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MULTIDIMENSIONALUPWIND METHODSFORHYPERBOIJC CONSERVATIONLAWS

Abstract

We present a class ofsecond order conservative finite difference algorithms for

solving numerically time-dependent problems for hyperbolic conservation laws

in several space variables. These methods are upwind and multidimensional, in

that the numerical fluxes are obtained by solving the characteristic form of the

full multidimensional equations at the zone edge, and that all fluxes are

evaluated and differenced at the same time; in particular. operator splitting is

not used. Correct behavior at discontinuities is obtained by the use of solutions

to the Riemann problem, and by limiting some of the second order terms.

Numerical results are presented, which show th.at the methods described here

yield the same high resolution results as the corresponding operator split

methods.
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o. Introduction

Overthe last several years, there has been considerable development of

upwind-type numerical methods for solving numerically nonlinear systems of

hyperbolic conservation laws in several space dimensions. These methods. gen-

erally speaking, are all second-order extensions of Godunov's first-order method

[8]. They incorporate into the numerical solutions the nonlinear wave propaga-

tion properties of the solution, in the form of Riemann problems and charac-

teristic equations, leading to algorithms which are robust and accurate, even in

the presence of nonlinear discontinuities. However, all of the methods currently

in use are derived using the characteristic form of the equations in one space

dimension, with most of these algorithms being extended to several space

dimensions using operator splitting. Nonetheless, these algorithms, particularly

the operator split ones, have been quite successful in resolving complex pat-

terns of interacting discontinuities and smooth waves; for further details see

[15] and the references cited there.

In this paper, we will consider a class of conservative finite difference algo-

rithms for hyperbolic conservation laws in several space variables which do not

make use of operator splitting, for which we use the multidimensional wave pro-

pagation properties of the solution to calculate fluxes. Our goal is to obtain an

algorithm which has the same robustness and resolution as the best operator

split algorithms, at comparable cost. Given that we are seeking performance

only comparable to. rather than exceeding, the operator split algorithms. it is

reasonable to ask the purpose of considering these unsplit schemes. The reason

for doing so is that there are situations where the use of an operator split

scheme is inappropriate. Generally, this is the case when the requirements of

conservation and correct qualitative behavior require the differencing of fluxes

at all the zone boundaries simultaneously. rather than two at a time. One such
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situation is advection by an incompressible velocity field, as occurs in some

models of multiphase flow through porous media; another occurs in coupling

front tracking algorithms for a nonlinear discontinuity to a conservative

difference algorithm, while maintaining conservation all the way up to the

tracked front. For similar reasons, it is natural, though not essential, to con-

sider the use of an unsplit algorithm for calculations on general quadrilateral

meshes, and for the calculation of steady-state solutions by marching in time.

The design of the algorithm described here is broken into two steps. First,

we specify an algorithm for a linear scalar advection equation, which, in smooth

regions, is second-order accurate, to which a flux limiting procedure, related to

the monotonicity algorithm used [13] for advection algorithms in one dimension,

is applied. We then construct the algorithm for systems by introducing a

predictor-corrector formalism, and by replacing various derivatives in the pred-

ictor step by finite differences, using the advection algorithm as guide: upwind

differences for advection become differences of Godunov fluxes for systems, and

monotonized central differences differences for advection become monotonized

central differences with monotonicity constraints applied to the appropriate

choice oftransformed variables. A major problem in this program is the

specification of design criteria which guarantee oscillation-free results, even in

the for a linear scalar equation. The principal criterion in one space dimension is

that the scheme be total variation diminishing [10]; however, a straightforward

generalization of this criterion to more than one dimension has been shown in

[9] to imply that the scheme is at most first order accurate for smooth solu-

tions. The approach taken in the present work is to specify certain necessary

conditions that the scheme must satisfy, and which are satisfied by the schemes.

described here. These are:



3

1) For a one-dimensional problem aligned with one of the grid directions,

the algorithm should reduce to a second-order Godunov method of a type

described in [5].

2) The second order scheme without limiting, and the first order scheme

obtained by imposing the full limiting of the fluxes at all mesh points,

should have as linear difference schemes, the same CFL stability limit on

the time step, which in turn should be the same as for an operator split

scheme, with the component one dimensional algorithm as in [5].

3) In the case of linear advection, the fully limited scheme should satisfy a

maximum principle.

In the following, we will restrict our attention to the case of two space vari-

abIes. Although the formalism developed here carries over to higher dimensions,

the tradeoffs between performance and cost change as the number of dimen-

sions grow; a proper evaluation of what those tradeoffs are can only be made by

numerical experimentation. Even in three dimensions, such a study is beyond

the capabilities of present computer technology. Some discussion of these con-

siderations will be made in the final section of this paper.
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1. Advection Algorithms

We consider the scalar advection equation in two space variables

~+u.vp=oat (1.1)

a a
x = (x . y). p =p (x. t) v =(ax' ay)

u =(u,v) u,v> o.

We want to solve numerically initial value problems for (1.1). To this end.

we will attempt to construct algorithms which generalize upstream-centered

algorithms in [13] to two space variables, without replacing the operator approx-

imating the time evolution of (1.1) by the product of one-dimensional evolution

operators. Our strategy will be to start from a well-behaved first-order upwind

algorithm for solving (1.1). We add to the evolution operator the terms neces-

sary to make the algorithm second-order accurate in such a way so that they

can be limited. i. e.. subtracted off, at discontinuities.

Let 6x.8y be spatial increments, 8t a time increment. We assume that we

know p{j, the average of p t time tn:

plj = 2-h. p(x, tn)dx.
Ui.j ""'1.)

Here ~,j =[(i-*)8x,(i+*)8x] x [(j-*)8y.(j+*)8y] . Ui,j= (area of ~,j)' We wish to

calculate pcti. the solution to (1.1) at time tn+1 = tn+ 8t. A natural algorithm

for doing this is to trace backward in time from tn+L\t the set 8i,j. along the

characteristics of (1.1). to obtain 8'i.j' Thenpl;j+1 is set equal to the average over

8'i,j of the trivial interpolation function pI (x) =p{j if x E: ~.j:

n + I - 1 r I( )Pi,j - -a ' JfJ' P x.y dx dy
i.j l.J

(1. 2)

=(AIplj + A~{j-I + Aaoi~1.j + ~i-I,j-I) U~.'
I.J

where the Ak'S are the areas in each of the four upstream zones swept out by u,

as indicated in Figure 1.
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The scheme described above is first order accurate. It also satisfies a maximum

principle, since Pir:t1 is the weighted sum, with nonnegative weights of the solu-

tion at time tn. We can put this scheme in explicit conservation form

P A+l
I,J - n uL)t (pn-t* n+~ ) v~t (pn+J5. n+l )

- Pi,j+!:sx i~,J ,-Pi+~J + b.y i.j-=»- Pi,j-f~

n+J5.- n ufit (pn n )Pi,j+~ - Pi,j+ 28x i-l.j - Pi,j

( 1.3)

( 1.4)

n-t* - n v8t (pn n )
Pi+~J - Pi,j+ 28y i,j-l - Pi,j .

One way of deriving the formulas for pnm,pljt~ is to notice that they are the

averages of plover the region swept out by the characteristics through the zone

edges centered, respectively, at (i+*,j) and (i,j+*) (Figure 2 ). We shall refer to

this scheme as the corner transport upwind (CTU) scheme, since it takes into

account the effect of information propagating across corners of zones in calcu-

lating the flux.

One fact that is immediately seen from the formula given above for the

fluxes is the difference between the CTU scheme and the conventional donor cell

differencing. In the latter case, pnm = p{j , p{jt~ = plJ. Thus, in this scheme, we

are adding a time-centered correction term to the donor-cell flux which esti-

mates the effect on the flux of the gradients in the transverse direction. This

corresponds to subtracting from the donor cell algorithm a term, which, to lead-

ing order in the truncation error, is always destabilizi~g. This is reflected in the

differing CFL times step limits for the two schemes:

u8t v8t ) ~ 1.
CTU max( L)X ' ~y

~t + v~t ~ 1.
fjx fjy

(1.5)

Donor-Cell (1.6)

One can view schemes of the form (1.3)-(1.4) as being predictor-corrector

schemes. One regards the calculation of Pi~m ' Pl:jt~ as the predictor step, with

the conservative differencing as the corrector step. Thus, if pn~ were to be cal-
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culated insuch a way as to have a local truncation error of O(~t2) in smooth

regions, then the scheme would be second order accurate. To obtain such an

estimate for Pi~~ ' one must have

pn+~J
=PP.+ ~t ap + ~x ap

-*J I,J 2 at 2 ax (1.7)

= P.- ~t ( ~+ ~) + !:!Jxap
PI,J 2 u ax v ay 2 ax

= P.+ ( ~x - ~t), ~ - ~t ~
PI,J 2 2 7 ax r ay

The only terms in (1. 7) missing from the CTU flux (1.4) are the ones involving

~~. Thus, we add that term to Pi~~ to obtain a second order flux:

nt* - n + ( !:!Jx - u~t), ~XPi,j v~t (p )
PH».1- Pi,j 2 2' ---xx- - 2~y i,j- Pi,j-l

Here A~i,j should be a difference approximation to (~p)
Ix x (~,~)

(1.8)

, and ~xp

should also be limited to suppress oscillations at discontinuities. The simplest

choice is a central difference approximation to ( ~~ ), with the one dimensional

limiter given in [13]:

(~Xp )i,j = min(* 1pnl.j - Pi-l.j 1 ,21 pnl,j - Pi~ 1 , 21plJ- Pir:..l,j 1)xsgn(Pi+I,j - Pi-I.j)

if (P .~l
. - PP.) (pp. - P~ l .) > 0 .I.J I,J I,J I ,J ' (1.9)

= 0 otherwise.

Sirnilarly, we define

n+}S.- n ( ~ ~t )
(~Yp)i,j ~t

(p )
Pi.j-f~ - Pi,j + 2 - r ~y 2~x u i,j - Pi-l.j

where ~YP is a monotonized central difference formula, such as the one given by

(1. 7) with the roles of i and j reversed. Because of the nonlinear switch in the

definition of ~xp , ~Yp , one cannot perform a formal error analysis on this algo-

rithm. However, in smooth regions, one expects ~xp , ~YP to be given by the

central difference operators (~Xpkj = *(Pi+l,j - Pi-l.j)' (~Yp)i.j= *V>i,j+l- Pi,j-l)'
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In this case, one can perform the linear error analysis, and find that the sC~~f!le

is second order accurate. We have also calculated the amplification factor and

evaluated it numerically; we have found that, as long as the time step satisfies

(1.5), the second order algorithm does not amplify any Fourier modes.

There is not a great deal one can say about the monotonicity properties of

this algorithm, save that, when the slopes are fully limited, i.e., !Jlp = /).xp= 0 , it

reduces to the first order CTU scheme described above. In order to have this

property, it is necessary to treat the spatial derivatives in the predictor step in

an asymmetric way: the derivatives in the direction tangent to the zone edge are

approximated by upwind differences, and not subject to monotonicity, while the

derivatives in the direction normal to the zone edge are approximated by mono-

tonized central differences. For linear advection of a discontinuity oblique to

the grid, the algorithm appears to produce monotone results.

A different approach to the one taken here, more in line with the geometric

constructions in [13], would be to construct piecewise linear interpolants of p,

suitably monotonized, and to integrate over surfaces swept out by the charac-

teristics to obtain fluxes, similar to what was done to obtain the flux form (1.4)

for the CTU scheme. We have not done so here: for a development along such

lines for the advection equation, see [14]. However, for strongly nonlinear prob-

lems, we find that a somewhat more elaborate treatment of the transverse

derivatives than simply using first order upwind differencing will be required,

leading to an algorithm which is intermediate in complexity. This algorithm will

be discussed in the next section.
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2. Systems of Conservation Laws

In this section, we will consider algorithms for solving numerically the ini-

tial value problem

---------- au + \7.F =aat

U(x, t) = U: JR2x[O,T]4JRM

--

F = (FX, FY) E JRMxJRM

U(x,O) =Uo(x)

given. For each nE:]R2 we define the projected equations ( along n) to be the

one dimensional system of conservation laws

au + aF = a
at ax fD(U) = n. F(U). (2.2)

We say that the system (2.1) is hyperbolic if, for every n the projected equations

(2.2) are hyperbolic, i.e., that the linearized coefficient matrix VuF =An has M

real eigenvalues An,l~ . . . ~An,M corresponding to M linearly independent left

and right eigenvectors (In.v,~V), v = 1,. . . ,M. We also have An = n. A where

A = (AX,AY),AX= VuFx,AY= VuP' The left and right eigenvectors can be chosen so

as t.o be biorthonormal, i.e., IB,V.rD.v' = °v.v" so that the expansion of a vector

wEJRM in terms of the rB.v's is given by w = 2: an.v~.v, with an.v = In,v.w
v= l,'...M

Our algorithm for the calculation of conservative fluxes is motivated in part

by a version of the multidimensional theory of characteristics, which we review

briefly here; for a more extensive discussion, see [6]. If r is a curve in the plane

~ (x,t) : t =to Lthen there exist surfaces Sl, . . . ,SM called characteristic sur-

faces, passing through r, such that the normal to SVat a point (x,t) is of the

form (n. -An.V), where An.v is the vth eigenvalue of the projected equations in the

direction of the unit vector n. The significance of these surfaces is that along

each of these surfaces, a continuous solution to (2.1) satisfies the following
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interior partial differential relation:

0 = lD.V.(au + A. VU)at
au

= lD.V.{-+ (n.A)(n.VU) + (t.A)(t.VU»at (2.3)

= ID.V.(au + i\D.Vn.VU + (t.A)(t.VU»at

where t is a unit vector orthogonal to n in the plane. Since (i\n,vn.l) and (t,O) are

tangent to SV. then (2.3) contains only derivatives in directions tangent to SV. In

particular. if we define ~to be differentiation in the direction of the vectorda

field (i\D.Vn.l). then (2.3) becomes

In.v. dU + (In.v. At.)(t. VU) = 0daV (2.4)

Le.. we obtain the ordinary differential relation from the theory of characteris-

tics in one dimension for the system projected in the n direction. with the

derivatives in the t direction acting as source terms.

Finally. we assume that the Riemann problem for the projected system (2.2)

is well-posed for all nEIR2 i.e.. that the initial value problem for (2.2) given by

U{x.O) =UL for X>O

=URfor X<O

has a unique solution with appropriate entropy conditions, for any choice of

UL.UR for which (2.2) is hyperbolic. This solution is a function only of the similar-

ity variable ~ throughout this paper. when we require the solution to a Riemann

problem. it will be at the point f-=O.

We assume, as in the scalar case. that we know Ul;j the average of the solu-

tion over ~.j .the zone centered at (i6x .j~y):
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U.n.= --L-r U(x tn) dx
1.] a. . :J~ J

'
1.]

We want to extend the algorithm described in the previous section to calcu-

late UlJ+l. The difficulty here is that the different modes of wave propagation

can carry gradient information from different sides of the zone edge where the

flux is to be evaluated. We solve this problem by using predictor calculations

similar to (1.8) to calculate two states at a zone edge, representing the propaga-

lion of signals coming from the left and the right of the zone edge. We then

obtain a single value for the flux by solving a Riemann problem given the two

states, with the jump assumed to be parallel to the zone edge.

The algorithm can be broken up into the following four steps:

1) the calculation ofmonotonized central difference approximations to

~xu ~ au ~YU ~ au .
6.x axl (iAx.j~y),6.y ay I (i6x.j~y),

2) the construction of time-centered left and right states at the zone edges:

Un~.L , Un~.R at «i+*)~x,j~y) ,and UlJt~.L' UlJt~.R at (i6.x,(j+*)~y) ;

3) The solution of the Riemann problem at the zone edges for the projected

equations along the normal to that zone edge, given the left and right states

computed in 2) , to obtain Ul~~ ' UlJt~;

4) The conservative differencing of the fluxes

Fl~-*.j = fX(Unm) , Fl.i+* = FY(Ul:jt~) to obtain Ulj+ 1:

UA+! - U;n.+ 6.t (F.~. - F)C u .) + 6.t (FY. u - F Y.~ )
I.] - I.] ~x In-n.] I+/b] ~y I.]-n 1,]/Z .

In describing the details of this algorithm we will describe the details of

only the calculation of Fi~*.j ; the other fluxes are calculated along the same

lines, interchanging the roles of i and j, x and y.
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The calculation of slopes follows the pattern seen in the scalar case: we use

central difference to approximate the spatial derivatives of U, and constrain

them using a one dimensional monotonicity algorithm. In imposing monotoni-

city constraints, there are two strategies which have been used successfully in

one dimension. The first is to perform a nonlinear change of variables such that

the new dependent variables are essentially the characteristic variables, and

interpolate those variables using monotonized interpolation such as the one

given for the scalar case in the previous section. This procedure can only be

done for special systems, including Euler's equations for compressible flow,

which shall be discussed in § 4. The second approach, due to Harten [11], is to

expand the central difference approximation to the spatial derivatives in terms

of the right eigenvectors of the coefficient matrix of the linearized equation, and

constrain the amplitudes in that expansion. Since the latter procedure is well

defined for general systems of conservation laws, we will describe it here.

To calculate (AXU)i.jwe define the expansions,

*(Ui+l,j - Uj-l.j) =~acr'v,

2(U' +1 . - u. .) = "aYrX'V1 ,J I,J L.J L , (2.5)

2(U. . - U.- 1 .) = "al'r'VI,J I.J L.J.K ,

where lX'v,rX'v, AX'vare the eigenvectors and eigenvalues of the equations pro-

jected in the x coordinate direction. Then (AXU)i,jis given by

(AXU)i,j= L;avr'v

aV = min( I ac I , IaL I ' I ali I )xsgn(ac) if aL ali > 0

(2.6)

=0 otherwise.

Next, we defme the left and right states at the zone edges Unm,L, Unm,R.

We extrapolate from the zone centers on either side of the zone edge at

«i+*)AX, (j +*)Ay) , using a formula similar to (1.7):
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unm.s =Un-k,j :I: /).x au + ~ au2 ax 2 at

=UP .:1: 6x au - ~ ( aFX + aFY '\
l+k.J 2 ax 2 ax ay 7

(2.7)

= UPk . + (:I: ~x - ~tAX'\ au 6t aFY
1+ .J 2 2 7 ax - 2 ay

Here, and in what follows. we use expressions such as (2.7) involving the symbols

(8 , :I: , k) to mean a pair of expressions: one with (8 . :I: , k) replaced by

(L , + , 0), the other with (8 , :I: , k) replaced by (R, -, 1). In calculating Ul~m.s,

we approximate ~~ by the monotonized central differences ~~ and the aa~

term by a difference of Godunov fluxes, 'the extension to nonlinear systems of

upwind differencing.

It is convenient to view the calculation of Unm.L, Unm.R as consisting of two

steps, the first involving the monotonized central difference approximations to

~~ ' the second involving the transverse derivatives:

Ui+~j.s =Ui,j+k + (:I: 6x2 AtAX)au2 ax (2.8)

At aFY
Ul~m.s =Ui+*.j,S- 2 ay'

(2.9)

In order to calculate Ui+*,j.S, for linear problems, it would suffice to simply

au (~XU)..
replace ax by L- 1.J. However, we make two changes in (2.8), which, for

liriear problems, are redundant operations which lead to the same answer, but

which have been seen to lead to a somewhat more robust algorithm for strongly

nonlinear problems. This first is to discard in the ~~ term the components

corresponding to characteristics which do not propagate towards the zone edge.

The second is to introduce arbitrary reference states UL ' UR taking advantage of

the fact that the characteristic projection operators appearing in both the con-

struction of the left and right states, and in the solution of the Riemann prob-
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lem. act on increments of U. The resulting algorithm is given as follows:

"" '" flt
Ui+H.j,S =Us + Ps (Ul~k.j - Us) + PsO~ - 2flx AX(Ui+k.j))(flXU)i+k,j

Psw = 2: (l~k,j . w)ri~k,j
V::i:AX,V{U1+k.j) > 0

(2,10)

The reference states DL' DR are chosen so as to reduce to as great an

extent as possible the size of the sum of the terms multiplied by the charac-

teristic projection operators Ps. One possibility is to take

DL =UlJ + (*- max(A.x.M(Ui.j) , 0) 2~~ )~XUi,j

fiR =UR-I,j - (*+ min(A.X.I(Ui+l.j) , 0) 2~~ )~XUi+l.j

The additional cost of applYing the characteristic projection operators is small.

(2.11)

Because of the monotonicity algorithm, we already know the expansion of 6xU in

terms of the right eigenvectors, applYing the characteristic projection operators

to (6XU) is accomplished by setting to zero the coelIicients of the eigenvector

expansion of (6XU) for which have associated propagation speeds having the

wrong sign. Finally, the calculation of the terms involving AXare easily accom-

plished using the fact that the projection operators are sums of eigenprojections

of AX,implying that Ps AX6xU = 2: A.x,vavrx,v.Using this fact, and with the
:i:AX'V> 0

above choice of UL. UR, we obtain the following explicit expression for (2.10):

U - U
""

+ 6t
2: (

" x],I " x V
)

x v x v
o+u.L - L - 1\.°~ - /\.°., ao' ro ,
:1r6J. 26x I.J I.J I.J I.J

v:>f{ > 0
(2.12)

if - U + 6t ~ (Ax 1 AX V ) x v x v
i+*,j,R - R 2~x L.J i+l,j - i+l,j ai+l.jri+l,j

v:~r.j < 0

where the ai~{ 's are the expansion coefficients of (6XU)i,j given by (2.6). This pro-

cedure is essentially that given in [5] for computing the left and right states for

the one dimensional algorithm. applied to the case of piecewise linear interpola-

tion.
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To complete the calculation to Unm,s we approximate ~FY
I

by some
Y (iAx,jfly)

appropriate upwind flux difference. The simplest choice is to use Godunov's first

BFY

order method to evaluate By' If we define Uj~+* to be the solution to the

Riemann problem for the projected equations along the y-direction, with left and

right states

(Ulj+*.L' Ulj+*'R) =(UlJ ' UW+l) (2.13)

then

Ul~~.s =Uj+*,j,S - 2~~ (FY(U~k.j+*)- FY(Ui~k,j-*»
(2.14)

is a sufficiently accurate approximation to (2.9) to yield an algorithm that is

second order accurate. For problems involving moderately strong nonlinear

discontinuities which are oblique to the mesh directions, it is necessary to use a

slightly more complicated algorithm to evaluate the effect of the transverse

derivative term B_FY~t on the left and right states. This term estimates the

change in the solution due to the y-gradients. In the case of an oblique discon-

tinuity, if the estimate is sufficiently different from the actual change calculated

in the conservation step, the solution will overshoot, or the discontinuity will

spread, depending on the relative signs of the gradient and the error. To allevi-

ate this problem, we use an estimate for ~~ which is closer to what we will

actually use in the conservation step, by taking Ui~+*to be the solution to the

Riemann problem for the equations projected along the y-directionwith left and

right states

(Ur. U.T. ') = (u. . (T.. )l,J+*.L' I.J+*.R I,J+*.L, I,J+*.R (2.15)

where Ui,j+*'L , U\,j+*.R is computed using the analogue of (2.10) for the zone edge

at (i~x , (j+}0~y).
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Given the left and right states defined as above, we solve the Riemann prob-

lem for the one dimensional equation projected along the x direction to obtain

Un~. In the case of constant coefficient equations. it is easy to check that Ull~

satisfies the following linear equations. independent of the choice of DL. DR:

IX,v.(Ul~m - Ui+*,j,v)- 2~~ IX'V. (FY(Ui~*+0 - FY(Ui~+k» (2.16)

where

Ui+*'j,v =Ui~j+ O~ - AX'V 2~~ )(L\XU)i,jifAx,v>O

= UR-l,j - O~ + AX'v2~~ HAXU)i+l,j otherwise.

This is a finite ditIerence approximation to the characteristic form of the

equations (2.4) on the M characteristic surfaces intersecting the line

Hx.y):x =(i+*)L\x~ at time tn+l. The proof is a routine calculation using the

characteristic projection operators; the key fact that is required is that the

solution to the Riemann problem for (2.2) with left and right states WL .WR is

given by

W = PLWL + PRWR

where PL. PR are the projection operators defined in (2.10). In the case where

the equations are nonlinear. but the solutions are smooth. Ul~m satisfies (2.16)

modulo terms which are second order in the rnesh spacing. provided that

Us - Un-k,j is of the order of the mesh spacing, where the eigenvectors and eigen-

values are evaluated at Ul~m. This fact describes one sense in which the algo-

rithm described here is upstream-centered for smooth solutions: the value of

the predictor Un"~ is given by solving a solution to M linear equations which are

finite difference approximations to the characteristic equations.

Finally. we need to specify a bound on the time step for stability. We expect

that the CFL condition should be given by
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max [IXiX( ~t I ' I Xy,v ~t I ]~ 1
i,j,v . ~x 1.J ~y , (2.17)

by analogy with the stability condition (1.5) for the advection equation. We have

not proven this for any problem for which AX and A! do not commute. However,

we have used the above condition as a time step control for our gas dynamics

calculations, and have seen no evidence of instability.
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3. Quadrilateral Grids

The above algorithrn can be extended to the case of arbitrary quadrilateral

grids. For the purposes of deriving the algorithm we will assume that our grid

comes from a smooth coordinate mapping, although the final difference algo-

rithm will be expressed only in terms of differences between coordinates of the

corners of the quadrilateral mesh.

We now assume that our computational domain is divided into quadrila-

terals f1i.jwith corners located at (Xi+H.j+*, Yi+H.j+*).Furthermore, we assume

there is a smooth map (~' 1']) ~ (x, y) between some coordinate space and phy-

sical space, with a rectangular mesh in (~,1']) space with corners located at

(~i+* ' 1']j+*) such that (Xi+H.j+* ' Yi+*.j+*) =(X(~i+* ' 1']j+*),Y(~i+*' 1']j+*». We can

transform the system (2.1) to the (~ , 1']) coordinate system:

a(JU) + aFt + aF'1 = 0
at a~ a1']

J = Det(V(t .?J)(x , y»

(3.1)

Ft = n?J.F , F'1= nL F

." - ( EL- - ax ~ t - (- ~ ax)
n - a1']' 81']7 , n - a~' a~

Without loss of generality we assume here that J > O. We define finite difference

approximations to the derivatives of the grid mapping function:

(~tX)i.j+* =JG+H.j+* - Xf-*.j+*~ ~; Itl' 'TJj+~~i

ax
I

(~'TJx)i+H.j = JG+H.j+*- Xi+H.j-* R:! a1'] t1+*' 'TJJ~1']j

(~tX)i.j = *«~tX)i.j+* + (~txkj-*)

(~'TJx)i.j = *«~'TJX)i+*.j + (~'TJX)i-H,j)

(3.2)

Gi.j = *«Xi+H.j-* - Xi-*.j+*)(Yi+*.j+*- Yi-H,j-*)+(Xi+*.j+* - Xi-H,j-*)(Yi-H,j+*- Yi+*.j-*»

Using these finite differences, we can make the connection between the mapping

derivatives in appearing in the transformed equations (3.1) and the geometry of
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the finite difference grid in physical space (Figure 4 ): ai.j ~ J(ti,17j)~tll1]j is the

area of the (i,j)th zone, and nf~ti ~ _(~fx)i~.j, n'TJ~17j~ (~'TJx)d+*are normal to the

zone edges, where we use the notation (WI' wz) 1 =(-wz , WI)'

As in the previous section, we will assume that, at time step n, we know UlJ'

the average of U over ~i.j' The procedure for calculating UiJ+I follows the same

basic outline as that of the rectangular grid case. We construct time-centered

left and right states at the zone edges, solve the Riemann problem, and

difference the fluxes conservatively, taking care that, at each step, the effect of

the quadrilateral mesh is accounted for in a suitable fashion.

Our conservative difference step will be of the "finite volume" type:

UA+l = U.n.+1.J 1.J ~.t. ( (~'TJX)i~j. F(Ul~~) - (~'TJX)i~.j. F(Unm)1.J

- (~~X)it-*. F(UlJ1) + (~~x)d+*' F(UiJt~»

(3.3)

It is clear that this formula is a conservative finite difference approximation to

(3.1). This formula can also be obtained by integrating (2.1) over ~.jx[tU , tn+*],

applYing the divergence theorem, and approximating the resulting surface

integrals using the midpoint formula. From that point of view, each of the terms

multiplied by ~t represents a time- and space-averaged flux through one of the
aj,j

edges of ~.j'

Our strategy for obtaining values for Unm ' Ul,jt~ follows the pattern used in

the rectangular grid case. We extrapolate tirne-centered left and right limiting

states at the zone edges using (3.1). We then solve the Riemann problem using

these stales for the equations (2.1) projected in the direction of the normal to

the zone edges in physical space. We consider, for example, the zone edge cen-

tered at (i +*,j) and we wish to construct Un~.L' Un~.R left and right states at

that zone edge. The starting point for this is to consider the extrapolation for-

mulae analogous to (2.7) for the system (3.1):
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(3.4)

- ;n. - ~t A~ au . - ~t an17. - ~t aFT1
- U1+k,J+ O~ 2J~ti+k a ) ~tI+k - - -. F

&a~ a~
where A~= n17. A The term - ~ - I . F comes from putting -ar-in nonconserva-

tion form, and is equal to zero in the rectangular grid case. We break this pro-

cedure into two steps:

n ~t au
Ui+*,j,S = Ui+k.j + (:f:* - 9TAI- - fJ) ~ti+k (3.5)

u;n+* - u. . - ~t (an17 . F + aF17'\
I+)iJ.S - I+*.J,S 2J at a1"/7

We approximate ~~ by monotonized central differences and ~~ by upwind

differences. The term a~17 . F is differenced in such a way so as to exactly cancel

(3.6)

the difference approximation to ~~ if there are no gradients in the 7J direction.

We first consider the calculation of Ui+*,j,S' We approximate

(:f:* - 2J~;' fJ) ~ (:f:* - 2a~t . (~17xk~k,j' A(Unk,j» (3.7)I+k l+k,J

where we have replaced J and nf, n'rJby the appropriate difference approxima-

tions from (3.2). By analogy with the rectangular grid case, we want to approxi-

mate ~~ ~tj with (~~U)j,j, a central difference approximation to which some form

of monotonicity has been applied. If the coordinate mapping is smooth. then

the formula (2.5) for equally spaced zones can be used without modification,

while retaining second order accuracy in regions where the solution is smooth.

However, we replace the eigenvectors in the monotonicity constraints in (2.6) by

(1i~{, ri~t) v = 1, . . . ,M, the left and right eigenvectors corresponding to the

eig envalues A.~,l~ . . . ~A.~,Mof (~1Jx»). . A(UP. ) . As before, we can also discardI,J I,J I,J l,J

terms in (3.7) corresponding to signals propagating away from the zone edge,

u.nmS =UP . + ti+kau t au1+ J, l+k,J 2 a{ + 2m

= u;n . + ti+k au t (aF + aF'1
1+k.J 2 at 2J at a7J
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and allow for an arbitrary choice of reference state Usobtaining the following

analogue of (2.10) for a general quadrilateral grid:

'" '" ~t 1
Ui+*,j,S =Us + Ps(Ufj - Us) + Ps(:f:* - ?".. . (~'fJX)i+k.j'A(Unk,j» . (~~U)i+k.j(3.8)

1+k.J
where

Psw= I; (li~k.j. w)rh.k.j
v::i:Xlt'k,J>o

WT -
t

~t aF"fJ
b

.
t

.
d d

"
tI

-

e apprOXlma e 2J aT} y an appropna e upmn 1 erence approXlma-

tion. In general, it is of the form of the corresponding difference approximation

in the conservative difference step (3.9):

L\t aF'1
~
~t

(
t-

)
1

F(
T

) ( t- 1 T- --~ ~r;x..+u' U"+u - ~r;x)"~'F(U"-1L »
2J 8'n 2a. . I.J IZ J.J IZ I.Jrz. I.Jn IZ

'/ I,J

Here Ulj+* is calculated by solving a Riemann problem for the projected equa-

tions along -(~~X)it+* with left and right states (Ui~+*,L, Ui~+*.R)' As in the rec-

tangular grid case, Ui~+*,Smay be set to UlJ+] or Ui,j+*,S' Finally, we approximate

~~ ~~'fJ. Fusing the finite difference approximations (3.2):

~t 8n'fJ ~t ~ ~ n- -' F ~ ~ (~'fJx ).+ . - (/).'fJx ). .) .F(U. .). (3.10 )2J aj- ~ I.J I.J 1.J<; I,J

Collecting our difference approximations, our final value for Un~,s is given by

Ull~,s =Ui+*.j.S + 2~~' [ (~~X)i~,j+*.' F(Ui~k.j+*) - (~tx){~k.j~' F(Ui~k.j--Tl)I,J

- «L\'fJX)i~+k,j - (~'fJX)j~+k.j) . F(Unk.j) ]

(3.11)

We obtain Unm by solving the Riemann problem for the projected equations

along (~'fJX)i~,j with left and right states Unm, Un-me unm satisfies finite

difference approximations to the characteristic equations (2.4) for the charac-

teristic surfaces through the (i +* ' j)th zone edge in physical space, similar to

(2.14).
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The appropriate generalization of (2.17) as a CFL condition on the time step

is given by

l11:ax
[

I)..it 6t I ' IXrI..v 6t I
]I.J.v ai,j I.J ai.j .

{3.12}

This is dimensionally correct since Air. "A.{!j'vcontain factors of 6'TJx,/).~x. In the

case of advection, and if the grid mapping is linear, one can demonstrate numer-

ically, as was done for the rectangular mesh case, that this is the correct CFL

condition. In general, the time step bound (3.12) has the following interpretation

in terms of characteristics: 6t must be less than the time it takes a wave pro-

pagating in a direction normal to a zone edge to reach an opposite zone edge.
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4. Gas Dynamics

We give in this section a detailed description of an algorithm of the type

described above for the case of Euler's equations for inviscid compressible flow

in two space variables, in planar geometry, on a general quadrilateral grid. The

system we ,vish to solve is of the form (2.1), with M =4, and

p

U = IPu
pv
pE

FX(U)=

pu
pu2+p
puv
puE + up

FY(U) =

pv
puv
pv2+p
pvE+p

(4.1)

where p is the density, (u, v) =u the x and y components of velocity, and E the.

total energy per unit mass. The pressure is derived from these quantities via an

equation of state, p =p(p,e) , where e is the internal energy per unit mass, given

by e =E - *(u2 + v2). In this section, we will describe an algorithm suitable for

use with a polytropic equation of state, i.e., for p given by p(p,e) = pel
' and the

y-

adiabatic speed of sound c given by c2 =~ The case of a general convex equa-P

tion of state is a straightforward extension of ideas in [4].

The projected equations for the system (4.1), are essentially those of gas

dynamics in one dimension. If we project the equations in the n direction for n a

unit vector, we can make a change of variables to obtain the following system

equivalent to (2.2):

(4.2)

Here uN =U . n, uT =u. n 1 with the other variables defined as before. Since n

is a unit vector, U2 + Y.=(uN)2 + (uT)2 so the formula for the internal energy e

aw + aG(W)- 0
at ax

uN1

puN

G(W) = puN + P

W = I T J'
puNuTpu

pE puNE + uNp
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can use either quantity. From these equations, it is clear that the eigenvectors

and eigenvalues of the linearized system, as well as the solution to the Riemann

problem, are given by those for the one-dimensional gas dYnamics equations,

with uT being treated as apassively advected quantity. Hence, we can use the

techniques of [2] and [5] for calculating solutions to the Riemann problem and

for manipulating characteristic variables.

Although the algorithm described here follows the same basic outline as

those given in the previous two sections, there are some differences, mainly with

the calculation of Ui+*.j,s. For the purpose of calculating Ui+*,j,S, we make a non-

linear change of variables, performing the difference calculation of (3.5) in

terms of the primitive variables p, u, v , p, as was done in [5] for gas dynamics

in one space variable. We then transform back to the conserved variables to cal-

culate Unm.s. This procedure enables us to perform our central difference cal-

culation componentwise on the primitive variables, using formulas similar to

(1.9), rather than on the amplitudes of an expansion of ~fU in terms of the right

eigenvectors. Also, since we are working in terms of the primitive variables, we

can use the more elaborate central difference algorithm given in [4-], which gives

rise to a steeper representation of discontinuities than (1.9).

In order to justify the use of the more elaborate algorithm for computing

~~ and, more generally, to understand the errors introduced by using

difference approximations to ~~, such as (2.5), it is useful to make a local

change of variables ((,T]) ~ (a,b)

a(~,r]) = ft~« ~~ )2 + (*)2)*df

'/'} '" a
b({,17) = L « ox }2 + (~)2)*d17'

'/'}J aT) a17

The coordinates (a,b) measure arc length along the grid lines ~{ = constL

(4.3)

~1J =consq respectively. It is easy to check that, for (~, 1J) sufficiently close to
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(~i' 17j) the Jacobian of the above map is nonsingular, since the cross derivatives

~~, ~~ =O((~- ~i) , (7J -7Jj)). Using the chain rule, we compute ~~ to be

au ~~ = au aa /).~+ au ab /).~
a~ aa a~ ab a~

Thus, the central difference approximation to ~~ used in (3.08) can be viewed as

using a central difference approximation for ~~ and dropping the term propor-

tional to ~~, since it is of one order smaller in the mesh spacing. In terms of

the mesh in physical space, this corresponds to the assumption that the arc

length along each of the coordinate directions is a smoothly varying function of

the other coordinate. This is a condition satisfied in a wide variety of applica-

tions, even when the grid mapping as a whole is not smooth, such as in the case

of highly stretched grids used in airfoil calculations. In the latter situation, one

can retain the formalism developed here but use an approximation to the

derivatives appropriate for a strongly varying mesh in the a- or b- direction.

In terms of the coordinate system (4.3), we can express Un~,sin the follow-

ing form:

n
( 8t8bi+kj b n auUo+u. s = U.. + IlL - . Di+k o.

A( U.+k o
» -8a..1 R.J. 1.J R 2 a. 0 ,J 1 ,J aa 1,J

1+k.J
(4.4)

unm.s = Ui+*,j.s - ~~8t [8ai+k.j+*nl~k.j+*F(Ui~k,j+*) - 8ai+k.j~nl~k.j~' F(U~k.j_*XL1.5)
i +k.j

+ F(Unk,j) . (6bi+*+k ni~*+k - 6bi-*+k ni~*+k)]

where

(6a)i.j[+*] =«8fx)i~j[+~ + (8fY)i~j[+~)*

(6b)i[+~.j = «87JX)iT+~,j+ (67JY)iT+*])*

- (~7JX)i~*].j
DiY+*].j - ~b i[+~.j

(4.6)
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6 - (~~X)i~+*1
Di,j[ +*1 - ~a. .[ U]1,J +n

We calculate Ui+M,j,Sby transforming to the variables V =(p,u,v,p)t before

applying (4.5):

VP-.=V(UP-.)l,J I,J

- ,... n"" ~t~~+k.j - 6 av
Vi+M,j,S- Vs + PS(Vi,j - Vs) + Ps{:f:* - ?U. . Ti+k,j Ai+k.jTi+k,j)~a ai+k,j (4.7)

1+k,J u

Ui+M,j,S = U(Vi+M,j,s).

Here Ti,j =VyUIut and Ps is defined by Psw = 2: (li~k,jw)ri~k,j where
J v:1:~~~J>o

l.6,v r.6..v X.6,v 1.1= 1 . ., 4 are the ei g envectors and ei g envalues of T.-:l .A!1. .T. .:
l,J ' 1,J ' 1.J " 1,J 1,J l,J

A6,l= u'nb - c .X6,2 =A6,3= u.nb , X6,4 =u.nb + c

1
nbcx

, r6,4 = p.
nbc2-
P2c

16,1= fo - n~p - n;p 1 1
r' 2c' 2c'~

1..2=[1 .0 . 0 .- ~
l6,3= [0 , -nj> , n~ , 0)

la,4 = fo n~p n;p 1 1
r ' 2c . 2c ' ~

Here nb =(n~ , nj» and the subscripts i,j are suppressed. The time step control

(3.12) in terms of the above eigenvalues, is given by

[
I ~bi,j L)t I I b ~ai,j ~t

~ax Ai~t ' Ai,j'v-
1.J. v Ui,j Ui,j

The approximation to (~~} I

'
.. L)ai,j we use is obtained by using a formula
1.J

1]"1.

like (1.9) for each component of V. For example, we denne. for q = p, p. li, V.,

1
nbc

. .2 =[]

0x--
-nb

r6,1 = I p. , r6,3 = inbc-2- nx

cq
0
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(~ltmq)i,j= 2min( I Ch~l.j- C1JI ' I<liJ- C1i~I,j I )

if (Ch~l.j - C1iJ)(C}j~j- C1i~I,j)> 0,

=0 otherwise,

(~lq)i,j =minO~IC]j~I,j- Ch~l.jI ' (~Dmq)i.j)xsgn(qnl,j - C1~l.j)'

and set (~aqkj = (~lq)i.j to obtain the algorithm analogous to (1.9). In the calcu-

lations presented in § 5, we use the following algorithm, taken from [3], which

yields a steeper representation of discontinuities:

a-.
[

IC1+1.j - C]j-l.j - ~(~lq)i+1,j + (~lq)i-l,j) I ~ai,j a

](/:). q)i,j - min 6 (~2~ ~) , (~limqkj, ai-l,j + ai,j + ai+l,j

xsgn( <li~I,j - Ch~1,j)

Given the values for fj,av. we can give explicit formulas for Vi+*,j,s:

"'. ~t~b. .
VL =VP. + (lL - max (nP. . nP. + cP. 0 ) I,J \~av. .

I,J n "'"i,J I,J I,J ' 2a. . 7 I,J1+1,J

'" - n. . n b ) fj,t~bi+1,j ~ a
VR - Vi+l,j - O~ + mIn(lli+l,j "llj+1,j - Ci+l.j ,0 9". . 7~ Vi+l.j

1+I,J

\1'+1£' S = Vs + >: {3' +1£' S r.a+,¥ .
1 rbJ, t...J 1 R,J. 1 k,J

v

fj,t~b. .
{3.v . = I,J (A.a,4 - A.a,v) (l.a,v . ~av. .)

I +*,J ,L 2a. . I,J I,] I,J I,JI,J

if A.a,v > 0
I,J .

=0 otherwise;

~t~b. l'
(3

v - 1+ ,J (Aa,l - Aa,v ) (1a,v . ~av )i+*,j,R - '.)". i+l,j i+l,j i+l,j i+l,j
i+1,j

if At+~,j< 0 ,

= a otherwise.

The formulas for Vi,j+*,s are identical to those given above, with the interchange

of i and j. na and nb.

The calculation of Un~,s given Ui+*,j,Sis given by (4.5), with UG+* the solu-

tion to the Riemann problem for the equations projected in the Iljj+* direction.

with left and right states given by U?'j+*,s =Ui,j+*,S or Ui~+*,S =UiJ+k' In the calcu-

lations shown below. we use the latter choice.
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The final conservative difference step is given by (3.3). We define

Fl+*.j =

n+~
mi+~.J
m.n+~ U;n+~ + P.n+~ /}.71y . ll'

1+~.J 1+~.J 1+~.J 1+ n..J

m .n+~ V;nt~ - P ;n+~ A71x . ll'l+~.J I+~.J l+~.J D l+n.J

nt~ ( Ent* pnm )mi+~.J i+~,J+ nt~
Pi+~.J

FiJ+* =

n+~.
mi.j+~

m ;n.+~.U ;n.+~.- P ;n.+~. A~y .. III,J+~ I.J+~ I.J+~ D 1,J+n

m ;n.+~.VA+~. + P ;n.+~. A~x .. II1.J+~ I.j+~ 1.J+~ D I.J+n
n+~.

m;n.+~. ( EA+~. + Pi.j+~ )1.J+~ 1.J+~ n+~.
Pi,j+~

wheremlltlj =~bi+*.jpn~ (nlt*.j' Uj~m ), mi~i~-\=/}.ai,j+*pl;jt\ ( ni~j+*.ul;jt\ ) are the

mass fluxes through the zone edges at (i+*,j) and (i,j+*). Then (3.3) is given by

Un+l - Un + /}'tJ F '~--1l'- F .~II . + F'!1. II - Fn ll )
i,j - i,j ~ l-n.J Hn.J I,J-n 1.J+n .1,J

Dissipation Mechanisms

In [5], it was noticed that, in one space dimension, and near strongly non-

linear shocks, the dissipation implicit in monotonicity constraints such as (3.6)

and (4.8), was insufficient to guarantee the correct jump in the Riemann invari-

ants transported along the characteristic families which cross the shock. For

that reason, it was suggested that additional dissipation be added to the algo-

rithm near such discontinuities in the form of flattening of the interpolation

functions, and by adding a small viscous dissipation term to the fluxes. Since

both these forms of dissipation were required for one dirnensional problems, it is

expected that similar dissipation would be required for the present algorithrn.,

since, for one dimensional problems, it is similar to the algorithm in [5]. The

second order artificial viscosity used in [5] can be applied without modification

to the present algorithm, simply by adding the dissipative flux to each of the

four fluxes, prior to the conservative differencing step. The form these
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dissipative fluxes take in the case of a general quadrilateral grid is also stan-

dard; see, e.g. [12]. The simplest flattening algorithm in [5] can be used, with

. one important modification: in each zone, the slopes corresponding to the

derivatives in each of the grid directions should be flattened by the same

amount. We define flattening coefficients Xa, Xb

'" a - r ( IPi+l.j - Pi-l,j I) O

f ( )
b > 0 IPi+1.j - Pi-l,j I >J.:

Xi,j - ~ I Uj-l,j - Uj+1,j "Ili,j , ° uIPi+2.j - Pi-2,j I mm(Pi+l,j,Pi-l,j)
(4.9)

= 0 otherwise

a-' I':".a "'a
)Xi,j - mm\.Xi-~J,j, Xi.j

where

<-(z) =1 if z > z 1 ,

=Oifz<zo,

z-zo"
= 1 - If Zo < z < Zl J

zl - Zo
and

Si,j =sign(pi+ l,j - Pi-l,j)

We define Xi~ similarly, with the roles of i and j reversed. Then the slopes ~aq, ~bq

obtained from (4.8) are reset to

~an,. ~bn,. 4 X. . ~an,. X" ~bn,.~,J ' ~,J ],J ~.J' ],J ~,J' (4.10 )
where

.
(

a b
)X. . =mln v;. v,'.

],J N,J ' AI.J

In the runs discussed in the next section, the parameters in the above algorithnl

we set to be 6 = .33, Zo = .75, Zl =.85. In addition, we used the two-dimensional

Lapidus viscous flux discussed in [5] with a coefficient of.1. These were the

choice of the parameters used in the corresponding algorithms for operator

split calculations described in [5], and have been found to give adequate results

over a wide range of problems.
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Boundary Conditions

It is straightforward to impose various continuation-type boundary condi-

tions (inflow, outflow, periodic, etc.) in regions where the grid has a natural

extension beyond the computational domain. Since the numerical domain of

dependence of a grid point is contained in the 7 x 7 block of grid points contain-

ing the point at the center, then one can extend the original computational

mesh by three grid points in each direction, and set the values on the extended

part of the grid at the beginning of each time step using the boundary condi-

tions, thus supplYing sufficient data to calculate the values on the original grid.

The most common situation where one cannot extend the grid is in the case

of an impermeable surface, particularly on a body-fitted grid. Let us assume, for

example, that the curve ~~(x) =~io-7dis a reflecting surface, with the fluid con-

tained in the region ~~(x) > ~io-*~' The algorithm described above can be applied

without modification, if we specify values for the slopes ~f~o-*.j' ~bC}jo-7tjand for

the fluxes F(Ui~--*,j), F(Ui~~,j)' The slopes are given by

~n, . = A-n, . = 0"1lo.J Uf"1l0.J

1
q =p , p , ni~-*.j . U

n,b -1i.., /)fbn, . = min ( 1 11, .' n,b _u.
1 2 1 ( 1"1,+ 1 .-1"1, .) . n,b -1i.. 1 ) s g n (1"1' .' n,b -1i. .)&-aJO-fZoJ """io.J """io,J "'-"lo n.J' """io ,J """io.J "'-"lo-n.J """io.J "'-"lo-n.J (4.11)

if (u. .' nP -1i..) (n, +1 . - 1"1, .) . n,b -1i.' > 0
10.J "'-"lo-n.J """iO.J """:10,J "40-lZoJ

= 0 otherwise

Given the slope information, it is possible to calculate Uio-*,j.R'Ui~~.j.R' To obtain

the states Ui~-7tj'Ui~1.j' we solve Riemann problems projected in the Dj~-*,j

direction, with left and right state given by

n+* - n+* - b 1
C]io-*.j.L, q]o~.j.L - C]io-M.j.R,q}o~.j,R ,q-p,P,l1io-7tj. U (4.12)

b"" b n+* - b"" b n+H
Djo--*,j . Uto-7tj.L ' Djo-*,j . Uio~.j.L - -nio--*'j. Uto-*.j.R ' -Ilio-7tj. Uio-»'j.R

With this choice of left and right states, it is clear that Ujo~.j .Ilj~-M.j=0, so that

the advective terms in the fluxes at (io-~,j) vanish, leaving only the pressure



30

terms in the x- and y- momentum equations. Whatever approximate solution to

the Riemann problem is used should guarantee that the advective terms vanish

in the flux calculation at the walL
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5. Numerical Results

The gas dynamics algorithm described here is being used in a variety of

applications, including flow in cascades and channels, with body-fitted meshes

[7], and in adaptive mesh refinement calculations in two dimensions [1]. We will

present here two calculations, both done on rectangular grids. The first is the

calculation cf a steady state regular shock reflection, used as a test problem in

[16]. This problem has been used extensively as test problem for numerical

methods used in aerodynamic calculations. The second test problem is the dou-

ble Mach reflection of a shock off an oblique surface, used in [15] as a test prob-

lem for comparing various difference methods. Since our purpose is to demon-

strate that the current method has the same resolution as the corresponding

operator split algorithm, we present also a calculation of this problem per-

formed by using in an operator split formulation the one dimensional algorithm

obtained by restricting the algorithm described in § 4 to one dimension.

In the first test problem, the computational domain is a rectangle of length

4 and height 1 (Figure 5 ). This domain is divided into a 60 x 20 rectangular grid,

with !:J.x= 115' b.y = 2~' The boundary conditions are that of a reflecting surface

along the bottom boundary, supersonic outflow along the right boundary, and

Dirichlet conditions on the other two sides, given by

1
(p , u , v , p) I(0. y. t) =(1. , 2.9 , 0., 1.4)

(p , u . v, p) I(x.1.t) = (1.69997 , 2.61934, .50632 , 1.52819)

Injtially, we set the solution in the entire domain to be that at the left boundary;

we then iterate for 500 time steps using a CFL condition of .9, at which time the

solution reaches a steady state.

In Figure 6. we show a contour plot of the pressure. The contours are

equally spaced, with contour levels of .1, beginning at O. The shocks have a
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nearly monotone transition, and are fairly narrow, with some slight spreading on

the high pressure side ofeach shock. This spreading is due to the flattening

algorithm (4.10). We see this in Figure 7, where we plot profiles of the solution at

y =.525, computed with and without flattening. The width of the shocks is about

2-2* zones in the normal direction, where this figure is obtained by counting

the number of points in the transition in Figure 7, and multiplying it by

sin(tan-l(: Itan(ex)I)), where exis the angle between the direction tangent to

the shock and the x direction. The shock transition with flattening is slightly

broader; however, the transition without flattening has some low-amplitude

oscillations, which are not present in the solution obtained with flattening. Even

though the shocks are supersonic on both sides, there is no difficulty with

uncontrolled diffusion of the discontinuities. This is in contrast to the results

obtained with first-order upwind methods, where steady shocks remain quite

sharp if the transition is supersonic/subsonic, but which spread over many

zones if the transition is supersonic/supersonic. Indeed, the main difficulty for

the present method is to insure that the shocks are broad enough so that

sufficient dissipation occurs across the shock, as was the case with the operator

split second order methods.

The second test problem is an unsteady shock reflection problem. A planar

shock is incident on an oblique surface, with the surface at a 30 a angle to the

direction of propagation of the shock (Figure 8). The fluid in front of the shock

has zero velocity, and the shock Mach number is equal to 10. The solution to this

problem is self-similar, with U a function of (x,y,t) only in the combination

(x/t,y It). In Figure 9, we show the results of calculation of this test problem

performed with the present unsplit second order method; in Figure 10, the

corresponding results obtained with the operator split method. The results of

the two calculations are essentially identical, supporting the assertion that the
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unsplit method has the same resolution as the corresponding operator split

method. However, a considerable degree of care was required in the unsplit

scheme for this to be the case. The choice of (2.15), rather than (2.13), in calcu-

lating the transverse derivative in the predictor step is essential; otherwise, one

obtains considerably lower resolution in the jet along the wall in the double Mach

region. The accuracy in the double Mach region is also sensitive to the reflecting

boundary conditions. The former difficulty has no analogue in the operator split

method; as for the latter problem, the operator split method gives the same

results with much simpler boundary conditions. Finally, the multidimensional

flattening algorithm given by (4.10) was required to eliminate low-amplitude

noise behind the the shocks, whereas the operator split algorithms required only

the one dimensional flattening algorithm in [5] to be applied in each sweep.
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6. Discussion and Conclusions

In this paper, we have derived explicit second-order Godunov-type methods

ill two space variables by using the wave propagation properties for multidimen-

sional hyperbolic equations, and by limiting some of the second-order terms to

suppress oscillations. The calculations in § 5 indicate that we have been success-

ful in the goal stated in the Introdu~tion of producing an algorithm with compar-

able performance to the operator split second order Godunov methods, at a

comparable cost. In retrospect, this is not surprising, since the multidimen-

sional algorithm consists of combinations of the one-dimensional operators

which appear in the operator split schemes. In particular, the same Riemann

problems appear in the present method as in the operator split methods, since

in the former case averaging the solution to the characteristic form of the equa-

tions over a zone edge provides, via (2.4), a natural choice of a direction in which

to project the multidimensional equations for solving the Riemann problem.

However, there are differences between the present algorithms and the operator

split approach. The algorithms discussed here are somewhat more expensive,

requiring twice as many solutions to the Riemann problem as the corresponding

operator split algorithm. Since the Riemann problem for a polytropic equation of

state constitutes half the calculation in one dimension, this leads to an algo-

rithm which takes 50% more time than the operator split algorithm. In the regu-

lar reflection problem, the vectorized implementation on the Cray 1advanced

about 24,000 zones by one time step in each cpu second. Also, the multidimen-

sional algorithms appear to be more sensitive to various details of the imple-

mentation, requiring a greater degree of care, such as for the reflecting boun-

dary conditions (4.11) - (4.12), and for the flattening algorithm (4.10).

There are a number of straightforward applications and extensions of the

methods described here. It is possible to introduce quadratic interpolants, as in
A

[5], to evaluate U in the predictor step in order to improve the resolution of
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linear discontinuities by means of contact detection and steepening. Conserva-

tion laws for which the fluxes have an explicit spatial dependence, such as for

incompressible multiphase flow in porous media, can be easily treated using

similar techniques to the ones used for the general quadrilateral meshes.

Cylindrical coordinates in two dimensions, as well as general moving quadrila-

teral meshes, with the motion externally specified, are also straightforward. The

treatment of a general equation of state via the techniques in [6] is accom-

plished by introducing an additional transport equation for y =~ + 1 for use inp ..

the predictor step for the transverse derivatives. This introduces some addi-

tional complication into the method, which is more than offset by the fact that

one need only evaluate the equation of state once per zone per time step.

There are some problems for which the formalism given here is attractive,

but for which the extensions are not entirely straightforward. One of these is the

extension of this method for calculation of problems in LagrangiaIl coordinates

in two dimensions. The difficulty here is that the motion of the grid must be

obtained from the solut.ion itself; unlike the one dimensional case, neither the

solution nor the fluxes are defined at the corners of the mesh, where it is most

natural to specify the motion of the grid. Consequently, some form of averaging

of the velocities must be introduced in order to move the grid, but one which

does not degrade the resolution of the method. Finally, there is the question of

the extension of these ideas to three dimensions. If we just take as our advection

algorithm the lhree dimensional analogue of (1.2), we arrive at an algorithm for

systems which satisfies the properties 1) - 3) in the Introduction, but requires 12

solutions to the Riemann problem per zone per time step; this is in contrast to

the 3 solutions required by an operator split method. The large number of solu-

tions to the Riemann problem comes from the fact that for each coordinate

direction in three dimensions, the analogue of the predictor step for the
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transverse derivatives (2.9) requires a calculation comparable to the full two

dimensional calculation described in this paper. However, if we are willing to

relax 3) somewhat, we obtain an algorithm which requires only 6 solutions to the

Riemann problem by using the extension of donor-cell differencing to systems to

evaluate the transverse derivatives in the predictor step; equivalently, we would

be ignoring the contributions due to transport from zones offset by one mesh

length in all three directions, which correspond to third order terms in the trun-

cation error. In both cases, we would obtain algorithms which, for two dimen-

sional problems aligned with one of the mesh directions, give identical results to

the algorithms described in this paper. The question as to what the appropriate

formulation is for problems in three dimensions is undoubtedly problem de pen-

dent, and probably can be resolved only by numerical experiments.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

The region over which we average pI to obtain the new value for p is

outlined with a dotted line. It is obtained by following the integral

curves of the vector field u (in this case, straight lines) backwards

in time by ~t from points in ~.j.

The shaded region is the region over which one averages pI to

obtain the CTU flux at the zone edge bounding that region. It is the

set of all points from which characteristics can reach that zone

edge between time tn and tn+~t.

Characteristic surfaces in two space dimensions. r is a curve in

the spatial plane with normal vector field n, and SVis one of the M

characteristic surfaces in space-time passing through f.

Geometric interpretation of the difference approximations to the

derivatives of the grid mapping.

Steady state regular reflection problem.

Numerical solution to regular reflection problem: a) with flatten-

ing; b) without flattening.

Comparison of pressure profiles for regular reflection problem

along the line y = .525 (j = 11): x- with flattening, * - without

flattening.

Ramp reflection problem: a) initial configuration; b) double Mach

reflection at later times: solid lines are shocks, dotted lines are



Figure 9:

Fig ure 10:
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slip surfaces.

Numerical solution of ramp reflection problem using the method

described in §4. The mesh is a rectangular mesh of 400x100 zones,

with the reflecting wall beginning 20 mesh lengths from the lower

left corner. flx =/:)y= 1~0 ' and the time shown is t =.2; thus this

calculation corresponds to the finest grid results in [15].

Numerical solution of ramp reflection problem, using operator split

method, with numerical parameters the same as for Figure 9.
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