ordering is relatively efficient. A number of these heuristics were given
in Section 2.5. The only heuristic currently implemented in the ordering algo-

rithm is the connection rule, which is a special case of theﬂ rule that calls for

selection of the literal with the largest number of instantiated variables. Brieﬂy,i

when the connection rule is applied, it attempts to find a literal that consumes
variables for which génerators are already known,--and which can be designated
the generators of other variables that do not yet have generators. The connec-
tion rule is stated more concisely as step 3.a of the ordering algorithm (Figure
12).
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The ordering algorithm uses the following variables:

B The set of literals in the body. Initialized to contain every literal in the
body; when a literal is designated as a generator, it is removed from B.

S The set of variables for which generators have been specified.

I The set of variables for which generators are not known yet. Note that the
union of Sand U contains every variable in the clause.

The algorithm:

1. Identify as many generators as possible using mode declarations; remove
those literals from B, and initialize S to be the variables generated by these
literals. _

5 Add to S the variables instantiated in the head of the clause; the head is the
generator of these variables. Initialize U to be the set of all remaining vari-

ables.
3. Repeat until B=[] or U=|}:
a. Make a set LS with every literal in B that has at least une variable in
U and one variable in S {note: if 5 is empty, LS will also he empty}.
b. If LS is empty after step (a), find the leftmost literal in B that has a
variable in U and add it to LS {LS contains just this one literal}.

c. For every literal L in LS, assign L as the generator of any variables in
[7 that occur in L. Remove these variables from U and add them to S.
Remove L from B.

Figure 12. The Literal Ordering Algorithm



69

Finally, if none of the three rules described above identifies a generator for a

variable. the leftmost literal in which the variable occurs is designated as the gen-

erator for that variable. This rule, called the “leftmost rule’’, is-included to make-

sure that every variable will have a generator. _

Note that since mode declarations are known before a clause is called, the
second rule can be applied when clauses are ﬁfst loaded by the interpreter. The
other rules can only be applied at runtime, once the pattern of variable instantia-
tion in the clause is knowh. Logically, any literal can be the generator of any
variable that appears as one of its  arguments. The only exceptions are deter-
mined by evaluable predicétes or user defined procedures with mode declarations.
The ordering algorithm is used priﬁarily to ensure that mode constraints are not

violated, and secondarily to produce an efficient ordering.

The Prolog code and a more detailed description of the ordering algorithm
are given in Appendix I. This algorithm was used to produce every dataflow

graph piétured in this dissertation.

5.1.3. Examples of Literal Orderings

The ordering algorithm will be illustrated by four examples, each showing a
different pattern of variable instantiation in the body of a clause.. The dataflow

graphs produced for these examples are shown in Figu're 13.

Disjoint Subgoals
J(X,)Y) — g(X) 8 h(Y).

In this example the two literals in 'thé body are clearly independént. The
graph pictured is for the case when neither X nor Y is instantiated when the pro-
cess is created. The leftmost rule was used to designate g(X) as the generator of
X and h(Y) as the generator of Y. Note that if there are N solutjons for g(X)
and Ny ways of solving A(Y), then D'(f) will contain Ny x Ny pairs of Xand Y

values. The remaining pairs, after the first, will be created in response to redo

messages; the method used to enumerate all pairs is described later in the section

on backward execution.
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- Clause: R
f(X.Y) - g(X) & A(Y).
Call: 4 :
- - f(X,Y).
('13a)

Clause: )

, query(P,I) - author(P ,X) & loc(X,I,D).
Call: : :

- query(P ,uci).

author(P,X)

(13b)

Figure 13: Dataflow Graphs
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head:
solve(P,Q)

ve{(P1 &
.solve P2 &

solve(P, Q dtwde%P P1 P2) &
combme(Ql, 2,Q)

#1:
divide(P,P1,P2)

(13¢)

#2:

' #3:
solve(P1,Q1)

solve(P2,Q2)

#4:
combine(Q1,Q2, Q)

color(A,B,C,D.E) - ,
next(A ,B) & next C ; & nextéA,Cg & ne.ttéA ,D} &
next(B,C) & next(B & next(C ,E) & next(D,E

#8:
next(D,E)

Figure 13 (Continued)
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Shared Varsable
query(P.]) — author(P,X) & loc(X,I,D).

The two subgoals have the variable X in common, and no call to query can

ever cause X to be instantiated when the clause is selected. When the AND pro-

- cess 1s created, if /s instantiated but P is not, then the connection rule specifies
" that loc(X.1,D) should be the generator.of X. Otherwise, author(P,X) is desig-

" nated, either through the connection rule (if only P is instantiated, as in the pic- -

ture in Figure 13b) or the leftmost rule (if neither or both are instantiated). This
is an example of where the connection rule implements the optimal ordering
described in Section 2.5.2, based on the number of instantiated variables in each

literal. .

Deterministie Funetlion

solve( P,Q) — divide(P,P1,P2) &
solve(P1,Q1) &
solve(P2,Q2) &
combine( Q1,Q2,Q).
This clause illustrates the general form of a deterministic function expressed
as a clause. On every call, P will be bound to a term representing the input

problem, and as a result of the call @ will be bound to a term representing the

output of the function application.v The optimal ordering of subgoals is: divide

problem P into. independent sﬁbprobléms P, and P2;'then solve PI' and P, in

parallel via the recursive calls, instantiating @, and @y; when both are done, con-

struct answer @ from partial answers @ and @,. This sequence of events is

implied by the picture in Figure 13c; exactly how it is achieved is described in the .

next section, on forward execution. This graph can be produced by repeated

application of the connection rule, so mode declarations are not required. In gen-
eral, however, mode declarations may be required when producing the ordering

for functions.



Map Coloﬁ'ng :

coloNA,.B.C"D.E) — - "
.  nert(A,B) & next(C,D) & next{A,C) &
nert(A,D) & nezt{ B,C) & nez{ BF) &
next(C,E) & nezt(D,E).

nert(red,blue) — . B nezxt(red,green) — .
nert(blue,green) «— . “etc.

The goal of this procedure (Figure 13d) is to see if there is an assignment of

one of four colors to the regions of the map, such that no two adjacent regions
have the same color. The calls to nezt will succeed only if the arguments have

been (or can be) instantiated to terms representing different colors. There is one

_call to nert for each border in the map. This formulatiog of the map coloring

problem as a logic program was originally given by Pereira and Porto in their

papers on intelligent backtracking [47, 48].

When this procedure is called, none of the variables in the head will be

instantiated. The literal ordering shown in the ﬁgure was produced by first using

the leftmost rule to designafé nezt(A,B)’ as the generator for both A and B, i.e.

the solution of this literal assigns colors to regions A and B. The connection rule
was used to identify the three literals in the middle row as generators of the
other three variables. That leaves the remaining four literals as consumers. The

role of consumer in this problem is too verify that colors assigned by generators

are valid for the rest of the map. -

_ ‘Not unexpectedly, when this problem is intérpreted, the generators in the

middle row create a combination of values that is unacceptable to some of the .

consumers on the bottom row. There are a number of difficult  problems

presented by this example, as the AND process tries to coordinate the four gen-

erators in order to create, eventually, every five-tuple of colors that satisfy the

constraints of this goal list. Many of the problems arise from the relative timing
of the arrival of fail and success messages. The general principles will be

explained in the section on backward ’exec‘ﬁtion; A detailed trace of the parallel

-solution of this problem is in Appendix II.
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5.2. Forward Execution _

Literals in thek body of a parallel AND process will always be in one of three
states: blocked, pending, or solved. Avliteral is in the solved state after aﬁ OoR
process has been created for it, and that process has sent back a success message.
A literal is in the pending state when an OR process has been created for it, but
the process has not yet sent back any message. Finally, a literal is in the blocked.

state when an OR process has not yet been created for it.
Forward execution is essentially a graph reduction procedure. Whenever the

AND process receives a success message from a descendant, it means the

corresponding literal can be resolved away from the body of the clause; in ‘the

"dataflow graph, the node for the literal and all ares leaving it are removed from

the graph. The AND process succeeds after a success message has been received
from every descendant, f.e. after the graph has been completely reduced. Recall
that a success message from.an OR process created to solve a literal L has the
general form success (L), where L6 is a copy of L with (possibly) some variables
bound. The graph reduction step is accomplished by resolving ~Lf with the
current set of literals in the body of the clause. If L is a generator of a set of
variables, then some of those variables may be instantiated in Lf. Envision -
values flowing from L to the consumers, as the resolution of Lf with the remain-

ing literals causes those variables to be bound in the resolvent.

The criterion for deciding when to start an OR process for a literal is that a
literal is ready to be solved only when all of its predecessors have been solved,
i.e. when the corresponding node in the dataflow graph has no incoming arcs. If
the graph is acyclic,‘and each literal can be solved, then eventually a process will
be started for every literal. A more formal presentation of the forward execution

algorithm is given in Figure 14. Figure 15 shows the parallel solution of two

sample goal lists as sequences of graph reductions.

Figure 14 shows that the ordering algorithm will be applied after every suc-

- cess message is received. This is necessary for those cases when a generator binds

its variable V to a non-ground term containing a new variable V' . If there is

more than one consumer of V, they will then have a common variable in V' .
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When the start message is received, initialize a list B to be the complete
set of literals to be solved.

Repeat until Bis the empty list:

a.

Apply the ordering algorithm to the literals in B to make a dataflow
graph G.

Start an OR process for every hteral in G that has no incoming ares -

and that does not already have a process.
Waxt for a message from an OR descendant.

If the message is fail, call the backward execution algorithm (Sec-
tion 5.3).

If the message is success(Lf), resolve B with -L§, makmg a new

body B {note: B now has one less literal, and bmdmgs in 0 ha\ e

been applied to all remaining literals}.

Figure 14. Forward Execution Algorithm

\
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Since literals with variables in common are not solved in parallel, and since every
variable must have a generator, the ordering algorithm must be called again to
specify a list of list generator for V! . When the generator binds V to a ground
term, which contains no variables, then step 2.a can be omitted. The current
implementation of the interpreter makes the simplifying assumption that genera-
tors bind their variables to ground terms, and all subsequent discussions in this

chapter will be based on this assumption.

The combination of the ordering algorithm and the forward execution stra-
tegy is sufficient for parallel solution of clauses that define deterministic func-
tions. The distinguishing characteristics of these clauses are that the literals in
the body are also deterministic functions, meaning fhey all hav.e mode declara-
tions, and for every combination of inputs there is just one output value for each
output variable. Barring system failure, deterministic functions are guaranteed

to succeed when given legal inputs.

Matrix multiplication 1s a good example of such a function. One way of
writihg this function as a logic program is shown in Figure 17. The head of the
procedure is mm(A,B,C). When called, A and B will be bound to terms
representing matrices, and after the call, C will be instantiated to their product.
A row in a matrix is represeﬁted as a list of integers, and a matrix is a list of

rows (1.e. a list of lists; see Figure 17).

The top level of the function is simply a call to transpose one argument, fol-
lowed by a call to a procedure that actually multiplies the matrices. BT is the
transposed version of B; it is a list of columns instead of a list of rows. After
transpose succeeds, the problem is to distribute all possible pairs of rows of A
with columns of BT to the inner product function. This is done by the two auxi-
liary functions mmt and mme. The internal structure of these two procedures is
identical: there are two literals in the body of each; one literal is a call to a lower
level function with the first element of the input list, while the other literal is a
recursive call with the remainder of the list. The dataflow graphs for both func-
tions show that the literals are independent, and can be solved simultaneously.

The inner product function shown here is sequential in nature, since the results of
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(0
@@

’ , success(r
success(p(a)) rf.-,ceivedS \s;))e)n
Start process received; 'succcss(’q(a))'
for p(X) start processes received, process
for r(a) and q(a) is done

@@

'success(p(f(Y)))’ 'success(p(f(a)))’
Start process . received; start received; start
for p(X) q(f(Y)) as ‘ process for

generator for Y r(f(a))

This figure shows two possible sequences of graph reductions during forward exe-
cution for the goal statement
- p(X) & q(X) & r(X).

Nodes and arcs drawn with dotted lines have been removed. In the first

sequence, p(X) generates the ground term a, and r(a) and ¢(a) can be solved in.

parallel. In the second sequence, X is bound to f(¥), making the remaining literals
r(f(Y)) and q(f(¥Y)). The literal ordering algorithm must be called to decide on
a generator for Y; then that generator will be solved before the other literal.

Figure 15: Sequences of Graph Reductions



- the >multiplicat-ions are be summed serially.

Analysis of the bodies of mmt and mme rshows_ that since the recursive call

can be done at the same time as the call to the lower level fuhction, the time

required to solve a problem of size n is proportional to the time required to solve

the largest subproblem, rather than proportional to the sum of times to solve
both subproblems. The time required to compute the product of the two
matrices is thus the time required to disﬁribute the last of the row/column pairs
to process that performs an inner product, plus the time reqﬁired to do that inner
product. For the multiblication of nXn arrays, this time is O{n+n+n), or O(n)
(27).

Figure 16 shows the time plot for the call to mmt in the multiplication of
two 2X 2 matrices. The corresponding‘table’ shows the number of steps required,

and the simulated time used. The results support the claim that parallelism in

,determmlstlc functions can be exploited by the AND parallehsm of the AND/OR'

Process Model.

'5.3. Backward Execution

The purpose of backward execution is to coordinate the actions of the gén’-
erators in their production of terms for the variables of the goal list. If there are

n variables in its goal list, an AIND process is expected to construct as many n-

“tuples of terms as possible. A subset of these m-tuples be]ong to the relation

defined by the clause the AND process is interpreting.

A straightforward model for generating tuples is provided by the nested
loopé of a procedural language, such as Pascal. For example, a nested loop

1mplementatlon of the map coloring problem of Section 5.1.3 is of the form

for A := Red to Blue do
for B := Red to Blue do
for C .= Red to Blue do
for D := Red to Blue do
for E := Red to Blue do , ' .
if Next(A,B) and . . . and Next(D,E) then
Writeln('success(A,B,C,D,E)’);




Maximum number of dashes per coldmn =5
46 processes executed 91 steps in 35 time units: 2.60

Interpreter Measurements:

N Number of Numberof Time Steps/ Numberof Message
Processes Steps : Time Messages Size
1 13 25 21 119 13 382
2 46 .9 35 2.60 , 46 1630
3 121 241 49 4.91 121 4822

Figure 16. Plot for 2 X 2 Matrix Multiplication
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/* To multiply two matrices, transpose the second, then form all inner products.

mm(A,B, C) «— transpose(B,BT) & mmt(A,BT,C).

/* Multiply all rows of A with entire matrix B

mmt([]._.[])-
mmt([.A1

mme(_[].[)-

An] B, [Cl|Cn]) +~ mmc(A1,B,C1) & mmt(An,B,Cn).

» /* Multiply all columns of B with row A

mme(A,[B1|Bn], [CllCn]) —.ip(A,B1,C1) & mme (A,Bn,Cn).

ip([].[}.0).

/* Form the inner product of two vectors

1p([41]An] [Bl|Bn] C) «— ip(An,Bn,X) & C is X+A1+Bl.

/* To transpose a matrix, call ’columas’ to dlvnde it into two parts: the
/* first column and the rest of the columns; then transpose the rest.

transpose ({[]|_].1]).

columns({],[]. []

: tranSpose(M,[CllCn]) +— columns(M,C1,Rest) & transpose(Rest,Cn).

columns([[C11|C1n]| (], [Cll])&] [Cln]}]) - colun'ns(CX Y).

/* Mode declarations, required for propcr ordering

mode (is,[7,+]).
mode (mm,[+,+,-]).

Figure 17.

' mo‘de(mmt,[+,+,;])-
mode (mme,[+,+,-|).

Matrix Multiplication Program

*/
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An abstract descrlptlon of the working of this model is as follows. Initial
values (red) are a551gned to all varlables The initial tuple <red, red, red red,red>
is tested by the boolean expression in the body of the loop. The next tuple is
created by assigning the innermost variable, E, its next .value. Eventually, the
last value (blue) is assigned to the inhermost variable. The next tuple is obtained
by resetting the variable E to its first value while making the second value of the
next-innermost variable D. In general, Whenever there are no more values for a

variable, the previous (outer) variable is given a new value, and whenever a vari-

able is set to a new value, all later variables (all those closer to the body of the

loop) are reset to their initial values.

This 51mple model for generating tuples has been adapted for use in parallel
AND processes as a way of coordinating the transmission of redo messages to des-

cendant OR processes. It is not a very ‘elegant model of .tuple generation, but it

has the twin virtues of being straightforward and complete, meaning it constructs .

all possible tuples as long as the domains of the generated variables are finite.

Nested generators can also be used to describe the overall behavior of the

sequential Prolog interpretation Since the same predicate that tests adjacent

colors is also used to generate colors, the Prolog implementation has the advan-

tage that it never constructs any obviously wrong tuples. In the Pascal imple-
mentation, all 5% 5-tuples of coloi‘s»are generated, the first 3% of which are of the

form <red,red,C,D,E>. In Prolog, nezt(A,B) is the generator of A and B, and it

never instantiates both A and B to the same color, thus effectively preventing the -

construction of a large number of useless tuples.

The parallel implementation to be described in this section retéiﬂs the
advantages of the Prolog interpretation, since it also uses the same predicate for
generating and ‘testing, and it has further efficiencies that are closely related to
the intelligent backtracking of Pereira and Porto. To summarize, nested loops

are inelegant but simple and correct, and when implemented in. logic programs

‘there is the potential for cutting out a large amount of useless work.
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5.3.1. Data Structures for Backward Execution

Adoption of the nested loop model for constructihg tuples of terms in a 4

parallel AND process requires a linear ordering of literals and implementation of
the reset operation. These items and data structures required for backward exe-
cution will be defined in this section; the actual sequence of events carried out in
backward execution will be described in the next section. Examples will refer to

the clause and dataflow graph of Figure 18.

Many of the data structures require a means for identifying a particular

literal in the body of a clause. The technique used is to refer to a literal by a
term of the form #N, where N is the place the literal occupies in the text of the

clause. With respect to the example of Figure 18, the term #2 refers to

author(P,A), the second literal in the body.

The linear ordering is actually an ordering of all literals, not just the consu-

mers. The only constraint on the relative order of any two literals is that a gen-

erator must always come before all literals that consume its variable, In the

current implementation, the linear ordering is obtained via a level-order traverse

of the dataflow graph. The linear ordering of the literals of Figure 18 is
[#1,#3,#2].

The reset operation must effectively restart a generétor, S0 ‘that a variable

takes on the same set of values once again. The generator does not have to pro-

duce the values in the same order after a reset; the only requirement is that a

variable is bound to all same values égain. Also, a reset may occur before the

. generator has created all possible values.

Resets are implemented using lists of answers. The AND process maintains
a list of used answers and unused answers from each generator. The normal
sequence of events is that the answer in the first success message from a genera-
tor is put on the list of used answers. If the AND process needs a second answer
from that process, it sends a redo, and the next answer is appended to the list of

used answers. When a reset is called for, all answers but one from the used-list

. are copied to the unused-list. The remaining answer becomes the new current
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Original clause:

paper(P,D ,I) ~ date(P,D) & author(P,A) & loc(A,I,D).
Goal:

- paper(X,1978,uci).

" Body of clause after head unified with goal (head generates D, I):

«~ date (P, 1978) & author(P JA) & loc(A ,uci 1978)

Dataflow graph ('date’ generates P, ’loc’ generates A):

head:
paper(P,D,I)

#1
date(P,D)

#3
loc(A,1,D)

#2
author(P,A)

Linear ordering: [#1,#3,#2)

~ Redo lists: [#1,head)

[#2,#3,#1 head]
- [#3, head]
[head,#1 head]

Figure 18. ﬁahﬂow Graph for Example AND Process
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value of the variable. As the AND process again requires additional answers, it
takes them from the unused-list instead of sending a redo message to the OR pro-
cess for the generator literal. Only when the unused-list is empty (all answers

having been transferred to the used list) does the AND process send another redo

- message.

Backward execution also often requires cancel messages to be sent to descen-
dant OR processes. After a parent sends a cancel message, it can ignore any sub-
sequent messages received from the descendant. This situation may arise when a
descendant sends a message, but the message has not yet been processed by the
time the parent decides to send the cancel message. In the discussion below,
replacing a process P means sending P a cancel message, creating a new process

P! for the same literal, and using the process ID of P’ in place of P.

When an AND process receives a fail message from one of its OR descen-
dants, one of the géneratbrs‘ that precedes the failed literal L must produce a new
value. If that generator cannot generate a new value (s.e. it returns a fail mes- |
sage in response to the redo message), one of the other generators that produces
values consumed by L must be sent a redo. The decision of which generators will
be sent redo messages, and in what order, is determined by a redo list associated
with each literal. The redo list for a literal L contains L and every predecessor of
L, sorted according to the linear order (with literals that are earlier in the linear
order occurring later in the redo list). Redo lists are created at the same time the
linear ordering is made. - Redo lists for the literals of the example problem are
shown in Figure 18. | |

' Finally, an AND process maintains a list called the faslure contezt to keep
track of the failed literals and decide exactly which generator should be sent the
next redo message. The failure context is initially the empty list, and as fail mes-

sages are received, literal numbers are added to this list.



85

5.3.2. Processing of Backward Execution

The backward execution algorithm will be introduced in this section. The
algorithm is quite complicated. Instead of discussing the complete algorithm,
which contains provisions for handling a number of special cases, only the subset
of rules sufficient for obtaining the first solution of the example problem of Figure
18 will be presented first. After the processing for this solution has been
described, some further details will be given. The complete set of rules for back-

ward execution, and examples of some special cases, can be be found in the

Appendices.

An overview of backward execution is that when a fail message is received,
the backward execution algorithm is called to trace out a path in the dataflow
graph that extends back from the failed literal. This path should eventually
include every predecessor of the failed literal, if required. The failure context
reflects the current state of this path. When a generator is encountered on this
path, it is sent a redo message, and then every generator occurring later in the
linear ordering is reset. If the AND process tries to extend the path beyond a

literal with no predecessors, or to include the head of the clause in the path, it

fails.

The desired backward path is simply the redo 1ist for the failed literal. This
list contains every predecessor of the literal, f.e. it contains every generator that

could possibly effect the set of values consumed by the literal. An AND piocws

will always be able to determine which generator to re-solve when it first receives .

a fail message. However, once the backward execution algorithm has embarked

- on a backward path, subsequent failures of literals not on this path can cause

difficulties. This is known as a multiple faslure; rules for handling multiple

failures are described later; examples are found in the solution of the map color-

ing problem in Appendix II.

When a fail message is i-eceivéd, the AND process appends the literal
number of the failed literal to the- failure context list. Then the AND process

searches for a redo list R such that the new failure context is a prefix of R. The

" first literal in the resulting suffix identifies which predecessor of the failed literal
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should be sent a redo message.!

Referring to the figure, if the process for #2 sends a fail méssa.ge, the failure
context is set to list [#2]. [#2] is a prefix of the redo list [#2,#3,#1], and the
suffix after this match is [#3,#1], so the OR process for literal #3 is sent a redo
message. Next, if the process for #3 fails (meaning that generator cannot pro-
duce any more values), the failure context becomes [#2,#3], the suffix after the

match is [#1], and the process for literal #1 will be sent a redo message.

Whenever a generator is sent a redo message, the corresponding literal is
moved from the solved state to the pending state, since the process for the gen-
erator is again trying to construct an answer. When any generator is sent a redo
message, a number of other literals will be effected. First, all generators that are
later in the linear ordering are reset; this is the step that correlates most directly
with the nested loop model. Generators that are reset after being solved are still
considered to be solved, since there will be one ahswer that can be used as the
current value of the variables generated. Second, some consumer processes will
have to be canceled. If a literal consumes a variable that is generated by any
generator that was either sent a redo or reset, then that literal must be canceled,
since it consumes values that are being changed. The processes for these literals
will be replaced when all of their predecessors are once again in the solved state. .
Note that a literal might have a new process created immediately, in the case

that all of its generators were simply reset.

The processing of success messages has to be modified Slightly, in order to
accommodate the failure context. When a success message is received, and the
forward execution Algorithm starts a set of new processes, the literals'corréspond-
ing to the new prbcesses must be removed from the failure context list. Thus the
failure. context list grows and shrinks as generators are sent redo messages and

then respond with additional answers. The failure context shrinks all the way

! This operation is concisely expressed in Prolog with the concat procedure: concat(A,B,C)
means that C is the concatenation of lists A and B, or, equivalently, that A is a prefix and B a
suflix of the list C. If F is the current failure context, and R is the redo list, then
concat(F,[X|Y],R) asks “is F a prefix of R? If so, unify X with the first element of the list that
must be concatenated with F to make R.”
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back to the empty list when a new process is started for the literal that originally
failed. A more concise presentation of the backward execution algorithm is in

Figure 19.

65.4. Example
In the example execution plotted in F)gure 9 (Chapter 3), ‘process 4 was
created to solve the body of the clause

. paper(P,1978,uct) — date(P,1978) & authof(P,A) & loe(A,uci 1978).

The steps in the interpretation of that process, from the original ordering of
literals through the generation of the first success message, will be explained in
detail in this section. The explanation refers to the detailed trace of the indivi-

dual state transitions generated by the interpreter shown in Figure 20 at the end
of the chapter. '
5.4.1. Ordering

The clause used to define the initial state of process 4 is

paper(P,D,]) — date(P,D) & author(P,A) & loc(A,I D).

When the process is created, variables D and I are bound to 1978 and uct, respec-

tively. The ordering algorithm does the following for this clause:

--  There are no mode declaratlons SO step (1) has no effect.

--  The variables generated by the head are { D, I }. The variables that do not

have generators are { P, A }.

--  The first pass through the list of liter‘a‘ls finds two literals that are connected
to { D, I'}. date(P,D) contains P, a variable with no generator yet, and D, a
variable generated by the head, so it is designated as the generator of P.
Similarly, loc(A,I,D) becomes the génerator of A. At this point all variables

have generators (U is the empty list), so the ordering algorithm terminates.

The dataflow graph for this clause is in Figure 18. _
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When a fail message from process 1L is recéived, change the state of #L
from pending to blocked {note: the process that was created for #L failed
and no longer exists; L is now blocked until a predecessor is re-solved}

Append #L to the failure context.

Unify the updated failure context with a preﬁx of one of the redo hsts The
failure context is of the form [#F1,...#L], and the matched redo list is of the
form [F1,...#L{X]. -

The unification of the previous step may succeed when the failure context is
exactly the same list as one of the redo lists, s.e. X is the empty list. If this

. is the case, the AND process fails.

If the list X from step (3) is not empty, it must be of the form [#G|Xn].
#G is the generator that is to be redone. If #G is the head of the clause,
the AND process fails. Otherwise, send G a redo message, and change the
status #G from solved to pending.

Whenever the OR process for a literal #G is sent a redo message, the AND
process may have to reset or cancel some literals to the right of #G in the
linear ordering:

a. For every generator later than #G in the linear ordering, perform a
reset - operation. These generators remain in the solved state, since
their consumers can immediately (re)use the first value. The variables
generated by these generators and the variables generated by #G are
called the modified variables.

b. For every literal #L later than #G in the linear ordering, cancel 1L
and change the state of #L to blocked if it consumes any modified
variable. It does not matter if #L is a generator or not or if it was
previously solved or pending; if it consumes a modified variable, its -
process 1L must be canceled.

It is possible that some of the OR processes canceled in the previous step
can be replaced immediately (since if the variables they consume were reset,
the corresponding generators are still in the solved state), so the forward
execution algorithm is invoked to start a set of new OR processes.

When a new process is started for a literal #N that is currently in the
failure context, remove #N and any literals to the right of it from the
failure context {note: this step must be taken by the forward execution
algorithm as well, after a success message causes a set of new processes to
be created}. :

Flgure 19. The Backward Executlon Algorithm
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5.4.2. Forward Execution

After the ordering algorithm has been a,ppl-ied, the data structures in the

AND process are initialized:
-~ The only literal in the solved state is head; all others are blocked.

- The linear ordering, obtained by a level order traverse of the dataflow graph, '
is [#1,#3,#2].
--  The failure context list is set to the empty list.

-~ The redo lists are created for each literal, including the head:

#1:  [#1,head]
#2:  [#2,#3,#1,head]
#3:  [#3,head]

head: [head,#1,head)

The first step in the forward execution phase is shown in transition <1>.

An OR process can be started for a literal when the predecessors of that literal

“have been solved.? This test succeeds for #1 and #3, so OR processes are created

to solve the literals date(P,1978) and loc(A,ucs',1978). The IDs of these OR

processes are 6 and 7, respectively.

_Transition <2> occurs when success(date(prolog,1978)) arrives from pro-
cess 6. This is from the process created to solve literal #1, so #1 is added to the
solved list. Since #3 is also a predecessor of #2, and #3 is not yet solved, no new

processes are created on this step.

The next transition occurs when success(loc(kling,uci,1978)) arrives from 13
(process 7). #3 is added to the solved list, and now a process (number 9) is
created for #2. Note that after bindings from the first two answers have been

applied, #2 is authbr(prolog,kl:’ng).

2 As currently implemented, the redo list of a literal doubles as the set of predecessors of the
literal. The redo list for literal N is always of the form [#N|Rem], and the operation of determin-
ing whether all predecessors of N have been solved is equivalent to seeing if Rem is a subset of
the list of solved literals. ' ]
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5.4.3. Backward Execution

The linear ordering shows that the generator of A comes after the generator
of P. Throughout the backward execution phase, then, the expected behavior
will correspond to the nested loops

for P := FirstPaper(1978) to LastPaper(1978) do
' for A := FirstAuthor(UCI) to LastAuthor(UCI) do
if Author(P,A) then . .

Transition <4>> starts the backward execution processing. 12 fails, so #2 is
appended to the failure context, making [#2]. The redo sequence which has [#2]
as a prefix is [#2,#3,#1,head], so 13 is sent a redo message. #3 is removed from
the list of solved literals »(since it is now working on a second aﬁswer). The
current state of the process is: literal #l'solved, #2 blocked, #3 pending, with one

used answer from both {1 and 13.

Transition <5> is triggered by a fail from 13, meaning there is no addi-
tional binding for A that satisfies loc(A,uci,1978). #3 is appended to the failure
context, making [#2,#3]. This new list is matched with [#2,#3,#1,head], mean-

ing #1 is sent a redo. Note that #3 is reset here: it is later than #1.in the linear

ordering, and does not consume P. The effect of the reset is to bind A to kling.

The current state is now: #1 pending, #2 blocked, #3 solved, with (still) one used

answer from both generators.

Transition <6> takes place when a success message arrives from 11 with

the second binding for P. #1 is added to the list of solved literals (making that

list [#1,#3,head]), and a new process can be created for #2 (which is now
author(eft,kling)). Note the effect of the success of {1 on the failure context:
when the new process for #2 was started, it and everything to the right of it were

removed from the failure context, changing that list from [#2,#3] to [].

When 12 sends success (transition <7>), all literals have been solved. The
message
. success ([date(eft,1978), 'author(eft,kling), loc(kling,1978,uci)})

is sent to the parent.
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5.5. Handling Redo Messages

A parallel AND process handles a redo from its parent in the same way it
handles a fail from one of its deéscendants. The “‘failed literal” is the head, which
is the consumer of any variables that were not instantiated when the clause was

called. The redo message is used to start a failure context, and redo messages are

" sent to descendants until a new tuple is created.

It is possible to make a redo list for the head, just like any other literal: a
list is constructed that contains all predecessors of the head when the head is
considered to be a consumer. When the redo message is received, the failure con-
text is set to [head], and then a generator is selected as before, using this head

redo list.

The head redo list for the exémple of Figure 18 is [head,#1,head]. This
starts with the identifier of the literal itself (recall that the redo list for a literal
#N of the body starts [#N,...]), and then has literal #1, the generator of P, since

the head of this clause consumes P. The second occurrence of head in this list

means that the head is a predecgssor 6f #1, and is included for the cases when

the AND process should fail because the failure path started by a redo message is
traced all the way back to the head of the clause.

The head literal is removed from the failure context under exactly the same
conditions other literals are removed, namely when all predecessors of the head

are solved.

To summarize, a redo message will start the AND process in backward exe-

cution, tracing a path back through the dataflow graph' After some number of
redo messages have been sent to descendants, a new tuple will be created. On
the resumption of forward executlon the AND process will reach a a state where
the head (in its role as-a consumer) should be removed from the failure context,

while other literals test the current tuple of values.

Returning to the state transitions in Figure 20 at the end of the chapter, all

transitions after <7> show how the AND process responds to a redo message.

~ Transition <8> is triggered when the parent (process 2) sends the first redo
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message, requesting the second tuple. The failre context is set to |head], and
the head redo sequence is [head,#1, head] meaning #1 should be sent a redo. As’

a result of sending that redo message, {1 is set to work constructing the third

‘value for P,-#3 is reset and #2 is canceled. The state of the process is: #1 pend-

ing. #2 blocked, #3 sblw_’ed, with one used answer from {3 and two used answers
from 11. |

" Transition <9> is triggered b.y the success message from |1 containing the
third value of P. #1 is once again added to the solved list, and a new process for
#2 is started. Note also that the solved list is [#1,#3,head] and the tail of head
redo list is a subset of the solved list, so head is removed from the failure context.
The current state of the process is: #1 and #3 solved? #2. pending, and an empty

failure context.

- The third value of P cannot be used to solve #2, so the latest process for
that literal sends a fail message (transition <10>) The failure context becomes
[#2], and backward execution resumes. Normally, 13 would be sent a redo mes-
sage. Howev'er, the AND process knows that process has already failed (since the
1P field shown in the figure is 0), SO #3‘ié immediately added to fhé failure con-

text, and the redo message is sent to 11. The current state iS' #1 pending, #2

’b]ocked #3 solved (smce even though 13 has failed, there are answers that are

used via resets), with 11 working on a fourth value for P.

Transitions <11> and <12> are basically the same as <9> and <10>,

since the fourth value of P also causes a process for #2 to fail.

Finally, a fail meSSage.a.rrives from 11, indicating that there are no more

Ways to solve date(P,1978).. When 11 fails, the fail list will becomé'[#2 #3,#1], a

- prefix of [#2,#3,#1,head], indicating that head is the literal to be sent a redo SO

the AND process fails.

5.8. Discussion ‘

Returning to the example of Figure 18, consider what happens. if literal #3 is |

the first literal to fail. The state of the AND process at this time would be:
' li_terals #1 and #3 pending, and literal #2 blocked. When the fail message arrives
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from 13. the failure conte\t becomes [#3], whlch is the prefix of the redo list

[#3,head]. The suffix is [head] meaning the head of the clause was the generator

~ that created the value that caused #3 to fail. This is a case where the AND pro-

cess fails. In the previous example, when #3 failed the failure context was the list
[#2], and the AND process responded by sending the process for literal #1 a redo

message. The reason for the different responses (fail message to the parent versus

- redo message to 12) to the same message (fail from {3) lies in the interpretétion '

of the failure context. In one case, when the failure context is empty, #3 failed

on its own‘; 1.e. it failed because it could not generate any values for the variable
A. In the other case, when the failure context is [#2], #3 failed because it could

not generate any additional answers for one of its consumers, and since that con-

~sumer had other predecessors the AND process needed to send a redo to one of

those predecessors and reset #3

An interesting question arises when considering how to proeess redo >mes-
sages. As described above, in the current implementation, redo messag&s are
handled by star,tir‘lg a failure context for the head of the clause, then sending a
redo message to the generator for one of the uninstantiated variables contained in
the head. Alternatives are to send a .redo message to the last generator in the
linear ordering, or maybe send a redo to the process for the last literal in the
linear ordering, whether it is a generator or not. The difference between either of
these alternatives and the method implemented is that the latter is based on the
fact that the AND process is expected to generate a set of tuples, and not a mul-
tiset; t.e. a redo message is a signal toereate a new tuple, diﬁ'erent from any pre-
vious answer. Sending a redo to a generator of a variable in the head of the

clause makes sure the next tuple will have at least one different value.

The followmg is an example of a program which, when mterpreted by Pro-

log, produces a multiset of tuples for the denotatlon of the procedure P

p(A) « Q( A) & r(B)
- q(0) —

r(l) — .

r(2) — .

. .
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The first answer to the query

— plA).
is found by unifying q(A) with the unit clause ¢(0), and then unifying r(B) _with‘
r(lj. The first answer is thus p(0). If told to backtrack, Prolog will re-solve r(B),
this time by binding B to 2, and it once again reports success for p(0). The
operational semantics for p is the multiset {<0>,<0>}, in which one tuple
occurs twice. A parallel AND process would also produce multiple instances of
the same answer if the rule for handling redo mességes were to send a redo to
either the last literal or the last generator in fhe linear ordering.: However, the
rule is to send a redo to a generator of a head variable. For this- example, it
means sending a redo message to the process for q(A), and thus the second proof

of p(0) is not performed.

The reasoning behind the choice to have AND processes create sets instead

~of multisets is that a set of tuples is closer to the spirit of the definition of the

sevmantics.. Interpreters that creaté multisets do so merely as a side effect of the
operational semantics. In short, just because there is more than one way to
prove that a tuple belongs in D is no reason to include more than one copy of

that tuple in D.

As mentioned previously, multiple failures are quite difficult to process. At
first, it would seem reas‘onable to maintain a number of failure context lists, each
beginning with the ID of a failed literal. However, this leads to a number of

difficult questlons

- If one failure context determines that a generator is to be reset durmg some
state tranqltlon and then a different failure context decides that the same
generator should be reset during a later state transition, then should the

generator be reset twice? Or is one reset sufficient?

- What should happen when two failure contexts reach a common predecessor?
* The generator at that node will be sent a redo when the first failure context
includes that node, but the generator should probably not be sent another

redo message when it is added to the second failure context.
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The current method for handling multiple failures is te postpone the process-
ing of additional failures while in the midst of tracing out a failure path for the
first literal to fail. When a fail message arrives from a process 1N such that #N
cannot be added to the current failure context, 3 then #N is considered to be a

postponed failure, and is ignored temporanly When the fallure context shnnl\s

to the empty list, the AND process will start a new failure context for one of the

postponed fallures, as long as the process for the postponed failure was not can-

celed during the processing of a previous failure. A deeper discussion of post-

poned failures, and an example of the processing of a postponed failure, can be

found in Appendix I

In the preceding discussions of resets and redo messages, it may appear that
there is an underlying assumption that each generator is responsible for generat-

ing values for only one variable, which is the case in the procedural language

implementation of nested loops. Hewever no such assumption needs to be made |

in adopting this model for parallel AND processes. If a literal g(X, Y) is the gen-
erator for both X and Y, it is not necessary to assume that this generator creates
all possible Y values before generating a second value for X and resettmg Y. The
AND process simply uses the <X,Y> pairs returned by the OR process for
g(.\ Y), and lets the OR process worry about creatmg all possible pairs. When-

~ ever the precess for g(X,Y) is sent a redo message or reset, all consumers of either

variable are canceled.

A goal for backward erxecut’ion is to be able to generate as many tuples of
values as possible. When the domeins of the variables are finite, the nested loop-
model completely spec1ﬁes the set of tuples. When one or more domains are
infinite, then nested loops are not able to generate all tuples In particular, con-
sider two variables, I and F, where the domain of Iis infinite, the domain of F is

finite, and the values of the varlables are denoted {1}, &, ---} and
{f lo - f} In the goal hst

% In other words, the call to concat specified in a previous footnote fails for all redo lists.

n ‘ .
. . N -
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— of(F) & gi(]) & pf(F) & pi(]).
gf is the generator of F, g1 the generator of I, and [ is the innermost variable.
Suppose pf succeeds only for the second value of F, but ps succeeds for any value
of I. Since no tuple with fy can succeed (i.e. pf(f;) fails), then Prolog (and the
equivalent nested loop program in a procedural language) will never solve this
goal list. All tuples created will be of the form <f;,s,>, with the interpreter
stuck in an infinite loop generating the s,. Parallel AND processes have a chance
of succeeding in this example, since when pf(F) fails a redo message is sent to the
generator for F, while the generator for I is reset. Thus there are cases, even
when infinite domains are involved, where parallel AND processes construct all
successful tuples. Parallel AND processes are still not perfect, however. If the

consumer is p(F,l), the linear ordering may specify that the generator for [ is to

~ be sent a redo message before the generator of F, and thus the parallel AND pro-

cess is also caught in an infinite loop.

The intelligent backtracking interpreter of Pereira and Porto can also avoid
infinite loops, since the geherators of infinite domains may be skipped on back-
tracking. Their interpreter may even succeed when parﬁllel AND processes fail,
because their interpreter analyzes the cause of a failure. If p(f},s;) fails because
the unification of p(f;,;) does not succeed 'when‘ Fis bound to f}, their interpreter
knows to backtrack into the solution of the generator of F. At present, all a
parallel AND process knows is that p(f},4;) failed, that this literal has two prede-
cessors, and that one of them must be redone; which one is determined solely by

the linear ordering.

5.7. Chapter Summary

Parallel solution of the body of a clause is essentially an attempt to create a
dataflow graph from the body, and then solve the literals in the order specified
by the graph. This attempt is successful when the literals all succeed, which is
often the case when the clause implements a deterministic function. However, in
nondeterministic functions and relations, it is not always the case that literals

can be solved on the first attempt. When a literal fails, an interpreter must re-
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solve a previously solved literal, hoping the next solution creates new variable

- bindings that allow the failed literal to be solved.

Backward execution is the name of the mechanism in parallel AND processes
that determines which literals must be re-solved in response to ‘failures. The

mechanism is quite compllcated and reqmres a large overhead in terms of data

structures to represent the state of each literal and the state of the process as a

whole. Fortunately, the overhead does not interfere with forward execution; it is

only when literals fail that the rather awkward backward execution mechanism is .

invoked.

There are a number of improvements that can be made in the deﬁnitlon and
implementation of backward execution. Many descendant processes may be can-
celed needlessly, sequential processing of multlple failures is very conservative,
and the nested loop model itself may not be the best abstract model of tuple gen-
eration. The phllosophy has been to define a method that is sufficient to coordi-
nate the literals that bind variables to values so that eventually as many tuples
of values are created as possxble The long term goal of the research i is the design
of a non von Neumann computer archltecture for parallel execution of logic pro-
grams. Rather than spending time in fine tuning the backward execution
mechamsm it is time to move on to the next step, and show how the parallel

processes may be efficiently implemented on a non von Neumann system.

/ .
B . . -
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Key to State Information of Parallel AND Process

~In the following trace, all lines except the descriptions of the current status of the literals
are self-explanatory. For each literal, the current status is indicated by a data structure of the

form

#N:[Curr,Orig,RL, Gens, MP,U,UU]

>~ where N is the literal pumber, Curr is the current form of the literal (including variable bindings,

if any), Orig is the original form of the literal (before any bindings), RL is the redo list, Gens is
the list of variables generated by the literal, MP is the ID of the OR process created to solve the
literal (if O, there is no such process, i.e. the literal is in the blocked state), and U and UU are lists
of used and unused answers from MP. The AND process does not attempt to keep the list of
literals in any particular order. ln fact, literals toward the top of the list are literals that were

most recently used for some operation. _ ‘
Variable names beginning with capital letters are ‘‘real’’ variables, which may eventually be

bound. Variables of the form $var(N) are metavariables, required by the ordering algorithm and
other procedures that reason about variables without binding them. In this process, the variables

‘are P, D, I, and A; the corresponding metavariables are $var(0), $var(1), $var(2), and $var(3).

<1>

AND Process 4 after 'start’ from Process 2, T=2
Parent ID: 2
Linear Ordering: [#1,#3,#2]
Head Redo Seq: |head,#1,head]
Literals Solved: [head|
Failure Context: [| -
Literal Status — #N:[Curr,Orig,RL,Gens,MP,U,UU]:
#1:{date(P,1978); date($var(0),$var(1)),
1#1head], [$var(0)], 6, 1, { |
#3:[loc(A,uci, 1978), loc($var(3),$var(2),$var(1)),
1#3 bead], [$var(3)} 7, I, ]
#2:[author(P,A), author($var(0),$var(3)),
[#2,#3#1head], L0, [l 1]

Figure 20. States of a Parallel AND Process
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<2>

AND Process 4 after 'success(date(pro, 1978)) from Process 6 T=4
Parent ID: 2
Linear Ordering: [#1.#3,#2]
Head Redo Seq: {head,#1,head]
Literals Solved: [#1,head]
Failure Context: || :
Literal Status - #N: [Curr Orig,RL,Gens,MP,U, UU]
#1:[date(pro, 1978) date($var(0), $var(l))
[#1, head), [$var(0)], 6, [date(pro,1978)}, [} ]
#3:[loc(A,uci, 1978), loc($var(3) $var(2), $var(l))
|#3,head], [$var(3)], 7, [}, ||
#2 [author(pro A}, author($var(0),$var(3)),
[#2.#3,#Lhead], [, 0, ], [] ]

<3>

AND Process 4 after 'success(loc(kling,uci, 1978)) [rom Process 7, T =4

Parent ID: 2
Linear Ordering: [#]1,#3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: [#3,#1,head]
Failure Context: {|
Literal Status — #N: [Curr Orig,RL,Gens,MP,U,UUJ:
#2:{author(pro,kling), author(Svar(O) Svar(3))
[#2,#3,#1head], [, 9, }, [] ]
#3:[loc(kling,uci, 1978), loc($var(3), $var(2), $var(1))
[#3.head], [$var(3)]. 7, [loc(kling,uci, 1978)], [] ]
#1:{date(pro,1978), date($var(0),$var(1)),”
[#1,head], [$var(0)), 6, [date(pro 1978)], (I ]

Figure 20 Continued

. . .
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<4>

AND Process 4 al’ter "fail’ l’rom Process 9, T =7

Parent ID: 2
Linear Ordenng: [#1,#3,#2]
Head Redo Seq: [head,#1,head|
Literals Solved: [#1,head]
Failure Context: [#2] '
Literal Status - #N:(Curr,Orig,RL,Gens, MP,U,UU]:
#2:[author(pro,A), author($var{0),$var(3)),
[#2,#3,#Lhead], [], 0, I, [|]
#3: [loc(A,u¢i,1978), loc($var(3),$var(2), Svar(l))
[#3,head], [$var(3)], 7, [loc(kling,uci, 1978] (1]
#1:[date(pro,1978), date($var(0),$var(1)),
[#1,head], [$var(0)], 6, [date(pro,1978)], [] ]

<5>

AND Process 4 after 'fail’ from Process 7 T = 9
Parent ID: 2
Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#1, head]
_ Literals Solved: [#3,head] '
Failure Context: |#2,#3]
Literal Status - #N:[Curr,Orig,RL,Gens,MP,U,UU}:
#3: [loc(l\lmg uci,1978), loc($var(3),$var(2), $var(1)),
[#3.head], [$var(3)], 0, [loc(kling,uci, 1978)], [} |
#2 [author(P kling), author(Svar(O) $var(3))‘
(#2.43,41 head], 1,0, [, ]
#1:[date(P,1978), date($var(0),$var(1}),
[#1,head], [Sva.r(O)] 6, [date(pro,1978), [] |

Figure 20 Continued
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. <8>

AND Process 4 after 'success(date(eft,1978))’ from Process 6, T = 11
Parent ID: 2
Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: [#1,#3 head]
Failure Context: (]
Literal Status — #N:[Curr,Orig,RL,Gens,MP,U,UUJ:
#2:[author(eft kling), author($var(0), $var(3))
(#2,#3,#1,head|, ], 11, [}, {] ]
#1:[date(eft,1978), date(Svar(O) $var(1)),
[#1.head], [$var(0)], 6,
[date{eft,1978), date(pro 1978)}, {] |
#3:[loc(kling,uci, 1978), loc($var(3),$var(2), $var(l))
[#3,head], [$var(3)], 0, [loc(kling,uci, 1978)], [} ]

<7>

AND Process 4 after 'success(author(eft, kllng)) from Process 11, T = 13
Parent ID: 2
Linear Ordering: [#l,#3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: [#2,#1,#3 head]
Failure Context: || .
Literal Status — #N:|Curr, Ong,RL Gens, MP U UU]
#2:[author(eft,kling), author($var{0), $var(3))
[#2.#3,#1.head], [, 11, [author(eft,kling)], [] |
#1:[date(eft,1978), date(Svar(O) $var(1)),
[#1,head], [$var(0)], 6,
[datefeft, 1978), date(pro 1978},
#3:[loc(kling,uci,1978), loc($var(3),$var(2), $var(l))
[#3,head], [$var(3)], 0, [loc(kling,uci,1978)}, [] ]

Figure 20 Continued

101




e

102

<8>

AND Process 4 after 'redo’ from Process 2, T = 15
Parent 1D: 2
Linear Ordering: [#1,#3,#2]
Head Redo Seq: |head,#1,head]
Literals Solved: |#3,head]
Failure Context: [head]
Literal Status - #N:{Curr,Orig,RL,Gens,MP,U,UU}:
#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(1)),
[#3,head], [$var(3)], O, [loc(kling,uci,1978)], [] |
#2:[author(P kling), author($var(0)$var(3)), ,
(#2.45 # Uhead], [, 0, ], [ ]
#1:[date(P,1978), date($var(0),$var(1)),
[#1,head], [$var(0)}, 6,
[date(eft,1978), date(pro 1978)] 1]

L8>

AND Process 4 after success(date(df 1978))’ from Process 6, T = 17
Parent ID: 2.
Linear Ordering: [#1,#3, #”]
Head Redo Seq: |[head,#1 head|
Literals Solved: [#1,#3, head|
Failure Context: |
Literal Status -- #N:[Curr,Orig,RL,Gens, MP,U,UUJ:
- #2 [author(df kling), author($var(0), $var(3))
[#2.#3.# Lhead, [], 13, [, | ]
#1:[date(df.1978). date($var(0),$var(1)),
[#1,head], [$var(0)}, 6,
[date(df,1978), date(eft,1978), date(pro, 1978)], [] ]
- #3:{loc(kling.uci, 1978), loc($var(3),$var(2) $var(1)),
-~ |#3.head], [$var(3)], 0, [loc(kling,uci,1978)], ] ]

~ Figure 20 Continued



s S it

<10>

AND Process 4 after 'fail’ from Process 13, T = 19
Parent ID: 2
Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#1,head|
Literals Solved: [#3,head]
Failure Context: [#2,#3|
Literal Status - #N:[Curr,Orig,RL,Gens,MP,U,UU]:
#3:[loc(kling,uci,1978), loc($var(3),8var(2),$var(1)),
[#3.head], [$var(3)], 0, [loc(kling,uci, 1978)], [} ]
#2:[author(P kling), author($var(0),$var(3)),
[#2.#3.# Lhead], [], 0, |, ||
#1:[date(P,1978), date($var(0),$var(1)),
[#1,head], [$var(0)), 6, ,
[date(df,1978), date(eft,1978), date(pro,1978)], [} ]

<11>

AND Process 4 after 'success(date(fp,1978))’ from Process 6, T = 21

Parent ID: 2
Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#1,head|
Literals Solved: [#1,#3 head]
Failure Context: ||
Literal Status -- #N:[Curr,Orig,RL,Gens,MP,U,UU]:
#2:[author(fp,kling), author($var(0),$var(3)),
(#2431 head], || 15, [, |
#1:[date(fp,1978). date($var(0),$var(1)),
[#1,head], [$var(0)], 6,
[date(fp,1978), date(df,1978),
date(eft,1978), date(pro,1978)}, [ ]
#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(1)), .
[#3.head], [$var(3)], O, [loc(kling,uci, 1978)], ] ]

Figure 20 Continued
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<12>

AND Process 4 after 'fail’ from Process 15, T = 23
Parent ID: 2
Linear Ordering: [#1 #3,#2]
Head Redo Seq: [head,#1 head]
Literals Solved: [#3,head]
Failure Context: {#2,#3]
Literal Status - #N:[Curr,Orig,RL,Gens,MP,U,UU]:
#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(1)),
[#3.head], [$var(3)], 0, [loc(kling,uci,1978)}, [] ]
#2:[author(P kling), author($var(0),$var(3)),
[#2.4#5,#1head), [, 0, ], ]
#1:|date(P,1978), date($var(0),$var(1)),
[#1.head], [$var(0)], 6,
[date(fp,1978), date(df,1978),
date(eft,1978), date(pro,1978)], |} ]

<13>

AND Process 4 after 'fail’ from Process 6, T = 25
done

Figure 20 Continued
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CHAPTER 6

Multiprocessor Implementation of AND/OR Processes

The overall goal of this dissertation research is the design of a multiprocessor
computer architecture that exploits parallelism in the execution of logic pro-
grams. The research takes the language first approach, summarized in the intro-
duction, in which the designer starts with an abstract model of computation,
specifies a programming language based on the model, defines a method for inter-
preting programs of the language in parallel, and finally starts the design of a
computer that supports the parallel execution model. Previous chapters
described the research in the early steps of this top down process, research which
culminated in the definition of a method for interpreting logic programs that
automatically divides the program into independent pieces for parallel solution.
This chapter presents some implementation considerations, with the goal of show-
ing that the abstract model can form the theoretical framework for a practical

multiprocessor.

At this level, a logic program appears to the system as a collection of
independent processes that communicate via messages. When a process receives
a message, it will be transformed into another state, and possibly generate mes-
sages for other processes. Using operating system terminology, a process is run-
ning when a PE is transforming it from one state to another, it is blocked when
there are no messages for it, and it is ready when there is a message for it, but no

PE is (yet) transforming it into its next state.

The transformation of a process from one state to another will be considered

an indivisible operation. That is, once a PE is set to work on a particular

transformation, it will complete the transformation before taking on any other
tasks. Another description of the operation of the model at this level is the pro-
vided by the corcept of a workpool. At any point in time, the system has a pool

of work that needs to be done. There is a network of PEs, each of which has
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access to items in the pool. The system operates by h#vihg PEs take a piece of
work from the pool, apply some operation, and-put the updated piece of work
back in the pool. In the Al;’D/OR Process Model, the pool of work is defined by
the sets of processes and messages. A piece of work is defined to be a process and
a single message destined for it, and the Opera_tions performed by the PEs are the

state transformations defined by the process/message pairs.

There have been a number of architectures defined around the workpool con-
- cept, so naturally they are candidates for architectures to support the AND/OR
Process Model [56]. A basic feature of these architectures is that PEs either share
a common memory, or fetch work from the memory over a shared bus. For a
variety of reasons to be explored below, at this time these architectures do not

appear to be optimal for the AND/OR Process Model.

This chapter starts with a survey of issues involved in distributing packets
of work to the PEs of a system, and concludes with some arguments for why the
AND/OR Process Model should be implemented on a network of independent
~ processors, each with 1ts own substantial amount of local memory, large enought
to keep a complete copv of the loglc program The local memory must also store
processes the PE is working on, and messages bound for those processes. The
topology of the processor interconnection network (e.g. R-ary N-cube, ring, bus)

is not important for this discussion. .

6.1. Issues

Ideally, as soon as a process goes into the ready state, some PE will be

assigned the task of performing the corresponding state transition. The mechan-

ism that decides which process executes on which PE is important. Dimensions
for comparing process allocation scheme are decentralization, locality, and even-
ness. Decentralization means that there should not be a central PE or authority
that decides where a process should be executed A centralized mechanism is a
bottleneck when there are a very larger number of processes, and is a vulnerable
point in terms of system rellablhty. ‘Locality means that processes that commun-

icate should be close to each other physically, so.that messages from one to the
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other will not have to travel very far in the network, no matter what the topol-
ogyv is. Finally, evenness refers to the goal that all PEs should have the same

amount of work to do at all times.

- In the AND/OR Process Model, a large number of processes, and an equally
large number of messages, will be created during the solution of parallél prob-
lems. When multiplying two square matrices of size n, O(n%) processes and O(n®)
messages are created (Figure 16). In any finite system, a point will be reached
where there are more processes and/or messages than can be stored in the system
as a whole or on a single PE. The underlying hardware will become bogged
down, or may even deadlock. Analogous situations occur in conventional sys-
tems, where data blocks are moved between main memory and disk, and the sys-
tem becomes bogged down by thrashing, and in dataflow systems, where the
matching store overflows when there are too many tokens waiting for partners
[54). |

Three ways to address this problem are to try to minimize the overhead, in
terms of storage requirements for processes and messages; design a method fo.r.
gracefully moving blocked processes and dormant messages between main
memory and secondary storage; and use mechanisms for inhibiting parallelism, so
that when the system starts to become overloaded, it should switch to a mode
where fewer processes are created [44]. Specific comments about all three of these
methods for managing lafge problems in the context of the AND/OR Process

Model will be discussed in the next sections.
6.2. Implementation

6.2.1. Process Migration

Burton and Sleep have proposed a method of dist.ributing processes to PEs
whereby it is up to an idle PE to take the initiative to find work to do [8]. There
is no notion of assigning a newly formed process to a PE. Rather, a PE assumes
that it must completely solve any problem that is given to it, and later, if a
neighboring PE indicates that it is idle, then a part of the current problem may

be sent to the neighbor. By way of contrast, in many multiprocessor systems
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there is a mechanism for assigning tasks to processors that will perform the task.
An example is the assignment function of the Irvine Dataflow system, which is a

hashing function that maps activity names into processor IDs [27].

This distribution model is, obviously, decentralized. Locality is enforced by

having a process move at most once, from the PE that created it to one of its

immediate neighbors.

An even distribution of work under this distribution plan depends on stra-
tegies for deciding which parts of a problem to keep and which parts to let go.
As an example of how AND/OR processes could be evenly distributed, consider

an AND process for solving a typical problem involving tail recursmn where the
's are bound and the Y's are unbound in a call to p:
PN AR [Y1] Yn]) « ¢(X1,Y1) & p(Xn, Yn).

In a parallel AND process, both goals on the right hand side are solved in paral-
lel, and thus two OR processes are created and sent start messages at the same

time. The PE solving the AND process could keep the OR process that solves

q(X1.Y1), and let the OR process for p(Xn, Yn) migrate to a neighbor. Xn is a list,

of terms; usually each term in this list has the same general structure as X1.
Using this policy of sending the “'tail” part of the tail recursion, the problem
could unfold along a “line” of PEs, each of which would solve one of the goals
g(X1,17), and the work would be apportioned evenly. Since the only message
passing in the system is between parent/descendant pairs, the locality of message
transfers is not effected by this policy.

There is a tradeoff here, since in these problems the term Xn is a list of
terms, each of the form X1. Thus the goal p(Xn,Yn) is likely to be larger (in
terms of the number of bytes required to write it) than the goal ¢(X1,Y1). The
tradeoff is that in order to spread the work evenly, the larger goals must be

passed from one PE to the next.

Another potential difficulty is related to the topology of the underlying net-
work. The above scenario of unfolding a “line” of work is very likely when the

topology is a ring, in which PE; has only two neighbors, PE,, and PE,,
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However. in a hypercube, it is not clear what path from PE; to PE, corresponds
to a “line”’, or how the paths from the PEs Would interact. Defining a set of poli-
cies that help each PE decide which processes to send 'to its neighbors, and
analyzing the tradeoffs involved in the context of various topologies, is the sub-

ject of future work and simulations.

The biggest advantage to this scheme for allocating work is that when large
problems are being. solved, the system will reach a point where (assuming a rela-
tively even distribution plan has been developed) each PE will be actively work-
ing on a problem. Since each PE is busy, no requests for work will be>transmit-
ted, and no more subproblexﬁs will be passed around the network. Thus one
immediate advantage is that message traffic is not strictly a function of problem
size. When a large problem is solved, there will be a large amount of traffic as
subproblems are initially spread around, but eventually a point will be reached
where each PE is busy working on its own part of the overall problem. If an
assignment function is used, new tasks are mapped onto processors independently
of the amount of message traffic, and as the problem grows the number of mes-

sages grows along with it.

6.2.2. Process Representation

Many implementations of logic programming languages use a technique
called structure sharing that allows a compact representation for derived clauses
[7]. The basic idea is that in the representation of a derived goal statement,
instead of making copies of literals in the the body of a called procedure, a
“stack frame’ is created, with pointers to the literals in existing clauseé, and a
structure similar to the runtime stack of Pascal-like languages is formed. One
stack frame represents one resolvent. The stack frames contain pointers to the
input clauses and a pointer to an environment which has information about vari-
able bindings. One important difference between Pascal stacks and structure
sharing is that the stack frames are not removed upon exit from the logic pro-

gram procedure. At any point in the computation, the value of a term in a goal

list is obtained by traversing this structure. Structure sharing is not always the
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best implementation technique; a comparison of the relative advantages of struc-

ture sharing versus string copying can be found in a paper by Mellish [39].

All previous descriptions of the AND/OR process model have stressed the
logical independence of 'procésses, and implied that when a new process is
created., cdpies of terms from the parent process are used to form the body of the
new process. An implementation, however, could use a scheme very much like
structure sharing in order to minimize the amount of space used by processes.
When a new process is created, a “frame” for it would contain pointers to exist-
ing clauses in the parent process, and then a pointer to the new process would be
added to the list of ready processes. The only time it is necessary to obtain the
full string representétion of a clause is when a process leaves the PE that creat'ed

it. At this time the structure would be traversed in order to obtain the complete

external representation of the process to be sent off to a neighboring PE. The -

expected large size of processes and messages means that some form of structure
shnring or some other representation technique that takes advantage local
memory will be useful for represehting processes within any given PE. An archi-
tecture that is organized around pools of work may require an entire
process/message pair to be delivered to a PE each time a transformation is to be

performed, and this could be quite costly.

In Section 5.2, it was mentioned that if a generator creafes a ground term
(one that contains no variables), then the AND process does not have to reapply
the ordering ’algorithm to modify the dataflow graph that connects literals. If the
term contains a variable, the ordering a]gbi’ithrﬁ must be applied again, since

there may still be dependencies among literals. Making a graph is time consum-

‘ing. so an AND process will always check to see if a term from a generator is a

ground term. Part of the representation of terms (whether it is based on struc-

ture sharing or not) should include information on whether the term is a ground

term.

Another improvement in efficiency may be obtained by keeping track of can-

ccled processes. Instead of immediately ‘‘garbage collecting” the space occupied

by terminated processés, the system should save these processes, and reclaim the
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space they occupy only when necessary. In many computations in the AND/OR
Process Model, processes are canceled, only to be replaced immediately -by new
processes created to solve exactl;\,' the same problems. A property of logic pro-
grams (and functional programs in general) is referential transparency, f.e. the
value computed by a procedure call is independent of the context in which the
call is made. If a process creates a descendant to solve a goal (or goal list) G.,
then cancels G, and later starts a different process to solve exactly the same
problem, there is no reason the original process for G cannot be resurrected to
retransmit all solutions for G. If the system can restore a canceled process to its

previous state, instead of creating a new one, quite a bit of work may be saved.

6.2.3. Secondary Memory

One would assume that as the AND/OR tree of processes is formed, the
processes toward the top of the tree will be idle while descendants at the frontier
of the tree actively carry out their tasks. Eventually success messages work back
to the top of the process tree. This assumption is verified by simulations done so

far.

This observation can form the basis of an efficient use for a secondary
memory. Again, at this level, the topology of the interconnection of PEs or their
connection to a secondary memory is not essential to the discussion. One possi-
ble arrangement is to have each PE connected to two networks: a message net-

work (N-cube or whatever) and a secondary memory bus.

When a PE’s memory starts to become filled with processes, and all of its
neighbors are presumably busy (since processes are not migrating), then blocked
processes can be written out to the secondary memory. The processes written
out should be those at the top of the tree. One can envision a systolic pipeline
effect here: as the amount of memory devoted to active processes shrinks, freeing
space, waiting processes can be brought back into main memory, based on how
close they are to the current frontier of the AND/OR tree of processes. The sys-
tem can anticipate their need, before any active process actually sends a message

to one of them. Compare this to systems that use demand paging. If a program
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makes a reference to information not currently’ in main memory, it is blocked
until the information is retrieved. There is no way to anticipate which informa-
tion currently on disk will be needed next, so information stays there until there
is a demand for it. In the AND/OR Process Model, the regular structure of pro-
cess interconnection, and the relative predictability of when a process will be

activated, may lead to very efficient use of secondary memory.

This idea can be extended to situations where memory is filled with only
ready processes, after all blocked processes have been moved to secondary
storage. During the solution of very large problems, a PE’s memory will overflow
with processes and messages. The first step in alleviating the congestion is to
move out blocked processes, from the top of the AND/OR tree. As the tree con-
tinues to grow, a point will be reached where memory will contain only ready
processes and their incoming messages. The second stage is to store some subset
of these active processes and their messages. Again, the regular structure of the
tree of processes will help determine which process/message pairs to move out.
Siblings, or processes at the same level in general, do not send messages directly
to one another. So, at this stage, processes and messages from the “bottom
right” of the tree can be stored, without worrying that processes from the ‘‘bot-

tom left” sending them messages.

A global view of the expansion of the AND/OR tree of processes can be
characterized as mostly breadth first, as processes create descendants in parallel.
When PEs become saturated, and active processes moved out of main memory,

the expansion will tend toward depth first, as the leftmost parts of the tree are

expanded while the rightmost part stays in secondary memory.

6.2.4. Mechanisms for Inhibiting Concurrency

There are two ways to slow down the creation of new processes when the
system starts to become saturated. Each PE can decide when to implement these

mechanisms, based on its own current workload.

Figure 21 shows a conditional expression written in ID, along with two possi-

ble dataflow schemas that can be generated from the expression [1]. As a result
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select

|

f -> if p(X) then

8(X)
else
h(X);

Figure 21: Dataflow Compilations of a Conditional Expression
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of the compilation on the left, the predicate P and branches G and H are all

‘evaluated in parallel.” The alternative on the right shows a less enthusiastic
evaluation, in which P is applied, and then after the result is kndwn,veither G or
H, but never both, are applied. The schema on the right may lead to a slower
computation, since G and H are applied sequentially with respect to P, but fewer

processes are created.

In Chapter 3, the same function was written as two clauses in a logic pro-

gram:

fINY) — p(N) & g(XY).
SIX,Y) — not(p(X)) & h(X,Y).

A parallel OR process for the llteral f(a Y) creates two. AND descendants to

evaluate both branches of the conditional expression. In order to inhibit con-

currency when necessary, the programming language used in the proposed system

should include a conditional operator such as the -> operator of DEC-10 Prolog: -

SN - p(X) > g(X Y); h(X, M.

An AND process that enco'unters thls operator in thé body would, when the
system is busy, create an OR prbcess for p(X); then, depending on the result, it
would create a process for either g(X,Y) or h(X,Y). This is in contrast to the
rules for forward exccution presented in Chapter 5, in which pyocésses for both

literals on the right side of each clause are created at the same time.

A second inhibitor of parallelism is simply to switch to a sequential compu-
tation when the PEs start to become loaded. However, it would be a mistake to

have a PE start using a depth first mterpreter when it thinks the system is

heavily .loaded, instead, the switch to sequential computation should be enforced |

by a set of policies that control thé_k priorities. of the individual processes. The
problem with starting to use a depth first interpreter is that parallel processes
construct a different (larger) set of answers than sequential interpreters. It would
be rather frustrating to use a sySteﬁ that successfully solves a problerh when it is

not too busy, but then fails (says ‘‘not provable”) when asked to solve the same

problem when it is busy. -
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As an example of how a general sequential orientation could be given to the
computatidn as a whble, an OR process that creates more than one AND descen-
dant when the system is busy could give the process for the first clause (with
respect to the body of the program) a higher priority than the remaining

processes.

6.3. Chapter Summary
Programs in execution under the AND/OR Process Model define a pool of

tasks that need to be performed. Each task consists of the state of a process and
a message destined for it. Multiprocessor implementation of the AND/OR Pro-
cess Model requires a method for distributing the packets of work to PEs. A pos-

~ sible line of future research is to analyze the simulation results from the _APOP

interpreter to measure the average size of the packets of work, and then see if the
model can be efficiently implemented on any of the existing or proposed workpool

architectures.

A different path for future research was outlined in this chapter. Instead of
storing the processes and messages in a central pool, from which each PE draws
packets of work, processes and messages will reside in the local memories of
independent PEs. The advantages to this organization are that large terms
(representing process states and success meéssages) will not have to moved around
the system as oft‘en, a form of structure sharing might be implemented in order
to minimize the m'emqry required to represent processes, and finally it would be"
straightforward to have the PEs in the system switch to sequehtial interpret,atioh _

locally as they and their neighbors become loaded with work during the execution

“of very large programs.
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CHAPTER 7

Conclusion

7.1. Contribution

The major contribution of this dissertation is a method for partitioning a
logic program into smaller, independent pieces for parallel solution. Two
different sources of parallellsm were defined. OR parallelism comes from the
parallel solution of a procedure that is defined by a number of similar clauses.
OR parallelism takes advantage of multiple solutions to a single problem, and
essentially replaces backtracking in sequential interpreters. AND parallelism is
obtained when the literals in the bodies of clauses can be solved simultaneously.
AND parallelism is necessary if clauses that represent functions are to be exe-
cuted in parallel. The inferpreter described in this dissertation is the first imple-

mentation of AND parallelism for logic programs.

7.2. Related Work

Tw0 other forms of parallelism in logic programs were defined in the original
paper on the AND/OR Process Model [15], and yet a fifth form in a paper by

~ Conery, Morris, and Kibler [14]. These other forms are Search parallelism,.

Stream parallelism, and Goal List parallelism (abbreviated GL).

When a program is very large, it may not be possible to store every clause

on every PE. Search parallelism refers to a method for searching across PEs for

clauses to use in a resolution step when the program has been partitioned to
reside on different PEs. This is an important form bf p‘arallelism,A especially when
logic programs will be used for queries of large databases. If the AND/OR Pro-
cess Model is to be used to define a database machine, this is an issue that will

have to be addressed. So far it been ignored in the implementation of the
AND/OR Process Model. ‘

116
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Stream parallelism was the term used to describe the parallelism obtained
from coroutines. As described in the chapter on AND parallelism, the biggest
difference between the generators in a parallel AND process and the producers in
stream parallelism is that generators create a sequence of independent terms,

whereas producers create parts of a single term through a series of partial bind-

ings.

Goal List parallelism is simply a parallel search of a goal tree. GL parallel-
ism is similar to OR parallelism, in the sense that the parallelism derives from
having a choice of clauses to resolve with a selected literal. The differences are in

subproblem size, direction of message transfer, and in opportunities for AND

parallelism.

OR processes are oracles, and solve only one literal. The largest problem
solved by their direct descendants is proportional in size to the largest body in

the procedure defined by the literal. The subproblems created in the GL model

are derived goal statements, and can be much larger: the derived goal statement

has every remaining literal from the input goal statement plus the literals from
the body of the selected clause. If the subproblems are to be éeht to independént
processing elements, then the size of the subproblems is an important factor. It
_may be very time consuming to transmit an entire goal stack to other PEs.
Ciepielewski and Haridi have defined a structure sharing method that allows
independent processes to share a goal stack stored in a common memory (this
organization assumes all PEs share the same memory space) [9]. This method

will greatly reduce the time required to create subprocesses. _

An OR process acts as a message center, deéiding when to pass success mes-
sages to its parent. One advantage of the GL model is that message transfer is
unidirectional, and start is the only inessage type required. When a descendant
process is created, it becomes tqtally. independent, and there is never a need to
communicate with the parent process. Thus the complicationsi arising from wait-

ing and gathering modes are avoided.

An interpreter based on OR processés has an opportuﬂity for exploiting

AND parallelism by creating OR processes for more than one literal at a time.
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This same opportunity is not available in the GL model. It may be possible to
sclect more than one literal for resolution from a goal statement in the GL model,
but the result is only a higher branching factor in the goal tree. The derived goal
statements in the subtrees are not any smaller, and the lengths of the derivations
are not any shorter. True AND parallelism involves a virtual shortening of the
length of a path from the root to a null clause, and this can only be done if sec-

tions of a path are derived in parallel by independent interpreters, i.e. oracles.

7.2.1. Furukawa, Nitta, and Matsumoto

A system described by Furukawa, Nitta, and Matsumoto is also organized as
a set of AND/OR processes [26]. What they refer to as OR parallelism is actu-
ally GL parallelism. Their proposed plan for allocation of processes to PEs

assigns one process per PE (via an undisclosed assignment function).

7.2.2. Eisinger, Kasif, and Minker

The system of Eisinger, Kasif, and Minker is designed to run on the ZMOB
system {21, 50]. The system consists of a problem solver, an extensional database
(the set of unit clauses), and an intensional database (set of implications).- The
problem solver runs on a dedicated PE, and other PEs in the system are charged
with gathering information for it. Thus this system is an implementation of

search parallelism.

7.2.3. Clark

The IC-Prolog interpreter allows the programmer to annotate clauses to
indicate which literals will be the producers of terms [11]. The paper by Clark
and McCabe is the first to describe variable bindings with the imagery of

dataflow, by talking about values flowing from producers to consumers.

Clark and Gregory extended the language, and showed how clauses can be
used to construct networks of communicating processes [12]. The latter inter-
preter uses Dijkstra’s committed choice nondeterminism: when there is a choice
of clauses to unify with a selected literal, one is chosen at random; the interpreter

will never backtrack to try to undo this choice [19].
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IC-Prolog is one of the languages expected to run on the ALICE machine, a

general purpose multiprocessor for applicative languages [17]. When running on

a multiprocessor machine, IC-Prolog is an implementation of stream parallelism.

ALICE is an example of a multiprocessor organized around the workpool concept.

7.2.4. Haridi

Haridi's thesis presents a logic programming system that is not based on
resolution [28]. It uses natural deduction as the framework for organizing a
proof. A natural deduction proof can also be represented as a tree of inferences.
That thesis devotes a chapter to parallelism in that model of computation. The
épeciﬁc form of parallelism is GL parallelism, a parallel search of the natural
deduction proof tree. 'A method for allowing independent processes to share

information in that proof tree is described in in a later paper by Ciepielewski and
Haridi [9].
7.2.5. Bowen

Bowen has designed a system that is an implementation of van Emden’s

abstract model for a Prolog interpreter [6, 23]. The form of parallelism obtained

is GL parallelism. This system is also expected to run-on the ZMOB architecture -

[50].

.+ 7.2.8. Monteiro

Another language. that uses Hofn clauses to describe concurrent processes is
Distributed Logic, or DL for short, deécribed In a paper by Monteiro [41]. The
language allows programmers to describe, in a Prolog—hke Ianguage the commun-
icating sequential processes of Hoare {29]. The goal is to allow programmers to
specify concurrent processes, and their communicétion paths, as opposed to hav-

ing programmers specify a function and having the interpreter decide what can or

cannot be performed in parallel
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7.2.7. Mellish

- Mode cieclarat_ions are used by the DEC-10 Prolog compiler to ’gen‘erat.e more
efficient code. The techniques for generating DEC-10 machine code from Prolog
clauses is defined in Warren's thesis [60]. If the{ compiler knows in advance that
certain arguments will or will not be instantiated, the uniﬁcation process can be

speeded up quite a bit. A method for automatic generation of mode declarations

~is described by Mellish [39]. By considering the entire program, and not just each

clause by itself, this method is much more effective than the ordering algorithm
of Section 5.1.2 in figuring out which argument positions correspond to inputs

and which are outvpu'tvs.

7.2.8. Pereira and Porto

The intelligent backtracking scheme of Pereira and Porto is more effective
than the system of resets and fail lists described in Chapter 5. When a
unification fails, their system analyzes the cause of the failure [47, 48]. By
including this type of- analysis, AND processes couid be more efficient. This
would_requife fail messages to carry reasons for‘failure, e.g. the message
fail(p(.X,a)) could mean “literal p cannot be solved with term e in the second
argument position.” » '

The shortcomings of chronological backtracking have been described in a
number of papers, not all of them in the context of logic programming. Other

discussions can be found in a recent paper by Freuder [25] and in Steele’s thesis

[33].

7.3. Future Research

' 7.3.1. Process Migration

A policy for deciding which processes should be transferred to neighboring

PEs needs to be developed. An example of one rule was given in Section 6.2.1, |

where it was shown that, by transferring the process that performs a recursive
call, work can be spread evenly across PEs. A tradeoff associated with this policy

is due to the time it takes to transfer a problem. It may be the case that for a
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small problem, it takes longer to transfer it to another PE and wait for results,

than to simply keep it on the original PE.

Note that this policy, and others, depend on physical characteristics of the
network (topology, bandwidth, etc.).
7.3.2. Migration Count

In the Burton and Sleep network,' a process is transferred-only once, from

the PE that creates it to any neighboring PE. Since messages ai'e transmitted

only between parents and descendants in the AND/OR model, the longest path
would cross two links (this happens when PE; creates a process and its descen-
dant, the parent migrates to PE, and the descendant to PEg, and PE, can only

communicate with PE, indirectly, through PE,). A subject of further experimen-

tation is to see how varying the migration count, or the number of times a pro- -

cess may be transferred to other PEs, effects message transmission times.

As a side note, by setting the migration count to 0, a programmer will be

able to test a program as if it were running on a system with a single PE. It will

be much easier to debug a program if it “stays put’’ when it is being worked on..

Then, when the programmer is confident the program works, parts can be

allou ed to migrate to other PEs.

7.3. 3 Backward Executlon

The method for handling fa:l and redo messages presented in Chapter 5 is
very conservative. A number of processes are canceled when in fact they are
doing work that must be done later, andb-the sequential processing of fail
sequences seems unnecessarily restrictive. The general policy used when writing

this first interpreter for parallel AND processes was to be implement a correct

“tuple generator”, with the emphasis on constructing all tuples. Further parallel-

ism, or more efficient methods, are possible. One example is to process fail

sequences in parallel. Also, a more. sophisticated analysis of the dependencies
between literals may show that a literal does not have to be reset every tlme the

process for an earlier literal is sent a redo message.

-
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7.3.4. High Level Language

The literal ordering algorithm (Section 5.1.2) is, in effect, an attempt to infer
mode declarations for the literals within the body of one clause. An example of

where this algorithm fails is

mm(A,B, C) « transpose(B,BT) & mmt(A,BT,C).
The proper sequence solves transpose first, generating a binding for BT. The
ordering algorithm looks for literals that are connected to the set of variables
instantiated in the head, in this case {A,B}. The algorithm uses these variables
in order, and thus it finds mmt connected by the variable A before it finds tran-

spose connected by B.

In this example, an incorrect ordering means the goal will fail. This happens

because mmt(A,BT,C) cannot be solved unless A and BT are instantiated. In
other cases, an incorrect ordering simply means the AND process will be
inefficient. (For a dramatic illustration of how different orderings effect efficiency,

see Baxter's ‘‘verify and choose” problem solver [4].)

The cases where an AND process actually fails because of an incorrect order-
ing are those cases where the subgoals are calls to functions, and the calls do not
have all input variables bound. One remedy is to use Mellish’s automatic mode
generation algorithm for a more accurate specification of modes [39]. However,
the best solution to this problem is to include a functional notation into the
language used by the interpreter. For example, if transpose is defined as a func-

tion, the clause

mm{A,B,C) — mmt(A,tranépose(B),C').
could be translated into the previous clause, and as a result of the translation a
correct ordering would be generated.

Two systems that incorporate functional notations into a logic language are
the LOGLISP system from Syracuse (Bowen and Kowalski [5]) and Eggert and
Schorre's extended syntax for Prolog {20]. The use of functional notation does

not necessarily mean that the functions have to be deterministic. They will still
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be solved by OR processes, and can still be defined by any num.ber of clauses.
The notation simply restricts the input/output sense of variables in the literal, in

a manner that does not require the programmer to provide mode declarations or

control annotations in the clause.
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APPENDIX I

Detailed Definition of the Interpreter

[

The higher level procedures of the interpreter are discussed in detail in this

- Appendix. - The interpreter was designed to be modular, in the sense that the low

level mechanisms (for message passing, process scheduling, etc.) are all defined in

a kernel file, routines that support one particular parallel model® are defined in
another file, and, finally, definitions of processes are in a third file. The code

given here is for parallel AND and OR processes.
A. Kernel '

The special characters '#’, 'Q’, and .’ are defined as operators, in order to

make it easier to. read the complicated terms that represent the states of

 processes.

:—op(.300,fr,#)’.
—op(350,zfy,@).

:-0p(350,2fy,:).

The interpreter is started when the user types solve(G), where G is any con-
junction of goals; it is necessary. to turn G-into the required internal form and
then start an AND process to solve it:

solve( G): ~in:'tz'alt;ze‘,
top_goalG),!,
cycle. .

cycle is the main loop of the interpreter. It continually pairs up messages
and processes and calls the routine that performs the required state transition.
After saving the new state of a process, test_for_result is called. If it succeeds,
the cycle stops. If-it fails (meaning there is no result yet), then Prolog retries

every goal in the body; however, these are all deterministic, so eventually Prolog

1 It_J .this case the AND/OR Process Model; another is the Goal List Model [6].
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backtracks all the way to read_message, and cycle gets another message/process

pair:
cycle: -
read_message(Sre, N Msg, T), 7¢ get a message for any process N
state_ofl N.Stale), C¢ and the current state of N

step(State,Sre, N, Msg, T, NewS), % transform into new state .
ptrace(State,Src,N,Msg, T,NewS),

save_state( NewS),

test_for_result.

The states of processes, and messages in transit between processes, are
stored in Prolog’s internal database. The above calls to read_message and
state_of are database retrievals that pick up a message at random and then the
current state of the destination of that message. States of processes are all terms

of the form

p(N.S5,T)

N is the process ID number, Sis the current state, and T is the time of the last

transformation. Messages are all terms of the form

m(S,D, M, T)

Sis the ID of the sending process, D is the ID of the destination, M is the content

of the message, and T is the timestamp.

step 1s a model-dependent procedure that executes exactly one step of a pro-
cess. The parameter S will be the current state of the process; step returns the
new state of the procéss by binding the new state to the parameter NewS. The
other four parameters define the message that that triggers the transformation
defined in step. save_state records the new state of the process after the state

transformation.

state_off N,p(N,S, T)): - % retrieve state of process N
recorded{process,p(N,S, T),Key),
erase{KNey), !
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save_statel P):
recorda{process. P.F2), L.

send_message( Source.Dest, M, T): -
record={msg,m(Source,Dest, M, T),R),
statg{ msg,m{Source,Dest,A)).

read_message(Source,Dest, M, T):-
recorded{ msg,m(Source,Dest, M, T),R),
erase( R).

step consists of a number of clauses, each one of which defines exactly one
state transition. The input arguments correspond to a process and a message.
The interpret.ér must scan the list of steps, looking for one that can be applied to
the inputs. The clauses are presented here in exactly the same order as they

occur in the interpreter, which is the order in which Prolog tries to apply them.

Every step has calls to procedures wakeup and ezecuted, which update global
counters used in timing measurements. These procedures use the old time stored
with the process state and update it to reflect the timestamp in the message.
Notice also that every clause for sfep ends with a cut symbol, meaning that only
one step is ever applied for any process-message pair. The cut symbol is required

because of the way cycle is constructed to do iteration through backtracking.

This first step is for any process that reads a cancel message. It updates the

timing data one last time, and returns done (the special final state) as the output

state:
step(p{ID,_,_, T1), % implementation of 'cancel’
PID,ID,cancel, Tm, 76 messages for any process
p(ID,_,done,t{ T2,A,5))):- %% in any state

wakeup( T1, Tm, TX),
executed ID, TX { T2,A,5)),
zap_messages(ID),
cancel_dese(ID,T2), \.



B. AND Processes

The step procedure for parallel AND processes is described in detail in this

section. The state of a parallel AND process is a single complex term:

and| P]D,Body,:lns,Lits,HL,Soh'ed,Linear,FL)

where the fields have the following meanings:

PID is the parent’s ID
Body is the original goal list (with variables uninstantiated)
Ans 1s a copy of Body with current values of variables;
Ans 1s used to make the message eventually sent back.
Lits is the set of the literals of the body. Each item

is of the form #N:[Lit,Pred,Gen,Desc,U,UU]
where Lit is the "numbered” literal, Pred is

the list of predecessors (aka redo sequence), Desc
1s the process ID of the OR process solving

the literal, U is list of solutions used,

UU is a list of as yet unused solutions,

and Gen is a list of variables generated by Lit.

HL is an abbreviated Lits structure for the head
(among other things, it has the head redo list)
Solved is a list of numbers of literals solved so far
Linear 1s the linear ordering of literal numbers
FL 1s the current list of failure contexts

It is possible that a descendant OR process will send a message, and then
read a cancel message and terminate. The AND process should ignore any mes-
sages sent by these “ghost™ processes. msg_screen will FAIL (i.e. another step
will be tried) if Sre is either the parent’s ID or it is in the Lits structure for some
literal; if msg_screen succeeds it means the process that sent the message is Dow
dead, so the message should have no effect, 1.e. output state = input state.

step( p{ ID, and( P[D,Body,Ans,LitsIn,HL,Solved,L:'near,FL), T1),
Sre, ID, Msg, T,

p(ID,and PID,Body,Ans,LitsIn,HL,Solved, Linear,FL), T1)):-
msg_screen(Src, PID, LitsIn), 3
This is the first step taken by a new AND process. The Solved list is {head),
and there will be no descendants; just start processes for all literals that have

only [head] as predecessors (there has to be at least one as long as there are no
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cveles in the dataflow graph). ready(G,S,B) is a predicate that is true if goal G
from body B is ready to be solved, given the list of already solved literals S; the

DEC-10 Prolog procedure setof collects the set of all such literals from B:

step{p(ID,and( PID,Body, Ans,LitsIn,HL,Solved,Linear FL), T1),
PID,ID start, Tm,
p( D, and{ PID,Body,Ans,LitsOut, HL, Solved, Linear,FL), t( T,A,5))):-
setofl G,ready{ G.Solved, LitsIn),R), :
erecuted ID, T1,4( T,A,S)),
start_all_andp{R,ID,Ans,LitsIn,LitsOut, T), L

An AND process that receives a success message unifies the the message with
the current Answer structure, and starts a new set of OR processes; if there are
no more literals to solve, send success(ANS) to the parent process. solver(N,B,D)
equates literal number N in body B with descendant D; in this case it is used to
find the literal number of the descendant that sent the succesé message. add_ans
updates the used-answer list. fwd_state updates the status of the literals and

creates new processes (code given below):

step(p(ID,and( PID,Body, Ans,LitsIn,HL,Solved, Linear,FLs), T1),
Desc, ID.success{ M), Tm,
p(ID,and( PID,Body,Ans,LitsOut, HL [ N|Solved), Linear,FLo), T2)): -
wakeup( T1, Tm, TX), '
executed(ID, TX, T2),
apply_ans(# N:M, Ans),
add_ans(N,M,LitsIn, Lits Tmp),
fwd_state{ Ans,Lits Tmp,LitsOut,FLi,FLo,|N|Solved|,ID,PID, T2),
!

When a fail message is received from process for N, add N to the fail con-
text, send somebody a redo, modify the status of every literal after /N in the
linear ordering, and rebuild the answer template (without values from the genera-

tor that was sent the redo message):
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step(p{ ID.and( PID,Body. AnsIn,Ls, HL S5, Linear,F'Li), T1),
Dese,ID.fail, Tm,
p(ID.and{ PID.Body,AnsOut,Lo,HL,So,Linear,FLo),{{ T2,A,S5))).-
remove_desc{Dese,Lt,Lt1),
wakeup{ T1, Tm, TX),
executed ID, TX {{ T2, A,S)),
send_redo{X,Lt1,Lt, 53,5t ID, T2, V),
taill Linear, X, Rem),
bkwd_state( V,Rem,Body, AnsOut,Lt,Lo,5¢ So0,ID, T2, FLt,FLo), !.

In the previous step, if the call to redo_literal fails, it means head is the

literal to be redone, so the AND process fails:

step(p(ID,and{ PID,Body, Ans,LitsIn,HL,Solved, Linear FL1), T1),
Dese,ID. fail Tm, '
p(ID.done t( T2,A,S5))):-
wakeup( T1, Tm, TX),
executed ID, TX,{ T2,A,S)),
send_message(ID,PID,fail T2), .

When a redo message is read, start a failure context from the head (this is
where the list HL is used), and find out which literal to redo. Note: assume FL is
always [] before a redo received, and it is (by definition) [head] after redo is sent

to a literal:

step(p(ID,and( PID,Body, AnsIn,Li,|H1|Hn),Si,Linear,[{]]), T1),
Dese,ID redo, Tm,
A D,
and(PID,Body,AnsOut,Lo,[H1|Hn],So,Linear,FLo),} T2,A,S))): -
wakeup( T1, Tm, TX), :
executed(ID, TX { T2,A,5)),
RI[H1|Hn],Li,HLits),
ext_rl(HLits head H1,XX [head),FC),
send_redo( XX,Lt,Lt, Si,St,ID, T2, V),
tasl{ Linear,XX,Rem),
bkwd_state(V,Rem,Body,AnsOut,Lt,Lo,St,So,ID, T2,[FC|,FLo),!.

Those are the steps for AND processes; more clauses from the step procedure
are explained in the next section. The remaining clauses in this section are from

the major procedures fwd_state, bkwd_state, and redo_literal.
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Literal N has been solved; figure out new state information for the AND pro-
cess. If N was the last literal (if the Solved list is as long as the body) send

success Ans), else start a new set of descendants and update the Lits structure.

fwd_state( Ans,LitsIn, LitsIn, FLi [{]],Solved, ID,PID l( T, ,S))

length{Solved Ll)
length{Ans,L2),

L2 i3 Li-1, % Solved includes 'head’ . . .
strip( Ans, Msg), ‘
send_message(ID,PID,success(Msg), T).

Jwd_state( Ans,LitsIn, LitsOut FLi,FLo,Solved,ID,PID,{ T,A,S)): -
setofl G,ready{ G,Solved,LitsIn),New), '
start_all_andp{New,ID,Ans,Litsin,LitsOut, T), o
fiz_fiNew,FLi,FLo), : % remove newly started processes
. % and any extra []'s from FLI '

fwd_stat'e(Ans,L,L,.F,F,S,ID,PID,T). . % no new processes . . .

bkwd_state figures out which literals to reset and which to cancel, and then
starts new processes for canceled literals which can be r&started (since reset gen-

erators are still solved generators) /

bkwd _state( V,Rest Body,AnsOut LitsIn, LitsOut,S4,S0,ID, T,FLi,FLo): -
bk V,Rest, LitsIn,Lits Tmp,Si,So, ID 1),
" rebutld(Body,Lits Tmp,So,AnsOut),

¢ after rescts, it may be possible to restart some processes
restart(ID, AnsOut,Lits Tmp,LitsOut, T,So,FLi FLo).

The next procedure is the heart of the redo_literal procedure. The call has
the form rl(FC,L{ts,Devsc,NFC,X), with FC bound to the current failure context,
Lits bound to the list of literals, and Desc the number of the literal that failed.

This procedure returns a new failure context in NFC and the identity of the

literal to redo in X.
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ri{ FC[# N:[Lit.Pred)_]|Ln],Dese, NFC Y) - % Desc can be appended.
~ concat( FC\[Dese,X]_], [N]Pred] %6 and X is its predecessor
append{ Desc,F C,NFC). . ‘ :
ril FC.[#N:[Lit,Pred|_}]|Ln],Desc,FC,0): - % Desc cannot be appended
concat(FC,_[N]Pred)), L ' '
il FC[L I Deec,;\FC,X) - . : % try the next Lit

-l FC,Ln,Dese, NFC,X).. .

C. OR Processes.

The state of an OR process is a term
or{PID,Mode,Orig,Sent, Wait,Desc)

PID is the process ID of the parent AND process. Mode is the current operating
mode (gathering or waiting), Sent and Wait are lists of answers, and Desc is the

current list of descendant AND processes.

A new OR process knows only about the goal it is supposed to solve; it

creates descendant AND processes with the bodies of each head that matches the

goal: the descendant Iis}t will be a list of p.airs‘ of process Id's and goal lists that

those processes are working on; the waiting list will be -initialized to be the
unified heads of assertions (clauses with bodies = true); finally, if the waltlng list
1s not empty, send the first answer from this llst and go into the gathermg mode;

otherwise go into the waiting mode.

step(p(1d.on P1d, X, Orig,[],[].]}), T1),
PId Id start, Tm,

- p{1d,or{ PId,Mode, Orig,Sent, Wa:t Desc) H12,A .S')))
bagofi[Orig,Body],clause_for{ Orig, Body), Bodtes)
list_sort(Bodies,NonTrue, True),
executed(Id, T1,H{ T2,A S))
start_all(Id,Non True,Desc, T2),
intt_lists( True,Sent, Wait),
maybe_send(Id,PId,Sent,Mode, T2),

!

The above call to bagof puts the body of every clause with a head that matches
Orig into the list Bodies; then lisf_sort splits that list into lists True and Non-
True (lists of unit and nonunit clauses, repectively). For every body in NonTrue,

an AND process is started. All unit clauses in True are used to make the initial
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sets of answers. If Sent contains an answer, maybe_send makes a success message

out of it and unifies Mode with gathering, otherwise Mode is unified with wailing.

If the previoué step fails (because bagof fails), it means there are no clauses
with heads that unify with Orig; this normally means the new OR process fails
immediately. However, this provides a “hook” for evaluable predicates. If Goal
is in the list of known predicates or special predicates, then solve it directly and

return the answer:

step(p([d or(PId X,Godl,_,_,_), T1),
PId Id,start, Tm,
p(1d,or{ P1d, galhermg, Godl, [Ang],[], [] H T2,A,5))):-
Goal=..[Functor{Args],

primitive( Functor),!, % succeeds for special functors ’
copf Goal, Ans), : :
Ans,!, % do it -

executed(Id, 1 H T2,A,9)),

send_message(ld,PId,success{Ans), T2),
L

Send a fail message and terminate if the functor of the goal is not in the list

" of known special predicates (the call to primstive in the previous clause failed) or

if the call to the primitive itself failed:

step{p(Id,on(PId,X,G,_,_,_
Pld 1d start, Tm,
plld,_.done { T2,A,5))): -
ezecuted{Id, T1,{ T2,A,5)),

send_message(Ild,Pld, fail T2),
L

A waiting OR vprécess handles a fail message by removing the process that
sent the message from the list of descendants; if that list is now empty, the OR

process itself fails:



142

step{p(Id,or{ P1d, u'aztmg G, SLtst Wilist Desc) T1),
Son Ild fail T,

(Id,_.doneat( m7‘4,5))):_

remove(.Son,Desc,][]), | ~ % works if removing Son from
wakeup{ T1, T, TX), © % Desc leaves ||

erecuted(Id, TX . { T2, A, S'))
send_message( Id, PId Jail, T2),

L.
The above call to remove failed (more than one descendant left), so just remove
the descendant and keep waiting: 4

step(p(Id, M, or{ Pld.waiting, G,SList, W'List,Desc); T1),

Son,Id fail, T, _

p(1d,M,or( PId,waiting, G,SLsst, WList, NewDesc), T2)): -

remove(Son,Desc, NewDesc),

wakeup{ T1, T, TX),

executed(Id, TX, T2),
'

- A gathering OR process handles a fail message by removing the sender from
the descendant list; a now-empty descendant list does not imply failure, though,
since there may be messages in the waiting list (even if there aren’t any of those,
wait for redo before failing):

step(p(1d,M,or{ P1d,gathering. G,SList, WList,Dese), T1),
Son,Id fa:l, T,
plId M on( Pld, gathermg,G' SList, WL:st ,NewDesc), T2)): -
remove(Son,Desc, NewDesc), -
wakeup( T1, T, TX),
executed(Id, TX, T2),
L
If a waiting OR process receives a s’uccess-mes_sage, it unifies it with the ori-
ginal goal to compute the result. If the result has not yet been sent to the
parent, it is sent and then added to the list of answers sent, and the process goes
into the gathering mode. If the answer is in the list of answers already sent, it is

ignored.
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step{ p( [d,M,or{ PId,waiting, G,SList, WList,Desc), T1),
Son,ld success(GList), T,
p(Jd, M,or{ PId,NeztState,G,NextSList, VWList, Desc),{{ T2,A,S))): -
wakeup{ T1, T, TX),
executed [d, TX,{{ T2,AS)),
member([Son,SonsHead,SonsList],Desc),
copy G, Result),
copif[SonsHead,SonsList],| NewHead, NewlList]),
untfi{ Result, NewHead, GList,NewL1st), _
nezxt_state( Result,SList, NextState, NextSList,Id, PId, T2),

send_message(Ild,Son,redo, T2),
1,

~ A gathering OR process handles a success message by seeing if the message
is in either the wait list or the sent list; if not, the message is added to the wait

list; in either case, send a redo message:

step{p{ Id,M,or{ Pld,gathering,G,SLsst, WList,Desc), T1),
Son,Id,success(GList), T,
p(ld, M, or{ Pld,gathering, G,SList, Next WList,Desc),{{ T2,A,S5))): -
member{[Son,SonsHead,SonsList],Desc),
wakeup( T1, T, TX),
executed(ld, TX { 12,A,S)),
cop{ G, Result),
copy[SonsHead,SonsList],| NewHead, NewList]),
unify Result, NewHead,GList, NewL1st),
next_state_2(Result, SList, WList, Next WList),

send_message(ld,Son,redo, T2),
.

Waiting OR processes will never get a redo message. There are four cases to
consider for a gathering OR process- that receives a redo message, depending on

the states of the waiting and descendant lists:
{1) Both lists are empty; in this case the process fails.
(2) Wait list is empty, descendant list is not empty; change to waiting mode.

{3) Descendant list is empty, but there are some answers in the wait list; move

the first answer from the wait list to the sent list, and send it.

(4) Neither list empty; same actions as case (3).
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step{p(1d,M,or{ Pld,gathering, G,SList,[],[]), T1),
Pld.Id,redo, T, '
p{1d,_,done,t{ T2,4,5))): -
wakeuvp( T1. T, TX),
executed(ld, TX {{ T2, A,S)),
send_message(Id,PIld fail, T2),
1

step(p{Id, M,or{ PId,gathering, G,SList,[],Desc), T1),
PId Id.redo, T, :
pl1d,M,or( PId,waiting, G,SLsst,[],Desc),{ T2,A,S))): -
wakeup{ T1, T, TX),

erecuted(Id, TX.{ T2,A,9)),
13 A

step(p([d.M,or{ PId, gathering, G, SList,| W1| Wn],Desc), T1),
Pld Id redo, T,
p(1d.M o Pld, gathering, G,| W1
wakeup( T1, T, TX),
executed(ld, TX,{ T2,A,5)),

send_message(Id,PId,success Wl);T2),
! _

SList), Wn,Desc),{ T2,A,S))): -

The last step catches system error conditions. The head of this step matches
any process state and any message, so if one of the earlier steps did not catch the

process/message pair, this one will:

step(p(ID,_,State, T1), 0 this catches any kind (AND or OR)
Desc,ID,Msg, Tm,
p(ID,done t( T2,A,S))): -
wakeup(T1,Tm, TX),
executed(ID, TX,{ T2,A,5)),
write( ¥*System Error: no step succeeds for process ),
write(ID),nl,
print(State),nl,
write{ ## Message: ), write(Msg),
write( ),write(Desc), nl,

send_message( ID,PID, fail, T2), L
D. Ordering Algorithm.

The ordering algorithm has two main procedures. The static rule is applied

when the user program is first read in. It applies mode declarations and builds
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something called the static structure. The dynamic rule is applied when a clause

is used to create an AND process; it uses the static structure to make the initial

state of the AND process.

¢z “Static Rule” -- applicable to all calls to a clause (not

% affected by pattern of variable instantiation), uses mode

< declarations to determine which literals can/cannot be used

C% as generators for each variable. This procedure also creates

¢ the numbered head and body used by other parallel AND stuff.

static(Head,Body, NHead, NBody, GenList):-
modiﬁed(Head,Body,IdBody,NHead,NBody,N),
slots(N,G),
numbervars( G,0,N),
use_modes(NBody,G,GenList), .

This next procedure makes the copy of the body used by AND processes. It
turns variables into metavariables (by the call to numbervars) and tacks on the
#N: prefixes to each literal. ‘

% modified(H,B,B2,NH,NB,N) -- B2 is a copy of body B with

¢Z literal numbers added, and NH and NB are copies of head H
¢z and body B with all vars "numbered” (via numbervars).

modified H B,B2, NH,NB,N): -
number{ B,1,B2),
copy{[H,B2).[NH,NB}),
numbervars{{NH,NB],0,N).

For each literal in G, see if there is a mode declaration; if so, use it to build

a plece of the static structure:
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©% use_modes(N,L,Gi,Go) -- for every literal in list L that has a
% mode declaration, add more info to generator list; Gi is
6 input list of generators, Go is output, N is current lit #.

use_modes([},G,G).
use_modes([# N:L1|Ln], G, Go):-
L1=_[F]A], % if there is a mode
recorded(modes,m(F,M),K),% declaration for F, use it
infer{ N,A, M, G1,Gt), ,
use_modes(Ln,Gt,Go), L
use_modes([L1|Ln|,Gi,Go):-use modes(Ln Gi Go) 1.

% infer(N,A,M,Gi,Go) -- use mode info M for arg list A to
% update generator list Gi, creating Go, for literal number N

infer(N[],[],G,G).

infer( N,[A1{An],[ 7| Mn], Gi, Go): -infer( N,An,Mn,G3,Go), !.

infer{ N,[A1|An],[+|Mn], Gt, Go): ~known_nol{ N,Al,Gs, Gt),
infer( N,An,Mn,Gt, Go), .

infer( N,|A1|An],[- IMn] G1,Go): —known(NAl G, Gt),
mfe1(NAn Mn,Gt, G’o) L

o known_not{N,A Gi Go) -- it is now known that literal N cannot
o be the generator of any var in term A; add N to the rhs of
% every var in Gi, making Go :

known_not(N,A,G1,Go):~vars_in( A, V),
' concat_all V,N,G1,Go).

o known(N,A,Gi,Go) -- 1t is known that literal N is the generator
% for all vars in term A; replace rhs of each var in Gi with N

known(N,A,G1,Go):-vars_in(A, V),
replace_all( V,N,G1,Go).

replace_all([],N, G, G).
replace_al{[ V1| Vn|,N,Gi,Go):-replace( V1,N, Gi,Gt),
replace_all Vn,N,Gt,Go), .
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¢% if N is in the list of known non-generators, it can’t be used;
% fail, and hope 'connect’ (or whatever) creates another one.

replace( V,N,|V:X] G),{ V:X]| G]):-member( N, X),!,fasl.
replace( V,N,[V:X]| G],| V:gen(N)| G]).
replace( V,N,[X: Y| G1],|X: Y| Go)):-replace( V,N,G1,Go), !

Next is the code for the ‘“dynamic rule” that is applie'd when an AND pro-
cess is first created. It uses SS, the static structure for the clause, and informa-
tion about which variables in the head are bound. The overall goal here is to
find generators for the remaining variables by calling on the connection rule or
the leftmost rule:

dynamic(Head, Body, NHead, NBody,Ss,[gen{ G2),pred(Pred),lin{ Linear))):-

head_gen(Head,NHead,Ss,G1,Used),

others(Ss,Used, UnUsed),
connect(NBody, RemBody,G1,G2,Used, Uo,UnUsed, UUo),

final( G2,NHead,NBody,Linear,Pred).

Call is the literal actually used in the procedure call, and Head is what was
written by the programmer; by comparing the two, we find out which variables
are generated by the head; return them in the set U (for 'used’):

head_gen{ Call, Head, Gi,Go,U): -Call=..[F|CArgs),
Head=..[F|HArgs],
extract{ CArgs,HArgs,U),
replace_alll U head, G1,Go), !.

Now, from the static structure and the set U computed above, we can deter-
mine UU, the set of ‘unused’ variables that need generators:

others([},_.[]):-"-

others(|V-gen(L)|R], U, X):-others( R,U, X).

others(|V:G|R], U, X):-others{ R,U,X1),app( V,U, X1,X), .

This next procedure is the heart of the dynamic rule. It tries to remove a
literal from current body Bi to make a new body Bo. The selected literal is a
candidate generator; if update accepts it (meaning it doesn’t violate any mode
declarations in the static structure) then the dynamic strucure is modified to

include it; otherwise we backtrack to choose to get another literal. We are
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guaranteed of finding an acceptable literal eventually, unless the programmer has

made a circular mode declaration. : o

¢ connect(Bi,Bo,Gi,Go,Si,5S0,UUi,UUo) -- using body Bi and existing
¢ structure Gi and info about vars unused (UUi) so far, make a new
¢ structure Go. Siis the current set of vars we have to connect

€¢ to, UUo will be list of remaining vars, So the vars to connect

¢ on the next iteration, Bo the remaining literals. '

connect(]].[],G,G,S,S,U,U):-. % all lits used

connect(B,B,G,G,S,S,[,[):-. % no unused vars

connect(Bs,Bo, Gi,Go,S1,S0, UUs, UUo): - : '
choose( B, Bt,Si,UUs, UUL, X), % select a lit, can use it
update( X, G1,Gt,St), % if no mode violation
connect(Bt,Bo,Gt,Go,St,So,UUt,UUo).

St is the set of variables we want to connect to. If it is empty, or if the
selection of X by the connection rule does not provide any information, then fail,
and let the leftmost rule select X:

" choose(B1,Bo,Si, UUs, UUo,X): - -
ne(](s"v[])y . )
connect_all( Bs,Bo,Si, UUY, UUo,X),
neq{ Bo,By). _
choose(B1,Bo, Sy, UUi,UUo,X): -
I(Bt,Bo,UUs,UU0,X).% call leftmost rule . .

Add the final touches to the stored data structure for an AND process: we
know generators for all vars in body (this information is in GS), so now figure out
linear ordering L and list of predecessors P.

final(GS,Head, Body,L [#head: HP|P)): -
level(head,down,L,Body,GS,|head)), % do level order traverse

predecessors(Body,Body,GS,L,P), % starting at head
head_pred(Head,Body,GS,L,HP). .
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¢ a level order traverse in the "down” direction means looking for
¢ literals that consume vars ”already generated”

level[ N down L, Body GS,XL):-
setoj(X desc(N,Body, GS,‘\L,X) S), % S is set of immed desc
concat( XL,S,XL2), % is part of solved list
level_all( S,down,Ln,Body, GS,XL2),
eonce(S,Ln,L),!.

¢% level order traverse in "up” direction means closure of
% predecessor relation

leve N,up,L,Body,GS,XL):~ :
. setoflX,pred(N,Body, GS,X),S), % set of immediate pred

reuS).52),
level_all( S2,up,Ln,Body, GSX)

cone(S2,Ln,L), L
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APPENDIX I

Parallel AND Process Examples

A number of examples of conceivable situations that arise in the backward

execution phase in parallel AND processes will be discussed in this Appendix.

" Each situation, described in terms of the map coloring problem first mentioned in

Chapter 5, illustrates a different aspect of the rules for handling nondeterminism
in AND processes. The datafiow graph for the example is reproduced here as
Figure 22. The discussion continues the notation #N for “literal number N and

tN for ‘‘the OR process created to solve literal #N.
A. Complete Solution of the Map Coloring Problem

The first example is the'com'plete solution of the map coloring problem,

involving the processing of multiple failures.

When the AND process was first created, and after the literals were ordered,
the only literal for which an OR process could be started was #1:nezt(A,B).
Eventually, this sent baék success(neit(red,blue)), binding A to red and B to
blue. Next, processes for the three generators in the middle row of the graph
were started. All three succeeded, and as the success messages arriveed, the fol-

lowing occurred:

- 13 sent success(n'e:ct(red,blue)), setting C to blue. All of the predecessors of
literal #5 were then solved, so a process for this lit}eral»(at that time

nezxt(blue, blue)) was created.

- 14 sent success(nert(red,blue)), setting D to blue, enabling a process for #2,
next(blue,blue).- '

-- 16 sent success_(ne:rt(blue,red)),-binding E to red. Processes for the remain-

ing two literals, #7 and #8, both nezt(blue,red), were started.

At this point, the status of the AND process was: literals #1, #3, #4, and
#6 solved; literals #2, #5, #7, and #8 pending; failure context empty. The

150
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‘color (A,B,C,D,E) ~

next (A,B) & next (C,D) & next (A,C) &

next (A,D) & next (B,C) & next (B,E) &

next (C,E) & next (D ,E).
next(red,blue) « . next(red,yellow) « . next(red,green) « .
next(blue,red) « . next(blue, yellow) « . next(blue,green) - .
next(yellow ,red) - . next(yellow ,blue) - . next(yellow ,green) ~ .
next(green,red) - . © next(green,blue) ~ . next(green,yellow) - .

B
A Cc E

A map with five regions, the coloring problem as a list of eight borders, and the
dataflow graph created by the ordering algorithm. This method of solving a map color-

ing problem in logic was originally used by Pereira and Porto [46] to illustrate intelli-
gent backtracking. ] '

Figure 22. The Map Coloring Problem
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processes for literals #2 and #35 are about to éend fail messages, while the other
two are about to succeed. The transitions explained next describe what hap-
pened when the fail message from 15 was read first; then the transitions that
would have occured if the fail from 12 arrived first will be explained. In either
case, the AND procees will go into the same state eventually. The only difference
in the sequences of state transitions is that if the message fronl 12 arrives first,
the number of transitions required to reach the state in which the first success is

sent is longer.
Case 1: #5 fails first.

The failure context was set to [#5], which is the prefix of the redo list
[#5,#3,#1]. The suffix is [#3,#1], and a redo message was sent to 13. The:

literals to the right Qf' #3 in the linear ordering were
-- - #4: Reset.
- #6 R%et
- #2
- #5: Already termmated

o

Canceled (w1ll be replaced when new C arrives from 13).

‘ - #7: Canceled (will be replaced when new C arrives).

- #8: Replaced with new process (smce D, E modified by resets).

Again, as an 1mplementatlon detail, the reset of a generator that has sent
~only one value really has no effect, and the replacement of a process such as

that for literal #8 can 'l)e avoided when its variables do not 'change values.

The state of the AND process after this transition: literals #1, #4, and #6

solved; literals #3 and #8 pending; hterals #2, #5 and #7 blocked; failure
- context [#5].

The fail message from the original process for literal #2 then arrived. Since

that process was canceled, this message was ignored. The successes from the ori-

‘ _gmal processes for #7 and #8 arrived, and they also were ignored. Note that

even though there is a process for #8 at this time, it has a dlﬂ'erent ID than the

original process. The AND process always ignores messages from processes it has
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canceled.

:The success from #3 arrived, with nezt(red,yellow), binding C to yelloiv.
New processes for #2, now nezt(yellow,blue), and #5, now. nezt(blue,yellow), and

#7, now nezt(yellow,red), were created. Since there is a new process for #5, it

was removed from the failure context. The state of the AND process: literals .

#1,3, #4, and #6 solved; literals #2, #5, #7, and #8 pending; failure context [].

All of the pending processes sent success messages; the order is irrelevant. In
particular, note that {8 could have sent its success message before the success
from 13 in the previous paragraph. After the last was received, the AND process

sent its parent the message
success(color(red,blue,yellow,blue,red))
Case 2: #2 fasls first. | | .
When the state of the AND process had iiterals #1, #3, #4, and #6 solved,

with the rexr')'aining literals pending and an empty failure context, two fail mes-

sages were on the Wziy. The next sequence of transitions shows how the failure.

from 12 would be handled. This sequence involves multiple failures.

The fail message from {2 arrives, the failure context is set to [#2],'thé prefix
of the redo list [#2,#4,#3,#1]. 14 is sent a redo message, and then the remaining

literals in the linear ordering are -
-~ #6: Reset.

- #2: Already faileci.

-~ #5: Not affected.

-~ #7: Canceled (since E was reset), replaced with literal that has same values

for variables. =
- #8: Canceled, will be :replaéed when new D arrives from 14.

The failurg context is [#2]; solved literals are #1, #3; #6; pending literals are

#4, #5, #7; and #2 and #8 are blocked.
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The fail message from 15 arrives. #5 is appended to the failure context,
making [#2,#5]. This does not match any redo list. The processing of this
failure is postponed until the failure context is reset to the empty list. The state

remains the same, except #5 is now blocked and not pending as before.

A success from the process for #7 will arrive (either now or after the success
from #4; either way, it has no effect on what follows). success(nezt(blue,yellow))
arrives from 14. - Start processes for #2,., next(blue,yellow), and #8,
nezt(yellow,red). Remove #2 from the failure context, which becomes the empty -
list. There is one postponed failure, from the original process for literal #5. This
process was never canceled during the backward execution on behalf of #2, so a
failure context is created for it now. From this point, the AND pfocess behaves
as if it had just received the fail from 15: the failure context is [#5], the matching
redo list is [#5,#3,#1], 13 is sent a redo message, and the literals to the right of
#3 are: - » |

-  #4: Reset (D is once again blue).
-~ #6: Reset (E is still red).

: Canceled, Will be replaced when new C arrives from 13.

(]

- #
- #5: Already canceled.
--  #7: Canceled, will be replaced when new C arrives.

--  #8: Canceled (since D, E ‘reset), replaced by new process for with original D
and E.

The state of the AND process is now: literals #1, #4, and #6 solved; literals
#3 and #8 pending; literals #2, #5, and #7 blocked; failure context [#5]. The

current values of the variables are A=red, B=blue, C unbound, D=blue, and

FE=red. Note that this is the same state as earlier (in case 1), when #5 and #2

were failures and the fa_il message from #5 arrived first.
B. Parallel Processing of Failure Contexts

The previous example showed how an AND process resolves conflicts in the

handling of fail messages, by postponing the handling of a fail message if the
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corresponding literal is not in the current redo list. This strategy can lead to
extra work, as in the second case: while the AND process was in the sequence
used to handle the failure of #2, it was domg work that would later be undone

when the fail message from #5 was processed.

In that example, there is enough information to decide immediately that the
failure of #5 should take precedence. The redo sequence for #5 is [#5,#3,#1] and
the redo sequence for #2 is [#2,#4,#3,#1]. Comparing the second eleménts
(those literals that will be sent the redo messages), one can see that the failure of
#5 causes #3 to be redoné, while the failure of #2 causes #4 to be redone. Since,
according to the linear ordering being used #4 is reset when #3 is redone, it
makes sense to give precedence to the redo sequence involving #5. In other
words, maybe the AND process could abort the failure context for #2, and

immediately start backward execution for #5 when that fail message arrives.

The reasoning used in the above example does not work for the general case,

~however. There are situations that arise, based on unpredictablé timing

sequences, that show why all fail messages have to be saved and processed even-
tually. The only time a fail messdge can safely be ignored is when the process
that sent it is one that has benn explicitly canceled earlier, s.e. the message is

from a process that sent a fail message just before it would have read a cancel

from its parent.

This ‘next example is an illustration of such a situation. This example is
again based on the map coloring dataflow graph, but this time assume the literals
on the “bottom’ of the graph are not calls to nezt, but calls to some other pro-
cedures p, ¢, r, and s.- Again, assume the ‘‘top” four literals have been solvéd,

binding variables A through E to their first values. The AND process is in a

state where it is waiting for messages from processes of literals #2, #5, #7, and -

#8.

Suppose literal #7, r(re'd,bluc), is a failure. Then literal #6 is sent a redo,

and 18 is canceled. Next assume the the generator of E succeeds again, now

. binding E to green. New processes for literals #7 and #8 are created, and sup-

pose both are successes. All during the backward execution just describéd, no
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messages were received from {2 or 15.
Now, finally, suppose a fail meséage arrives from {2. As usual, the process
for #4 is sent a redo, and ’
- #6: Reset (E is again bound to red).
- #2: Already canceled.
- #5: Not affected.
--  #7: Canceled, replaced by r(blue red).
-~ #8: Canceled, will be replaced when #4 sends new D.

The current state of the AND process is: literals #1, #3, and #6 solved;
literals #4, #5,'and #7 pending; literals #2 and #8 blocked, awaiting the success
of #4; failure context [#2]. In addition, there is one used and one unused answer
from 16, the generator of E. Note that literal #7 is back to its original state,
namely 1t consumes the first values of C and E. It will fail. If that fail message

arrives when the AND process is in the state just described, and the AND process

. attempts to process the failure contexts in parallel, the following situation arises.

The fail context is set to [#2,#7], which does not match any redo sequence.
A conflict in failure contexts is created. If the conflict is resolved by seeing which
redo list has a higher precedence, the sequence for #2 is selected, since the redo
sequences are [#2,#4, #3,#1] and [#7,#6,#3, #1], and #4 takes precedence over
#6. In the hypothetlcal parallel processing of failure contexts, the fail message
from #7 would be 1gnored which is a mistake. The state of the AND process
would then be: literals #1, #3, and #6 solved; #4, #5, and #8 pending; #2
blocked, awaiting a success from #4; and #7 failed, with no rules for starting a
new process for it. #4ris pot a predecessor of>#7, so a success from #4 does not

cause a new process for #7 to be started.

" The above argument is admittedly “‘attacking a straw man,”’ as the scenario
was carefully contrived to make a particular point. There may well be a method
for processing failure contexts in parallel. But the ex'ample at least illustrates the
subtle errors that may occur as a result of the relative timing of messages from

descendants. F or the present, at least, parallel AND processes will save all fail



messages, and start backward execution for them only after completely processing

the current failure context.
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