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ABSTRACT
The line-of-sight peculiar velocities of galaxies contribute to their observed redshifts,
breaking the translational invariance of galaxy clustering down to a rotational invari-
ance around the observer. This becomes important when the line-of-sight direction
varies significantly across a survey, leading to what are known as ‘wide angle’ effects
in redshift space distortions. Wide-angle effects will also be present in measurements
of the momentum field, i.e. the galaxy density-weighted velocity field, in upcoming
peculiar velocity surveys. In this work we study how wide-angle effects modify the
predicted correlation function and power spectrum for momentum statistics, both in
auto-correlation and in cross-correlation with the density field. Using both linear the-
ory and the Zeldovich approximation, we find that deviations from the plane-parallel
limit are large and could become important in data analysis for low redshift surveys.
We point out that even multipoles in the cross-correlation between density and mo-
mentum are non-zero regardless of the choice of line of sight, and therefore contain
new cosmological information that could be exploited. We discuss configuration-space,
Fourier-space and spherical analyses; providing exact expressions in each case rather
than relying on an expansion in small angles. We hope these expressions will be of
use in the analysis of upcoming surveys for redshift-space distortions and peculiar
velocities.

1 INTRODUCTION

Objects are not at rest in the expanding Universe, and the
study of their peculiar motions provides us with an oppor-
tunity to test our models of gravity and structure formation
as well as more tightly constrain the parameters of those
models (Weinberg et al. 2013; Amendola et al. 2018). The
cosmic velocity field can be studied either indirectly through
its impact on clustering statistics (so-called “redshift-space
distortions; Kaiser 1987; Hamilton 1998; Peacock 1999) or
directly by measuring the peculiar velocity field. The latter,
often called ‘cosmic flows’ (Lavaux & Hudson 2011; Tully
et al. 2016), has a long history (Strauss & Willick 1995).
Measurements of the (reconstructed) velocity field allowed
different authors to place constraints on the growth of struc-
ture at low redshift (Hudson & Turnbull 2012; Johnson et al.
2014; Carrick et al. 2015; Howlett et al. 2017b; Adams &
Blake 2017; Feix et al. 2017; Dupuy et al. 2019; Qin et al.
2019), and several velocity surveys are planned or in prepa-
ration (da Cunha et al. 2017; Koribalski 2012; Kim et al.
2019). These surveys could measure the growth of structure
at the few percent level at low redshift deep in dark energy
dominated era, providing independent information from tra-
ditional galaxy surveys (Koda et al. 2014; Howlett et al.
2017a). In order to provide accurate measures of the veloc-
ity field both the redshift and distance of an object need

to be known, and this limits velocity surveys to the rela-
tively local Universe. To obtain large volumes one is then
forced to cover large areas of the sky. This combination
of low mean distance and large sky coverage means that
for such surveys the plane-parallel limit, sometimes called
distant-observer limit, usually employed when modeling the
correlation function or power spectrum is a poor approxima-
tion. This becomes more and more of a problem for widely
separated galaxies, hence the name of wide angle effects.
Expressions for the velocity-velocity correlation function be-
yond the plane parallel limit are well known (Gorski 1988;
Nusser 2017), while less attention has been devoted to wide
angle effects in galaxy density-velocity cross correlations. In
Fourier space , extra care is required when defining the ve-
locity auto- and cross- power spectra on the curved sky. One
of our goal is therefore to extend the treatment in Castorina
& White (2018a) of the density fields on the curved sky
to the multipoles of the momentum (i.e. density weighted
galaxy velocities) auto and cross spectra.

The outline of the paper is as follows. In §2 we define
our notation and review the results in the distant observer or
plane-parallel limit. In §3 we present the full expression, in
configuration space, beyond plane parallel for the mid-point
and endpoint definition of the line-of-sight (LOS). Section 4
discusses the Fourier space descriptions of the velocity fields,
while §5 introduces the spherical-Fourier expansion. We go
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2 Castorina & White

beyond linear theory in §6, where we discuss how to extend
Lagrangian perturbation theory to the wide-angle regime.
We present our conclusions in §7.

2 MOMENTUM 2-POINT FUNCTION IN
LINEAR THEORY AND THE
PLANE-PARALLEL LIMIT

We first introduce our notation and quickly review the main
results in the plane-parallel or distant observer limit. In this
limit the observer is taken to be very far from the pair of
points whose correlation we are investigating, which means
that the line-of-sight direction can be taken to be the same
for both points.

Let us define the line-of-sight momentum as ρ(s) =
(1 + δ(s))u(s), where u(s) is the line-of-sight component of
the velocity in Hubble units, i.e. u(s) = ŝ · v(s)/(aH), and
s denotes the redshift-space position. In linear theory the
momentum is equal to the velocity, u(s), and because there
is no “mean velocity” in linear theory u is the same in real
as in redshift space.

In linear theory the density and velocity are related via
v(k) = i(aHf)(k/k2)δ(k). Thus in the plane-parallel or dis-
tant observer limit u(k) = if(kz/k

2)δ(k) = (ifµ/k)δ(k)
with µ = k̂ · ẑ and ẑ the (common) line of sight. For exam-
ple, the momentum auto-power spectrum (which equals the
velocity auto-power spectrum in linear theory) is simply

P ρρ(k, µ) =
µ2f2

k2
P (k) (1)

where P (k) is the linear theory density power spectrum,
which depends only upon k = |k|. This expression differs by
a factor of (aH)2 from the similar expression in Park (2000)
due to our choice of units for u(r). As noted by Howlett
(2019), the momentum power spectrum is the same in real-
and redshift-space in the limit of linear theory. Assuming
a scale-independent, linear bias (b) the momentum-density
cross spectrum is

P ρδ(k, µ) =
ifµ

k
P (k)

(
b+ fµ2) (2)

and is pure imaginary. This is required in order for the cor-
responding cross-spectrum in configuration space to be real,
since velocities change sign under a parity transformation.

The relevant correlation functions are

ξδδ(s, µs) =

(
b2 +

2bf

3
+
f2

5

)
L0Ξ

(0)
0

−
(

4bf

3
+

4f2

7

)
L2Ξ

(0)
2 +

8f2

35
L4Ξ

(0)
4 (3)

ξδρ(s, µs) = −f
(
b+

3f

5

)
L1Ξ

(1)
1 +

2f2

5
L3Ξ

(1)
3 (4)

ξρρ(s, µs) =
f2

3
Ξ

(0)
0 L0 −

2f2

3
L2Ξ

(2)
2 (5)

where L` is the Legendre polynomial of order `, with sup-
pressed argument µs = ŝ · ẑ, and we have defined

Ξ
(n)
` (s) =

∫
k2 dk

2π2
k−nP (k)j`(ks) (6)

θ

2

θ

2

s1 s2

ds(1
− t)

st

φ

�
���

�����

s

Figure 1. The assumed geometry and angles. The two galaxies

lie at s1 and s2, with separation vector s = s1 − s2 and form an
angle θ. We take the line of sight to be either parallel to the angle

bisector, d, which divides s into parts of lengths st and s(1 − t)
or to the direction s1. The separation vector between the two
galaxies, s, makes an angle φ with the line of sight direction, d̂.

3 BEYOND PLANE PARALLEL

Once we drop the distant observer approximation there are
two classes of effects to consider. The first is the impact of
a varying line-of-sight direction upon the dynamical fields.
The second is the change in number density and volume ele-
ment with a radial distance change induced by redshift-space
distortions and it’s not a dynamical effect. The latter leads
to corrections going as 1/s and depending upon the mean
density of the sample, n̄(s). Szalay et al. (1998) parameter-
ized these corrections as “α terms”, and we shall follow this
convention. Since they do not play a large role in what fol-
lows, we shall relegate the presentation of the α terms to
Appendix A.

To extend the plane-parallel calculation to include wide
angle effects we return to the linear theory, redshift-space
density field which can be written (Kaiser 1987)

δ(s)(s) =

∫
d3k

(2π)3
eik·s

[
b+ f

(
k̂ · ŝ

)2]
δ(k) (7)

while the radial velocity field is

u(s) = f

∫
d3k

(2π)3
eik·s

ik̂ · ŝ
k

δ(k) (8)

Following Szalay et al. (1998); Castorina & White (2018a)
we decompose these into multipole moments

δn` ≡
∫

d3k

(2π)3
eik·sk−nL`

(
k̂ · ŝ

)
δ(k) (9)

where L` is the Legendre polynomial of order `. It is then
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Wide angle effects for peculiar velocities 3

straightforward to compute

〈
δn1
`1
δn2
`2

〉
=

(4π)2

(2`1 + 1)(2`2 + 1)

∫
k2 dk

2π2

P (k)

kn1kn2

∑
L

iLjL(ks)

×
∑

m1m2M

GL`1`2Mm1m2
Y ?LM (ŝ)Y ?`1m1

(ŝ1)Y ?`2m2
(ŝ2)

(10)

where G is the Gaunt integral and the sum only involves a
few non-zero terms (see also Ma et al. 2011; Nusser 2017, for
related derivations in the context of velocities). Notice that
Eqs. ?? remain valid beyond linear theory. Unless otherwise
noted in the remainder of this paper we will assume b = 1.
Upon dropping the plane parallel assumption our two-point
function becomes a function of ‘triangles’ and we must define
a line of sight and geometry for our pair. There are two line-
of-sight definitions which we will find useful. The first is the
angle bisector, which is shown as the vector d in Fig. 1. We
shall specify the triangle by giving s, d and µ = ŝ · d̂. The
second is to pick one of the directions, s1 or s2 in Fig. 1, as
a line of sight. This is particularly useful when computing
power spectra as it allows a factorization of the calculation
which dramatically improves efficiency. We shall pick s1 as
our line of sight and refer to this convention as the “endpoint
definition”. We will specify the triangle by giving s, s1 and
µ1 = ŝ · ŝ1.

We first give the results in configuration space for the
bisector definition and then turn to a discussion of the end-
point results in configuration space. These results will ex-
tend the earlier work of Szalay et al. (1998) and Reimberg
et al. (2016); Castorina & White (2018a) to the velocity
statistics. In the next section (§4) we will discuss the Fourier
space statistics, which require some care in their definition.

3.1 Angle bisector

In the angle bisector parameterization we set the line of sight
(d̂) to be the ẑ axis and orient the triangle in Fig. 1 to lie
in the x − z plane so that all of the polar angles are zero
or π. Both ŝ1 and ŝ2 lie at θ/2 to the z-axis while ŝ is at
π − φ. The contributions in Eq. 10 can then be calculated
using the explicit expressions for G and Y`m.

For the density-density auto-correlation the corrections
can be found1 in Szalay et al. (1998); Castorina & White
(2018a) (see also Appendix C). For the velocity-velocity
auto-correlation

〈u(s1)u(s2)〉 =
f2

3
cos θ Ξ

(2)
0 (s)L0(µs)

− 2f2

3

(
L2(µs)−

1

4
[1− cos θ]

)
Ξ

(2)
2 (s) (11)

We can expand this for small angles using the identities in

1 Note that Eq. (15) of Szalay et al. (1998) contains a typograph-

ical error. The 4/15 should be 8/15. Also beware that the θ of
Szalay et al. (1998) is half our definition.

Appendix A of Castorina & White (2018a)

〈u(s1)u(s2)〉`=0 =
f2

3

[
Ξ

(2)
0 (s)− x2

3
Ξ

(2)
0 (s) +

x2

6
Ξ

(2)
2

]
+ · · ·

(12)

〈u(s1)u(s2)〉`=2 =
f2

3

[
−2Ξ

(2)
2 (s) +

x2

3
Ξ

(2)
0 (s)− x2

6
Ξ

(2)
2 (s)

]
+ · · ·

(13)

where x ≡ s/d � 1 for small angles. Note that for the bi-
sector definition of the line of sight, and for the velocity
auto-correlation function, the first correction is O(x2). Fur-

ther note that when θ 6= 0 the index of the jL in Ξ
(n)
L and

the index of L`(µs) need no longer match, which makes the
Fourier expressions more complicated (Castorina & White
2018a). We shall address Fourier space in §4.

For the cross term one finds

〈δ(s1)u(s2)〉 = −f cos
θ

2

(
b− f

5
+

4f

5
cos2

θ

2

)
L1(µs)Ξ

(1)
1 (s)

+ f sin
θ

2

(
b− f

5
+

4f

5
sin2 θ

2

)√
1− µ2

s Ξ
(1)
1 (s)

+
2f2

5
cos

θ

2
L3(µs)Ξ

(1)
3 (s)

+
f2

20

(
cos

3θ

2
− cos

θ

2

)
L1(µs)Ξ

(1)
3 (s)

+
2f2

15
sin

θ

2

(
5L2(µs) +

1 + 3 cos θ

4

)
×
√

1− µ2
s Ξ

(1)
3 (s) (14)

Unlike the δδ and uu auto-correlations, the corrections to
these spectra start at O(θ), rather than O(θ2), even for the
bisector definition of the line of sight. Again expanding in
powers of x = s/d up to x2:

〈δ(s1)u(s2)〉`=0 =
1

15
fx(f − 5b)Ξ

(1)
1 (s) (15)

〈δ(s1)u(s2)〉`=1 = −
(
b+

3f

5

)
Ξ

(1)
1 (s)

+
x2

20

(
b+

11f

5

)
Ξ

(1)
1 (s)− 2fx2

175
Ξ

(1)
3 (s)

(16)

〈δ(s1)u(s2)〉`=2 = − 1

15
fx(f − 5b)Ξ

(1)
1 (s)− 4

35
f2xΞ

(1)
3 (s)

(17)

〈δ(s1)u(s2)〉`=3 =
f

5

(
2− x2

45

)
Ξ

(1)
3 (s)− x2

20

(
b+

11f

5

)
Ξ

(1)
1 (s)

(18)

〈δ(s1)u(s2)〉`=4 =
4

35
f2xΞ

(1)
3 (s) . (19)

Notice that for density-momentum cross correlation the pair
of galaxy is not symmetric in s1 ↔ s2, which implies even
multipoles are non zero even with a bisector LOS. This
is different from the density-density correlation function,
where the contribution of wide angle terms to the odd mul-
tipoles was zero for the bisector LOS, and one could there-
fore conclude they did not carry any additional cosmological
information. For density-momentum cross even multipoles
contain independent cosmological information and could in
principle be exploited by the next generation of peculiar ve-
locity surveys.
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Figure 2. The multipoles of the density-momentum cross-correlation in the bisector parameterization for fixed separations as a function
of opening angle, θ. We have assumed b = 1. The left two columns show the dipole and octopole, with the upper row showing the signal

and the lower row the ratio to plane-parallel (θ → 0). The right column shows the even multipoles, which are zero in the plane-parallel

limit.

The multipoles of ξρδ are shown in Fig. 2 for ` = 0
through 4. The ` = 1 and 3 moments (left two columns)
show very small deviations from the plane-parallel expres-
sion even for large opening angles. Only above 30◦ are the
deviations reaching 10 per cent. The even multipoles, which
are identically zero for θ → 0, are typically a very small fac-
tion of the dipole amplitude even for large opening angles.
Once again it is only for θ > 30◦ that the corrections reach
10 per cent of the dipole result.

However we will find that the results in the endpoint
parameterization will be more useful when making connec-
tion to the power spectrum and spherical harmonic results
later, as well as producing very compact expressions, so we
shall turn to this parameterization now.

3.2 Endpoint

For the endpoint definition we take the line-of-sight to be
s1 and our two-point functions can then be written either
in terms of Eq. 10 or directly in terms of integrals of the
following form

iL(2L+ 1)

∫
dΩk
4π
LL(k̂ · ŝ)L`1(k̂ · ŝ1)L`2(k̂ · ŝ2) (20)

We choose a coordinate system with ŝ1 along the z-axis, ŝ2
in the x−z plane and k̂ arbitrary. The above integral can be
simply evaluated by first integrating over φk and then over
µk = k̂ · ŝ1. The full expression is rather compact for both
density-momentum cross correlations

〈δ(s1)u(s2)〉 =
f2
(
µ1

[
5µ2

1 + 3µ1x1 − 3
]
− x1

)
Ξ

(1)
3 (s)

5
√

1 + x21 + 2µ1x1

−
fΞ

(1)
1 (s)

(
x1
[
2fµ2

1 + f + 5
]

+ (3f + 5)µ1

)
5
√

1 + x21 + 2µ1x1
(21)

and momentum-momentum correlations

〈u(s1)u(s2)〉 =
f2(1 + µ1x1)Ξ

(2)
0 (s)

3
√

1 + x21 + 2µ1x1

+
f2
(
1− 2µ1x1 − 3µ2

1

)
Ξ

(2)
2 (s)

3
√

1 + x21 + 2µ1x1
(22)

where we have defined x1 = s/s1 and µ1 = ŝ1 · ŝ. Our
expression for 〈uu〉 agrees with the result of Gorski (1988),
see Appendix B.

To O(x21) the multipoles of the density-momentum cor-
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Figure 3. The multipoles of the density-momentum cross-correlation in the endpoint parameterization as a function of separation, s.

We have assumed b = 1. The left two columns show the dipole and octopole, with the upper row showing the signal and the lower row
the ratio to the plane-parallel results. The right column shows the even multipoles, which are zero in the plane-parallel limit. The solid

lines show our full expressions while the dashed lines show the expansion through O(x21). The small-x1 expansion is most accurate for

small s, as expected.

relation are

〈δ(s1)u(s2)〉`=0 = fΞ
(1)
1 (s)

2x1
3

(
b+

f

5

)
(23)

〈δ(s1)u(s2)〉`=1 = fΞ
(1)
1 (s)

(
b

[
1− 3x21

5

]
+
f

5

[
3− x21

])
+ Ξ

(1)
3 (s)

2f2x21
35

(24)

〈δ(s1)u(s2)〉`=2 = −fΞ
(1)
1 (s)

2x1
3

(
b+

f

5

)
− Ξ

(1)
3 (s)

8f2x1
35
(25)

and so on, while the momentum auto-correlation is

〈u(s1)u(s2)〉`=0 = f2Ξ
(2)
0 (s)

[
1

3
− x21

9

]
+ f2Ξ

(2)
2 (s)

[
4x21
45

]
(26)

〈u(s1)u(s2)〉`=1 = −Ξ
(2)
2 (s)

2f2x1
5

(27)

〈u(s1)u(s2)〉`=2 = f2Ξ
(2)
0 (s)

x21
9
− f2Ξ

(2)
2 (s)

[
2

3
− 16x21

63

]
(28)

etc. Fig. 3 shows the multipoles of the density-momentum
correlation function in the endpoint parametrization assum-

ing s1 = χ(z = 0.1) = 298h−1Mpc, blue set of curves, and
s1 = χ(z = 0.05) = 148h−1Mpc, red set of curves. The
continuous lines correspond to the exact result, the dashed
ones to the series expansion to O(x2), and the dot-dashed to
the plane parallel limit which is non-zero only for the dipole
and the octopole. We notice that for the midpoint choice of
the LOS the value of x is bounded, x 6 2, but this is not
the case for the endpoint LOS. As expected when x ' 1 the
series expansion performs very poorly, and very large devi-
ations from plane-parallel can be clearly seen for ` = 1, 2,
3 and 4. Fig. 4 instead shows the wide angle corrections to
the momentum auto power spectrum, using the same color
coding as Fig. 3. For all multipoles the deviations from the
distant observer limit are substantial, and become larger for
higher `.

4 POWER SPECTRUM

As a result of having chosen a preferred position in the Uni-
verse (that of the observer), RSD partially break statisti-
cal homogeneity and isotropy of our 2-point functions. The
only symmetry one is left with, in the absence of a window
function, is rotational symmetry around the observer and
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Figure 4. The multipoles of the momentum auto-correlation in the endpoint parameterization as a function of separation, s. The left

two columns show the monopole and quadrupole, with the upper row showing the signal and the lower row the ratio to the plane-parallel

results. The right column shows the odd multipoles, which are zero in the plane-parallel limit. The solid lines show our full expressions
while the dashed lines show the expansion through O(x21). The small-x1 expansion is most accurate for small s, as expected.

azimuthal symmetry about the line of sight. In particular
the loss of translation invariance means the power spectrum
is no longer diagonal and some care must be exercised in
its definition (Zaroubi & Hoffman 1996; Szalay et al. 1998;
Reimberg et al. 2016; Castorina & White 2018a). What is al-
ways well-defined is the “local”, i.e. line-of-sight-dependent,
power spectrum (Scoccimarro 2015; Reimberg et al. 2016),
which in the endpoint parameterization can be written

P (k, s1) ≡
∫

d3s ξ(s, s1)e−ik·s (29)

This can be expanded in multipoles as

P (k, s1) =
∑
L

PL(k, s1)LL
(
k̂ · ŝ1

)
. (30)

In observations the most commonly used estimator for the
density power spectrum multipoles is a variant of the Ya-
mamoto et al. (2006) estimator:

P̂FFTL (k) ≡ (2L+ 1)

V

∫
dΩk

4π
d3s1d3s2

× δ(s1)δ(s2)e−ik·sLL
(
k̂ · ŝ1

)
(31)

which can be evaluated using FFTs (Scoccimarro 2015;
Bianchi et al. 2015; Hand et al. 2017a).

It is common practice (Park 2000; Howlett 2019) to
treat the line-of-sight component of the momentum the same
way as a density field, even though it is a single component
of a vector (spin-1) field rather than a scalar. In this case the
ensemble average of the FFT estimator for any pair of fields
can be related to the multipoles in Eq. 30 as (Castorina &
White 2018a):〈

P̂FFTL

〉
=

∫
d3s1
V

PXYL (k, s1) (32)

where X,Y ∈ δ, u. Computing the ensemble averaged mul-
tipoles of the power spectrum estimators defined above re-
quires a Hankel transform of the expression for the correla-
tion function

PL(k, s1) = 4π(−i)L
∫
s2ds ξL(s, s1) jL(ks) . (33)

We can also then use the series expansion for the corre-
lation function in powers of (s/s1) to define the analogous

P
(n)
L (k). The general expression, including angular mask and

radial selection, for the measured FFT estimator is given
by the convolution of the underlying theory with a window
function, W (~s1,2), and can be found in Castorina & White
(2018a); Beutler et al. (2019), which we reproduce here for
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Figure 5. As for Fig. 3 except for the power spectrum.

convenience:

〈PFFT
A (k)〉 = 4π(−i)A(2A+ 1)

∑
`, L

(
` L A
0 0 0

)2

(2L+ 1)∫
s2ds jA(ks)

∑
n

(s)n ξ
(n)
XY,`(s)

×
∫

dΩs
4π

∫
d3s1(s1)−nW (s1)W (s + s1)LL(ŝ · ŝ1)

(34)

Notice that one can use Eq. 33 to rewrite this in a more
compact form

〈PFFT
A (k)〉 = (−i)A(2A+ 1)

∑
`, L

(
` L A
0 0 0

)2

(2L+ 1)

iL
∑
n

∫
k′2 dk′

2π2
P

(n)
` (k′)Q

(n)
A,`,L(k, k′) (35)

where we have defined

Q
(n)
A,`,L(k, k′) ≡ 4π

∫
ds s2jA(ks)j`(k

′s)(s)n∫
dΩs
4π

∫
d3s1(s1)−nW (s1)W (s + s1)LL(ŝ · ŝ1)

(36)

The above expression for the Q
(n)
A,`,L(k, k′) is rather involved,

but in principle it has to be computed only once. Alterna-
tively one could try to invert Eq. 35 to recover the P`(k),

similarly to what is done in CMB analysis in the ‘Pseudo-C`’
method (Hivon et al. 2002).

Fig. 5 shows the prediction for the multipoles of the
density momentum cross power spectrum at z = 0.05, 0.1.
For the dipole the series expansion is a good approximation
to the exact expression even at very large scales, while the
plane parallel limit overestimates power by tens of percent.
Even multipoles of the cross power spectrum are clearly non-
zero as one can see from the right column. Lower redshifts
are more affected by wide angle effects as expected. The
octopule shows larger discrepancies between the O(x2) and
the full result, especially at z = 0.05. Fig. 6 shows the five
multipoles of the momentun-momentum power spectrum.
As for the case of the correlation function the series expan-
sion becomes a bad approximation when ks1 ' 1, and one
has to switch to the full result. For the monopole we find a
few per cent difference between the wide angle and flat-sky
formulae, which becomes 20-40 per cent for the quadrupole.
The multipoles with L = 1, 2, 4 are non-zero because of our
choice of asymmetric LOS, and could be used as a test of
possible systematics in the modeling or in the data.

5 SPHERICAL COORDINATES

As RSD break the translational symmetry of the theory
down into a rotational symmetry about the observer, it
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Figure 6. As for Fig. 4 except for the power spectrum.

is natural to seek basis modes which reflect the angular-
radial decomposition suggested by the theory. One such ba-
sis is the spherical Fourier-Bessel (sFB) expansion, most
frequently encountered in potential theory, or its configura-
tion space analog, the multi-frequency angular power spec-
trum (MAPS; Datta et al. 2007; see also Castorina & White
2018a,b). Since the original papers of Lahav et al. (1994);
Fisher et al. (1994); Heavens & Taylor (1995) several authors
have studied galaxy clustering in spherical coordinates, see
for instance Yoo & Desjacques (2013); Pratten & Munshi
(2013); Nicola et al. (2014); Shaw et al. (2014); Liu et al.
(2016); Passaglia et al. (2017); Castorina & White (2018a,b);
Samushia (2019) and references therein. These analyses re-
tain a clear separation between angular and radial coordi-
nates, i.e. redshifts. The methods have been successfully ap-
plied to data in Fisher et al. (1994); Tadros et al. (1999);
Taylor et al. (2001); Padmanabhan et al. (2001); Percival
et al. (2004); Padmanabhan et al. (2007).

Defining the multipole moments of a field on the sphere
as

X(s) =
∑
`m

X`m(s)Y`m(ŝ) (37)

with Y`m the spherical harmonics, and using Eq. 7 we can
write the linear theory density as

δ`m(s) = i`
∫

d3k

2π2
δ(k)

[
bj`(ks)− fj′′` (ks)

]
Y ?`m(k̂) (38)

where the ′ indicate a derivative with respect to the argu-
ment (i.e. ks). Similarly the line-of-sight velocity is

u`m(s) = i`f

∫
d3k

2π2
δ(k)k−1j′`(ks)Y

?
`m(k̂) (39)

The j′` can also be written in terms of j`±1 and j′′` in terms of
j`±1 and j`±2 which makes more manifest the coupling of in-
trinsic angular momentum and structure generated through
projection. The two point functions of the fields are simply
related to that of the configuration space multipoles

ξXY (s1, s2) =
∑
`

2`+ 1

4π
CXY` (s1, s2)L`(ŝ1 · ŝ2) (40)

where X,Y ∈ δ, u. This makes clear that this formalism de-
scribes the triangle of Fig. 1 in terms of the two side lengths
(s1 and s2) and the enclosed angle and then expands the an-
gular dependence in Legendre polynomials. The coefficients,
C`, are the MAPS and their one dimensional Hankel trans-
form along s1 and s2 the angular power spectra C`(k1, k2).
A straightforward calculation shows that in linear theory

Cδδ` (s1, s2) =
2

π

∫
k2d k P (k)

[
bj`(ks1)− fj′′` (ks1)

]
×
[
bj`(ks2)− fj′′` (ks2)

]
. (41)

The auto-spectrum of the velocity becomes

Cuu` (s1, s2) =
2f2

π

∫
d k P (k)j′`(ks1)j′`(ks2) (42)

MNRAS 000, 000–000 (0000)



Wide angle effects for peculiar velocities 9

while the density-velocity cross spectrum is

Cδu` (s1, s2) =
2f

π

∫
kd k P (k)

×
[
bj`(ks1)− fj′′` (ks1)

]
j′`(ks2) (43)

These spectra have power over a wide range of `. However at
large scales most of the intrinsic power is confined in a few
multipoles, L, and thus the complex structure of the MAPS
or angular power spectra predominantly results from pro-
jection effects (Castorina & White 2018b), similar to what
happens with the CMB where only a few multipoles are rel-
evant at recombination and the rich structure we observe
today is due to LOS projection (Hu & White 1997; Dodel-
son 2003).

To see this let us relate C` to the power spectrum with
respect to the end-point definition. We can write (Castorina
& White 2018b)

CXY` (s1, s2) =
∑
Lλ

F `Lλ

∫
k2dk

2π2
PXYL (k, s1)jλ(ks1)j`(ks2)

(44)
where

F `Lλ = 4π(2λ+ 1)iλ−`
(
` L λ
0 0 0

)2

. (45)

On sufficiently large scales the ‘intrinsic’ power spectrum,
PL(k, s1), is only non-negligible for a small number of L.
The triangle condition of the 3j-coefficients makes the sum
over λ finite, as |λ − `| 6 L. The power in multiple ` thus
arises from geometric projection. Identities which can help
in the evaluation of Eq. 44 can be found in Castorina &
White (2018a,b).

As well as providing physical insight, Eq. 44 also solves
one of the major issues of spherical analysis: the estimate of
the covariance matrix. Since a typical analysis would have
hundreds of ` modes and tens of s or k bins, each of which
can be highly covariant, the accuracy of the covariance ma-
trix presents a challenge (e.g. Percival et al. 2004). Eq. 44
provides a solution, as the C` and the PL are linearly related
to each other by a matrix that can be ‘inverted’ to find an
optimal data compression. Additionally, Eq. 44 provides an
elegant and unbiased way to remove systematics in the plane
of the sky, that by definition affect only the low-k‖ modes.

6 ZELDOVICH APPROXIMATION

It is straightforward to include the dynamical wide-angle ef-
fects in lowest order Lagrangian perturbation theory, i.e. the
Zeldovich approximation (Zel’dovich 1970). Such an ap-
proach can include a more complex bias model as well as
properly resumming the large-scale displacements that are
not well captured by linear perturbation theory (see the dis-
cussion in Castorina & White 2018b; Taruya et al. 2019).

The momentum-density and momentum-momentum
correlation functions are computed from generating func-
tions in the usual way (see e.g. Wang et al. 2014, for ex-
amples), and expressions in the plane-parallel limit can be
found in Hand et al. (2017b). These can be straightforwardly
modified to include wide-angle effects following Castorina &
White (2018b) with the final integrals performed numeri-
cally without relying on the series expansion in x. The large-
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Figure 7. Top panel: Multipoles of the momentum-density cross-

correlation function in the endpoint parameterization, computed

using the Zeldovich approximation. We show results for z =
0.05, 0.10 and the plane parallel case. (Bottom) The line-of-sight

momentum density auto-correlation in the Zeldovich approxima-
tion for the same configurations.

scale limit of the Zeldovich approximation agrees with our
linear theory expressions, as shown in Appendix D.

The upper panel in Fig. 7 shows the ` = 1 and 3 mul-
tipoles of the momentum-density cross-correlation function,
computed within the endpoint parameterization, for pairs
with s1 = 150, 300 and for the plane parallel case. For the
closest galaxies the wide angle effects can reach 10 per cent
at large pair separations. The lower panel shows the ` = 0,
2 multipoles of the momentum auto-correlation function for
the same configurations. For the quadrupole the wide an-
gle effects can be as large as the plane parallel piece. At
such low redshift the shape of the ZA multipoles is different
from linear theory even on large scales. Nonetheless the rela-
tive importance of wide angle effects is qualitatively similar
to the linear theory calculations presented in the previous
sections. In Fig. 7 we have not included the “selection func-
tion terms” of Appendix A. For smoothly varying n̄(s) these
terms can be added using linear theory, and behave precisely
as described in the previous sections.

7 CONCLUSIONS

In this paper we investigated the impact of wide angle red-
shift space distortions on two point statistics of the density
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10 Castorina & White

and momentum fields within linear theory and the Zeldovich
approximation.

We presented results for the linear theory correlation
function (Figs. 2, 3 and 4) and power spectrum (Figs. 5 and
6) of the cross correlation between density and momenta
and for the momentum auto-correlation. In both cases wide
angle effects are significant at low redshift and could become
important in the analysis of upcoming surveys like Taipan.
For the cross-correlation between density and velocity we
point out that the even multipoles, which would be zero in
the plane parallel limit, carry new cosmological information
as they are non-zero regardless of the choice of LOS.

We were able to compute the full wide angle correla-
tion functions and power spectra, without relying on a se-
ries expansion in small angles (§4). This turned out to be
important for high multipoles, where the asymptotic nature
of the expansion makes the prediction very inaccurate at
large scales.

The manner in which redshift-space distortions behave
makes a discussion in spherical coordinates particularly ap-
pealing. We described the formalism for peculiar velocity
statistics in the Fourier-Bessel basis in §5, explicitly dis-
cussing the connection with the configuration and Fourier
space pictures and the generation of large ` power through
projection and aliasing. The link to the Fourier description,
in which the power is localized in a small number of mul-
tipoles, provides a route for efficiently compressing the in-
formation and regularizing the covariance matrix in the FB
basis.

Finally we computed the dynamical part of wide angle
effects in the Zeldovich approximation (§6; Fig. 7), finding
very similar conclusions with respect to the linear theory
calculation which we show it approaches for sufficiently large
scales (Appendix D). For slowly varying mean density the
terms coming from the change in volume between real and
redshift space, known as α-terms in the literature, can be
included using linear theory.

The authors thank Enzo Branchini for discussions and
comments on the draft. M.W. is supported by the U.S. De-
partment of Energy and by NSF grant number 1713791. This
work made extensive use of the NASA Astrophysics Data
System and of the astro-ph preprint archive at arXiv.org.

APPENDIX A: MEAN DENSITY TERMS

Outside of the plane-parallel approximation a variation of
the volume element and mean density with distance lead
to corrections which scale as 1/s Kaiser (1987); Hamilton
(1998). Szalay et al. (1998) refer to these terms as “α terms”
and we shall follow their lead. The α terms are collected in
this Appendix.

We use the common definition that α(r) is the logarith-
mic derivative of the galaxy selection function

α(r) ≡ d ln r2n̄(r)

d ln r
(A1)

which we will assume varies slowly with r. The redshift-space
density field then gets an additional contribution −ifαδ11
while the velocity field is unchanged (in linear theory).
The contributions to the density auto-correlation function
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Figure A1. The density momentum correlation function at z =
0.1 including the effect of a constant, in redshift, selection function

α(s) = 2/s.

can be found in Eqs. (18-21) of Szalay et al. (1998). The
momentum-density cross-correlation picks up an additional
term

〈δ(s1)u(s2)〉 3 f2α(s1)〈δ11(s1)δ11(s2)〉 = −α(s1)〈u(s1)u(s2)〉
(A2)

and it is therefore proportional to the 〈uu〉 term. The 〈uu〉
term itself is unchanged. In Castorina & White (2018a) it
was found that for a constant selection function, i.e. α(s) =
2/s, the new terms partially canceled the dynamical wide
angle effects in the density-density correlation function and
power spectra (see also Taruya et al. 2019). It is therefore
interesting to see what happens to the density-momentum
correlators discussed in this paper. Fig A1 shows the odd
multipoles of the density-momentum correlation function at
z = 0.1, including the α terms (dashed lines). They are
indeed comparable to the wide angle effects and for the
dipole they eventually become the largest correction to the
plane parallel limit. We notice that the for a constant selec-
tion function, the extra terms are sometimes referred to as
Doppler terms (e.g. Bonvin & Durrer 2011; Raccanelli et al.
2018).

APPENDIX B: COMPARISON WITH GORSKI
(1988)

In linear theory the real-space and redshift-space 〈uu〉 are
the same, and the real-space result was first published by
Gorski (1988). In the notation of Gorski (1988), his Eq. (1),
we have

〈u(s1)u(s2)〉 = Ψ⊥(s)(ŝ1 · ŝ2)+
[
Ψ‖(s)−Ψ⊥(s)

]
(ŝ1 · ŝ)(ŝ2 · ŝ)

(B1)
with

Ψ⊥(s) =
f2

3

[
Ξ

(2)
0 + Ξ

(2)
2

]
,Ψ‖(s) =

f2

3

[
Ξ

(2)
0 − 2Ξ

(2)
2

]
(B2)

upon substitution of 3j1(x)/x = j0(x) + j2(x) in his expres-
sions. Thus,

〈u(s1)u(s2)〉 = f2 cos θ

3

[
Ξ

(2)
0 + Ξ

(2)
2

]
− f2

3
Ξ

(2)
2 (ŝ1 · ŝ)(ŝ2 · ŝ)

(B3)
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This is most easily evaluated in the enpoint parameteriza-
tion. Taking s1 = s1(0, 0, 1), s = x1s1(

√
1− µ2

1, 0, µ1) and
s2 = s1 + s (Gorski 1988 defines s = s2 − s1) so that
s2 = s1

√
1 + x21 + 2µ1x1 we find

〈u(s1)u(s2)〉 =
f2(1 + µ1x1)

3
√

1 + x21 + 2µ1x1
Ξ

(2)
0 (s)

+
f2
(
1− 2µ1x1 − 3µ2

1

)
3
√

1 + x21 + 2µ1x1
Ξ

(2)
2 (s) , (B4)

with x1 = s/s1 and µ1 = ŝ · ŝ1. This matches the result in
the main text.

APPENDIX C: THE EXACT EXPRESSION FOR
THE DENSITY-DENSITY CORRELATION
FUNCTION

In the main text we have shown how the series expansion in
x1 = s/s1 becomes a poor approximation at low redshift for
momentum statistics. In this Appendix we show the same is
true for the density-density correlation function.

In Fig. C1 we plot, for the endpoint choice of LOS,
the even multipoles of the density auto correlation function
for the same configurations in Fig. 3. For the monopole, on
scales smaller than the BAO scale, wide angle effects are
a few per cent at z = 0.1 and a few tens of per cent at
z = 0.05, but the series expansions performs well. For higher
multipoles wide angle effects become larger and the trunca-
tion to second order in x provides a very poor description
of the multipoles. The same conclusions apply to the power
spectra, shown in Fig C2. These results extend the work of
Castorina & White (2018a) who provided expressions for the
multipoles of the density auto-power spectrum to O(ks1)−2.

In a joint analysis of momentum and velocity statistics
at z . 0.1 all expressions should therefore be computed
exactly.

APPENDIX D: LINEAR THEORY AS A LIMIT
OF THE ZELDOVICH APPROXIMATION

For very large scales we expect the Zeldovich approxima-
tion to approach the linear theory results. The relevant ex-
pressions for the density auto-correlations can be found in
Castorina & White (2018b), and in this appendix we provide
the limits for the density-momentum cross-spectrum and the
velocity auto-spectrum for the case of unbiased tracers (the
bias terms proceed similarly).

The two-point statistics in the Zeldovich approximation
can be written as an integral of a ‘source’ term over a Gaus-
sian piece, e.g.

〈ρ(s1)δ(s2)〉 =

∫
d3q

∫
d3k

(2π)3
eik·(s−q) G(k,q)Sρδ(k,q)

(D1)
where the GaussianG(k,q) ∝ exp

[
− 1

2
kiAijkj

]
withA(q) =〈

(R1Ψ1 −R2Ψ2)2
〉

and to lowest order the source term is

Sρδ(k,q) = ik ·
〈

(R1Ψ1 −R2Ψ2) Ψ̇1

〉
· ŝ1 (D2)

for the density-momentum cross-correlation and

Sρρ(k,q) = ŝ1
〈

Ψ̇1Ψ̇2

〉
ŝ2 (D3)

for the momentum auto-correlation. For very large scales
we can expand G(k,q) and set it to 1 at lowest order.
The remaining integrals give the linear theory expressions
of the main text. The case of the velocity auto-correlation
is straightforward to check, since 〈Ψ̇Ψ̇〉 is identical to 〈uu〉
in linear theory as Ψ(k) = (ik/k2) δ(k). The density-
momentum expression takes only a few more steps. To be-
gin, note that in the plane-parallel limit ŝ1 ≈ ŝ2 ≈ ẑ so for
example

〈ρ(s1)δ(s2)〉 ≈
∫

d3k

(2π)3
eik·s ifk · FT [RΨ1Ψ2] · ẑ (D4)

=

∫
d3k

(2π)3
eik·s

ifµ

k
(1 + fµ2)P (k) (D5)

since the Fourier transform of 〈Ψ1Ψ2〉 is −(kikj/k
4)P (k)

and Rij = δij + fẑiẑj . This matches Eq. (2) for b = 1. In
going beyond the plane-parallel limit one needs to keep track
of the factors of k̂ · ŝ1 and k̂ · ŝ2, but it can quickly be verified
that they are the same as in the main text with the velocity

contributing k̂ · ŝ/k and the density
(

1 + [k̂ · ŝ]2
)

times δ(k).
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Figure C1. The even multipoles of the density-density correlation function for the same configurations of Fig 3.
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Figure C2. The even multipoles of the density-density power spectrum for the same configurations of Fig 5.
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