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ABSTRACT OF THE DISSERTATION 

 

Specificity in Protein-Protein Interactions:  

High-Throughput Characterization of Rationally Designed and Naturally  

Evolved Coiled-Coil Networks 

 

by 

 

William Clifford Boldridge 

Doctor of Philosophy in Biochemistry, Molecular and Structural Biology 

University of California, Los Angeles, 2021 

Professor Sriram Kosuri, Chair 

 

 As the major effectors of cellular processes, proteins are crucial to all biology.  

Although proteins are regulated in many fashions, protein-protein interactions are ubiquitous 

across different classes of proteins. In particular, proteins must interact specifically with certain 

partners to recapitulate the biology that constitutes life, despite cells containing hundreds of 

thousands of proteoforms, some fraction of which are highly similar to the intended target. 

Understanding how specificity in protein-protein interactions occurs has been challenging to 

investigate because prior techniques were limited to in throughput and ability to pinpoint 

sequences of interest. We create a high-throughput two-hybrid assay that marries gene synthesis 

with a next-generation sequencing readout, allowing us to investigate only those interactions of 

interest with a single experiment providing a quantitative characterization of tens of thousands of 
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interactions. We use this to first to investigate specificity in designed coiled-coils—small alpha-

helical proteins which despite a simple hydrophobic interface exhibit high a high-degree of 

specificity. After validating our assay on a previously published set of coiled-coils, we iteratively 

find increasingly large sets of orthogonal proteins, proteins where each on-target interaction is 

specifically preferred to all off-target interactions. In total we screen more than 26,000 

interactions in three experiments, and use our data and improve coiled-coil design algorithms 

while also finding the largest sets of orthogonal proteins to date.  While specificity can be 

designed with large changes to the protein sequence, nature must come by specificity through the 

slow tinkering of evolution. To investigate the origins of specificity in nature we characterized a 

bZip family descended from an ancestral homodimer where the extant paralogs do not 

heterodimerize. We use ancestral reconstruction to trace protein-protein interactions in the 

coiled-coil domain across the PAR and E4BP4 family, back to the ancestor of humans and 

cnidarians. We find specificity does not appear once, but rather eight times across our tree, and 

while the process begins immediately, the final acquisition of specificity takes substantial time. 

Finally we find that once interactions are lost they never return, and that there is no direct 

selection for the acquisition of specificity between paralogs.  
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A. Specificity in protein-protein interactions: required but poorly understood 

 

Proteins are the major effectors of the molecular processes that constitute life. Although proteins 

have myriad different functions—catalysis for enzymes, structural support for keratins, signaling 

for kinases—all classes of proteins participate in protein-protein interactions (PPIs)1. The 

functional purpose of these PPIs is as diverse as that of the proteins that compose them. 

Examples include epidermal growth factor receptor dimerization which leads to internalization 

and signalling2, linking structural supports together as actin-ARP 2/3 linkages to create 

lamellipodia3, regulating a kinase’s activation as Cdk2 by cyclin A4 or creating mechanical 

motion as myosin does while interacting with actin5. Hence, understanding PPIs is crucial to 

understanding any subfield of molecular biology. 

All PPIs share several fundamental properties, namely, affinity or how tightly the 

proteins are bound, avidity/multivalency or how many interactions are occurring, and specificity 

or to what extent do the proteins in a PPI interact with other proteins. Significant efforts have 

tried to understand aspects of PPI strength, by identifying extremely strong PPIs6,7,  generating 

high-affinity binding partners8–12, or testing what makes transient, strong PPIs possible13,14. 

Similarly, avidity, though less studied, can be seen largely as a function of PPI strength, 

oligomer number and local environment15,16. Specificity, however, is challenging to investigate 

as it is an emergent property of a PPI network—proteins only form a specific PPI in relation to 

other proteins/PPIs. This creates a three-fold challenge: first, specificity is defined by preference 

for one interaction over others but the magnitude of difference that matters, as well as how to 

interpret multiple interactions is not well defined;  second, even when restricted to dimeric 

proteins the number of possible PPIs scales exponentially with the size of the protein network; 
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and third, the only network of proteins that is will provide a comprehensive profile of specificity 

is a network of all of protein sequence space. Obviously, such an immense number of potential 

interactions is impossible to investigate17, so most studies have been limited to a few highly 

probable interactions18 leaving the molecular basis of specificity poorly understood.  

An approach that compromises between the immense number of potential interactions 

and possible experimental throughput would focus on portions of interaction space known to 

exhibit specificity. Fortunately, we know of numerous protein families such as BCL-2s19–21, 

coiled-coils22,23, histidine kinases24,25, and colicins26–28  where members have distinct interaction 

profiles despite their overall high level of homology. Characterizing the interaction profile of 

proteins that exhibit specificity would let us answer questions about the sequence determinants 

of specific interactions and, in natural proteins, the processes that produce them. However, to 

characterize how an interaction profile varies between highly similar proteins first requires 

measuring interactions against multitudes of partners. Large scale testing of PPIs would clarify 

each individual residue’s contribution to an interaction and how it varies across all interactions.  

 

B. The limitations of technologies to investigate protein-protein interactions 

 

One major obstacle to investigating specificity at such a granular level is the current technology. 

Gold-standard biochemical techniques such as Surface Plasmon Resonance29 or Isothermal 

Calorimetry30 require purification of each protein and individual testing, which cannot be done 

on more than a handful of interactions. Higher throughput methods, such as two-hybrid 

techniques31 can better investigate specificity but scaling remains problematic. Yeast two-

hybrids (Y2H)32  are the most common system to investigate PPIs at moderate and larger scales, 
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due to commercially available vectors and the ability to achieve moderate throughput via yeast 

mating33. Because of this there have been a wide variety of techniques to expand the throughput 

of Y2H, such as pooled mating with mathematical34 or further mating34 deconvolution. However, 

despite these efforts, all large scale PPI experiments (characterizing interactomes), have relied on 

brute force and vast resources.35–38  

Although yeast dominate the two-hybrid space, other model systems also have assays to 

identify PPIs. Most notably, in E. coli there are two-hybrids, using subunits of RNA 

polymerase39,40, viral repressors41, or split adenylate cyclase42. Despite the advantages of the 

molecular tools in E. coli, freedom from PPIs needing to occur in the nucleus, and a comparative 

dearth of off-target interaction partners, bacterial two hybrids have remained less popular as they 

do not easily scale. 

 In the last fifteen years, DNA sequencing has become orders of magnitude cheaper and it 

is now possible to sequence hundreds of millions of DNA sequences at once43,44. Because of this 

there has been a concerted effort to link up functional assays with a next-generation sequencing 

readout45,46 and we can now efficiently measure phenomena as diverse as promoter activation47–

49, olfactory stimulation50 and apoptosis51 in a high-throughput manner. Accordingly, there have 

been several attempts to attach a next-generation sequencing readout to the Y2H with Barcode 

Fusion Genetics52, CrY2H-seq53, rec-YnH54, RLL-seq55, and SynAg56 mating all allowing 

multiplexed identification of interacting baits and preys.  

However, each high-throughput yeast system has limitations which render it unsuitable 

for studying specificity at high resolution. CrY2H-seq, rec-YnH and RLL-seq involve 

sequencing a small portion of the total protein, which for proteins with high sequence identity 

may not be able to resolve the interaction partners. Furthermore, Barcode Fusion Genetics has a 
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labor-intensive colony picking and arrayed PCR step which limits its throughput and SynAg 

mating has lower throughput and occurs outside the cell which may influence the biological 

relevance of interactions. Moreover, all of these techniques involve all-against-all libraries which 

prevents the more targeted interrogation of PPIs of interest. Finally, like the yeast two-hybrid, 

the bacterial two-hybrid has been multiplexed57, but lack of control over library creation, lack of 

ability to identify interactions completely, and absence of bioinformatical pipeline limit its use.  

All of these high-throughput methods are reliant on either externally provided ORFomes, 

randomly sheared DNA, or point mutants around a single sequence, any of which dramatically 

constrains the PPIs that can be investigated. Gene synthesis overcomes most limitations on 

sequence design. Genes can be synthesized with commercially available pools of 

oligonucleotides, which provide an economical option for creating tens of thousands of highly 

divergent variants58,59. If the oligonucleotides currently available are too short to synthesize the 

desired sequences, multiplexed gene assembly techniques60,61 can be used to create the library of 

sequences. However, if gene synthesis is used, the entire protein must be sequenced to verify 

faithful production of the intended sequence. This generally requires lower throughput next-

generation sequencing or synthetic long reads as the highest throughput sequencing is currently 

limited to 300bp62. One solution is to use a barcoding scheme, where a short random DNA 

sequence—a barcode—is cloned into the same plasmid as the protein sequence. Then lower 

throughput sequencing can be used to read through the protein and the barcode in a single read, 

after which the barcode can serve to unambiguously identify the protein variant63 and the 

barcode can be analyzed on the highest throughput sequencing systems. 

 

C.   Coiled-coils as a minimal model system for investigating specificity 
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There is a wealth of potential model systems for investigating specificity of PPIs as even the 

simplest protein sequences can exhibit complex behavior. For example, poly-a-amino acids—

proteins composed of only a single amino acid type—can take on secondary structure and even 

alternate between a-helixes and b-sheets64 and binding interfaces composed of solely of tyrosine 

and serine can mediate low nanomolar interactions to arbitrary targets8,65. One of the simplest 

protein domains is the coiled-coil domain, which are small alpha helical proteins that supercoil 

around themselves. First identified in a-keratin by both Crick and Pauling at the dawn of 

molecular biology66–68, coiled-coils are determined by a unique amino acid signature, the heptad 

repeat. The heptad repeat is described as residue positions A-B-C-D-E-F-G, which have the 

states H-P-P-H-P-P-P where H is a hydrophobic residue and P is a polar residue.69 The 

hydrophobic residues at the A- and D-positions form the core of the oligomeric interface, while 

the polar residues at the E- and G-positions largely determine specificity with salt bridges70.  

Coiled-coils most often dimerize71 but there are examples of natural coiled-coils that trimerize 

and tetramerize, and engineers have created non-canonical coiled-coils with up to nonamers72. 

Despite having specificity determined by a handful of residues, dimeric coiled-coils exhibit 

surprising specificity22,23, which is critical as they are widespread in the genome and occur in 

10% of eukaryotic proteins73. In fact, the high-degree of specificity is likely why coiled-coils are 

so prevalent and why they are so commonly found in transcription factors74. 

As an extremely simple domain, there are many computational methods for describing 

coiled-coils. Dating back to Crick’s parameterized equations75 for describing coiled-coils 

mathematically, researchers have created a wealth of tools produced for describing76–78 coiled-

coils and predicting79–82  interactions, largely based on linear models which are easy to 
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comprehend. However, while these tools can be used to design a single interaction with high 

certainty, they are not accurate enough to successfully design more complex behavior such as 

specificity, without a system that would allow facile characterization of large numbers of 

interactions. However, with such a system, given their high degree of specificity, widespread 

application in biology, and rich history and relative predictive capability, coiled-coils provide an 

ideal model system to investigate the determinants of specificity. 

 

D. There is an unmet need for large sets of specific proteins 

 

The ability to control many PPIs simultaneously is a major challenge for synthetic biology83,84.   

Natural proteins often perform poorly in this context, due to their homology with other 

endogenous proteins, which has driven efforts to create designed proteins with specific 

interaction patterns. Because of their simplicity, coiled-coils provide a promising scaffold for 

building de novo designed proteins85 and there are a variety of tools for further work, including 

toolkits with KDs ranging from low-nanomolar to high-micromolar affinities86 and different 

oligomeric states87. Accompanying these tools, several groups have tried to program specificity, 

but these sets have been small such as the four interactions in the PNIC88 and Crooks-201689 sets 

or eight in the Crooks-2017 set82, or have numerous off-target interactions, like the SYNZIPs90.  

 The lack of specific coiled-coil reagents is currently a limiting factor in numerous 

applications. Protein origami, analogous to DNA origami, creates large defined nanostructures 

by using a single-chain polypeptide which has a number of self-interactions that cause it to fold 

into the desired shape91. Protein origami has been able to create tetrahedra92 and bipyramids93 but 

has not yet been able to create larger solids such as octahedra because of a lack of orthogonal 
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coiled-coils. Similarly, more complex genetic84 and signaling circuits94 would be enabled by 

more orthogonal proteins.  

It is not just abstract problems that need orthogonal reagents. Chimeric antigen receptors 

(CARs), where T-cells are rewired to recognize and kill a target determined by an extracellular 

antibody fragment, are the most promising cancer therapy to date. To allow CAR T-cells to 

respond dynamically to their environments, orthogonal coiled-coils have been co-opted to 

display different domains95, but without a larger number of orthogonal coiled-coils the possible 

responses are limited. Likewise, polyketide synthases and non-ribosomal peptide synthetases—

both large protein complexes that assemble complex chemicals in a modular manner—can be 

assembled from component modules which are linked by coiled-coils to produce otherwise 

unsynthesizable chemicals96–98. However, the complexity of potential chemicals is restricted by 

the lack of orthogonal coiled-coils. 

 

E. Natural development of specificity faces greater hurdles than designed specificity 

 

While we can program designed proteins to be specific with our knowledge of protein structure 

and function as the only limitation, nature has no such ability. In nature, new proteins most often 

arise through gene duplication99 which means a protein will originally share all PPIs with its 

paralog. How a duplicated paralog changes some interactions, while maintaining others is a 

crucial question as rewiring PPI networks is implicated as a major source of phenotypic 

diversity100.  There has been a dearth of studies that have addressed how PPIs can change over 

evolutionary time. Though characterization of PPIs within species is common36,37,101–106, and 
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there is some work comparing PPIs between extant organisms23,107–109, understanding the 

evolutionary causes of PPIs requires characterization of ancestral PPIs.  

 Characterizing ancestral PPIs is possible due to ancestral sequence reconstruction (ASR) 

110,111. ASR uses extant protein sequences, coupled with models of sequence evolution to infer 

ancestral sequence states. These sequences can then be experimentally tested to determine the 

causes of changes in protein function. A handful of previous studies have used ASR to 

investigate PPIs, and were able to trace phenomena like the emergence of tetramerization in 

hemoglobin112 or found a PPI with an Intrinsically Disordered Protein gained affinity over 

time113,114.   However, these have used a handful of ancestral proteins, which does not allow 

insights into the tempo, abruptness, evolutionary process and permeance of changes among 

PPIs—characterizing such phenomena would require a comprehensive analysis across a family 

of PPIs.  

  Experimental analysis of the evolution of PPIs is necessary as nearly every possibility 

has been suggested for the above phenomena. It has been argued that the tempo of specificity 

gain must be rapid to escape from paralog interference115,  but a majority of proteins with 30% 

sequence identity conserve interactions116 and nearly 50% of paralogous PPIs can compensate 

for each other117. The abruptness of specificity gain is unknown: ancestors of hemoglobin switch 

from being a dimer to a tetramer with only one substitution112 but high-throughput studies have 

shown PPIs developing from many substitutions acting in a semi-additive manner118. The 

evolutionary processes that drive the gain of specificity have never been empirically tested, but 

positive selection for rewiring interactions has been inferred for several classes of proteins119,120. 

Others, however, have denied that selection necessarily needs a roll in the wiring of PPIs121. 

Finally, the permanence of specificity is unclear: it is known that virus-host interactions are 
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constantly losing and regaining interactions122,  but it has also been suggested that without such 

strong selection pressure that sequence space is so vast that proteins would never find their old 

partners again123. Thus, given the broad diversity of opinion, experimental characterization 

across a PPI family is required to understand how specificity evolves.  

 

F. Investigations into designed and natural specificity 

 

In Chapter 2, a reprint of a submitted manuscript, we first develop the tools to characterize 

specificity among PPIs at scale. We built, validated, and optimized a novel assay, the Next-

Generation Bacterial Two-Hybrid (NGB2H) system which repurposes the adenylate cyclase 

bacterial two-hybrid42. We condense the system to a single plasmid, while adding inducible 

promoters, and optimized reporters. We address the inability to create purpose-driven designed 

constructs by using gene synthesis to create library diversity, and unambiguously identify these 

proteins with a unique 20bp DNA barcode residing in the 3’-UTR of our sfGFP reporter. By 

mapping our hybrid proteins to a DNA barcode we can use ultrahigh-throughput next-generation 

sequencing to measure tens of thousands of interactions in a single experiment. We validate this 

on a previously published set of 256 coiled-coil interactions and find our assay to be highly 

replicable, internally and externally consistent, with the ability to measure more than 25,000 

interactions at once at equal sequencing depth.       

 We then created a computational framework for rapid prediction of sets of orthogonal 

coiled-coil interactions. We used this framework to design 8,000 interactions in fifty-five 

orthogonal subsets using the algorithm designed by Potapov81. We tested these interactions with 

the NGB2H system, and found the largest set of orthogonal coiled-coils to date. As this data set 
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represented the largest coiled-coil data set, we used it to train a new algorithm, iCipa, for 

prediction of coiled-coils. iCipa represents a substantial improvement on previous coiled-coil 

design algorithms, so we used it to design more than 18,000 interactions across 17 subsets, and 

identified a set of 23 on target interactions which is the largest set of any orthogonal protein to 

date123,124.  

In Chapter 3, a draft of a future manuscript, we investigate how specificity arises 

naturally. We used ancestral sequence reconstruction to create a comprehensive map of PPIs 

across the entire phylogenetic tree of the E4BP4/PAR family of bZip proteins, which dimerize 

due to their coiled-coil domains. This family has diversified from a single homodimeric ancestor 

through successive rounds of gene duplications, creating networks of paralogs. We find quite 

often paralogs that initially interacted with one another rapidly cease to do so, instead losing the 

ability heterodimerize and sometimes homodimerize, even with relatives containing highly 

similar interfaces. With our unprecedented phylogenetic resolution we are able to find see these 

changes gradually accumulate, and that they often do not lead to vast rewiring of the interaction 

space.  Using the phylogenetic structure in our dataset, we dissect the relative roles of natural 

selection and blind chance in creating this type of self-specificity amongst paralogs. We find that 

self-specificity evolves at a significant rate by chance alone and that once interactions between 

paralogs are lost, they are virtually never regained. 

 We conclude with Chapter 4, where we note further potential uses of the NGB2H system 

for investigating polymorphic and de novo designed proteins. We then suggest further uses of the 

orthogonal coiled-coils we’ve designed, and how iterative protein design provides an empirical 

method for protein engineering, while noting future improvements to iCipa. Finally, we evaluate 
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how experimental studies of evolution are modifying the some commonly held assumptions and 

examine how these trends will likely continue. 
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Abstract: 

Protein-protein interactions (PPIs) are required for most biological functions as well as 

applications ranging from drug design to synthetic cell circuits. Understanding and engineering 

specificity in PPIs is particularly challenging as subtle sequence changes can drastically alter 

specificity. Coiled-coils are small protein domains that have long served as a simple model for 

studying the sequence-determinants of specificity and have been used as modular building blocks 

to build large protein nanostructures and synthetic circuits. Despite their simple rules and long-

time use, building large sets of well-behaved orthogonal pairs that can be used together is still 

challenging because predictions are often inaccurate, and, as the library size increases, it 

becomes difficult to test predictions at scale. To address these problems, we first developed a 

method called the Next-Generation Bacterial Two-Hybrid (NGB2H), which combines gene 

synthesis, a bacterial two-hybrid assay, and a high-throughput next-generation sequencing 

readout, allowing rapid exploration of interactions of programmed protein libraries in a 

quantitative and scalable way. After validating the NGB2H system on previously characterized 

libraries, we designed, built, and tested large sets of orthogonal synthetic coiled-coils. In an 

iterative set of experiments, we assayed more than 8,000 PPIs, used the dataset to train a novel 

linear model-based coiled-coil scoring algorithm, and then characterized nearly 18,000 

interactions to identify the largest set of orthogonal PPIs to date with twenty-two on-target 

interactions.  

 

 

Introduction: 
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Protein-protein interactions (PPIs) are integral to most biological functions and are required for 

such diverse processes as cell division, signaling, metabolism and transcription and translation1. 

Our ability to design and build functions and structures as complex as nature is still in its 

infancy, but is developing with advances in both protein design algorithms and gene synthesis 

capacities. For example, orthogonal de novo designed proteins and the careful reuse of well-

characterized orthogonal interactions found in natural systems facilitate building nanoscale 

superstructures for applications in biology, biological engineering and materials science2. 

Supramolecular protein designs can be created using simple, natural protein families like coiled-

coils, which have been used to build numerous designed protein assemblies3–5. However, 

identifying orthogonal natural proteins is difficult, as evolutionarily related proteins often display 

significant cross-interactions. Another method is to computational design de novo proteins; in 

particular, Rosetta-based designs have produced homodimers6,7 and heterodimers8. However, 

predicting orthogonal binding and designing large orthogonal sets remains beyond current de-

novo design methods3.  

Coiled-coils in particular have many useful characteristics for atomically precise designs 

of macromolecular structures. They are small, precisely oriented, and numerous sequence-based 

and computational models exist to describe their properties. First identified at the dawn of 

molecular biology by both Pauling9 and Crick10, coiled-coils are defined by their heptad repeat 

H-P-P-H-P-P-P (H = hydrophobic residue, P = polar residue). This relatively simple structure has 

given rise to many computational models to describe coiled-coil interactions, from the 

parametric Crick equations in 195311 to contemporary linear models12–15. However, because of 

their shared similar structure, building large sets of orthogonally interacting coiled-coils, where 

all on-target interactions occur to the exclusion of all off-target interactions, is still difficult. 
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Though numerous groups have attempted to create orthogonal sets of coiled-coils, they’ve been 

limited in size and still display significant off-target interactions15,16. Increasing our ability to 

design, build and characterize large sets of interacting proteins could help solve this problem by 

providing empirical data to improve computational models of PPIs.  Simultaneously this would 

vastly increase the number of available orthogonal building blocks for nanoscale structural 

design allowing the creation of previously unbuildable structures. 

Here we combine gene synthesis, a novel assay that allows for multiplexed bimolecular 

interaction screening, and a computational pipeline to design large libraries of orthogonally 

interacting coiled-coils. We first built and validated a novel assay, the Next-Generation Bacterial 

Two-Hybrid (NGB2H) system that has a number of unique advantages over other methodologies 

for characterizing protein libraries. In particular, the NGB2H system allows for screening of 

bimolecular interactions without having to test all-against-all libraries, direct large-scale 

synthesis using oligonucleotide arrays to explore design space, quantitative readouts on the entire 

library including negative interactions, and allows for understanding low affinity interactions 

inside the crowded cellular context. We did this iteratively with synthetically-designed libraries 

increasing in size from 256 interactions to more than 18,000 interactions. From this we identified 

the largest sets of orthogonal proteins to date and developed an improved coiled-coil design 

algorithm for future design purposes of this versatile protein domain. 

 

Results: 

 

NGB2H system design 
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Despite a wealth of techniques to analyze PPIs, there is not currently a method that 

facilitates high-throughput characterization while analyzing PPIs in formats other than all-

against-all or that is able to distinguish between closely related constructs. However, such a 

system would allow investigations of PPIs within protein families, polymorphic PPIs, and de 

novo designed PPIs that are currently intractable. Thus, we built a generalizable, scalable 

bacterial two-hybrid system using a significantly modified version of the B. pertussis adenylate 

cyclase two-hybrid17 (Figure 2.1A, Supplementary Information Section 1). Briefly, the two-

hybrid functions much as in Karimova et al.17, where interacting hybrid proteins reconstitute 

adenylate cyclase to produce cAMP which drives reporter gene expression. We measured 

relative transcription of a uniquely identifying DNA barcode residing in the reporter gene, which 

serves as a measure for interaction strength. The barcode is mapped to the two fully sequenced 

hybrid proteins at an early cloning step using high-throughput sequencing when the barcode and 

proteins are physically adjacent. This unambiguously identifies even highly homologous proteins 

and separates synthetic errors from programmed designs. Thus, measuring the relative barcode 

transcription provides a quantitative, massively multiplexed characterization of PPIs with short 

read sequencing. Because the NGB2H system uses a mapping step, it can use gene synthesis, 

rather than preconstructed libraries to create diversity, which further frees it from one-against-all 

or all-against-all testing common in two-hybrids. We made a number of other improvements, 

including: (1) titratable and inducible control of hybrid protein expression and optimized reporter 

response on a single plasmid, (2) a background strain with linear cAMP accumulation, (3) a GFP 

reporter instead of beta-galactosidase for more rapid individual characterization, (4) the use of 

multiple barcodes per construct to achieve better statistical certainty, and (5) a scarless cloning 
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scheme that allows for library creation with any designed sequence. (More information 

Supplementary Information Section 1).  

 

Validation of the NGB2H system 

After optimizing the system with single construct GFP measurements (Figure S2.1), we 

validated the NGB2H system with 256 previously characterized interactions15, which we call the 

CC0 Library. The CC0 Library is a set of sixteen de novo designed, orthogonal, heterodimeric 

coiled-coils tested in an all-against-all configuration. The proteins are highly similar, four heptad 

coiled-coils which vary only at the a-position (Ile/Asn), e-position and g-position (Lys/Glu)  

(Figure 2.1B). We designed the CC0 Library to be compatible with our system (Figure S2.2A), 

barcoded and cloned it (Figure S2.3A, S2.4).  After inducing the two-hybrid for six hours, we 

took samples for RNA and DNA extraction to measure interaction strength and normalize for 

plasmid abundance, respectively. We obtained high-quality measurements for all 256 protein 

pairs and calculated an Interaction score where

 

The NGB2H assay was highly replicable, with biological replicates having similar Interaction 

scores (Pearson’s r > 0.98, p < 10-15) with a dynamic range of more than 100-fold (Figure 2.1C).  

We checked several internal controls to validate the measurements of the NGB2H assay. 

First, as the protein code is degenerate, we screened nine different codon usages for each pair of 

proteins. Different codon usages showed consistent Interaction scores (representative pair Figure 

2.1D) with all usages correlating with Pearson’s r > 0.92 and p < 10-15 (Figure S2.5), 

demonstrating minimal effects from DNA sequence variation and low levels of noise in 

Interaction scores. We also compared the Interaction scores of protein pairs when attached to the 
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other half of the two-hybrid, which we call the reciprocal orientation. We found that the CC0 

Library has a strong correlation between the primary and reciprocal orientations (Pearson’s r = 

0.92, p < 10-15) (Figure 2.1E), indicating that the biological machinery of the NGB2H system 

faithfully recapitulates the biochemical interaction. In addition, a portion of our library contained 

frameshift mutations which should not create functional PPIs. As expected, Interaction scores of 

constructs with indels cluster at the bottom of the range of correct constructs (Figure S2.6). 

Lastly, to show that the NGB2H system does not suffer from barcode effects or selection 

pressure from the repeated cloning steps, we replicated the assay with an independent re-

barcoding and re-cloning of the CC0 Library which showed strong correlation with the first 

iteration’s Interaction scores (Pearson’s r > 0.98, p < 10-15) (Figure 2.1F).  

Having confirmed the internal consistency of the CC0 Library, we compared it to the 

previously published results. When compared to circular dichroism data published in Crooks et 

al.15, we found the NGB2H system’s dynamic range correlated well with melting temperatures 

greater than 40˚C (Figure 2.1G, 2.1H). Given the differences in technique – in vivo versus in 

vitro, interaction strength versus helicity – the correlation between the Interaction score and Tm 

(Pearson’s r > 0.75, p < 10-15, Figure S2.7) largely validates the NGB2H system. Finally, the 

NGB2H system needs to be highly scalable. To test its scalability, we downsampled the raw 

sequencing reads between 10 and 150-fold and found strong agreement with our full dataset even 

when downsampled 100-fold (Pearson’s r > 0.85, p < 10-15, Figure 2.1I), which implies the 

ability to accurately screen ~25,000 interactions with an equal number of reads.   

 

Computational design of large sets of orthogonal coiled-coils 
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To computationally predict large, orthogonal sets of coiled-coils for empirical 

verification, we built a two-step computational pipeline (Figure 2.2A). In brief, we calculated 

16.7 million interaction scores for all four heptad coiled-coils with Ile or Asn at the a-position 

and Glu or Lys at the e- and g-positions using the scoring model from Potapov et al13. We then 

identified sets with an orthogonality gap—those sets where all on-target interactions had a higher 

predicted score than all off-target interactions. Though computationally challenging, this is 

tractable as a variant of the maximum independent set problem18. We identified the fifteen 

largest sets and designed each of them with three different backbones (each containing different 

residues at the noncontact b, c, and f-positions) to investigate their contribution to coiled-coil 

stability19. We combined these with two sets of controls spanning eleven backbones, for a total 

of 56 sets containing between 64 to 961 interactions (8,169 interactions overall), which we 

named the CCNG1 Library. After testing a subset of the CCNG1 Library to validate our in-house 

designs, (Figure S2.8, S2.9, Supplementary Information Section 8.3), we designed (Figure 

S2.2C), cloned (Figure  S2.3C, S2.4) and ran the NGB2H assay, from which we collected quality 

data (Figure S2.10) on 8,073 interactions. 

 

Large orthogonal sets in the CCNG1 library 

 Although we designed our coiled-coils to be orthogonal, the current state-of-the-art 

design algorithms are relatively inaccurate. Thus, similar to our designs, we reduced the problem 

to the maximum independent set problem to identify the largest orthogonal subset of each set. 

We were able to identify a set of orthogonal coiled-coils that contains twelve pairs, which 

includes four heterodimers and eight homodimers (Figure 2.2B).  We have also identified a set of 

seven heterodimers and three homodimers (Figure 2.2C), that has fewer on-target interactions 
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(ten versus twelve), but contains more proteins (seventeen versus sixteen) and therefore more 

total potential interactions (153 versus 136).  

We characterized the number of on-target interactions across the CCNG1 Library and 

found 20 of our 51 sets have more than the seven on-target orthogonal interactions in the state-

of-the-art set from Crooks et al., (Figure 2.2D), though many share the same interfacial residues 

(Figure S2.11). We found that these orthogonal sets were composed of between four and 

seventeen proteins (Figure S2.12), five of which are larger than the CC0 Library. As the CCNG1 

Library represents the first large scale systematic investigation into the effects of variation at the 

b, c, and f-positions, we sought to understand how these positions influenced interactions. We 

tested six backbones containing the same interfacial residues as the CC0 Library (Figure S2.13, 

Supplementary Information Section 8.4) and found that charged backbones led to less specific 

interaction profiles. To understand the limits of producing orthogonal interactions within highly 

constrained sequence space, we compared the number of total pairs in each set (the sum of 

interacting and non-interacting pairs for both orthogonal and non-orthogonal pairs) to the number 

of pairs (interacting and non-interacting) in the largest orthogonal subset (Figure 2.2E) of each 

full set. We found that the number of orthogonal pairs appears to increase progressively slower 

as set size increased, suggesting much larger sets would need to be screened to identify 

proportionally more orthogonal coiled-coils or, alternatively, the accuracy of prediction 

algorithms would need to be improved.  

  

Improving the state-of-the-art coil-coiled interaction prediction algorithms  

 The CCNG1 Library dataset represents the largest dataset of coiled-coil interactions to 

date. We reasoned that our data could serve as a training set to improve on currently available 
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models. To benchmark current models, we computed scores using algorithms bCipa14, 

Potapov/SVR13, Fong/SVM20 and Vinson/CE12 which are all linear models with features for 

amino acid pairings. Each algorithm is only weakly predictive of our measured interactions with 

the bA backbone (Figure 2.3A), as all models have an R2 < 0.2.  Notably, each algorithm 

predicted the strongest interactions well, but also predicted many weak interactions that when 

measured had high Interaction scores. We built several linear models similar to bCipa which 

included numerous innovations (Supplementary Information Section 3). First, we trained a 

model on our data that only included weights for the a-, e- and g-position combinations. We also 

created versions of this simple model with terms for either consecutive residues in the a-position 

of the same protein or separate terms for weights at the N-terminal a-position, where fraying may 

occur (Figure S2.14A). We then expanded these models with a novel scoring technique, which 

we call heptad shifts (Figure S2.14B). In short, we expect the predominant form of coiled-coil 

interaction to be the alignment of heptads that has the strongest interaction, which is not 

necessarily all four heptads aligned from the N-terminus, but could be an interface of three or 

fewer heptads. All of our heptad shifting scoring algorithms were significantly better than the 

corresponding non-shifting versions and our N-terminal a-positions weights algorithm was 

significantly better than both the basic algorithm and the consecutive a-position algorithm 

(Figure 2.3B). Thus, our final model which we call iCipa uses heptad shifting and terms for the 

N-terminal a-positions, and it is more predictive of CCNG1 Interaction scores than previous 

models with an R2 = 0.27 (Figure 2.3C).  

iCipa is a linear model, which facilitates interpretation. The weights of iCipa have 

expected and unexpected characteristics (Figure 2.3D). a-position residues prefer Ile/Ile pairings 

and tolerate Asn/Asn pairings between proteins and disfavor Ile/Asn pairings as expected. As 
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expected, e- and g-positions favor salt bridges between Glu/Lys and disfavor Glu/Glu pairings, 

but counterintuitively, Lys/Lys pairings are acceptable for forming the interface which may be 

due to non-canonical interactions by long side chain of lysine.  

To test the iCipa model, we excluded all the data from the original CC0 Library while we 

trained the weights. When the scoring functions are normalized and compared (Figure 2.3E), 

both the Potapov/SVR and bCipa algorithms performed worse in predicting the measured 

melting points with R2 < 0.32 compared to iCipa, R2 = 0.48—a fifty percent increase in 

predictive ability. Importantly, the increase in predictive power for iCipa on the CC0 Library 

demonstrates that iCipa has not been trained on an artifact of the NGB2H system but that the 

NGB2H system provides high quality data on PPIs which can provide general insights into 

coiled-coil function.   

 

CCmax Library design and verification 

To evaluate iCipa’s prediction capabilities, demonstrate the scalability of the NGB2H 

system, and identify larger orthogonal sets of coiled-coils, we built another library, the CCmax 

Library. The CCmax Library contains 18,491 interactions of 931 different coiled-coils in fifteen 

predicted orthogonal sets and seven control sets (Figure 2.4A). The orthogonal sets were 

designed using our computational framework and scored with one of fifteen variants of iCipa. 

After designing (Figure S2.2D) and cloning   we collected high quality data on 17,983 

interactions (Figure S2.15). The CC0 Library was a subset of the CCmax Library and it broadly 

agreed with its performance in our previous libraries (Figure S2.16). 

 

Orthogonal sets of the CCmax Library 
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We identified orthogonal sets with sizes of up to twenty-two on-target pairs (Figure 2.4B) 

and 784 total interactions (Figure S2.17). Five of the sets contained more on-target interactions 

than any set in the CCNG1 Library, and fifteen contained more on-target interactions than the 

largest published set15. Our largest orthogonal set (Figure 2.4C) contained twenty-two coiled-coil 

dimers, sixteen homodimers and six heterodimers, which is ten on-target interactions larger than 

the state-of-the-art set from CCNG1. To characterize the accuracy of different iCipa variants, we 

subsampled each set (ten proteins, 500 times), and found the largest orthogonal set per 

subsampling. We found little significant difference between the algorithms (Figure S2.18) 

suggesting that orthogonality is still challenging to design using current algorithmic accuracy and 

underscoring the necessity of large scale experimental verification. 

Different applications need varying levels of orthogonality; while gene circuits likely 

need extreme orthogonality, protein origami, which benefits from avidity, is not under such 

constraints. Thus, we identified the largest orthogonality gap for different numbers of on-target 

interactions. (Figure 2.4D). As expected, smaller sets had larger gaps, but large orthogonality 

gaps were identified for sets as large as sixteen on-target interactions. Finally, we compared the 

CCmax Library’s Interaction score with iCipa predictions which show substantial improvement 

over the CCNG1 Library. iCipa was able to predict Interaction scores with R2 = 0.43 (Figure 

2.4E). We attribute the increase in iCipa’s power to the use of a single coiled-coil backbone 

which consists of only alanine residues at the b-, c- and f-positions. The improvement in 

predictive power appeared in other algorithms to a lesser extent, all of which maintained an  R2 < 

0.28 (Figure S2.19).     
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Discussion: 

We have developed and validated a novel system for high-throughput identification of 

PPIs. We built a framework to predict orthogonal coiled-coil interactions and used it to design 

tens of thousands of interactions which we then assayed with the NGB2H system in a design-

build-test cycle. Using the data collected, we improved state-of-the-art coiled-coil interaction 

prediction algorithms which allowed us to design the largest set of any orthogonal proteins to 

date with twenty-two on-target interactions. Thus, by iterative design we demonstrate how high-

throughput PPI identification can facilitate identification of desired protein function and improve 

design.  

Our work builds on previous high-throughput two-hybrids to create a generalizable 

system for studying PPIs, that could include both soluble and membrane proteins. By uniting 

gene synthesis with a mapping step and a barcode readout, our system allows high throughput 

characterization of any binary PPI. Previous high-throughput studies used highly constrained 

libraries--either the ORFome21–24 of one of a handful of reference genomes, targeted single 

residue mutations which only explore a sliver of sequence space around a primary sequence25,26 

or several randomly sheared coding sequences27. Using the capabilities of DNA synthesis 

broadens the testable sequence space which facilitates investigations of a variety of areas such as 

protein domains, extant genetic variation, evolutionary trajectories or epistatic effects. 

Furthermore, for the investigator who is not interested in an all-against-all approach, synthesis 

allows the explicit pairings of only certain proteins. While we benefited from the short length of 

our proteins of interest, recent pooled gene synthesis techniques28,29 can be used to interrogate 

much larger proteins. Deconvoluting library diversity has also been a challenge for other 

multiplexed assays. Other multiplexed methods involved picking colonies and sanger sequencing 
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them21, mapping the beginning of reading frames to reference genomes22–24 or manually 

BLASTing obtained reads27. Our explicit mapping step allows for the high-throughput creation 

of a library to map arbitrary proteins to DNA barcodes, and because it is a separate step it could 

use long read sequencing to overcome the length limitations of Illumina sequencing. Finally, by 

using a barcode readout downstream of synthesis and mapping we can measure protein libraries 

in many formats. 

Our improvements to coiled-coil design algorithms represent an important advance for de 

novo protein design. Though coiled-coil interactions have been modelled with diverse 

approaches, our iCipa algorithm shows clear advantages over existing models. In particular, 

heptad shifting provides an intuitive, biologically rational addition that can be applied to any 

future improvements in coiled-coil design.  Overall, we found iCipa to be substantially more 

accurate than other tested algorithms, at least for this limited set of residues tested. 

Here, we simultaneously performed a massive characterization of PPIs within a protein 

family and identified the largest set of orthogonal proteins identified to date. The CCmax Library 

characterized three times as many interactions than any previous intra-protein family work13.  

From the total of 26,049 interactions we characterized, we found a large number of orthogonal 

proteins—in sets of up to 12 heterodimers or 22 heterodimers and homodimers. Though 

orthogonal coiled-coils are particularly needed as the building blocks for protein origami4,5, they 

could be substituted for histidine kinases in orthogonal signaling pathways30, synthetic 

orthogonal transcriptional logic gates8,31,32, or for orthogonal cellular localization33. 

Thus, the ability to characterize constructs across highly-diverse sequence space and for 

the identification of networked properties such as orthogonality, highlights the NGB2H’s 

scalability and generality. Because it can be adapted to any sequence the experimenter desires, 
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the NGB2H facilitates interrogation of PPIs beyond endogenous interactomes, it can be used to 

characterize whole protein families, empirically inform protein design, or investigate complex 

phenomena like epistasis.  
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Figure 2.1) Design and validation of the NGB2H assay. A) (Top) Schematic of the NGB2H 

system reporter construct. T25, T18 - adenylate cyclase halves; BC - unique DNA barcode 

identifying the protein pair. (Bottom) Workflow of NGB2H system. Interacting proteins 

reconstitute adenylate cyclase, producing cAMP which drives gene expression of the barcoded 

sfGFP reporter. Relative barcode abundance is quantified using next generation sequencing 

(NGS). B) The CC0 Library is composed of 16 coiled-coils tested against one another. (Bottom) 

Sequence logo representing the diversity represented in the CC0 Library. Residues that vary are 
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shown in color. C) Interaction scores of CC0 Library members are consistent between biological 

replicates (Pearson’s   > 0.98). D) Two different codon usages have consistent interaction scores 

(Pearson’s r > 0.94, representative sample). E) Interaction strength is similar (Pearson’s r > 0.92) 

regardless of which protein is attached to which half of adenylate cyclase. The blue line 

represents y = x. F) Interaction scores of separately barcoded, cloned and tested replicates are 

consistent (Pearson’s r > 0.98). G) Published circular dichroism (CD) melting point (Tm) data. 

H) Experimentally determined interaction scores. I) CC0 Library raw data can be subsampled 

and still correlate well with the full dataset. Boxplots represent the interquartile range of 50 

random subsamples of the full data. 
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 Figure 2.2) Large orthogonal sets of coiled-coils from the CCNG1 library. A) Schematic of 

the CCNG1 Library design. All 4-heptad coiled-coils with variation at positions a, e, and g were 

scored for interactions with the model from Popatov et al., and sets of coiled-coils with large 

orthogonality gaps were identified. In total we designed and tested 54 sets of orthogonal coiled-

coils.  B) The set of coiled-coils with the largest number of on-target orthogonal interactions (12 

on-target interactions). Grey boxes identify on-target interactions.  C)  Set of orthogonal coiled-
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coils with the largest number of total (on-target and non-interacting) interactions (153 total 

interactions). Grey boxes represent on-target interactions. D) Number of interactions per set of 

coiled-coils. Dashed line represents the number of on-target orthogonal interactions in the CC0 

library. Colors show different backbones used, while the interfacial residues stayed the same.  E) 

Set size increases more rapidly than the number of pairs in the largest orthogonal subset. Blue 

line represents a spline with degree two. 
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Figure 2.3) Comparison, development and validation of iCipa model.  A) Previous models of 

coiled-coil interactions are only mildly predictive of interactions in the CCNG1 Library. All R2‘s 

are Interaction Score as predicted by the scoring algorithms. The black line represents a linear 

model of Interaction scores predicted by the different algorithms.  B) Coefficient of 

determination of Interaction scores with different iCipa candidates. Each point represents a 

subsample of ten percent of the total data. *** = p < 0.001, ** = p < 0.01, two-tailed t-test.  C) 

iCipa is more predictive of Interaction score (R2  > 0.27) than previous models, shown in A. 

Black line represents a linear model of Interaction scores as predicted by iCipa scores D) 

Weights for the iCipa model. Each weight scores a single type pair of amino acid between the 

two interacting coiled-coils. E) iCipa is more predictive of previously published CC0 Library 

melting points than the bCipa or Potapov algorithm. Individual dots represent previously 

reported melting points compared with the normalized score from one of three scoring 

algorithms. 
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Figure 2.4) The largest orthogonal sets of the CCmax Library. A) Design of the CCmax 

library. Using seven different algorithms, each possible interaction was scored and sets of 

orthogonal interactions with an orthogonality gap were identified. In total 21 sets comprised of 

18,491 interactions were analyzed. B) Number of on-target orthogonal interactions per set. 

Between 3 and 22 orthogonal interactions were obtained per set. C) The largest orthogonal set 
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contains 22 on-target interactions across 784 tested pairs. Grey boxes represent on-target 

interactions. Unboxed squares represent non-interactions D) The largest orthogonality gap per 

number on-target interactions in a set. The orthogonality gap is the difference between the 

weakest on-target Interaction score and strongest off-target Interaction Score. E) iCipa’s 

agreement with the Interaction score (R2 = 0.429) . The black line is a linear model predicting  

Interaction scores from iCipa predictions. 
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Methods: 

Oligonucleotide designs:  

Libraries were designed as shown in Figure S2.2. Though the CC0 and CC1 Libraries were 

assembled from two oligonucleotides and the CCNG1 and CCmax Libraries from one 

oligonucleotide, they followed the same overall assembly logic. In brief, each library was 

flanked with two orthogonal 15bp primers34 for amplification from the OLS pool. Interior to the 

flanking primers were type IIS restriction enzyme sites to facilitate scarless cloning, and the 

complete coiled-coil sequence. The CC0 and CC1 Libraries contain extra type IIS sites  and 

flanking 15bp primers to allow linking and amplification of the X and Y halves of the two-

hybrid. A complete description of each design is listed in Supplementary Information Section 2 

and all oligonucleotides and all proteins used are available upon correspondence with the author.  

 

Orthogonal coiled-coil interaction prediction: 

To predict orthogonal coiled-coils, we generated all 4,096 possible four heptad coiled-coil with 

asparagine or isoleucine at the a-position and glutamic acid or lysine at the e- and g-positions and 

scored 16.7 million interactions in an all-on-all design using the Potapov algorithm (CCNG1 

Library) or our iCipa candidate algorithms (CCmax Library). Calculating orthogonality is a 

challenging problem that scales in exponential time with the number of possible binding 

partners. We used a maximal clique algorithm to identify sets of orthogonal coiled-coils where 

all on-target interactions have a higher score than all off-target interactions and it runs in dozens 

seconds on a standard laptop. Full code can be found at: 

https://github.com/dancsi/DiplomaThesis 
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Construct and library cloning: 

Each library was cloned in a similar manner, with slight differences in methods to attach a 

random DNA barcode to the OLS pools. After the 20bp of random DNA was attached with PCR 

to the 3’ end of the X and Y construct (Figure S2.3), constructs were sequenced in bulk on a 

MiSeq to identify it and a specific X and Y (below). After barcode mapping, the T25 and T18 + 

GFP halves were cloned in sequentially with type IIS restriction enzymes for scarless cloning 

(Figure S2.4). All enzymes and polymerases came from NEB. A complete description for how 

each library was cloned can be found in the Supplementary Information Section 4 and 

oligonucleotides used for cloning are listed upon request with the author.   

 

Mapping random barcodes: 

Once random barcodes were attached and cloned, constructs were sequenced on an Illumina 

MiSeq to identify the X and Y proteins which each barcode was connected to. DNA containing 

the X and Y proteins, and the barcode were amplified as a linear fragment, and Illumina’s P5 and 

P7 adapters attached. Constructs were sequenced with a v3 300 cycle paired end kit (Illumina 

TG-142-3003), with custom primers spiked into the Illumina primers. Sequences were 

demultiplexed, and mapped with a BBtools pipeline and consensus building custom script. Full 

descriptions of how each library was mapped can be found in the Supplementary Information 

Section 5 and scripts can be found at https://github.com/cliff-b/ortho-ccs. 

 

Strains used: 

All NGB2H experiments were run in TK31035 carrying pSK34. TK310 is a previously published 

MG1655 derivative with deletions in cpdA, lacY and cyaA, which give it a large linear response 
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range to cAMP. pSK34 contains repressors for both the phlF and Tet promoters to maintain 

repression of the two-hybrid proteins. CB216 is a NEB5ɑ derivative with pSK34 integrated 

genomically and only used for cloning.  All plasmids used for basic cloning are listed upon 

request with the author and available at Addgene. 

 

NGB2H assay execution: 

Glycerol stocks of each library were thawed, and 100uL were grown up overnight in 100mL 

MOPS EZ Rich Defined Media (Teknova M2105) with kanamycin (Teknova K2125) and 

carbenicillin (Teknova C2130). For time course studies, a glycerol stock containing a library of 

constitutive GFP constructs was also thawed, and 100uL was inoculated into 10mL of MOPS EZ 

Rich Defined Media with kanamycin and carbenicillin and grown overnight. The next morning 

1mL of the GFP library was added to the 100mL of library culture.  After mixing GFP and 

experimental libraries, 1mL of overnight culture was added to a fresh culture of 100mL MOPS 

EZ Rich Defined Media with carbenicillin and kanamycin and the inducers for two hybrid 

expression: 5ng/mL anhydrotetracycline, 1.5uM 2,4-Diacylphlorolglucinol and 100uM IPTG, 

done twice for biological replicates, except where indicated (Supplemental Information Section 

6). Flasks were placed in a 37C degree shaker for six hours. Samples were pulled after 6 hours 

and placed on an ice slurry to quickly cool for 15 minutes after which cells were spun down for 

RNA and DNA extraction.  

 

RNA and DNA preparation for barcode sequencing 

Samples of RNA were prepared with Qiagen RNeasy kits (Qiagen 74106, or 75144) according to 

manufacturer’s instructions, with on column DNase digestion (Qiagen 79254) and concentrated 
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with RNeasy MinElute Cleanup kit (Qiagen 74204). RNA was reverse transcribed with 

Superscript IV (ThermoFisher 18090050) with a modified protocol such that 25ug of input RNA 

was used, the extension step ran for 1h at 55C, and 1uL of RNase A was added in the RNA 

removal step. Each sample was transcribed with a specific primer, often oSK193 or oSK194, that 

attached the i7 index and P7 sequencing primer. Samples of DNA were prepared with Qiagen 

Plasmid Plus Maxi kits (Qiagen 12963) according to the manufacturer’s instructions. RNA 

samples were verified to contain very low levels of DNA (< 1:1000)  by qPCR (Kapa 

Biotechnology KK4601) with oSK199 and oSK200, which was repeated with a high-fidelity 

PCR for a low number of cycles to keep samples in the exponential amplification phase. DNA 

samples were similarly quantified with qPCR and amplified for low cycles to attach P5 and P7 

and multiplexing indices. Amplified samples were then quantified on an Agilent Tapestation 

2200 with D1000 screentape (Agilent 5067-5582), verified to be monodispersed and mixed in 

equimolar quantities. Complete details for RNA and DNA preparation can be found in the 

Supplementary Information Section 7. 

 

Barcode sequencing 

Pooled RNA and DNA barcodes from each experiment were sequenced with various cores and 

startups at UCLA. The CC1 and CCNG1 Libraries were sequenced on a Hiseq 2500 while the 

CCmax and CC0 libraries were sequenced on a Nextseq 550. Samples were diluted and mixed 

with 5-20% phiX control v3 (Illumina FC-110-3001) and sequenced with oSK326 for read 1 and 

oSK324 for the index read.    

 

Barcode Counting: 
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We used a custom bash script to count DNA barcodes from barcode sequencing. After 

demultiplexing into reads from RNA or DNA samples, reads were truncated to the 20bp 

containing the barcode and unique sequences counted. Barcode counts were then processed with 

Starcode (v1.3), to condense barcodes within a levenshtein distance of one to remove sequencing 

errors and tallied again. Full processing scripts can be found at https://github.com/cliff-b/ortho-

ccs.  

  

Interaction quantification 

Barcode count files were imported into R where they were merged with the mapping file to 

provide the protein pair identified with each barcode. Barcodes corresponding to the same 

construct were summarized (dplyr 0.7.4) and total counts of RNA barcodes and DNA barcodes 

per protein pair were obtained. For our analysis we used Interactions scores calculated as 

for barcodes that had >10 reads in all DNA samples. 

Interactions for all libraries are reported upon correspondence with the author.  

 

Orthogonal set identification 

Orthogonal sets were identified for the CCNG1 and CCmax libraries. Briefly, we wrote a script, 

maximal.py that took the Interaction scores for each set and built a graph with interactions 

forming the edges between proteins. Finding the maximum independent set of the line graph of 

this graph gave us the largest orthogonal set of interactions, are available with correspondence 

with the author The largest sets for different numbers of on-target interactions are listed upon 

request with the author. The full script for orthogonal set identification can be found at 

https://github.com/cliff-b/ortho-ccs.  
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Supplementary Information 

1. System design 

1.1 NGB2H system design 

We decided to use the B. pertussis adenylate cyclase bacterial two-hybrid17, as the 

starting point for our high-throughput two-hybrid to access the genetic tools available in E. coli. 

To make a quantitative, inducible, multiplexed system we made numerous changes to Karimova 

et al.’s two-hybrid. First, the two halves of adenylate cyclase, T18 and T25, are traditionally 

expressed on separate plasmids, which is incompatible with pooled library screens in E. coli. 

Second, both T18 and T25 were under control of a lacUV5 promoter which creates a positive 

feedback loop because it is cAMP inducible36. Though the authors note that a thresholding effect 

is useful for their work, this prohibits a quantitative PPI screen. Third, the presence of exogenous 

cAMP confers a growth advantage except during transformation when it is toxic (unpublished 

data) which could lead to highly biased libraries. To simultaneously maintain plasmid stability 

with both halves of adenylate cyclase on the same plasmid, remove the positive feedback loop, 

and ameliorate cAMP growth effects, and, we placed T18 and T25 under separate inducible 

promoters, pPhlF and pTet37, respectively. Though pPhlF and pTet did not originally have the 

same induced expression levels, by tuning their ribosome binding sites we were able to equalize 

their expression. Finally, as T18 and T25 were on the same plasmid as the reporter, we were 

concerned about efficient termination, so all transcripts ended with two strong terminators38.  

In addition to our modifications to adenylate cyclase we built a new reporter to create a 

multiplexed assay with the genetic elements necessary for an Illumina-based readout. Most 

significantly, we replaced LacZ with sfGFP to allow efficient measurements in a standard plate 

reader of single interactions. This allowed for us to characterize kinetics of the NGB2H system, 
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quickly optimize genetic elements and test single constructs. We also changed the promoter to a 

variant of pLac39 which had the greatest fold induction (Figure S2.1B, S2.1C), to increase the 

system’s dynamic range. To enable Illumina sequencing of reporter expression we placed a 

Truseq adaptor, a placeholder for a DNA barcode, and reverse transcription primers in the 3’ 

untranslated region of sfGFP. In addition to our episomal changes, we replaced the original 

strains with TK310, an MG1655 derivative with deletions in adenylate cyclase, lactose permease 

and cAMP-phosphodiesterase which gives the Lac promoter a linear response to cAMP35, 

enabling direct comparison between interactions. Finally, for studies in TK310 we included a 

plasmid with the PhlF and Tet repressors, which we call pSK34.   

 

2. Library composition and design 

2.1 CC0 Library design 

Jody Mason and colleagues used circular dichroism to characterize a set 16x16 of orthogonal 

coiled-coils15 which we used for validation of the NGB2H system. To create the CC0 library, 

which consisted of all 256 interactions, we used a custom python script difflength-lib-gen.py 

with mason.fasta to specify the protein sequences.  This script created 230bp oligonucleotides 

encoding either the X protein or Y protein (Figure S2.2A). We noticed that the chip 

amplification of some proteins would fail for unknown reasons with certain primers so we 

designed a redundant system of five subpools containing the same protein encoding DNA. The X 

containing oligonucleotides were designed to contain one of five sets of flanking subpool 

primers: oSK528-oSK532 for the forward primers and oSK609-oSK613 for the reverse primers. 

Immediately 3’ to the forward subpool primer was a group forward subpool primer, oSK608 

which was the same across subpools. Downstream of the primers was the reverse complement of 
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one of three codon usages for each CC0 coiled-coil, followed by a BspQI site for scarless 

cloning into the NGB2H system. Finally, the BspQI site was followed by a BbsI site that would 

allow ligation with oligonucleotides containing the Y protein and a spacer to make the 

oligonucleotide 230bp.  

The oligonucleotides containing the Y protein were similarly designed. The Y containing 

oligonucleotides were flanked with one of five sets of subpool primers oSK533-oSK537 for the 

forward primer and oSK614-oSK618 for the reverse primers. Immediately 3’ to the forward 

primer is a spacer to make the oligonucleotides 230bp, followed by a BbsI site to allow ligation 

with the X containing oligonucleotides. Downstream of the BbsI site was a BtsαI site to allow 

scarless cloning of the Y oligonucleotides into the NGB2H system followed by one of three 

codon usages for the CC0 coiled-coils. At the end of the coiled-coil protein coding sequence we 

placed a BsaI site to allow insertion of the T18 half of the B. pertussis two-hybrid. Finally, 5’ 

adjacent to the reverse subpool primer, we placed a group subpool reverse primer oSK687. The 

five subpools with three codon usages of sixteen proteins in two orientations for a total of 480 

oligonucleotides were ordered as an OLS pool from Agilent’s high-fidelity process.  

 

2.2 CC1 Library composition 

We designed a library of twenty coiled-coils based on our own designs, which we call the CC1 

Library (Figure S2.9A). Half of the CC1 Library, P# set, has previously been partially 

characterized40. We expected the P# set to be orthogonal based on Glu/Lys bonding from the E- 

and G-positions and Ile/Ile or Asn/Asn complementarity at the A-position. The other half of the 

CC1 Library are backbone variants (changes at the B, C, and F-positions) of four and six coiled-

coils, the P#SC# set, and P#mS set respectively. As the B, C, and F-positions are thought to 
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contribute little to coiled-coil specificity, we expected the P#mS and P#SC# constructs to behave 

like the corresponding P# constructs.  

 

2.3 CC1 Library design 

The proteins were converted into oligonucleotides for either the X or Y half of the two-hybrid, 

with the accessory sequences for cloning into the NGB2H system (Figure S2.2B) with a custom 

script, codon_opt_hb.py. Briefly, the protein sequences were reverse translated into codon 

optimized DNA sequences and the sequence was checked for restriction enzyme sites used in 

downstream cloning steps and replaced any found.  

We composed the X oligonucleotides from 5’ to 3’ thusly: a forward OLS amplification 

primer, stop codon, the reverse complement of the protein coding sequence, a BspQI site for 

scarless cloning, a junk spacer region, a reverse OLS amplification primer and another spacer to 

extend the oligonucleotides to a uniform 230bp. We used different amplification primers for 

different codon usages: oSK529 with oSK699, oSK700 with oSK701 or oSK702 with oSK703.  

We composed the Y oligonucleotides from 5’ to 3’ thusly: a forward OLS amplification 

primer, a junk spacer region, a BtsαI site to facilitate scarless cloning, the coding sequence of the 

protein, a BsaI site for scarless cloning, a reverse OLS amplification primer and a spacer base to 

make the oligonucleotides a uniform 230bp. We used different amplification primers for 

different codon usages: oSK570 with oSK704,  oSK705 with oSK706 and oSK708 with 

oSK709. The twenty one proteins, with three codon usages in two orientations were ordered as 

126 oligonucleotides from Agilent as an OLS pool. 
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2.4 CCNG1 Library composition 

The CCNG1 Library was composed of four heptad coiled-coils with either one or two Asn in the 

A-position with the other  A-positions being Ile.  E- and G-positions varied between Glu and Lys 

with no limits on abundance. All D-positions were Leu to improve dimerization. With these 

constraints, our orthogonal computational framework (below) identified fifteen potential 

orthogonal sets to which we added previously tested designs, the P# set from the CC1 Library 

and the CC0 Library. We included six different backbone compositions (Figure S2.13A)--three 

across the experimental sets, two more in both control sets, and one in just the CC0 Library . 

These backbones were intended to vary stability and helical propensity: bA-largely alanine, bN-

largely glutamine and bH-glutamic acid and lysine, bS-largely serine and glutamine and bP-

largely lysine and glutamic acid, as well as the published backbone on the CC0 Library. The 

CCNG1 Library encoded 132 on-target homodimers,  429 on-target heterodimers and 7,608 off-

target interactions.  

 

2.5 CCNG1 Library design 

To create the CCNG1 Library we used a custom python script, lib-gen.py which produced 230bp 

oligonucleotides containing each pair of proteins specified in 170307 all-8k R8000.pairs with the 

protein coding sequence in 170307 all-8k R8000.fasta. This script created an oligonucleotide that 

started with oSK229 followed by the reverse complement of one of three codon usages of the X 

protein (Figure S2.2C). Downstream of the X protein was a BspQI site to allow scarless cloning 

of the X protein and a BtsαI site to allow scarless cloning of the Y protein. The Y protein 

followed the BtsαI site in one of three codon usages before terminating in a BsaI site to allow 

scarless cloning of the T18 half of the NGB2H assay. Finally, at the 3’ end, it contained the 
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reverse complement of oSK232. The script checked each protein coding region for restriction 

enzyme sites, remaking those that contained a reserved enzyme site, and added one nucleotide to 

bring the constructs to a uniform 230bp. The 24,483 oligonucleotides were ordered from Agilent 

as an OLS pool.    

 

2.6 CCmax Library composition 

The CCmax Library was largely composed under the same constraints as the CCNG1 Library. 

Library members were four heptad coiled-coils with the A-positions varying between Ile and 

Asn, the D-position invariantly Leu and the E- and G-positions varying between Glu and Lys. 

The backbones were invariantly Alanine. We also included two sets of anti-parallel coiled-coils 

under the analogous constraints. Our computational pipeline used fifteen different iCipa 

candidates as scoring functions and we took the largest orthogonal set produced by each. We also 

included five control sets that had been previously evaluated, including the CC0 Library and P# 

set from the CC1 Library. It also included two large sets that systematically varied each A-, E- 

and G- position though but were not predicted to be orthogonal and thus excluded from the 

analysis. The CCmax Library encoded 474 on-target heterodimers, 86 pairs of on-target 

homodimers and 17,931 off-target interactions for a total of 18,491 interactions. 

 

2.7 CCmax Library oligo design 

To create the CCmax Library we used a custom python script, lib-gen2.py, which functioned 

very similarly to lib-gen.py. Briefly, it took all pairs of proteins in 

18491_flipped_zipped_final_pairs.pairs and encoded them into DNA from proteins sequences in 

18491_flipped_zipped_final_pairs.fasta into 230bp  oligonucleotides with the functional DNA 
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sequences needed for cloning into the NGB2H assay (Figure S2.2D). This created 

oligonucleotides flanked with oSK470 and oSK471 for subpool amplification. Immediately 5’ to 

oSK470 was the reverse complement of the X protein in one of three codon usages, all of which 

were optimized to the frequency which they naturally occur in E. coli. To facilitate scarless 

cloning the X protein was followed by a BspQI site. Likewise, for scarless cloning of the Y 

protein we placed a BtsαI site immediately downstream of the BspQI site and N-terminal to Y 

protein coding sequence. Finally, we added a BsaI site C-terminal to the Y protein coding 

sequence. We repeated this process three times to create three different codon usages and then 

ordered the full set of 55,473 oligonucleotides as an OLS pool from Agilent using their high-

fidelity process.  

 

 

2.8 GFP Library design 

The GFP Library was designed as a library of barcodes that remain constant despite difference in 

library composition, similar to ERCC for RNA-seq41. We created a library of constitutive GFP 

constructs spanning several orders of magnitude in expression, that contained a unique DNA 

barcode and the flanking  sequences for amplification and sequencing with our other libraries. 

We used previously published expression data42 from which we selected constitutive promoters 

that would give a wide range in expression. In order from low to high expression we chose 

J23117, pAPFAB277, pAPFAB69, pAPFAB48, pAPFAB70 and pAPFAB101. Each of these 

promoters was attached to sfGFP and in the 3’ UTR of the sfGFP we inserted our Truseq adaptor 

and a 7bp random barcode.   
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3. Computational framework and model refinement 

3.1 Orthogonal computational framework 

We built a computational framework to calculate predicted interactions for four heptad 

coiled-coils, for which all programs can be found at https://github.com/dancsi/DiplomaThesis. 

To limit the search space, we examined a subset of four heptad coiled coils where the A-

positions varied between Ile and Asn and the E- and G-positions varied between Lys and Glu, for 

a total of 4096 possible sequences (2*2*2)^4. Using the algorithm described in Potapov et al.,13 

we scored all 16.7 million potential interactions. To make this computationally tractable we 

reimplemented the algorithm in the C for a 1000x fold increase in speed in fastscore.exe. After 

scoring interactions we sought to identify sets of orthogonal interactions, those where all on-

target interactions had higher interaction scores than all off-target interactions. The identification 

of orthogonal interactions can be reduced to the maximum clique problem18 which we 

implemented in Solver.exe. Solver.exe uses score cutoffs for on-target and off-target interactions 

to enforce orthogonality. Based on experimental data of the P# and CC0 sets we searched for sets 

with a difference of 1.0 (arbitrary units) between the scoring cutoffs. Finally, to obtain the 

multiple sets of the CCNG1 Library we varied the threshold for non-interacting pairs from -7.5 

to -9 in increments of 0.05.  

  

3.2 Model refinement from CCNG1 Library 

We used the CC0 Library subset in the CCNG1 Library as a calibration curve to convert 

interaction scores to Tms to be comparable to other coiled-coil interaction prediction algorithms 

(Fig S11B). We found that the prediction power of the algorithm increases significantly if we 

allow coiled-coils to bind in the heptad alignment that maximizes the ΔG. In calculating the off-
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target pairs, most algorithms assume the coiled-coil interacts with all four heptads but this does 

not necessarily reflect reality as a three heptad alignments may be more energetically favorable 

(Figure S2.14). To develop an algorithm that incorporates heptad shifts, we first extracted the 

features of all possible interactions without permitting shifts. Using this model we have scored 

three heptad shifts  at positions -7, 0, and +7. We then changed the alignment to the lowest 

scoring position and retrained the model. After five iterations the model parameters converged 

on a fixed point.  

We fit several groups of parameters in a series of models. First we incorporated features 

known to be important to coiled-coil interaction by counting the number of aligned residues 

between pairs of coiled-coils that were Asn/Asn, Asn/Ile, or Ile/Ile at the A-position, and 

Glu/Glu, Glu/Lys, or Lys/Lys between E- and G-positions. We also included a term for total 

charge between the two coiled-coils. As heptad shifting means fewer Leu in the D-position are 

interacting, we also scored all parameter groups with and without a term for the D-position. We 

then tested two separate parameter groups, one that looked at the effect of consecutive A-

positions and one that looked at the most N-terminal A-position. Our consecutive A-position 

parameter group compared Ile/Ile, Asn/Asn, Asn/Ile and Ile/Asn in consecutive heptads, while 

our N-terminal parameter group looked at Ile/Ile, Asn/Asn and Asn/Ile pairs at the first heptad. 

Of note, the first heptad was scored again in the central suite. All models were fit using the Ridge 

regression algorithm of the sklearn library. Interactions were weighted by the number of different 

barcode counts, and on-target pairs upweighted 10 fold. We found that our term for repulsion to 

be beneficial to our core model, but scoring Leu interactions did not matter. Our consecutive A-

position parameter group did not improve the core model’s predictive capabilities but the N-
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terminal group significantly did (Figure 2.3B). Thus our best model, which we call iCipa, is the 

core model with N-terminal A-position parameters (Figure 2.3D).   

Our model comes with several limitations. In order to limit the design space, the model 

only uses Glu/Lys at the E- and G-positions and Asn/Ile at the A positions while the D-position 

is expected to be a Leu and B-, C- and F-positions are expected to be Ala. As the backbone is 

expected to be Ala, the helical propensity of all proteins is very expected to be very high. 

Because of this, our model does not include a term for helical propensity as it was not predictive 

of interaction strength. 

     

4. Library Cloning 

For all cloning steps the reagents purchased from the following vendors unless otherwise noted. 

All reactions were performed according to the manufacturer's instructions unless otherwise 

noted. All restriction enzymes, phosphatase and ligase were purchased from NEB and DNA 

polymerase was NEBNext Q5 Hotstart HiFi PCR Master Mix (NEB M0543L) unless otherwise 

noted. All qPCR was performed using KAPA SYBR Fast 2x Master Mix (Kapa Biotechnology 

KK4601). All nucleic acid prep was purchased from Qiagen (Qiagen Plasmid Plus Maxi Kit 

12963), though DNA cleanup and gel extraction kits were from Zymo (Zymo D4014 and Zymo 

D4008). 

 

4.1 CC0 Library cloning 

The 10pM high-fidelity OLS pool containing the lyophilized CC0 Library was resuspended in 

25uL EB. This was diluted 1:20 in ddH2O and used as template for qPCR using the subpool 

primers oSK528-oSK532 and oSK609-oSK613  for X oligonucleotides and oSK533-oSK537 
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and oSK614-oSK618 for Y oligonucleotides. All subpools exhibited exponential amplification 

through 20 cycles, so high-fidelity PCR was performed  in triplicate for 18 cycles. Replicates 

were pooled and digested at 1ug scale with BbsI-HF for two hours. Digested samples were run 

on a 4% agarose gel and the band containing the X or Y-protein was extracted. The entire 

extracted product was ligated with its subpool partner (ie X subpool-1 with Y subpool-1) with T4 

ligase overnight at 50ng scale. Ligated samples were cleaned up and qPCR with the group pool 

primers, oSK608 and oSK687 established exponential amplification through eight cycles, with 

the exception of group pool one which showed no amplification and was excluded from 

downstream steps.  High-fidelity PCR was performed for six cycles and cleaned up. Each group 

pool’s concentration was analyzed with an Agilent Tapestation 2200 (Agilent 5067-5582) and 

equimolar fractions were pooled and diluted 100 fold. qPCR of the group pool samples with 

primers oSK689 to attach an AscI site and oSK690 to attach a BsaI site, random 20bp barcode, 

and EcoRI site, showed exponential amplification through ten cycles. High-fidelity PCR was 

performed in sextuplicat of which three were pooled to make the primary barcoding and three 

were pooled to make a replicate barcoding (Figure 2.1F). The barcoded products were run on a 

3% agarose gel, extracted and digested at 2ug scale with AscI and EcoRI-HF for two hours. 

Freshly prepared pSK33 was likewise digested with AscI, EcoRI-HF and rSAP for two hours, 

run on a 1% agarose gel and extracted. Digested plasmid and barcoded product were ligated with 

T4 ligase for two hours at 250ng scale. Sample was cleaned up into 6uL ddH2O, and 1uL 

electroporated into NEB 5-alpha  (NEB C2989K). After 35 minutes recovery in SOC samples 

were plated on LB agar + Kanamycin and grown overnight at 37C. Of the 2.4 million 

transformants, ~40,000 were scraped off the overnight plates and grown up in 150mL LB + 

Kanamycin at 30C overnight which was then purified and used for cloning the T25 segment. 
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 The T25 insert was cloned as follows. The T25 segment was amplified from pSK59 with 

oSK694 and oSK695. PCR product was run on a 1% agarose gel and extracted. The insert was 

digested with BspQI for two hours at 4ug scale. Product was cleaned up and digested with BtsɑI 

for two hours. Plasmid from the above cloning step, for both barcodings, was digested with 

BspQI for three hours at 5ug scale, cleaned up and digested with BtsɑI overnight. Plasmid was 

then cooled to 37C and rSAP was added for 30 minutes. Dephosphorylated plasmid was run on a 

1% agarose gel and extracted. The digested plasmids and T25 were ligated with T4 ligase at 

250ng scale for six hours before transformation into freshly prepared electrocompetent CB216. 

Cells were recovered in SOC for 45 minutes and plated on LB agar + Kanamycin + 

Carbenicillin. The transformation was repeated three separate times for a total of ~100,000 

colonies. These were scraped from the plates, diluted to OD 0.02 and grown up in 150mL LB + 

Kanamycin + Carbenicillin at 30C overnight which was then purified and used for cloning the 

T18 segment.  

 The T18 insert was cloned as follows. The T18 segment was amplified from pSK59 with 

oSK698 and oSK202. PCR product was run on a 1% agarose gel and a band corresponding to the 

expected 1715bp was extracted and digested with BsaI-HFv2 at 3ug scale for two hours. The 

vectors containing both barcodings were digested with BsaI-HFv2 and rSAP for two hours at 4ug 

scale. Digested plasmids were run on a 1% agarose gel and extracted. Plasmids and the T18 

insert were ligated at 200ng scale with T4 ligase overnight. Ligation products were cleaned up 

and electroporated into freshly prepared electrocompetent CB216. Cells were recovered in SOC 

for 35 minutes and plated on LB agar + Kanamycin + Carbenicillin. Approximately 180,000 

colonies were obtained for each barcoding. These were scraped from the plates diluted to OD 

0.02 and grown up in 150mL  LB + Kanamycin + Carbenicillin at 30C overnight. DNA was 
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extracted, run on a 1% agarose gel, extracted, and electroporated at low concentration into 

previously frozen electrocompetent pSK34. Samples were recovered for 35 minutes in SOC at 

37C and plated onto LB agar + Kanamycin + Carbencillin. Cells were scraped off the plates, 

diluted to OD 0.02 and grown up in 150mL  LB + Kanamycin + Carbenicillin at 30C overnight. 

Glycerol stocks of overnight culture were prepared and stored at -80C. For downstream 

experiments one tube was fully thawed and subsequently discarded.    

 

4.2 CC1 Library cloning 

The 10pM OLS pool containing the CC1 Library was resuspended in 30uL EB. Each respective 

subpool—the X oligonucleotides with codon usages 1, 2 or 3 or the Y oligonucleotides with 

codon usages 1, 2, or 3—were amplified with their flanking  primers with KAPA Real-time 

Library Amplification  (KAPA Biosystems KK2702) via qPCR (oSK529 and oSK699, oSK700 

and oSK701, oSK702 and oSK703 for X oligonucleotides and oSK570 and oSK704, oSK705 

and oSK706, oSK708 and oSK709 for Y oligonucleotides). Using a 1:10 dilution of the OLS 

pool in ddH2O we found that the pools all exhibited exponential amplification through twenty-

five cycles so amplification was repeated for twenty cycles. The products were cleaned up and 

qPCR was performed again with primers to attach a 30bp annealing region for the X 

oligonucleotides or a 30bp annealing region and the reverse primer from the first amplification 

for the Y oligonucleotides. This was done first with qPCR with KAPA Real-time Library 

Amplification which suggested exponential amplification through 10 cycles. It was then repeated 

with KAPA HiFI HotStart Ready for 10 cycles in quadruplicate, which were then purified and 

pooled. We then prepared a primerless PCR with mixtures of X and Y oligonucleotides of 

different codon usages. 100ng of X and Y were mixed into a 50uL KAPA HiFi HotStart Ready 
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Mix reaction, with ten cycles of denaturation, annealing of the 30bp complementary regions, and 

extension. These samples were run on a 2.5% agarose gel and bands corresponding to the 

expected length of 400bp were extracted. Mixed samples were then amplified with biotinylated 

primers, oSK712, oSK713, or oSK714 and oSK715, oSK716 or oSK717 to attach restriction 

enzyme sites and barcodes using qPCR. Samples showed exponential amplification through 

fifteen cycles. The PCR was then repeated with KAPA HiFi HotStart Ready Mix for twelve 

cycles after which they were cleaned up and digested with AscI and EcoRI-HF at 0.4ug scale for 

two hours. Samples were heat inactivated and cleaned up with Dynabeads (ThermoFisher 65306) 

to remove undigested product. Likewise, backbone pSK33 was purified, PCR amplified with 

biotinylated primers oSK718 and oSK719 (KAPA Biosystems KK2602), digested with AscI and 

EcoRI-HF at 10ug scale for two hours and cleaned up with Dynabeads. The barcoded CC1 X and 

Y proteins were ligated into the digested vector with T4 Ligase at 100ng scale for an hour. 

Samples were cleaned up and electroporated into freshly prepared electrocompetent pSK34. 

After recovery in SOC media for an hour, cells were plated on LB agar + Kanamycin + 

Carbenicillin in serial 10-fold dilutions. The next day colonies were counted and the 

transformation was repeated while taking only 441,000 transformants (100x library coverage) 

from the SOC media. This was inoculated into 400mL of LB +Carbenicillin + Kanamycin at 30C 

overnight and DNA extracted for cloning the T25 insert.  

 The T25 insert was cloned into the barcoded X and Y proteins. It was amplified from 

pSK59 with biotinylated primers oSK203 and oSK204 with KAPA HiFi HotStart Ready Mix. 

1.4ug was digested with BspQI and BtsɑI in NEB Cutsmart buffer at 55C for one hour. 

Undigested product was removed with Dynabeads, and purified again. 30ug of barcoded plasmid 

product was digested with 10uL of BspQI and 10uL BtsɑI in 200uL NEB Cutsmart for an hour. 
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Product was run on a 1% agarose gel and the corresponding band extracted before 

dephosporylation with rSAP at 60uL scale for 30 minutes. 400ng of vector was ligated with T4 

ligase for one hour, cleaned up, drop dialyzed and electroporated into pSK34 in two separate 

reactions. Colony PCR showed ~230k transformants, which were grown up in 200mL LB + 

Kanamycin + Carbenicillin overnight and plasmid was extracted for cloning in the T18 insert.  

 The T18 insert was amplified from pSK59 with biotinylated primers oSK201 and 

oSK202 with KAPA HiFi HotStart Ready Mix. The sample was gel extracted and 4ug were 

digested with BsaI-HF. The plasmid described above was digested with BsaI-HF for an hour. 

BsaI was heat inactivated and the digested plasmid was gel extracted before being treated with 

rSAP for half an hour. Dephoporylated plasmid was cleaned up and 200ng were ligated to the 

T18 insert at 1:3 ratio with T4 ligase for an hour. Sample was cleaned up and electroporated into 

freshly prepared electrocompetent pSK34. Approximately 5 million colonies were obtained 

which were grown up in 200mL LB + Kanamycin + Carbenicillin overnight at 30C. Glycerol 

stocks were made and stored at -80C. For downstream experiments one tube was fully thawed 

and subsequently discarded.    

  

4.3 CCNG1 Library cloning 

The CCNG1 Library was ordered as part of a 10pM OLS pool and resuspended in 25uL EB. As 

each interacting pair fit on one oligonucleotide early cloning steps were significantly simplified. 

The oligonucleotides from the pool were amplified in bulk with oSK229 and oSK232 for all 

three codon usages. qPCR showed exponential amplification through 16 cycles so a high fidelity 

PCR was then amplified for 14 cycles in quadruplicate. Samples were pooled and a band of 

230bp was run on a 3.5% agarose gel and extracted. Purified sample was diluted 100x and re-
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amplified for eight cycles in quadruplicate to attach an AscI site (oSK358) and a second BsaI 

site, 20bp random barcode, and an EcoRI site (oSK359). PCR product was again pooled, run on 

a 3.5% agarose gel, and extracted for digest with AscI and EcoRI-HF for two hours. Low-copy 

plasmid pSK33 was purified from 200mL of LB + Kan and 5ug was digested with AscI and 

EcoRI-HF and rSAP for two hours. The plasmid digest was then run on a 1% agarose gel and the 

linearized fragment was extracted. 250ng of the linearized plasmid and 1:3 ratio of barcoded 

OLS product were ligated with T7 ligase for three hours. The ligation product was cleaned up 

and eluted in 6uL of ddH2O. Electrocompetent NEB 5-alpha cells (NEB C2989K) were 

transformed with 1uL of the ligation product, cells were recovered for 35 minutes in SOC and 

plated on large LB + Kan plates. Two million colonies were obtained, and colony PCR showed 

23/24 containing the insert. 1.2 million colonies were scraped, diluted to OD 0.02 and grown up 

in 200mL of LB + Kan for DNA purification. 

            The T25 insert was cloned as follows: it was amplified from pSK59 with oSK360 and 

oSK361. The sample was gel purified and digested at 3ug scale sequentially with BspQI and 

BtsɑI for four hours each. 5ug of the plasmid from the previous step was digested with BspQI 

and BtsɑI, for five hours and overnight, respectively, before a 30 minute dephosphorylation with 

rSAP. The previously purified plasmid and the T25 segment were ligated with T7 ligase for four 

hours and cleaned up before transformation into freshly prepared electrocompetent pSK34. After 

electroporation, cells were recovered for 35 minutes and plated onto large LB + Kan + Carb 

plates. Colonies were scraped, diluted to OD 0.02 in 200mL of LB + Kan + Carb and grown to 

saturation and plasmid was purified. 

            The T18-sfGFP insert was cloned as follows: it was amplified from pSK59 with oSK201 

and oSK202. The sample was run on a 1% agarose gel and purified and 4ug of it were digested 
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with BsaI-HF for two hours. Likewise, the previously purified plasmid was digested BsaI-HF at 

5ug scale for two hours with rSAP, run on a 1% agarose gel and gel extracted. 250ng of plasmid 

was ligated with the T18-sfGFP insert at a 3:1 ratio with T7 ligase for two hours at room 

temperature.  The sample was cleaned up and electroporated into freshly prepared pSK34. Cells 

were recovered in SOC for 35 minutes at 37C and plated onto large LB + Kanamycin + 

Carbenicillin plates.  Plates were grown overnight, and all two million cells were scraped diluted 

to OD 0.02 and grown overnight in LB + Kanamycin + Carbenicillin. Glycerol stocks were made 

from overnight culture and frozen at -80C. For downstream experiments one tube was fully 

thawed and subsequently discarded.    

 

4.4 CCmax Library cloning 

The CCmax Library was ordered as a 10pM OLS pool and resuspended in 20uL of EB.  qPCR 

with oligonucleotides oSK470 and oSK471 showed exponential exponential amplification 

through ten cycles, so a high-fidelity PCR was repeated for eight cycles. The amplified product 

was cleaned up and diluted. Reamplification with qPCR using oSK472 to attach an AscI site and 

oSK473 to attach a BsaI site, the random DNA barcode and EcoRI site showed exponential 

amplification through twelve cycles so we performed a high-fidelity PCR for eight cycles with in 

triplicate. Samples were pooled and run on a 3% agarose gel. A band corresponding to the 

expected 290bp was extracted, and digested with AscI and EcoRI-HF for two hours at 1ug scale. 

pSK33 was grown up in 200mL of LB + Kanamycin, purified, and digested at 3ug scale with 

AscI, EcoRI-HF and rSAP. Digested product was run on a 1% agarose gel and extracted.  250ng 

of digested pSK33 and a 3:1 ratio of the insert were ligated with T7 ligase for 3 hours. The 

sample was cleaned up, and 1uL was electroporated into NEB 5-alpha cells (NEB C2989K). 
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Cells were recovered for 35 minutes in SOC media and plated on to  LB agar + Kanamycin. 

Approximately four million transformants were obtained of which 1.2 million were scraped from 

the plate, and diluted to OD 0.02 in 150mL of LB + Kanamycin and grown up overnight at 37C 

and DNA was purified. 

 The T25 insert was cloned as follows: it was amplified from pSK179 with oSK474 and 

oSK475. The sample was run on a 1.5% agarose gel and then was digested at 4ug scale 

sequentially with BspQI and BtsɑI for four hours each. 5ug of the previously purified plasmid 

was also digested with BspQI and BtsɑI, for three hours and five, respectively, before a 30 

minute dephosphorylation with rSAP. The digested plasmid and the T25 insert were ligated with 

T4 ligase for four hours and cleaned up before transformation into freshly prepared 

electrocompetent pSK34. After electroporation, cells were recovered for 35 minutes and plated 

onto  LB agar + Kanamycin + Carbenicillin plates. After three successive transformations 

500,000 transformants were obtained all of which were scraped from the plates, diluted to OD 

0.02, grown up in 200 mL of LB + Kanamycin + Carbenicillin overnight at 37C, and DNA was 

purified. 

 The T18 insert was cloned as follows: it was amplified from pSK168 with oSK476 and 

oSK477. The sample was run on 1% agarose gel, extracted and digested at 3ug scale with BsaI-

HF. The previously purified plasmid was digested with BsaI-HF and rSAP for four hours at 5ug 

scale. Digested product was run on a 1% agarose gel and extracted. 250ng of vector was ligated 

at 3:1 ratio with the T18 insert with T4 ligase for two hours. The ligation product was purified 

and electroporated into freshly prepared electrocompetent pSK34. Cells were recovered for 35 

minutes in SOC at 37C and plated on LB agar + Kanamycin + Carbenicillin. Plates were scraped 

diluted to OD 0.02 and grown in 200mL LB + Kanamycin + Carbenicillin to saturation and 
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glycerol stocks were stored at -80C. For downstream experiments one tube was fully thawed and 

subsequently discarded.    

 

4.5 GFP Library cloning 

Each design was synthesized de novo from oligonucleotides ordered from IDT. Ribosome 

binding sites were synthesized in oSK218-222 and barcodes were attached from oSK217. After 

cloning into backbone pSK33, we chose 10 colonies from each ribosome binding site, and 

sequenced their barcodes. Sequenced colonies were inoculated into a deep well plate of LB + 

Kan + Carb, grown to saturation, pooled and frozen in glycerol stocks at -80C. For downstream 

experiments one tube was fully thawed and subsequently discarded.  

 

4.6 Individual construct cloning 

DNA for the NGB2H system was ordered from Addgene or DNA 2.0. For the bacterial two-

hybrid, we used pEB1029 and pEB1030 (Addgene 22066 and 22067)43. The pSC101 origin was 

drawn from pZS-123 (Addgene 26598)44.  Most of our functional features were drawn from the 

work of the Voigt lab and iGEM. Inducible promoters for both pTet and  pPhlF37, strong 

terminators38, and ribozyme elements upstream of our open reading frames45 were all 

synthesized de novo.  Linkers between B. Pertussis proteins and the proteins of interest were 

drawn from the original B2H with the T18 linker having an GTG extension in the center17. 

sfGFP was drawn from a previously published strain42. DNA for all subsequent plasmids was 

assembled with standard molecular biology techniques, namely Gibson assembly46 and 

restriction enzyme digestion/ligation. Individual constructs were sequenced verified before 

experimental use.   
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5. Library mapping: 

All mapping steps used KAPA SYBR Fast qPCR (Kapa Biosciences KK4601),  NEBNext Q5 

Hotstart HiFi PCR Master Mix (NEB M0543L)  for high-fidelity PCR, an Agilent Tapestation  

with D5000 ScreenTape (Agilent 5067-5583) for DNA quantification, PhiX sequencing control 

v3 (Illumina FC-110-3001) as a control library and an Illumina Miseq with a v3 600 cycle paired 

end kit (Illumina TG-142-3003) for sequencing unless otherwise noted. 

 

5.1 CC0 Library mapping 

After cloning the CC0 Library proteins and barcodes into pSK33 we sequenced the barcode 

through the proteins on a MiSeq to provide a mapping function between the two. The amplicon 

containing the CC0 Library proteins and barcode was amplified with oSK696 and oSK193 or 

oSK194 for the different replicate barcodings. This attached P5, P7 and a Nextera lowplex index 

to allow demultiplexing of the barcoding replicates. qPCR showed exponential amplification for 

15 cycles for both samples, so a high-fidelity PCR was repeated for 12 cycles in triplicate. 

Samples were pooled  and a band corresponding to the expected size of 391bp was extracted 

from a 2% agarose gel. The sample concentrations were measured on an Agilent Tapestation 

2200 and found to be monodispersed with a length of 405bp. The samples were mixed in 

equimolar amounts with 15% PhiX control, diluted to 14pM and loaded into the Illumina Miseq 

kit. We used three separate custom primers, oSK696 for the forward read, oSK323 for the 

reverse read and oSK324 for the index read. We obtained 26,359,427 reads which mapped to 
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137,213 unique barcodes with a correct X or Y protein for the first barcoding replicate and 

96,129 unique barcodes with a correct X or Y protein in the second barcoding replicate. 

 

5.2 CC1 Library mapping 

The CC1 Library mapping step was performed similar to the CC0 Library mapping. After 

cloning the CC1 Library and random barcode in pSK33, we amplified constructs with either 

oSK691, oSK692 or oSK693 and oSK193 to attach Illumina adaptor P5 and a Nextera lowplex 

I7 and Illumina adaptor P7 respectively. qPCR showed exponential amplification through 14 

cycles. PCR was repeated with high-fidelity polymerase, KAPA HiFi HotStart ReadyMix 

(KAPA KK2602)  and the samples were cleaned up and pooled. Concentration of the pooled 

sample was measured with KAPA Library Quantification Kit Illumina Systems (Kapa 

Biosystems KK4824)  and found to be 26nM. This was diluted to 12pM, mixed with 5% phiX 

control, and run on a Miseq with a pool of oSK709, oSK710 and oSK711 for the forward read, 

oSK324 for the index read and oSK323 for the reverse read. 8,060,843 reads passed filter which 

mapped 1,166,860 unique barcodes mapping to one or both proteins from the CC1 Library.    

 

5.3 CCNG1 Library mapping 

Similar to the CC0 Library mapping, after cloning the barcoded CCNG1 Library into pSK33 we 

sequenced the barcode through the proteins with a MiSeq. The amplicon containing the CCNG1 

Library was amplified using oligonucleotides oSK366 and oSK193 to attach P5, Nextera 

lowplex index N702 and P7. qPCR showed exponential amplification through eleven cycles so 

samples were amplified for high-fidelity PCR for nine cycles in triplicate. Samples were 

pooled and a band corresponding to the expected size of 376bp was gel extracted from a 1.5% 
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agarose gel. The sample concentration was quantified on an Agilent Tapestation 2200 and found 

to be monodispersed and of approximately 376bp. The sample was diluted to 20pM and mixed 

with 10% PhiX control, loaded into the Miseq kit, and sequenced with custom primers oSK367 

for the forward read, oSK323 for the reverse read and oSK324 for the index read. 27,255,659 

reads passed filter which mapped 1,121,668 unique barcodes to one or both proteins from the 

CCNG1 Library.  

 

5.4 CCmax Library mapping 

Similar to the CC0 Library mapping, after cloning the CCmax Library into pSK33, sequenced 

through the proteins and the barcode with a Miseq. The amplicon containing the CCmax proteins 

and barcode was amplified with oSK513 and oSK193. This was first done with qPCR which 

showed exponential amplification for 1ng through 15 cycles. High-fidelity PCR was repeated in 

triplicate for nine cycles, samples were pooled and run on a 1.5% agarose gel and a band 

corresponding to the expected 380bp was extracted. Sample concentration was quantified with 

an Agilent Tapestation 2200 and was found to be monodispersed and approximately 384bp. The 

sample was mixed with 10% PhiX control and 18pM was loaded into an Miseq kit. To the MiSeq 

Kit we added custom primers oSK514 for the forward read, oSK323 for the reverse read and 

oSK324 for the index read. 20,710,707, reads passed filter which mapped to 1,629,936 unique 

barcodes mapping to one or both proteins in the CCmax Library.  

 

5.5 Mapping script 

To map DNA barcodes to a unique interaction we used a custom Makefile that chained several 

programs from the BBTools suite47 with our own custom script. From the raw paired fastq files 
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we used BBduk (v38.32) to trim adapter sequences and remove contaminants. Forward and 

reverse reads were then merged with BBmerge (v38.32) with strictness set to maxloose. Merged 

reads with levenshtein distance three or less were then condensed with Starcode (v1.3) to remove 

sequencing errors. From the condensed reads, barcodes were mapped with a custom python 

script. Briefly, this script called the last twenty bases per sequence the barcode and discarded 

those barcodes within levenshtein distance one of each other. It then removed those barcodes that 

had proteins that were more than 5% different from each other, under the assumption that these 

were contaminants. The variants were then mapped to the DNA corresponding to the protein 

coding regions using BBMap (v38.32) of the X and Y proteins sequentially. Sequencing data that 

mapped with no errors to a reference sequence of X or Y were then joined together by barcode 

and this text file was used to identify barcodes from barcode sequencing steps.   

 

6. NGB2H experimental conditions and validation 

6.1 CC0 Library NGB2H assay 

Glycerol stocks of both barcodings of the CC0 Library were thawed, and 100uL were grown up 

overnight in 100mL EZ Rich Defined Media (Teknova M2105) with Kanamycin (Teknova 

K2125) and Carbenicillin (Teknova C2130). After overnight growth 1mL of the GFP Library 

was added to the 100mL of CC0 Library culture and 1mL of the GFP Library was added to a 

fresh culture of 100mL EZ Rich Defined Medium + Carbenicillin + Kanamycin with 25ng/mL 

anhydrotetracycline (aTC), 1uM 2,4-Diacylphlorolglucinol (DAPG) and 100uM Isopropyl B-D-

1-thiogalactopyranoside (IPTG) in biological replicates for each barcoding. Flasks were 

incubated in a 37C shaker for six hours. Samples were pulled at 6h and placed on an ice slurry 

for 15 minutes, spun down for nucleic acid extraction and flash frozen. As reported in the main 



 81 

text we obtained high quality verification of the CC0 Library from its internal controls. Briefly, 

we obtained 57,541 barcodes providing quantitative measurements of interaction strength for all 

256 protein pairs. The assay was highly replicable with biological replicates having similar 

Interaction Scores (Pearson’s r > 0.98, p < 10-15) (Figure 2.1C). Different codon usages showed 

consistent Interaction scores with all usages correlating with Pearson’s r > 0.92 and p < 10-15 

(Figure S2.5).  The CC0 Library has a strong correlation between the primary and reciprocal 

orientations (Pearson’s r = 0.92, p < 10-15) (Figure 2.1E). The Interaction Scores for constructs 

with indels was much less than full length perfect constructs (Figure S2.6). When compared to 

the published Tms of the CC0 Library the Interaction Scores correlated with Pearson’s r > 0.73, 

p < 10-15 (Figure S2.7). Finally, when the assay is replicated with an independent re-barcoding 

and re-cloning of the library, we found very strong replication with the previous CC0 Library’s 

Interaction Scores (Pearson’s r > 0.98, p < 10-15) (Figure 2.1F). 

 

6.2 CC1 Library NGB2H assay 

Glycerol stocks were thawed and we grew the CC1 Library overnight in EZ Rich Defined 

Medium + Kanamycin + Carbenicillin. We mixed 1:100 of the GFP Library with the CC1 

Library and diluted it to OD 0.001 in a fresh EZ Rich media + antibiotics with 5ng aTC and 5uM 

DAPG at 30C to induce the library. The library was grown in a time-course experiment, where 

we took samples of RNA and DNA at 0h, 0.5h, 1h, 2h and 4h which were spun down and flash 

frozen for nucleic acid preparation. In total we linked 385,078 different barcodes 400 different 

PPIs. Our internal controls validated that the library performed as expected. After normalization 

to a constitutive GFP Library, Interaction Scores were minimal at the beginning of the assay, but 

they increased monotonically over four hours of induction (Figure S2.8A). In addition, 
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comparison of six different codon usages in the CC1 Library showed high replicability (r > 0.89, 

p < 10-15, Figure S2.8B). Finally, compared to full length constructs, indels had a markedly 

reduced Interaction Score (Figure S2.8C) and the reciprocal orientation of each protein were 

similar (r > 0.85, p < 10-15, Figure S2.8D).  

 

6.3 CCNG1 Library NGB2H assay 

After overnight growth in EZ Rich media + Carbenicillin + Kanamycin , we mixed in a 

constitutive GFP Library to the CCNG1 Library at a 1:100 ratio and took RNA and DNA at 0h. 

We induced a 1:100 dilution of the library for 6h with 25ng/mL aTC, 15uM DAPG and 100uM 

IPTG in EZ Rich media + antibiotics at 37C in biological replicates. We obtained 76 million 

reads across 164,778 barcodes which gave quality data on 8,073 interactions.  Our internal 

controls for the CCNG1 Library behaved as expected. The Interaction Score of constructs in the 

CCNG1 Library strongly correlated between biological replicates (Pearson’s r > 0.95, p < 10-15, 

Figure S2.10A);  the CC0 Library subset of the CCNG1 Library correlated strongly with 

published Tms (Pearson’s r > 0.79,  p < 10-15, Figure S2.10B) and with our previous experiments 

of the CC0 Library (Pearson’s r >  0.94 , p < 10-15,  Figure S2.16). Furthermore, different codon 

usages for the same construct gave similar Interaction Scores (Pearson’s r > 0.75,  p < 10-15,  

Figure S2.10C), and indels had significantly Interaction scores than full length constructs (Figure 

S2.10D). 

 

6.4 CCmax Library NGB2H assay 

After overnight growth in EZ Rich media + Kanamycin + Carbenicillin, we mixed the CCmax  

Library with the GFP Library in 100:1 ratio. We diluted the library by a 1:100 ratio in fresh EZ 
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Rich media with 15ng/mL aTC, 5uM DAPG and 100uM IPTG in biological replicates for 6h at 

37C. We obtained 346,733 barcodes mapping to 17,731 constructs and collected high quality 

data on 17,320 interactions. We found that biological replicates strongly correlated (Pearson’s r 

= 0.973,  p < 10-15, Figure S2.15A), as did different codon usages with (Pearson’s r > 0.92, p < 

10-15,  Figure S2.15B). As expected full length perfect constructs had higher Interaction Scores 

than those containing indels in the X or Y protein (Figure S2.15D).  We again included the CC0 

Library found that the published Tms correlated with our Interaction Score with (Pearson’s r = 

0.876, p  < 10-15,  Figure S2.15C), and that correlated well with the CC0 proteins in other 

libraries (Pearson’s r > 0.84, p < 10-15, Figure S2.16). Finally, the reciprocal orientation of the 

proteins in the  CCmax Library largely agrees with their primary one, with (Pearson’s r = 0.835,  

p < 10-15,  Figure S2.15E).   

 

7. Barcode sequencing preparation 

All nucleic acid preparation for barcode sequencing was done with Qiagen kits. For RNA prep 

we used RNeasy Midi (Qiagen 74106) or RNeasy Minipreps (Qiagen 75144)  with on column 

DNase digestion (Qiagen 79254) and concentrated with RNeasy MinElute Cleanup kit (Qiagen 

74204). DNA was prepped with QIAprep spin Minipreps (Qiagen 27106) or Plasmid Plus 

Maxiprep (Qiagen 12963), though DNA cleanup and gel extraction was performed with Zymo 

kits (Zymo D4014 and Zymo D4008). As for previous steps, we used NEBNext Q5 Hotstart HiFi 

PCR Master Mix (NEB M0543L) for high-fidelity PCR and KAPA SYBR Fast 2x Master Mix 

(Kapa Biotechnology KK4601) for qPCR. All samples were quantified with Agilent D5000 

Screentape (Agilent 5067-5582). 
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7.1 RNA Barcode Sequencing Preparation 

Cell pellets containing either 1 x 10^10 cells or 1 x 10^9 cells were thawed and purified with 

midi or mini scale respectively with on column DNase digestion. RNA was concentrated and 

purified RNA was subject to primer specific reverse transcription (oSK193-oSK198 and 

oSK210-oSK215) to create cDNA of transcripts containing DNA barcodes. We used the reverse 

transcription step to attach Nextera lowplex I7 indexes  and P7 Illumina sequence adaptors to our 

barcodes which allowed multiplexed sequencing of different times and conditions. Reverse 

transcription was performed with Superscript IV (ThermoFisher 18090050) with the following 

changes to the manufacturer’s protocol. Instead of 5ug of RNA we used 22.5ug of RNA, 

concentrated to 11uL, the reverse transcription step at 55C was allowed to go for an hour rather 

than fifteen minutes, and 1uL RNAase A (Qiagen 19101) was spiked in with RNase H for twenty 

minutes. After reverse transcription samples were amplified with qPCR with oligonucleotides 

oSK199 and oSK200 to attach Illumina sequencing adapter P5. We compared the cDNAs with 

no-RT controls to check for DNA contamination in the RNA which invariably showed less than 

1:1000 ratio of DNA to RNA. The qPCR showed exponential amplification through 20 cycles. 

We then repeated the PCR in triplicate for 12-15 cycles. Replicate PCRs were pooled, run on a 

3% agarose gel and extracted. DNA concentration was measured on an Agilent Tapestation 2200 

with D1000 screentape (Agilent 5067-5582),  and equimolar fractions pooled with DNA 

barcodes.  

 

7.2 DNA Barcode Sequencing Preparation 

Cell pellets containing either 10mL or 50mL of culture were thawed and plasmid DNA was 

extracted with mini or maxi scale respectively. Barcodes were amplified with qPCR using 
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oSK199 and oSK193-198 or oSK210-215 to attach Illumina sequencing adaptor P5, and a 

Nextera lowplex I7 index and  Illumina sequencing adaptor P7. We used qPCR to guide 

exponential amplification of the barcodes which normally showed exponential amplification 

through 13-16 cycles. We repeated the PCRs for 10-12 cycles in triplicate. Replicate PCR 

samples were pooled, run on a 3% agarose gel, and extracted. DNA concentration was measured 

on an Agilent Tapestation 2200 and equimolar fractions were pooled with the RNA barcodes.  

 

8. NGB2H small scale results: 

8.1 Plate reader measurements: 

Strains used in plate reader assays were grown up overnight in MOPS EZ Rich Defined Media 

(Teknova M2105) with kanamycin (Teknova K2125) and carbenicillin (Teknova C2130) in a 

37C degree shaker. The next evening these cultures were diluted 1:100 in 100uL fresh MOPS EZ 

Rich Defined Media with kanamycin, carbenicillin and 100uM IPTG and the indicated inducers 

in a 96 well, flat bottom plate (Corning 0720090). The plate was then incubated in a Tecan 

M1000 Plate Reader at 37C overnight. Optical Density (OD600) and GFP fluorescence 

(excitation 488nm, emission 508nm) were taken every half an hour after 3 minutes of 1mm 

orbital shaking. Data was collected for a minimum of fourteen hours but normally reached 

saturation by eight hours.   

 

8.2 Single construct optimization and benchmarking  

We found the NGB2H system behaved as expected with sfGFP fluorescence dependent 

on a pair of interacting proteins and both anhydrotetracycline (aTC) to induce pTet and 1,4-

Diacylphloroglucinol (DAPG) to induce pPhlF (Figure S2.1A). Lacking either inducer or 
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assaying a pair of non-interacting proteins yielded only low levels of sfGFP fluorescence. We 

reasoned that basal sfGFP expression would correspond to more noise in our multiplexed 

experiments, as non-interacting barcodes would constitute a larger proportion of all sequenced 

barcodes. Thus, we empirically optimized the signal to noise ratio of induction by testing a panel 

of Jun/Fos constructs where pPhlF and pTet had varying ribosome binding sites and sfGFP was 

driven by several pLac variants. We selected a construct that gave 96x signal of 

induced/uninduced sfGFP fluorescence, called pSK59 (Figure S2.1B).  Although our overall 

signal strength was weaker with the PhlF RBS variant we selected compared to some constructs 

assayed, there was extremely little sfGFP fluorescence in our uninduced sample (Figure S2.1C) 

which we reasoned would lead to higher signal in the multiplexed assay.  

To evaluate the quantitative range of our assay we analyzed a previously published set of 

coiled-coils with Kds ranging from 10-6 to 10-10 M,48 that as well as an additional construct with 

an inferred Kd < 10-6.  Measuring sfGFP fluorescence, we found that our system can detect weak 

interactions, as low as 10-6 (Figure S2.1D), however, it lacks the power to discriminate between 

medium (10-7) to high (10-10) Kds. In contrast with a previous study using the standard B. 

pertussis adenylate cyclase two-hybrid system, our modified system enables us to achieve 

quantitative measurements in agreement with published Kds49.  

 

8.3 CC1 Library results 

The designs from the CC1 Library were expected to be orthogonal within each backbone 

subset. The expected orthogonal design of the coiled-coils was largely recapitulated in our results 

(Figure S2.9A), with the P#s having only one strong interaction, P3/P12, which was unexpected. 

The P#mS and P#SC# backbones also exhibited the expected orthogonal pattern within their 
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subsets. As P3mS-P8mS and P5SC1-P6SC2 contain the same interfacial residues as their P# 

counterparts we expected them to cross react with the corresponding P# partners. We found this 

to be the case with the P#mS having the same reaction pattern (Figure S2.9A bottom, grey) with 

the P# set as with itself. The P#SC# set also cross reacted as expected but had the unexpected 

reaction of P6SC#/P7 (Figure S2.9A, bottom orange).  

We were curious if our interaction profiles matched what would be expected from our 

designs. We defined a favorable electrostatic interaction as an E- or G-position having a Glu or 

Lys forming a salt bridge with a Lys or Glu, respectively, in the corresponding position on the 

partner protein. Likewise, we defined an Ile/Ile or Asn/Asn pair as having isoleucines or 

asparagines in the A-position of a given heptad for both proteins. We found that our strong 

interactions highly favored having  all eight possible salt bridges, as nearly all interactions with 

eight salt-bridges have a higher Interaction score than all other interactions (Figure S2.9B, top). 

We found the identity of the residue at position A to be less determinative. Though most 

constructs with a high Interaction score had four pairs of Ile/Ile or Asn/Asn at position A, there 

were many constructs with four pairs of Ile/Ile or Asn/Asn that did not have a high Interaction 

score (Figure S2.9B, lower). Taken as a whole, these designs largely functioned as expected: 

Glu/Lys pairings were far more preferable to Glu/Glu or Lys/Lys pairings and Ile/Ile and 

Asn/Asn pairs, rather than Ile/Asn pairs, were necessary but not sufficient to create an 

interaction.   

 

8.4 Effects of backbone variation in the CCNG1 Library 

Though the B-, C- and F-position residues are thought to modulate binding affinity, the 

CCNG1 Library is the first large dataset that systematically tests the effects of different 
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backbones. A subset of the CCNG1 Library contains the interfacial residues of the CC0 Library 

on six different backbones, which vary from nearly exclusively small non-polar residues to 

nearly exclusively large charged residues (Figure S2.13A).  To understand how the different 

backbones affect specificity we divided interactions into on-target and off-target groups where 

the on-target group had an interface with published Tms greater than 60C (Figure S2.13B). On-

target interactions invariably had high interaction scores and no significant difference was noted 

between the backbones, though the bH backbone did have higher variance than the rest. Off-

target interactions, however, unexpectedly showed that the original backbone had lower 

Interaction scores than the other backbones. To investigate this further we compared each 

protein, as determined by the interfacial residues, against the previously published Tm (Figure 

S2.13C). We found that all backbones except the original were strongly shifted to higher 

interaction scores. Although further tests are needed to understand why there is a global shift to 

higher interaction scores with other backbones--especially given that highly helical amino acids 

such as alanine are expected to produce the strongest coiled-coil interactions--one possible 

hypothesis is that the presence of glutamine in these backbones can facilitate low strength off-

target interactions.    

When broken down into categories of, small and large underestimates and overestimates, 

a clear pattern emerged that every backbone had an over representation of interaction scores that 

were higher than the original backbone, and many were much higher than expected (>1 

interaction score more). Conversely, the bA backbone had only a handful of interactions below 

the expected strength and none that were strongly so. Taken together this suggests the need for 

care when using backbones with polar residues as unpredicted effects may occur, particularly at 

the expected lower range.   
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Figure S2.1) Optimization and tuning of the NGB2H system: A) High GFP expression 

requires positively interacting proteins and both inducers, ATc and DAPG. Error bars are 

standard deviation of three technical replicates B-C) Optimizations of the promoters and RBSes 

to find the maximal signal to noise ratio between induced and uninduced samples. B) The ratio 

of (Induced GFP/OD fluorescence)/(Uninduced GFP/OD fluorescence) for Jun/Fos constructs 

with RBS and promoter variations. Error bars represent standard deviation of three replicates. C) 

The Final plasmid induced or uninduced over 16hr. Samples were taken every 30 minutes. Error 
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bars represent standard deviation of three replicates  D) A panel of previously characterized 

proteins shows GFP/OD depends on Kd with maximal expression occurring at Kd’s stronger than 

10-7 M. Error bars represent standard deviation of three replicates. 
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Figure S2.2) Design of OLS oligonucleotides for libraries used in this work: With minor 

variation each oligonucleotide consists of primers to amplify it out of the OLS pool, the coding 

sequence and several restriction enzyme sites. Numbers below the constructs represent how CC0 

Library oligonucleotides are divided into those with the X protein and those with the Y protein. 

B) CC1 Library oligonucleotides are divided into those coding the X protein and those coding 

the Y protein. C)  CCNG1 Library oligonucleotides contain both the X and Y protein on a single 

oligonucleotide. D) CCmax Library oligonucleotides contain both the X and Y protein on a 

single oligonucleotide. 
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Figure S2.3) Cloning from OLS oligonucleotides to barcoded X and Y constructs: A) CC0 

Library barcoding schema. Five OLS pools for both the X and Y oligonucleotides are amplified 

with OLS primers. All oligonucleotides are digested with BbsI and ligated in pairs, before 

amplification with pool primers and mixing. Finally, restriction enzyme sites for cloning into the 

vector and the barcode are attached. B) CC1 Library barcoding schema. After amplification of 

the OLS pool, matching overlaps are attached which are stitched together with overlap PCR. 

Finally, the barcode and restriction enzyme sites for cloning into the vector are attached. C) 
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CCNG1 and CCmax Library barcoding schema. Oligonucleotides are amplified from the pool 

and then restriction enzyme sites for cloning into the vector and barcode are attached. 

    



 94 

 

Figure S2.4) Cloning scheme of the NGB2H system after barcoding: After barcoding, the X 

and Y proteins are sequenced through the barcode using an Illumina MiSeq to identify each 

barcode’s corresponding protein pair. After mapping, the T25 section and inducible promoters 

are cloned into the mapped plasmid.  After the T25 section is cloned, the T18 section with sfGFP 

is cloned into the T25 containing plasmid. 
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Figure S2.5) Different codon usages of the CC0 Library: Different codon usages in the CC0 

Library produce similar Interaction Scores. All nine codon usages from the CC0 Library show 

high replicability with Pearson’s r > 0.92 in all pairwise interactions and a mean replicability of 

r > 0.949. 
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Figure S2.6) Indels in the CC0 Library have lower interaction scores than correct 

sequences: Constructs with insertions or deletions in the X or Y protein invariably have an 

Interaction Score of less than -1.8. Constructs without indels, however have some Interaction 

scores as great as .8. 
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Figure S2.7) CC0 Library Interaction Scores versus previously published Tms: The Tms 

measured by circular dichroism correlate well with the Interaction Score measured in the CC0 

Library with Pearson’s r > 0.75.  Tms > 40C were well distinguished by the NGB2H assay. Blue 

line represents a linear model fit to the data, with standard error as the gray shading.  
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Figure S2.8) CC1 Library internal controls: A) A timecourse experiment of the CC1 Library 

shows increasing Interaction Scores over four hours, with the strongest signal coming at four 

hours. Interaction scores were normalized across time with the constitutive GFP Library. B) 

Different codon usages for the CC1 Library replicate with Pearson’s R > 0.89 for all pairwise 

interactions and a mean of Pearson’s r = 0.918 C) The Interaction Score for constructs with 

indels in the CC1 Library is lower than for those without indels. D) The CC1 Library constructs 

give similar (r > 0.85) Interaction Scores for protein pairs attached   
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Figure S2.9) Isolation of orthogonal coiled-coils from the CC1 Library. A) (Upper) Expected 

outcome for the CC1 Library and logo illustrating the library diversity. Residues are colored by 

their functional group Red: positively charged, Blue: negatively charged, purple: polar, grey: 

non-polar or other (Lower) Interaction scores for entire CC1 Library. The inset in gray shows 

similarities between library P# and P#mS library members. The inset in orange shows 

similarities between P#, P#mS and P#SC#. B) (Upper) The Interaction score is highly dependent 
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on the number of electrostatic interactions. White dot represents the  median. (Lower) Interaction 

score is dependent on the residue pairing in the A position, but this is not determinative. 
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Figure S2.10) CCNG1 Library internal controls: A) The CCNG1 Library replicates in 

biological replicates with Pearson’s r > 0.95  (p < 10-15 ). B) Different codon usages in the 

CCNG1 Library correlate with each other with r > 0.73 (p < 10-15 )  for all pairwise comparisons 

(mean = 0.77). For this analysis only constructs with ten barcodes were used. C) The CC0 

Library was included in the CCNG1 Library, and correlates with previously published Tms with 

Pearson’s r > 0.79 (p < 10-15). Blue line represents a linear model fit to the Interaction scores; 

grey shading represents the standard error) Indels in the CCNG1 Library show decreased 

Interaction scores compared to constructs without indels.  
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Figure S2.11) Number of orthogonal interactions by sets with different backbones in the 

CCNG1 Library: Sets with different backbones but the same interfacial residues generally 

contained similar numbers of orthogonal interactions.  
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Figure S2.12) CCNG1 Library number of proteins per orthogonal set: Sets in the CCNG1 

Library contained between four and seventeen distinct proteins. Five of these contain more than 

the fourteen in the CC0 Library. Different backbones contained the same interfacial patterns.   
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Figure S2.13) Effect of variation at the b, c, and f-positions: A) Sequence logos representing 

the different backbones. Amino acids are colored according to their type. Red: negative, Blue: 

positive, Purple: polar, Grey: non-polar. Non-transparent residues are backbone residues. B) 

Mean Interaction scores for different backbones. On-target is defined as the eight interactions 

with predicted Tm = 72C with bCipa; off-target interactions are all other interactions. Error bars 

are standard deviation. C) The Interaction scores from each backbone compared to the Tm of 

proteins that share the same interfacial residues D) Counts of Interactions scores for different 

backbones above or below the Interaction score for the original backbone. Strongly higher/lower 

is defined as an interaction score greater than ±1. 
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Figure S2.14) Schematic of heptad shifting: A) Different model variations tried for iCipa. The 

basic model only scores a-, e- and g-positions. The +a position stacking terms model scores 

consecutive residues in the a-position while the +a-position N-terminal terms model includes 

separate weights for the first a-position. B) All iCipa candidates score interactions with heptad 

shifting, that is moving up or down seven residues in an interaction. From left to right shows 

progressive heptad shifts of the bottom coiled-coil with respect to the top coiled coil for both 

parallel and antiparallel coiled-coils. (Bottom row) As an example illustrating how heptad 

shifting is scored, each heptad is given a plus sign or a minus sign, the combination of which is 

considered a match. In the -7 position all three heptads match giving a high score. In the 0 and 7 
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positions the heptads have fewer matches and more mismatches so the -7 position would be 

chosen as the orientation to score. Note though, iCipa calculates individual residues rather than 

entire heptads at a time.  
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Figure S2.15) CCmax Library internal controls: A) Interaction scores of variants in the 

CCmax Library correlate strongly between biological replicates (Pearson’s r > 0.97, p < 10-15 ). 

B) Different codon usages of the CCmax Library have similar Interaction scores with Pearson’s 

r > 0.92 and p < 10-15  for all pairwise comparisons. C) The CCmax Library contained the CC0 

Library. When our Interaction scores are compared to the previously published Tms they 

correlate well with Pearson’s r > 0.87, p < 10-15 . D) Correct constructs from the CCmax Library 
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have a higher interaction score than those produced with indels. E) The reciprocal orientations of 

the CCmax Library have similar Interaction scores, and correlate with Pearson’s r > 0.83, p < 10-

15 .  
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Figure S2.16) Correlation of the CC0 Library proteins between different libraries: The 

CC0 Library was a subset of all libraries except CC1. Comparing how it performed in all 

libraries shows strong agreement between sets with Pearson’s r  > 0.84,  p < 10-15 between all 

libraries and Pearson’s r > 0.73, p < 10-15  for all libraries with the previously published Tms.  



 110 

 

 

Figure S2.17) Number of orthogonal proteins per set: The CCmax Library had orthogonal 

sets that contained the most orthogonal proteins of any group of orthogonal proteins to date. Sets 

contained between 6 and 28 proteins or between 36 and 784 total interactions.  
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Figure S2.18) Ability to predict orthogonality compared across algorithms: Sets of proteins 

from the CCmax Library that were designed with different algorithms were randomly 

subsampled to subsets of ten proteins and the largest orthogonal group was identified. 

Subsampling was repeated 500 times. Error bars are standard deviation.  
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Figure S2.19) CCmax Library’s agreement with previous models: Interaction scores from the 

CCmax Library correlate poorly with previous models. All previous models predict Interaction 

scores with a coefficient of determination less than 0.28, but iCipa predicts Interaction scores 

with R2 = 0.43.  
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Abstract: 

Changes in protein-protein interactions (PPIs) are a major cause of phenotypic diversity. How 

the tinkering of evolution can lead to rewiring PPIs is less clear. Although gene duplication and 

subsequent divergence are well established theoretically, we lack detailed experimental 

knowledge to show how PPIs can change over the course of evolution. The dearth of 

experiments has led to a wide array of competing theories about the tempo, precision and  

evolutionary processes driving changes in PPIs.  Here, we examine a simple PPI network of two 

paralogs, descended from an ancestral homodimer, which do not heterodimerize. We used 

ancestral sequence reconstruction and a high-throughput two-hybrid system to empirically 

characterize more than 65,000 interactions in the PAR/E4BP4 family of bZips proteins. We find 

specificity is acquired by more than half the duplications on our tree in a rapid, though not 

immediate, process. However, perhaps because of the speed with which it occurs, loss of 

interaction with a partner paralog does not necessitate broad rewiring of other unrelated 

interactions. We find the acquisition of specificity is permanent and even subsequent gains of 

specificity maintain the prior acquisitions of specificity. Finally, we develop a novel empirical 

test which finds that the loss of interactions between newly duplicated proteins is not driven by 

selection, supporting the hypothesis that after duplication proteins are released from evolutionary 

constraint.  

 

Introduction: 

To explain diversity in organismal phenotypes requires explaining diversity of function in 

homologous proteins.  As most proteins are regulated to some extent by protein-protein 

interactions (PPIs), one method of creating functional diversity is manipulation of protein-protein 
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interaction networks1. Though remarkably stable globally2,3, small changes in PPI networks have 

been linked to evolutionary adaptation4 and disease5–7. While gene duplication is commonly 

thought8 to add to genomes and subsequent interactions, there must be a balance with loss of 

interactions to maintain the constant properties of protein interaction networks2,9.  Our ability to 

understand how these changes occur is severely limited because up to now we have either 

characterized PPIs within species10–16 or between a handful of species17–19.  

Moreover, to study the evolutionary dynamics of how protein-protein networks change 

we must look at the ancestral states. Through statistical inference of ancestral sequence states, 

ancestral sequence reconstruction (ASR) allows characterization of ancestral properties and 

functional determinants20,21 but its application to understanding functional diversity in PPIs has 

been limited. Previously, works using ASR to investigate PPIs have characterized a handful of 

proteins22–25 and  moderate sized protein networks26,27. However, even for simple networks of 

PPIs, we lack a high-resolution characterization which is necessary to understand the tempo, 

mechanism and processes underlying evolution.  

Though many proteins undergo some change of interactions in the course of evolution, 

the most drastic phenotypic effects can be linked to transcription factors28. bZips are a class of 

dimerizing transcription factors, that have diversified from twelve bZips29 in the ancestor of 

metazoan to fifty-three17 in humans while maintaining strict patterns of dimeric specificity 

between member proteins30. Though substantial changes between species in the network of bZip 

interactions have been documented17,31,32, there has been no dissection of the genetic causes of 

these changes.  

Here we test interactions across the PAR and E4BP4 families of bZips. As bZips, the 

PAR/E4BP4 family are transcription factors, and they have been implicated in myriad processes 
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including circadian rhythm33, haemopoietic development34  and metabolite detoxification35.  

Notably, PAR/E4BP4 proteins all bind the same DNA sequence, but which protein is bound can 

have opposing effects on gene expression36. As a family descended from an ancestral homodimer 

that does not co-assemble, the PAR/E4BP4 family provides a simple network of interactions to 

investigate how evolution can drive acquisition of novel specificity (Figure 3.1A). We use 

ancestral sequence reconstruction to characterize the evolutionary dynamics of PAR/E4BP4 back 

to the human-cnidarian ancestor. With a high-throughput two-hybrid system we characterize 

more than 65,000 potential interactions and find that specificity—where the ancestor 

homodimerizes but two descendant proteins stop heterodimerizing—arises from most 

duplication events. We find the process of gaining specificity starts immediately, but takes some 

time to resolve and specific proteins do not necessarily have a drastic rewiring of interaction 

profiles. To characterize the evolutionary mechanism of specificity acquisition, we develop an 

experimental test of selection and find no evidence for direct selection as the process driving the 

loss of interactions between paralogs. Finally, the loss of all heterodimeric interactions is 

permanent.  

 

Results: 

 

We inferred a phylogeny of 171 PAR and E4BP4 proteins using the highly conserved bZip 

domain (Figure 3.1B, see Methods). All extant PAR and E4BP4 homologs are descended from a 

protein that underwent duplication in the ancestor of humans and cnidarians, thus we sampled all 

major deuterostome, protostome and cnidarian clades. In total, we sampled 52 species (Figure 

3.S1), including six species in a poriferan outgroup. Subsequent duplications occurred 
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throughout history and our tree contained a total of 21 duplications, each of which could 

potentially lead to non-interacting daughter proteins. The extent to which this is the case is 

unknown, however, as previous work has only been characterized interactions in a handful of 

species17. We performed ancestral sequence reconstruction (see Methods) on this phylogeny, and 

inferred all nodes to identify 258 unique sequences across our tree.  

  

Massive experimental analysis of PAR/E4BP4 PPIs 

To characterize the 66,548 potential protein-protein interactions on this tree we used the 

Next-generation bacterial two-hybrid (NGB2H) system, which allows rapid multiplexed 

measurement of tens of thousands of researcher-designed interactions in a single experiment37. In 

brief, the NGB2H system (Figure 3.1C) consists of an inducible bacterial two hybrid which 

replaces the standard colorimetric reporter readout with a transcribed DNA barcode that uniquely 

identifies the hybrid protein pair (the mapping of DNA barcode to hybrid proteins occurs with 

next generation sequencing at an early cloning step). Hybrid proteins that interact produce 

cAMP, which drives expression of a Lac promoter with a reporter gene that contains the DNA 

barcode in the 3’ UTR. Relative barcode abundance can then be obtained by next-generation 

sequencing to quantify interaction strength (see Methods).  

We obtained high-quality measurements on 65,892 distinct interactions and calculated 

two primary measurements for each protein pair: the Interaction Score (IS), a numeric measure 

of relative gene expression and a Classification Score (CS), a statistical measure relative to 

protein pairs containing indels that classifies each pair as an interaction, a weak interaction or a 

non-interaction (see Methods, Figure 3.S2). The NGB2H system performed well according to a 

variety of metrics (Figure 3.S3), including highly correlated biological replicates, strong 
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agreement the published melting temperatures of a previously characterized library of coiled-

coils38 and clear signal when hierarchically clustered.   Classification produced 10,193 

interactions,  10,700 weak interactions and 29,488 non-interactions, when mapped on to the tree. 

To understand the underlying data structure better, we used k-means clustering on the raw 

Interaction Scores. Using the seven clusters (Figure 3.S4) we identified several major 

phylogenetic groups when plotted on the tree (Figure 3.1D). Notably, each of three protostome 

PAR clades were majority clustered exclusively (purple: HLF, red, blue),  and the majority of 

E4BP4 formed one cluster (orange), though this did not include cnidarian E4BP4 or some 

arthropod E4BP4 (gray nodes were not measured). As expected there was little overlap between 

E4BP4 and PAR, with the exception of cnidarian homologs, for which the majority clustered in 

our broadest group (green).    

 

Specificity is commonly acquired 

We sought understand how specificity—the loss of heterodimeric interactions between 

descendants of a homodimer—could occur in our data set, so we looked at pairs of time matched 

paralogs (Figure 3.2A, Top).  Specifically we took homodimerizing ancestors that underwent 

duplication and identified when descendant paralogs lost those interactions for two stringency 

levels: when descendant paralogs have weak interactions and when they have non-interactions. 

Although there are numerous mechanisms by which proteins could stop interacting—

pseudogenization, different temporal or tissue specific expression profiles, or a biochemical loss 

of interaction—it is only in the same species that the loss of an interaction could matter. Thus, 

we looked at 518 paralogous interactions, in both extant and extinct species. When visualized on 

our phylogeny (Figure 3.2A, Bottom), these interactions again show strong phylogenetic signal, 
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with many interactions within clades, but few interactions between clades. Unexpectedly, we 

found that even duplication nodes with relatively few characterized descendant paralogs 

contained diversity in descendant interaction types (pie graphs).  

To better understand where and how specificity was achieved, we plotted the 

evolutionary path along branches of our tree from the duplication node to the first non-

interacting daughter paralogs (Figure 3.2B) for non-interacting stringency (Figure 3.S5 for weak 

interacting stringency). Overall we found that, either eight of the sixteen duplication nodes for 

which we characterized descendant paralogs acquired specificity (non-interaction stringency) or 

eleven of sixteen possible duplication events acquired specificity (weak interaction stringency) 

Though we anticipated our most ancestral duplication event would acquire specificity, we found 

that specificity was gained in duplication events across our tree. In fact, with the exception of 

cnidarian PAR duplications, all duplications for which we measured more than three descendant 

paralogs acquired specificity at one of our stringency levels, suggesting this is a highly common 

occurrence even within a protein subfamily. We also found that with the exception of one (non-

interaction stringency) or three (weak interaction stringency) cases, specificity was gained prior 

to currently extant species, implying this is a constantly occurring process. 

 

Specificity is quickly, though not immediately acquired 

To characterize the tempo of specificity acquisition we characterized three temporal 

metrics on our tree. First, we calculated the number of paralog pairs that had descended from a 

duplication event (Figure 3.2C). This showed that specificity at non-interaction stringency 

overwhelming took more than one descendant paralog node, which means that specificity takes a 

non-zero amount of time to appear, and implies our tree has the resolution necessary to identify 
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when these changes occurred . However, at the weak stringency level, specificity was 

overwhelming gained by the first descendant paralog. Taken together this implies that the 

weakening of heterodimeric interactions starts soon after duplication but takes significant time to 

fully resolve. Characterizing the branch lengths it took to gain specificity provided a 

complementary result (Figure 3.2D). While specificity at weak interaction stringency had been 

gained with all branch lengths < 0.9 (substitutions per site), three gains of specificity at non-

interaction stringency had branch lengths > 0.9 (substitutions per site), indicating the progressive 

nature of gaining specificity. As the branch lengths over which specificity was gained were 

relatively short compared to the length of our tree where the median distance between paralogs is 

branch length = 2.55 (substitutions per site), and because most of duplication nodes had a limited 

number of descendant nodes (median seven descendant paralogous interactions), it was unclear if 

the time to gain specificity is due to sampling the available descendants or if it occurs faster or 

slower than expected.  Thus, to determine if this was faster than would occur from a random 

selection of descendant paralogs on our tree, we performed a permutation test on all branches 

that gained specificity (Figure 3.2E). We found for both weak interaction stringency and non-

interaction stringency that the branch length average was significantly longer than the average of 

the branches that did gain specificity (p < 0.01 weak interaction stringency, p = 0.02 non-

interaction stringency). Thus, though specificity is not gained immediately, it is faster than would 

occur from chance alone.  

 

Homodimer loss is often concomitant with specificity gain 

Our data suggests an unexpected mechanism of specificity gain, that is a weakening of 

homodimeric interactions. Although ancestrally the PAR/E4BP4 family has homodimerized, we 
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found that while acquiring specificity many proteins lost this interaction as well (Figure 3.2F). 

Notably, while at weak interaction stringency a plurality of paralogs still homodimerize, the 

majority of paralogs pairs at non-interaction stringency have lost one homodimer.  This implies a 

mechanism where one paralog loses its self-interaction which facilitates the loss interaction with 

the highly similar paralog. Importantly, these are not non-functional proteins; even in the most 

extreme example where neither protein homodimerizes, the descendant paralogs interact with 

more than eight percent and weakly interact with eighteen percent of proteins on our tree (Figure 

3.2G). 

 

Vast rewiring is not required for specificity gain 

We next sought to understand the how targeted the gain of specificity is—is the only 

interaction lost the partner paralog, or do the proteins interact with substantially different sets of 

partners. To do so, we calculated a metric, which we call Interaction Correlation, using the two 

paralogs which gain specificity and took the Pearson correlation of each partner’s Interactions 

Scores with all other proteins assayed. This provides a characterization of the sequence space 

that is most likely to interact with these proteins, while also allowing highly differential 

measurements. We found that acquisition of specificity did not necessarily entail drastic rewiring 

of interactions (Figure 3.3A). Notably, eight specific paralogs had correlations greater than r =  

0.5 at weak interaction stringency and three at non-interaction stringency, while our median 

Interaction Correlation was r = 0.05, which implies interactions can gain specificity without 

changing many other interactions. We also noted that though there was an inverse relationship 

between branch length and Interaction Correlation, it was not absolute, and increasing the 

stringency of specificity did not always lead to a decrease in Interaction Correlation. Taken 
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together this further suggests that specificity can arise without dramatically changing off-target 

interactions. 

 

Specificity evolves gradually 

The gain of specificity is clearly a gradual phenomenon, with changes accumulating 

slowly on both descendant branches. This gradualism is apparent when we characterize the 

Interaction Correlation between proteins from duplication events and their descendent specific 

paralogs. We find that specificity gaining nodes are significantly more similar to the ancestral 

duplicated protein than its paralog at the point they gain specificity, as characterized by our 

Interaction Correlation (Figure 3.3B-C) with p = 0.05 at weak interaction stringency and p = 0.09 

at non-interaction stringency (Wilcoxon two-sided test). This gradualism can also be seen by 

calculating the interaction scores at the points at which specificity are gained and the duplicated 

ancestor (Figure 3.3D-E), as it represents an approximately halfway point between the paralogs 

at which specificity was gained. At weak interaction stringency (Figure 3.3D) a majority of 

specific paralogs are able to interact with the their ancestral duplication event, and even those 

paralogs that do not interact with their duplication event still maintain at least weak 

interactions—that is at no point do we see weaker interactions appear on branches between 

specific paralogs than what the interaction between the specific paralogs themselves is. This is 

similar at non-interaction stringency, where a majority of specific paralogs interact with the 

ancestral duplication protein, and no paralog pair has more than one protein not interacting with 

the ancestral node  

 

Ancestral proteins have a broader set of interactions than their descendants 
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It is often thought that ancestral proteins are more promiscuous25,39, though this has 

recently been contested40. Because of its size, our data set offers unique insight into changes in 

specificity. Importantly, we do not test random proteins to determine specificity, as the majority 

of partner proteins would not be accessible by evolution. While other paths may have been 

possible, all proteins characterized were are evolutionarily accessible. When the number of 

interactions are quantified, we find that there is a slight increase in interactions for the ancestral 

duplication nodes compared to specific paralogs (Figure 3.3F-G) at weak interaction stringency, 

which increases at non-interaction stringency. This slight advantage seems likely due to the 

bifurcating nature of phylogenetic trees, which places ancestral nodes closer to all other nodes.  

 

There is no direct selection for specificity after duplication  

Up to this point we have strictly measured paralogs, as the proteins which evolution must 

act upon. However we also characterized many orthologs in our data, which exist in separate 

organisms and therefore can’t have direct selection acting on them (Figure 3.4A). Crucially, this 

allows a comparison between those proteins which could undergo direct selection (paralogs) and 

those that cannot (orthologs), as a novel, biochemically informed selection test. Given that purely 

inferential selection tests41 have been refuted by recent biochemical analysis42, our method 

provides direct experimental evidence for the presence or absence of selection. To measure the 

effects of selection on our tree, we took phylogenetically independent samples (see Methods) of 

both orthologs and paralogs binned by branch length. We then characterized the fraction 

interacting for both weak interaction stringency (Figure 3.4B) and non-interaction stringency 

(Figure 3.4C). In both cases we found that percent of interactions between paralogs were not 

significantly different from the interactions between orthologs with p = 0.94 at non-interaction 
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stringency and p = 0.46 at weak interaction stringency (Wilcoxon signed-rank test, two-sided).  

Thus we reject the hypothesis that direct selection is acting on these bZips after duplication. This 

largely fits within the Duplication-Degeneration-Complementation (DDC) paradigm43, where 

after duplication selection is relaxed and proteins slowly accumulate mutations that eventually 

lead to descendants retaining a subset of the ancestral functions. In this case, however, the new 

functions are the same as the ancestral function (dimerization) but the potential interactions of 

the descendant genes  has been partitioned to exclude each other.  

 

Acquisition of specificity is permanent 

Given that neutral evolution does not necessarily keep proteins from interacting after 

specificity has been gained, it is an open question how permanent acquisitions of specificity 

would be. To quantify this we identified all paralogs that descended after specificity was 

acquired and found that interactions can be regained at weak interaction stringency (Figure 

3.4D). However, at non-interaction stringency descendants very rarely are able to reform 

interactions (Figure 3.4D) with zero paralogs having full interactions. This was true even when 

non-paralogous interactions were consider post-specificity gain, with only a handful of 

interactions present. Together, this shows that specificity gain becomes increasingly strict, with 

marginal losses of heterodimeric capacity able to be rescued while total loss of heterodimeric 

capacity is irreversible. 

The lack of selection and the rarity of interactions returning post specificity gain presents 

a model where even proteins under many constraints, such as bZips, are able to evolve 

specificity in non-overlapping ways (Figure 3.4E). Particularly, the interaction space (the group 

of proteins a given protein interacts with) is disjoint for  proteins after specificity has been 
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gained, regardless of new duplications opening up new spaces. This is similar to other work 

which has noted that sequence space is sparsely populated44.     

 

Discussion: 

Here we performed the first comprehensive characterization of the evolutionary development of 

a PPI. With a nearly complete map of the interactions among the E4BP4/PAR family back to the 

vertebrate/cnidarian ancestor we provide an in depth examination of how a homodimeric protein 

can gain diversity in function among its descendants. Unexpectedly, we found specificity occurs 

in a majority of duplication events, implying that it may not be a relatively rare event, but rather 

a bias from lack of characterization. The gain of specificity is a gradual process with many 

contributing substitutions, that starts occurring immediately post-duplication. We found that once 

specificity was achieved it was functionally irreversible, no matter where on the tree it occurred. 

Finally, we developed a novel experimental measure to test for selection by comparing ortholog 

and paralog rates of interaction. Using this, we were unable to find any selection leading to 

specificity gain.  

 The fact that we see specificity arise multiple times across our tree, but never find 

subsequent gains of specificity interacting with the descendants of previous gains of specificity 

implies that there are many different ways to achieve specificity, without overlapping in 

interaction space. Although it has previously been noted that interaction space is sparsely 

populated44, our work shows that it is not just all of interaction space that is sparsely populated, 

but that the portion that is evolutionarily accessible is also sparsely populated. Coupled with the 

lack of selection in our study and the speed with which proteins gain specificity, this suggests 



 133 

that even for highly constrained protein interaction space is so vast that once an interaction is lost 

it cannot be found again.  

 The pressures on a genome post-gene duplication has engendered much speculation. 

Simple subfunctionalization or neofunctionalization may not be possible when the duplicated 

protein homodimerizes, and instead paralog interference may result which must be resolved45. 

The pervasiveness of specificity among descendant paralogs in our study suggests that paralog 

interference maybe an issue, but find a reliance on protein sequence to do so. Although this 

disagrees with the predominant thought of gene regulatory networks regulating duplicated 

gene46, and we cannot rule out regulatory effects, clearly PPIs in the E4BP4/PAR family are 

avoiding conflicts.    

   Finally, here we developed a system that opens up a new way to test how novel 

biochemical phenomena arise. Rather than testing a few extant orthologs we were able to test 

proteins across a phylogeny in a high-throughput manner, allowing us to ascertain insights in to 

the evolutionary process that would otherwise be unobtainable. We note that this approach could 

be used to study any other protein property that has been adapted to a high-throughput assay for 

gaining evolutionary insights into functions such as RNA or DNA binding or activation, 

apoptosis or fluorescence47.   
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Figure 3.1) Characterization of 66,000 E4BP4 and PAR protein-protein interactions: A) 

Schematic of a hypothetical protein family, descended from an ancestral homodimer. Extant 

sequences (lower row) display a diversity of functions including a losses of homodimerization 

and heterodimerization. B) Phylogeny of E4BP4 and PAR, going back to their last common 

ancestor of vertebrates and cnidaria. Major classes are shown in silhouette for deuterostome 

(gorilla), protostome (snail), cnidaria (jellyfish) and outgroup porifera (sponge). C) Schematic of 

the NGB2H system. Top: illustration of the major components of the bacterial two-hybrid 

(B2H), with sfGFP reporter and DNA barcode (BC). Bottom: interacting hybrid proteins 

reconstitute adenylate cyclase activity and produce cAMP which drives expression of pLac and 

the corresponding DNA barcode which is then quantified through next-generation sequencing. 
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D) K-means clustering on Interaction Scores plotted on the phylogeny.  Seven clusters, 

illustrated by different colored dots, broadly correspond to several major clades.    
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Figure 3.2) Paralogs gain specificity many times: A) (Top) Schematic illustrating paralogs 

examined in this study. Diagram includes both extant (yellow, teal) and extinct (orange) 

paralogs. (Bottom) Phylogeny of illustrating interactions between paralogs. Each arc is colored 

to represent the classification of each interaction. Pie charts at each duplication node quantify the 

interactions of descendant paralogs and list the number of interactions in the pie chart. B) Traces 

showing the evolutionary path from duplication to the first point at which specificity is achieved. 

Each color represents a unique duplication (red square) that evolves (colored rectangles 

overlaying branches) to the first point at which paralogs no longer interact (filled circles). C) 

Number of paralogs required for specificity to be gained. D) Total summed branch lengths 

between paralogs that have gained specificity. E) Permutation tests showing the distribution of 

averages of randomly sampled paralogs from duplications that have gained specificity. Dotted 
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lines indicate the measured average of nodes where specificity was gained. F) Homodimerization 

of descendant paralogs at the point specificity was gained. Colors represent by different levels of 

stringency for loss.  NA was not measured. G) Fraction of interaction classifications with all 

measured proteins by the homodimers at the point specificity was gained at weak interaction 

stringency (left) and non-interaction stringency (right). 
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Figure 3.3) Gains of specificity do not necessitate vast rewiring: A) Pearson’s correlation 

coefficients between interaction score of proteins at the point specificity is gained. Lines connect 

different stringencies of specificity gains from the same duplication event. B-C) Pearson’s 

correlations of between ancestral duplications and descendants that have gained specificity. B) 

Weak interaction stringency for specificity gains. C) Non-interactions stringency for specificity 

gains. D-E) Interactions between points where specificity was gained and the duplication node. 

Colors indicate the interaction strength. D) Weak interaction stringency for specificity gains. E) 

Non-interaction stringency for specificity gains. F-G) Composition of all interactions for 
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ancestor duplication nodes and descendants that have gained specificity F) Weak interaction 

stringency for specificity gains, G) Non-interaction stringency for specificity gains.  
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Figure 3.4) Specificity is not driven by direct selection and leads to an open ended space: A) 

Schematic of the differences between orthologs and paralogs. Paralogs (Top) exist in the same 

organism and interactions can be selected for or against. Orthologs (Bottom) exist in separate 

organisms and interactions between them cannot be directly selected for. B-C) Odds of orthologs 

or paralogs interacting depending on branch length. B) Weak interactions are lost interactions. C) 

Non-interactions are lost interactions. D-E) Fraction of descendants in each class after specificity 

has been gained D) At weak interaction stringency E) At non-interaction stringency F) Potential 

mechanism for divergence and specificity gain. X’s denote a protein descending along a tree 

(Black: prior to duplication, White post duplication). Ovals denote the protein’s potential 

interaction partners. Different colors denote different interaction partners.  
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Methods: 

Sequences data and alignment 

We initially collected 236 bZip sequences from across metazoa in the PAR, E4BP4  and closely 

related paralog families. These sequences were aligned with MUSCLE48, and the data alignment 

curated by hand. We used RaxML49 to infer the best fit evolutionary model on this tree using the 

PROTGAMMAAUTO feature, and found it to be LG50 with ML base frequencies. We then 

inferred the tree using PhyML51 using the LG model, a 4 category gamma model and the amino 

acid frequencies calculated in RaxML. aLRT52 support values and bootstrap replicates were 

calculated in PhyML. TBE53 support values were calculated using BOOSTER. For the ancestral 

sequence reconstruction, we next trimmed the alignment down to just the bZip domain and 

adjacent DNA binding domain. We then constrained the species relationships within each 

paralog to conform to a unified species phylogeny. This was necessary in order for us to be able 

to time particular ancestral paralogs relative to each other so that we could infer groups of 

ancestral paralogs that would have existed in the same ancestral genomes. To do this we 

removed taxa until we arrived at a species phylogeny on which all groupings are supported by 

literature available at the time the tree was constructed in 2018. It is possible that our 

constraining created some incorrect relationships, if there are extensive histories of duplication 

and lineage specific losses, but we saw no evidence for this on our larger ML phylogeny. After 

pruning, we had 95 PAR homologs, 70 E4BP4 homologs and 6 poriferan orthologs across 52 

species which included 6 poriferans, 6 cnidarians, 21 protostomes and 19 deuterostomes.  

 

For ancestral sequence reconstruction we first optimized the branch-lengths in PAML54, and then 

calculated ancestral sequences also in PAML. Posterior probabilities of each position were for 
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each protein were calculated using the LAZARUS python wrapper for PAML. The maximum a 

posterior sequences for each node and the sequences of each tip are available upon 

correspondence with the author.   

 

Gene tree reconciliation 

To reconcile the gene tree with our species phylogeny, we used NOTUNG55. This program 

assigns the most parsimonious history of gene duplications and losses to each gene, based on the 

species tree we defined. The number of losses are almost certainly an overestimate, because we 

did not always include all paralogs from every organisms. Particular paralogs were excluded if 

they had unstable positions on the phylogeny, or if their sequence was not complete, or if we 

could not unambiguously assign the exon structure for sequences that derived from DNA data. 

The number of losses should thus not be interpreted as meaningful on our reconciled gene tree.  

 

Timing of ancestral proteins 

To find pairs of ancestral proteins in our dataset that would have existed in the same genome, we 

used our species phylogeny. Nodes on our gene phylogeny that correspond to the same 

speciation event on the species phylogeny represent proteins that would have existed in the same 

genome.  

 

Oligonucleotide design 

Every full-length sequence (258 unique sequences) on the tree was designed to fit 

oligonucleotides that would be cloned into each half of the two-hybrid (X and Y halves). For 

those to be cloned into the X position sequences consisted of one of five 15bp forward flanking 
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subpool primer, a 15 bp forward pooled primer, 128 bp reverse complement of the coding 

sequence of protein sequence, a BspQI site for scarless cloning with the T25 fragment, a BbsI 

site for ligating to corresponding Y oligonucleotides, a 34bp spacer and one of five 15 bp reverse 

flanking subpool primer for a total of 230 nucleotides. Likewise, oligonucleotides encoding 

sequences to be cloned into the Y position consisted of one of five 15 bp subpool primer, a 25 bp 

spacer, a BbsI site for ligating to corresponding X oligonucleotides, a BtsaI site for scarless 

cloning with the T25 fragment and promoter, 128 bp of protein coding sequence, a BsaI site for 

scarless cloning of the T18 fragment and two-hybrid reporter, a reverse pooled primer and one of 

five reverse subpool primers. Each oligonucleotide is encoded in one of three codon usages for 

each bZip. A total of 258 sequences * 2 orientations * 3 codon usages * 5 subpools  = 7740 

unique oligonucleotides were ordered as an OLS pool from Agilent using their high-fidelity 

process. All protein coding oligonucleotide sequences are available upon correspondence with 

the author.  

 

Reagents used 

All reagents used for cloning and NGB2H assay were purchased from the following vendors. All 

qPCR was performed using  KAPA SYBR Fast 2x Master Mix  (KAPA KK4601). Colony PCR 

for characterization of cloning efficiency was performed with Apex TAQ Red Master Mix 2x 

(Genesee Scientific, 42-138). All other PCR, was performed using high-fidelity polymerase 

NEBNext Q5 Hotstart HiFi PCR Master Mix (NEB M0542L). Restriction enzymes, ligase and 

phosphatase for cloning were all ordered from NEB (BbsI-HF R3539L, AscI R0558L, EcoRI-HF 

R3101L, BspQI R0712L, BstαI R0667L, BsaI-HFv2 R3733L, High concentration T4 Ligase 

M0202M, rSAP M0371L). Nucleic acids were prepared with kits from Qiagen: vector with 
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Qiagen Plasmid Plus Maxi Kit (Qiagen 12963), DNA from the NGB2H assay with QIAprep 

Spin Miniprep Kit (Qiagen 27106), RNA from the NGB2H assay with RNeasy Mini Kit (Qiagen 

74106) with on column DNase digestion (Qiagen 79254) and concentrated with RNeasy 

MinElute Cleanup Kit (Qiagen 74204). Both PCR and gel DNA cleanup were purified with 

Zymo  (Zymo D4014 and D4008) and the removal of biotinylated nucleic acid products was 

performed using Dynabeads M-270 Strepavidin (Themofisher 65305). Reverse transcription was 

performed with Superscript IV (ThermoFisher 18090050) with the addition of RNase A (Qiagen 

19101). All DNA samples were confirmed to be monodispersed on an Agilent Tapestation 2200 

using D1000 screentape (Agilent 5067-5582). Cloning was performed into NEB 5-alpha (NEB 

C2987I) or custom strains, as indicated.    

 

Library cloning 

10pM High-fidelity OLS pools were resuspended in 25uL EB. Samples were diluted 20x in 

ddH2O and used as template for qPCR with subpool primers oSK538-oSK542 and oSK619-

oSK623 for X oligonucleotides and oSK543-oSK547 and oSK624-oSK628 for Y 

oligonucleotides. All subpool samples showed robust exponential amplification with Cqs 

between 6 and 13 cycles.  A high-fidelity PCR was performed in triplicate for each subpool, for a 

number of cycles which maintained exponential amplification to avoid potential biases in the 

library composition. Replicates were pooled, cleaned up and digested with BbsI-HF at 1ug scale 

for 3 hours. Digestions were run on a 4% agarose gel, and the band containing the protein coding 

sequence was extracted. Matching subpools (ie, subpool-1 for the X-containing oligonucleotides 

and subpool-1 for the Y-containing oligonucleotides) were mixed and ligated with T4 DNA 

Ligase overnight at 50ng scale. Samples were cleaned up and qPCR performed with a 1:5 
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dilution using subpool primers oSK603 and oSK682. All subpools, exhibited exponential 

amplification, though for fewer than 12 cycles. The PCR was repeated in triplicate with high 

fidelity polymerase for two cycles fewer than the Cq in the qPCR. The triplicates were pooled 

and ran on 3% gel and cleaned up. Each subpool was quantified on a tapestation and equimolar 

fractions of each were pooled and diluted 100-fold. qPCR of the merged subpools was performed 

with oSK358 and oSK727 to attach restriction enzyme sites (AscI to the n-terminus and BsaI and 

EcoRI to the c-terminus) and a 20bp random DNA barcode to the X-Y containing constructs. 

Samples exhibited exponential amplification for nine cycles, so a high fidelity PCR was 

performed in triplicate for seven cycles and pooled. This barcoded product was run on a 3% 

agarose gel and extracted. Samples were then digested with AscI and EcoRI-HF for four hours at 

3ug scale. Freshly prepared pSK33 was also digested with AscI and EcoRI-HF, with the addition 

of rSAP, for three hours, before being ran on a 1% gel and the digested band extracted. pSK33 

and the barcoded insert were ligated with T4 DNA Ligase at 400ng scale at RT for two hours. 

Samples were cleaned up into 6uL ddH2O and 1uL was electroporated into 25uL NEB 5-alpha. 

After 35 minutes recovery in 1mL SOC, samples were plated on LB agar + Kanamycin plates 

and grown overnight at 37C. In the morning colony PCR was performed on 16 colonies with 

oSK191 and oSK120 and showed 16/16 containing the insert. Approximately 30 million colonies 

were obtained of which 6 million were scraped from the plates, diluted to OD 0.02 in 150mL of 

LB + Kanamycin and grown overnight at 30C. This was then purified and used as backbone 

vector for cloning the T25 segment and mapping the barcodes to the hybrid proteins.  

 To clone the T25 segment, the backbone vector was diluted to 0.5ng/uL and amplified in 

qPCR with biotinylated oligonucleotides oSK720 and oSK721. The vector showed exponential 

amplification through 14 cycles, so a high-fidelity PCR was repeated in triplicate for twelve 
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cycles. The vector was cleaned up, pooled and digested with BspQI at 10ug scale overnight, 

before being cleaned up and digested at 10ug scale with BstαI for six hours with the addition of 

rSAP for the final hour. The digested vector was then purified with Dynabeads to remove 

undigested product, before being cleaned up again. The T25 segment was prepared by high-

fidelity PCR of template pSK59 with oligonucleotides oSK694 and oSK695. Sample was run on 

a 1.5% agarose gel, cleaned up and digested with BspQI at 5ug scale for 6 hours. Sample was 

then digested with BstαI for six hours at 5ug scale before being cleaned up with Dynabeads to 

remove undigested product. Insert was cleaned up again and ligated with the vector at 4ug scale 

using T4 DNA Ligase at RT overnight. Sample was concentrated to into 6uL ddH2O and 1uL 

was transformed into freshly prepared electrocompetent pSK34 in four separate transformations. 

Transformations were resuspended in 1mL SOC and incubated at 37C for 35 minutes before 

being plated on LB agar + Kanamycin + Carbenicillin overnight at 37C. Approximately 4 

million colonies were obtained, and colony PCR was performed on 32 colonies of which 31/32 

had the correct insert. All four million colonies were scraped and resuspended in 150 mL LB + 

Kanamycin + Carbenicillin at OD 0.02 and grown overnight at 30C. This was then purified and 

used as backbone for cloning the T18 segment.  

 To clone the T18 segment the backbone vector was diluted to 0.5ng/uL and qPCR was 

performed with biotinylated oligonucleotides oSK753 and oSK754. The vector showed 

exponential amplification for sixteen cycles so a high-fidelity PCR was repeated in triplicate for 

fourteen cycles. Sample was cleaned up and pooled and digested at 5ug scale with BsaI-HFv2 for 

four hours with the addition of rSAP for the last half hour. Digested vector was purified with 

Dynabeads to remove undigested product and cleaned up again. The T18 segment was prepared 

by high-fidelity PCR using pSK59 as the template and oligonucleotides oSK698 and oSK202. 
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PCR product was run on a 1.5% agarose gel, extracted and digested with BsaI-HFv2 for three 

hours at 3ug scale. Digested insert was purified with Dynabeads to remove undigested product, 

before being cleaned up again and ligated with the digested vector at 500ng scale  using T4 DNA 

ligase for two hours at room temperature. This was purified in 6uL ddH2O and 1uL was 

electroporated into 25uL of freshly prepared electrocompetent pSK34. The transformation 

recovered in 1mL SOC at 37C for 35 minutes. Sample was plated on LB agar + Kanamycin + 

Carbenicillin and grown up overnight at 37C. Approximately 10 million colonies were obtained 

and colony PCR showed 16/16 colonies contained the insert. All 10 million colonies were 

scraped, diluted to OD 0.02 in LB + Kanamycin + Carbenicillin and grown overnight at 30C. We 

created glycerol stocks from this overnight culture, stored at -80C and for downstream 

experiments one glycerol stock was thawed and subsequently discarded. Finally, to confirm that 

only one unique plasmid was present per cell, we sanger sequenced the barcodes of 20 colonies 

all of which had only one construct, and none of which shared a barcode, suggesting a relatively 

even dispersal of construct representation.  

 

Library mapping 

After the barcodes were attached to the hybrid proteins, but before the T25 segment was cloned 

in, we used an Illumina MiSeq to read through the hybrid proteins and the barcode in a single 

read. To map the proteins, we first performed qPCR using oSK752 and oSK193 on the vector, 

which showed exponential amplification through 12 cycles. A high-fidelity PCR was repeated in 

triplicate, samples were run on a 2% gel, extracted and pooled. Samples were quantified and 

shown to be monodispersed on an Agilent Tapestation, and requantified and shown to be free 

from salt contamination on a nanodrop. Samples were loaded into Illlumina MiSeq V3 PE 600 
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kit (Illumina MS-102-3003) at 18pM with a 10% spike-in of PhiX Sequencing Control (Illumina, 

FC-110-3001) with primers oSK751 for read 1, oSK324 for the index read, and oSK323 for read 

2. Two runs were completed for 54M paired-end reads which we used our custom mapping 

pipeline to link barcodes to those constructs where both proteins perfectly matched reference 

sequences. In brief, we used BBTools to filter high-quality, non-PhiX reads, and merge the 

paired ends at which point we used Starcode to remove PCR errors. We then used a custom 

python script that identified barcodes and coding proteins, while discarding those barcodes that 

were too close in sequence space or chimeric. Coding proteins were then mapped to reference 

sequences using BBMap. In total we mapped to 3.6M unique barcodes with errorless hybrid-

proteins. Each barcode had a read depth between one and 461 with a mean of 7.7 reads. Each of 

66,559 protein pairs had between one and 203 barcodes uniquely identifying it with a mean of 

54.5 barcodes per construct.  

 

NGB2H Assay 

After cloning, we performed the NGB2H assay. Similar to previous work, glycerol stocks of the 

library were thawed, and 100uL grown up overnight in 100mL EZ Rich Defined Media 

(Teknova M2105) with Kanamycin and Carbenicillin at 30C. We also grew up a several 

microliters of the previously published CC0 Library in 10mL of EZ Rich Defined Media with 

Kanamycin and Carbenicillin at 30C. The next morning, we inoculated two biological replicates 

of 100mL of EZ Rich Defined Media with Kanamycin and Carbenicillin with inducers 10ng/mL 

Anhydrotetracycline and 2.5uM 2,4-Diacylphlorolglucinol with 100uM Isopropyl B-D-1-

thiogalactopyranoside (IPTG) with a 0.2% spike-in of the CC0 Library. Samples were incubated 

with shaking at 37C for six hours before being placed on an ice slurry for 15 minutes and 
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samples taken for RNA and DNA processing.  These samples were then flash frozen and stored 

at -80C.  

 

Barcode preparation 

Samples were thawed for both DNA and RNA extraction. RNA was extracted with on-column 

DNase digestion, and concentrated to ~2ug/mL. Samples were subject to primer specific RT-

PCR using Superscript IV with oligonucleotide oSK193 or oSK194, for separate biological 

replicates, to attach Nextera lowplex I7 indexes and P7 sequence adapters. RT-PCR was 

performed with the following modifications to the protocol: instead of 5ug of RNA, we used 

22.5ug in 11uL and the reverse transcript step at 55C was 1 hour instead of 15 minutes, and we 

added 1uL of RNase A to the RNase H digestion step. After reverse transcription, samples were 

qPCR’d with oligonucleotides oSK730 or oSK731 and oSK200 to attach the P5 sequencing 

adapter and I5 indices, and no-RT controls confirmed a lack of DNA contamination. Samples 

showed exponential amplification through 13 cycles, so a high-fidelity PCR was repeated in 

triplicate for 11 cycles, samples were run on a 3% gel, extracted and pooled. DNA samples were 

similarly extracted, and used for qPCR with oSK732 or oSK733 and oSK195 or oSK196 for 

separate biological replicates to attach sequencing adapters and Nextera I5 and I7 lowplex 

indices. Samples showed exponential amplification through 16 cycles, so a high-fidelity PCR 

was repeated in triplicate for 14 cycles. Samples were run on a 3% gel, extracted and pooled.   

 

Barcode sequencing 

After purification samples were quantified on an Agilent Tapestation, which showed them to be 

monodispersed and concentration was confirmed on a Nanodrop. Biological replicates from both 
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the RNA and DNA were pooled in equimolar fractions, and sequenced on a Nextseq 500 with a 

Nextseq 500/550 High Output Kit v2.5 (75 cycles) (Illumina 0024906) at 1.8pM with 15% spike-

in of PhiX Sequencing Control (Illumina, FC-110-3001) for 40 cycles. Primers oSK326 for read 

1, oSK324 for index read 1 and oSK742 for index read 2 were spiked in to the corresponding 

Illumina primer wells.  ~480M reads were obtained which passed filter and demultiplexed as 

expected.  

 

Barcode processing and data quality 

Barcodes were stripped to the first 20bp, counted and single base errors were removed with 

Starcode.  633,570 barcodes identified sequence-perfect hybrid proteins with more than 10 reads 

in the DNA samples of both replicates, quantifying the interactions of 65,892 unique protein 

pairs, with median depth of nine barcodes. For each protein pair we calculated an Interaction 

Score defined as the median(RNA counts for both replicates/DNA counts for both replicates) for 

each barcode.  Biological replicates showed strong agreement between interaction scores, with 

Pearson’s r = 0.83 (Figure 3.S3A). We suspect the correlation between replicates would have 

been higher had the Interaction scores not been dominated by low values near the bottom of our 

dynamic range. Our previously validated CC0 Library performed as expected. Though 

admittedly undersequenced, when using the alternative interaction score of sum(RNA barcode 

counts)/sum(DNA barcode counts) for those with > 8 DNA barcodes in each replicate, we found 

a strong correlation with the previously published Tms38 with Pearson r = 0.79 (Figure 3.S3B) 

which is on par with our previous uses of the CC0 Library37. Finally when examining Interaction 

Scores of indels in either the X or Y-hybrid protein, we found that the indels had 95% of 

Interaction Scores < 0.2, compared to 0.85 for sequence-perfect pairs (Figure 3.S2A).  
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Pair classification 

To classify each pair we compared the distribution Interaction Scores of individual barcodes of a 

protein pair to the distribution of indels in the X-proteins (specifically those 1bp indels that occur 

in the first five amino acids). The X-proteins with indels still have complete adenylate cyclase 

proteins, and thus should have the background level of reporter activation seen in a cell without 

an interaction—as the X-protein indels are assumed to be non-interacting. To compare the 

distribution of barcodes to the distribution of indels we performed a one-side Mann-Whitney-

Wilcoxon test to test if the barcodes of protein-pair were drawn from the indel distribution. 

Those proteins with a p-value < 0.05 were classified as interactions, while those with greater p-

values were classified as non-interactions. No correction was performed for multiple testing as 

non-interactions are of equal importance as interactions for our analysis. For heterodimers, we 

tested both orientations—that is a protein can be a hybridized to the X half or the Y half of the 

two-hybrid and our assay can distinguish between these options—of interactions for the vast 

majority of pairs. Often the classification of the two orientations disagreed. We found that this 

group constituted its own class as the p-values for the orientation that were classified as an 

interaction were significantly higher when compared to those where both orientations were 

classified as an interaction. Similarly, the orientation that was classified as a  non-interaction had 

significantly lower p-values than those pairs where both orientations were classified as non-

interactions (Figure 3.S2B).  Moreover, when analyzed phylogenetically, the majority of these 

intermediate pairs appeared between interactions in both orientations and non-interactions in 

both orientations. Taken as a whole, we believe this indicates a true intermediate class of weak 

interactions, and use three classes of strong interactions (both orientations are interacting), weak 



 152 

interactions (orientations disagree about whether it is an interaction), and non-interactions (both 

orientations are non-interacting).  

 

Data analysis 

The classified data was used for all downstream analyses. Analysis was done in Python (v3.8) 

and R (v4.0.3). Phylogenetic figures were generated in Python while all other figures were 

generated in R. Images were assembled in Adobe Illustrator (v25.1).  

 

Phylogenetic independence 

To calculate independent phylogenetic intervals we used a sampling procedure to ensure 

branches of the tree were not counted more than once.  We first isolated those protein pairs that 

were paralogs or orthologs where the last common ancestor homodimerized. We then binned 

samples based on the branch length between the two proteins. Binned samples went through a 

Monte Carlo process where in each iteration a random sample was taken and all protein pairs in 

the bin that shared branches with the sample pair were removed. This continued until there were 

no more proteins in the bin at which point the average interaction classification was computed. 

Averages were computed for all bins and the process was repeated 20 times to collect error 

measurements.   
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Figure 3.S1) Species tree and number of proteins present: Phylogeny containing the species 

used in this study. The major clades, porifera (sponge), cnidaria (jellyfish), protostomia (snail), 

and deuterostomia (gorilla) are marked by silhouettes. Each node is colored by the number of 

proteins in the species it that were included in this study.  
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Figure 3.S2) Calculation of classification scores: A) Distribution of Interaction Scores for 

protein pairs with an indel in the X protein (Red), plotted against the Interaction Scores for 

perfectly constructed protein pairs. Dashed line indicates the significance level used. B) 

Distribution of P-values by Classification Score before the two orientations of a protein pair are 

collapsed into a single measurement. *** = p < 10-160 Wilcoxon two-sided test.  
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Figure 3.S3 Quality metrics of the NGB2H measurements: A) Interaction Scores of 

biological replicates of the NGB2H assay on the library of all proteins included in this study. 

Replicates correlate well with Pearson’s r = 0.833, p < 10-16 B) Interaction Scores of CC0 

Library spike-in against their published melting temperatures. Dashed line represents the 95% 

cut-off of the indels used for classification.  C) Hierarchical clustering of Interaction Scores 

collected. Individual squares represents the interaction of proteins listed along the axes. Each 

interaction is colored by interaction classification.  
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Figure 3.S4) k-means clustering metrics: A) Elbow plot of sum of squares error by number of 

clusters used. The graph has two potential elbows, at three clusters and seven clusters. B) 

Silhouette coefficient averages by  number of clusters. Highest coefficient is at two clusters 

because of pseudocounts on missing data. Local maxima at six clusters suggested data was best 

clustered at six or seven clusters (as determined by SSE).  
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Figure 3.S5) Loss of heterodimerization after duplication for paralogs at weak stringency: 

Phylogeny illustrating the losses of heterodimerization where a weak interaction is considered 

lost. Red squares indicate duplication nodes, and those which have descendent paralogs which 
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have gained specificity are outlined in (a unique) color from the duplication node to the paralogs 

which no longer interact.  
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Chapter 4: Conclusions 

The many trajectories to specificity in protein-protein interactions 
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In this thesis we have attempted to understand several aspects of specificity in PPIs. As it 

previously was quite difficult to investigate specificity, we first built a generalizable, scalable, 

high-throughput system to measure PPIs. The NGB2H system allows a wide variety of previous 

inaccessible questions to be addressed. Specifically, the use of gene synthesis coupled with a 

mapping step to unambiguously identify the hybrid protein sequences allows any protein to be 

assayed for interactions, unlike previous high-throughput PPI systems1–6.  We used the NGB2H 

system to identify the largest sets of orthogonal proteins currently known, a reagent class that has 

a wide variety of uses in synthetic biology.  These proteins were used in a design-build-test cycle 

to improve coiled-coil design algorithms, in an iterative fashion which should inform future de 

novo design. We then used the NGB2H system to investigate the evolution of specificity, which 

we found occurred very often in the PAR/E4BP4 family of bZips. Moreover we found the 

evolution of specificity to have several unique properties: it occurs gradually, it is a permanent 

gain, and it is not driven by direct selection. Direct measurement of these properties requires 

high-throughput characterization of ancestral proteins, and allow experimental revision of 

received evolutionary theory.  

 

A. Potential applications of the NGB2H system 

 

Although the interactomes of species have been characterized, there has been very little work on 

how polymorphisms can effect PPIs. The few studies that do exist of PPIs that don’t use genome 

consensus sequences only serve to highlight how important it is to study polymorphisms. The 

first studies on variants of PPIs have characterized a few thousand mendelian7 and 

developmental8 disease mutants, and found perturbations were quite common. Interestingly, 
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these studies have found a substantial fraction of mutations will inhibit one interaction but not 

others, which emphasizes the need for targeted studies rather than gross effects such as gene 

knockouts to better understand the pleiotropic nature of most proteins9. Though one expects that 

characterizing polymorphisms that are not disease linked would capture fewer changes relative to 

the consensus genome, in light of the omnigenic model, characterizing the effects of all changes 

to PPIs in a quantitative manner is clearly necessary10.  

 Because it uses gene synthesis to generate library diversity, the NGB2H system allows 

facile testing of synthetic proteins in PPIs. Given the veritable flood of de novo designed proteins 

which often engage in PPIs11,12, there is a need for a system that can test sequence-similar 

synthetic constructs and a high-throughput system is particularly useful given the low percentage 

of successful designs13.  Moreover, high-throughput studies have allowed actual learning from de 

novo design, such as finding pure alpha helical domains to be the most stable among 

microprotein topologies14 and tradeoffs between stability and fluorescence in beta-barrel 

proteins15. Use of the NGB2H system could allow deep learning on de novo designed proteins 

that have modular hydrogen bond networks analogous to Watson-Crick base pairing, or easy 

characterization of binding strength of antigen-targeting proteins16,17.  

  

B. The future of engineered coiled-coils 

 

Coiled-coils have a bright future as the nanoscale building blocks. Although DNA origami has 

long dominated the creation of nanoscale structures, proteins are becoming more popular as their 

design becomes more tractable18. Symmetric protein structures have used both de novo designed 

proteins19–22 and repurposed oligomeric proteins23–25 but are limited to platonic solids. Coiled-
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coils, however, are able to build a wide variety of structures such as triangles, tetrahedra, and 

four sided pyramids26–28 or  large spherical cages29. The expanded set of orthogonal proteins that 

we have produced in this work will open up a wide range of previously uncreatable topologies. 

This is particularly exciting given the developing applications. Of note, coiled-coil 

nanostructures easily endocytosed, both in cell cultures30 and in mice28 which allows for in vivo 

uses. As such they could be functionalized with enzymes for improved localized catalysis, 

fluorophores for imaging, or loaded with cargo for intercellular release.  

 Our improvements to coiled-coil design offer some insight into the limits of protein 

design with a simple linear model. Most of our improvement in prediction did not come from 

reweighting compared to previous linear models of coiled-coils31,32 even with our dramatically 

increased training set, but rather from heptad shifting—where we choose the heptad alignment 

between proteins that has the strongest interaction. Further improvements will likely use a 

similar approach and be driven by considerations outside of the individual residue pairings that 

determine iCipa.  

Currently, the main weakness of iCipa is that it only functions for an extremely narrow 

set of amino acids, I and N at the A-position and E and K at the E- and G-positions. Fortunately, 

heptad shifting is likely generalizable to a more complex model than we built here, and a more 

general model of coiled-coil interactions should be able to incorporate heptad shifting with 

minimal changes.  

 

C. High-throughput empirical studies of evolution 
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The study of evolution has long been driven by inference—as we cannot know what happened in 

the course of evolution we are left to mine sequences and morphologies for signatures of 

selection, adaptation, constraints, or gene flow. However, this can lead to biases in approach. 

One of the preeminent evolutionists of the second half of the twentieth century, Ernst Mayr, 

argued for an ‘adaptationist program’  saying, “Can one deduce the probability of causation by 

selection? Yes, by showing that possession of the respective feature would be favored by 

selection ... When one selectionist explanation of a feature has been discredited , the evolutionist 

must test other possible adaptationist solutions before he can resign.”33 This favors selective 

explanations in several ways, but has been broadly influential in shaping modern evolutionary 

thought34,35.       

Ancestral sequence reconstruction (ASR), though not free from its own form of inference, 

provides an important crosscheck on misguided attribution of some feature to a given 

evolutionary force36. Importantly, ASR has found numerous examples that suggest that 

acquisition of novel features can be driven by chance. For example the McDonald-Kreitman 

test37, which compares the ratio of fixed non-synonymous to synonymous substitutions to the 

ratio of polymorphic non-synonymous to synonymous substitutions to provide a measure of 

adaption, has been used to find pervasive positive selection across genomes38–40. The  origin of 

the McDonald-Kreitman test was to demonstrate the adaptive nature of D. melanogaster’s ability 

to metabolize alcohol from rotting fruits relative to other Drosophila species, however, when the 

ancestral enzyme was inferred and Km and Kcat compared to extant melanogaster’s alcohol 

dehydrogenase, no differences were observed41. Similarly, the presence of widespread 

oligomerization has been attributed to positive selection42, but ASR has demonstrated that this 

could easily occur neutrally and become entrenched by purifying selection43. In this work we 
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also showed non-adaptive processes could give rise to complexity. One speculates that the role 

of neutral processes in evolution has been underappreciated44,  and that ASR based experiments 

could provide a remedy for this. High-throughput ASR experiments, in particular, have a 

promising future answering some of the most pressing questions in evolution. Indeed we are 

already seeing experimental replay of the tape of life to measure the contributions of chance and 

contingency45 and characterization of the evolutionary trajectories life did not take46.  Future 

experiments could characterize entire evolutionary trajectories, to understand the dynamics of 

chance, contingency, entrenchment, selection and drift across time.  
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