
UC Irvine
ICS Technical Reports

Title
The AND/OR process model for parallel interpretation of logic programs

Permalink
https://escholarship.org/uc/item/0f2435xv

Author
Conery, John S.

Publication Date
1983

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0f2435xv
https://escholarship.org
http://www.cdlib.org/

UNTV^RSITY OF a\I.UORNIA

Irvine

The AND/OR Process Model for

Parallel Interpretation of Logic Program^

John S. Coneri^

Technical Report 204

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Information and Computer Science

June 1983

Committee in charge:

Professor Dennis Kibler, Chair
Professor Liibomir Bic

Professor James Neighbors

6ff
dS

© 1983

JOHN S. CONERY

ALL RIGHTS RESERVED

Dedication

For my teachers ~

For my parents, Pat and Elaine, both secondary school teachers, who started
this whole process;

For Betty Benson, John Sage, and the other outstanding teachers at John
Burroughs High School, who inspired me to continue;

For Larry Rosen and Jay Russo, valued friends and colleagues as well as
teachers at UC San Diego, who introduced me to the world of scientific
research.

This work does not represent the end of my education; it is simply a milestone
in the career of a "professional student" who will, thanks to you, never stop
learning.

Ill

Contents

List of Figures vii

Acknowledgements viii

Abstract ix

Chapter 1: Introduction 1

Chapter 2: Logic Programming 5

2.1. Syntax 6

2.2. Semantics 9

2.3; Control 13

2.4. Prolog 17

2.5. Alternate Control Strategies 28

2.6. Sources of Parallelism 37

2.7. Chapter Summary 38

Chapter 3: The AND/OR Process Model 41

3.1. Oracle 41

3.2. Messages 43

3.3. OR Processes 44

3.4. AND Processes 46

3.5. Interpreter 46

3.6. Programming Language 49

3.7. Chapter Summary 50

Chapter 4: Parallel OR Processes 52

iv

I

I
4.1. Operating Modes 53

4.2. State Transitions 53

4.3. Example 57

4.4. Chapter Summary 58

Chapter 5: Parallel AND Processes 64

5.1. Ordering of Literals 65

5.2. Forward Execution 74

5.3. Backward Execution 78

5.4. Example 87

5.5. Handling Redo Messages 91

5.6. Discussion 92

5.7. Chapter Summary 96

Chapter 6: Multiprocessor Implementation of AND/OR Processes 105

6.1. Issues 106

6.2. Implementation 107

6.3. Chapter Summary 115

Chapter 7: Conclusion 116

7.1. Contribution 116

7.2. Related Work 116

7.3. Future Research 120

References 124

Appendix I; Detailed Definition of the Interpreter 133

A. Kernel 133

B. AND Processes 136

V

I

C. OR Processes 140

D. Ordering Algorithm 144

Appendix D; Parallel AND Process Examples 150

A. Complete Solution of the Map Coloring Problem 150

B. Parallel Processing of Failure Contexts 154

VI

List of Figures

1. A Logic Program 10

2. Examples of Unification and Resolution 14

3. A Goal Tree 16

4. Example Computation 19

5. Pruned Goal Tree 25

6. Branching Factor as a Function of Variable Instantiation 31

7. Sequence of Derivations in Depth-First Control 34

8. Sequence of Derivations in Coroutine Control 34

9. Interpreter Output 48

10. Operating Modes of a Parallel OR Process 54

11. States of a Parallel OR Process 60

12. The Literal Ordering Algorithm 68

13. Example Dataflow Graphs 70

14. Forward Execution Algorithm 75

15. Sequences of Graph Reductions 77

16. Plot for 2 X 2 Multiplication 79

17. Matrix Multiplication Program 80

18. Dataflow Graph for Example AND Process 83

19. The Backward Execution Algorithm 88

20. States of a Parallel AND Process 98

21. Dataflow Compilations of a Conditional Expression 113

22. The Map Coloring Problem 151

vii

Acknowledgements

I was ver>' fortunate in my graduate career to have an exceptionally suppor

tive group of faculty and fellow graduate students at UC Irvine. Among the

most influential were Lubomir Bic, Kurt Eiselt, Steve Fickas, Doug Fisher, Gene

Fisher, Peter Freeman, Les Gasser, Kim Gostelow, Steve Hampson, John King,

Rob Kling, George Lueker, Jim Meehan, Wil Plouffe, Maria Porcella, Kami

Razouk, Walt Scacchi, Tim Standish, Bob Thomas, and Steve Willson. Conver

sations with Paul Morris, Jim Neighbors, and Bruce Porter, who patiently

listened to numerous detailed and boring descriptions of "AND parallelism," are

especially appreciated.

I also benefited by communication, written and otherwise, with researchers

outside of UCI. Keith Clark, of Imperial College, London, provided some helpful

feedback in the early days of this research. In the Summer and Fall of 1982,

talks with Arvind of MIT, Andrezej Ciepielewski and Seif Haridi of the Royal

Institute of Technology, Stockholm, and John Glauert, of the University of Man

chester, were quite fruitful.

The ICS Department has been very generous with its resources, human and

otherwise. The staff. Rose Allen, Pat Harris, Susan Hyatt, Fran Paz, Peggy Rose,

Sue Rose, and Phyllis Siegel, all gave me a great deal of help. The computing

resources available for research have grown tremendously in the last few years,

due mostly to the efforts of the department chair, Julian Feldman. I would never

have been able to accomplish so much without the use of these systems. Thank

you, Julian.

Finally, I owe a special debt to my advisor, Dennis Kibler. Our relationship

has been more along the lines of collaborators with mutual research interests,

rather than the traditional student/faculty member relationship. He has been an

incredible source of ideas, encouragement, restraint, motivation, and friendship

for many years. I hope to see our collaboration continue in the future.

Vlll

Abstract of the Dissertation

The AND/OR Process Model

for Parallel Interpretation of Logic Programs

by

John S. Conery

Doctorof Philosophy in Information and Computer Science

University of California, Irvine, 1983

Professor Dennis Kibler, Chair •

Current techniques for interpretation of logic programs involve a sequential

search of a global tree of procedure invocations. This dissertation introduces the
AND/OR Process Model, a method for interpretation by a system of asynchro
nous. independent processes that communicate only by messages. The method
makes it possible to exploit two distinct forms of parallelism. OR parallelism is
obtained from evaluating nondeterministic choices in parallel. AND parallelism
arises in the execution of deterministic functions, such as matrix multiplication or

divide and conquer algorithms, that are inherently parallel. The two forms of
parallelism can be exploited at the same time. This means AND parallelism can
be applied to clauses that are composed of several nondeterministic components,
and it can recover from incorrect choices in the solution of these components. In

addition to defining parallel computations, the model provides a more defined
procedural semantics for logic programs; that is, parallel interpreters based on
this model are able to generate answers to queries that cause standard inter

preters to go into an infinite loop. The interpretation method b intended to form
the theoretical framework of a highly parallel non von Neumann computer archi

tecture; the dissertation concludes with a discussion of issues involved in imple
menting the abstract interpreter on a multiprocessor.

IX

CHAPTER 1

Introduction

A growing area of research in computer architecture is the design of High

Level Language Machines. The motivation is to design systems that provide

better support for the language constructs used by both application and operat

ing system programmers.

This motive can be explained in terms of a "semantic gap" between the for

malisms of the machine language and the programming language [42]. The larger

the gap, the harder it is to implement languages reliably and efficiently. For

example, a typical construct in a programming language is the array. Implemen

tations of arrays must take into account storage functions which map an array

index into a location in memory, range checking (making sure that the value of I

in the index expression A[l] is within the bounds of the array A), representation

of arrays of complex objects of varying sizes, and so on. If some of these func

tions are implemented in the architecture, as is the case in a machine that per-

formis a range check with a single machine instruction, then programs written in

the high level language can be interpreted more reliably, and possibly even more
efficiently.

A new and exciting line of research within the area of language oriented

architecture is the design of machines for functional programming languages.

These are languages that are based on more abstract formalisms than the von

Neumann model of the stored program. John Backus, in the 1978 ACM Turing

Award Lecture, gave an eloquent comparison of functional languages and von

Neumann languages [3]. What makes functional languages so attractive to com

puter architects is that there is a great potential for parallel evaluation. These

languages are concerned with the definition of functions, and rules for construct

ing complex functions from primitive functions, but not specifically with the

order in which the functions must be evaluated.

I

For example, one way of writing a matrix multiplication program in the FP

language is

def MM = a o IP ° Dist

where IP is a function that computes the inner product of two lists of integers,

and Dist is a function that transforms two matrices into appropriate pairs of

rows and columns [3]. The composition of functions F and G, written F " G,

means that F should be applied to the object created by G. This program

specifies that IP is to be applied to all of the row/column pairs created by Dist,

but does not specify the order of these applications, and in fact leaves open the

possibility that a multiprocessor could evaluate the inner products in parallel.

The existence of abstract models of computation other than the stored pro

gram model enables system designers to apply the familiar top-down methodol

ogy to the design of computer architectures. Instead of building machines to sup

port languages that are not much more than abstractions of earlier machines (a

rather circular approach), computer architects can start from abstract levels and

move step by step towards a concrete implementation of that model. The steps

in this top down approach (which has also been called the language first philoso

phy [53]) can be summarized as follows:

Select a~n interesting abstract model of computation.

Design a high level programming language based on the selected formalism.

Define a method for interpreting programs of the language; if parallelism is a

goal of the project, define an interpreter that can carry out a number of

steps in parallel.

Finally, design a computer architecture tuned to the requirements of the

interpreter defined in the previous step; if parallelism is a goal, a require

ment of this step is to show how the independent parts of the program can

be delivered to the independent processing elements in the architecture.

This dissertation is a contribution to the area of language first computer

architecture, starting from the formalism of logic programming, with the long

range goal of constructing a multiprocessor for logic programs.

I

A simplified description of logic programming is that one can use sentences

of first order logic as statements of a programming language. Many useful pro

grams have been written in Prolog (an acronym for programming in logic), a, high

level programming language based on the formalism. Among these applications

are metacompilers [61], machine learning programs [32], natural language queries

for databases [16, 62], and robot problem solving systems [58]. Prolog has also

been used as an executable specification language. The expectation is that since

Prolog is as abstract as many formal specification languages, it should be possible

to write the functional specifications for new programs using the syntax of Pro

log; the big advantage to using Prolog is that it is then possible to test the

specifications by executing them as programs. Davis' thesis involved generating

LISP or Pascal programs from functional specifications written in Prolog [18].

Most recently, Prolog has been identified as the major programming language for

the Fifth Generation Computer Project now starting in Japan.

Standard implementation techniques for Prolog are described in terms of a

search of a global data structure that represents possible execution paths. One

result of this dissertation research is a method of interpretation of logic programs

that allows for parallel execution. The model, named the AND/OR Process

Model, is flexible enough to obtain the maximum amount of parallelism possible

in deterministic programs, and still be applicable to nondeterministic programs.

Matrix multiplication programs are examples of programs that exhibit a large

amount of inherent parallelism; it will be shown that a logic program for matrix

multiplication can work in 0{n) time, instead of 0{n^), which is the same
speedup expected when matrix multiplication is performed under other parallel

models of computation [27]. This potential speedup for deterministic programs is

not possible in any other proposal for parallel execution of logic programs. Data

base queries are examples of nondeterministic processes when there is more than

one answer to the query; there will be an example of parallel processing of a data

base query expressed in logic.

The dissertation is organized as follows: The next chapter is an extensive

introduction to the formalism of logic programming and a discussion of the

I

Prolog programming language. The AND/OR Process Model is introduced in

Chapter 3, showing how logic programs can be interpreted by sets of asynchro

nous and independent processes instead of by one large centralized search algo

rithm. Details for parallel execution based on the model are then given in

Chapters 4 and 5. Chapter 6 is a discussion of issues pertaining to implementing

the model on a physical network of processors. Finally, directions for future

work and the relation of this vyork to other research in logic programming and

parallel interpretation is the topic of the last chapter.

I

I

I

I

CHAPTER 2

Logic Programmtng

The phrase "logic programming" refers to the interpretation of well formed

formulas of first order predicate logic as statements of a programming language.

The first logic programming system was' developed by Colmerauer and his col

leagues at Marseille, after it was noticed that techniques used to build a resolu

tion based theorem prover were similar to techniques used in the implementation

of programming languages. Since then, the semantics of logic as a programming

language have been formalized, and there have been a number of implementa

tions of Prolog, a high level language that extends the formalism of logic pro

gramming in ways that make it more useful and efficient for solving practical

problems.

It should be stressed at the outset that the parallel control method to be

defined in the next chapters is not a model for parallel execution of Prolog pro

grams; rather, it is a model for interpreting "pure" logic programs. Many of the

extensions of logic programming that make Prolog a practical language are con

structs that make sense only in von Neumann (stored program, single processor,

single memory space) systems. According to the language first design philosophy

outlined in the first chapter, it would be a mistake to force the implementation of

these single-processor oriented constructs of Prolog in the parallel model. Alter

natively, one should define mechanisms for parallel control of logic, and then

implement the practical extensions to the formalism in terms of those mechan

isms. As a concrete example, the formalism of logic programming does not pro

vide for conditional expressions. Conditional expressions are defined in DEC-10

Prolog, but the definition relies heavily on the assumption that Prolog is being

interpreted by a single processor. Conditional expressions will be defined for the

AND/OR Process Model in Chapter 5, using the mechanisms of the parallel con

trol instead of the constructs of Prolog.

i

I

I

This chapter is an extensive discussion of logic programming. It starts with
the definition of the syntax, formal semantics, and standard (single processor)
control. Then there is a detailed description of the Prolog language, with its
extensions to the formalism, followed by a discussion of alternative (but still sin
gle processor), control strategies found in various Prolog systems. Finally, there is
a section on potential sources of parallelism in logic programs.

The rather lengthy discussion of Prolog and logic programming is included
here for three reasons. First, it sets the context for the definition of parallel con
trol, by defining what are minimum requirements for a logic programming inter
preter, as opposed to what are practical extensions. Second, some of the princi
ples illustrated by the alternate control will be used in the definition of parallel
control as well. Third, an interpreter based on the AND/OR Process model has
been implemented, and it will be described in detail in Chapters 4 and 5. The
interpreter is written in DEC-10 Prolog, and sections of it are listed in the

Appendices for readers interested in the fine details of the AND/OR Process
Model. Hopefully this introduction to Prolog will help readers unfamiliar with
the language to understand the interpreter.

2.1. Syntax

A logic program is a set of formulas of first order predicate calculus. Most
interpreters (including the parallel interpreter defined in this dissertation) accept
only formulas written as Horn clauses, which are a subset of the formulas that

can be written using the full syntax of predicate calculus. Although at first this
appears restrictive, in fact any sentence of first order logic can be transformed
into a set of Horn clauses [43]. A discussion of the merits and difficulties of writ

ing expressions using only Horn clauses can be found in Kowalski's book [34].

A clause is defined to be a set of positive or negative literals, each of the
form

P(ai. • • • fl„)

or

-^Pidv • • • /'n)

The symbol p is a predicate symbol, and the a,- are the arguments of the literal.

A clause in general can have any number of positive or negative literals, but a
Horn clause contains at most one positive literal and zero or more negative

literals.

The arguments of a literal are terms. A term is either a variable, or it is an
object composed of a function symbol and arguments. Nonvariable terms are also
written in the prefix form, as in

• • • ^m)

where / is the function symbol. The arguments a;,- of a term are themselves
terms. A term or literal with n arguments is said to be n-ary, or of arity n. A 0-

ary term is an atom, and is written without parentheses: a:() is simply x.

In order to disambiguate the names of variables and nonvariable terms, the
names of variables will start with upper case letters. In the execution of the pro

gram, variables may be instantiated to other terms. When variable X is instan
tiated to term t, X is said to be bound, or to have a value of t.

Terms are the basic data structures of logic programs; all objects of the

problem domain must be represented in the program as terms, just as objects
must be represented as lists in LISP. Terms have all of the versatility of lists as
far as representing objects. In general, a LISP list such as (FOO A B) can be
written as the term

foo(a,b)

with the first item in the list used as the function symbol.

Syntactic sugaring is provided by allowing nonalphabetic symbols as func

tion symbols, and letting these symbols be written as infix operators, so +(X, T)
and A'-t- Y are legal terms.

Clauses in logic programs are most often written in the form of implications,
with the single positive literal on the left and the remaining negative literals

I

\

I

forming a conjunction on the right.' Depending on whether there is a positive
literal or not. and on whether there are any negative literals, there are four possi

ble kinds of clauses in a logic program;

Impliealion
p *— q & r.
One positive literal, one or more negative literals.

Unii Clanst

P ^ •

One positive literal, zero negative literals.

Goal Statement

•*— q & r.
Zero positive literals, one or more negative literals.

Null Clause

Zero positive literals, zero negative literals;
represents a contradiction.

The single (positive) literal to the left of the arrow is the head of the clause, and

the (negative) literals to the right comprise the body.

Finally, here is the definition of some terminology often used to explain the

execution of a logic program:

An n-ary procedure for p is defined to be the set of all clauses which have an

n-ary literalWith predicate symbol p as the head literal.

Quite often the execution of a logic program is explained in terms of prob

lem solving. Clauses are referred to as goals, and literals in the body are

referred to as subgoals.

A lit eral in the body of a clause is said to be a call to a procedure; if the call

succeeds, the literal is solved.

A ground term is a term in which none of the arguments is a variable or con

tains variables.

' Aclause is actually a disjunction of literals, e.g. the set {-^p{a,b), j(A), ->r(XJ{a)) } is ac
tually -<p(a,b) + gl-V) -f- -rlA/la)). Since P + {-•Q -1- "'P) = P *— Q &R the above clause can
also be written as q(X) ^ p(a,b) & rfA./fa)).

A simple logic program, which most examples in this chapter will reference,

is given in Figure 1. This program has seven procedures, six of which are simply

sets of unit clauses. The seventh, paper, is defined by two implications and one

unit clause.

2.2. Semantics

The formal semantics of logic programming were originally defined by van

Eriiden and Kowalski [22]. The denotation, or meaning, of an n-ary procedure p

is D(p), a set of n-tuples of ground terms. This definition is similar to the

definition of a relation, and in fact the denotation of a procedure is often called a

relation. There are three ways of defining D; all three methods define the same

set.

D'(p), the operational semantics of an n-ary procedure p, is defined to be the

set of all n-tuples <<i • • • <„> such that the predicate p(fi • • • f„) is provable,

given the clauses of the program as axioms. Implementations of logic program

ming systems use a constructive proof procedure to create the tuples of D'. For
example, a goal statement such as

^ p{X,a).

is in fact a request that the system prove p{X,a). A constructive proof not only

satisfies the request, it generates a set of terms X such that p(a:,-,a) is provable for

any a:,- belonging to X. In response to the above query, an interpreter would
consruct the set

{ <Xi,a> I I- GX }

which is the subset of D'(p) in which the atom a is the second term in the tuple.

In the model-theoretic semantics, the meaning of p is D^(p), the set of all n-

tuples <<1 • • •Jf„> for which p{ti • • • f„) is true. Since the first order predicate

calculus is complete and consistent {i.e. any true statement can be proven, and

any statement proven is in fact true),

The fixed point semantics D'(p) is derived from the program through a

transformation that maps clauses into ground clauses, from which tuples of

f

author(fp,backus) <— .

author(df,ari-ind) .
author{tfi.kling) *- .

author(pro,pereira) •<— .
author(sem, vanemden)
author[db,warren) •«— .

author(sasl,turner) *- .

author (xform,standish)

rfa<e(/p,1978) .

rfa<e(rf/,1978) .
date[efl,m^) ^ .
date{pro,1978) •»- .

date(8em,1976)
rfflle(rfi,1981) .
date(sasl,1979) •<- .

iitle{db,efficient_processing_of_interactive...) •*— .
title(df,an_asynchronous_programming_language...)
title{eft,value_conflicls_and_social_choice...) •<- .
title(fp,can_programming_be_liberated...) *- .
title{pro,dec-10_proiog_user_manual) *— .
litle{sasl,a_new_implementation_lechnique...) <— .
title(sem,the_semantics_of_predicate_logic...) •<— .
title (xform,irvine_program_transformation_catalog)

loc{arvind,mit,1980) •»— .
loc{backus,ibm,1978) *— .
loc(kling,uci,1978) *- .
loc{pereira,lisbon,1978) •>- .
loc{vanemden, Waterloo,1980)
loc{turner,kent,1981) .
lo c[warren, edinburgh,1977) ^
loc (warren,sri.l9S2) — .

journal(fp,cacm) *—
journal{8a8l,spe) <-
jdurnal(kling,cacm)
journal{8em,jacTn) *•

tr{db,edinburgh) *-
tr(df,uci) ^ .

paper{P,D,I) *- date{P,D) &author(P,X) &loc(X,I,D).
paper{P,D,r) ^ tr{P,I) & date(P,D).
paper(xform,1978,uci) •>-.

Most binary literals p{X,Y) in this program can be read as "the p of X is Y",
e.g. author(fp,backus) means "the author of the FP paper is Backus" and
date (eft,1978) means "the date of the EFT paper is 1978". But read tr{x,y) as "x
is a tech report from y". Implications p*- q 6 r are read "p if q and r". The
first clause in the procedure for paper is "A paper P with date D was written
at institution / if the date of P is P and the author of P is AT and the location of
X was I in year P."

Figure 1. A Logic Program

10

11

ground terms are formed. The method of using fixed points to define the seman

tics of recursive programs in general is defined in Manna's book [37], and the

definition of the transformation for logic programs and a proof that

D' = D- = can be found in the article by van Emden and Kowalski [22].

The denotation of a procedure may be an infinite set of tuples. This is often

the case when the procedure is intended to model a function. An n-ary function

/: A""

is represented in a logic program by an (n+mf-ary procedure, for which n argu

ments are used for inputs. The remaining m argument positions are uninstan-

tiated variables when the procedure is called, and the net effect of executing the

procedure is that the variables are bound to the output values of the function.

As an example, consider the addition function of integer arithmetic. A procedure

call of the form sum(a,b,Z} means to bind the variable Z to the sum of integers a

and b (where the integers are represented by terms). The denotation of sum is an

infinite set of 3-tuples:

<0,0,0>

<0,1,1>

<1,0,1>
<1,1,2>

Deterministic functions have exactly one tuple for each distinct combination of

inputs, while nondeterministic functions may have more than one such tuple.

When represented as relations in this way, all functions are invertible, i.e. the

relation represents hot only the function but ako its inverse.

The operational semantics of most logic programming systems is defined by the

resolution rule, a deductive inference method defined for formulas of first order

predicate calculus written as clauses [52]. By restricting the syntax to Horn

clauses, resolution proof can be made into a practical system. The remainder of

this section is a discussion of resolution, and the next section takes up the subject

of controlling the order of the inferences in an interpretation.

12

The resolution rule states that from two clauses

{ Pi- • • • Pn-i' Pn+i • • • }
{ rj. • • • i • • ; }

which contain literals q and -ig with the same predicate symbol, same arity, and

no variables in common, it is possible to derive a new clause

{ Pi' • • • Pn-i' Pn-fi> r^_i, • • • }

that has all literals except q and -19 from the original two clauses. The derived

clause is known as a resolvent.

The literals q and -iq from the original two clauses must be unifiable] that is,

it must be possible to substitute terms for variables occurring in the literals so

that they become identical except for the -> symbol. For example, q{f(a.)) and

-19(X) can be unified, since when /(a) is substituted for Xin q{X) the literals are

both q(f(a)) ; q(a) and q(b) are not unifiable, since neither literal contains a vari

able and the arguments are not identical. In order for two literals (or terms) to

be unifiable, they must have the same predicate (function) symbol and be of the

same arity, and the corresponding arguments must be unifiable. Unifying substi

tutions are often identified by lower case Greek letters, such as 6. CO denotes the

clause C after substitution 6 has been performed.

If a substitution for a variable is required in order to unify the literals, the

substitution is applied to all occurrences of that variable in the resolvent. As an

example, consider the two clauses

{p(A'.l), 9(V,A1, r(A',2)} {-p(0,WO}

The literals p(X,a) and -ip(0, IT) are unifiable by substituting 1 for W and 0 for

X', so the resolvent is

{ 9(7,0), r{0,Z) }

It sometimes happens that one variable will be substituted for another dur

ing the unification, as in the following example:

13

Input clauses:
{p{hX).q(hX]] {--q{lMr{2,y)]

Resolvent:

{ p[l,X'), r(2,X')}

Note that X' is a new variable, and that the resolvent has no variables in com

mon with either input clause.

Figure 2 shows many more examples of successful and unsuccessful resolu

tions.

The requirement that literals q and ~^q have no variables in common is easily

satisfied, since it is always possible to rename the variables in one or both of the

clauses before doing the inference. This implies that the scope of a variable is

restricted to the clause in which it occurs. This is an important point, and will

be addressed again in Chapter 3 in the discussion of parallel evaluation.

A complete resolution proof of a clause C with respect to a set of axioms A

(also expressed as clauses) is the derivation of the null clause from the set of

clauses { -iC U A}, i.e. negate C and then show that the negation leads to a

contradiction. Unification and substitution are the operations that make resolu

tion a constructive proof procedure. After the null clause has been derived, it is

possible to construct terms for variables of C by using the substitutions per

formed during the proof (more specifically, use the composition of substitutions

created in the sequence of resolutions [43]).

2.3. Control

The operational semantics of almost all logic programming systems is defined

by the resolution rule. That is, the meaning of a program is determined by the

tuples that can be generated by a resolution proof. What remains to be specified

is control, the mechanism that determines the order in which the resolutions are

performed. The simplest and most common control strategy b presented in this

section.

A logic program is started by specifying an initial goal statement Gq. A

Clauses

P(X), q(X) }
-•pia), r(Y) }

p(X,a). q(X) }
-p(b,Y), r(Y) }

P(X) }
-^P(I) }

P(X), q(X) }
--p(f(a,B)) }

p(X),q(X)} .
->p(A), r(A) }

P(X), q(X) }
-•pIA), r(X) }

Clauses

{ P(X). q(X) }
{ P(X), r(Y) }

{ P(X), q(Y) }
{ -r(X), s(Y))

{ p(X,a), q(X) }
{ --Plb) }

{ P(a) }
{ -P(b) }

Successful Resolutions

Resolvent

{ q(a), r(Y) }

Substitution

X = a

{ q(b). r(a) } X = b,
Y = a

•

{q(f(a.B)))

{ q(X). r(X)}

{ q(X), r(X2) }

X = 1

X = f(a,B)

<note one variable

substituted for another>

<note renaming
of variables>

Unsuccessful Resolutions

Reason for Failure

must unify a positive literal
with a negative literal

no predicate symbols match

predicate symbols match, but
literals do not have same arity

arguments not unihabie

Figure 2. Examples of Unification and Resolution

14

i

I

I

I

I

I

I

t
i
i

>

I

i
I
i

I

i
i
t
i
1

15

computation is a sequence of goal statements Gq, G,, • • • G„, where

G,r 1 < ' < n, is the resolvent of -G,.! and one of the clauses of the program.

The computation halts with success when the null clause is derived, and halts

with failure if no inference is possible.

Recall that when clauses are written as implications, literals in the body of

the clause are negative literals, the heads of clauses are positive literals, and a

goal statement is a clause with only negative literals. In the context of a logic

programming system based on resolution, then, the derivation of a new goal

statement G,^.i from G,- involves the following steps:

Select any literal L from G,- (usually L is the leftmost literal in G,).

Find a clause C in the program such that the head of C can be unified with

L.

Rename the variables in C (since the two clauses being resolved, C and G,-,

cannot have variables in common).

Form the new goal statement G,-^i by removing L from G,- and replacing it

by the literals from the body of C.

-- If the unification requires a substitution, apply the substitution to G,-+].

When the selected clause C is a unit clause (when the body does not have

any literals) then G-^i will have one less literal than G,-. G,-^i will be the null

clause when G,- contains exactly one literal, and this literal is resolved with a unit

clause.

A goal tree is a tree where each node is a clause. Immediate descendants of

a node N are clauses that can be derived from N by one inference. Steps in the

execution of a logic program can be represented as a goal tree: the root of the

tree is the initial goal Gq, interior nodes are the intermediate goal statements,

and the leaves of the tree are either empty clauses or are clauses for which ho

inference is possible. The latter are called fail nodes.

The standard control strategy is a depth first search of a goal tree (see, for

example, van Emden [23]). When the interpreter reaches a fail node, it hack-

\

I

author(fp,A)
loc(A,ud,1978)

title(fp.T)

loc(backus,
uci,1978)
title(fp,T)

date(P,1978)
author(P,A)

loc(A,uci,1978)
titie(P,T)

author(df,A)
loc(A,uci,1978)

title(df.T)

loc(arvmd,
uci,1978)
title(df,T)

paper(P,1978,uci)
title(P,T)

16

title(xform,T) tr(P,uci)
date(P,1978)

title(P,T)

author(eft,A)
loc(A,uci,1978)

title(eft,T)

loc(kling,
uci,1978)

title(eft,T)

title(eft,T)

author(pro,A)
loc(A,uci,1978)

title(pro,T)

loc(pereira,
uci,1978)

title(pro,T)

date(df,1978)
title(df,T)

titie(df,T)

Portion of a goal tree generated during solution of paper(X,I978,uci).
Only the leftmost literal within a node was used to derive descendant nodes. Nodes
with an asterisk represent successful branches, i.e. the nextclause generated on one of
these branches is the null clause.

Fignre 3. A Goal Tree

I

I

I

I

I

I

I

i

I
•?

I

I

I

I

I

i

I

I

I

I

(racks- to the most recent choice point. Note that if the goal tree contains an

infinite branch, then the standard control will not find all occurrences of the null

clause; it will miss those that are to the right of the infinite branch, and in fact

will go into an infinite loop when it encounters this branch.

Figure 3 shows a goal tree formed from the initial goal

•<— paper(P,lQ78,uci).

and the program of Figure 1. This tree was formed by using only the leftmost

literal from any node as the literal to resolve. This selection rule (use only the

leftmost literal from the current goal statement) is used by the standard control

method, so the tree in the figure is also the tree that is searched by the standard

control.

It is possible to describe the depth first search in terms of the textual

representation of the program, without resorting to descriptions of goal trees. In

textual terms, the system solves the subgoals of a goal statement one at a time,

from left to right. To solve a single goal G, the system searches the program

from top to bottom for a clause with a head that can be unified with G. If it

finds such a clause, then it recursively solves the goals in the body, from left to

right. The same problem used to grow the goal tree of Figure 3 is given again in

Figure 4, this time accompanied by an explanation in terms of the text of the

example program.

2.4. Prolog

The particular version of Prolog described here is DEC-10 Prolog [46]; there

have been numerous other implementations, including some for microcomputers.

The syntactic differences between logic programs and DEC-10 Prolog programs

are minor:

The implication symbol is instead of *— .

The symbol is not used in unit clauses, i.e.

p ^ .

is written

18

P-

The literals in the body of a clause are separated by commas, not the logic

symbol fc.

Integers are a special type of atomic term.

LISP-like lists are allowed as data structures. Lists are enclosed in square
brackets. The empty list is [], and the list [A\B^ is a list with A as first ele

ment (CAR in LISP terminology) and B as the tail (CDR), which is also a
list. Lists are really terms: [fl,6,c] is simply shorthand for the term

.(a,.(6,.(c,[]))), which has a period for the function symbol (CONS).

2.4.1. Evaluable Predicates

Previously, the meaning of the ternary predicate sum was defined to be the

relation containing the infinite set of 3-tuples <a,b,c>, where c is the sum of a

and b. Within the formalism of logic programming, there are two methods for

doing arithmetic. One is that the relation can be given explicitly, as a set of

assertions sum{a,b,c), and arithmetic operations will be essentially table searches.

Obviously, the entire infinite relation cannot be realized on any physical machine,
and the subset that is defined consumes a large amount of space. Alternatively,
the relation can be computed, by defining addition and other arithmetic opera
tions axiomatically. In using this method, the symbol 0 is used to represent the

integer zero, the terms s(0), s(s(0)), etc. represent the positive integers, and addi

tion is performed by proving that the sum exists, using the axioms of arithmetic

[33].

In Prolog, arithmetic is performed by metalogical evaluable predicates, which

are analogous to the built-in (predefined) primitive functions of applicative

languages. The underlying computer system performs the arithmetic operations,
simply because it is faster. This will have an effect on the semantics of programs,

namely some goals .that are solvable using one of the formal methods may not be

solvable when the machine performs the operation. An example is

I

author(fp.barku?) *- .
authori df.arvind) *— .
author{cft,kling) .
author(pro,p(reira) ^
author{sem,van(rndcn)
aulhor(db,v:arren) •>— .
author{sasl,turntr) .

/oc(arvind,mil,1980) •>—
loc(backus,ibm,1978)
loc{kling,uci,1978) *— .
loc(turner,kent,1981) *-

date{fp,1978) *-
darf(rf/,1978)
date(f.ft,1978) •»-
(/aie(pro,1978)
ifa<e(scm,1976)
rfa(f((ii,198l)
dale(sasl,1979) •

papcr{P,D,I) ^ dat€(P,D) & author(P,X) & loc(X,I,D).
paper{P,D,I) *- tr(PJ) & date(P,D) *- .
paptr\xform,1978,uci) *- .

19

The above program is part of the logic program of Figure 1. This figure ex
plains the steps in the solution of

paper{P,1978,uci) & titl({P,T).

First, the interpreter tries to solve paper{P,19718,uci). When that literal is unified
with the head of the first clause for paper, the body (after applying the substitu
tion) is

date(P,1978) & aulhor(P,X) & loc{X,uci,1978).

Now the interpreter must solve these goals, left to right, in order to complete
the solution of paper^P,1978,uci). The first solution for (iate(P,1978) unifies P with
fp, so the interpreter moves on the next goal, which is now ttuthor(fp,X). The
only solution for this binds A' to backus, and the remaining literal in the body of
paper is now loc{backus,uci,1978). This fails, and the interpreter backtracks. The
most recently solved goal was author{fp,X), so the interpreter tries to re-solve it.
That also fails, so the interpreter moves back even further, to re-solve
datt(P,1978). This can be solved a different way, by unifying X with pro, so the
interpreter moves forward again, now trying to solve aulhor(pro,X). This back
tracking and retrying continues until rfo<e(P,1978) is finally solved by unifying P
with eft] then aulhor{eft,X) is solved by binding Xto kling, so finally loc is solvable
with the arguments loc{kling,uci,1978). That completes the solution of paper, and
the system moves on to solve the remaining literal from the original goal, which
is now litlc(eft.T) since P was bound to eft in the solution of paper. This will
succeed immediately when T is bound to value_conflicts... (Figure 1).

Figure 4. Example Computation

20

•>— sum{X,YJ)].

In other words, what integers X and)" have a sum of 5? This goal has many

solutions, all of which can be found if the system searches the relation for tuples

that have 5 as the third element. However, the goal fails when a machine is

asked to add two uninstantiated variables.

Arithmetic in DEC-10 Prolog is performed by the evaluable predicate is.

This is a binary predicate, and is one of the predicates that can be used when

writing infix expressions. The second argument must be a legal arithmetic

expression, constructed from the usual operators and integer terms, and the first

argument can be either an integer or a variable. When is is called, the expression

is evaluated. If the first argument is a variable, it will be unified with the value

of the expression. If the first argument is an integer, is will succeed only if the

integer and the value of the expression are the same. If the second argument

contains any variables (i.e. it is not a ground term) then the goal fails.

Some examples of goals that use is:

is(X, +(2.1))
i A' is 2+1
i

i

\

I

These literals are identical; one is written in the infix style. When called,
2+1 is evaluated to 3, and then X is bound to the atom 3.

3 is 2+1

The expression is evaluated, and since 2+1 = 3, the goal succeeds,

Z IS (2*3)+(4*5)

Z is bound to 26.

5 is 2+1

This will fail.

i

21

5 is A-l-3

This also fails, since A" must be bound. Note that this does not mean vari

ables cannot be used in the expression. It simply means that the variable
must be bound to an integer term as the result of solving some other literal
by the time this literal is selected for evaluation.

The idea that.a goal will fail if certain argument positions contain uninstan-

tiated variables is expressed in DEC-10 Prolog by 7/0 modes. Each argument in

a goal has one of three modes associated with it: in input-only mode, the argu

ment must be a ground term; in output-only mode the argument must be an

uninstantiated variable, which will be bound in the solution of the goal; and in

the default, don't-care, mode, arguments can be either ground or uninstantiated.

When a Prolog procedure implements an n-ary function, n argument positions of

the predicate symbol will be input-only mode, and the remaining argument posi

tions are output-only. The DEC-IO Prolog compiler uses mode declarations sup

plied by the user program to generate more efficient code for user-defined func

tions. The concept of I/O modes will also be used to order goals for parallel solu

tion, as defined in Section 5.1.

In some Prolog systems, addition is performed by a ternary evaluable predi

cate named sum. sum{X,Y,Z) will be true if X+Y=Z, or if there is a value can be

found for one of A', or Z that will make the expression X+Y=Z true. In these

systems, the last example is written siim(X,3,5), and this goal succeeds by bind

ing X to 2. sum is said to have a threshold of two, meaning that all that is neces

sary for the success of sum is that two of the three arguments be bound to

integer values [11, 31, 65], sum will fail if fewer than two arguments are bound.

2.4.2. Higher Order Functions

DEC-10 Prolog has constructs that allow programmers to treat clauses as

data, allowing procedures to be passed as arguments to other procedures or added

to the program as it is executing. A more extensive discussion of the necessity

and/or desirability of these extensions can be found in a paper by Warren [64].

Clauses can be represented by terms if the implication symbol and the logi

cal AiND symbol (and comma in DEC-10 Prolog) are in the set of infix

22

operators. Thus the clauses

v-- <i-

p(a] q, r[a).

can be represented by the terms

•-{p-q]

t

where the comma above the arrow is a function symbol, not a separator of argu
ments.

The goal

assert[T).

adds the term T" (which must be bound to a term that has the syntax of a clause)
to the program currently in the system. The opposite of assert is retract:

retract(T).

finds a clause that unifies with Tand then deletes it from the program.

A second method for handling program pieces as data is through the evalu-
able predicate call, which is similar to the EVAL function of LISP:

call{P).

treats the term P as if it were a goal statement, and calls the interpreter recur
sively to solve that goal statement.

An evaluable predicate that is useful in conjunction with call is" =.. , which
constructs terms from a list of components:

mA]:

is a goal that succeeds if J" is a term that has function symbol E and argument
list A. For example, the goal

I . T [author,db,warrei\\:
unifies Twith the term author[db,warren).

1

I

I
I

23

A procedure that uses both of these constructs is

?Napfar(F,[].[])•
/uapr«r(F,[AllAr?],[} l| } n])

Goal [F,A'l, }1],
call(Goal),
tnapcar(F,Xn,Yn.) •

This is the Prolog equivalent of the LISP function MAPCAR, which takes as

arguments a function and a list of elements X, and returns a list Yconsisting of
the results of applying the function to each X. If sqr_one{X,Y) binds Y to the

square of the integer A^, then the goal

:-inapcar{sqr_one,[l,2,S,4\,L)

unifies L with the list [1,4,9,16].

2.4.3. The Cut Symbol

The standard Prolog control has been described as a depth first search of a

goal tree. The cut symbol, !, allows the programmer to control the search by
pruning unwanted branches from the search tree. Cut is inserted into the body
of a clause, along with literals. When the interpreter encounters cut as a goal, it

always succeeds. However, if the interpreter ever backtracks to the point where

it has to re-solve the cut, the resulting behavior is that the head of the clause

that contains the cut fails. The net effect is that all further solutions for literals

to the left of the cut in the clause, and all clauses in the same procedtire follow

ing the current clause, are deleted from the goal tree.

.As an example, refer to the small program in Figure 5, and observe what

happens when a call is made to p. The first clause for p has a body with literals q
and r, so the system starts to solve q. The first clause for q has body

a, !, b.

a and the cut are solved, but b fails. Now the interpreter backtracks, and

encounters ! while backtracking. The head of the clause that contains this cut is

q, so the call to qfails. The call to q was made from the first clause for p, and the

24

failure of q forces the interpreter to move on to the second clause for p, where the

program finally succeeds.

Common uses of the cut symbol are in finalizing choices from nondeterminis-

tic procedures and in the definitions of conditional expressions and negation.

Consider this small program, which has two different definitions for a pro
cedure p:

q{a).
q{b].

t pl(X) q(X).
, p2{X] q(\l !.

I When solving the goal
pi (A"), continue.

I the system eventually selects the first clause for 9 to solve g(A), and X is bound
to a. If continue fails, the syst em backtracks into pi (A), then q{X) is re-solved,

I and Awill be bound to b. However, when there is acut symbol in the body, as in
the definition of p2, the second answer is not produced. In solving the goal state-

I ment

:-p2(A'), continue.

the first answer, A' = a, is produced as before. When the system backtracks into

I pSfA") after continue fails, it encounters the cut symbol, so it does not retry ^(A');
' furthermore p2{X) also fails. Without the cut symbol, p is nondeterministic pro-

cedure, since there is more than one solution to a call to p(AO. When a cut sym-
is added, this procedure behaves like a deterministic procedure, in that it pro-

^ duces one answer and then fails when asked to produce more answers.

^ Aconditional expression in a functional language has the general form of

I f(X) = if p(X) then (/(A") else h(X)

If plAl is true, the value of f(X) is given by (/(A), otherwise it is defined by AfAO.

I Recall that in Prolog, n-ary functions can be defined by (n-hl)-B,Ty predicates, in
a way that the result of applying the function is unified with a variable passed in

I

I

Program:
P q, r-
p ;• s.

q :-a, !,b.
q c.

a.

c.

r.

s.

a, 1. b, r

or

b, r

Initial Goal:

:-p.

25

This figure shows the effect of the cut symbol (/) on a depth first search. When
the leftmost branch ends in a fail node (no solution for b), the interpreter backs up to
where / is the first goal in the list. The result is that the head of the clause containing
the fails. In this example, the ! is part of a clause for q, so the call to q fails.
The only solution found by the interpreter is the one on the far right.

Figure 5. Prnned Goal Tree

26

the extra argument position. In Prolog, the above expression is written as two

clause.s:

h(X.n

When the function is called, for example by the goal

the interpreter selects the first clause for /, and then calls p(10). If the call p(10)

succeeds, Y is bound by the call (/(lO, Y). If p(10) fails, the interpreter back

tracks to the second clause for /, and the value of Y is computed by the call

h(\OM

The cut symbol is necessary for those occasions when g[X,Y) fails. The

desired control behavior is that when p{X) is true, then /(X, Y) is defined by

y(A', l"): this means that if g(X,Y) fails, then f(X,Y) should also fail. This situa

tion is analogous to the definition of conditional expressions in FP, where / is

undefined when p is true but g is undefined. An interpreter must not backtrack

to try /((A',}') in those cases where p(A^ succeeds but g(X,Y) fails. This behavior

is enforced by the cut symbol.

The third common use of the cut is in the definition of a procedure for nega

tion:

not[G) call(G), \, fail.
not{G).

where fail is a goal that cannot be solved. This is negation as failure, first

defined by Clark [10]. Recall that an implication

p:- q,r

is equivalent to the Horn clause

{ P,

and that the literals of the body of a clause are actually negative literals. Thus

one cannot simply write

I

I

27

for the request "prove p(X) is false", since a negated literal in the body of a

clause would actually be a positive literal, and by definition a goal statement (or

the body of a clause) must contain only negative literals.

Negation as failure means that if one fails to prove a statement, then one

can assume the statement is false. Operationally, an implementation of negation

as failure requires that if a goal G is solvable, then not(G) should fail, but if G

fails, no/lG) should succeed.

-Referring to the above Prolog definition of negation, when not(G) is called,

with some goal G as the argument, the interpreter first tries to solve G, via the

statement call(G). If this fails, then the second clause for not{G) is tried, and

since this is a unit clause, it succeeds. In other words, when G fails, not{G)

succeeds.

In the other case, when G succeeds, the interpreter moves on to the cut and

fail literals. Cut succeeds, and fail fails. Because the cut is there, the interpreter

does not try to solve G again, and in addition causes the failure of not{G), which

is the head of the clause with the cut. Thus when G succeeds, not{G) fails.

Negation as failure is definitely a metalogical construct. In formal logic,

there is a major difference between the statements "P is false" and "P cannot be

proven", especially when higher order functions are introduced into the system.

There are also practical problems in Prolog systems that use this definition of

negation. These problems arise when the negated goal contains variables. For

example, suppose the predicate p{t) can be proven, but that p{f) cannot. The

goals not(p{t)) and not[p(f)) behave as expected, with nof(p(f)) failing and

not(p(J)) succeeding. But notice what happens with the goal not(p(^): the sys

tem tries to solve p(X), which it accomplishes by binding X to f, so nof(p(J'̂)) is

considered to be false. But it was just shown that not{p{X\) is true when A" is

the term /, so one can argue that the system should actually succeed in solving

noi(p(X)) by binding A' to /. Thus it is not clear at all whether not{p{X)) should

succeed or fail, and if it should succeed, how to construct the set of legal values

I

28

for -V.

In si)ito of these shortcomings, negation as failure is used effectively in many

logic programs. A definition of negation as failure that does not rely on the cut

symbol will be given in Chapter 4.

2.5. Alternate Control Strategies

Control in a logic program has been characterized in the previous sections as

a tree search. The object of the search is to find a null clause at the end of a

sequence of resolutions. The unifications used on the path from the root of the

tree (which is the starting goal statement) to the null clause define an n-tuple of

values for the n variables of the starting goal statement. If there is more than

one way of solving the original goal, there will be a number of null clauses at the

leaves of the tree, with an n-tuple defined by each path.

Every step in the expansion of the tree involves two choices: selection of a

literal in the current node, from which successor nodes will be generated, followed

by a selection of one of the successor nodes to be the root of the next tree

searched. A standard interpreter performs a depth first search of a restricted

space, in which the leftmost literal in a node is the only one ever selected for

expansion, and the subtrees generated by expanding this literal are searched left

to right.

The meaning of a procedure is a relation, which is an unordered set of tuples

of terms. Ideally, a control strategy helps an interpreter construct every tuple in

the relation if necessary. In practice, however, a given control method may not

be able to order the required resolutions so that all tuples are constructed. In

particular, a depth first interpreter never terminates when there is an infinite

branch in the search tree; this control method will never construct any tuples

defined by finite branches to the right of an infinite branch.

The meaning of a procedure is independent of the control mechanism. The

meaning is a relation, an unordered set of tuples, and a control mechanism

merely defines an order in which those tuples are created. Some alternatives to

the standard depth first search optimize the search by decreasing the size of theI the standard depth first search optimize the search by decreasing the size of the ^

I I

I

I

29

si'arch space. Other alternative control methods generate a larger set of answers

by avoiding infinite branches. Some of these alternatives will be discussed in this

section. Although the mechanisms explained here are defined in terms of a

sequential search of a single search space, some of the principles illustrated can

and will be used in the definition of parallel control in Chapter 5.

The first three alternatives have to do with selecting other literals besides

the leftmost as the literabto expand. The fourth alternative is intelligent back

tracking, a more effective method for backtracking that prunes portions of the

search tree that cannot contain solutions.

2.5.1. Selection Based on a Known Number of Solutions

In general, a tree search is more efficient when the branching factor in the

tree is smaller. If a search algorithm can expand nodes that generate fewer des

cendants, then it might save itself needless work by traversing fewer unsuccessful

branches. This principle is realized in logic programs in two ways.

The first is based on an interaction between goals determined by variable

bindings. As an illustration, consider a program with two procedures with heads

p{X) and q[X), both made up of only ground unit clauses. There are Np clauses

for p and Nq clauses for q. Assume there are Npq terms that occur as arguments

in both p and q\ these are the terms that are constructed in response to the goal

^p(X)&q(X).

A solution of either literal by itself will bind A" to a ground term. If the

interpreter selects p(A') at this point, there will be Np descendant search trees,

each with a root, of the form 9(a), and the remaining steps consist of a search

through the descendants looking for one of the NpQ occurrences of the null

clause. On the other hand, if the interpreter selects q{X), there will be Nq des

cendants with roots p{a), but still exactly Npq null clauses. Whether the inter

preter must generate all answers (i.e. find all null clauses) or just one (i.e. find

the leftmost null clause), the efficiency of the search is determined by the propor

tion of the number of null clauses to the number of branches, and this proportion

30

is hotter when fewer branches are generated. Thus when it is known in advance

that .\p is less than Aq. always select p(X) for resolution first, regardless of

whether p(X) is the leftmost literal in the goal statement.

Again, it is important to note that the order of selection effects the efficiency

of the search, and possibly the order in which the answers are reported, but not

the final result. The paths that end with a null clause in either tree lead to the

construction of the same set of values for A'̂ ,

A second case where generating the fewest number of descendants pays off is

when all the descendant paths lead to fail nodes. Continuing the example, this

occurs when Npg is zero. When p{X) is selected, the interpreter searches Np

branches before backtracking to the parent. If q{X) is selected, Nq branches
must be searched before the interpreter discovers that there are no null clauses in

the tree. Again, if Np is less than Nq, less useless work is done if p{A) is selected

as the literal on which to base the resolutions.

This general strateg)', of selecting literals that are known beforehand to have

the fewest number of solutions, is used to optimize queries in the CHAT-80 rela

tional database system [62, 63].

2.5.2. Selection by Number of Uninstantiated Variables

It may be possible to limit the size of the search space even when the inter

preter does not have prior information about the number of solutions for each

literal, by assuming that literals with fewer uninstantiated variables will generate

fewer branches.

Consider a database of ground unit clauses of the form p{X,Y), where there

are N different terms for X and M different terms for Y, for a total of NxM unit

clauses. Figure 6 gives the branching factor of a goal statement in which p{X,Y)
is selected for expansion. The branching factor is a function of the pattern of

variable instantiation in p{X,Y). The table shows that the branching factor is

reduced when the number of uninstantiated variables is reduced.

I

I

I

I

I

Goal

Pattern

Number of

Uninstantiated

Variables

Branching
F actor

P(X,Y) 0 N X M

p(a,Y) 1 M

p(X,b) 1 N

p(a,b) 2 1

31

Figure 6. Branching Factor as a Function of Variable Instantiation

I

I

32

An example of ^vluTe this observation improves the eflficiency of a logic pro

gram can be seen in a clause based on the program of Figure 1:

query(F.J) ^ author{P,X) & loc{X,I,D).

Ciiven a depth first interpreter and an initial goal statement

— query{eft,I).

the derived goal statement will be

author{eJl,X) & loc{XJ,D).

There is just one way to solve the first subgoal, and that solution binds JA to a

tern"i that leads to onl\ one solution for the second subgoal; the final answer has

A'bound to kling, I to net, and D to 1978.

If, on the other hand, the initial goal statement is

•<— query[P,net).

then the derived goal statement is

•<— avthor{P,X) & loc{X,uci,D).

The only answer to this query is the same as the one produced by the first exam

ple. There are eight ways to solve the first subgoal, since any of the unit clauses

in the procedure for author are unifiable when no arguments are bound in the

call, but only one of those unifications leads to a solution for the second subgoal.

If an interpreter could first solve the rightmost subgoal {loc{X,uci,D) in this
derived clause), it would find just one solution for that goal, and that solution

leads immediately to a solution for the leftmost literal. In other words, the

number of misleading branches can be reduced from seven to zero by selecting a
literal that has one instantiated variable instead of zero instantiated variables.

This strategy of first solving goals that have the fewest number of uninstan-

tiated variables was first mentioned by Kowalski [33]. The IC-Prolog interpreter

implements the strategy by allowing users to write a number of versions of the

same clause, and then annotate these clauses so that the interpreter selects the

most efficient one at runtime, depending on the pattern of variable instantiation

.33

in a goal, [ll]. The strategj- will also be used by the parallel interpreter dt>soribed

in Chapter 5.

2.5.3. Coroutines

Consider these definitions of the procedures concat and sqr.

concat{[],List,List).
concat([Car\Cdr\,Ll,[Car\L2]) •*— concat{Cdr,Ll,L2).

«<?'•([],[])•
s<7r([Xl\Xn],[11 [Yn]) - 11 is A1 *Yl & sqr{Xn,yn).

The goal

conca/([l,2],[3,4],L) & sqr{L,S).

is a request to construct a list L that is the concatenation of the lists [1,2] and

[3,4], and a list 5 such that every element of S is the square of the corresponding

element of L. The only solution in the goal tree with this goal at the root gives

the answers L= [1,2,3,4] and 5= [1,4,9,16] (Figure 7). After the first step in

the computation, the derived goal statement is .

concat{\2],[Z,A\,L ') & sqr{[l\L'],5).

where the variable L from the original goal has been bound to the term [1|L'].

Bindings such as these, where a variable is bound to a term that contains other

variables, are known as partial bindings.

The normal depth first control completely solves the call to concat, binding

L to [1,2,3,4], before the solution sqr is started. A coroutine control interleaves

the steps in the solutions, by having concat make a "piece" of the list L through

a partial binding, and then having sqr use this piece. The literal

concfl/([l,2],[3,4],L) is called the producer of L, sqr{L,S) is a consumer of L, and

the variable L is called the communication channel between the two literals.

The series of derivations made for the above example by a coroutine control

is shown in Figure 8. Successive goal statements are derived until a partial bind

ing is created for L. At that point, the consumer literal is selected, and deriva

tions continue until a call to the consumer has an uninstantiated variable in the

concat([l.'2].[3.'4].L) ^ sqr(L,.S).
concat([2j.[3,'4],L') k sqr([llL'),S).
concat([],|3,4],L'') k sqr([l,2|L"],S).
sqr(!l,2.3,4].S).
XI is 1*1 k sqr([2.3,4],S').
sqr([2.3.4].S')
X2 is 2*2 k sqr([3,4l,S").
sqr([3,4l,S").
X3 is 3*3 & sqr([4],S"').
sqr([4].S"').
X4 is 4*4 k sqr([],S"").
sqr(ll,S"").
•

L = IllL'l
L = (1,21L"]
L = (1,2,3,4]
S = (XljSl
S = [1|S']
s = [1,X2]S"]
s = [1,4(5"]
s = [1,4,X3(S"']
s = ll,4,9]5'"l
s = (1,4,9,X4]5""
s = [1,4,9,16]S""]
s = [1,4,9,16]

Figure 7. Sequence of Derivations in Depth-First Control

concat([l,2j,fS,4j,Lj k sqr(L,S).
concat([2],[3,4],L') t
concat([2].|3,4j.L') k Xl ie 1*1 k sqr(L',S').
concat([2j,[S,4j,L'j k sqT(V,S').
concat(j],[3,4],L") k sqr((C\L"j,S").
concat([l.[3,4l,L") X2 is 2*2 k sqr(L",S").
concat![j.[S.4j.L"j k sqT{L",S"). ^
• '̂<}r(fS,4j.S"i:
A'.-? sqr(l4l,S"").
sqrll4],S"'j. ; •
AV iS sqr([],S"").
sqrffj.S"").

L = [llL'l

L' = [2lL"]

L" = [3,4]

S = [1,3,91S"']

S = (1,3,9,1615""]
S"" = 11
S = (1,4,9,16]

31

The literal selected for use in the, next resolution step is in italics. Derivations
are made based on the consumer literal concat until the communication channel

(variable L) is partially bound; then derivations based on the consumer literal
sqr are made until the first argument is a variable.

Figure 8. Sequence of Derivations in Coroutine Control

35

argument position for L. Then the producer is selected, and another piece of L is

created, and so on. To summarize, a depth first interpreter creates the entire list

L, and then calls sqr to square ever}' element in L, making 5- The coroutine

interpreter interleaves the interpretation of the two calls, creating and squaring

the first element, then creating and squaring the second element, until the last

element has been squared.

A most interesting use of coroutines is in the definition of infinite data struc

tures. The clause

inf{N,\h'\L\)^ M is N+\ & inf[M,L).

describes an infinite list of integers. The goal

♦— inf{l,X) & use{X,Y).

is a request to unify A with the infinite list of integers starting with 1, and then

"use" this list; it results in an infinite loop when an attempt is made to solve it

with a depth first interpreter, since that interpreter tries to create the entire list

of integers starting from 1. A coroutine interpreter would create the sequence of

integers only up to the last integer required by the goal «sc(X, Y).

IC-Prolog [11, 12] allows the user to designate literals within a clause as pro

ducers and consumers, and is an implementation of coroutines. Infinite data

structures are used in many elegant programs written in SASL [57], LUCID [2]

and other applicative programming languages.

2.5.4. Intelligent Backtracking

Consider the set of unit clauses

p(a) .
p(b)^.
9(1) ^ .
9(2) ^ .
r(6,l)-.
r(b,2) ^ .

Given the goal statement

36

- P(A1 e' <701 r(X)l.

a (depth first interpreter first solves p(Al, binding A" to a, then solves ^Ol, bind

ing }' to 1, and then tries to solve r(a,l)- When the latter fails, the interpreter

backtracks. The most recent choice point is in the selection of the clause for

solving <7(11; when this is redone, another solution is found, binding 7 to 2, and

the next goal is r(a,2), which also fails.

Both of these calls to r fail because the solution of p(A) binds A to a value

that cannot be used to solve r(A,>l. When the interpreter backs up only as far

as q(}), it cannot fix this erroneous choice, and by re-solving 9(7) it is wasting

resources.

An interpreter that uses intelligent backtracking analyzes the cause of a

failure, and backtracks to the source of values that cause the failure. An inter

preter designed and implemented by Pereira and Porto performs this kind of

analysis [47, 48]. In the example given above, it finds that any goal of the form

r(a,A") fails because of the presence of the term a in the first argument position.

Since A' was bound to a in the call to p(A), the interpreter backs up past the call

to 9(A'), all the way to a choice point in the solution of p(A). When p{X) is

solved again, binding A' to b this time, the entire goal list can be solved, without

the wasteful attempt to solve r(a,2).

Other cases where intelligent backtracking can be helpful are in goals such

as

•H- p[A) & q{B) & r{A).

When r{A] fails, q[B) can be skipped on backtracking since it does not produce

any values that can effect the solution of r{A). This is a case where it is not

necessary to analyze the exact cause of the failure; it is only necessary to notice

that a new solution of q(B) cannot help solve r(A), since r(A) and q{B) have no

variables in common. Behavior similar to this limited form of intelligent back

tracking will be seen in the parallel control described in Chapter 5.

I

I

I

I

I

37

2.6. Sources of Parallelism

A parallel control method is one where an interpreter can divide a problem

into independent parts, and then distribute those parts to other interpreters. In

a multiprocessor system, this can lead to a faster solution of the problem if the

other interpreters are running on physically different computers.

One possible parallel control is based on a parallel search of a goal tree.

When a node has more than one descendant subtree, an interpreter can continue

searching one of the subtrees itself, and distribute the other subtrees to other

interpreters. The expected speedup in execution will be obtained if one of the

interpreters derives the null clause more quickly than an interpreter that per

forms a simple depth first search. The amount of time required in such a system

(ignoring intercomputer communication time) will be proportional to the shortest

path from the initial goal to a null clause, whereas the amount of time required

by a depth first interpreter is proportional to the sum of the path lengths of

every branch to the left of the first branch that ends in a null clause. For deter

ministic functions, the single answer is most often at the end of the leftmost (or

only) branch in the search tree. In these cases, a parallel search will not speed up

the execution at all, even when the function-'is inherently parallel.

Another possibility for parallel control stems from coroutines. Interpreters

running on separate processors could perform the derivations based on producer

and consumer literals in parallel. For a program with one consumer and one pro

ducer, the maximum speedup will be a factor of two. For larger and more com

plicated programs, greater time savings may be realized. This form of parallelism

is static: the amount of parallelism, i.e. the number of processors that can be

used to solve a problem, is simply a function of the structure of the program. A

more dynamic form of parallelism is found in the unraveling interpreter of the

Irvine Dataflow system [1, 27], where the amount of parallelism is a function of

both the structure of the program and the size of the problem. For example, in a

program for matrix multiplication, one coroutine might be defined to generate

row/column pairs while another coroutine consumes the.pairs and computes inner

products. The parallelism is independent of the size of the matrices: there will

38

always be two coroutines. When matrix multiplication is done by an unraveling

interpreter, all.inner products can be computed at (roughly) the same time, and

the amount of parallelism is a function of the number of inner products that need

to be computed.

The parallel control to be defined in the remaining chapters is a form of

dynamic parallelism, similar to the unraveling interpreter, that exploits the paral

lelism inherent in the definition of deterministic functions. At the same time,

this control method is applicable to nondeterministic functions and more general

relations, where more than one correct value must be computed.

2.7. Chapter Summary

This chapter has introduced logic programming as a formal system with

three components: a syntax that is a usable subset of first order predicate cal

culus, a denotational semantics in which the meaning of a program is defined to

be a relation, and an operational semantics, defined by the resolution proof pro

cedure, that allows one to construct relations. Control was shown to be impor

tant for efficiency, in that it effects the order in which answers are found, but

control does not effect the correctness of a program, in that alternative control

methods do not compute different relations. The exception is that some control

methods are more defined, meaning more of the relation can be constructed. A

number of interesting alternatives to the simplest and most common control

method were discussed. These alternatives illustrate some principles that will be

used in the definition of the parallel control defined in the remaining chapters.

Research on logic programming and the Prolog language that is closely

related to the dissertation research will be discussed in Chapter 7. A deeper

treatment of other topics not so closely related can be found in the following

papers.

Resolution and unification were first defined by Robinson, with the intended

application of automatic theorem proving [52]. An overview of first order predi

cate calculus, an algorithm for transforming a general well formed formula into a

set of clauses, and a lengthy discussion of resolution can be found in Nilsson's

I

I

I

I

I

39

book [-43]. Martelli and Montanari, in a recent paper, define three efFicient
unification algorithms, and discuss occur checking, a topic not covered in this

chapter [38].

The DEC-10 Prolog system is one of the most widely used implementations

of Prolog [46]. One of its unique features is a compiler that generates object pro

grams that are comparable in execution speed to compiled LISP programs [59,

60]. Papers on implementing Prolog have been written by Roberts [51], Col-
mcrauer [13], and, most recently, van Emdem [23], among others.

The cut symbol (also known as "slash") provokes some lively discussions

about the meanings of programs and programming style; a recent contribution to

this discussion is by van Emden [24]. Negation as failure was first defined by

Clark [10]. The paper by Dahl on the CHAT database also has a complete dis-

cu.ssion of the problems of this method for defining negation in resolution based

logic programming systems [16].

Pereira has written a number of papers on the subject of control in logic

programs. His work with Porto on intelligent backtracking will be discussed in a

later chapter. In addition, Pereira has defined a language called Epilog that

allows programmers to define control by using Horn clauses, thus effectively

allowing the definition of special-purpose control constructs for special situations

that arise in the user's program [49].

Two languages that are closely related to Prolog, yet not based on the reso

lution rule, are LPL [28] and Relational Programming [36]. LPL was defined in

Ilaridi's thesis, and more recently Haridi and Ciepielewski have investigated pos

sible sources of parallelism in this language [9]. In the relational programming

system of MacLennan, entire relations are computed at the same time, and opera

tions are performed on relations as a whole instead of on individual tuples within

the relation, which is the case in Prolog.

A number of large and useful applications have been written in Prolog.

Among these applications are the natural language query processor of the CHAT

relational database system [16, 62, 63], Warren's problem solving program [58],

1

1

40

and Kibler and Porter's episodic learning program [32], The use of Prolog as a

metacompiler was described by Warren [61], and a comparison of definite clause

grammars (grammars in which the rules are very similar to the Horn clauses of

Prolog. programs) and augmented transition networks for processing natural

language was given in the paper by Pereira and Warren [45], Finally, short,

informal descriptions of new systems and applications are periodically published

in the international Logic Programming Newsletter [35].

p

CHAPTER 3

The AND/OR Process Model

In the parallel control method defined in this dissertation, a logic program is

solved by a set of processes that communicate via messages. A process is a data

structure, consisting of state information and a program segment. In the

AND/OR process model, there are two types of processes. An AND process is

created to solve a goal statement, a conjunction of one or more literals. An OR

process is created by an .\ND process to solve exactly one of those literals. A

process starts in an initial state, and through a series of discrete transformations

it is mapped into a final state. Each transformation is "triggered" by exactly one

input message, and any transformation may cause one or more output messages

to be sent to another process.

This chapter introduces the AND/OR Process Model by defining the basic

requirements of AND and OR processes and the kinds of messages they generate.

The processes defined in this chapter are sequential in nature; the tasks carried

out by subprocesses are done one at a time, and for any given program the

resulting computation is equivalent to a depth first interpretation, in terms of the

sequence of operations performed. The purpose of this chapter is to show that

logic programs can be. interpreted by dividing them into smaller pieces that can

be solved by independent interpreters. The next two chapters will define parallel

processes, processes that solve their piece of the problem by creating more than

one subprocess simultaneously.

3.1. Oracle

The decomposition of a logic program into a set of AND and OR processes is

based on the notion of an oracle, which is an interpreter or machine that solves

some problem in one step relative to the interpreter that consults it [30].

41

42

The use of oracles in defining independent computations can be illustrated

using the following definition of a function that computes the sum of the squares

of its two inputs:

ssq{X,Y,Z) •»— product{X,X,X2) &product{Y,Y,Y2) &sum{X2,Y2,Z).

One way to compute the sum of the squares of the integers one through four is

by the following goal statement:

5317(1,2,A) & ssg(3,4,B) & 8um{A,B,C).

The first five derivations performed by a depth first interpreter are:

0: ssq{l,2,A) & ssq{3,4,B) & sum{A,B,C).
1: ♦— product{l,l,X2) & product{2,2,Y2) &

sum{X2,Y2,A) & ssq{3,4,B) &srim{A,B,C}.
product{2,2,Y2) &s«m(l,r2,^) &ssq(3,4,B) &8um{A,B,C).

•<— sum{l,4,A) & ssq{3,4,B) &8uin(A,B,C).
ssq(3,4,B) & 8um{h,B,C).

After four steps, the interpreter has solved 559(1,2,A) and bound the variable A

to the term 5. All four steps are part of the solution of 559(1,2,A); no resolutions

in this sequence are based on any other literal from the initial goal statement.

The last goal statement shown above contains every literal except 559(1,2,A)
from the initial goal; 559(1,2,A) has been resolved away.

The most important thing to notice about this sequence is the set of vari

ables that are instantiated in goal statement 4: the only variables instantiated

during this sequence of resolutions are those that occur in the literal that was

resolved away. No other variables can be instantiated. In this example, the vari

ables of the original goal are A, B, and C; only A was in 559(1,2,A), the literal

that was resolved away, and A is the only variable that can possibly be bound by

these resolutions. Furthermore, the possible bindings for A come from the tuples

of D(ssq), the denotation of ssq.

For the general case, consider an interpreter that resolves away a literal L

from a goal statement by N resolutions, in the process generating a sequence

i

G' • • • of goal statements. This interpreter could solve L in one inference

step by consulting an oracle to provide a tuple from D(L), constructing a positive

literal L' with the terms from this tuple, and then generating G^ by resolving L'
with G^ An interpreter that can consult more than one oracle has the potential

for exploiting parallelism. In order to do this, the interpreter must analyze a goal

statement and identify two or more literals that can be solved independently and

simultaneously by oracles; this topic will be discussed in Chapter 5

An overview of an interpretation in the AND/OR Process Model is that OR

processes are essentially oracles. They are created to answer questions about

exactly one literal, AND processes consult one oracle for each literal in the body

of the clause they solve, and coordinate the answers from the oracles until a set

of answers has been found that satisfies all literals simultaneously.

3.2. Messages

As a computation in the AND/OR Process Model proceeds, a tree of

processes will be created. The initial goal statement is used to define the process

at the root of the tree. As a result of some transformations, a process may create

new processes as its descendants; these new processes will solve parts of the prob

lem their parent was created to solve. The process tree is not the same as the

goal tree defined earlier: the subproblems solved by descendants are not the same

as the subproblems of the goal tree, and the parallel control to be described in

the next two chapters is not a parallel search of a goal tree.

All messages sent during a computation are either from a process to one of

its immediate descendants, or from a process to its parent. Messages are never

sent between siblings or any other "family tree" relation. Messages sent to des

cendants are start, redo, or cancel, and messages sent to the parent a.Te success or

fail.

The start message is self-explanatory. When a process has reached a state

where it has one or more independent subproblems to solve, it creates descendant

processes (with appropriately defined initial states to be defined later) to solve

them, and sends them all start messages.

44

A success message is sent to the parent when a process has solved the task

given to it by its parent. That task is represented as a set of literals. The suc

cess message contains a copy of this set of literals, with variables instantiated.

For example, if the subproblem is to solve the literal p(A), and it can be solved

by binding A'to 0, then the success message will be the term success(p(0)).

A fail message is sent when a process cannot solve its problem. After send

ing the fail message, the process is transformed into the final state and ter

minates.

When a process has received an answej from a descendant, and later finds it

cannot use that answer, it can send a redo message to the descendant, telling it

to solve its subproblem in another way. This means the parent needs a different

set of bindings for the variables in the subproblem.

Finally, a process may reach a state where it will never use any success mes

sages that a descendant may send, in which case it sends the descendant a cancel

message. A process that reads a cancel message is transformed directly into the

final state and terminates.

3.3. OR Processes

As defined earlier, an OR process is created to solve exactly one literal. The

basic requirements for an OR process will be described in this section. A detailed

description of a parallel OR process, one that can have many descendants operat

ing in parallel, is the subject of the next chapter.

An OR process created to solve a literal L must search the entire program

for a clause with a head that can be unified with L. A sequential OR process

searches the program linearly, from top to bottom, stopping when it encounters a

clause with a head that matches L. If there are no such clauses, the process

sends its parent a fail message and terminates.

There are two cases to consider when the OR process finds a clause with a

matching head, depending on whether this clause is a unit clause or not. If L

matches a unit clause, then the OR process can immediately construct a success

message for its parent. For example, if L is p(a,A), and there is a unit clause

I

45

p(Z.b) - .

in the program, then the OR process can send success(p(a,6)). If L matches the
head of an implication, the OR process creates a descendant AND process to
solve the body of the implication. For example, if L is p{a,X), and the program
contains the implication

p(V, g(V) r(VF)-

then an AND process is created to solve the goal statement

^ q{a) & rlA").

When the descendant AND process sends a success message (such as
success((7(a) &r{b)), denoting the fact that Xwas bound to 6), then the OR pro
cess constructs a success message for its own parent.

If an OR process receives a redo message from its parent, it must solve its
problem another way. Again, there are two possibilities, depending on whether
or not the previous answer was created from a unit clause. If the previous
answer was formed from a unit clause, the sequential OR process must resume its
search for another clause to unify with L; if there are no more clauses that match
L. then the process sends a fail message to its parent. If the previous answer was
obtained from a nonunit clause, i.e. it was based on a success from a descendant,
then that descendant is sent a redo message, and the OR process waits for a
response from the descendant.

When an OR process receives a fail message from an AND descendant, it
must find another clause that matches L. This could lead to the creation of a
new descendant (if L matches the head of another implication), an immediate
success (if L matches a unit clause), or failure (if there are no more clauses with
heads that match L). • '

An OR process sends a cancel message to its descendant only when it
receives a cancel from its own parent.

46

3.4. AND Processes

An AND process must solve all of the literals in the goal statement given to

it by its parent. The literals are solved by creating OR processes for each one. A

sequential AND process solves the goal statement much the same as an inter

preter that performs a depth-first search. An OR process is created for the left

most literal of the goal statement. If the OR process sends a success message,

bindings in the answer are applied to the remaining unsolved literals, and an OR

process is created for the very next literal in the goal statement. If the OR pro

cess sends a fail, then the most recently solved literal must be redone, i.e. a redo

message is sent to the OR process created to solve that literal.

An AND process can send its parent a success after all descendant OR

processes have sent successes. A sequential AND process fails if the first literal

cannot be solved, i.e. if the OR process for the leftmost literal sends a fail mes

sage. When an AND process receives a redo from its parent, it in turn must send

a redo to one of its own descendants; in a sequential AND process, this will be

the process created to solve the rightmost literal.

3.5. Interpreter

An interpreter that executes a logic program by decomposing it into AND

and OR processes has been implemented in DEC-10 Prolog. Since both AND and

OR processes can be either parallel or sequential in nature, there are actually four

different interpreters. The measurements and examples used in this section are

from interpreter APOP (And Parallel - Or Parallel), but in fact all four inter

preters produce the same kinds of output. All four interpreters share the same

kernel of scheduling procedures, performance measuring routines, message passing
primitives, and other low level supporting code. Details of the implementation of

the kernel and of parallel processes are given in Appendix I.

After it solves a problem, the interpreter prints out the number of processes
created, and, for each process, the number and size of each kind of message sent.
Associated with each process and each message is a "time stamp", represented as

an integer. The interpreter is able to use this information to create plots, such as

P

I

47

the one shown in Figure 9, that show the relationship between the transforma

tions performed on the processes. The vertical axis represents the number of
processes: the transformations of one process are plotted on one line. The hor
izontal axis represents time. The interpreter records the fact that each transfor
mation takes one time unit. When a message bearing time stamp T triggers a

transformation that causes other messages to be sent, those new messages will

have time stamp T+l- If the interpreter transforms process number P at time T,

then a dash will be plotted at coordinates (P,T). Note that if P sends a message

to Q as part of the transformation plotted at (P,T), there will be a dash at
(Q.T-hl) as a transformation of Q is triggered by this message. The plot in Fig
ure 9 was produced by the solution of

paper{P,l97S,uci).

with interpreter APOP.

The plots provide an estimate of the amount of parallelism possible. Wher
ever there are two dashes plotted for the same time (same column), there is the

possibility that two processing elements could be performing the corresponding
state transitions in parallel. The plots are not to be construed as simulation

results, giving a realistic timing of a parallel execution. In physical terms, such

plots could only be realized on a system that has an infinite number of processing
elements, each dedicated to solving just one process, and where each processor is

capable of passing a message to any other processor in a constant amount of
time. This interpreter was built to see if there is parallelism to be found in logic

programs. The answer is "yes" if the plots show more than one dash in a
column. The problem of mapping processes onto processing elements, of "distri

buting the dashes" so that a parallel solution is performed when problems are

actually solved by a physical network of processing elements, will be discussed in

Chapter 6.

48

<- OR process for 'paper(P,1978,uci)'
<- AND process for 2nd implication
<- AND process for 1st implication

Maximum number of dashes per column = 4

15 processes executed 62 steps in 28 time units: 2.22

Messages Summary: 69 messages sent, using 573 characters.

Process Number of Size of Number of Number of Number of Number

ID Successes Successes Fails Redos Starts Cancel

1 3 (91) 3 1 0

2 3 (85) 2 2 0

3 1 (35) 4 5 4

4 1 (58) 1 5 6 5

5 4 (93) 1 0 0 0

6 4 (93) 0 0 0

7 • 1 (23) 1 0 0 0

8 0 (0) 1 0 0 0

9 0 (0) 1 0 0 0

1 0 (0) 1 0 0 0

1 1 (26) 0 0 0 0

1 1 (19) 0 0 0 0

1 0 (0) 1 0 0 0

1 0 (0) 1 0 0 0

1 0 (0) 1 0 0 0

Interpreter output shoving plot of solution of paper(P,1978,uei). Process 2 is
the parallel OR process created to solve that literal; the state transitions are ex
plained in detail in Chapter 4. Processes 3 and 4 are parallel AND processes
created to solve the bodies of the implications in the procedure for paper. The
transitions of process 4 are described in detail in Chapter 5.

Figure 0. Interpreter Output

I

I

I

I

I

49

3.6. Programming Language

Many of the extensions to the formalism of logic programming included in

most Prolog systems are meaningful only in single processor, sequential systems.

Most notable are assert and retract, which modify the database of clauses in the

program, and the cut symbol, which is used to guide the global search process.

The language supported by the parallel interpreter also extends the formal

ism, but only with constructs that make no assumptions about the number of

processors available to interpret the program or about whether the processors

have access to a common memory. The eventual hardware is presumed to be a

collection of asynchronous, autonomous processing elements, each with its own

local memory and its own copy of the program being interpreted. The AND/OR

Process Model may eventually be implemented on a multiprocessor in which pro

cessors share a common memory, but at this time it is best to make the worst

case assumption that the processors will be completely independent. It will be

easier to optimize a model that makes no assumptions about shared memory

when it is implemented on a system with shared memory; it will be much harder

to implement a model that assumes a common memory on a system that does not

have common memory.

The extensions to logic programming supported by the interpreter are:

The evaluable predicate is for performing arithmetic operations (Section

2.4.1).

Definition of <— and & as infix operators, and the evaluable predicates =..

and call, thus allowing higher order functions.

Negation as failure.

Conditional expressions.

The last two extensions, negation and conditional expressions, are imple

mented in Prolog in terms of the cut symbol (see Section 2.4.3). The same

behaviors (e.g. a goal that fails when its argument is a goal that succeeds) can be

implemented in the AND/OR Process Model, but by using specially defined

processes instead of the cut symbol.

50

Negation as failure is implemented by a special OR process, created when

ever the literal to be solved is of the form not{G). This OR process will create an

AND descendant to solve the goal G passed as a parameter. If the descendant

returns a fail message, then the OR process sends success{G) to its own parent; if

the descendant sends success(G) then the OR process sends fail to its parent and

cancel to the descendant.

Conditional expressions can be written in DEC-10 Prolog, using —>• and ;

as infix predicate symbols:

f\-p^q\r.

The Prolog interpreter translates clauses of this form into two separate clauses,

one of which has a cut symbol(Section 2.4.3):

f:-p,\,q.
f:-r.

One way of implementing conditional expressions in the AND/OR model also

involves translation into two new clauses, but neither contains a cut symbol:

f p & q.
f 1— not{p) & r.

.\nother method for implementing conditionals, by using special AND processes,

is presented in Chapter 6.

3.7. Chapter Summary

The AND/OR Process Model provides a framework for interpretation of

logic programs that allows an interpreter to identify subcomputations that can be

performed by independent interpreters. The independent interpreters are

processes that communicate with their parent process via, messages. The descrip

tion presented in this chapter was a description of the minimum behavioral

requirements of each kind of process. A global perspective of the computation

performed by these minimal processes would show the same computation carried

out by a standard depth first interpreter, since the same sequence of inferences is

generated, and in the same order.

51

The depth first interpretation is defined in terms of a search of a global tree

of goal statements, strongly implying a yon Neumann architecture for the under

lying hardware. The AND/OR Process Model, on the other hand, presents a
method for interpretation by small, asynchronous, and logically independent

processes that communicate only through messages. Thus the first step in the
design of a highly parallel architecture for logic programs has been taken: it has

been shown how a logic program can be executed by independent interpreters.

The next step is to show how these interpreters can exploit parallelism by creat

ing a number of processes that carry out subtasks simultaneously.

p
p
p

CHAPTER 4

Parallel OR Processes

An OR process is the embodiment of an oracle, an independent interpreter

created to solve a goal statement of exactly one literal. An OR process created to

solve an n-ary literal p(A'i • • • An) is expected to construct the set D^(p), i.e. it

must construct sets of n-tuples <<i • • • such that p(<i ' ' ' t^) is provable.

OR processes do not attempt to construct the entire relation all at once. In

this respect, they behave in the same manner as sequential interpreters, since

they respond with the first tuple that satisfies the initial goal. After reporting

this first response, they are suspended, and only a request for additional answers

causes the process to send additional answers.

If a procedure p(A'i • • • A'J is defined by more than one clause, sequential

OR processes (and sequential, depth first interpreters) construct D'(p) by first

obtaining all tuples defined by first clause, then all tuples defined by the second

clause, and so on. When D^(p) is finite, the process fails after obtaining the last

tuple defined by the last clause. The issue of infinite relations, and the effect of

infinite branches on both sequential interpreters and OR processes, will be dis

cussed further in the summary at the end of this chapter.

Relations have been defined to be unordered sets of tuples, so the ordering of

tuples defined above is not necessarily part of the meaning of a predicate. In par

ticular, a parallel control structure could construct by interleaving tuples

defined by the various clauses in the procedure. The parallel OR processes

defined in this chapter attempt to construct answers based on all clauses simul

taneously. D' is assembled as the messages from the descendant processes arrive,

and the order of tuples depends only on the timing of the success messages

received.

52

53

4.1. Operating Modes

When an OR process is first created, it assumes that its parent AND process
is waiting for an answer. The first tuple constructed by the OR process should

be sent (via a success message) to the parent. After this, however, the tuples
should be saved and not sent to the parent until that process sends a redo mes

sage. The OR process acts as a message center, deciding when to transmit results

and when to store them.

An OR process is in waiting mode when its parent is waiting for an answer,
and is in gathering mode when the parent is busy, using the answer sent previ
ously. Processes will switch back and forth between these two operating modes.

The rules for changing from one mode to the other are based on the order of suc

cess and redo messages received, and on the number of tuples that have been

constructed but not yet sent to the parent.

4.2. State Transitions

The diagram of Figure 10 summarizes the conditions under which a process
changes states. The following sections will describe in detail how a parallel OR

process reacts to the messages it receives. Every transition in Figure 10 will be

explained. State transitions in the figure have labels of the form X/Y, meaning
that the transition was triggered because the OR process received message X, and

that as a result of the transition it is transmitting message Y. The labels can be

T (for fail), 's' (for success), 'c' (for cancel), or 'r' (for redo). Throughout these

discussions, the following symbols will be used:

L Avill stand for the literal to be solved by the OR process.

S' is the input state (the state of the process before a message is processed)
and S" is the output state.

WL is the waiting list, a list of answers not yet sent to the parent, and SL is

the list of answers that have been sent.

DL is a list of IDs of descendant processes.

r/s

s/r

gathering

<fail>

c = cancel

f = fail

r - redo

s = success

54

f/

waiting

< error>

A parallel OR process works in one of two modes; gathering or waiting. The
transitions between modes are summarized here. A label X/Y on an arc means
message type X was the input message, and message type Y is output (see text for
explanation of multiple arcs).

This figure originally appeared in "Parallel Interpretation of Logic Programs",
by Conery and Kibler [15].

Figure 10. Operating Modes of Parallel OR Process

55

4.2.1. Start Message

In its initial state, an OR process has no descendants, and WL and SL are
both the empty list. When the process receives the start message from its parent,
it creates descendant AND processes for every implication with a head that
matches L, adds the IDs of these processes to DL, and constructs answers to send
the parent for every unit clause that matches L.

The following states may result:

- If no clause has a head that unifies with L, then the OR process fails
immediately. S" will be done (the final state), and a fail message is sent to
the parent.

If L unifies with the heads o! N> 0 implications, but no unit clauses, then
iV descendant AND processes are created, and the process will be in waiting
mode in S® . SL and WL will remain empty lists.

- If L unifies with the heads of N> 0 implications and M> 0 unit clauses,
then create N descendant AND processes (as above), and also construct
answers from the A/unit clauses. Let Ml be one of those answers, and MR
be the remaining answers. Send swccess(A/l) to the parent. The OR process
will be in gathering mode in S® , with WL equal to MR, and SL equal to
[A/1].

4.2.2. Success Message

Whenever a parallel OR process receives a success message from a descen
dant, it responds by sending that descendant a redo, causing it to immediately
start working on its next answer. Further processing depends on whether the OR

process was in gathering or waiting mode in S'.

Transition marked s/s from waiting mode

When a waiting OR process receives a success message from one of its des
cendants, it creates an answer Aand sends success{A) to its parent. The process
switches to gathering mode in S®, with Aappended to SL. WL is unchanged.

1

I

I

56

Transition marked s/ from gathering mode

If a gathering OR process receives a success message, it constructs answer A,

but does not send it; .4 is appended to WL, SL is unchanged, and the process

remains in gathering mode.

4.2.3. Fail Message

Whenever an OR process receives a fail message from a descendant, the ID

of the failed process is removed from the descendant list DL.

Transition marked I/ from waiting mode

If there are still descendants working (i.e. DL is not the empty list after

removing the failed descendant), then no further action is required; remain in

waiting mode.

Transition marked f/f /rom waiting mode

If DL is now the empty list, then send fail to the parent, since the parent is

waiting for some response, and there is now no way to construct another answer.

Transition marked f/ from gathering mode

No further action is required. Remain in gathering mode, and do not send a

fail message yet, even if DL is now the empty list, since the parent is currently

busy.

4.2.4. Redo Message

By definition, an OR process is in waiting mode if its parent is waiting for an

answer. A redo message in this case denotes a system error condition.

A gathering OR process handles a redo from its parent in one of three ways,

depending on the states of WL and DL:

Transition marked t/s from gathering mode

If WL, the list of answers not yet sent to the parent, is not empty, then

select one answer A from WL. Send success (A) to the parent, append A to SL,

and remove A from WL. The OR process remains in gathering mode.

57

Transition marked r/f from gathering mode

If \VL is empty, then check the list of descendants DL. If DL is also empty,

then there is no way to make another answer. Send the parent fail, and ter

minate.

Transition marked r/ from gathering mode

If WL is empty but DL is not, meaning there is still a chance that an active

descendant can produce further answers, then go into waiting mode. SL and WL ^
are not changed.

4.3. Example

Figure 11 (the four page figure at the end of the chapter) shows the states of

the parallel OR process created to solve the literal

paper(P,l97S,uci). ||||
The states are from the printout produced by the trace mechanism in the inter

preter. This process is Process 2 from the plot of Figure 9 (Chapter 3).

The first transition occurs when the process receives the start message from

process 1. There are three clauses that have heads that can be unified with

paper(P,1978,uci). One of them is the unit clause paper{xform,1978,uci), so an

answer based on that literal is sent to the parent, and the process is in gathering

mode in the next state. Processes 3 and 4 are created to solve the bodies of the

other two clauses. Note that SL contains the answer sent and WL is empty.

The second transition is triggered by a redo message from the parent. There

are no answers in WL, so the process goes into waiting mode until a message

arrives from either descendant.

Transition <3> occurs when one of the descendants, process 4, sends a suc

cess message. Since the parent is waiting, this answer is sent immediately (and

also appended to SL). Process 4 is sent a redo message, and the OR process goes

back to gathering mode.

While the process is still in gathering mode, the other descendant sends a

success. This answer is appended to WL, the descendant is sent a redo message,

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I 58

and the process remains in gathering mode.

Transition <5> is triggered by a redo message from the parent. There is

an answer ready for it in WL, so this answer is sent immediately. The process

remains in gathering mode.

Note: the success and the redo read in transitions •<4> and <!5> may be pro
cessed in either order, and the state of the OR process will still be the same.

A redo message is received from the parent (transition and WL is

empty, so the OR process goes into waiting mode.

The next transition occurs when one descendant sends a fail message. The

record of the descendant (3) is removed from DL, and the OR process remains in

waiting mode.

Note: the order of arrival of the fail and redo messages that trigger transitions
<6> and <7> is also not important.

Finally, the last remaining descendant, process 4, sends a fail. There are

now no more active descendants, and the OR process can not make any more

answers. The parent is sent a fail message, and the output state is done.

4.4. Chapter Summary

Parallel OR processes have the same I/O behavior as their sequential coun

terparts defined in the previous chapter. They are independent interpreters,

created to solve goal statements of one literal. If the goal is solvable, they

respond with a success message containing one tuple from the denotation of that

literal; otherwise they send back a fail message. Additional answers are not sent

until the parent process sends a redo message. The main difference between

sequential and parallel OR processes is that parallel processes are message

centers, coordinating the actions of multiple concurrent descendants, whereas

sequential processes need to monitor at most one descendant process at any one

time.

Sequential OR processes are sensitive to the order of the clauses in a pro

gram. The order of the answers sent to a parent is a function of the relative

59

order of the clauses. A side effect of this ordering is that it is possible to con
struct a procedure for pfor which D' 7^ D^. Asimple example is provided by a
procedure that contains the clause

p p.

\V hen a depth first interpreter encounters such a clause in a procedure for p, it
generates an infinite subtree in the search space. This interpreter will never find
an\ answers to the right of the infinite subtree, answers which may be defined by
later clauses for p. Sequential OR processes will also be trapped in an infinite
computation by this clause: the body is used to start an AND process, and then
the AND process starts an OR process to solve p, and then that OR process
starts another AND process for the same clause, and so on.

Parallel OR processes, on the other hand, have the power to find more
answers than either sequential OR processes or depth first interpreters. Parallel
OR processes create the same nonterminating AND processes for the same clauses
that sequential OR processes do, but the parallel processes are able to obtain
answers from other clauses. This does not guarantee that OR processes construct
all of D'(p). It is still possible to construct a set of clauses such that the null
clause can be derived through a series of resolutions, but for which the control
strategies of the AND/OR process model are not capable of deriving any null
clause. These pathological ca.ses will be described at the end of the next chapter,
since they concern the method for solving literals in the body of aclause in paral
lel.

1

I
f

60

Key to the State Information of Parallel OR Processes

Most of the state information for an OR process is self-explanatory. The operating mode
(waiting or gathering) is given on the first line. The goal given on the second line is a copy of the
original goal the OR process was created to solve; the variables in this copy are never bound. The
list of active descendant AND processes keeps three pieces of information about each descendant:
its process ID number, and a copy of the complete clause, both head and body, of the clause used
to create that process.

The numbers <N> stand for transition numbers.

<1>

OR Process 2 (gathering) after 'start' from Process 1, T = 1
Goal: paper(P,1978,uci)
Parent ID: 1

Descendant List [Process,Head,Body]:
[3, paper(P',1978,uci), jtr(P',uci),date(P',1978)11
[4, paper(P",1978,uci), [date(P",1978), author(P",A"),loc(P",uci)]

Answers Sent: Answers Waiting to be Sent:

paper(xform,1978,uci)

Figure 11. States of a Parallel OR Process

<2>

OR Process 2 (waiting) after 'redo' message from Process 1, T = 4
Goal; paper(P,1978,uci)
Parent ID: 1

Descendant List [Process,Head,Body];
[3. paper(PM978,uci), [tr(P',uci),date(P',1978)| j
I4, paper(P'M978,uci), [date(P",1978), author(P",A"),loc(A",uci)]

Answers Sent: Answers Waiting to be Sent:

paper(xform,1978,uci)

<3>

OR Process 2 (gathering) after 'success([date(eft,1978),
author(eft,kiing),loc(kling,uci)|)' from Process 4, T = 14

Goal: paper(P,1978,uci)
Parent ID: 1

Descendant List [Process,Head,Body):
[3, paper(PM978,uci), [tr(P',uci),date(P',1978)| j
[4, paper(P",1978,uci), [date(P",1978), author(P",A"),loc(A",uci)]

Answers Sent: Answers Waiting to be Sent:

paper(eft,1978,uci)
paper(xform,1978,uci)

Figure 11 Continued

61

I

I

I

I

i

I

I
I

<4>

OR Process 2 (gathering) after 'success([tr(df,uci),date(df,1978)])'
from Process 3, T = 15

Goal: paper(P,1978,uci)
Parent ID: 1 . ,

Descendant List [Process,Head,Body];
[3, paper(P',1978,uci), [tr(P',uci),date(P',1978)| j
14, paper(P",1978,uci), [date(P",1978), autbor(P",A"),loc(A",uci)|

Answers Sent: Answers Waiting to be Sent:

paper(eft,1978,uci) paper(df,1978,uci)
paper(xform,1978,uci)

<5>

OR Process 2 (gathering) after 'redo' from Process 1, T = 17
Goal: paper(P,1978,uci)
Parent ID: 1

Descendant List [Process,Head,Body]:
[3, paper(P',1978,uci), [tr(P',uci),date(P',1978)| j
(4, paper(P",1978,uci), [date(P",1978), author(P",A"),loc(A",uci)

Answers Sent: Answers Waiting to be Sent:

paper(df, 1978.uci)
paper(eft,1978,uci)
paper(xform, 1978,uci)

Figure 11 Continued

62

<6>

OR Process 2 (waiting) after 'redo' from Process 1, T = 20
Goal: paper(P,1978,uci)
Parent ID: 1

Descendant List [Process,Head,Body]:
[3, paper(P',1978,uci), [tr(P',uci),date(P',1978)|]
[4, paper(P",1978,uci), [date(P",1978). author(P",A"),loc(A",uci)

Answers Sent: Answers Waiting to be Sent:

paper(df,1978,uci)
paper(eft,1978,uci)
paper(xform,1978,uci)

<7>

OR Process 2 (waiting) after 'fail' from Process 3, T = 23
Goal: paper(P,1978,uci)
Parent ID: 1

Descendant List [Process,Head,Body):
[4, paper(P",1978,uci), [date(P",1978), author(P",A").Ioc(A",uci)

Answers Sent: Answers Waiting to be Sent:

paper(df,1978.uci)
paper(eft,1978,uci)
paper(xform,1978,uci)

<8>

OR Process 2 after fail' from Process 4, T = 26
done

Figure 11 Continued

63

I
I

i

1

CHAPTER 5

Parallel AND Processes

Sequential AND processes, as defined in Chapter 3, simply mimic sequential

interpreters by solving their subgoals one at a time, from left to right. A parallel

AND process is one that can solve more than one literal at any time. AND paral
lelism involves creating more than one OR process simultaneously, and then coor

dinating the responses to success and fail messages from these descendants until

all literals have been successfully solved.

The brute force method for AND parallelism is to immediately cres^te a pro

cess for every literal on the first step. There are three reasons why this will not

be effective; all three reasons are based on the fact that the solution of one literal

often binds variables that are arguments.in other literals.

The first drawback to brute force parallelism is that the AND process must

ensure that solutions for the different literals bind common variables to the same

terms, and this may be quite difficult in the general case. For example, given the

goal statement

^ p{A,B) & q{B,C^ & r{C,A)-

the AND process has to find tuples <A,B,C> that satisfy all three predicates at

the same time.

A second argument against solving all literals at once is that by waiting

until variables in literals are bound (via the solution of other literals), the OR

process created to solve those literals may be more efficient: there are often fewer
solutions, and fewer fruitless choices made in constructing those solutions (Sec

tion 2.5).

Finally, and of most practical importance, some literals fail if an attempt is

made to solve them before a sufficient set of variables are instantiated; these are

the literals with thresholds or mode declarations (Section 2.4.1). For example, in

64

65

the goal statement

^ length(L,N) & X is 2*N.

the goal of multiplying N by two fails unless N is instantiated to an integer via
the solution of the first literal.

An effective method for achieving AND parallelism is thus a problem of
correctly ordering the literals, of deciding which literals must be done sequentially
and which can be done in parallel. The implementation of AND parallelism
defined in this chapter has three major components. There is an ordering algo
rithm that automatically decides, based on the current state of the goal list, the
order in \Nhich the literals should be solved. The forward execution component
actualh creates the descendant OR processes; it handles success messages, and
determines which (if any) literals can be solved as a result. The third component
is known as backward execution, and handles fail and redo messages to decide
which literal(s) must be re-solved before continuing forward execution.

5.1. Ordering of Literals

The basis for the ordering of literals in the body of a clause is the sharing of
variables. Whenever two or more literals have a variable in common, one of the
literals will be designated the generator for the variable, and it will be solved
before the others. The solution of the generator literal is intended to create a
value for the corresponding variable. After the generator has been solved, the
other literals that contain that variable, the consumers, may be scheduled for
solution. A generator will be defined for every variable in a goal statement. It is
possible that the solution of a generator will not bind the variable, so that consu
mers still have a variable in common; this situation is discussed in section 5.2.

Generators and consumers are similar to the lazy producers and eager consu
mers of IC-Prolog [11]. The term "generator" is used here, since their action is
more closely related to generators in other languages (see, for example, Alphard
[66]), in that they produce a sequence of independent terms, as opposed to parts
of a single complex term through a series of partial bindings. Note that a literal
can be the generator of some variables and a consumer of others. This is

P
P
P
P

66

especially true when the literal is a function call, when some of the arguments are

input arguments and the others must be uninstantiated variables that will be

bound by the execution of the function.

5.1.1. Dataflow Graphs

Generator and consumer relationships can be shown pictorially as a dataflow

graph. In these graphs there will be one node for each literal in a clause, includ

ing the head. There is a set of directed arcs for each variable in the clause. In
each set, the arcs go from the generator literal to each literal that consumes the

variable. An immediate predecessor of a literal L is defined to be a literal that is

a generator for one of the variables in L. A predecessor, in general, is either an
immediate predecessor or a predecessor of an immediate predecessor.

The head of the clause is a special case. It is the generator of every variable

that is bound when the process is created. The ordering algorithm of the next

section requires this information, so the head of the clause (i.e. the literal being

solved by the parent OR process) is included in the state information of a parallel

.AND process (see Appendix 1 for details). The head literal is also the consumer

of variables that are not instantiated when the clause is called. In some of the

pictures of dataflow graphs, arcs will be drawn from the generators of those vari
ables to the head to indicate this fact.

5.1.2. The Ordering Algorithm

There are a number of rules one can use to identify generators. The first,

mentioned above, is that the head of a clause is the generator for all variables

that are instantiated when the clause is invoked.

Second, some of the literals in the body may have I/O modes (Section 2.4.1).

These may be evaluable predicates, for which the system already knows the

modes, or they may be user-defined functions, in which case the user must specify

a mode declaration. A good example is the evaluable predicate is from DEC-10

Prolog, which has the mode declaration

67

•.-mode js(?,+).

This declaration shows that is has two arguments. The question mark means

that terms in that argument position can be either variables or nonvariable

terms. The plus sign means that the corresponding argument must be a ground

term; it must not contain any uninstantiated variables by the time the literal is

selected for solution. Another possibility (not shown in this example) is a minus

sign, which means that the corresponding argument must be an uninstantiated

variable, and that as a result of the procedure call the variable will be instan

tiated. If there is a minus sign in the mode declaration for a predicate, then the

ordering algorithm knows that a literal with this predicate symbol must be the

generator for any variables used in that argument position. A plus sign means

the literal can never be the generator for any variables occurring in the

corresponding argument position. The above mode declaration indicates that a

literal ts(A', T) can never be a generator for any variables occurring in an expres

sion in the second argument position, but might be the generator of a variable

that is the first argument.

The two rules just described, that the head is the generator of variables that

are bound when the procedure is called and that mode declarations cannot be

violated, are the only two strict rules. By themselves, however, they are not

sufficient to designate generators for every variable in the body of a clause.

There are a number of heuristic rules that could be used in conjunction with the

first two rules in order to both make sure all variables have generators and the

resulting ordering is relatively efficient. A number of these heuristics were given

in Section 2.5. The only heuristic currently implemented in the ordering algo

rithm is the connection rule, which is a special case of the rule that calls for

selection of the literal with the largest number of instantiated variables. Briefly,

when the connection rule is applied, it attempts to find a literal that consumes

variables for which generators are already known, and which can be designated

the generators of other variables that do not yet have generators. The connec

tion rule is stated more concisely as step 3.a of the ordering algorithm (Figure

12).

I

I

I

I

I

I
'6.

I

I

I

1

jl

I

I

I

I

•

P
P
P

08

The ordering algorithm uses the following variables:

B The set of literals in the body. Initialized to contain every literal in the
body; when a literal is designated as a generator, it is removed from B.

S The set of variables for which generators have been specified.
U The set of variables for which generators are not known yet. Note that the

union of S and Ucontains every variable in the clause.

The algorithm:

1. Identify as many generators as possible using mode declarations; remove
those literals from B, and initialize 5 to be the variables generated by these
literals.

2. Add to S the variables instantiated in the head of the clause; the head is the
generator of these variables. Initialize Uto be the set of all remaining vari
ables.

3. Repeat until B=[] or f/=[]:
a. Make a set LS with every literal in B that has at least one variable in

Uand one variable in S {note: if 5 is empty, L5will also be emptj}.
b. If LS is empty after step (a), find the leftmost literal in B that has a

variable in fy 'and add it to LS {LS contains just this one literal}.
c. For every literal L in LS, assign L as the generator of any variables in

Uthat occur in L. Remove these variables from Uand add them to S.
Remove L from B.

Figure 12. The Literal Ordering Algorithm

69

Finally, if none of the three rules described above identifies a generator for a

variable, the leftmost literal in which the variable occurs is designated as the gen
erator for that variable. This rule, called the "leftmost rule", is included to make

sure that every variable will have a generator.

Note that since mode declarations are known before a clause is called, the

second rule can be applied when clauses are first loaded by the interpreter. The

other rules can only be applied at runtime, once the pattern of variable instantia

tion in the clause is known. Logically, any literal can be the generator of any
variable that appears as one of its arguments. The only exceptions are deter

mined by evaluable predicates or user defined procedures with mode declarations.

The ordering algorithm is used primarily to ensure that mode constraints are not

violated, and secondarily to produce an efilcient ordering.

The Prolog code and a more detailed description of the ordering algorithm

are given in Appendix I. This algorithm was used to produce every dataflow

graph pictured in this dissertation.

5.1.3. Examples of Literal Orderings

The ordering algorithm will be illustrated by four examples, each showing a

different pattern of variable instantiation in the body of a clause. The dataflow

graphs produced for these examples are shown in Figure 13.

Disjoint Subgoals

fiXJ) ^ g(X) & h{Y).

In this example the two literals in the body are clearly independent. The

graph pictured is for the case when neither X nor Yis instantiated when the pro
cess is created. The leftmost rule was used to designate g{X) as the generator of

A' and h(y) as the generator of Y. Note that if there are Nq solutions for g[X)
and Nh ways of solving h{ Y), then D'(f) will contain Nq x pairs of X and Y
values. The remaining pairs, after the first, will be created in response to redo
messages; the method used to enumerate all pairs is described later in the section

on backward execution.

I

i
I
I
I

Clause:

Call:

f{X,Y)^g{X)&h{Y).

-fiX,Y).

(13a)

Clause:

query{P,I) -author(P,X) d loc(X,IJJ).

- query(FfUci).
Call:

query(P,I)

author(P,X)

(13b)

loc(X,I.D

Figure 13: Dataflow Graphs

70

solve{P,Q) - divide{P,P\,Pi) &
solve(P\,Qi) &
solve{P2,Q2) di

combine (Q1,Q 2,Q)

(13c)

head;

solve(P,Q)

#2

solve(Pl,Ql)

color(A ,B ,C ,D ,E) -
next(A,B) & next(C,D) d next(A,C) A next(A,D) d
next{B,C) d next(B,E) d next(C,E) d next(D,E)

#5;

next(B,C)

#3:

next(A,C)

#2

next(C,D)

#1:

next(A,B)

#4:

next(A,D)

#7:

next(C,E)

Figure 13 (Continued)

#1:

divide(P,Pl,P2)

#4:

combine(Ql,Q2,Q)

#6:

next(B,£)

#8:

next(D,E)

#3:

solve(P2.Q2)

71

I

!

Shared Variable

query{P,I) author(P,X) & loc(X,I,D).

The two subgoals have the variable X in common, and no call to query can

ever cause A' to be instantiated when the clause is selected. When the AND pro

cess is created, if I is instantiated but P is not, then the connection rule specifies

that loc(XJ,D) should be the generator of X Otherwise, author{P,X) is desig

nated, either through the connection rule (if only P is instantiated, as in the pic

ture in Figure 13b) or the leftmost rule (if neither or both are instantiated). This

is an example of where the connection rule implements the optimal ordering

described in Section 2.5.2, based on the number of instantiated variables in each

literal.

Deterministic Function

solve(P,Q) •>— divide(P,Pl,P2) &
solve(Pl,Ql) &
solve{P2,Q2) &
combine(Ql,Q2,Q).

This clause illustrates the general form of a deterministic function expressed

as a clause. On every call, P will be bound to a term representing the input

problem, and as a result of the call Q will be bound to a term representing the

output of the function application. The optimal ordering of subgoals is: divide

problem P into independent subproblems P^ and P2, then solve P^ and P2 in

parallel via the recursive calls, instantiating Qj and Q2; when both are done, con

struct answer Q from partial answers Qi and Q2. This sequence of events is

implied by the picture in Figure 13c; exactly how it is achieved is described in the

next section, on forward execution. This graph can be produced by repeated

application of the connection rule, so mode declarations are not required. In gen

eral, however, mode declarations may be required when producing the ordering

for functions.

Map Coloring

color{A,D.C.D,E) 1—
next(A,B) & next(C,D) & next{A,C) &
next(A,D) & next{B,C) & next{B,E) &
next{C,E) & next(D,E).

next(red,blue) *— . next{red,green) .
neit(blve,green) *— . etc.

The goal of this procedure (Figure 13d) is to see if there is an assignment of

one of four colors to the regions of the map, such that no two adjacent regions

have the same color. The calls to next will succeed only if the arguments have

been (or can be) instantiated to terms representing different colors. There is one

call to next for each border in the map. This formulation of the map coloring

problem as a logic program was originally given by Pereira and Porto in their

papers on intelligent backtracking [47, 48].

When this procedure is called, none of the variables in the head will be

instantiated. The literal ordering shown in the figure was produced by first using

the leftmost rule to designate next{A,B) as the generator for both A and B, i.e.

the solution of this literal assigns colors to regions A and B. The connection rule

was used to identify the three literals in the middle row as generators of the

other three variables. That leaves the remaining four literals as consumers. The

role of consumer in this problem is too verify that colors assigned by generators

are valid for the rest of the map.

Not unexpectedly, when this problem is interpreted, the generators in the

middle row create a combination of values that is unacceptable to some of the

consumers on the bottom row. There are a number of difficult problems

presented by this example, as the AND process tries to coordinate the four gen

erators in order to create, eventually, every five-tuple of colors that satisfy the

constraints of this goal list. Many of the problems arise from the relative timing

of the arrival of fail and success messages. The general principles will be

explained in the section on backward execution. A detailed trace of the parallel

solution of this problem is in Appendix II.

5.2. Forward Execution

Literals in the body of a parallel AND process will always be in one of three

states:, blocked, pending, or solved. A literal is in the solved state after an OR
process has been created for it, and that process has sent back a success message.
A literal is in the pending state when an OR process has been created for it, but

the process has not yet sent back any message. Finally, a literal is in the blocked
state when an OR process has not yet been created for it.

Forward execution is essentially a graph reduction procedure. Whenever the

.AND process receives a success message from a descendant, it means the
corresponding literal can be resolved away from the body of the clause; in the
dataflow graph, the node for the literal and all arcs leaving it are removed from
the graph. The AND process succeeds after a success message has been received
from every descendant, i.e. after the graph has been completely reduced. Recall
that a success message from an OR process created to solve a literal L has the
general form success {L9), where LB is a copy of L with (possibly) some variables
bound. The graph reduction step is accomplished by resolving -^L6 with the
current set of literals in the body of the clause. If L is a generator of a set of

variables, then some of those variables may be instantiated in LB. Envision

values flowing from L to the consumers, as the resolution of LB with the remain
ing literals causes those variables to be bound in the resolvent.

The criterion for deciding when to start an OR process for a literal is that a
literal is ready to be solved only when all of its predecessors have been solved,
i.e. when the corresponding node in the dataflow graph has no incoming arcs. If
the graph is acyclic, and each literal can be solved, then eventually a process will
be started for every literal. A more formal presentation of the forward execution
algorithm is given in Figure 14. Figure 15 shows the parallel solution of two
sample goal lists as sequences of graph reductions.

Figure 14 shows that the ordering algorithm will be applied after every suc
cess message is received. This is necessary for those cases when a generator binds
its variable VMo a non-ground term containing a new variable V . If there is

more than one consumer of V, they will then have a common variable in V .

I

1

75

1. When the start message is received, initialize a list 5 to be the complete
set of literals to be solved.

2. Repeat until B is the empty list:

a. Apply the ordering algorithm to the literals in B to make a dataflow
graph G.

b. Start an OR process for every literal in G that has no incoming arcs
and that does not already have a process.

c. Wait for a message from an OR descendant.

d. If the message is fail, call the backward execution algorithm (Sec
tion 5.3).

e. If the message is success(L9), resolve B with -iL0, making a new
body B {note: B now has one less literal, and bindings in 9 have
been applied to all remaining literals}.

Figure 14. Forward Execution Algorithm

p
p

76

Since literals with variables in common are not solved in parallel, and since every

variable must have a generator, the ordering algorithm must be called again to

specify a list of list generator for V' . When the generator binds to a ground

term, which contains no variables, then step 2.a can be omitted. The current

implementation of the interpreter makes the simplifying assumption that genera

tors bind their variables to ground terms, and all subsequent discussions in this

chapter will be based on this assumption.

The combination of the ordering algorithm and the forward execution stra-

teg>' is sufficient for parallel solution of clauses that define deterministic func

tions. The distinguishing characteristics of these clauses are that the literals in

the body are also deterministic functions, meaning they all have mode declara

tions, and for every combination of inputs there is just one output value for each

output variable. Barring system failure, deterministic functions are guaranteed

to succeed when given legal inputs.

Matrix multiplication is a good example of such a function. One way of

writing this function as a logic program is shown in Figure 17. The head of the

procedure is mm(A,BX)- When called, A and B will be bound to terms

representing matrices, and after the call, C will be instantiated to their product.

A row in a matrix is represented as a list of integers, and a matrix is a list of

rows (i.e. a list of lists; see Figure 17).

The top level of the function is simply a call to transpose one argument, fol

lowed by a call to a procedure that actually multiplies the matrices. BT is the

transposed version of B\ it is a list of columns instead of a list of rows. After

transpose succeeds, the problem is to distribute all possible pairs of rows of A

with columns of BT to the inner product function. This is done by the two auxi

liary functions mmt and mmc. The internal structure of these two procedures is

identical; there are two literals in the body of each; one literal is a call to a lower

level function with the first element of the input list, while the other literal is a

recursive call with the remainder of the list. The dataflow graphs for both func

tions show that the literals are independent, and can be solved simultaneously.

The inner product function shown here is sequential in nature, since the results of

Start process
for p(X)

Start process
for p(X)

*success(p(a))'
received;

start processes
for r(a) and q(a)

q(f(Y)) r(f(Y))

'success(p(f(Y)))'
received; start

q(f(Y)) as
generator for Y

q(f(a)

77

* \

(q(a) ^

'success(r(a))'
received; when
'success(q(a))'

received, process
is done

'success(p(f(a)))'
received; start

process for
r(f(a))

This figure shows two possible sequences of graph reductions during forward exe
cution for the goal statement

• ;7(X) <t 9(X) A r(X).

Nodes and arcs drawn with dotted lines have been removed. In the first
sequence, p(X) generates the ground term a, and r(a) and q(a) can be solved in
parallel. In the second sequence, X is bound to /(T), making the remaining literals
r(/(¥)) and g (/(¥)). The literal ordering algorithm must be called to decide on
a generator for T; then that generator will be solved before the other literal.

Figure 15: Sequences of Graph Reductions

I

I
p
p
p

the multiplications are be summed serially.

Analysis of the bodies of mmt and mmc shows that since the recursive call

can be done at the same time as the call to the lower level function, the time

required to solve a problem of size n is proportional to the time required to solve

the largest subproblem, rather than proportional to the sum of times to solve

both subproblems. The time required to compute the product of the two

matrices is thus the time required to distribute the last of the row/column pairs

to process that performs an inner product, plus the time required to do that inner

product. For the multiplication of nXn arrays, this time is C)(n+n+n), or 0{n)

[27].

Figure 16 shows the time plot for the call to mmt in the multiplication of

two 2X2 matrices. The corresponding table shows the number of steps required,

and the simulated time used. The results support the claim that parallelism in

deterministic functions can be exploited by the AND parallelism of the AND/OR

Process Model.

5.3. Backward Execution

The purpose of backward execution is to coordinate the actions of the gen

erators in their production of terms for the variables of the goal list. If there are

n variables in its goal list, an AND process is expected to construct as many n-

tuples of terms as possible. A subset of these n-tuples belong to the relation

defined by the clause the AND process is interpreting.

A straightforward model for generating tuples is provided by the nested

loops of a procedural language, such as Pascal. For example, a nested loop

implementation of the map coloring problem of Section 5.1.3 is of the form

for A := Red to Blue do

for B := Red to Blue do

for C ;= Red to Blue do

for D ;= Red to Blue do

for E := Red to Blue do

if Next(A,B) and . . . and Next(D,E) then
Writeln('success(A,B,C,D,E)');

Maximum number of dashes per column = 5

46 processes executed 91 steps in 35 time units: 2.60

Interpreter Measurements:

N Number of Number of Time Steps/ Number of Message
Processes Steps Time Messages Size

1 13 25 21 1.19 13 .382

2 46 91 35 2.60 46 1630

3 121 241 49 4.91 121 4822

Figure 16. Plot for 2X2 Matrix Multiplication

79

P
P
P

j* To multiply two matrices, transpose the second, then form all inner products. ♦/

rmn[A,B,C) *- transpose[B,BT) & mmt(A,BT,C).

/* Multiply all rows of A with entire matrix B */

_,[]).
njr7i<([Al|An],S,(Cl|Cn]) ♦- mmc(Al,B,Cl) &mmt{An,B,Cn).

/♦ Multiply all columns of B with row A ♦/

mmc(A\B\\Br^\C\\Cr^) *— ip[A,B\.,C\) & mmc{A,Bn,Cn).

/♦ Form the inner product of two vectors •/

iXIMl.o).
j>([Al|Anl,[Bl|Bn],C) - i>(AR,Bn,Al erCts

/♦ To transpose a matrix, call 'columns' to divide it into two parts; the ♦/

/* first column and the rest of the columns; then transpose the rest. */

(ransposf(![]!_],[]).
(ranspose(Af,[Cl|Cn]) columns(M,Cl,Rest) &transpose(Rest,Cn).

co/umns([],[],[]).
co/umn?(j[Cll]Cln)! (r],[Cll|AjijClnl }]) •»— coiumns(C,X,

/» Mode declarations, required for proper ordering »/

mode (is,[?,+]). mode{mmt,[+,+,-]).
mode (mm,[+,+,-]). mode(mmc,[+,+,-]).

Figure 17. Matrix Multiplication Program

80

81

An abstract description of the working of this model is as follows. Initial

values {red) are assigned to all variables. The initial tuple <red,red,red,red,red>

is tested by the boolean expression in the body of the loop. The next tuple is
created by assigning the innermost variable, E, its next value. Eventually, the
last value [blue] is assigned to the innermost variable. The next tuple is obtained

by resetting the variable E to its first value while making the second value of the

next-innermost variable Z). In general, whenever there are no more values for a

variable, the previous (outer) variable is given a new value, and whenever a vari

able is set to a new value, all later variables (all those closer to the body of the

loop) are reset to their initial values.

This simple model for generating tuples has been adapted for use in parallel

processes as a way of coordinating the transmission of redo messages to des

cendant OR processes. Jt is not a very elegant model of tuple generation, but it

has the twin virtues of being straightforward and complete, meaning it constructs

all possible tuples as long as the domains of the generated variables are finite.

Nested generators can also be used to describe the overall behavior of the

sequential Prolog interpretation. Since the same predicate that tests adjacent

colors is also used to generate colors, the Prolog implementation has the advan

tage that it never constructs any obviously wrong tuples. In the Pascal imple

mentation, all 5^ 5-tuples of colors are generated, the first 3'* of which are of the

form <red,red,C,D,E>. In Prolog, next{A,B) is the generator of A and B, and it

never instantiates both A and B to the same color, thus effectively preventing the

construction of a large number of useless tuples.

The parallel implementation to be described in this section retains the

advantages of the Prolog interpretation, since it also uses the same predicate for

g^erating and testing, and it has further efficiencies that are closely related to

the intelligent backtracking of Pereira and Porto. To summarize, nested loops

are inelegant but simple and correct, and when implemented in logic programs

there is the potential for cutting out a large amount of useless work.

p
p
p
p

82

5.3.1. Data Structures for Back^vard Execution

Adoption of the nested loop model for constructing tuples of terms in a

parallel .AND process requires a linear ordering of literals and implementation of

the reset operation. These items and data structures required for backward exe

cution will be defined in this section; the actual sequence of events carried out in

backward execution will be described in the next section. Examples will refer to

the clause and dataflow graph of Figure 18.

Many of the data structures require a means for identifying a particular

literal in the body of a clause. The technique used is to refer to a literal by a

term of the form #N, where N is the place the literal occupies in the text of the

clause. With respect to the example of Figure 18, the term #2 refers to

anthor(P,A), the second literal in the body.

The linear ordering is actually an ordering of all literals, not just the consu

mers. The only constraint on the relative order of any two literals is that a gen

erator must always come before all literals that consume its variable, In the

current implementation, the linear ordering is obtained via a level-order traverse

of the dataflow graph. The linear ordering of the literals of Figure 18 is

[#1,#3,#2].

The reset operation must effectively restart a generator, so that a variable

takes on the same set of values once again. The generator does not have to pro

duce the values in the same order after a reset; the only requirement is that a

variable is bound to all same values again. Also, a reset may occur before the

generator has created all possible values.

Resets are implemented using lists of answers. The AND process maintains

a list of used answers and unused answers from each generator. The normal

sequence of events is that the answer in the first success message from a genera

tor is put on the list of used answers. If the AND process needs a second answer

from that process, it sends a redo, and the next answer is appended to the list of

used answers. When a reset is called for, all answers but one from the used-list

are copied to the unused-list. The remaining answer becomes the new current

Original clause:

paper(P ,D ,1) - date{P ,D) <6 author{P <t loc(A,I,D).

Goal:

- paper{X,191S,uci).

Body of clause after head unified with goal (head generates D, I):

^date(P,1978) <6 authoriP,A) A /oc(A,aci,1978).

Dataflow graph ('date' generates P, 'loc' generates A):

head:

paper(P,D,I)

Linear ordering:

Redo lists:

#1

date(P,D)

#2

author(P,A)

[#1,#3,#2]

[#l,head]
[#2,#3,#l,head]
[#3,head]
[head,#1,head]

#3

loc(A,I,D)

Figure 18. Dataflow Graph for Example AND Process

83

p

p

84

value of the variable. As the AND process again requires additional answers, it

takes them from the unused-list instead of sending a redo message to the OR pro

cess for the generator literal. Only when the unused-list is empty (all answers

having been transferred to the used list) does the AND process send another redo

message.

Backward execution also often requires cancel messages to be sent to descen

dant OR processes. After a parent sends a cancel message, it can ignore any sub

sequent messages received from the descendant. This situation may arise when a

descendant sends a message, but the message has not yet been processed by the

time the parent decides to send the cancel message. In the discussion below,

replacing a process P meains sending P a cancel message, creating a new process

P ' for the same literal, and using the process ID of P' in place of P.

When an AND process receives a fail message from one of its OR descen

dants, one of the generators that precedes the failed literal L must produce a new

value. If that generator cannot generate a new value (i.e. it returns a fail mes

sage in response to the redo message), one of the other generators that produces

values consumed by L must be sent a redo. The decision of which generators will

be sent redo messages, and in what order, is determined by a redo list associated

with each literal. The redo list for a literal L contains L and every predecessor of

L, sorted according to the linear order (with literals that are earlier in the linear

order occurring later in the redo list). Redo lists are created at the same time the

linear ordering is made. Redo lists for the literals of the example problem are

shown in Figure 18.

Finally, an AND process maintains a list called the failure context to keep

track of the failed literals and decide exactly which generator should be sent the

next redo message. The failure context is initially the empty list, and as fail mes

sages are received, literal numbers are added to this list.

85

5.3.2. Processing of Backward Execution

The backward execution algorithm will be introduced in this section. The

algorithm is quite complicated. Instead of discussing the complete algorithm,

which contains provisions for handling a number of special cases, only the subset

of rules sufficient for obtaining the first solution of the example problem of Figure

18 will be presented first. After the processing for this solution has been

described, some further details will be given. The complete set of rules for back

ward execution, and examples of some special cases, can be be found in the

Appendices.

An overview of backward execution is that when a fail message is received,

the backward execution algorithm is called to trace out a path in the dataflow

graph that extends back from the failed literal. This path should eventually

include every predecessor of the failed literal, if required. The failure context

reflects the current state of this path. When a generator is encountered on this

path, it is sent a redo message, and then every generator occurring later in the

linear ordering is reset. If the AND process tries to extend the path beyond a

literal with no predecessors, or to include the head of the clause in the path, it

fails.

The desired backward path is simply the redo list for the failed literal. This

list contains every predecessor of the literal, i.e. it contains every generator that

could possibly effect the set of values consumed by the literal. An AND process

will always be able to determine which generator to re-solve when it first receives

a fail message. However, once the backward execution algorithm has embarked

on a backward path, subsequent failures of literals not on this path can cause

difficulties. This is known as a multiple failure] rules for handling multiple

failures are described later; examples are found in the solution of the map color

ing problem in Appendix II.

When a fail message is received, the AND process appends the literal

number of the failed literal to the failure context list. Then the AND process

searches for a redo list R such that the new failure context is a prefix of R. The

first literal in the resulting suffix identifies which predecessor of the failed literal

I

88

should be sent a redo message.^

Referring to the figure, if the process for #2 sends a fail message, the failure

context is set to list [#2]. [#2] is a prefix of the redo list {#2,#3,#ll, and the

suffix after this match is [#3,#l], so the OR process for literal #3 is sent a redo

message. Next, if the process for #3 fails (meaning that generator cannot pro

duce any more values), the failure context becomes [#2,#3], the suffix after the

match is [#1], and the process for literal #1 will be sent a redo message.

Whenever a generator is sent a redo message, the corresponding literal is

moved from the solved state to the pending state, since the process for the gen

erator is again trying to construct an answer. When any generator is sent a redo

message, a number of other literals will be effected. First, all generators that are

later in the linear ordering are reset; this is the step that correlates most directly

with the nested loop model. Generators that are reset after being solved are still

considered to be solved, since there will be one answer that can be used as the

current value of the variables generated. Second, some consumer processes will

have to be canceled. If a literal consumes a variable that is generated by any

generator that was either sent a redo or reset, then that literal must be canceled,

since it consumes values that are being changed. The processes for these literals

will be replaced when all of their predecessors are once again in the solved state.

Note that a literal might have a new process created immediately, in the case

that all of its generators were simply reset.

The processing of success messages has to be modified slightly, in order to

accommodate the failure context. When a success message is received, and the

forward execution algorithm starts a set of new processes, the literals correspond

ing to the new processes must be removed from the failure context list. Thus the

failure context list grows and shrinks as generators are sent redo messages and

then respond with additional answers. The failure context shrinks all the way

' This operation is concisely expressed in Prolog with the concat procedure: concat(A,B,C)
means that C is the concatenation of lists A and B, or, equivalently, that A is a prefix and B a
suffix of the list C. If F is the current failure context, and R is the redo list, then
concat(F,[X|Y],R) asks "is F a prefix of R? If so, unify X with the first element of the list that
must be concatenated with F to make R."

I

1

87

back to the empty list when a new process is started for the literal that originally
failed. A more concise presentation of the backward execution algorithm is in

Figure 19.

6.4. Example

In the example execution plotted in Figure 9 (Chapter 3), process 4 was

created to solve the body of the clause

paper(F,1978,uci) •<- rfafe(P,1978) &author{P,A) &/oc(A,tici,1978).

The steps in the interpretation of that process, from the original ordering of

literals through the generation of the first success message, will be explained in

detail in this section. The explanation refers to the detailed trace of the indivi

dual state transitions generated by the interpreter shown in Figure 20 at the end

of the chapter.

5.4.1. Ordering

The clause used to define the initial state of process 4 is

paper{P,D,I) *- date{P,D) & author{P,A) & loc{A,I,D).

When the process is created, variables D and / are bound to 1978 and «ci, respec

tively. The ordering algorithm does the following for this clause:

There are no mode declarations, so step (1) has no effect.

~ The variables generated by the head are { D, I). The variables that do not

have generators are { F, A }.

The first pass through the list of literals finds two literals that are connected

to { D, I}. date{P,D) contains F, a variable with no generator yet, and D, a

variable generated by the head, so it is designated as the generator of F.

Similarly, loc{A,I,D) becomes the generator of A. At this point all variables

have generators (U is the empty list), so the ordering algorithm terminates.

The dataflow graph for this clause is in Figure 18.

P
P
i
1

P

88

1. When a fail message from process |L is received, change the state of
from pending to blocked {note: the process that was created for failed
and no longer exists; L is now blocked until a predecessor is re-solved}

2. Append #L to the failure context.

3. Unify the updated failure context with a prefix of one of the redo lists. The
failure context is of the form (#Fl,...#L], and the matched redo list is of the
form [F1,...#L1X].

4. The unification of the previous step may succeed when the failure context is
exactly the same list as one of the redo lists, i.e. X is the empty list. If this
is the case, the AND process fails.

5. If the list X from step (3) is not empty, it must be of the form [#G|Xn].
is the generator that is to be redone. If #G is the head of the clause,

the AND process fails. Otherwise, send {G a redo message, and change the
status #G from solved to pending.

6. Whenever the OR process for a literal #G is sent a redo message, the AND
process may have to reset or cancel some literals to the right of ^G in the
linear ordering:

a. For every generator later than #G in the linear ordering, perform a
reset operation. These generators remain in the solved state, since
their consumers can immediately (re)use the first value. The variables
generated by these generators and the variables generated by ^G are
called the modified variables.

b. For every literal #L later than ^G in the linear ordering, cancel |L
and change the state of #L to blocked if it consumes any modified
variable. It does not matter if #L is a generator or not or if it was
previously solved or pending; if it consumes a modified variable, its
process |L must be canceled.

7. It is possible that some of the OR processes canceled in the previous step
can be replaced immediately (since if the variables they consume were reset,
the corresponding generators are still in the solved state), so the forward
execution algorithm is invoked to start a set of new OR processes.

8. When a new process is started for a literal ^N that is currently in the
failure context, remove #N and any literals to the right of it from the
failure context (note: this step must be taken by the forward execution
algorithm as well, after a success message causes a set of new processes to
be created}.

Figure 10. The Backward Execution Algorithm

89

5.4.2. Forward Execution

After the ordering algorithm has been applied, the data structures in the

AND process are initialized:

The only literal in the solved state is head] all others are blocked.

The linear ordering, obtained by a level order traverse of the dataflow graph,

is [#1,#3,#2].

The failure context list is set to the empty list.

The redo lists are created for each literal, including the head:

#1
#2

#3

[#l,/iead]
[#2,#3,#l,/iead]
[#3,Aead]

head: [/iea<f,#l,Aefld]

The first step in the forward execution phase is shown in transition <1>.

An OR process can be started for a literal when the predecessors of that literal

j have been solved.^ This test succeeds for #1 and #3, so OR processes are created
j to solve the literals date{P,197S) and /oc(A,«ci,1978). The IDs of these OR

; processes are 6 and 7, respectively.

Transition <2> occurs when success{date{prolog,197S)) arrives from pro

cess 6. This is from the process created to solve literal #1, so #1 is added to the

solved list. Since #3 is also a predecessor of #2, and #3 is not yet solved, no new

processes are created on this step.

f The next transition occurs when 8ncee88(loe{kling,uei,197S)) arrives from 13

^ (process 7). #3 is added to the solved list, and now a process (number 9) is
] created for #2. Note that after bindings from the first two answers have been

^ applied, #2 is author{prolog,kling).

^As currently implemented, the redo list of a literal doubles as the set of predecessors of the
literal. The redo list for literal N is always of the form [#N|Rem], and the operation of determin
ing whether all predecessors of N have been solved is equivalent to seeing if Rem is a subset of
the list of solved literals.

I

P

90

5.4.3. Backward Execution

The linear ordering shows that the generator of >1 comes after the generator

of P. Throughout the backward execution phase, then, the expected behavior

will correspond to the nested loops

for P := FirstFaper(1978) to LastPaper(1978) do
for A ;= FirstAuthor(UCI) to LastAuthor(UCI) do

if Author(P,A) then . . .

Transition <4> starts the backward execution processing. 12 fails, so #2 is

appended to the failure context, making [#2]. The redo sequence which has [#2]

as a prefix is [#2,#3,#l,head], so |3 is sent a redo message. #3 is removed from

the list of solved literals (since it is now working on a second answer). The

current state of the process is: literal #1 solved, #2 blocked, #3 pending, with one

used answer from both |1 and |3.

Transition <5> is triggered by a fail from (3, meaning there is no addi

tional binding for A that satisfies /oc(A,«ci,1978). #3 is appended to the failure

context, making [#2,#3]. This new list is matched with [#2,#3,#l,head], mean

ing #1 is sent a redo. Note that #3 is reset here: it is later than #l.in the linear

ordering, and does not consume P. The effect of the reset is to bind A to kling.

The current state is now: #1 pending, #2 blocked, #3 solved, with (still) one used

answer from both generators.

Transition <6> takes place when a success message arrives from jl with

the second binding for P. #1 is added to the list of solved literals (making that

list [#l,#3,head]), and a new process can be created for #2 (which is now

author (eft,kling)). Note the effect of the success of |1 on the failure context:

when the new process for #2 was started, it and everything to the right of it were

removed from the failure context, changing that list from [#2,#3] to [].

When 12 sends success (transition <7>), all literals have been solved. The

sage

success ([dafe(e/<,1978), author(eft,kling), loc{kling,l978,uct)])

is sent to the parent.

91

5.5. Handling Redo Messages

A parallel A.XD process handles a redo from its parent in the same way it

handles a fail from one of its descendants. The "failed literal" is the head, which

is the consumer of any variables that were not instantiated when the clause was

called. The redo message is used to start a failure context, and redo messages are

sent to descendants until a new tuple is created.

It is possible to make a redo list for the head, just like any other literal; a

list is constructed that contains all predecessors of the head when the head is

considered to be a consumer. When the redo message is received, the failure con

text is set to [head], and then a generator is selected as before, using this head

redo list.

The head redo list for the example of Figure 18 is [head,#1,head]. This

starts with the identifier of the literal itself (recall that the redo list for a literal

#N of the body starts [#N,...]), and then has literal #1, the generator of P, since

i the head of this clause consumes P. The second occurrence of head in this list

means that the head is a predecessor of #1, and is included for the cases when

the AND process should fail because the failure path started by a redo message is

s traced all the way back to the head of the clause.

The head literal is removed from the failure context under exactly the same

conditions other literals are removed, namely when all predecessors of the head

are solved.

To summarize, a redo message will start the AND process in backward exe-

I cution, tracing apath back through the dataflow graph. After some number of
redo messages have been sent to descendants, a new tuple will be created. On

I the resumption of forward execution, the AND process will reach aastate where
the head (in its role as a consumer) should be removed from the failure context,

I while other literals test the current tuple of values.
Returning to the state transitions in Figure 20 at the end of the chapter, all

I transitions after <7> show how the AND process responds to aredo message.
Transition <8> is triggered when the parent (process 2) sends the first redo

I
I

92

message, requesting the second tuple. The failure context is set to [head], and

the head redo sequence is [head,#1,head], meaning #1 should be sent a redo. As

a result of sending that redo message, |1 is set to work constructing the third

value for P, #3 is reset and #2 is canceled. The state of the process is: #1 pend

ing. #2 blocked, #3 solved, with one used answer from jS and two used answers

from |1.

Transition <9> is triggered by the success message from containing the

third value of P. #1 is once again added to the solved list, and a new process for

#2 is started. Note also that the solved list is [#l,#3,head] and the tail of head

redo list is a subset of the solved list, so head is removed from the failure context.

The current state of the process is: #1 and #3 solved, #2, pending, and an empty

failure context.

The third value of P cannot be used to solve #2, so the latest process for

that literal sends a fail message (transition <10>). The failure context becomes

[#2], and backward execution resumes. Normally, jS would be sent a redo mes

sage. However, the AND process knows that process has already failed (since the

|P field shown in the figure is 0), so #3 is immediately added to the failure con

text, and the redo message is sent to |1. The current state is: #1 pending, #2

blocked, #3 solved (since even though |3 has failed, there are answers that are

used via resets), with |1 working on a fourth value for P.

Transitions <11> and <12> are basically the same as <9> and <10>,

since the fourth value of P also causes a process for #2 to fail.

Finally, a fail message arrives from |1, indicating that there are no more

ways to solve date{F,197S). When |1 fails, the fail list will become (#2,#3,#1], a

prefix of [#2,#3,#l,head], indicating that head is the literal to be sent a redo, so

the .AND process fails.

5.6. Discussion

Returning to the example of Figure 18, consider what happens if literal #3 is

the first literal to fail. The state of the AND process at this time would be:

literals #1 and #3 pending, and literal #2 blocked. When the fail message arrives

93

from 13, the failure context becomes [#3], which is the prefix of the redo list

[#3,head]. The suffix is [head], meaning the head of the ckuse was the generator
that created the value that caused #3 to fail. This is a case where the AND pro
cess fails. In the previous example, when #3 failed the failure context was the list

[#2], and the AND process responded by sending the process for literal #! a redo

message. The reason for the different responses (fail message to the parent versus

redo message to |2) to the same message (fail from |3) lies in the interpretation
of the failure context. In one case, when the failure context is empty, #3 failed

on its own, i.e. it failed because it could not generate any values for the variable

A. In the other case, when the failure context is [#2], #3 failed because it could

not generate any additional answers for one of its consumers, and since that con

sumer had other predecessors, the AlVD process needed to send a redo to one of

those predecessors and reset #3.

An interesting question arises when considering how to process redo mes

sages. As described above, in the current implementation, redo messages are

handled by starting a failure context for the head of the clause, then sending a
redo message to the generator for one of the uninstantiated variables contained in

the head. Alternatives are to send a redo message to the last generator in the

linear ordering, or maybe send a redo to the process for the last literal in the

linear ordering, whether it is a generator or not. The difference between either of

these alternatives and the method implemented is that the latter is based on the

fact that the AND process is expected to generate a set of tuples, and not a mul
tiset; i.e. a redo message is a signal to create a new tuple, different from any pre

vious answer. Sending a redo to a generator of a variable in the head of the

clause makes sure the next tuple will have at least one different value.

The following is an example of a program which, when interpreted by Pro
log, produces a multiset of tuples for the denotation of the procedure p:

p{A) ^ q(A) & r{B).
<7(0)-.
r(l) .

r(2) - .

I
p
I
I

91

The first answer to the query

- p{A].

is found by unifying q{A) with the unit clause ^(0), and then unifying r{B) with

r(l). The first answer is thus p(0). If told to backtrack, Prolog will re-solve r(fi),
this time by binding B to 2, and it once again reports success for p(0). The

operational semantics for p is the multiset {<0>,<0>}, in which one tuple
occurs twice. A parallel AND process would also produce multiple instances of

the same answer if the rule for handling redo messages were to send a redo to

either the last literal or the last generator in the linear ordering. However, the

rule is to send a redo to a generator of a head variable. For this example, it

means sending a redo message to the process for ^(A), and thus the second proof

of p(0) is not performed.

The reasoning behind the choice to have AND processes create sets instead

of multisets is that a set of tuples is closer to the spirit of the definition of the

semantics. Interpreters that create multisets do so merely as a side effect of the

operational semantics. In short, just because there is more than one way to

prove that a tuple belongs in D is no reason to include more than one copy of
that tuple in D.

As mentioned previously, multiple failures are quite diflicult to process. At

first, it would seem reasonable to maintain a number of failure context lists, each
beginning with the ID of a failed literal. However, this leads to a number of

difficult questions;

If one failure context determines that a generator is to be reset during some

state transition, and then a different failure context decides that the same

generator should be reset during a later state transition, then should the

generator be reset twice? Or is one reset sufficient?

What should happen when two failure contexts reach a common predecessor?

The generator at that node will be sent a redo when the first failure context

includes that node, but the generator should probably not be sent another

redo message when it is added to the second failure context.

95

The current method for handling multiple failures is to postpone the process

ing of additional failures while in the midst of tracing out a failure path for the
first literal to fail. When a fail message arrives from a process tN such that #N

cannot be added to the current failure context,® then #N is considered to be a

postponed failure, and is ignored temporarily. When the failure context shrinks

to the empty list, the AND process will start a new failure context for one of the

postponed failures, as long as the process for the postponed failure was not can

celed during the processing of a previous failure. A deeper discussion of post
poned failures, and an example of the processing of a postponed failure, can be

found in Appendix D.

In the preceding discussions of resets and redo messages, it may appear that
there is an underlying assumption that each generator is responsible for generat
ing values for only one variable, which is the case in the procedural language
implementation of nested loops. However, no such assumption needs to be made
in adopting this model for parallel AND processes. If a literal g{X, T) is the gen
erator for both X and Y, it is not necessary to assume that this generator creates
all possible Yvalues before generating a second value for X and resetting Y The

.4ND process simply uses the <X,Y> pairs returned by the OR process for

y(A', T), and lets the OR process worry about creating all possible pairs. When
ever the process for g{X, Y) is sent a redo message or reset, all consumers of either

variable are canceled.

A goal for backward execution is to be able to generate as many tuples of
values as possible. When the domains of the variables are finite, the nested loop
model completely specifies the set of tuples. When one or more domains are

infinite, then nested loops are not able to generate all tuples. In particular, con
sider two variables, I and F, where the domain of I is infinite, the domain of Fis

finite, and the values of the variables are denoted {»i, «2) ""' }

{/i' /2' • • • /ml- Jo goal list

In other words, the call to concat specified in a previous footnote fails for all redo lists.

I

96

- g![F) & gi{I) & pf[F) & pi{I).

gf is the generator of F, gi the generator of I, and I is the innermost variable.

Suppose pf succeeds only for the second value of F, but pi succeeds for any value

of I. Since no tuple with /j can succeed {i.e. pf{fi) fails), then Prolog (and the

equivalent nested loop program in a procedural language) will never solve this

goal list. All tuples created will be of the form </i,«n>, with the interpreter

stuck in an infinite loop generating the Parallel AND processes have a chance

of succeeding in this example, since when pf{F) fails a redo message is sent to the

generator for F, while the generator for I is reset. Thus there are cases, even

when infinite domains are involved, where parallel AND processes construct all

successful tuples. Parallel AND processes are still not perfect, however. If the

consumer is p(F,l), the linear ordering may specify that the generator for / is to

be sent a redo message before the generator of F, and thus the parallel AND pro

cess is also caught in an infinite loop.

The intelligent backtracking interpreter of Pereira and Porto can also avoid

infinite loops, since the generators of infinite domains may be skipped on back

tracking. Their interpreter may even succeed when parallel AND processes fail,

because their interpreter analyzes the cause of a failure. If p(/i,ii) fails because

the unification of p(/i,»i) does not succeed when F \s bound to /j, their interpreter

knows to backtrack into the solution of the generator of F. At present, all a

parallel AND process knows is that p(/i,«i) failed, that this literal has two prede

cessors, and that one of them must be redone; which one is determined solely by

the linear ordering.

5.7. Chapter Summary

Parallel solution of the body of a clause is essentially an attempt to create a

dataflow graph from the body, and then solve the literals in the order specified

by the graph. This attempt is successful when the literals all succeed, which is

often the case when the clause implements a deterministic function. However, in

nondeterministic functions and relations, it is not always the case that literals

can be solved on the first attempt. When a literal fails, an interpreter must re-

solve a previously solved literal, hoping the next solution creates new variable
bindings that allow the failed literal to be solved.

Backward execution is the name of the mechanism in parallel AND processes
that determines which literals must be re-solved in response to failures. The
mechanism is quite complicated, and requires a large overhead in terms of data
structures to represent the state of each literal and the state of the process as a
whole. Fortunately, the overhead does not interfere with forward execution; it is
only when literals fail that the rather awkward backward execution mechanism is
invoked.

There are a number of improvements that can be made in the definition and
implementation of backward execution. Many descendant processes may be can
celed needlessly, sequential processing of multiple failures is very conservative,
and the nested loop model itself may not be the best abstract model of tuple gen
eration. The philosophy has been to define a method that is sufllcient to coordi
nate the literals that bind variables to values, so that eventually as many tuples
of values are created as possible. The long term goal of the research es the design
of a non von Neumann computer architecture for parallel execution of logic pro
grams. Rather than spending time in fine tuning the backward execution
mechanism, it is time to move on to the next step, and show how the parallel
processes may be efficiently implemented on a non von Neumann system.

P
I
4

P
P
P

P

98

Key to State Infopmation of Parallel AND Process

In the following trace, all lines except the descriptions of the current status of the literals
are self-explanatory. For each literal, the current status is indicated by a data structure of the
form

#M:[Curr,Orig,RL,Gens,MP,U,UU]

where A' is the literal number, Curr is the current form of the literal (including variable bindings,
if any), Orig is the original form of the literal (before any bindings), RL is the redo list, Gens is
the list of variables generated by the literal, MP is the ID of the OR process created to solve the
literal (if 0, there is no such process, i.e. the literal is in the blocked state), and Uand UU are lists
of used and unused answers from MP. The AND process does not attempt to keep the list of
literals in any particular order. In fact, literals toward the top of the list are literals that were
most recently used for some operation.

Variable names beginning with capital letters are "real" variables, which may eventually be
bound. Variables of the form $var(N) are metavariables, required by the ordering algorithm and
other procedures that reason about variables without binding them. In this process, the variables
are P, D, I, and .4; the corresponding metavariables are $var(0), $var(l), $var(2), and $var(3).

<1>

.4ND Process 4 after 'start' from Process 2, T = 2

Parent ID: 2

Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#l,headl
Literals Solved: [head]
Failure Context: [j
Literal Status - #N:[Curr,Orig,RL,Gens,MP,U,UU|:

#l:[date(P,1978), date($var(0),$var(l)),
[#l,head], [$var(0)], 6, |], [||

#3:[loc(A,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head], [$var(3)], 7, [j. Ill

#2:lauthor(P,A), author($var(0),$var(3)),
[#2,#3,#l,head], [], 0, [], [j j

Figure 20. States of a Parallel AND Process

<2>

I AND Process 4 after 'success(date(pro,1978))' from Process 6, T = 4
I Parent ID: 2

Linear Ordering: [#l,^jt3,#2]
Head Redo Seq: [head,#l,heaid]
Literals Solved: [#l,head]
Failure Context: []
Literal Status - #N:[Curr,Grig,RL,Gens,MP,U,UU]:

; #l:[date(pro,1978), date($var(0),$var(l)),
j [#l,head], [$var(0)], 6, [date(pro,1978)], []]

#3:[loc(A,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head], [$var(3)], 7, [], []]

#2:[author(pro,A), author($var(0),$var(3)),
l#2,#3,#l,head], []. 0, (], 0]

<3>

AND Process 4 after 'success(loc(kling,uci,1978))' from Process 7, T = 4
Parent ID: 2

Linear Ordering: [#l,^jt3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: [#3,#l,head|
Failure Context: [j
Literal Status - #N:|Curr,Orig,RL,Gens,MP,U,UU]:

#2:[author(pro,kling), author($var(0),$var(3)),
|#2,#3,#l,head], [], 9, ||, [j]

#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(l)),
[#3.head], [$var(3)|, 7, [loc(kling,uci,1978)], []]

#l:[date(pro,1978), date($var(0),$var(l)),
[#l,head|, [$var(0)], 6, [date{pro,1978)], || j

Figure 20 Continued

99

I

I

<4>

AND Process 4 after 'fail' from Process 9, T = 7
Parent ID: 2

Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,^1,head]
Literals Solved: [#l,head]
Failure Context: [#2]
Literal Status ~ #N:[Curr,Grig,RL,Gens,MP,U,UU|:

#2:[author]pro,A), author($var(0),$var(3)),
[#2,#3,#l,head|, [j, 0, [j, [j j

#3:[loc(A,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head|, [$var(3)], 7, [loc(kling,uci,1978)|,

#l:[date(pro,1978), date($var(0),$var(l)),
[#l,head|, [$yar{0)|, 6, [date(pro,1978)], [] |

<5>

AND Process 4 after 'fail' from Process 7, T = 9
Parent ID: 2

Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: (#3,head]
Failure Context: [#2,#3)
Literal Status - #N:[Curr,Orig,RL,Gens,MP,U,Lnj]:

#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head], [$var(3)], 0, [loc(kling,uci,1978)], []

#2:[author(P,kling), author($var(0),$var(3)),
[#2,#3,#l,head], [], 0, [], []] '

#l:[date(P,1978), date($var(0),$var(l)),
[#I,head], [$var(0)], 6, |date(pro,1978)], []]

Figure 20 Continued

100

<6>

AND Process 1 after 'success(date(eft,1978))' from Process 6, T = 11
Parent ID: 2

Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: [#l,#3,head|
Failure Context: [j
Literal Status - #N:[Curr,Grig,RL,Gens,MP,U,UU|:

#2:[author(eft,kIing), author($var(0),$var(3)),
l#2,#3,#l,head|, [j, 11, [j. [j j

#l:[date(eft,1978), date($var(0),$var(l)),
[#l.head|, ($var(0)|, 6,
idate(eft,1978), date(pro,1978)], []]

#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head|, [$var(3)], 0, [loc(kling,uci,1978)|, [] j

<7>

AND Process 4 after 'success(author(eft,kIing))' from Process 11, T = 13
Parent ID: 2

Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved; [#2,#l,#3,head]
Failure Context: []
Literal Status - #N:[Curr,Orig,RL,Gens,MP,U,UU]:

#2:[author(eft,kling), author($var{0),$var(3)),
[#'-.#3,#l,head], [], 11, [author(eft,kling)], []]

#l:[date(eft,1978), date($yar(0),$var(l)),
[#I,head], [$var(0)], 6,
jdate(eft,1978), date(pro,1978)], []]

#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head], [$var(3)], 0, [loc(kling,uci,1978)], []]

Figure 20 Continued

101

I

I

<8>

AND Process 4 after 'redo' from Process 2, T = 15
Parent ID: 2

Linear Ordering: [#1,^3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: (#3,head]
Failure Context: [head]
Literal Status —#N:[Curr,Grig,RL,Gens,MP,U,UU]:

#3:[loc(k!ing,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head], [$var(3)], 0, [loc(kling,uci,I978)], []

#2:[author(P,kling), author($var(0),$var(3)),
[#2,#3,#l,head], [], 0. [], []]

#l:[date(P,1978), date($var(0),$var(l)),
[#l,head], [$var(0)], 6,
[date(eft,1978), date(pro,1978)], []]

<9>

AND Process 4 after 'success(date(df,1978))' from Process 6, T = 17
Parent ID: 2

Linear Ordering: [#1,#3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: [#l,#3,head]
Failure Context: []
Literal Status —#N:[Curr,Orig,RL,Gens,MP,U,lJU]:

#2:[author(df,kling), author($var(0),$var(3)),
[#2,#3,#l,head], [], 13, [], []]

#l:[datc(df,1978), date($var(0),$var(l)),
[#l,head], [$var(0)], 6,
[date(df,1978), date(eft,1978), date(pro,1978)], []]

#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head], [$yar(3)], 0, [loc(kling,uci,1978)], []]

Figure 20 Continued

102

103

<10>

AND Process 4 after 'fail' from Process 13, T = 19
Parent ID: 2

Linear Ordering: [5^1,5jt3,#2]
Head Redo Seq: [head,#1,head]
Literals Solved: [#3,head)
Failure Context: [^2,#3]
Literal Status ~ #N:[Curr,Orig,RL,Gens,MP,U,UU]:

#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(l)), •
[#3,head], [$var(3)], 0, lloc(kling,uci,1978)], []] I

#2:[author(P,kling), author($var(0),$var(3)),
[#2,#3,#l,headl, []- 0, [], [] j

#l:[date(P,1978), date($var(0),$var(l)), •
[#l,head], [$var(0)], 6, I
[date(df,1978), date(eft,1978), date(pro,1978)], []]

I
<11>

AND Process 4 after 'success(date(fp,1978))' from Process 6, T = 21
Parent ID: 2 b
Linear Ordering: [^1,^3,#2) I
Head Redo Seq: [head,#1,head]
Literals Solved: [#l,#3,head]
Failure Context: [j
Literal Status - #N:[Curr,Orig,RL,Gens,MP,U,UU|:

#2:[author(fp,kling), author($var(0),$var(3)),
[#2,#3,#l,head]. [j, 15, [j, [j j «

#l:[date(fp,1978), date($var(0),$var(l)), I
[#l,head], [$var(0)], 6,
[date(fp,1978), date(df,1978),
date(eft,1978), date(pro,1978)|, [] j

#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head|, [$var(3)|, 0, [loc(kling,uci,1978)|, [j j

Figure 20 Continued

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

<12>

AND Process 4 after Tail' from Process 15, T = 23
Parent ID: 2

Linear Ordering: [#l,#3,#2l
Head Redo Seq: (head,#1,head]
Literals Solved: (#3,head]
Failure Context: (#2,#3]
Literal Status —#N':[Curr,Orig,RL,Gens,MP,U,UU|:

#3:[loc(kling,uci,1978), loc($var(3),$var(2),$var(l)),
[#3,head], |$var(3)|, 0, [loc(kling,uci,1978)], [j

#2:[author(P,kling), author($var(0),$var(3)),
l#2,#3,#l,head], [j, 0, [], [j]

#l:ldate(P,1978), date($var(0),$var(l)),
[#l,head|, [$var(0)], 6,
jdate(fp,1978), date(df,1978),
date(eft,1978), date(pro,1978)], []]

<13>

AND Process 4 after 'fail' from Process 6, T = 25
done

Figure 20 Continued

104

CHAPTER 6

Multiprocessor Implementation of AND/OR Processes

The overall goal of this dissertation research is the design of a multiprocessor

computer architecture that exploits parallelism in the execution of logic pro

grams. The research takes the language first approach, summarized in the intro

duction, in which the designer starts with an abstract model of computation,

specifies a programming language based on the model, defines a method for inter

preting programs of the language in parallel, and finally starts the design of a

computer that supports the parallel execution model. Previous chapters

described the research in the early steps of this top down process, research which

culminated in the definition of a method for interpreting logic programs that

automatically divides the program into independent pieces for parallel solution.

This chapter presents some implementation considerations, with the goal of show

ing that the abstract model can form the theoretical framework for a practical

multiprocessor.

At this level, a logic program appears to the system as a collection of

independent processes that communicate via messages. When a process receives

a message, it will be transformed into another state, and possibly generate mes

sages for other processes. Using operating system terminology, a process is run

ning when a PE is transforming it from one state to another, it is blocked when

there are no messages for it, and it is ready when there is a message for it, but no

PE is (yet) transforming it into its next state.

The transformation of a process from one state to another will be considered

an indivisible operation. That is, once a PE is set to work on a particular

transformation, it will complete the transformation before taking on any other

tasks. Another description of the operation of the model at this level is the pro

vided by the concept of a workpool. At any point in time, the system has a pool

of work that needs to be done. There is a network of PEs, each of which has

105

106

access to items in the pool. The system operates by having PEs take a piece of
\vork from the pool, apply some operation, and put the updated piece of work
back in the pool. In the AiND/OR Process Model, the pool of work is defined by
the sets of processes and messages. A piece of work is defined to be a process and
a single message destined for it, and the operations performed by the PEs are the
state transformations defined by the process/message pairs.

There have been a number of architectures defined around the workpool con
cept, so naturally they are candidates for architectures to support the AND/OR
Process Model [56]. A basic feature of these architectures is that PEs either share

a common memory, or fetch work from the memory over a shared bus. For a

variety of reasons to be explored below, at this time these architectures do not

appear to be optimal for the AND/OR Process Model.

This chapter starts with a survey of issues involved in distributing packets
of work to the PEs of a system, and concludes with some arguments for why the
A\D/OR Process Model should be implemented on a network of independent
processors, each with its own substantial amount of local memory, large enought
to keep a complete copy of the logic program. The local memory must also store
processes the PE is working on, and messages bound for those processes. The
topology of the processor interconnection network {e.g. R-ary N-cube, ring, bus)
is not important for this discussion. ,

6.1. Issues

Ideally, as soon as a process goes into the ready state, some PE will be

assigned the task of performing the corresponding state transition. The mechan

ism that decides which process executes on which PE is important. Dimensions
for comparing process allocation scheme are decentralization, locality, and even
ness. Decentralization means that there should not be a central PE or authority
that decides where a process should be executed. A centralized mechanism is a

bottleneck when there are a very larger number of processes, and is a vulnerable
point in terms of system reliability. Locality means that processes that commun

icate should be close to each other physically, so that messages from one to the

I

107

other will not have to travel very far in the network, no matter what the topol

ogy is. Finally, evenness refers to the goal that all PEs should have the same

amount of work to do at all times.

In the AND/OR Process Model, a large number of processes, and an equally

large number of messages, will be created during the solution of parallel prob

lems. When multiplying two square matrices of size n, 0{n^) processes and 0(n^)

messages are created (Figure 16). In any finite system, a point will be reached

where there are more processes and/or messages than can be stored in the system

as a whole or on a single PE. The underlying hardware will become bogged

down, or may even deadlock. Analogous situations occur in conventional sys

tems, whore data blocks are moved between main memory and disk, and the sys

tem becomes bogged down by thrashing, and in dataflow systems, where the

matching store overflows when there are too many tokens waiting for partners

[54].

Three ways to address this problem are to try to minimize the overhead, in

terms of storage requirements for processes and messages; design a method for.

gracefully moving blocked processes and dormant messages between main

memory and secondary storage; and use mechanisms for inhibiting parallelism, so

that when the system starts to become overloaded, it should switch to a mode

where fewer processes are created [44]. Specific comments about all three of these

methods for managing large problems in the context of the AND/OR Process

Model will be discussed in the next sections.

6.2. Implementation

6.2.1. Process Migration

Burton and Sleep have proposed a method of distributing processes to PEs

whereby it is up to an idle PE to take the initiative to find work to do [8]. There

is no notion of assigning a newly formed process to a PE. Rather, a PE assumes

that it must completely solve any problem that is given to it, and later, if a

neighboring PE indicates that it is idle, then a part of the current problem may

be sent to the neighbor. By way of contrast, in many multiprocessor systems

108

there is a mechanism for assigning tasks to processors that will perform the task.
.•\n example is the assignment function of the Irvine Dataflow system, which is a
hashing function that maps activity names into processor IDs [27],

This distribution model is, obviously, decentralized. Locality is enforced by
having a process move at most once, from the PE that created it to one of its
immediate neighbors.

An even distribution of work under this distribution plan depends on stra
tegies for deciding which parts of a problem to keep and which parts to let go.
As an example of how AND/OR processes could be evenly distributed, consider
an AND process for solving a typical problem involving tail recursion, where the
As are bound and the Ys are unbound in a call to p;

p([A"l|An].[yiiyn]) ^ q{Xl,Yl) &p{Xn,Yn).

In a parallel AND process, both goals on the right hand side are solved in paral
lel, and thus two OR processes are created and sent start messages at the same
time. The PE solving the AND process could keep the OR process that solves
7(A'1.} I), and let the OR process for p(An,yn) migrate to a neighbor. Xn is a list
of terms; usually each term in this list has the same general structure as ATI.
I'sing this policy of sending the "tail" part of the tail recursion, the problem
could unfold along a "line" of PEs, each of which would solve one of the goals
7(Ai, }j), and the work would be apportioned evenly. Since the only message
passing in the system is between parent/descendant pairs, the locality of message
transfers is not effected by this policy.

There is a tradeoff here, since in these problems the term Xn is a list of
terms, each of the form Al. Thus the goal p(An,yn) is likely to be larger (in
terms of the number of bytes required to write it) than the goal 7(AT,yi). The
tradeoff is that in order to spread the work evenly, the larger goals must be
passed from one PE to the next.

Another potential difficulty is related to the topology of the underlying net
work. The above scenario of unfolding a "line" of work is very likely when the
topologx- is a ring, in which PE,- has only two neighbors, PE-_i and PE,-+,.

p
p

109

However, in a hypercube, it is not clear what path from PEj to PE„ corresponds

to a "line", or how the paths from the PEs would interact. Defining a set of poli

cies that help each PE decide which processes to send to its neighbors, and

analyzing the tradeoffs involved in the context of various topologies, is the sub

ject of future work and simulations.

The biggest advantage to this scheme for allocating work is that when large

problems are being solved, the system will reach a point where (assuming a rela

tively even distribution plan has been developed) each PE will be actively work

ing on a problem. Since each PE is busy, no requests for work will be transmit

ted, and no more subproblems will be passed around the network. Thus one

immediate advantage is that message tra8"ic is not strictly a function of problem

size. When a large problem is solved, there will be a large amount of traffic as

subproblems are initially spread around, but eventually a point will be reached

where each PE is busy working on its own part of the overall problem. If an

assignment function is used, new tasks are mapped onto processors independently

of the amount of message traffic, and as the problem grows the number of mes-

snges grows along with it,

6.2.2. Process Representation

Many implementations of logic programming languages use a technique

called structure sharing that allows a compact representation for derived clauses

[7], The basic idea is that in the representation of a derived goal statement,

instead of making copies of literals in the the body of a called procedure, a

"stack frame" is created, with pointers to the literals in existing clauses, and a

structure similar to the runtime stack of Pascal-like languages is formed. One

stack frame represents one resolvent. The stack frames contain pointers to the

input clauses and a pointer to an environment which has information about vari

able bindings. One important difference between Pascal stacks and structure

sharing is that the stack frames are not removed upon exit from the logic pro

gram procedure. At any point in the computation, the value of a term in a goal

list is obtained by traversing this structure. Structure sharing is not always the

110

best implementation technique; a comparison of the relative advantages of struc

ture sharing versus string copying can be found in a paper by Mellish [39],

All previous descriptions of the AND/OR process model have stressed the

logical independence of processes, and implied that when a new process is

created, copies of terms from the parent process are used to form the body of the

new process. An implementation, however, could use a scheme very much like

structure sharing in order to minimize the amount of space used by processes.

When a new process is created, a "frame" for it would contain pointers to exist

ing clauses in the parent process, and then a pointer to the new process would be

added to the list of ready processes. The only time it is necessary to obtain the

full string representation of a clause is when a process leaves the PE that created

it. At this time the structure would be traversed in order to obtain the complete

external representation of the process to be sent off to a neighboring PE. The

expected large size of processes and messages means that some form of structure

sharing or some other representation technique that takes advantage local

memory will be useful for representing processes within any given PE. An archi

tecture that is organized around pools of work may require an entire

process/message pair to be delivered to a PE each time a transformation is to be

performed, and this could be quite costly.

In Section 5.2, it was mentioned that if a generator creates a ground term

(one that contains no variables), then the AND process does not have to reapply

the ordering algorithm to modify the dataflow graph that connects literals. If the

term contains a variable, the ordering algorithm must be applied again, since

there may still be dependencies among literals. Making a graph is time consum

ing. so an AND process will always check to see if a term from a generator is a

ground term. Part of the representation of terms (whether it is based on struc

ture sharing or not) should include information on whether the term is a ground

term.

Another improvement in efficiency may be obtained by keeping track of can

celed processes. Instead of immediately "garbage collecting" the space occupied
by terminated processes, the system should save these processes, and reclaim the

I

I

I

p
I
J

p
p

111

space they occupy only when necessary. In many computations in the AND/OR

Process Model, processes are canceled, only to be replaced immediately by new

processes created to solve exactly the same problems. A property of logic pro

grams (and functional programs in general) is referential transparency, i.e. the

value computed by a procedure call is independent of the context in which the

call is made. If a process creates a descendant to solve a goal (or goal list) G,

then cancels G, and later starts a different process to solve exactly the same

problem, there is no reason the original process for G cannot be resurrected to

retransmit all solutions for G. If the system can restore a canceled process to its

previous state, instead of creating a new one, quite a bit of work may be saved.

6.2.3. Secondary Memory

One would assume that as the AND/OR tree of processes is formed, the

processes toward the top of the tree will be idle while descendants at the frontier

of the tree actively carry out their tasks. Eventually success messages work back

to the top of the process tree. This assumption is verified by simulations done so

far.

This observation can form the basis of an efficient use for a secondary

memory. Again, at this level, the topology of the interconnection of PEs or their

connection to a secondary memory is not essential to the discussion. One possi

ble arrangement is to have each PE connected to two networks: a message net

work (N-cube or whatever) and a secondary memory bus.

When a PE's memory starts to become filled with processes, and all of its

neighbors are presumably busy (since processes are not migrating), then blocked

processes can be written out to the secondary memory. The processes written

out should be those at the top of the tree. One can envision a systolic pipeline

effect here: as the amount of memory devoted to active processes shrinks, freeing

space, waiting processes can be brought back into main memory, based on how

close they are to the current frontier of the AND/OR tree of processes. The sys

tem can anticipate their need, before any active process actually sends a message

to one of them. Compare this to systems that use demand paging. If a program

112

makes a reference to information not currently in main memory, it is blocked

until the information is retrieved. There is no way to anticipate which informa-

tic.in currently on disk will be needed next, so information stays there until there

is a demand for it. In the .\ND/OR Process Model, the regular structure of pro
cess interconnection, and the relative predictability of when a process will be

activated, may lead to very efficient use of secondary memory.

This idea can be extended to situations where memory is filled with only
ready processes, after all blocked processes have been moved to secondary
storage. During the solution of very large problems, a PE's memory will overflow

with processes and messages. The first step in alleviating the congestion is to

move out blocked processes, from the top of the AND/OR tree. As the tree con

tinues to grow, a point wdll be reached where memory will contain only ready

processe.s and their incoming messages. The second stage is to store some subset

of these active processes and their messages. Again, the regular structure of the

tree of processes will help determine which process/message pairs to move out.

Siblings, or processes at the same level in general, do not send messages directly
to one another. So, at this stage, processes and messages from the "bottom

right" of the tree can be stored, without worrying that processes from the "bot

tom left" sending them messages.

A global view of the expansion of the AND/OR tree of processes can be

characterized as mostly breadth first, as processes create descendants in parallel.

When PEs become saturated, and active processes moved out of main memory,
the expansion will tend toward depth first, as the leftmost parts of the tree are

expanded while the rightmost part stays in secondary memory.

6.2.4. Mechanisms for Inhibiting Concurrency

There, are two ways to slow down the creation of new processes when the

system starts to become saturated. Each PE can decide when to implement these
mechanisms, based on its own current workload.

Figure 21 shows a conditional expression written in ID, along with two possi
ble dataflow schemas that can be generated from the expression [I]. As a result

I

I

I

P
P
P
P

select

f -> if p(X) then
g(X)

else

h(X);

select

113

merge

Figure 21: Dataflow Compilations of a Conditional Expression

Ill

of the compilation on the left, the predicate P and branches G and H are all

evaluated in parallel. The alternative on the right shows a less enthusia.stic

evaluation, in which P is applied, and then after the result is known, either G or

//, but never both, are applied. The schema on the right may lead to a slower

computation, since G and H are applied sequentially with respect to P, but fewer

proce.sses are created.

In Chapter 3, the same function was written as two clauses in a logic pro
gram:

/(A-,}1 - p(A-) P^(A-,10-
/(A',11 ^ no^(p(A-)) ef/i(A',yi.

A parallel OR process for the literal /(o, Y) creates two AND descendants to

evaluate both branches of the conditional expression. In order to inhibit con

currency when necessary, the programming language used in the proposed system
should include a conditional operator, such as the -> operator of DEC-10 Prolog:

/(A',yi:-p(Al -> ; A(X,n.

An AND process that encounters this operator in the body would, when the

system is busy, create an OR process for p(A); then, depending on the result, it
would create a process for either g[X,Y) or h{X,Y). This is in contrast to the

rules for forward execution presented in Chapter 5, in which processes for both

literals on the right side of each clause are created at the same time.

A second inhibitor of parallelism is simply to switch to a sequential compu
tation when the PEs start to become loaded. However, it would be a mistake to

have a PE start using a depth first interpreter when it thinks the system is
heavily loaded; instead, the switch to sequential computation should be enforced

by a set of policies that control the priorities of the individual processes. The
problem with starting to use a depth first interpreter is that parallel processes
construct a different (larger) set of answers than sequential interpreters. It would

be rather frustrating to use a system that successfully solves a problem when it is
not too busj, but then fails (says not provable") when asked to solve the same

problem when it is busy.

I

115

.'\s an example of how a general sequential orientation could be given to the

computation as a whole, an OR process that creates more than one AND descen

dant when the system is busy could give the process for the first clause (with

respect to the body of the program) a higher priority than the remaining

processes.

6.3. Chapter Summary

Programs in execution under the AND/OR Process Model define a pool of

tasks that need to be performed. Each task consists of the state of a process and

a message destined for it. Multiprocessor implementation of the AND/OR Pro

cess Model requires a method for distributing the packets of work to PEs. A pos

sible line of future research is to analyze the simulation results from the .APOP

interpreter to measure the average size of the packets of work, and then see if the

model can be efficiently implemented on any of the existing or proposed workpool

architectures.

A different path for fiiture research was outlined in this chapter. Instead of

storing the processes and messages in a central pool, from which each PE draws

packets of work, processes and messages will reside in the local memories of

independent PEs. The advantages to this organization are that large terms

(representing process states and success messages) will not have to moved around

the system as often, a form of structure sharing might be implemented in order

to minimize the memory required to represent processes, and finally it would be

straightforward to have the PEs in the system switch to sequential interpretation

locally as they and their neighbors become loaded with work during the execution

of very large programs.

CHAPTER 7

Conclusion

7.1. Contribution

The major contribution of this dissertation is a method for partitioning a

logic program into smaller, independent pieces for parallel solution. Two

different sources of parallelism were defined. OR parallelism comes from the

parallel solution of a procedure that is defined by a number of similar clauses.

OR parallelism takes advantage of multiple solutions to a single problem, and

essentially replaces backtracking in sequential interpreters. AND parallelism is

obtained when the literals in the bodies of clauses can be solved simultaneously.

AND parallelism is necessary if clauses that represent functions are to be exe

cuted in parallel. The interpreter described in this dissertation is the first imple

mentation of AND parallelism for logic programs.

7.2. Related Work

Two other forms of parallelism in logic programs were defined in the original

paper on the AND/OR Process Model [15], and yet a fifth form in a paper by

Conery, Morris, and Kibler [14]. These other forms are Search parallelism.

Stream parallelism, and Goal List parallelism (abbreviated GL).

VV^hen a program is very large, it may not be possible to store every clause

on every PE. Search parallelism refers to a method for searching across PEs for

clauses to use in a resolution step when the program has been partitioned to

reside on different PEs. This is an important form of parallelism, especially when

logic programs will be used for queries of large databases. If the AND/OR Pro

cess Model is to be used to define a database machine, this is an issue that will

have to be addressed. So far it been ignored in the implementation of the

AND/OR Process Model.

116

117

Stream parallelism was the term used to describe the parallelism obtained

from coroutines. As described in the chapter on AND parallelism, the biggest
difference between the generators in a parallel AND process and the producers in

stream parallelism is that generators create a sequence of independent terms,

whereas producers create parts of a single term through a series of partial bind

ings.

Goal List parallelism is simply a parallel search of a goal tree. GL parallel
ism is similar to OR parallelism, in the sense that the parallelism derives from

having a choice of clauses to resolve with a selected literal. The dififerences are in

subproblem size, direction of message transfer, and in opportunities for AND

parallelism.

OR processes are oracles, and solve only one literal. The largest problem
solved by their direct descendants is proportional in size to the largest body in
the procedure defined by the literal. The subproblems created in the GL model

are derived goal statements, and can be much larger: the derived goal statement

has every remaining literal from the input goal statement plus the literals from

the body of the selected clause. If the subproblems are to be sent to independent
processing elements, then the size of the Subproblems is an important factor. It

may be very time consuming to transmit an entire goal stack to other PEs.

Ciepielewski and Haridi have defined a structure sharing method that allows

independent processes to share a goal stack stored in a common memory (this
organization assumes all PEs share the same memory space) [9]. This method
will greatly reduce the time required to create subprocesses.

An OR process acts as a message center, deciding when to pass success mes

sages to its parent. One advantage of the GL model is that message transfer is

unidirectional, and start is the only message type required. When a descendant

process is created, it becomes totally independent, and there is never a need to

communicate with the parent process. Thus the complications arising from wait

ing and gathering modes are avoided.

An interpreter based on OR processes has an opportunity for exploiting

.AND parallelism by creating OR processes for more than one literal at a time.

I

P

118

Tliis same opportunity is not a;vailable in the GL model. It may be possible to

select more than one literal for resolution from a goal statement in the GL model,

but the result is only a higher branching factor in the goal tree. The derived goal

statements in the subtrees are not any smaller, and the lengths of the derivations

are not any shorter. True AND parallelism involves a virtual shortening of the

length of a path from the root to a null clause, and this can only be done if sec

tions of a path are derived in parallel by independent interpreters, i.e. oracles.

7.2.1. Furukawa, Nitta, and Matsumoto

A system described by Furukawa, Nitta, and Matsumoto is also organized as

a set of ANT)/OR processes [26]. What they refer to as OR parallelism is actu

ally GL parallelism. Their proposed plan for allocation of processes to PEs

assigns one process per PE (via an undisclosed assignment function).

7.2.2. Eisinger, Kasif, and Minker

The system of Eisinger, Kasif, and Minker is designed to run on the ZMOB

system [21, 50). The system consists of a problem solver, an extensional database

(the set of unit clauses), and an intensional database (set of implications). The

problem solver runs on a dedicated PE, and other PEs in the system are charged

with gathering information for it. Thus this system is an implementation of

search parallelism.

7.2.3. Clark

The IC-Prolog interpreter allows the programmer to annotate clauses to

indicate which literals will be the producers of terms [11]. The paper by Clark

and McCabe is the first to describe variable bindings with the imagery of

dataflow, by talking about values flowing from producers to consumers.

Clark and Gregory extended the language, and showed how clauses can be

used to construct networks of communicating processes [12]. The latter inter

preter uses Dijkstra's committed choice nondeterminism: when there is a choice

of clauses to unify with a selected literal, one is chosen at random; the interpreter

will never backtrack to try to undo this choice [19].

119

IC'-F'rolog is one of the languages expected to run on the ALICE machine, a
general purpose multiprocessor for applicative languages [17], When running on
a multiprocessor machine, IC-Prolog is an implementation of stream parallelism.
ALICE is an example of a multiprocessor organized around the workpool concept.

7.2.4. Haridi

Haridi's thesis presents a logic programming system that is not based on

resolution [28]. It uses natural deduction as the framework for organizing a
proof. A natural deduction proof can also be represented as a tree of inferences.

That thesis devotes a chapter to parallelism in that model of computation. The
specific form of parallelism is GL parallelism, a parallel search of the natural

deduction proof tree. A method for allowing independent processes to share
information in that proof tree is described in in a later paper by Ciepielewski and
Haridi [9].

7.2.5. Bowen

Bowen has designed a system that is an implementation of van Emden's

abstract model for a Prolog interpreter [6, 23). The form of parallelism obtained
is GL parallelism. This system is also expected to run on the ZMOB architecture

[50].

7.2.6. Monteiro

Another language- that uses Horn clauses to describe concurrent processes is
Distributed Logic, or DL for short, described in a paper by Monteiro [41]. The
language allows programmers to describe, in a Prolog-like language, the commun
icating sequential processes of Hoare [29]. The goal is to allow programmers to
specify concurrent processes, and their communication paths, as opposed to hav
ing programmers specify a function and having the interpreter decide what can or

cannot be performed in parallel.

I

i

i

120

7.2.7. MelUsh

Mode declarations are used by. the DEC-10 Prolog compiler to generate more

eiricient code. The techniques for generating DEC-10 machine code from Prolog

clauses is defined in Warren's thesis [60]. If the compiler knows in advance that

certain arguments will or will not be instantiated, the unification process can be

speeded up quite a bit. A method for automatic generation of mode declarations

is described by Mellish [39]. By considering the entire program, and not just each

clause by itself, this method is much more effective than the ordering algorithm

of Section 5.1.2 in figuring out which argument positions correspond to inputs

and which are outputs.

7.2.8. Pereira and Porto

The intelligent backtracking scheme of Pereira and Porto is more effective

than the system of resets and fail lists described in Chapter 5. When a

unification fails, their system analyzes the cause of the failure [47, 48]. By

including this type of analysis, AND processes could be more efficient. This

would require fail messages to carry reasons for failure, e.g. the message

fail(p(X,a)) could mean "literal p cannot be solved with term a in the second

argument position." '

The shortcomings of chronological backtracking have been described in a

number of papers, not all of them in the context of logic programming. Other

discussions can be found in a recent paper by Freuder [25] and in Steele's thesis

[55].

7.3. Future Research

7.3.1. Process Migration

A policy for deciding which processes should be transferred to neighboring

PEs needs to be developed. An example of one rule was given in Section 6.2.1,

where it was shown that, by transferring the process that performs a recursive

call, work can be spread evenly across PEs. A tradeoff associated with this policy

is due to the time it takes to transfer a problem. It may be the case that for a

121

small problem, it takes longer to transfer it to another PE and wait for results,
than to simply keep it on the original PE.

Note that this policy, and others, depend on physical characteristics of the

network (topolog)', bandwidth, etc.).

7.3.2. Migration Count

In the Burton and Sleep network, a process is transferred only once, from
the PE that creates it to any neighboring PE. Since messages are transmitted
only between parents and descendants in the AND/OR model, the longest path
would cross two links (this happens when PEj creates a process and its descen

dant, the parent migrates to PEg and the descendant to PEg, and PEo can only
communicate with PEg indirectly, through PEi). A subject of further experimen
tation is to see how varying the migration count, or the number of times a pro
cess may be transferred to other PEs, effects message transmission times.

.\s a side note, by setting the migration count to 0, a programmer will be
able to test a program as if it were running on a system with a single PE. It will
be much easier to debug a program if it "stays put" when it is being worked on.

Then, when the programmer is confident the program works, parts can be
allowed to migrate to other PEs.

7.3.3. Backward Execution

The method for handling fatl and redo messages presented in Chapter 5 is
very conservative. A number of processes are canceled when in fact they are
doing work that must be done later, and the sequential processing of fail
sequences seems unnecessarily restrictive. The general policy used when writing
this first interpreter for parallel AND processes was to be implement a correct

"tuple generator", with the emphasis on constructing all tuples. Further parallel
ism, or more efficient methods, are possible. One example is to process fail
sequences in parallel. Also, a more sophisticated analysis of the dependencies
between literals may show that a literal does not have to be reset every time the

process for an earlier literal is sent a rerfo message.

I
122

7.3.4. High Level Language

The literal ordering algorithm (Section 5.1.2) is, in effect, an attempt to infer

mode declarations for the literals within the body of one clause. An example of

where this algorithm fails is

mm[A,B,C) *— transpose(B,BT) & mmt(A,BT,C).

The proper sequence solves transpose first, generating a binding for BT. The

ordering algorithm looks for literals that are connected to the set of variables

instantiated in the head, in this case {A,B}. The algorithm uses these variables

in order, and thus it finds mmt connected by the variable A before it finds tran

spose connected by B.

In this example, an incorrect ordering means the goal will fail. This happens

because mmt(A,BT,C) cannot be solved unless A and BT are instantiated. In

other cases, an incorrect ordering simply means the AND process will be

inefficient. (For a dramatic illustration of how different orderings effect efficiency,

see Baxter's "verify and choose" problem solver [4].)

The cases where an AND process actually fails because of an incorrect order

ing are those cases where the subgoals are calls to functions, and the calls do not

have all input variables bound. One remedy is to use Mellish's automatic mode

generation algorithm for a more accurate specification of modes [39]. However,

the best solution to this problem is to include a functional notation into the

language used by the interpreter. For example, if transpose is defined as a func

tion, the clause

mrn{A,B,C) *- Tnmt(A,transpose(B),C).

could be translated into the previous clause, and as a result of the translation a

correct ordering would be generated.

Two systems that incorporate functional notations into a logic language are

the LOGLISP system from Syracuse (Bowen and Kowalski [5]) and Eggert and

Schorre's extended syntax for Prolog [20]. The use of functional notation does

not necessarily mean that the functions have to be deterministic. They will still

123

be solved by OR processes, and can still be defined by any number of clauses.

The notation simply restricts the input/output sense of variables in the literal, in
a manner that does not require the programmer to provide mode declarations or

control annotations in the clause.

I

i
I

References

[1] Arvind, K. P. Gostelow, and W. E. PlouEfe.
.\n Asynchronous Programming Language and Computing Machine.
Technical Report 114a, Department of Information and Computer Science,

University of California, Irvine, December, 1978.

[2] .Ashcroft, W.

LUCID.

Communications of the ACM, 21{8):613-641, August, 1978.

[3] Backus, J.

Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs.

Communications of the ACM, 21(8):613-641, August, 1978.

[4] Baxter, L.

A Prolog Program Illustrating a Verify and Choose Method.

Technical Report, Department of Computer Science, York University, 1981.

[5] Bowen, K. A. and R. A. Kowalski.
Amalgamating Language and Metalanguage in Logic Programming.

Technical Report, School of Computer and Information Science, Syracuse
University, April, 1981.

[6] Bowen, K. A.

Concurrent Execution of Logic.

In Proceedings of the First International Logic Programming Conference, pp.

26-30. Faculte des Sciences de Luminy, Marseille, Sept, 1982.

[7] Boyer, R. S. and J. Moore.

The Sharing of Structure in Theorem Proving Programs.

In B. Meltzer and D. Michie, Eds., Machine Intelligence 7, Edinburgh

University Press, 1972.

124

125

[8] Burton, F. W., and M. R. Sleep.

Executing Functional Programs on a Virtual Tree of Processors.

In Proceedings of the Conference on Functional Programming Languages and

Computer Architecture, pp. 187-194. ACM, October, 1981.

[9] Ciepielewski, A. and S. Haridi.

Formal Models for Or-Parallel Execution of Logic Programs.

CSALAB Working Paper 821121, Royal Institute of Technology, Stockholm,
Sweden, 1982.

[10] Clark, K. L.

Negation as Failure.

In H. Gallaire and J. Minker, Eds., Logic and Databases, Plenum Press,
1978.

[11] Clark, K. L., and F. McCabe.

The Control Facilities of IC-Prolog.

In D. Michie, Ed., Expert Systems in the Microelectronic Age, Edinburgh
University Press, 1979.

[12] Clark, K. L. and S. Gregory.

A Relational Language for Parallel Programming.

In Proceedings of the Conference on Functional Programming Languages and

Computer Architecture, pp. 171-178. ACM, October, 1981.

[13] Colmerauer, A., H, Kanoui, and M. van Caneghem.

Last Steps Toward an Ultimate Prolog.

In Proceedings of the Seventh International Joint Conference on Artificial

Intelligence, pp. 947-948. August, 1981.

[14] Conery, J. S., P. H. Morris, and D. F. Kibler.

EfiFicient Logic Programs: A Research Proposal.

Technical Report 166, Department of Information and Computer Science,

University of California, Irvine, April, 1981.

[15] Conery, J. S. and D. F. Kibler.

Parallel Interpretation of Logic Programs.

I

126

In Proceedings of the Conference on Functional Programming Languages and

Computer Architecture, pp. 163-170. ACM, October, 1981.

[16] Dahl, V.

On Database Systems Development Through Logic.

ACM Transactions on Database Systems, 7(1):102-123, March, 1982.

[17] Darlington, J., and M. Reeve.

ALICE: A Multiprocessor Reduction Machine for the Parallel Evaluation of

Applicative Languages.

In Proceedings of the Conference on FunctionalProgramming Languages and

Computer Architecture, pp. 65-76. ACM, October, 1981.

[18] Davis, R. E.

Generating Correct Programs from Logic Specifications.

Technical Report 79-05-001, Information Sciences, University of California,

Santa Cruz, May, 1979.

[19] Dijkstra, E. W.

A Discipline of Programming.

Prentice-Hall, Englewood Cliffs, N.J., 1976.

[20] Eggert, P. R. and D. V. Schorre.

Logic Enhancement: A Method for Extending Logic Programming
Languages.

In Conference Record of the Symposium on LISP and Functional Program

ming, pp. 74-80. ACM, August, 1982.

[21] Eisinger, N., S. Kasif, and J. Minker.

Logic Programming: A Parallel Approach.

In Proceedings of the First International Logic Programming Conference, pp.

1-8. Faculte des Sciences de Luminy, Marseille, Sept, 1982.

[22] van Emden, M. H. and R. A. Kowalski.

The Semantics of Predicate Logic as a Programming Language.

Journal of the ACM, 23(4):773-742, October, 1976.

127

[23] van Emden, M. H.

.\n Interpreting Algorithm for Prolog Programs.

In Proceedings of the First International Logic Programming Conference, pp.
36-61. Faculte des Sciences de Luminy, Marseille, Sept, 1982.

[21] van Emden, M. H.

Warren's Doctrine on the Slash.

Logic Programming Newsletter, 4:10, January, 1983.

[25] Freuder, E. C.

A Sufficient Condition for Backtrack-Free Search.

Journal of the ACM, 29(l):24-32, January, 1982.

[26] Furukawa, K., K. Nitta, and Y. Matsumoto.

Prolog Interpreter Based on Concurrent Programming.

In Proceedings of the First International Logic Programming Conference, pp.
38-44. Faculte des Sciences de Luminy, Marseille, Sept, 1982.

[27] Gostelow, K. P. and R. Thomas.

Performance of a Simulated Dataflow Computer.
IEEE Transactions on Computers, C-29(10):905-919, October, 1980.

[28] Haridi, A.S.

Logic Programming Based on a Natural Deduction System.

PhD thesis. Royal Institute of Technology, Stockholm, Sweden, 1981.
Report TRITA-CS-8104.

[29] Hoare, C. A. R.

Communicating Sequential Processes.

Communications of the ACM, 21(8):666-677, August, 1978.

[30] Hopcroft, J. E.

Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Mass., 1979.

[31] Katz, E. P.

A Realization of Relational Semantics in an Automatic Programming System.
PhD thesis. University of Southwest Louisiana, 1978.

I

I

I

I

I

p

I

128

[32] Kibler, D. and B. Porter.

Episodic Learning.

to appear in Proceedings of the Eighth International Joint Conference on

Artificial Intelligence. William Kaufmann Co., August, 1983.

[33] Kowalski, R. A.

Predicate Logic as a Programming Language.

In IFIPS 71

[34] Kowalski, R. A.

Logic for Problem Solving.

Elsevier - North Holland, New York, 1979.

[35] Logic Programming Newsletter.

Available from L; M. Periera, Ed., Departamento de Informatica, Universi-

dade Nova de Lisboa, Lisbon, Portugal.

[36] MacLennan, B. J.

Introduction to Relational Programming.

In Proceedings of the Conference on Functional Programming Languages and

Computer Architecture, pp. 213-220. ACM, October, 1981.

[37] Manna, Z.

Mathematical Theory of Computation.

McGraw-Hill, New York, 1974.

[38] Martelli, A. and U, Montanari.

An Efficient Unification Algorithm.

ACM Transactions on Programming Languages and Systems, 4(2):258-282,

April, 1982.

[39] Mellish, C. S.

An Alternative to. Structure-Sharing in the Implementation of a Prolog Inter

preter.

DAI Research Paper 150, Department of Artificial Intelligence, University of

Edinburgh, 1980.

129

[40] Mellish, C. S.

The Automatic Generation of Mode Declarations for Prolog Programs.

DAI Research Paper 163, Department of Artificial Intelligence, University of

Edinburgh, August, 1981.

[41] Monteiro, L.

A Horn Clause - Like Logic for Specifying Concurrency.

In Proceedings of the First International Logic Programming Conference, pp.

1-8. Faculte des Sciences de Luminy, Marseille, Sept, 1982.

[42] Myers, G. J.

Advances in Computer Architecture.

John Wiley and Sons, New York, 1978.

[43] Nilsson, N. J.

Problem Solving Methods in Artificial Intelligence.

McGraw-Hill, New York, 1971.

[44] Page, R. L., M. G. Conant, and D. H. Grit.

If-then-else as a Concurrency Inhibitor in Eager Beaver Evaluation of Recur

sive Programs.

In Proceedings of the Conference on Functional Programming Languages and

Computer Architecture, pp. 179-186. ACM, October, 1981.

[45] Pereira, F. C. N. and D. H. D. Warren.

Definite Clause Grammars for Language Analysis - A Survey of the Formal

ism and a Comparison with Augmented Transition Networks.

Artificial Intelligence, 13:231-278, 1980.

[46] Pereira, L. M., F. C. N. Pereira, and D. H. D. Warren.

Users Guide to DECsystem-10 Prolog.

Technical Report, Department of Artificial Intelligence, University of Edin

burgh, September, 1978.

[47] Pereira, L. M. and A. Porto.

Intelligent Backtracking and Sidetracking in Horn Clause Programs - the

Theory.

I

p

p
p
I

i;iO

Report 2/79, Departamento de Inforrnatica, Universidade Nova de Lishna,
October, 1979.

[48] Pereira, L. M. and A. Porto.

An Interpreter of Logic Programs Using Selective Backtracking.

Report 3/80, Departamento de Informatica, Universidade Nova de Lisboa,

July, 1980.

[49] Pereira, L. M.

Logic Control with Logic.

Report 2/82, Departamento de Informatica, Universidade Nova de Lisboa,
February, 1982.

[50] Rieger, C., R. Trigg, and B. Bane.

ZMOB: A New Computing Engine for AI.

Technical Report 1028, Department of Computer Science, University of

Maryland, March, 1981.

[51] Roberts, G. M.

An Implementation of Prolog.

Master's thesis. Department of Computer Science, University of Waterloo,

1977.

[52] Robinson, J. A.

A Machine Oriented Logic Based on the Resolution Principle.

Journa/o//Ae ACM, 12(1):23-41, January, 1965.

[53] Sleep, M. R.

Applicative Languages, Dataflow, and Pure Combinatory Code.

In COMPCON Spring 80, pp. 112-115. IEEE, February, 1980.

[54] Sowa, M. and T; Murata.

A Dataflow Computer Architecture with Program and Token Memories.

IEEE Transactions on Computers, C-31(9):820-824, September, 1982.

[55] Steele, G. L.

The Definition and Implementation of a Computer Programming Language

Based on Constraints.

131

Technical Report AI-TR-595, fvIIT AI laboratory, August, 1980.

[56] Treleaven, P. C., D. R. Brownbridge, and R. C. Hopkins.

Data-Driven and Demand-Driven Computer Architecture.

ACM Competing Surveys, 14(1):93-143, March, 1982.

[57] Turner, D. A.

A New Implementation Technique for Applicative Languages.

Software - Practice and Experience, 9(l):31-49, January, 1979.

^ [58] Warren, D. H. D.
! WARPLAN: A System for Generating Plans.

Paper 76, Department of Artificial Intelligence, University of Edinburgh,

June, 1974.

[59] Warren, D. H. D., L. M. Pereira, and F. C. N. Pereira.

; Prolog - The Language and its Implementation Compared with LISP.

ACM S/GPLAiV Notices, 12(8):109-115, 1977.

I [60] Warren, D. H. D.
i _ - -

Implementing Prolog; Compiling Predicate Logic Programs,

j D.A.I. Research Reports 39 and 40, Department of Artificial Intelligence,

University of Edinburgh, May, 1977.

[61] Warren, D. H. D.

Logic Programming and Compiler Writing,

i Software • Practice and Experience, 10:97-125, 1980.

^ [62] Warren, D. H. D.
Eflicient Processing of Interactive Relational Database Queries Expressed in

Logic.

I Paper 156, Department of Artificial Intelligence, University of Edinburgh,
September, 1981.

^ . [63] Warren, D. H. D. and F. C. N. Pereira;
JAn Efficient Easily Adaptable System for Interpreting Natural Language

Queries.

1 Paper 155, Department of Artificial Intelligence, University of Edinburgh,

I
p
p

132

February, 1981.

[64] Warren, D. H. D.

Higher-Order Extensions to Prolog - Are They Needed?.

Paper 156, Department of Artificial Intelligence, University of Edinburgh,

September, 1981.

[65] Wise, M. J.

A Parallel Prolog: The Construction of a Data Driven Model.

In Conference Record of the Symposium on LISP and Functional Program

ming, pp. 56-66. ACM, August, 1982.

[66] Wulf, W. A. and M. Shaw.

Abstraction and Verification in ALPHARD: Defining and Specifying Itera

tion and Generators.

Communications of the ACM, 20(8):553-564, August, 1977.

I

p
i

APPENDIX I

Detailed Definition of the Interpreter

The higher level procedures of the interpreter are discussed in detail in this

Appendix. The interpreter was designed to be modular, in the sense that the low

level mechanisms (for message passing, process scheduling, etc.) are all defined in

a kernel file, routines that support one particular parallel model^ are defined in

another file, and, finally, definitions of processes are in a third file. The code

given here is for parallel AND and OR processes.

A. Kernel

The special characters and are defined as operators, in order to

make it easier to read the complicated terms that represent the states of

processes.

-op(300,/j,#).
-op{S50,xfy,@).
-op{3SO,xfy,:).

The interpreter is started when the user types solve((7), where G is any con

junction of goals; it is necessary to turn (7 into the required internal form and

then start an AND process to solve it:

solve(G):-initialize,
top_goal{G),\,
cycle.

cycle is the main loop of the interpreter. It continually pairs up messages

and processes and calls the routine that performs the required state transition.

After saving the new state of a process, test_Jor_result is called. If it succeeds,

the cycle stops. If it fails (meaning there is no result yet), then Prolog retries

every goal in the body; however, these are all deterministic, so eventually Prolog

' Id this case the AND/OR Process Model; another is the Goal List Model [6],

133

134

backtracks all the way to read_mes3age, and cycle gets another message/process

pair:

• cycle.'

re.ad_tnessage{Src,h,.\fsg,T), % get a message for any process N
state_of{.\.State), % and the current state of N
step{Slate,Src,A,Msg,T,NewS), % transform into new state . .
ptrace{State,Src,N,Msg, T,NewS),
save_state{NewS),
test_for_result.

The states of processes, and messages in transit between processes, are

stored in Prolog's internal database. The above calls to read_message and

state_of are database retrievals that pick up a message at random and then the

current state of the destination of that message. States of processes are all terms

of the form

P(A'5,D

N is the process ID number, 5 is the current state, and T is the time of the last

transformation. Messages are all terms of the form

S is the ID of the sending process, D is the ID of the destination. Mis the content

of the message, and T is the timestamp.

step is a model-dependent procedure that executes exactly one step of a pro

cess. The parameter S will be the current state of the process; step returns the

new state of the process by binding the new state to the parameter NewS. The

other four parameters define the message that that triggers the transformation

defined in step. save_state records the new state of the process after the state

transformation.,

state_o][N,p{N,S,T)\.- % retrieve state of process N
recorded{process,p{N,S, T),Key),
erase{Key), !.

I

I
135

save_sfate(P]:
rtcorda[process.P.R'2], !.

send_message(Source.Dest.Al, T):-
records. insg.m{ Source,Dest,M, T],R),
stats{ msg,m(Source,Dest,M)).

read_rnessage{Source,Dest,M, T):-
recorded(rnsg,in[Source,Dest,M, T),R),
erase{R).

step consists of a number of clauses, each one of which defines exactly one

state transition. The input arguments correspond to a process and a message.

The interpreter must scan the list of steps, looking for one that can be applied to

the inputs. The clauses are presented here in exactly the same order as they

occur in the interpreter, which is the order in which Prolog tries to apply them.

Every step has calls to procedures wakeup and executed, which update global

counters used in timing measurements. These procedures use the old time stored

with the process state and update it to reflect the timestamp in the message.

Notice also that every clause for step ends with a cut symbol, meaning that only

one step is ever applied for any process-message pair. The cut symbol is required

because of the way cycle is constructed to do iteration through backtracking.

This first step is for any process that reads a cancel message. It updates the

timing data one last time, and returns.done (the special final state) as the output

state:

step(p{ID,_,_,Tl), % implementation of 'cancel'
RID,ID,cancel, Tm, % messages for any process
p{ID,_,done,t(T2,A,S))):- % in any state
wakeupi Tl, Tm, TX),
executed(ID,TX,t{T2,A,S)),
zap_messages{ID),
cancel_desc{ID,T2), !.

].;i3

B. AND Processes

The step procedure for parallel AND processes is described in detail in this

section. The state of a parallel AND process is a single complex term:

and(PID,Body, Ans,Ltt3,HL,Solved,Linear,FL)

where the fields have the following meanings:

PID is the parent's ID
Body is the original goal list (with variables uninstantiated)

is a copy of Body with current values of variables;
Ans is used to make the message eventually sent back.

Lits is the set of the literals of the body. Each item
is of the form #N:[Lit,Fred,Gen,Desc,U,UU]
where Lit is the "numbered" literal, Fred is
the list of predecessors (aka redo sequence), Desc
IS the process ID of the OR process solving
the literal, U is list of solutions used,
LTJ is a list of as yet unused solutions,
and Gen is a list of variables generated by Lit.

HL is an abbreviated Lits structure for the head
(among other things, it has the head redo list)

Solved is a list of numbers of literals solved so far
Linear is the linear ordering of literal numbers
FL is the current list of failure contexts

It is possible that a descendant OR process will send a message, and then
read a cancel message and terminate. The AND process should ignore any mes
sages sent by these "ghost " processes. msg_screen will FAIT, (i.e. another step
will be tried) if Src is either the parent's ED or it is in the Lits structure for some

literal; if msg_screen succeeds it means the process that sent the message is now
dead, so the message should have no effect, i.e. output state = input state.

step{p{ID,and[PID,Body,Ans,LiisIn,HL,Solved,Linear,FL),T1),
Src,ID,Msg. Tin,

p(lD,and[PID,Body,Ans,LitsIn,HL,Solved,Linear,FL),T\))\-
msg_screen[Src,PID,LitsIn), !.

This is the first step taken by a new AND process. The Solved list is [Aead],
and there will be no descendants; just start processes for all literals that have

only [head\ as predecessors (there has to be at least one as long as there are no

I
137

cvcles in the dataflow graph). ready{G,S,D) is a predicate that is true if goal G

from body B is ready to be solved, given the list of already solved literals 5; the

DEC-10 Prolog procedure setof collects the set of all such literals from 5:

step{p{ ID, and{PID,Body, Ans,LitsIn,HL,Solved,Linear,FL), 71),
BID,ID,start, Tni,
p(ID,and(PID,Body,Ans,LitsOut,HL,Solved,Linear,FL),t{ T,A,S))y.-
setoJ[G,ready(G,Solved,LitsIn),R),
executed[ID,Tl,i{T,A,S)),
start_all_andp{R,ID,Ans,LitsIn,LitsOut, T), !.

An AND process that receives a success message unifies the the message with

the current .Answ^er structure, and starts a new set of OR processes; if there are

no more literals to solve, send success{ANS) to the parent process. solveT{N,B,D)

equates literal number N in body B with descendant D\ in this case it is used to

find the literal number of the descendant that sent the success message. add_ans

updates the used-answer list. fwd_state updates the status of the literals and

creates new processes (code given below):

step(p[ID,and{PID,Body,Ans,LitsIn,HL,Solved,Linear,FLi), 71),
Desc,ID,success{i\'f), Tm,
p{ID,and(RID,Body,Ans,LitsOut,HL,[!\'\Solved\,Linear,FLo), T2)):-
wakcup(Tl, Tm, TX),
executed(ID, TX, T2),
apply_ans{^ N:M,Ans),
add_ans{N,M,LitsIn,LitsTmp),
fwd_state{Ans,LitsTmp,LitsOut,FLi,FLo,[N\Solved\,ID,PID, T2),
\

When a fail message is received from process for N, add N to the fail con

text, send somebody a redo, modify the status of every literal after N in the

linear ordering, and rebuild the answer template (without values from the genera

tor that was sent the redo message):

138

step(p{ID.and[PID,Body.Ansin,Li,HL,Si,Linear,FLi), 71),
Desc,ID.fail, Tm,
p{ID,and[PID.Body,AnsOut,Lo,HL,So,Linear,FLo),t{ T2,A,S))):-
remore_desc(Desc,Li,Ltl),
wakeiip{ 71, Tm, TX),
executed(ID, TX,t{ T2,A,S)),
send_redo(X,Ltl,Lt,Si,St,ID, T2, V),
t ail{ Line ar,X, Bern),
bku'd_state{ V,Rem,Body,AnsOut,Lt,Lo,St,So,ID, T2,FLt,FLo), !.

Id the previous step, if the call to redo_literal fails, it means head is the

literal to be redone, so the AND process fails:

step(p{ID,an(h,PID,Body,Ans,LitsIn,HL,Solved,Linear,FLi), 71),
Desc,ID.fail,Tm,
p{ID.done,i[T2,A,S))):-
wakeup{Tl,Tm,TX),
executed{ID, TX,t{ T2,A,5)),
send_message{ID,PID,fail, T2), !.

When a redo message is read, start a failure context from the head (this is

where the list HL is used), and find out which literal to redo. Note: assume FL is

always [] before a redo received, and it is (by definition) [Aead] after redo is sent

to a literal:

step[p{lD,and[PID,Body,AnsIn,Li\Hl\Hn\,Si,Linear,[W\), 71),
Desc,ID,redo. Tm,
PiID,
and{FID,Body,AnsOut,Lo,[Hl\Hn],So,Linear,FLo),t(T2,A,S})):-
wakeup(71, Tm, TX),
executed(ID, TX,t{ T2,A,S)),
hl([m\Hn\,Li,HLits),
ext_rl(HLits,head,Hl,XX,[heacl\,FC),
send_redo(XX,Li,Lt,Si,St,ID, T2, V),
tail{ Line ar,XX, Rem),
bkwd_state{ V,Rem,Body,AnsOut,Lt,Lo,St,So,ID, T2,[FC\,FLo),\.

Those are the steps for AND processes; more clauses from the step procedure

are explained in the next section. The remaining clauses in this section are from

the major procedures fwd_state, bkwd_state, and redo_literal.

139

Literal N has been solved; figure out new state information for the ANl) pro

cess. If N was the last literal (if the Solved list is as long as the body) send

success(Ans), else start a new set of descendants and update the Lits structure.

fu'd_state{Ans,Lit sin ,LitsIn,FLi,[[]],Solved, ID,PID, t{T,A.,S)):-
length{Solved,Ll),
length{Ans,L2),
L2 is Li-l, % Solved includes 'head' ...
strip{Ans,Msg],
send_message(ID,PID,success{Msg), T).

fwd_state{Ans,LitsIn,LitsOut,FLi,FLo,Solved,ID,PID,t{T,A,S)):-
setoJ[G,ready(G,Solved,LitsIn),New),
start_all_andp{New,ID,Ans,LitsIn,LitsOut,T),

ew,FLi,FLo), % remove newly started processes
!. % and any extra []'s from FLl

fwd_state{Ans,L,L,F,F,S,ID,PID,T). % no new processes . . .

bkwd_state figures out which literals to reset and which to cancel, and then

starts new processes for canceled literals which can be restarted (since reset gen

erators are still solved generators): /

bkwd_state{ V,Resi,Body,AnsOut,LitsIn,Lit30ut,Si,So,ID, T,FLi,FLo):-
bk{V,Rest,LitsIn,LitsTmp,Si,So,ID,T),
rebvLild[Body,LitsTmp,So,AnsOut),
% after resets, it may be possible to restart some processes
resfart(ID,AnsOut,LitsTmp,LitsOut, T,So,FLi,FLo).

The next procedure is the heart of the redo_literal procedure. The call has

the form rl{FC,Lits,Desc,NFC,X), with FC bound to the current failure context,

Lits bound to the list of literals, and Desc the number of the literal that failed.

This procedure returns a new failure context in NFC and the identity of the

literal to redo in X.

r/(FC.[# A: [Lit. Pre f/jj [in], Desc.NFC,X): •
ecinraf(PC[I)ese,A]J,[A]Pre(i]),!,
append(Desc,FC,NFC).

rl{FC.[^N:[Lit,Pred_]\Ln],Desc,FC,0):-
concat{FC._.[N\Fre(I\), !.

r/{PC, [AliLr?] ,Pese, A'PC,A}:-
rl(FC,Ln,Desc,NFC,X).

MO

% Desc can be appended,
% and X is its predecessor

% Desc cannot be appended

% try the next Lit

C. OR Processes.

The state of an OR process is a term

or{PID,Mode, Orig,Sent, Wait,Desc)

PID is the process ID of the parent AND process. Mode is the current operating
mode (gathering or waiting), Sent and Wait are lists of answers, and Desc is the

current list of descendant AND processes.

A new OR process knows only about the goal it is supposed to solve; it

creates descendant .ANT) processes with the bodies of each head that matches the

goal; the descendant list will be a list of pairs of process Id's and goal lists that

those processes are -working on; the waiting list will be initialized to be the

unified heads of assertions (clauses with bodies = true); finally, if the waiting list

is not empty, send the first answer from this list and go into the gathering mode;

otherwise go into the waiting mode:

step{p{ld.oriPId,X,Orig,[],\],[]),Tl),
Pld,Id,start,Tm,

p(Id,oriPId Mode,Orig,Sent, Wait,Desc),t(T2,A,S))):-
bagoJ{[Orig,Body],clause_for{OTig,Body),Bodies),
list_sort{Bodies,NonTrue,True),
executed[Id,Tl,t{T2,A,S)),
start_aU(Id,NonTrue,Desc,T2),
inii_lists(True,Sent, Wait),
maybe_send{Id,Bid,Sent,Mode,T^),

The above call to bagof puts the body of every clause with a head that matches

Orig into the list Bodies-, then /js<_sorrsplits that list into lists True and Non-

True (lists of unit and nonunit clauses, repectively). For every body in NonTrue,

an AND process is started. All unit clauses in True are used to make the initial

I

I

I

1

I

I

I

I

I

I

I

I

I
4

I

141

sets of answers. If Sent contains an answer. maybe_send makes a success me.ssage

out of it and unifies Mode with gathering, otherwise Mode is unified with waiting.

If the previous step fails (because bagof fails), it means there are no clauses

with heads that unify with Orig] this normally means the new OR process fails

immediately. However, this provides a "hook" for evaluable predicates. If Goal

is in the list of known predicates or special predicates, then solve it directly and

return the answer;

step{p{Id,or{PId,X,Goal,_,_,_),Tl),
PId,Id,start, Tm,
p(Id,or{PId,gathering. Goa/, [ylns], [],[]),<(T1,A,S))):-
Goal=..[Functor\Args\,
primitive{Functor),\, % succeeds for special functors
copy{Goal,Ans),
.4ns,!, % do it
executed{Id,Tl,t(T2,A,S)),
send_message[Id,PId,succcss{Ans),T2),
!. .

Send a fail message and terminate if the functor of the goal is not in the list

of known special predicates (the call to primitive in the previous clause failed) or

if the call to the primitive itself failed:

step{p{Id,or{PId,X,G,T\),
PId,Id,start.Tin,
p(Id,_.done,t[T2,A,S))):-
execute(h.Id,Tl,t{T^,A,S)),
send_me3sage(Id,PId,fail,T2),
!_

A waiting OR process handles a fail message by removing the process that

sent the message from the list of descendants; if that list is now empty, the OR

process itself fails:

142

step(p{Id,or(PId, waiting,G,SList, \VList,De3c), 71),
Son,Id,fail, T,
p{Id._,done,t{T2,A,S])):-
remove{Son,Desc,\]), % works if removing Son from
wakeup{Tl,T,TX), % Desc leaves []
€iecuted(Id,TX,t{T2,A,S)),
send_message{Id,PId,fail,T2),
\

The above call to remove failed (more than one descendant left), so just remove

the descendant and keep waiting:

step(p(Id,M,or{PId.waiting,G,SList,WList,Desc),T\),
Son,Id,fail, T,
p(Id,M,or[PId,waiting,G,SLi8t,WList,NewDesc),T2))\-
remove{Son,Desc,NewDesc),
wakenp{T\,T,TX),
executed{Id,TX,T2),
!.

A gathering OR process handles a fail message by removing the sender from

the descendant list; a now-empty descendant list does not imply failure, though,

since there may be messages in the waiting list (even if there aren't any of those,

wait for redo before failing):

step{p{Id,M,or{PId,gathering,G,SList,\\'T,ist,Desc), 71),
Son,Id,fail,T,
p{Id,M,or{PId,gathering,G,SList,WList,NewDeac),T2)):-
Temove(Son,Desc,NewDesc),
wakeup[T\,T,TX),
executed{Id,TX,T2),
!_

If a waiting OR process receives a success message, it unifies it with the ori

ginal goal to compute the result. If the result has not yet been sent to the

parent, it is sent and then added to the list of answers sent, and the process goes

into the gathering mode. If the answer is in the list of answers already sent, it is

ignored.

143

st€p{p{Id,M,or{PId,waiting,G,SList, WLisl,Desc), 71),
Son,Id,success{ GList), T,
p(!d,M,or{PId,NextState,G,NextSList, \VList,Desc),t{ T2,A,S))):-
wakeup{ Tl, T, TX),
executed(Id,TX,t[Tl,A,S^)),
member[\Son,SonsPIead,SonsList],De3c),
copy(G,Result),
copy{[SonsHead,SonsList],[NewHead,NcwList]),
unify(Result,NewHead, GList,NewList),
next_state(Result,SList,NextState,NextSList,Id,PId, T2),
send_message[Id,Son,redo, T2),
!_

A gathering OR process handles a success message by seeing if the message

is in either the wait list or the sent list; if not, the message is added to the wait

list; in either case, send a redo message:

step{p{Id,M,or\PId,gathering, G,SList, WList,Desc), 71),
Son,Id,success(GList), T,
p{Id,M,or(PId,gathering, G,SList,Next \\List,Desc),t{ T^,A,S))):-
member{[Son,SonsHead,SonsList],Desc),
wakeup[71, T, TX),
executed{Id, TX,t{ T2,A,S)),
copy(G,Result),
copy([SonsHead,SonsList\,[NewHead, NewList]),
unify(Result,NewHead,GList,NewList),
next_state_2{Result,SList, WList,Next WList),
send_message(Id,Son,redo, T2),
|_

Waiting OR processes will never get a redo message. There are four cases to

consider for a gathering OR process that receives a redo message, depending on

the states of the waiting and descendant lists:

(1) Both lists are empty; in this case the process fails.

(2) Wait list is empty, descendant list is not empty; change to waiting mode.

(3) Descendant list is empty, but there are some answers in the wait list; move

the first answer from the wait list to the sent list, and send it.

(4) Neither list empty; same actions as case (3).

ste.p{p[ld,M,or[PId,gathering,G,SList,W,^), 71),
P!dJd,redo,T,
p{Id,_,done,t{ T2,A,S})):-
wakeup[T\. T, TX),
executed(Id/rX,t{ 72,,4,5^),
send_message(Id,PId,fail,T2),
!

step{p(Id,M,or(PId,gathering,G,SList,[],Desc), 71),
PId,Id.redo,T,
p{Id,M,or{PId,waiting, G,SList,[],Desc),t{ T2,A,S))):
wakeup{T\,T,TX),
executed(Id, TX,t{ 72,A,5)),

step{p{ Id, M,or{ PId, gathering,G,SList,[\Vl\ Wn\ ,Desc),Ti),
PId,Id,redo, T,
p{Id.M,or(PId,gathering,G,[\Vl\SList\, Wn,Desc),t{T2,A,S))):-
wakeup(71, 7, TA"),
executedd^Id, TX,t{ 72,A,S)),
3end_message(Id,PId,success{ IV1),T2),

144

The last step catches system error conditions. The head of this step matches

any process state and any message, so if one of the earlier steps did not catch the

process/message pair, this one will:

step{p{ID,_,State,T\), % this catches any kind (AND or OR)
Desc,ID,Msg, Tm,
p(ID,done,t{ 72,A,S))):-
wakeupi 71, 7m, TX],
executed{ID, TX,t{ T2,A,S)),
write[**System Error, no step succeeds for process),
write(ID),nl,
print(State),nl,
write[** Message:), write{Msg),
write{),write[Desc), nl,

send_message{ID,PID,fail, 72), !.

D. Ordering Algorithm.

The ordering algorithm has two main procedures. The static rule is applied

when the user program is first read in. It applies mode declarations and builds

I
145

something called the static structure. The dynamic rule is applied when a clause
is used to create an .\XD process; it uses the static structure to make the initial

state of the AND process.

c "Static Rule" -- applicable to all calls to a clause (not
affected bv pattern of variable instantiation), uses mode

9c declarations to determine which literals can/cannot be used
95 as generators for each variable. This procedure also creates
% the numbered head and body used by other parallel AND stuff.

static{Head,Body,NHead,NBody,GenList):-
modified(Head,Body,IdBody,NHead,NBody,N),
slots(N, G),
numbervars{G,0,N),
u3e__modes[NBody,G,GenList), !.

This next procedure makes the copy of the body used by AND processes. It

turns variables into metavariables (by the call to numbervars) and tacks on the

^N; prefixes to each literal.

CM

modified(H,B,B2,NH,N"B,N) -- B2 is a copy of body B with
% literal numbers added, and NH and N^ are copies of head H
9^ and body B with all vars "numbered" (via numbervars).

modifie(^H,B,B2, NB[, NB, N): -
number{B,\,B2),
copy{\H,B2], [NH, NR]),
numbervars{[NH,NB\,0,N).

For each literal in G, see if there is a mode declaration; if so, use it to build

a piece of the static structure:

Tc use_mocles(i\,L,Gi,Go) -- for every literal in list L that has a
% mode declaration, add more info to generator list; Gi is
% input list of generators, Go is output, N is current lit #.

use_7nodes([],G,G).
use_Tnodes([:^N\Ll\Ln],Gi,Go):-

% if there is a mode
recorded(Tnodes,m{F,Af),K),% declaration for F, use it
infer{ N,A,M,Gi,Gt),
use_modes{Ln,Gt,Go), !.

'use_modes{[Ll\Ln],Gi,Go):-use_^mode^Ln,Gi,Go), !.

% infer(N,A,M,Gi,Go) —use mode info M for arg list A to
% update generator list Gi, creating Go, for literal number N

inferiN,[UiG,G)-
infcr{N,[Al\An],[?\Mn],Gi,Go):-infer{N,An,Mn,Gi,Go),!.
tnfe r(A^, [A11A nj, [+1 Mn] ,Gi,Go): -known_not{N,Al, Gi, Gt),

infei{N,An,Mn,Gt,Go), !.
in/e A, [A11A n|, [-1 A/n], Gi, Go): -known{N,Al,Gi,Gt),

infer{N,An,Mn^Gt,Go), !.

% known_not{N,A,Gi,Go) —it is now known that literal N cannot
% be the generator of any var in term A; add N to the rhs of
% every var in Gi, making Go

known_not{N,A, Gi, Goy.-vars_in{A, V),
concat_aU[V,N,Gi,Go).

Fc kn6wn(N,A,Gi,Go) -- it is known that literal N is the generator
% for all vars in term A; replace rhs of each var in Gi with N

known{N,A,Gi,Go)\-vars_in{A,V),
replace_all{V,N,Gi,Go).

replace_all([],N,G,G).
replace_all{[Vl\ Vn],A,Gi,Go):-replace{71,A,Gi,Gt),

replace_all[Vn,N,Gt,Go), !.

146

I

I

I

I

I

I

*

D
5

I
S

I

I
I

147

if N is in the list of known non-generators, it can't be used;
% fail, and hope 'connect' (or whatever) creates another one.

replace[V,N,[V:X\(:^,[V:X](^Y-memberiN,X),\,fail.
replacei V,N,[V-Al C\,[V-.gen(N)| G]).
replace(V,N,[X-. y]Gtl[X: y]Go]y.-replace{V,N,Gi,Go), !.

Next is the code for the "dynamic rule" that is applied when an AND pro

cess is first created. It uses SS, the static structure for the clause, and informa

tion about which variables in the head are bound. The overall goal here is to

find generators for the remaining variables by calling on the connection rule or

the leftmost rule:

dynamic{Head,Body,NHead,NBody,Ss,[gen{G2),pred{Pred),lir4,Ltnear)]y.-
head_gen(Head,NHead,Ss, Gl,Used),
others(Ss, Used, UnUsed),
connect(NBody,RemBody, Gl,G2, Used,Uo, UnUsed, UUo),
final{ G2, NHe ad, NBody,Line ar,Pre d).

Call is the literal actually used in the procedure call, and Head is what was

written by the programmer; by comparing the two, we find out which variables

are generated by the head; return them in the set U(for 'used'):

head_ger\[Call,Head,Gt,Go, U):-Call=..[F\CArgs],
Head=..[F\HArgs\,
extract{ CArgs,HArgs, U),
replace_all(U,head,Gi,Go), !.

Now, from the static structure and the set U computed above, we can deter

mine UU, the set of 'unused' variables that need generators:

of/iers([],_,[]):-!.
others([V:gen{L)\R], U,X):-others{R,U,X).
others(\V: G|/?], U,X):-others{R, U,Xl),app{ 1^, U,X1,X), 1.

This next procedure is the heart of the dynamic rule. It tries to remove a

literal from current body Bi to make a new body Bo. The selected literal is a

candidate generator; if update accepts it (meaning it doesn't violate any mode

declarations in the static structure) then the dynamic strucure is modified to

include it; otherwise we backtrack to choose to get another literal. We are

148

guaranteed of finding an acceptable literal eventually, unless the programmer has

made a circular mode declaration.

% connect(Bi,Bo,Gi,Go,Si,So,UUi,UUo) -- using body Bi and existing
9c structure Gi and info about vars unused (UUi) so far, make a new
% structure Go. Si is the current set of vars we have to connect
/c to, UUo will be list of remaining vars. So the vars to connect
/c on the next iteration. Bo the remaining literals.

connect([],[],G,G,S,S,U,U):-\. % all lits used
connect[B,B,G,G,S,S,'^,^)\-\. % no unused vars
connect(Bi,Bo,Gi,Go,Si,So,UUi,UUo):-

choose{Bi,Bt,St,UUi,UUt,X), % select a lit, can use it
update{X,Gi,Gt,St), % if no mode violation
connect{Bt,Bo,Gt,Go,St,So,UUt,UUo).

Si is the set of variables we want to connect to. If it is empty, or if the

selection of A' by the connection rule does not provide any information, then fail,

and let the leftmost rule select X:

choose{Bi,Bo,Si,UUi,UUo,X):-
ne7(5i,[]),
connect_all{Bi,Bo,Si,UUi, UUo,X),
neq{Bo,Bt).

choose{Bi,Bo,Si, UUi, UUo,X):-
/r(Bi,5o, f/t/i, f/f/o,A).% call leftmost rule . . .

Add the final touches to the stored data structure for an AND process: we

know generators for all vars in body (this information is in GS), so now figure out

linear ordering L and list of predecessors P.

final{GS,Head,Body,L,[i^head:HP\P]):-
level{head,down,L,Body,GS,{head\), % do level order traverse
predecessors(Body,Body,GS,L,P), % starting at head
head_pred{Head,Body,GS,L,HP).

i

i
i
I

% a level order traverse in the "down" direction means looking for
% literals that consume vars "already generated"

level{ N,down,L,Body, GS,XL):-
setof(XJesc{N,Body,GS,XL,X),S), % S is set of immed desc
concat(XL,S,XL2), % is part of solved list
level_all{S,down,Ln,Body,GS,XL2),
conc[S,Ln,L),!.

% level order traverse in "up" direction means closure of
% predecessor relation

level{N,up,L,Body,GS,XL):-
setof[X,pred[N,Body,GS,X),S), % set of immediate pred
rei'(5,[],52),
level_aU(S2,up,Ln,Body,GS,X),
conc(S2,Ln,L), !.

119

n

I

n

n

H

|i

I

I

I

I

I

I

I

I

APPENDIX n

Parallel AND Process Examples

A number of examples of conceivable situations that arise in the backward

execution phase in parallel AND processes will be discussed in this Appendix.

Each situation, described in terms of the map coloring problem first mentioned in

Chapter 5, illustratesi a different aspect of the rules for handling nondeterminism

in AND processes. The dataflow graph for the example is reproduced here as

Figure 22. The discussion continues the notation #N for "literal number N" and

|N for "the OR process created to solve literal #N".

A. Complete Solution of the Map Coloring Problem

The first example is the complete solution of the map coloring problem,

involving the processing of multiple failures.

When the AND process was first created, and after the literals were ordered,

the only literal for which an OR process could be started was i^l:next{A,B).

Eventually, this sent back succes3{next{red,blue)), binding A to red and B to

blue. Next, processes for the three generators in the middle row of the graph

were started. All three succeeded, and as the success messages arriveed, the fol

lowing occurred:

|3 sent succ€ss{next{red,blue)), setting C to blue. All of the predecessors of

literal ^5 were then solved, so a process for this literal (at that time

next{blue,blue)) was created.

j4 sent success{next{red,blue)), setting D to blue, enabling a process for #2,

next{blue,blue).

|6 sent success{next{blue,red)), binding E to red. Processes for the remain

ing two literals, #7 and #8, both next{blue,red), were started.

At this point, the status of the AND process was: literals ^^1, #3, #4, and

#6 solved; literals #2, #5, #7, and #8 pending; failure context empty. The

150

color (A ,B ,C ,D ,E)
next (A,B) <4 next (C,D) <4 next (A,C) <4
next (a,D) &next (fl,C) <4 nex* (B,£) <4
n«f {C,E) <4 next (D ,E).

next{red,blue) - .
next(blue ,red) «- .
next(yellow ,red) -
next{green ,red) - .

#5

next(B,C)

#3

next(A,C)

#2

next(C,D)

next(red,yellow) •
next{blue,yellow)
nextiyellow ,blue)
next{green,blue) •

next(A,B)

#4

nexi(A,D)

#7

next(C,E)

next(red,green) - .
next{blue,green) - .
nextiyellow,green)
next{green,yellow) •

B

A C E

D

#6

next(B,E)

#8

next(D,E)

151

A map with five regions, the coloring problem as a list of eight borders, and the
dataflow graph created by the ordering algorithm. This method of solving a map color
ing problem in logic was originally used by Pereira and Porto [46] to illustrate intelli
gent backtracking.

Fignre 22. The Map Coloring Problem

I

I

I

I

I

I

I

I

I

I

I

I

152

processes for literals 9^2 and ^5 are about to send fail messages, while the other

two are about to succeed. The transitions explained next describe what hap

pened when the fail message from |5 was read first; then the transitions that

would have occured if the fail from |2 arrived first will be explained. In either

case, the AND process will go into the same state eventually. The only difference

in the sequences of state transitions is that if the message from |2 arrives first,

the number of transitions required to reach the state in which the first success is

sent is longer.

Casi 1: #5 fails first.

The failure context was set to [#5], which is the prefix of the redo list

[#5,#3,#1]. The suffix is [^3,:J5|tl], and a redo message was sent to |3. The

literals to the right of ^3 in the linear ordering were

#4: Reset.

#6: Reset.

#2; Canceled (will be replaced when new C arrives from |3).

#5: Already terminated.

#7: Canceled (will be replaced when new C arrives).

#8; Replaced with new process (since D, E modified by resets).

Again, as an implementation detail, the reset of a generator that has sent

only one value really has no effect, and the replacement of a process such as

that for literal 7^8 can be avoided when its variables do not change values.

The state of the AND process after this transition: literals #1, 7^4, and ^-6

solved; literals #3 and #8 pending; literals 7^2, #5, and #7 blocked; failure

context [#5].

The fail message from the original process for literal 7^2 then arrived. Since

that process was canceled, this message was ignored. The successes from the ori

ginal processes for ^7 and arrived, and they also were ignored. Note that

even though there is a process for #8 at this time, it has a different ID than the

original process. The AND process always ignores messages from processes it has

I . 153

canceled.

The success from #3 arrived, with next{red,yellow), binding C to yellow.

New processes for #2, now next [yellow,blue), and #5, now next [blue,yellow), and

#7, now next[yellow,red), were created. Since there is a new process for #5, it

was removed from the failure context. The state of the AND process; literals ,

#1,3, #4, and #6 solved; literals #2, #5, #7, and #8 pending; failure context [].

All of the pending processes sent success messages; the order is irrelevant. In

i particular, note that fS could have sent its success message before the success

I from 13 in the previous paragraph. After the last was received, the AND process

sent its parent the message

sue cess[c olor[red,blue,yellow,blue,red))

Case 2: fails first.

When the state of the AND process had literals #1, #3, #4, and #6 solved,

, with the remaining literals pending and an empty failure context, two fail mes-

sages were on the way. The next sequence of transitions shows how the failure

from |2 would be handled. This sequence involves multiple failures.

The fail message from |2 arrives, the failure context is set to [#2], the prefix

of the redo list [#2,#4,#3,#1]. 14 is sent a redo message, and then the remaining

literals in the linear ordering are

#6: Reset.

#2: Already failed.
5 •

i -- #5: Not affected.

#7: Canceled (since E was reset), replaced with literal that has same values
! _ . •
I for variables.

5 -- #8: Canceled, will be replaced when new Z) arrives from 14.

^ The failure context is [#2]; solved literals are #1, #3, #6; pending literals are
I ^4, ^5, ^7; and #2 and #8 are blocked.

I

I

154

The fail message from 15 arrives. #5 is appended to the failure context,

making [#2,#5]. This does not match any redo list. The processing of this

failure is postponed until the failure context is reset to the empty list. The state

remains the same, except #5 is now blocked and not pending as before.

A success from the process for #7 will arrive (either now or after the success

from #4; either way, it has no effect on what follows). succe3s{next(blue,yellow))

arrives from |4. Start processes for #2, next[blue,yellow), and #8,

next(yellow,red). Remove #2 from the failure context, which becomes the empty

list. There is one postponed failure, from the original process for literal #5. This

process was never canceled during the backward execution on behalf of #2, so a

failure context is created for it now. From this point, the AND process behaves

as if it had just received the fail from jS: the failure context is [#5], the matching

redo list is [#5,#3,#1], jS is sent a redo message, and the literals to the right of

#3 are;

#4: Reset [D is once again blue).

#6: Reset {E is still red).

#2: Canceled, will be replaced when new C arrives from 13.

#5: Already canceled.

if^l: Canceled, will be replaced when new C arrives.

#8: Canceled (since D, E reset), replaced by new process for with original D

and E.

The state of the AND process is now: literals #1, #4, and #6 solved; literals

#3 and #8 pending; literals #2, #5, and #7 blocked; failure context [#5]. The

current values of the variables are A—red, B=blue, C unbound, D=blue, and

E=red. Note that this is the same state as earlier (in case 1), when #5 and #2

were failures and the fail message from #5 arrived first.

B. Parallel Processing of Failure Contexts

The previous example showed how an AND process resolves conflicts in the

handling of fail messages, by postponing the handling of a fail message if the

155

corresponding literal is not in the current redo list. This strategy- can lead to

extra work, as in the second case: while the AND process was in the sequence
used to handle the failure of #2, it was doing work that would later be undone

when the fail message from #5 was processed.

In that example, there is enough information to decide immediately that the
failure of #5 should take precedence. The redo sequence for #5 is [#5,#3,#1] and
the redo sequence for #2 is [#2,#4,#3,#1]. Comparing the second elements

(those literals that will be sent the redo messages), one can see that the failure of

#5 causes #3 to be redone, while the failure of#2 causes #4 to be redone. Since,

according to the linear ordering being used, #4 is reset when #3 is redone, it
makes sense to give precedence to the redo sequence involving #5. In other

words, maybe the AND process could abort the failure context for #2, and

immediately start backward execution for #5 when that fail message arrives.

The reasoning used in the above example does not work for the general case,
however. There are situations that arise, based on unpredictable timing
sequences, that show why all fail messages have to be saved and processed even

tually. The only time a fail message can safely be ignored is when the process
that sent it is one that has benn explicitly canceled earlier, i.e. the message is
from a process that sent a fail message just before it would have read a cancel

from its parent.

This next example is an illustration of such a situation. This example is
again based on the map coloring dataflow graph, but this time assume the literals

on the bottom of the graph are not calls to next, but calls to some other pro
cedures p, q, r, and s. Again, assume the "top" four literals have been solved,

; binding variables A through E to their first values. The AND process is in a
state where it is waiting for messages from processes of literab #2, #5, #7, and

1 #8-
•1 , •

Suppose literal #7, r[red,blue), is a failure. Then literal #6 b sent a redo,
I and 18 is canceled. Next assume the the generator of Esucceeds again, now

binding £• to green. New processes for literab #7 and #8 are created, and sup-
I pose both are successes. All during the backward execution just described, no

I
156

messages were received from |2 or |5.

Now, finally, suppose a fail message arrives from 12. As usual, the process
for #4 is sent a redo, and

#6: Reset {E is again bound to red).

#2; Already canceled.

#5: Not affected.

#7; Canceled, replaced by r{blue,red}.

- #8: Canceled, will be replaced when #4 sends new D.

The current state of the AND process is; literals #1, #3, and #6 solved;
literals #4, #5, and #7 pending; literals #2 and #8 blocked, awaiting the success
of #4; failure context [#2]. In addition, there is one used and one unused answer
from 16, the generator of E. Note that literal #7 is back to its original state,
namely it consumes the first values of Cand E. It will fail. If that fail message
arrives when the AND process is in the state just described, and the AND process
attempts to process the failure contexts in parallel, the following situation arises.

The fail context is set to [#2,#7], which does not match any redo sequence.
Aconflict in failure contexts is created. If the conflict is resolved by seeing which
redo list has a higher precedence, the sequence for #2 is selected, since the redo
sequences are l#2,#4,#3,#l] and [#7,#6,#3,#1], and #4 takes precedence over
#6. In the hypothetical parallel processing of failure contexts, the fail message
from #7 would be ignored, which is a mistake. The state of the AND process
would then be: literals #1, #3, and #6 solved; #4, #5, and #8 pending; #2
blocked, awaiting a success from #4; and #7 failed, with no rules for starting a
new process for it. #4 is not a predecessor of #7, so a success from #4 does not
cause a new process for #7 to be started.

The above argument is admittedly "attacking a straw man," as the scenario
was carefully contrived to make a particular point. There may well be amethod
for processing failure contexts in parallel. But the example at least illustrates the
subtle errors that may occur as a result of the relative timing of messages from
descendants. For the present, at least, parallel AND processes will save all fail

157

messages, and start backward execution for fhem only after completely processing

the current failure context.

