
UCLA
UCLA Previously Published Works

Title
Microtubule Motor Transport of Organelles in a Specialized Epithelium: The RPE

Permalink
https://escholarship.org/uc/item/0f4532k1

Authors
Hazim, Roni A
Williams, David S

Publication Date
2022

DOI
10.3389/fcell.2022.852468
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0f4532k1
https://escholarship.org
http://www.cdlib.org/


Microtubule Motor Transport of
Organelles in a Specialized Epithelium:
The RPE
Roni A. Hazim1* and David S. Williams1,2,3,4*

1Department of Ophthalmology and Stein Eye Institute, Los Angeles, CA, United States, 2Department of Neurobiology, David
Geffen School of Medicine at UCLA, Los Angeles, CA, United States, 3Molecular Biology Institute, University of California, Los
Angeles, Los Angeles, CA, United States, 4Brain Research Institute, University of California, Los Angeles, Los Angeles, CA,
United States

The retinal pigment epithelium (RPE) is a uniquely polarized epithelium that lies adjacent to
the photoreceptor cells in the retina, and is essential for photoreceptor function and
viability. Two major motile organelles present in the RPE are the melanosomes, which are
important for absorbing stray light, and phagosomes that result from the phagocytosis of
the distal tips of the photoreceptor cilium, known as the photoreceptor outer segment
(POS). These organelles are transported along microtubules, aligned with the apical-basal
axis of the RPE. Although they undergo a directional migration, the organelles exhibit
bidirectional movements, indicating both kinesin and dynein motor function in their
transport. Apical melanosome localization requires dynein; it has been suggested that
kinesin contribution might be complex with the involvement of more than one type of
kinesin. POS phagosomes undergo bidirectional movements; roles of both plus- and
minus-end directed motors appear to be important in the efficient degradation of
phagosomes. This function is directly related to retinal health, with defects in motor
proteins, or in the association of the phagosomes with the motors, resulting in retinal
degenerative pathologies.
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INTRODUCTION

Motor-dependent intracellular transport is an essential process for all eukaryotic cells. It underlies
numerous critical functions, including the trafficking and positioning of organelles, the endo- and
exocytosis of biological molecules, the establishment of polarized domains, and the translocation of
chromosomes during cell division. Impaired motor-dependent trafficking is at the root etiology of
several neuro-pathologies, lysosomal storage disorders, and ciliopathies. In vitro models well suited
for the study of intracellular transport, and its disease-related mechanisms, include polarized cells,
such as neurons and epithelial cells, in which specific cargos must be trafficked to distinct cellular
compartments.

The retinal pigment epithelium (RPE) is a polarized monolayer of cells situated between the light-
sensitive photoreceptor cells and the nutrient-rich choriocapillaris (Lakkaraju et al., 2020). These
pigmented cells perform supportive functions that are vital to the health of photoreceptors and the
retina as a whole. Functions include: 1) absorption of stray light, 2) transport of water, ions, nutrients,
and waste products, 3) recycling of the visual chromophore, 4) secretion of growth and signaling
factors, 5) phagocytosis of distal photoreceptor outer segment (POS) disk membranes, and 6)
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contribution to the metabolic ecosystem of the outer retina
(Strauss, 2005; Lakkaraju et al., 2020). In the mouse retina, a
single RPE cell serves up to 200 photoreceptor cells (Volland
et al., 2015). RPE cells are postmitotic andmust therefore perform
these functions throughout the lifetime of the organism (Ts’o and
Friedman, 1967). The supportive capability of the RPE in the
retina is heavily dependent on its differentiated state (Zhao et al.,
2011), which represents a highly specialized epithelium
(Lakkaraju et al., 2020).

Studies of the properties of specialized cells, like the RPE, tell
us about the generality of basic principles and adaptions of
molecular mechanisms. In this Mini Review, we highlight the

role molecular motor proteins play in facilitating the functions of
polarized RPE cells. We focus on microtubule motor-driven
motility of two major RPE organelles: melanosomes, which
characterize the RPE in most animals, and phagosomes, which
result from the daily ingestion of POS tips. We also discuss how
defective microtubule motor transport may contribute to retinal
pathologies that impair our sense of vision.

Organization of the Microtubule
Cytoskeleton in the RPE
Cells have a cytoskeleton composed of microtubules, actin, and
intermediate filaments, which maintain cell shape and
organization. Of these cytoskeletal elements, the microtubules
are the biggest; they are composed of a- and ß-tubulin monomers
that form a hollow cylindrical polymer 25 nm in diameter
(Akhmanova and Steinmetz, 2008). Microtubules are highly
dynamic and polarized structures, with a plus-end that is fast
growing and a minus-end that is slow growing (Mitchison and
Kirschner, 1984). In a nonpolarized cell, the microtubule plus-
end is directed towards the cell periphery while the minus-end is
anchored at the microtubule-organizing center (MTOC)
(Vorobjev and Nadezhdina, 1987). The MTOC is composed of
the centrosome and surrounding pericentriolar material, and
typically lies near the nucleus (Vorobjev and Nadezhdina,
1987). In contrast, polarized cells such as the RPE have an
MTOC that has migrated away from the nucleus and towards
the apical region of the cell (Bacallao et al., 1989; Bre et al., 1990).
The microtubule organization of the RPE is similar to that
reported for other confluent epithelial cells (Bacallao et al.,
1989; Gilbert et al., 1991; Jiang et al., 2015). Horizontal
microtubules emanate from the MTOC, which is at the level
of the circumferential actin filaments (Jiang et al., 2015), and are
perpendicular to the apical-basal axis of the cell (Figure 1). The
majority of microtubules have their minus-ends at the level of the
MTOC, but they are removed from the MTOC and are aligned
vertically along the apical-basal axis of the cell; their plus-ends
face the basal surface (Musch, 2004; Jiang et al., 2015) (Figure 1).
Thus, the apical region of the cell is devoid of microtubules,
except for those in the cilium, which extends from the apical
surface; actin filaments occupy the entire apical region, including
the apical microvilli.

In both polarized and nonpolarized cells, the microtubules
serve as tracks for molecular motors that transport a variety of
cargos (Toomre et al., 1999). Two families of motor proteins
travel along microtubules. Kinesins are plus-end-directed motors
while dyneins are minus-end-directed motors. The cargos
transported by these two motors include, membrane-bound
organelles, proteins, mRNA, and viruses (Cianfrocco et al.,
2015). The kinesin superfamily of motors is quite diverse, with
15 identified families. Even with such diversity, kinesins require
adaptor proteins that ensure specificity of cargo binding (Tempes
et al., 2020). In contrast to the large kinesin family, dyneins are
based on far fewer different motor subunits (heavy chains).
However, these motor subunits associate with a large variety
of other subunits, as well as adaptor proteins that are essential for
cargo specificity and linkage to dynein in the cytoplasm of animal

FIGURE 1 |Microtubule organization in the RPE. In a polarized epithelial
cell like the RPE, the microtubule-organizing center (MTOC) is located above
the nucleus (N), where it gives rise to horizontal microtubules as well as vertical
microtubules that emanate to the primary cilium. The majority of
microtubules, however, are non-centrosomal vertical microtubules with their
plus-ends located near the basal surface of the RPE. Modified from Jiang et al.
(2015).
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cells (Reck-Peterson et al., 2018). Moreover, the adaptor proteins
allow the dynein motor to travel with processivity such that it
does not detach frommicrotubules before reaching its destination
(McKenney et al., 2014; Schlager et al., 2014). In the RPE,
microtubule motors transport two important motile organelles
necessary for their supportive function, including the pigment-
containing melanosome and the POS-derived phagosome.

Transport of Melanosomes in the RPE
Melanosomes play an important role in the absorption of stray light
in the eyes of invertebrates and vertebrates, with their movements
providing ameans to alter visual sensitivity and resolution. Examples
are found among mollusks (Daw and Pearlman, 1974), arthropods
(Boschek, 1971; Williams, 1982; 1983), and fish and amphibians
(Back et al., 1965; Burnside and Basinger, 1983; Burnside, 2001;
Burgoyne et al., 2015). In vertebrate eyes, cylindrically-shaped
melanosomes enter the narrow apical processes of the RPE,
which project among the POS, thus affecting light absorption by
the POS. In addition to screening light, melanosomes may also
contribute to the heavy phagocytic role of the RPE, as they contain

proteases (Azarian et al., 2006), and have been observed to fusedwith
phagosomes (Schraermeyer et al., 1999).

The localization of melanosomes to the actin-rich apical RPE
is dependent on the actin-based motor protein, myosin-7a, which
functionally associates with RPE melanosomes by linkage
through RAB27A and the exophilin, MYRIP (El-Amraoui
et al., 2002; Futter et al., 2004; Gibbs et al., 2004; Klomp et al.,
2007; Lopes et al., 2007). This apical localization also requires
cytoplasmic dynein, with lack of cytoplasmic dynein or myosin-
7a resulting in comparable phenotypes (Liu et al., 1998; Jiang
et al., 2020). It appears that dynein is responsible for delivering
melanosomes from the cell body to the apical region of the RPE,
and myosin-7a takes delivery and keeps them in the actin-rich,
apical domain. However, in the cell body, melanosomes undergo
bidirectional movements along microtubules (Jiang et al., 2020),
suggesting the involvement of a kinesin as well as dynein
(Figure 2A). Loss of kinesin-1 function (due to loss of KIF5B)
affected melanosome motility, although, unlike loss of
cytoplasmic dynein function, it did not have an obvious effect
on overall melanosome localization (Jiang et al., 2020). In some

FIGURE 2 |Organelle transport in the RPE. (A) Pigment-containing melanosomes found in the RPE cell body exhibit bidirectional movements on microtubules due
to the opposing actions of dynein, and kinesin-1, plus possibly a second different kinesin. The trafficking of the melanosomes by dynein towards the apical region is
necessary for their capture by the actin-based motor, myosin-7a, in complex with RAB27A and MYRIP, resulting in their localization in the actin-rich apical region of the
RPE. (B) Photoreceptor outer segment (POS) disk membranes ingested by the RPE form a motile organelle, the phagosome, which undergoes a series of
interactions with endosomes (early and late) and lysosomes to ensure timely degradation and clearance. These interactions are facilitated by the opposing actions of
dynein and kinesin motors, which mediate the bidirectional movement of the phagosomes, endosomes, and the lysosomes. Although the kinesin and dynein motors
appear far apart on a particular organelle in both (A,B), they may be in a complex that associates with the cargo via shared adaptor proteins (Fenton et al., 2021). Several
alternative mechanisms have been proposed to drive bidirectional movements of organelles, including coordination between the kinesin and dynein motors that is
regulated by adaptor proteins, or, more simply, a tug-of-war between the two types of motors (Encalada andGoldstein, 2014). Modified from original drawings, prepared
by Aparna Lakkaraju and published in Lakkaraju et al. (2020).
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instances, plus-end directed microtubule movement involves
more than one kinesin (Shin et al., 2003; Miller et al., 2005;
Twelvetrees et al., 2010; Nakajima et al., 2012). Perhaps loss of
kinesin-1 function, together with the inhibition of a second
kinesin, would completely inhibit plus-end directed
movements, and thus have an overall effect on melanosome
localization within the RPE.

Melanosome transport in the RPE can be compared to that in
skin melanocytes, but there are significant distinctions. In
melanocytes, there is a net migration of melanosomes from
the cell body to the dendrites, in the periphery of the cell;
from there they are delivered to the keratinocytes (Wasmeier
et al., 2008; Hume and Seabra, 2011; Wu and Hammer, 2014;
Moreiras et al., 2019). Melanosome movements along the
microtubules are nevertheless bidirectional, with transport
towards the nucleus driven by dynein (Byers et al., 2000).
Their movement to the dendrites was proposed to be driven
mainly by kinesin-1 (Ishida et al., 2012; Ishida et al., 2015).
However, more recent evidence argues that kinesin-1 is not
necessary for movement to the dendrites, and that it can be
accomplished entirely by myosin-5a activity along cortical actin
filaments (Evans et al., 2014; Robinson et al., 2017).

The dynein-driven motility of melanocyte melanosomes is an
example of where dynein adaptor proteins have been reported to
function as regulatory linkers between motor and cargo. The
adaptors include melanoregulin (Ohbayashi et al., 2012) and
Rab36 (Matsui et al., 2012). Interestingly, melanoregulin in the
RPE appears to be involved in the maturation of POS-derived
phagosomes rather than melanosome transport (Damek-
Poprawa et al., 2009). Further studies are necessary to reveal
the mechanisms by which melanosomes link to microtubule
motors of the dynein and kinesin family.

Transport of Phagosomes in the RPE
The RPE plays an essential role in the renewal of the outer
segments of photoreceptor cells (Young and Bok, 1969; Williams
and Fisher, 1987). The outer segments contain thousands of lipid
disk membranes, the site where phototransduction begins (Burns
and Arshavsky, 2005). New disk membranes are continually
synthesized and formed at the base of the POS (Young, 1967).
The apical surface of the RPE faces the photoreceptor cells, with
its apical microvilli interdigitating the POS. Following a circadian
rhythm, the RPE phagocytizes the tips of the POS. The
phagosome containing these lipid disk membranes is unique
in its composition, and appears to undergo a series of
interactions to be degraded properly (Bosch et al., 1993;
Wavre-Shapton et al., 2014).

The processing of POS-derived phagosomes in the RPE is
heavily dependent on their motor-dependent trafficking to
ensure interactions with degradative organelles, including
endosomes and lysosomes (Figure 2B). Studies by Herman and
Steinberg showed that disruption of themicrotubule cytoskeleton in
tapetal RPE of the opossum impedes the movement of POS-derived
phagosomes (Herman and Steinberg, 1982b; a). More recently, the
association of POS-derived phagosomes with a light chain of the
kinesin-1 motor (KLC1) was observed as the phagosomes
transitioned from the apical region to the cell body of mouse

RPE (Jiang et al., 2015). Lack of KLC1 in mouse RPE impaired
the trafficking of the phagosomes towards the basal surface of the
RPE as well as their degradation (Jiang et al., 2015). Interestingly,
live-cell imaging of POS-derived phagosomes in primary mouse
RPE cells has shown that these organelles exhibit bidirectional
movements along the microtubules (Jiang et al., 2015; Hazim et al.,
2016), suggesting the actions of opposing motors; although the
exact role of the minus-end dynein motor in the transport of POS-
derived phagosomes remains unclear. The bidirectional movement
of phagosomes may be necessary to ensure sufficient interactions
with early and late endosomes, which prime the phagosome for
fusion with lysosomes. Bidirectional movements of phagosomes,
particularly in combination with bidirectional movements of
endolysosomes on the same or nearby microtubules, should
increase the probability of interactions between phagosomes and
endolysosomes. Presumably, the number of such interactions is
related to the efficiency of phagosome maturation and
degradation—and whether undigested lipid membranes
accumulate (Keeling et al., 2019).

Although there is evidence that microtubule-based motor
transport is essential for the proper trafficking of POS-derived
phagosomes, and therefore their timely clearance, there is still a
knowledge gap with respect to the transport mechanisms that
underlie this process. This gap includes the mechanisms that
regulate the bidirectional motility of the phagosome, as well as the
identification of adaptor proteins that facilitate the recruitment of
motor proteins to the phagosome membrane.

Motor Proteins in the Context of RPE and
Retinal Pathology
The RPE is essential to retinal health. Most forms of macular
degeneration, including age-related macular degeneration
(AMD), a common affliction among the elderly (Wong et al.,
2014), arise from primary lesions in the RPE. Several monogenic
forms of retinal degeneration are also caused by mutations in
genes that are expressed in the RPE; for example, mutations in
MERTK (Gal et al., 2000), which cause retinitis pigmentosa, CHM
(Cremers et al., 1990), which cause choroideremia, and MYO7A
which cause Usher syndrome type 1B (Weil et al., 1995). Studies
from animal models provide some insight into whether defects in
the motility or localization of organelles transported by
microtubule motors could contribute to RPE dysfunction and
pathology.

Melanosomes in mouse models of choroideremia (Tolmachova
et al., 2010) and Usher syndrome 1B (Liu et al., 1998) do not localize
normally to the apical region, but these models also demonstrate
other potentially more serious RPE defects, including retarded POS
phagosome degradation (see below) (Gibbs et al., 2003; Gordiyenko
et al., 2010; Lopes et al., 2011; Williams and Lopes, 2011; Wavre-
Shapton et al., 2013). Whether this mislocalization contributes to
retinal pathology is not known. Nevertheless, it seems that
melanosome mislocalization could be a useful biomarker for
diseases such as choroideremia and Usher syndrome 1B, since it
may be detectable with advanced retinal imaging (Liu et al., 2019).

Given how important the trafficking of phagosomes is to their
timely processing and clearance, it is perhaps no surprise that
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motility defects result in pathological conditions that affect the
health of the RPE and therefore the retina. In mice lacking
kinesin-1 light chain, phagosome degradation was delayed
resulting in AMD-like symptoms in aged animals, including
oxidative stress, complement system activation, and
photoreceptor death (Jiang et al., 2015). Interestingly, a similar
pathology was reported in mice with RPE-specific ablation of the
orthologue of the CHM gene, which encodes Rab Escort Protein-1
(REP-1) (Wavre-Shapton et al., 2013). REP-1 functions in the
prenylation of Rab proteins, which serve as regulators of
membrane trafficking. REP-1 depletion in human fetal RPE
has been shown to impair the association of POS-derived
phagosomes with RAB7-positive late endosomes, thereby
delaying their clearance by the RPE (Gordiyenko et al., 2010).

Defects in dynein-specific trafficking of phagosomes have
also been shown to impair the clearance of these organelles by
the RPE. In a mouse model of Stargardt 3 macular
degeneration, phagosomes contain a mutant form of the
elongation of very long-chain fatty acids 4 (ELOVL4)
protein, and were found to exhibit increased association
with dynein and reduced clearance (Esteve-Rudd et al.,
2018). This study indicates that the content of the POS-
derived phagosome is an important characteristic that affects

the recruitment and association of motor proteins with
organelles in the cell. With artificial phagosomes, generated
by the phagocytosis of latex beads, the cholesterol content of
the enclosing membrane has been shown to influence
phagosome motility by the dynein motor (Rai et al., 2016).
Targeted approaches to modify the POS content prior to RPE
phagocytosis would provide a physiological system for testing
how cholesterol, and other macromolecules, affect the
trafficking and clearance of phagosomes. Elucidating these
mechanisms would provide a better understanding of how
motor dysfunction and impaired subcellular trafficking
contribute to pathology in the RPE and the retina.
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