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Introduction

During tissue morphogenesis, individual cells organize into 
complex yet highly organized patterns to form multi-cellular tis-
sues of distinct shapes and structure (Fig. 1). Yet little is under-
stood about exactly how these organized structural patterns arise 
during the formation process. For example, in branching mor-
phogenesis of many branched tubular networks, cells first develop 
or organize into a hollow epithelial tubule or sac. Subgroups of 
cells are then directed to form new branches. Through a reitera-
tive process of branch initiation and invasion, a tree-like struc-
ture is formed as seen in many organs such as kidneys, salivary 
glands and mammary glands.1-5 How these epithelial cells are 
spatially and temporally coordinated to produce highly organized 
branching patterns is not yet well understood. It is postulated 
that branching morphogenesis arises, in part, as a result of local-
ized remodeling and degradation of the extracellular matrix by 
proteases, such as matrix metalloproteinases6,7 and cysteine pro-
teases.8 In many cases, proteases are initially maintained in an 
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Spatiotemporal activity patterns of proteases such as ma-
trix metalloproteinases and cysteine proteases in organs have 
the potential to provide insight into how organized structural 
patterns arise during tissue morphogenesis and may suggest 
therapeutic strategies to repair diseased tissues. Toward imag-
ing spatiotemporal activity patterns, recently increased em-
phasis has been placed on imaging activity patterns in three-
dimensional culture models that resemble tissues in vivo. Here, 
we briefly review key methods, based on fluorogenic modifica-
tions either to the extracellular matrix or to the protease-of-
interest, that have allowed for qualitative imaging of activity 
patterns in three-dimensional culture models. we highlight 
emerging plasmonic methods that address significant im-
provements in spatial and temporal resolution and have the 
potential to enable quantitative measurement of spatiotem-
poral activity patterns with single-molecule sensitivity.
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inactive conformation. Upon modulation by the microenviron-
ment via external environmental stimuli of chemical nature (e.g., 
growth factors, cytokines, hormones) and physical nature (e.g., 
tensile stress, compressive stress), proteases are activated to pre-
sumably remodel and degrade the extracellular matrix, allowing 
cells to invade into the stroma.6,9 Proteases also interact with each 
other in complex proteolytic networks10,11 and liberate cytokines 
and growth factors embedded within the extracellular matrix.12 
Clearly, then, proteases must be spatially and temporally orga-
nized in a developing tissue. Therefore, knowing the spatial con-
text (i.e., the precise location at which an active protease exercises 
its biochemical function) and temporal context (i.e., the precise 
time a protease exercises its biochemical catalytic function) should 
provide insight into these mechanisms orchestrating branching 
morphogenesis, and may suggest therapeutic strategies to repair 
diseased tissues.

To illustrate the importance of spatial and temporal patterns, 
suppose that a forming tissue is analogous to a sensor (Fig. 1A). A 
sensor measures external input stimuli and converts these signals 
into an output response. The function of the sensor depends on 
the stimuli-response relationship. The same is true of a forming 
tissue (Fig. 1B): it processes environmental input stimuli into an 
output response of activated proteases that in part facilitates the 
collective rearrangement of cells into an organized tissue structure. 
In this context, the process of branching morphogenesis can be 
thought of as a function that depends on the environmental input 
stimuli with the output response being that of activated prote-
ases. Taking into account that tissues within the organs are three-
dimensional, tissues could be viewed as three-dimensional arrays 
of sensors. At no location in the tissue is the composition of cells 
and extracellular matrix constant. It is reasonable to assume that 
environmental stimuli would also vary spatially and temporally 
across the three-dimensional structure. Thus, the output response 
of activated proteases also would not be constant, but would vary 
spatially and temporally across the structure as the tissue devel-
ops. Understanding the importance of these dynamics requires 
quantitative measurement of spatiotemporal activity patterns (Fig. 
3), which cannot be acquired using conventional ensemble tech-
niques, such as electrophoretic zymographies, western blots and 
other biochemical techniques.
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Such activity patterns, based on incorporation of protease-
cleavable fluorogenic protein substrates into the extracellular 
matrix, have been the most commonly reported.13,15-17 Cleavable 
full-length proteins, such as collagen I or collagen IV, are designed 
to be recognized and cleaved by a family of proteases. These pro-
teins are heavily modified with fluorophores in order for the fluo-
rophores to be in close proximity so that they would be able to 
self-quench. These fluorogenic protein substrates are then simply 
combined with extracellular matrix in three-dimensional culture 
models (Fig. 2A and B). When the fluorogenic protein substrates 
are degraded by proteases, fluorophores become separated and 
no longer self-quench, restoring fluorescence. Thus, fluorescence 
reports sites of activity. For example, using fluorogenic collagen I 
protein (DQTM collagen I) in three-dimensional human fibrosar-
coma culture models,16,17 proteinase activity patterns were imaged 
during cell migration (Fig. 2A). The authors argued that these 
activity patterns demonstrate focalized cleavage of collagen fibers 
during cell migration and postulated an alternative mechanism 
for tumor cell migration,16 although this alternative hypothesis 
is still disputed.14 Whereas this visualization method is perhaps 
the simplest, activity patterns acquired by this method are at best 
qualitative. Precise localization of activity is challenging because 
post-degradation, the fluorophores are able to freely diffuse away 
from the site of activity, limiting spatial resolution.

Spatial resolution of activity patterns can be significantly 
improved by covalently anchoring a protease-cleavable fluorogenic 
peptide substrate to the extracellular matrix.22 Cleavable peptide 
substrates have been designed to be recognized and cleaved by 
a family of proteases22,29-31 or by a specific protease.32,33 In this 
visualization method, a cleavable peptide substrate is modified 

Toward the goal of quantitative spatiotemporal activity pat-
terns, recently increased emphasis has been placed on imaging 
activity patterns in three-dimensional culture models13-18 that 
resemble in vivo tissues.2,6,19-21 Qualitative activity patterns, dis-
playing localized activity in acinar structures18 and in migratory 
cells22 of three-dimensional culture models, have been reported. 
Improvements in spatial and temporal resolution should allow 
qualitative activity patterns to become more quantitative. 
Plasmonic methods address significant improvements in both spa-
tial and temporal resolution,23-28 and have the potential to enable 
quantitative measurement of spatiotemporal activity patterns. 
These patterns in three-dimensional culture models combined 
with in vivo models are expected to lead to improved quantitative 
descriptions of tissue morphogenesis and possibly also advance 
therapeutic approaches to pinpoint when and where intervention 
can be effected to repair diseased or defective tissues.

Activity Patterns

Imaging activity patterns in three-dimensional culture mod-
els that recapitulate tissue structures in vivo presents a tractable 
starting point to begin understanding how organized spatial 
patterns arise during tissue morphogenesis. A tissue-like struc-
ture can be produced when epithelial cells are grown in a three-
dimensional extracellular matrix.20 To image activity patterns 
in three-dimensional culture models, several methods, based on 
fluorogenic modifications either to the extracellular matrix or to 
the protease-of-interest, have been developed.13-18 In many cases, 
improvements in spatial resolution were reported to allow precise 
visualization of localization of activity patterns.

Figure 1. Spatiotemporal stimuli-response 
for a three-dimensional tissue. (A) Tissues 
could be viewed as analogous sensors. 
A sensor measures external input stimuli 
and converts these signals into an output 
response, where the sensor function de-
pends on this stimuli-response relationship.  
(B) Analogous to a three-dimensional array 
of sensors, a three-dimensional tissue spa-
tiotemporally processes chemical and physi-
cal environmental input stimuli (e.g., growth 
factors, cytokines, hormones, tensile stress, 
and compressive stress). The process of epi-
thelial branching morphogenesis within a 
tissue then is a function that depends on 
the environmental input stimuli at (x, y, z, t), 
leading to an output response of activated 
proteases at (x, y, z, t) that, in part, gives rise 
to an organized branched structure within 
the tissue. The branched structure depicted 
here consists of a hollow lumen surrounded 
by layers of luminal epithelial cells, myoepi-
thelial cells and a basement membrane. This 
structure is then surrounded by a stroma 
containing capillaries, fibroblasts, adipo-
cytes, among others (adapted with permis-
sion from ref. 2).
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each end with fluorescent proteins displaying fluorescence reso-
nance energy transfer, to a membrane receptor adjacent to the 
membrane-bound matrix metalloproteinase. The activity of this 
protease was imaged via fluorescence resonance energy transfer 
with high spatial resolution.34

Another strategy to improve spatial resolution of activity pat-
terns is to directly attach a fluorogenic peptide scaffold to an 
active protease.18,35-41 Fluorogenic peptide scaffolds have been 
designed for covalent attachment to both intracellular18,35,39,40 and 
extracellular37,41 active proteases. The fluorogenic peptide scaffold 
covalently binds to a catalytic residue in the protease’s active site. 
Since the fluorogenic peptide remains covalently bound to the 
active site, spatial localization can be achieved. The inactive form 
of the protease remains unmodified as its active site is presum-
ably not exposed. Thus, this visualization method allows active 

on each end with self-quenching fluorophores. The fluorophores 
are conjugated to a peptidyl backbone that anchors via chemi-
cal cross-linking to the extracellular matrix of three-dimensional 
culture models. When the fluorogenic peptide substrate is cleaved 
by a protease, the fluorophores separate and become fluorescent 
such that one of the fluorophores remains immobilized while the 
other fluorophore diffuses away. Since one of the fluorophores 
is anchored to the extracellular matrix and therefore remains at 
the site of activity, precise spatial localization can be achieved. 
Activity patterns in three-dimensional human prostatic carci-
noma culture models revealed that membrane-bound matrix 
metalloproteinases were localized specifically at the polarized 
leading edge of migrating cells (Fig. 2C).22 Using an alternative 
anchoring strategy, improved spatial resolution has also been 
shown by anchoring a cleavable peptide substrate, modified on 

Figure 2. Activity patterns of proteases in three-dimensional culture models. (A) Proteinase activity by cleavable fluorogenic collagen i protein (DQTM 
collagen i) in three-dimensional human fibrosarcoma culture model (adapted from ref. 16). (B) Proteinase activity by cleavable fluorogenic collagen iv 
protein (DQTM collagen iv) in three-dimensional human breast carcinoma culture model (adapted from ref. 15). (C) Membrane-bound matrix metallo-
proteinase activity by cleavable fluorogenic peptide substrates in three-dimensional human prostatic carcinoma culture model (adapted from ref. 22). 
(D) intracellular cysteine cathepsin protease activity by fluorogenic peptide scaffolds in three-dimensional human mammary epithelial culture model 
(adapted from ref. 18). Scale bars: 10 μm.
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The time-dependent characteristics of photobleaching can also 
interfere with the interpretation of temporal information in 
activity patterns. Colloidal quantum dot-based modifications 
are an improvement;42-44 however, quantum dots also are suscep-
tible to photobleaching and complex blinking. As a consequence, 
acquiring quantitative temporal information in activity patterns 
is currently very difficult, and thus reported activity patterns so 
far have provided only a qualitative picture of cellular invasion 
within developing tissues.

Toward Spatiotemporal Activity Patterns  
via Plasmon Rulers

Spatiotemporal activity patterns, displaying high spatial and 
temporal resolution, would allow for an improved quantitative 
description of tissue morphogenesis. There is a clear need for 
probes that are capable of high spatial and temporal resolution. 
Plasmon rulers, consisting of coupled gold nanocrystals, have the 
potential to play an important role as improved probes for mea-
suring quantitative spatiotemporal activity patterns (Fig. 3).

Improved temporal resolution arises inherently from the physi-
cal properties of a gold nanocrystal. A gold nanocrystal exhibits a 

and inactive forms of proteases to be distinguished. For example, 
active cysteine cathepsin proteases were modified using a fluoro-
genic peptide acyloxymethyl ketone, consisting of a fluorophore 
and quenching group attached to an acyloxy leaving group.18 
Initially, the fluorescence was quenched. Covalent binding of the 
fluorogenic peptide to a catalytic residue in the active site of the 
protease caused a loss of the quenching group, resulting in fluo-
rescence. Using this technique, activity patterns of intracellular 
cysteine cathepsin proteases were imaged in three-dimensional 
human mammary epithelial culture models and showed distinct 
localization of these proteases in lysosomal compartments in aci-
nar structures (Fig. 2D).18

These methods present several strategies to improve spatial 
resolution of activity patterns acquired from three-dimensional 
culture models. However, to move toward quantitative activity 
patterns, improved temporal resolution is needed in addition to 
spatial resolution. The methods mentioned above are all based on 
modifications with fluorophores and suffer from photobleaching 
inherent to organic dye-based and protein-based fluorophores. 
Photobleaching often limits the number of acquisitions possible 
in the required imaging time period (i.e., days), resulting in low 
temporal resolution over the course of the imaging time period. 

Figure 3. Concept of spatiotemporal activity patterns via plasmon rulers. (A) Spatiotemporal activity pattern of proteases as a function of environmen-
tal input stimulus (x, y, z, t). Plasmon rulers address significant improvements in spatial and temporal resolution and should enable quantitative mea-
surement of spatiotemporal activity patterns. (B) Single-molecule resolution: image single cleaving or binding event with single-molecule resolution 
using plasmon rulers consisting of peptide-linked gold nanocrystals in the extracellular matrix (eCM). (C) High temporal resolution: image intermediate 
dynamics in activity patterns since plasmon rulers can be continuously imaged in real-time with potentially unlimited number of acquisitions in an 
imaging time period, resulting in high temporal resolution over the course of the imaging time period.
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16 Systems Biomedicine volume 1 issue 1

Figure 4. Plasmon rulers. (A) Single gold nano-
crystals and coupled gold nanocrystals im-
aged by illuminating with unpolarized white 
light and collecting scattered light using a 
darkfield microscope in transmission mode.  
(B) Plasmon ruler consists of two gold nano-
crystals coupled together using DNA linker. 
(C) Single gold nanocrystals appear green and 
coupled gold nanocrystals appear orange in 
darkfield images. inset: representative trans-
mission electron microscopy image of coupled 
gold nanocrystals. (D) Darkfield light scattering 
spectra from a single gold nancrystal and cou-
pled gold nanocrystals (adapted with permis-
sion from ref. 23).

Figure 5. receptor colocalization 
visualized at the single-molecule 
level. (A) Single gold nanocrystals 
bound to individual surface recep-
tors. individual receptors visual-
ized at the single-molecule level. 
Colocalization of individual recep-
tors visualized with subdiffraction 
resolution by plasmon coupling 
of the gold nanocrystal labeled 
receptors. For interparticle sepa-
rations Δ larger than the particle 
diameter D = 40 nm, no surface 
plasmon coupling occurs. For 
interparticle separations Δ < D, 
surface plasmon coupling occurs 
due to colocalization of receptors, 
resulting in an increase in the in-
tensity ratio r = i580nm/i530nm. (B) in-
tensity ratio r = i580nm/i530nm values 
for two gold nanocrystal labels 
diffusing on the surface of a cell as 
a function of time. The observed 
increase in R after colocalization, 
most prominently between time 
16.5 s and 25.5 s, indicates that 
the nanocrystals approach each 
other close enough for plasmon 
coupling to occur (adapted from 
ref. 25).
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the surface plasmons of each nanocrystal couple together, result-
ing in a shift in the resonance wavelength. The strength of this 
surface plasmon coupling and the resulting wavelength shift is 
dependent on the distance between the two nanocrystals,23,47,48 
and can be colorimetrically and spectroscopically observed (Fig. 
4C and D). In the event that cleaving or binding occurs to the 
biomolecule substrate, the distance between the two nanocrystals 
will change, which is observable in the light scattering spectrum. 
Since changes in surface plasmon resonance wavelength can be 
correlated with changes in distance,47,48 coupled gold nanocrystals, 
otherwise referred to as a plasmon ruler, can be used to observe 
a single cleaving or binding event.23,24,26,49-52 High spatial resolu-
tion is achievable because of the large scattering cross-section and 
therefore high intensity of the scattered spectrum, permitting the 
analysis of events at the single-molecule level.

Using surface plasmon coupling, nanometer-scale interactions 
below the diffraction limit have been observed. The colocaliza-
tion of individual integrin surface receptors on a cell membrane 
was visualized with sub-diffraction resolution using plasmon 
coupling between pairs of gold nanocrystals in two-dimen-
sional human cervical carcinoma cell culture models.25 The cell 
adhesion molecule fibronectin was first bound to integrin sur-
face receptors. Single gold nanocrystals, functionalized with 

surface plasmon in the presence of an electromagnetic field. A sur-
face plasmon is the collective oscillation of electrons at the inter-
face between two materials, in this case, the metal nanocrystal 
and the dielectric local environment. The surface plasmon is most 
prominent at the resonance condition where the wavelength of the 
electromagnetic field is matched to the resonance wavelength of 
the nanocrystal, allowing for coupling to occur between the elec-
tromagnetic field and the electrons.45 The nanocrystal resonance 
wavelength depends on the shape, size, and local environment of 
the nanocrystal.46 This resonance can result in intense light scat-
tering from the nanocrystal that is constant with respect to time. 
The light scattering spectrum is time-invariant and can be con-
tinuously acquired in real-time in a few milliseconds, resulting 
in high (ms) temporal resolution over the course of long imaging 
periods. Potentially as long as hours or even days, the total imag-
ing time is not limited by the properties of the probe nanoparticle.

Improved spatial resolution arises from the physical mecha-
nism of coupled gold nanocrystals. Two gold nanocrystals can 
be coupled together using a single biomolecule substrate (i.e., 
cleavable peptide substrate, peptide scaffold), where the substrate 
length determines the distance between the two nanocrystals. 
The substrate length is designed so that the distance between the 
two nanocrystals is less than their diameter. In this configuration, 

Figure 6. High temporal resolution of plasmon rulers resolves intermediate dynamics. (A) Plasmon ruler consists of a gold nanocrystal dimer linked with 
DNA containing a single restriction site for a restriction enzyme ecorv. intermediate events over time: The enzyme first binds non-specifically, translo-
cates and binds to the target site, bends the DNA at the target site, cuts the DNA, and finally releases the products. (B) intermediate events monitored by 
plasmon coupling over time. The bending of the DNA causes the two nanocrystals to become closer, resulting in a decrease in the interparticle distance 
and therefore an increase in the light scattering intensity. The enzyme then cut the DNA and a decrease in the light scattering intensity is seen (adapted 
from ref. 24). (C) Peptide cleavage events monitored over time using plasmon ruler consisting of peptide-linked nanocrystals (adapted from ref. 26).
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imaging as demonstrated by long-term imaging of caspase prote-
ase activity in two-dimensional cell culture models.26 We expect 
that the improved temporal resolution of plasmon rulers should 
allow for measurement of intermediate dynamics in activity pat-
terns (Fig. 3C).

In conclusion, plasmon rulers bring significant improvements 
in spatial and temporal resolution and should enable measurement 
of more quantitative activity patterns. Complex three-dimen-
sional assemblies are being developed to provide conformational 
information as well as distance dependence.55 Plasmon rulers are 
currently being developed for quantitative measurement of pro-
tease activity during tissue morphogenesis in three-dimensional 
culture models and in vivo. Global modulation with protease 
activators/inhibitors or local modulation by optical gene silenc-
ing55-58 of proteases can be also utilized to systematically modu-
late spatiotemporal activity patterns. We expect these models to 
lead not only to an improved quantitative description of tissue 
morphogenesis but possibly also to advance therapeutic strategies 
for the repair of diseased or damaged tissues.
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anti-fibronectin, were then bound to the receptors by formation 
of fibronectin-integrin complexes (Fig. 5A). Lateral movement 
of individual receptors was then tracked over time by intensity 
analysis of the ratio of the light scattering intensities at 530 nm 
and 580 nm. Individual receptors were initially separated. As the 
moving receptors co-localized, an increase in the ratio of light 
scattering intensities was seen due to coupling of surface plasmons 
of the bound nanocrystals (Fig. 5B). Trafficking, clustering, and 
dimerization of other receptors, such as epidermal growth factor 
receptors, have also been imaged with sub-diffraction resolution 
using plasmon coupling.27,28,53,54

Improved temporal resolution of plasmon rulers enables the 
ability to visualize activity in real time and resolve intermedi-
ate dynamics that otherwise would be very difficult to observe 
using conventional bulk methods with lower temporal resolu-
tion. Using plasmon rulers, an intermediate step in enzyme 
catalysis was captured recently at the single-molecule level.24 
Plasmon rulers consisted of a gold nanocrystal dimer linked 
with DNA containing a single restriction site for the restric-
tion enzyme EcoRV (Fig. 6A). In order to capture enzymatic 
dynamics on the order of micro- to milli-seconds, changes in 
plasmon coupling were imaged by intensity analysis rather than 
spectral analysis. The scattering cross-section of a nanocrystal 
dimer depends on its interparticle distance. When the restric-
tion enzyme cut the DNA, the nanocrystals separated, resulting 
in a decrease in the light scattering intensity. Using continuous 
imaging of single-particle trajectories, an intermediate step was 
captured where the enzyme, upon binding, momentarily bent 
the DNA. The bending of the DNA caused the two nanocrys-
tals to become closer, resulting in a decrease in the interparticle 
distance and therefore an increase in the light scattering inten-
sity (Fig. 6B). The enzyme then cut the DNA and a decrease in 
the light scattering intensity was seen. The observation of these 
intermediate dynamics is made possible because of the high tem-
poral resolution of plasmon rulers. In addition to nuclease activ-
ity, protease activity has similarly been imaged (Fig. 6C) using 
peptide-linked nanocrystals.26 As compared with fluorophore-
based imaging methods, plasmon rulers do not suffer from 
photobleaching, and are capable of long-term and continuous 
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