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Abstract 
We present a methodology to evaluate the accuracy of baseline energy predictions. To evaluate the 
predictions from a computer program, the program is provided with electric load data, and additional 
data such as outdoor air temperature, from a “training period” of at least several months duration, and 
used to predict the energy use as a function of time during the subsequent “prediction period.” The 
predicted energy use is compared to the actual energy use, and errors are summarized with several 
metrics, including bias and Mean Absolute Percent Error. An important feature of this methodology is that 
it can be used to assess the predictive accuracy of a model even if the model itself is not provided to the 
evaluator, so that proprietary tools can be evaluated while protecting the developer’s intellectual 
property. The methodology was applied to evaluate several standard statistical models using data from 
four hundred randomly selected commercial buildings in a large utility territory in Northern California; the 
result is a statistical distribution of errors for each of the models. We also demonstrate how the 
methodology can be used to assess the uncertainty in baseline energy predictions for a portfolio of 
buildings, which is an issue that is important for the design of utility programs that incentivize energy 
savings. The findings of this work can be used to (1) inform technology assessments for technologies that 
deliver operational and/or behavioral savings; and (2) determine the expected accuracy of statistical 
models used for automated Measurement and Verification of energy savings.  
 
Keywords: baseline prediction; energy savings; performance accuracy; whole-building energy; energy 
efficiency programs, energy management and information systems 
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1. Introduction 
Energy Management and Information Systems (EMIS) span a spectrum of technologies 
and services including energy information systems (EIS), building automation systems, 
fault detection and diagnostics, and monthly energy analysis tools [CEE 2012]. Tools 
such as EIS have enabled whole-building energy savings of up to 10-20% with simple 
paybacks on the order of 1-3 years [Granderson 2009, 2013] through multiple strategies 
such as: identification of operational efficiency improvement opportunities, fault and 
energy anomaly detection, and inducement of behavioral change among occupants and 
operations personnel.  
 
In addition to enabling savings, some EMIS also automate the quantification of whole-
building energy savings, relative to a baseline period, using empirical models that relate 
energy consumption to parameters such as ambient weather conditions and building 
operation schedule [Granderson 2011; Kramer 2013a, 2013b; Reddy 1997]. Interval 
meter data enable the use of baseline models that have several advantages over the 
monthly models that have traditionally been used to characterize whole-building energy 
performance [Haves 2014; Katipamula 1998; Walter 2103]: they can determine the 
relationship between temperature and electric load more accurately and with a shorter 
duration of data, and they can make predictions at a much finer timescale.  
 
Automated baseline models can be used to streamline the whole-building measurement 
and verification (M&V) process, greatly reducing the cost compared to traditional 
processes, which require a level of building engineering expertise that limits scalability. 
However, several questions remain to be answered before energy managers and utility 
programs can confidently adopt emerging automation capabilities. For example, in 
energy efficiency applications one objective is to quantify and minimize the uncertainty 
in reported whole-building savings, which depends on baseline model effectiveness, 
building predictability, portfolio aggregation effects, and depth of savings being 
measured [Kramer 2013a].  
 
This paper presents an extension of prior research [Granderson 2012] on how to assess 
the accuracy and usefulness of whole-building energy models by testing predictions of 
baseline energy use against actual energy use. We demonstrate the method by applying 
it to a large random sample of commercial building data to answer the following 
questions of practical importance:  
 

1. What is the state of public domain models, i.e., how well do they perform, and 
what are the associated implications for automated whole-building 
measurement and verification? 
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2. How can buildings be pre-screened to identify those that are highly model-
predictable and those that are not, in order to identify estimates of building-
energy savings that have small errors/uncertainty? 

 
In this study we evaluated only public-domain whole-building baseline energy models 
for which outdoor air temperature is the only predictive variable. However, the 
methodology that we used can be applied to evaluate any model, including models that 
make use of additional data such as occupancy levels, business types, or building types. 
 
While resources such as ASHRAE Guideline 14 and the International Performance 
Measurement and Verification Protocol (IPMVP) [ASHRAE 2002; EVO 2012], establish 
procedural and quantitative requirements for baseline model construction, goodness of 
fit to data during the model training period, and rules of thumb for model application 
given different expected depths of savings, they do not provide a general means of 
assessing model performance during a prediction period. They also provide little 
guidance on using interval data as opposed to monthly data. The methodology 
presented in this work extends the principles in these existing resources to quantify 
model predictive accuracy after the training period, and suggests key performance 
metrics to quantify model accuracy in the context of whole-building M&V. Lengthy 
periods of interval meter data from several hundreds of buildings are collated to form a 
‘test’ data set, and statistical cross-validation is performed to gauge performance 
relative to the M&V-focused metrics and time scales of interest.  
 
This methodology shares important similarities to the approaches used in the ASHRAE 
‘shootouts’ of the mid and late 1990s [Haberl 1998; Kreider 1994]. In both cases, cross-
validation is used to determine model error, and in both cases, normalized root mean 
squared error is included as a performance metric. However, the ASHRAE shootouts 
were limited to data from a total of two buildings, and the cross-validation was 
conducted only for short subsets of the model training period.  
 
An important feature of this work is that the methodology can be used to objectively 
assess the predictive accuracy of a model, without needing to know the specific 
algorithm, or underlying form of the model. Therefore, proprietary tools can be 
evaluated while protecting the developer’s commercial intellectual property. The 
findings of this work can be used to (1) inform technology assessments for EMIS 
products and other technologies that deliver operational and/or behavioral savings; and 
(2) set a floor of performance of automated M&V, that can be used to consider 
requirements for utility or corporate efficiency programs, including the tradeoffs 
between cost, and accuracy. 
 
2. Baseline Model Performance Assessment Methodology 
Baseline energy use models characterize building load or consumption according to key 
explanatory variables such as time of day, and weather. These baseline models are used 
for a variety of purposes in EMIS, including near real-time energy anomaly detection, 
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and near future load forecasting, as well as quantification of energy or demand savings 
[Granderson 2009, 2011].  
 
Baseline model accuracy is critical to the accuracy of energy savings that are calculated 
according to the IPMVP. For both whole-building and measure isolation approaches 
(IPMVP Options B and C) the baseline model is created during the “pre-measure” 
period, before an efficiency improvement is made. The baseline model is then projected 
into the “post-measure” period, and energy savings are calculated based on the 
difference between the projected baseline and the actual metered use during the post-
measure period [EVO 2012]. Therefore, the error in reported savings is proportional to 
the error in the baseline model forecasts.  
 
 
2.1 General Methodology 
Prior work established a general 4-step statistical procedure that can be used to 
evaluate the performance, i.e. predictive accuracy, of a given baseline model 
[Granderson 2012].  
 
1) Gather a large test data set comprised of interval data from hundreds of commercial 

buildings. 
 
2) Split the test data set into model training and model prediction periods. These 

periods of interest can be tailored according to the specific application, or use case 
of interest, e.g., energy efficiency savings, demand response load reductions, or 
continuous energy anomaly detection. For this study, the focus was measurement 
and verification of energy savings at the whole-building level.  

 
3) For a given set of baseline models, generate predictions based on the training period 

data, compare those predictions to the data from the prediction period, and 
compute statistical performance metrics based on the comparison. Again, the 
models of interest, and the specific performance metrics can be tailored to 
according to the specific application or use case. 

 
4) Assess relative and absolute model performance using the performance metrics that 

were computed in Step 3.  
 

This process is illustrated in Figure 1, which shows daily average loads. The first several 
months constitute the “training period,” from which the load data and outdoor air 
temperature data are used to create a statistical model that predicts load as a function 
of the time during the week and the temperature. This model is then used to predict the 
load during both the prediction period and the subsequent training period. 
 
The subject building for Figure 1 has several features that are typical of commercial 
buildings: the load is temperature-, and load on weekends is substantially lower than 
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the load on weekdays. At a finer timescale, the building also has a nightly minimum load 
that is much lower than the daytime maximum, but of course this cannot be seen on 
this plot of daily averages. (Plotting 10 months of hourly or 15-minute data would create 
a plot with so many vertical oscillations that it would be impossible to interpret).   
 
 

 
Fig. 1.: Illustration of steps two and three in general methodology to evaluate baseline 

model performance 
 
 
Furthermore, sometime around the beginning of May 2011 the building’s energy 
behavior changes: both the weekday and weekend load decrease substantially, with the 
weekday load decreasing more than the weekends. Sudden or gradual changes of about 
this magnitude are fairly common in commercial building load data, as we discuss in this 
report, and are a major cause of the error in baseline model predictions.  
 

 
The accuracy of model predictions for a system or building depends on how well the 
functional form of the model captures the effect of the input parameters, as well as the 
variability in control, operations, and other parameters that are not inputs to the model. 
This testing methodology assesses model performance in general, ‘on average’ across 
populations of many buildings; it is not intended to reveal whether a given model will 
provide accurate results for a specific building or project. 
 
 
2.2 Definition of Specific Parameters   
Building upon this general 4-step process, specific parameters relevant to the whole-
building M&V application were defined, as described in the following.  
 
Test data set: Whole-building baseline models can include any number of independent 
variables that are then used to predict building load or energy use. In the most 
commonly-used models, outside air temperature, and day/time information from the 
interval meter time stamp are the only independent variables used. Outside air 
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temperature is readily available from building location and weather feeds, whereas 
models that used other independent variables were not accessible to the research team.  
 
The analyses presented used a multi-year data set of interval meter data that was 
randomly selected from mid-size commercial customers across a large utility territory. 
This representative dataset included electricity data from about 400 buildings. We 
found that sample size is large enough to estimate the statistical distribution of baseline 
model errors for mid-sized commercial buildings as a whole –even a random sample of 
30 or 40 buildings appears to be adequate. However, we found that it is not large 
enough to distinguish differences in model performance between different building 
types conclusively.  
 
Training and prediction periods: Given the whole-building M&V application case, a 
twelve month prediction period was deemed of most interest by external stakeholders. 
This is due to the fact that one year is the typical time period used to quantify efficiency 
project savings and payouts, and the fact that one year pre- and post-measure data are 
recommended in ASHRAE Guideline 14 [ASHRAE 2002]. Given a desire to shorten the 
overall M&V process, and therefore total project time, we also considered three, six, 
and twelve-month training periods in evaluating model performance. 
 
Performance metrics: For whole-building measurement and verification (M&V) of 
energy efficiency measures, a key metric of performance is the error, or uncertainty, in 
the total amount of energy used during an evaluation period. The error in total energy 
use during the prediction, or post-measure period, is referred to as the bias, and is 
defined in Equation 1 where totalE  is the measured energy use and totalÊ  is the model 
predicted energy use. A positive bias means the model predicted energy use higher than 
was measured.  
 

         (1) 
 
Bias may be evaluated over any time interval, and bias from different sub-intervals can 
cancel out; for example, if the bias is +7000 kWh in one month, and -7000 kWh in the 
following month, then the bias for the two-month period will be zero. 
  
The second performance metric of interest relates to the ability to predict the total 
energy used for each individual month. This ability is desirable because if a model fits 
individual months well then it may be possible to reduce the duration of either the 
baseline period or the evaluation period. Additionally, if a model generally predicts well 
for individual months, but a few months stand out as being poorly predicted, this can 
help to locate problems that need attention and that might affect the efficacy or 
assessment of the energy efficiency measure. The Mean Absolute Percent Error (MAPE) 
in the monthly energy predictions is defined in Equation 2. The MAPE metric is 
conceptually very similar to the coefficient of variation of the root-mean-squared error 
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CV(RMSE), which is used in ASHRAE Guideline 14, which is a more common metric in the 
industry. Monthly MAPE and CV(RMSE) were both investigated; we found that monthly 
MAPE proved marginally more useful for discriminating between buildings that have 
less- or more-predictable energy use.  
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In addition to Bias, MAPE, and CV(RMSE), many other measures of model accuracy could 
be used to highlight different aspects of performance. As an anonymous reviewer 
pointed out, in some applications there is special interest in predicting the daily peak 
load, and a measure of model fit could be employed that gives high weight to the peak 
load, or to the hours at which load normally peaks. 
 
Baseline models – Five ‘open-source’ models from the public domain literature were 
evaluated. They include change point models, monthly degree-day models, and hourly 
regression models, and are detailed in the Appendix. These models were selected 
because they were readily accessible, and representative of the current state of 
common engineering practice, and EMIS technologies - not because they are unique, or 
were deemed to be the best whole-building baseline models. They were used as 
reference cases to establish a ‘benchmark’, or ‘floor’ for the accuracy of automated 
M&V. This performance benchmark can be used to interpret the performance of 
baseline models used in proprietary tools – one would not logically elect to use a tool 
that fares worse than published open source methods. 
 
 
2.3 Prescreening for Higher Accuracy 
The uncertainty in whole-building savings calculation for a given building is due to the 
robustness of the baseline model used to determine those savings, as well as the 
predictability of the building itself. Three potential indicators of model accuracy were 
investigated to determine their suitability for pre-screening. First a North American 
Industry Classification System (NAICS) code was considered. Of the several hundred 
buildings in the test data set, buildings with similar NAICS codes were grouped to 
determine whether certain building types were predicted with more or less accuracy 
than others.  
 
Second, a load variability metric was considered that quantifies the degree to which the 
building’s load varies from week to week at the same time during the week, as defined 
in Equation 3. For the several hundred buildings in the test data set, the predictive error 
was compared to the magnitude of the variability metric to determine if there was a 
correlation. To calculate the metric, the average load is calculated for each time interval 
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during the week (there are 672 15-minute time intervals in a week). For each data point, 
the difference between the load and the average load at that time of the week is 
calculated and squared. The square root of the average of these squared errors defines 
the load variability metric, LV.  
 

         (3) 

 
Finally, goodness of fit during the training period was explored to determine whether 
buildings which provide a better fit to the energy used during each month of the 
training period tend to have more predictable total energy use during the prediction 
period.  To quantify the model fit during the training period, we considered both the 
monthly mean absolute percent error (MAPE), defined in Equation 2, and the CV(RMSE) 
in the predicted monthly energy use.  
 
3. Results 
3.1 State of Public Domain Models 
Table 1 summarizes the percentiles and mean absolute percent bias for each model, 
using 12-month training and prediction periods. The mean absolute bias for the public 
domain models was approximately 8.4%, and for half of the buildings in the data set, 
bias was less than 5%. This suggests that for large representative samples and one-year 
pre- and post- M&V conditions, models that exhibit mean biases much greater than 8% 
or median biases much greater than 5% would not measure up to the public domain 
models that are currently available, and may not be as appropriate for whole-building 
M&V in general. Of course, those models may exhibit much better performance for 
specific, well-behaved individual buildings, with highly predictable loads.  

 
Table 1. Percentiles and mean of absolute percent bias for the 389 buildings in the representative data 

set, for each model; 12-month training period, 12-month prediction period. 
 

Model  10% 25% 50% 75% 90% Mean 
Mean Week 0.82 2.21 4.82 9.63 19.42 8.40 
Monthly CDD and HDD 0.69 2.09 4.53 10.03 19.38 8.46 
Day, Time, and Temperature 0.69 2.17 4.51 9.26 19.41 8.42 
Day and Change Point 0.73 2.02 4.70 9.22 18.84 8.24 
Time of Week and Temperature 0.82 2.21 4.82 9.63 19.42 8.40 

 
 
For the monthly MAPE metric, mean monthly MAPE for the public domain models 
ranged from approximately 16% to 21%. For half of the buildings in the data set, 
monthly MAPE was often less than 10%. This suggests that for large representative 
samples and one-year pre- and post- M&V conditions, models that exhibit mean MAPE 
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much greater than 20% or median MAPE much greater than 10% would not measure up 
to the currently available public domain models. 
 
 
3.2 Pre-screening Findings 
Of the three screening criteria investigated, only one, monthly MAPE during the training 
period, proved to be moderately useful. Two screens were evaluated – one in which 
MAPE during the training period was less than 5%, and one in which MAPE was less than 
3%. (Less restrictive screens would have been ineffective; see Price et al. [2013] for 
more detail on this topic). Model performance according to absolute percent bias for 
the 3% screen are shown in Table 3; results for the Change Point model were not 
calculated due to a programming error.  

 
Table 2. Percentiles and mean of monthly mean absolute percent error for the 389 buildings in the 

representative data set, for each model; 12-month training period, 12-month prediction period. 
 
Model 10% 25% 50% 75% 90% Mean 
Mean Week 5.72 8.80 13.80 23.10 38.30 21.51 
Monthly CDD and HDD 4.10 5.40 8.80 16.30 32.64 16.39 
Day, Time, and Temperature 3.19 5.00 8.30 15.57 31.20 15.88 
Day and Change Point 4.22 6.30 10.2 17.90 33.58 17.50 
Time of Week and Temperature 3.20 4.90 8.10 15.50 31.16 15.76 

 
 
 
Unexpectedly, this screen did not lead to an overall shift of the distribution towards 
lower bias – the 10th through 50th percentiles are actually worse than in the dataset 
without the screening – but it did help substantially at the bad end of the distribution by 
eliminating many of the worst-fitting buildings. Before applying this screen, even a 20% 
reduction in energy use would not be detected in 10% of the buildings in the full dataset 
(see the ‘90%’ column of Table 1), but could easily be detected in all or almost all of the 
buildings in the screened dataset (Table 3). The performance at the 90th percentile is 
greatly improved, but the screening only moderately improves the mean absolute bias, 
from above 8% to less than 7%: a few buildings with absolute percent bias exceeding 
30% are still included, which pulls up the mean. 
 
Table 3. Percentiles of absolute percent bias for each model, for buildings where monthly MAPE in the 

training period was less than 3%. N shows the number of buildings (out of 389 total) that pass the 
screen; N differs from model to model and is much lower for the mean week model. 

 
Model N 10% 25% 50% 75% 90% Mean 
Mean Week 23 3.48 4.10 5.20 5.90 8.32 6.47 
Monthly CDD and HDD 72 3.40 4.10 5.45 7.43 9.99 6.82 
Day, Time, and Temperature 112 2.70 3.35 4.70 7.55 10.20 6.67 
Time of Week and Temperature 110 2.69 3.32 4.55 7.20 10.10 6.33 
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Applying the screening criterion reduces errors, but also reduces the number of ‘eligible’ 
buildings. For all but one model, more than half of the buildings met the screening 
criterion of monthly MAPE < 5%, and the size of the dataset was kept to hundreds. 
However, for monthly MAPE < 3%, the effect was larger. This reducing effect was largest 
in the case of the Mean Week Model, where the monthly MAPE < 5% criterion was met 
for only 62 of the original 398 buildings in the data set, and the < 3% criterion was met 
for only 23. However, for the other models, more than half of the buildings in the 
dataset met the screening criterion. 
 
 
3.3 Relative Model Performance 
To evaluate model performance, each model was fit using data from the training period, 
and the bias and monthly MAPE were evaluated for the prediction period. When 
considering a 12-month training period and 12-month prediction period, there was little 
difference in performance between the five public domain models. The median absolute 
bias is between 4.5 - 4.8% for all of the models, and the mean is between 8.3 - 8.5% (see 
Table 1). There are a few buildings for which the predictions are extremely poor, with 
errors greater than 75% (in either direction), which is why the average is much worse 
than the median.  
 
For the monthly MAPE metric, the range in relative performance was slightly larger than 
for bias: the medians for the various models range from about 8 - 14%, and the means 
range from about 16 - 22%. Depending on the specific data set and buildings used, the 
values achieved for a given performance metric will differ. The results reported here 
correspond to a random sample of buildings from a large utility territory.  
 
Perhaps surprisingly, when the training period was reduced to 6 months – February 
through July – there was not a significant degradation in median error relative to cases 
in which 12 months of training data were provided. The exception was the monthly CDD 
and HDD model, which performed worse on average than models that used interval 
data. When the training period was reduced even farther, to only 3 months, errors rose 
significantly, and the time-of-week-and-temperature and day-time-and-temperature 
models consistently outperformed the others.  The February through July training 
period covers most of the outdoor air temperature range experienced in a year by these 
buildings, and results might be worse if the training period excluded the entire winter or 
the entire summer.  Results might also differ in other climates: all of our buildings came 
from within a territory a few hundred miles on a side. 
 
As part of our investigation of the results we looked for a systematic relationship 
between total annual energy consumption and both bias and monthly MAPE (e.g. are 
higher-consumption buildings likely to be over- or under-predicted) but no such 
relationship was found.  
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3.4 Portfolio Aggregation Effects 
The results discussed so far have focused on distributions of errors for collections of 
many individual buildings. However, prediction errors are much smaller when 
aggregated over a collection of buildings, which and are treated as a group. A portfolio 
of buildings will usually include some in which the prediction is too low and others in 
which it is too high. Although the magnitude of the error will tend to increase as 
buildings are added to a portfolio, the relative error will tend to decrease or remain 
stable/constant.  

Table 4. Bias for portfolios based on NAICS code, for the time-of-week-and-temperature model. 
 

NAICS  
prefix 

Bldgs Total  
kWh 

Predicted  
kWh 

Percent bias Mean 
absolute 

percent bias 
42 14 7,844,788 7,696,758 -1.89 10.7 
44 41 29,935,698 30,370,868 1.45 6.1 
45 12 7,320,698 7,358,519 0.52 5.5 
49 10 5,720,874 5,591,634 -2.26 8.3 
51 15 13,770,148 13,601,572 -1.22 10.6 
53 53 37,462,843 41,062,271 9.61 15.1 
61 42 16,88,7745 17,403,489 3.05 6.2 
62 36 20,238,549 21,001,653 3.77 5.9 
71 30 7,430,195 7,573,492 1.93 12.5 
72 63 23,302,962 22,971,386 -1.42 5.4 
81 32 7,303,410 7,447,883 1.98 10.7 
92 6 5,127,729 5,215,852 1.72 4.6 

 
 
 

The reduction of errors due to aggregating buildings into a portfolio was explored by 
grouping buildings with similar uses, based on the NAICS code for each building in the 
test data set; the two-digit NAICS prefix classifies businesses into broad categories such 
as retail stores and public administration buildings. The total energy predicted to be 
consumed in the 12-month prediction period was summed over all of the buildings with 
a given two-digit NAICS prefix, and compared to the actual energy consumed by the 
same buildings.  In all of these cases the percent bias in the prediction of the portfolio’s 
energy use is less than the mean bias for the individual buildings of that type, because of 
the aggregation effects discussed above. Table 4 shows the aggregation of buildings by 
NAICS code, and that the percent bias for the portfolio is often less than 2%. In contrast, 
without aggregation, the mean absolute percent bias is much higher (shown in the right-
most column). For example, the average prediction error for NAICS prefix 42 is nearly 11 
percent, but some of these are over-predictions and others are under-predictions, so 
that the bias for the portfolio as a whole is only -1.89%.  
 



 

 12 

 
 

4. Discussion and Conclusions 
This work has demonstrated a general statistical methodology to evaluate both public 
and proprietary baseline model performance. The specific parameters in the general 
methodology were defined for use in applications focused on whole-building 
measurement and verification for efficiency programs. Namely, considerations for 
building up a test data set, performance metrics most relevant to M&V for whole-
building energy savings, and training and prediction periods of key interest. This work 
complements and extends prior research efforts such as the ASHRAE Shootouts of the 
1990s [Haberl 1998; Kreider 1994] and a more recent study conducted by Lawrence 
Berkeley National Laboratory [Granderson 2012].     
 
The present paper summarizes the most important methods and results that came out 
of the comparison of five models applied to a large dataset of commercial building data. 
Additional details, plots, and discussion can be found in an LBNL report about this work 
[Price et al., 2013]  
 
4.1 State of Public Domain Models, and Implications for M&V 
This work showed that for a 12-month post-measure installation period, use of a six-
month baseline period, i.e., six months of training data, may generate results that are 
just as accurate as those based on a 12-month baseline period. This has important 
implications, as reducing the total length of time required for M&V is key to scaling the 
deployment of efficiency projects in general, and reducing overall costs. Although 
existing M&V guidelines recommend a full 12 months of pre- and post- data, these 
guidelines were developed when monthly data was the standard. Improved baseline 
models that take advantage of increasingly available interval meter data may not 
require a full 12-months to develop an accurate baseline.  
 
The analyses conducted for this study were useful in illustrating the bounds of 
performance accuracy that can be achieved when conducting fully automated whole-
building measurement and verification. That is, the best performance that can be 
achieved without the oversight of an engineer to identify non-routine adjustments or 
incorporate knowledge regarding changes in building occupancy or operations. With the 
public domain models that were available for investigations, and the representative 
dataset of hundreds of buildings, this work showed median model errors of under 5% 
and mean errors of less than 9%. When prescreening was conducted to intentionally 
target participants to minimize baseline errors, the median error was actually increased 
slightly but the mean error was reduced to under 7%, and most of the least predictable 
buildings were eliminated, for a screening criterion that was satisfied by half of the 
buildings. Using a more restrictive screening criterion, even more of the very poorly 
predictable buildings were eliminated; for the best-performing model, that criterion was 
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satisfied by about a quarter of the buildings and the mean error was reduced to under 
6.5%, with 90% of the building baselines being predicted to within 10%.  
 
As typically practiced, M&V is not fully automated, but is conducted by an engineer who 
has access to information about building occupancy, internal loads, and operations. 
They can therefore apply their expertise and insights to develop baseline ‘adjustments’ 
which tailor savings calculations to the particular building being evaluated. For example, 
in this study 20% of the buildings in a representative sample exhibited large changes in 
load that might be straightforward for an engineer to identify and account for, but are 
not easily handled in the fully-automated case. Presumably the attention of an engineer 
would lead to more accurate savings estimates in many buildings, compared to simply 
directly applying one of the automated baseline models, but such attention is time-
consuming and costly, and it may be more efficient to use a fully automated approach 
for most buildings and refer a building to an engineer for deeper analysis only if there is 
a good reason to believe the savings estimate for that building might be grossly in error, 
e.g. if the monthly MAPE in the training period is very high, or if the load change 
between the pre-ECM and post-ECM period is much larger than expected. Today’s fully 
automated approaches do not yet provide a means of addressing non-routine 
adjustments, which if neglected can represent a significant source of error, yet can be 
be minimized with an engineer’s insight.    
 
Collectively, our results suggest that modern tools, with their automated baseline 
models and savings calculations can at a minimum, provide significant value in 
streamlining the M&V process, providing results that could be quickly reviewed by an 
engineer to determine if adjustments and further tailoring are necessary. They also 
suggest, that savings can be reliably quantified at the whole-building level, using the 
interval data-based models that are available today. Depending on the level of 
confidence required, and the precise depth of savings expected, these savings might be 
quantified in a fully automated manner, or with some engineering intervention. 
 
Whole-building approaches to savings can include multi-measure savings strategies, 
including major system and equipment efficiency upgrades, operational improvements, 
and behavioral programs. This multi-measure approach is expected to yield a higher 
depth of savings, of up to 20% or more. As a point of reference, retro-commissioning 
(RCx) alone, saves on average 16% in commercial buildings [Mills 2009]. This work 
demonstrated that a small sample of public domain models is able to demonstrate 
savings accuracy within 20 percentage points for 90% of the cases, and within 5 
percentage points for 50% of the cases.  With very simple prescreening, accuracy 
improves by 1-2 percentage points. Note that no such accuracy prediction is available 
for engineering calculations, which are typically provided for single-measures that 
amount to 1 to 10% of whole-building energy use. Whole-building savings estimation 
should therefore be no more risky than engineering calculations. 
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When buildings are aggregated into a portfolio, errors tend to cancel out so that the 
percent error in the predicted energy use decreases substantially. Depending on the 
method of creating the portfolio (e.g. at random, or by screening on the goodness of fit 
during the training period, or by selecting buildings of a given business type), the total 
annual energy use of a portfolio of about 40 buildings can usually be predicted within 
1.5 – 4% accuracy, even though the error for a typical building in the portfolio is much 
higher than this.  Results for aggregation by business type were provided in Table 4; 
similar findings were found when aggregating 40 buildings selected at random.  Benefits 
of portfolio aggregation would not impact any individual customer or program 
participant, but are relevant from the perspective of the utility, which may report 
savings at the aggregated level of many programs, or many buildings. 
 
4.2 Prescreening to Reduce Error  
Since errors in whole-building measurement and verification are due to the robustness 
of the baseline model in combination with the predictability of the building, it may be 
possible to determine building- or load-specific characteristics that correlate with 
smaller errors. These characteristics or metrics might then be used to pre-screen or 
target program participants. Filtering buildings for which monthly MAPE was less than 
5% eliminated many of the most extreme errors for a large dataset. 
  
In most buildings and most years, the largest source of year-to-year change in energy 
use is neither energy conservation measures nor year-to-year variation in weather, it is 
changes in characteristics of building operation and occupant behavior such as 
operating hours, thermostat settings, the number of occupants, the type of activities 
performed in the building, and so on. Surveys of building owners or occupants, or 
additional types of data (such as occupancy data for hotels, sales data for retail 
buildings, etc.) might allow better ability to screen out unpredictable buildings, as well 
as better models. For models fit to much less than a full year of data, and therefore to 
reduce the time required for M&V, the range of temperatures present in the training 
period has a substantial effect on the accuracy of the model in many buildings. This is an 
area that should be explored in more detail. 
 
5. Future Work 
The analyses in this study made use of freely available public domain reference models 
to determine the general state of the models that are most commonly used by today’s 
engineers. This study did not focus on identifying the best whole-building baseline 
models, an exercise that would ideally include a diversity of proprietary models, and 
models that include variables other than outside air temperature, day, and time. [Jump 
2013] began to establish protocols that integrate the model evaluation methodology 
with the blinds necessary to protect data privacy and the intellectual property 
underlying proprietary baseline models; applying these protocols to the testing of 
commercial tools to validate scalability and practicality is a key next step. Additionally, 
this study only scratches the surface when it comes to screening to identify predictable 
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buildings, and investigating the effects of shortening the prediction period; both of 
these subjects invite further research. 
 
This paper focused on application to whole-building measurement and verification, but 
the baseline model assessment methodology is general: it is also applicable to 
evaluation of baseline models for continuous energy anomaly detection, for demand 
savings, or for evaluating system-level models used in a measure isolation approach to 
M&V. Future work might focus on defining the most appropriate performance metrics, 
time horizons, and test data sets for this extended set of use cases for baseline models. 
 
This study did not evaluate actual calculations of savings from applying baseline models 
to data from buildings in which efficiency projects were implemented. Such a study 
would yield important information regarding the impact on savings uncertainty from (1) 
duration of pre- and post-measure periods, (2) baseline model deterioration rate (when 
to re-baseline), (3) post-installation models. At a minimum, that investigation would 
require extensive load and independent variable data from before and after energy 
efficiency improvements have been implemented in each building. This would also set 
the stage for a long-term study to directly compare of the uncertainty in measured 
approaches to the uncertainty in approaches based on engineering calculations (as 
opposed to those based on avoided energy use based on projected baseline models of 
energy use).  
 
Finally, it is worth noting that the approach applied in this study can be used to evaluate 
the likelihood that a model will be able to identify a given percent savings, at a desired 
confidence level. While this paper focused on percent bias and MAPE as key metrics of 
focus, consideration of CV(RMSE) using the same testing methodology can provide 
important insights into fractional savings uncertainty. Fractional savings uncertainty can 
be expressed as a function of parameters such CV(RMSE) in the pre/training period, 
achieved fractional savings, and, the length of the pre and post periods. Resources such 
as ASHRAE’s Guideline 14 provide of “look-up tables” and plots to determine fractional 
savings uncertainty for particular confidence levels, CV(RMSE values), and measure post 
periods [ASHRAE 2002]. Such analyses can be used to understand the percent savings 
that can a model can reliably detect.     
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Appendix 
This appendix details the five whole-building baseline models that were included in this 
study. 
 
In the Mean-Week (MW) model, the predictions depend on day and time only. For 
example, the prediction for Tuesday at 3 PM is the average of all of the data for 
Tuesdays at 3 PM. Therefore, there is a different load profile for each day of the week, 
but not, for example, for each week in a month or each month in the year. This is a 
simplistic ‘naïve’ model that was intentionally included for comparative purposes. 
 

The Cooling-Degree-Day and Heating-Degree-Day (CDD-HDD) model represents 
techniques that were originally developed to analyze monthly utility billing data. For 
each month the number of heating and cooling degree-days is calculated, and linear 
regression is performed to predict monthly energy usage as a function of CDD and HDD. 
CDD and HDD were defined with base temperatures of 55 F and 65 F, respectively.  

With m identifying the month, the model can be expressed according to Equation A-1 
as:   

      (A-1) 

 

The Change-Point model implements a six-parameter change-point model with the 
addition of a day-of-the-week effect. Detailed in [ASHRAE 2002; Haberl 2005], 5-
parameter change-point models include: the slope of the load-vs-temperature line for 
low temperatures, the slope of the line for high temperatures, the change point below 
which the temperature is low, the change point above which it is high, and the average 
load for temperatures that are neither low nor high. The ASHRAE model assumes that 
there is no relationship between temperature and load for temperatures that are above 
the low-temperature region but below the high-temperature region. With months or 
even a year of data, as in this study, there are enough data to estimate and implement 
more parameters: (1) we also estimated a slope for intermediate temperatures, 
generating models with three slopes instead of two, and (2) at the suggestion of a 
subject matter expert, the change-point model also allowed each day of the week to 
have a different average load in the intermediate-temperature region. 
 

In the Day-Time-Temperature model the predicted load is a sum of several terms: (1) a 
“day effect” that allows each day of the week to have a different predicted load; (2) an 
“hour effect” that allows each hour of the day to have a different predicted load; (3) an 
effect of temperature that is 0 for temperatures above 50F and is linear in temperature 
for temperatures below 50F; and (4) an effect of temperature that is 0 for temperatures 
below 65F and is linear in temperature for temperatures above 65F. The use of time-of-
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day and day-of-week variables is described in [Energy and Environmental Economics 
2011], in the context of more complicated regression models that include special 
handling of, e.g., humidity and holidays. 
 
We define the following: i identifies the data point, dayi  and houri are the day and hour 
of that data point;  TCi =  0 if the temperature T exceeds 50 and is equal to 50 F -T if T < 
50 F; TH=0 if T < 65 F and is equal to T-65 F if T > 65 F. With these definitions, the Day-
Time-Temperature model can be written as: 
 

     (A-2) 

 

The model is fit with ordinary regression. It can be thought of a variant of the ASHRAE 
five-parameter change-point model [ASHRAE 2002]. Unlike an ASHRAE five-parameter 
change-point model, it has fixed points for the temperature slopes (at 50F and 65 F), 
and it adds time-of-day and day-of-week variation. 

 

In the Time-of-Week-and-Temperature model, the predicted load is a sum of two terms: 
(1) a “time of week effect” that allows each time of the week to have a different 
predicted load from the others, and (2) a piecewise-continuous effect of temperature. 
The temperature effect is estimated separately for periods of the day with high and low 
load, to capture different temperature slopes for occupied and unoccupied building 
modes. The model is described in Mathieu et al. (2011), but the determination of 
“occupied” and “unoccupied” periods is new to this project. For each day of the week, 
the 10th and 90th percentile of the load were calculated; call these L10 and L90. The 
first time of that day at which the load usually exceeds the L10 + 0.1*(L90-L10) is 
defined as the start of the “occupied” period for that day of the week, and the first time 
at which it usually falls below that level later in the day is defined as the end of the 
“occupied” period for that day of the week. 
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