Lawrence Berkeley National Laboratory

Recent Work

Title

DETERMINATION OF THE NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION $T(d,\mbox{He3})2n$

Permalink https://escholarship.org/uc/item/0f37407d

Authors

Baumgartner, E. Conzett, H.E. Shield, E. <u>et al.</u>

Publication Date 1965-12-06

University of California Ernest O. Lawrence Radiation Laboratory

DETERMINATION OF THE NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION T(d, He³)²ⁿ

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UCRL-16528

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

DETERMINATION OF THE NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION T(d, He²)2n

E. Baumgartner, H. E. Conzett E. Shield, and R. J. Slobodrian

December 6, 1965

UCRL-16528

DETERMINATION OF THE NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION T(d, He³)2n[×]

E. Baumgartner^T, H. E. Conzett
E. Shield, and R. J. Slobodrian
Lawrence Radiation Luboratory University of California Benkeley, California

December 6, 1965

Recent papers¹ have re-emphasized the need for an accurate determination of the neutron-neutron ${}^{1}S_{0}$ scattering length a_{n} , since comparison with the pp and np scattering lengths, a_{p} and ${}^{1}a_{np}$, provides a test of charge symmetry and charge independence in the nucleon-nucleon interaction.

Several determinations of a_n have recently been reported.²⁻⁵ The reactions studied experimentally fall into two categories: (1) the reaction $\pi^+d \rightarrow 2n+\gamma$, with only two strongly interacting particles in the final state, and (2) the reactions D(n,p)2n and T(n,d)2n which have three particles that may interact strongly in the final state. The most recent investigation⁴ of the π^-+d reaction has resulted in the preliminary value

 $a_n = -16.4 \pm 1.3 F$

where the sign was assumed and the error introduced by the theoretical uncertainties⁶ was not included in the quoted probable error. In contrast, analyses of the data from the D(n,p)2n reactions at 1^{l_4} MeV have given the values^{2,3}

 $a_{1} = -21 \pm 2 F$ and

a_n = -23.6 +2.0 F

which are consistent within themselves but which do not agree with the π^+ +d result. Finally, the T(n,d) 2n reaction has provided the value 5

 $a_n = -18 \pm 3 F$

Neither the D(n,p) 2n nor the T(n,d) 2n spectra could be interpreted in terms of the final state neutron-neutron interaction alone.⁷⁻⁹ Therefore, treatments were used that included interactions with the third final state particle³ or effects produced by the reaction mechanism itself.⁵ The discrepancies among the values obtained for a_n clearly indicate the need for a test of the theory used to determine a_n from experiments other than that of neutron-neutron scattering.

We report here a determination of a_n from analysis of He³ spectra from the T(d,He³) 2n reaction. Also, triton spectra were obtained from the mirror reaction He³(d,T)2p. Analysis of these spectra for a determination of a_p , which is well established¹⁰ ($a_p = -7.719 \pm 0.008$ F) from low energy protonproton scattering data, provides a direct test of the theory used to deduce a_n .

The He³(d,T) 2p reaction has been investigated by several groups, ¹¹⁻¹⁶ and it has been shown that there is a good semiquantitative agreement between the final-state-interaction calculations and the measured triton spectra. ^{12,15} The T(d,He³) 2n reaction was first studied several years ago. ¹⁷

The present experiment was carried out at the Berkeley 88-inch variableenergy cyclotron. The T(d,He³) 2n reaction was studied at deuteron energies (E_d) of 32.5 and 40.2 MeV. The He³ spectra were obtained with a resolution of 240 keV at several laboratory angles between 6° and 25°. The He³(d,t) 2p was studied at $E_d = 29.8$ MeV (to match the final-state CM energy of the previous reaction at 32.5 MeV) with a resolution of 140 keV. The experimental techniques were essentially the same as described in an earlier paper.¹² Figure 1(a) contains the triton spectrum measured at a laboratory angle of 3° , and Fig. 1(b) exhibits the He³ spectrum taken at 6° . The fitted curves were calculated from the Watson-Migdal theory. At these angles, no effects of p-T or n-He³ final-state interactions were seen. It has been established that both reactions proc. a through a direct reaction mechanism at small angles, ^{11,13,14,17} consistent with an $\ell=0$ nucleon transfer. The peripheral nature of the reaction then implies a small overlap of the outgoing T or He³ wave function with the wave function of the nucleon pair, and thus a suitable description should be provided by a dominant nucleon-nucleon final-state interaction.

In the studied rearrangement collisions the differential cross section can be expressed as

$$\frac{a^2\sigma}{aEa\Omega} = \frac{2\pi}{n} \frac{1}{v_a} |T_{if}|^2 \rho(E)$$
(1)

where T_{if} is the transition matrix element and $\rho(E)$ is the phase space factor. The general form of T_{if} is $T_{if} = \int \psi_f^{\dagger} V_I \psi_i d\tau$, where V_I is the interaction causing the rearrangement. For the $T(d, He^3)$ 2n reaction at small angles we can write $\frac{1}{16} = \psi_{He3} \phi_R f(r) (e^{i\delta} \sin \delta)/k$, and therefore

$$T_{if} = \frac{e^{-i\delta}\sin\delta}{k} \int \left[f(r) \Psi_{He} \Im \phi_{R}\right]^{\dagger} V_{I} \psi_{i} d\tau = g(\theta) \frac{e^{-i\delta}\sin\delta}{k}$$
(2)

The term $(e^{i\delta}\sin \delta)/k$ comes in simply through the S-wave function of the neutron pair in the final state, δ is the singlet S-wave phase shift, Mk is the

-3-

relative nucleon-nucleon momentum, \mathbb{Y}_{He^3} is the internal wave function of He², and ϕ_{R} describes the relative motion between the He³ nucleus and the neutron pair. The function g(θ) depends on the reaction mechanism, θ being the CM angle of the observed particle (i.e., He³).

For the $T(d, He^3)$ 2n reaction we have used

$$|T_{if}|^{2} = |g(\theta)|^{2} \frac{1}{E_{2n} + \frac{n^{2}}{m_{n}} (-\frac{1}{a_{n}} + \gamma_{n} E_{2n})^{2}}$$
(5)

and for the $\text{He}^{2}(d,T)$ 2p reaction⁸

$$|T_{if}|^{2} = |g(\theta)|^{2} \frac{C(\eta)}{c^{2}(\eta) E_{2p} + \frac{\dot{n}^{2}}{m_{p}} \left[-\frac{1}{a_{p}} - \frac{h(\eta)}{R} + \gamma_{p}E_{2p}\right]}$$

where $C(\eta) = \frac{2\pi\eta}{e^{2\pi\eta}-1}$, a_p is the scattering length, $\eta = \frac{e^2}{nv}$, $h(\eta) = \operatorname{Re}[\Gamma'(-i\eta)/\Gamma(-i\eta)] - \ln \eta$, $R = n^2/m_p e^2$, $\gamma_n = 3.19 \times 10^{11} \text{ MeV}^{-1} \text{ cm}^{-1}$ corresponding to an effective range $r_e = 2.65 \text{ F}$, $\gamma_p = 3.40 \times 10^{11} \text{ MeV}^{-1} \text{ cm}^{-1}$, and $E_{2n} (E_{2p})$ is the relative nucleon-nucleon energy. In both cases $\rho(E) = 3.22 \text{ CE}^{1/2} (E_{max} - E)^{1/2}$, where E is the CM energy of the observed particle with a maximum value E_{max} .

Using expressions (3) and (4) converted to the laboratory system with the Jacobian transformation, we have obtained fits for the spectra of both reactions. Experimental values for $|g(\theta)|^2$ were used and the instrumental resolution was folded in. The section of the spectrum of the He³(d,T)2p reaction shown in Fig. 1(a) contains 21,798 events. It is roughly equivalent to the section of the T(d,He³)2n spectrum shown in Fig. 1(b) ($E_{2n} = 0$ to 1.57 MeV) which was used to extract a_n . From the He³(d,T)2p reaction we obtained, for 11,268 events, the value

$$a_p = -7.69^{+0.61}_{-0.67}$$
 F

and for 21,798 events

 $a_p = -7.41_{-0.49}^{+0.39}$ F

using a minimum χ^2 criterion. The errors are the probable errors determined from a normal χ^2 distribution. Calculations were also done with changes of all experimental input parameters, such as $|g(\theta)|^2$, E_d , and the energy resolution, within their respective limits of error, and no significant changes resulted for the scattering length. The 0.3 F difference between the value for 21,798 events and the value obtained from proton-proton scattering is still within our probable error.

-5- ·

For the T(d,He³)2n reaction at $E_d = 32.5$ MeV the best fit for 17,782 events yields

$$a_n = -16.1 \pm 1.0 F$$

Also, the value of a_n is stable to within 0.2 F irrespective of the section of the spectrum (up to $E_{2n} = 1.57 \text{ MeV}$) employed for the fit. Even though we estimate from the comparison between our a_p result and its established value that 0.6 F is the upper limit of error due to theoretical uncertainties, we consider this stability of a_n to be a good indication that this error is in fact smaller. A fit with a positive scattering length yielded $a_n = 18.4 \pm 1.1 \text{ F}$. Since our spectra were fitted over an energy range from zero to 1.57 MeV in the neutron-neutron CM energy, we were able to obtain a χ^2 fit for the effective range parameter r_e . The value used in the fits for a_n was $r_e = 2.65$ F; then, for the best value $a_n = -16.1$ F, variation of r_e gave a best fit for $r_e = 3.2 \pm 1.6$ F.

-6-

We have made a determination of the sign of a_n , assuming that in both reactions $|g(\theta)|^2$ in expressions (5) and (4) are the same to within a few percent. Then the He³(d,T)2p reaction can be used to determine $|g(\theta)|^2$ which in turn can be used to predict the T(d,He³)2n absolute yield for both signs of a_n . Fig. 2(a) contains the pertinent plots, and it is seen that the comparison with the experimental spectrum is consistent with the negative sign. The spectrum calculated with the positive scattering length does not include the contribution^{3,8} from the resulting bound state. This contribution would increase the discrepancy between the calculated and experimental spectra. In fact, a bound-state contribution given by $(d\sigma/d\Omega)_{bound} \simeq 0.4 \int (d^2\sigma/d\Omega dE) dE$ would make it impossible to fit the shape of the measured spectrum. This independent evidence for negative a_n would provide support for the assumption of near equivalence $|g(\theta)|^2$ for the mirror reactions.

Our determination of

 $a_n = -16.1 \pm 1.0 F$

compares well with the π -d result and with the value -16.4 to -16.9 F predicted by Heller, Signell and Yoder¹ from a on the basis of a charge symmetric nucleonnucleon interaction.

We wish to thank J. Meneghetti, J. Downen, D. Landis, and R. Lothrop for their considerable assistance with the experimental equipment.

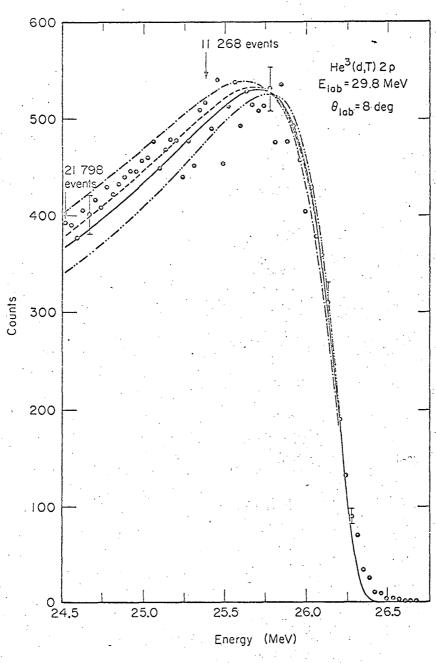
FOOTNOTES AND REFERENCES

-7-

This work was performed under the auspices of the U. S. Atomic Energy Commission.

1. Michael J. Moravcsik, Phys. Rev. 136, B624 (1964);

L. Heller, P. Signell, and L. R. Yoder, Phys. Rev. Letters 13, 577 (1964).


- M. Cerineo, K. Ilakovac, I. Šlaus, P. Tomaš, and V. Valković, Phys. Rev. <u>133</u>, B948 (1964).
- V. K. Voitovetskii, I. L. Korsunskii, and Y. F. Pazhin, Phys. Letters <u>10</u>, 109 (1964);
 - V. K. Voitovetski, I. L. Korsunskii, and Yu. F. Pazhin, Nucl. Phys. <u>64</u>, 513 (1965).
- 4. R. P. Haddock, R. M. Salter, Jr., M. Zeller, J. B. Czirr, D. R. Nygren, Phys. Rev. Letters 14, 318 (1965), and references therein.
- V. Ajdačić, M. Cerineo, B. Lalović, G. Paić, I. Šlaus, and P. Tomaš, Phys. Rev. Letters 14, 442 (1965).
- Myron Bander, Phys. Rev. <u>134</u>, B1052 (1964). His estimate of ~l F is considered to be somewhat optimistic by Moravcsik, Ref. 1.
- 7. Kenneth M. Watson, Phys. Rev. <u>88</u>, 1163 (1952).
- A. B. Migdal, Zh. Eksperim. i Theor. Fiz. <u>28</u>, 3 (1955), [translation: Soviet Phys. JETP 1, 2 (1955).
- 9. R. J. N. Phillips, Nucl. Phys. <u>31</u>, 643 (1962) and <u>53</u>, 650 (1964).
- 10. R. J. Slobodrian, Nuovo Cimento (to be published). The quoted value is obtained from very accurate phase shifts at five low energies, excluding the vacuum polarization correction.
- 11. O. M. Bilaniuk and R. J. Slobodrian, Phys. Letters 7, 77 (1963).

- 12. H. E. Conzett, E. Shield, R. J. Slobodrian, and S. Yamabe, Phys. Rev. Letters <u>13</u>, 625 (1964).
- 13. M. Jakobson, J. H. Manley, and R. H. Stokes, Nucl. Phys. 70, 97 (1965).
- 14. E. M. Henley, F. C. Richards and D. U. L. Yu, Phys. Letters 15, 331 (1965).
- 15. T. A. Tombrello and A. D. Ducher, Phys. Letters 17, 37 (1965).
- 16. R. W. Zurmühle, Nucl. Phys. <u>72</u>, 225 (1965) reports an apparent discrepancy with Refs. 11 and 12 in an experiment detecting the two protons in coincidence. His published spectrum corresponds to $\langle \theta_{\rm CM} \rangle \cong 38^{\circ}$ for low relative momenta of the pp system, whereas the relevant spectra reported here and in Ref. 12 correspond to $\theta_{\rm CM} \cong 12^{\circ}$ and $\theta_{\rm CM} \cong 16^{\circ}$ and therefore a marked difference is to be expected (see Refs. 13 and 14).
- 17. J. E. Brolley, Jr., W. S. Hall, L. Rosen, and L. Stewart, Phys. Rev. 109, 1277 (1958). Although these authors did not extract a value for a_n from their data, it is interesting to note that fits to their histograms at 10° lab give 12 F <- a_n <18 F.

FIGURE CAPTIONS

Fig. 1(a) Triton spectrum at 8° lab of the reaction He²(d,T)2p at 29.8 MeV with theoretical fits calculated for 11,268 events and for 21,798 events. The dots are experimental points. The solid line is the best fit for 11,268 events with $a_p = -7.69$ F. The dashed line is the best fit for 21,798 events with $a_p = -7.41$ F. The dash-dot line is obtained with $a_p = -6.90$ F, for ll,268 events, and the dash-double dot line is obtained with $a_p = -8.33$ F; they indicate the sensitivity of the theoretical curve to variation of a p. Fig. 1(b). He³ spectrum at 6° lab of the reaction T(d,He³)2n at 32.5 MeV with theoretical fits calculated for 17,782 events. The solid line is the best fit for $a_n = -16.1$ F. The dashed line is obtained with $a_n = -14.0$ F and the dash-dot line corresponds to $a_n = -18.0$ F. Fig. 2(a). He³ spectrum at 8° lab of the reaction $T(d, He^3)$ 2n at 32.5 MeV together with the theoretical fit for $a_n = -16.0$ F, shown with solid line. The fit is consistent with the value determined for the 6° spectrum. The dashed line is a prediction for $a_n = -16.0 \text{ F}$ using the $|g(\theta)|^2$ determined from the He³(d,T)2p reaction, and the dash-dot line for $a_n = +18.4$ F. Fig. 2(b). He³ spectrum at 8° lab of the reaction T(d,He³)2n at 40.2 MeV together with the curve calculated for $a_n = -16.0$ F. It is consistent with the value determined at 32.5 MeV.

-10-

 φ

MUB-8714

Fig. l(a)

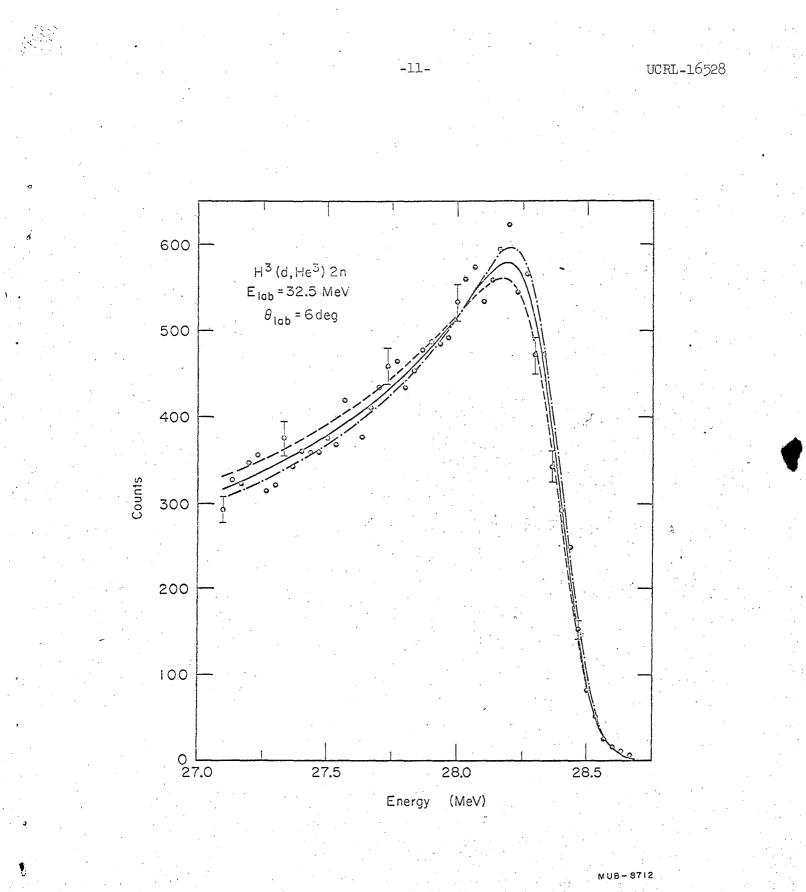


Fig. 1(b)

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

. .

a A 1