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Abstract

Decision-makers often rely on expert knowledge, especially in complex and
data-poor social-ecological systems (SESs). However, expert knowledge and
perceptions of SES structure and function vary; therefore, understanding
how these perceptions differ is critical to building knowledge and develop-
ing sustainability solutions. Here, we quantify how scientific, local, and tra-
ditional knowledge experts vary in their perceptions of food webs centered
on Pacific herring—a valuable ecological, economic, and cultural resource in
Haida Gwaii, BC, Canada. Expert perceptions of the herring food web varied
markedly in structure, and a simulated herring recovery with each of these
unique mental models demonstrated wide variability in the perceived impor-
tance of herring to the surrounding food web. Using this general approach
to determine the logical consequences of expert perceptions of SES structure
in the context of potential future management actions, decision-makers can
work explicitly toward filling knowledge gaps while embracing a diversity of
perspectives.

Introduction

Experts play a key role in decision-making in conserva-
tion. In the absence of certainty about the nature and be-
havior of complex social-ecological systems (SESs), ex-
pert opinions are often elicited in hopes of separating
matters of fact from matters of value to complement
existing data and inform conservation decisions (Dietz
2013). Typically, technical experts communicate their
understanding of social-ecological processes to decision-
makers, enabling them to rely upon best available science
(Ryder et al. 2010). For example, assessments of oil spill
impacts (e.g., major oil spills; Leschine et al. 2015), cli-
mate change mechanisms (e.g., IPCC 2014), and poten-

tial tradeoffs associated with scientific whaling (e.g., the
case for scientific whaling; de la Mare et al. 2014) have
all relied on expert judgment (reviewed in Redpath et al.
2013). However, experts can exhibit high levels of uncer-
tainty because knowledge integration among individu-
als is inherently complex (Raymond et al. 2010; Drescher
et al. 2013), and in some cases not possible (Gray et al.
2012).

Despite the potential for each expert’s training, ex-
perience, and education to guide judgments (Burgman,
Carr et al. 2011), many conservation decision-making
processes focus on gathering input from select individ-
uals with substantial, but not necessarily objective, infor-
mation about a given topic (Burgman, Carr et al. 2011;
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Martin et al. 2012; Drescher et al. 2013). Indeed, diver-
gent views are common for two reasons. First, expert
perceptions of SESs are typically based on what they
have learned from experience or in the classroom (i.e.,
human cognition). Second, the terms employed to de-
scribe SESs (e.g., ecosystem structure) are human con-
structs, and the way in which perceived differences are
discussed is typically qualitative, imprecise, and prone to
biases in human reasoning (but see Doswald et al. 2007).
For instance, differences in how the species concept is
viewed by scientists (Levin 1979) have led to disputes
(Hey et al. 2003), with important implications for conser-
vation of imperiled species (e.g., Waples 1991; Beaudreau
et al. 2011).

Here, we document varying expert perceptions of
ecosystem interactions in the Northeast Pacific Ocean and
explore their implications for conservation and manage-
ment. In this region, Pacific herring (Clupea pallasii) are a
key ecological, economic, and cultural resource. Numer-
ous terrestrial and marine coastal organisms, including
several commercially harvested fishes, prey on herring
(Schweigert et al. 2010). Herring were a major focus of in-
dustrial seine and gillnet fisheries, but stock collapses in
the 1960s and 1990s resulted in fisheries closures (DFO
2014) and conservation concern. Herring roe is also an
important cultural and subsistence resource for a num-
ber of First Nations (Jones et al. 2010). Because of the
central role of herring in Northeast Pacific SESs, fisheries
closures and subsequent reopenings have led to tensions
surrounding herring and herring fishing among First Na-
tions groups, the Canadian government, and commercial
fishery interests (DFO 2014).

Given the numerous social and ecological connections
to herring, we explored how experts from a variety of
backgrounds perceived Northeast Pacific ecosystem inter-
actions. We asked each expert to describe the number,
direction, and strength of food web interactions among
functional groups connected directly or indirectly to her-
ring. Based on these responses, we constructed Fuzzy
Cognitive Maps (hereafter, cognitive maps) of the her-
ring ecosystem, revealing each expert’s unique percep-
tion of the number, strength, and direction of relation-
ships among network nodes, and how perceptions of
different experts related to one another. We also sim-
ulated responses of the cognitive maps to hypotheti-
cal scenarios, including an increase in herring, the con-
tinued recovery of humpback whales (a key herring
predator), and changes in ocean productivity, asking if
the logical consequences of differences in perception of
ecosystem structure magnify or diminish variability in
predictions about ecosystem responses to management
actions.

Methods

Fuzzy cognitive maps

To quantify variation in experts’ perceptions of the
structure and function of the herring-centric food web in
the Northeast Pacific Ocean, we collected cognitive maps
from a range of scientific experts. Cognitive maps are
basic mathematical and graphical representations of an
individual’s perception of the number and strength of re-
lationships among nodes in a network. In this case study,
the network is the Northeast Pacific Ocean food web,
and the nodes in the network are the functional groups.
Knowledge constructed in this manner can externally
represent an individual’s organized understanding of the
workings of the world around them (Gray et al. 2014).
These representations of understanding can then be
manipulated mathematically to indicate the logical con-
sequences of an individual’s perceptions based on their
understanding of the dynamics of the external world.
For example, by increasing or decreasing key variables
as continually high or low (referred to as “clamping”),
future scenarios, such as the increased abundance of
a predator, can be simulated given a specific set of
perceived linkages and interaction strengths (Özesmi
& Özesmi 2004). This clamping is conducted until the
system reaches a new equilibrium that can be compared
to the steady state—the equilibrium relative abundance
in the absence of a perturbation (for additional detail, see
Supplementary Material).

Expert elicitation

To build cognitive maps of the herring ecosystem in the
Northeast Pacific Ocean, we identified 14 key functional
groups in the herring food web (Table S2), based on
published literature (Ainsworth et al. 2008; Schweigert
et al. 2010; DFO 2014), the authors’ natural history
knowledge of important ecosystem interactions, and
pilot testing with five experts inside and outside of our
focal area in Haida Gwaii. While providing a particular
set of functional groups can constrain cognitive maps of
the system, it allows for quantitative comparisons among
experts (Gray et al. 2014). Experts were defined as having
scientific (e.g., agency or university scientists), local (e.g.,
long-term residents), or traditional (i.e., First Nations)
ecological knowledge and/or practical experience in
the Northeast Pacific Ocean herring ecosystem. Experts
were identified through stratified chain referral sampling
(Biernacki & Waldorf 1981), which yielded a complete
sample of 27 experts. We then explored the potential
role of training, experience, and cognition as key factors
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that may influence the diversity of expert perceptions
(following Burgman, Carr et al. 2011; Morgan 2014).

We asked each expert their perception of the number
and strength of interactions between all pairs of func-
tional groups. Respondents were also given an opportu-
nity to provide information on their uncertainty about
interactions (Table S2). Interaction strength elicitations
ranged from -2 (strongly negative) to +2 (strongly posi-
tive), and were scaled from -1 to +1 for analysis (for addi-
tional detail, see Supplementary Material). We also asked
a series of demographic questions detailing information
that could potentially influence responses (e.g., age, years
of experience, professional affiliation, and place of resi-
dence; Table S1).

Network analysis of cognitive maps

We conducted a network analysis to describe the geome-
try and strength of interactions for each cognitive map
and then subjected the resultant metrics to hierarchi-
cal cluster and nonhierarchical partitioning analyses. The
network analysis metrics we used to represent herring
ecosystem structure included number of connections in
each food web, average of the absolute value of the inter-
action strengths, centrality of four key functional groups
of conservation interest, a hierarchy index, and num-
ber of transmitters, receivers, and ordinary concepts sug-
gested by Özesmi & Özesmi (2004; Table 1).

Analysis of expert perceptions of food web
structure

Demographic characteristics were not effective predictors
of variation in perceived ecosystem structure (Table S3).
We therefore applied nonhierarchical partitioning anal-
ysis to ask whether evidence existed for !2 clusters of
experts based on the similarity of cognitive maps, sum-
marized in terms of the network metrics. To visualize
the distances between experts, we calculated Euclidian
distances between each pairwise combination of experts
based on the network metrics described above, and used
hierarchical cluster analysis to identify potential group-
ings of experts (using an agglomerative average linkage
method; Venables & Ripley 2002). Hierarchical cluster
analysis makes no assumptions about a priori relation-
ships among experts (e.g., demographic characteristics)
but rather searches for a posteriori groups based on the
differences among individuals in cognitive map structural
metrics, allowing comparison of expert knowledge by the
nature of their understanding as opposed to membership
in a demographic group (for additional detail, see Supple-
mentary Material).

Scenario analysis: perturbing the herring food
web

There is a fair amount of uncertainty surrounding the
future of Pacific herring in the Northeast Pacific. This
uncertainty is rooted in the complex social and eco-
logical influences on the species, all of which occur
at a range of spatial scales. We evaluated the func-
tional consequences of each expert’s perceived ecosys-
tem structure by simulating three perturbations, each
of which caused a consistent increase (press perturba-
tion) in a single node in the food web until all nodes
in the food web reached a new equilibrium. Specifically,
we Specifically, we simulated the following: (1) an in-
crease in humpback whales concordant with projected
humpback population growth (Ford 2009), (2) an in-
crease in herring—a simulation in accordance with the
desired trajectory of the depleted stock (DFO 2014), and
(3) an increase in zooplankton—analogous to a regime
of cold, nutrient-rich water years that support produc-
tive zooplankton populations (Mantua & Hare 2002;
Figure 1). We conducted scenario analyses on each cog-
nitive map (n = 27) and measured the change in rel-
ative abundance of each of the 14 functional groups
compared to its relative abundance at equilibrium in
the absence of a perturbation. Such an approach is ex-
pected to represent predicted outcomes under differ-
ent ecological change scenarios across different types of
experts.

Statistical analysis of expert perceptions
of ecosystem function

As with the analysis of expert perceptions of herring
ecosystem structure, we used hierarchical cluster and
nonhierarchical partitioning analyses to ask whether
subsets of experts perceived ecosystem responses simi-
larly. Importantly, these predictions represent the logical
consequences of information elicited from experts, rather
than direct elicitations from scenario-based questions.
Though we tested whether expert demographics were
effective predictors of variation in responses to per-
turbations from the three scenarios, we found none
(Table S2). Thus, in this application, we sought clusters
of experts based on the expected percent change in
relative abundance of each of the 14 functional groups
under each scenario. We also estimated two ecosystem
responses for each of the three scenarios: (1) average
percent change in abundance of all 14 functional groups
and (2) ecosystem reorganization index, which estimates
discordance among functional groups in their response
to a scenario, relative to the aggregate response of all
functional groups (sensu Samhouri et al. 2010).
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Table 1 Structural metrics that applied to matrix forms of fuzzy cognitive maps to quantify structural properties of each expert’s perceived food web

Mental model, structural
measurement Description of measure and cognitive inference

N (connections) Number of connections included between variables; higher number of connections indicates higher degree of interaction
between components in a mental model

N (transmitter) Components which only have “forcing” functions; indicates number of components that affect other system components
but are not affected by others

N (receiver) Components which have only receiving functions; indicates the number of components that are affected by other system
components but have no effect

N (ordinary) Components with both transmitting and receiving functions; indicates the number of concepts that influence and are
influenced by other concepts

Centrality Absolute value of either (a) overall influence in the model (all + and − relationships indicated, for entire model) or (b)
influence of individual concepts as indicated by positive (+) or negative (−) values placed on connections between
components; indicates (a) the total influence (positive and negative) in the system or (b) the conceptual
weight/importance of individual concepts (Kosko 1986a). The higher the value, the greater the importance of all concepts
or the individual weight of a concept in the overall model

Hierarchy Index Index developed to indicate hierarchical to democratic view of the system. On a scale of 0–1, indicates the degree of
top-down (score 1) or democratic perception (score 0) of the mental model
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Figure 1 Time series motivating three scenarios simulating future increases in herring, zooplankton, and humpback whales. Panel A shows estimated
herring spawning stock biomass (green) in Haida Gwaii, British Columbia, Canada, and scaled Pacific Decadal Oscillation (PDO) estimates (gray) in the
Northeast Pacific Ocean—a known correlate of zooplankton productivity. Panel B shows the estimated (circle) and projected (triangle) abundance of
humpbackwhale populations (blue) assuming themedian 4.1% annual growth rate from themost recent stock assessment fromBritish Columbia, Canada.
Time series extracted from three published resources. Herring: 2014 Department of Fisheries and Oceans stock assessment for pacific herring (DFO
2014). PDO: JSIAO database (http://research.jisao.washington.edu/pdo). Humpback whales: Department of Fisheries and Oceans stock assessment for
Humpback Whales (Ford 2009).

Contextualizing our approach within existing
mental model approaches

Our approach advances existing methods focused on
building cognitive maps to improve conservation and
management (Biggs et al. 2011). Researchers use several
methods to collect and evaluate mental models and
shared beliefs in natural resource management (Lynam
& Brown 2011). For example, some methods assume
homogeneity in knowledge within demographic groups,

despite examples of ample heterogeneity within knowl-
edge groups (e.g., Gray et al. 2012) and at various scales
(e.g., Iniesta-Arandia et al. 2015). While some mixed
oral and graphic concept mapping methods have been
used to compare and scale up individual cognitions
(Jones et al. 2011), these methods are often static and
do not provide a way to explore how individuals reason
dynamically. Our use of cognitive maps in combination
with scenarios allows us to explore the consequences
of individual perceptions. Furthermore, typical analysis
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Figure 2 Hierarchical cluster analysis of
mental model structural characteristics
revealed two significant clusters (1: pink and
2: turquoise). Silhouettes at tip of
dendrogram represent each expert, and
branch distance is proportional to similarity
of experts in their perceived network
structure (a). Food web drawings represent
the median cognitive maps of experts from
each group (b). Clusters of experts based on
perceptions of food web structure are
based on multivariate analysis of 11
different network metrics (Table 2 ), which
are plotted univariately for each expert
group in boxplots (c–g). In box and whisker
plots, the upper and lower "hinges"
correspond to the first and third quartiles
(the 25th and 75th percentiles) and whiskers
represent 1.5 times the interquartile range.

exploring variation in individual cognitions assumes per-
ceptions are linked to demographic backgrounds a priori,
whereas here we test for links between demographic
backgrounds and perceptions, but also use multivariate
clustering analysis to define cluster of similar experts
based on perceptions of food web structure and function.
Overall, our approach highlights the utility of building
individual cognitive maps, which can increase stake-
holder communication and facilitate the integration of
multiple knowledge sources (Biggs et al. 2011), while also
avoiding assumptions about links between demographic
characteristics and expert perceptions.

Results

Expert experience with the herring ecosystem in the
Northeast Pacific Ocean averaged 19 years (range 5–
61years), yet this depth of experience did not translate
into cognitive maps with highly similar network proper-
ties (Table S4). For example, networks varied widely in

number of connections (range 42 to 125). Multivariate
analysis suggested expert demographics did not explain
variation in perceptions of herring ecosystem structure
(Table S3). Instead, cluster analysis revealed two prevail-
ing views that were unrelated to amount of experience
(Figures 2a, b). An OLS regression testing for univariate
relationships between years of experience and food web
structural properties revealed no correlation (P > 0.15
for all structural properties). Experts with different de-
mographic characteristics were well represented in both
groups. For example, Group 1 was 50% academics, 66%
NGO, 66% island residents, and 64% individuals who
identified as female. Group 2 was 50% academics, 33%
NGO, and 33% on island, and 64% individuals who iden-
tified as male. This high within-group variability in demo-
graphic characteristics was a major contributor to statis-
tically nonsignificant differences based on demographic
background. An additional explanation for our inability
to detect statistical differences among groups is the num-
ber of experts sampled, which is somewhat low despite
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Figure 3 Ecosystem response (i.e., percent change in relative abundance of functional groups) to three different scenarios simulating increases in
zooplankton (a), herring (b), and humpback whales (c) averaged across all cognitive maps. Upper and lower "hinges" on box and whisker plots represent
the first and third quartiles (the 25th and 75th percentiles) and whiskers represent 1.5 times the interquartile range.
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(b)(a)Figure 4 Among-scenario comparison of ecosystem
response to simulated food web perturbations. Nonmetric
multidimensional scaling plot generated from change in
relative abundance of functional groups in each scenario
relative to a steady state (a). Each point represents an expert,
with each expert represented for each of the three scenarios.
Experts perceiving a similar ecosystem shift in response to
each of the three scenarios are closer together. Point color
represents the three different scenarios (Blue: humpback +,
Green: Herring+, Gray: Zooplankton+), and point type (circle
or triangle) represents the two clusters that emerged from
the expert’s perceptions of ecosystem structure. Univariate
plot of average (±1 SE) multivariate dispersion demonstrates
among expert variability in response to scenarios (b).

exhaustively sampling the expert pool through stratified
referral sampling. Expert perspectives of the ecosystem
diverged based on several characteristics of the cognitive
maps, including a 35% difference in overall influence
of focal functional groups (i.e., centrality), 25% differ-
ence in interaction strengths, 15% difference in connec-
tions, and a 28% difference in whether connections were
democratic (i.e., hierarchy index; Figures 2c–g).

Variable perceptions of herring ecosystem struc-
ture did not necessarily correspond to differences in
expected outcomes of hypothetical scenarios, despite
unique responses of each cognitive map to simulated
perturbations (Figure 3). Furthermore, backgrounds and
demographic characteristics of experts did not readily
explain variability in expected changes in species rel-
ative abundance (Table S4). In fact, we found cryptic
agreement surrounding scenarios despite divergent
perceptions of herring ecosystem structure. For example,
simulated increases in herring predators led to a pre-
dicted decrease in herring, zooplankton, and other forage
fishes, whereas simulated increases in zooplankton

predicted increases in relative abundance of all species
(Figure 4a).

The two clusters that emerged from analysis of struc-
tural metrics describing cognitive maps effectively pre-
dicted responses to hypothetical scenarios (Figure S1).
For example, food webs with more connections and
higher estimated interaction strengths exhibited a greater
level of ecosystem reorganization (Figure S2). However,
each of the three simulated scenarios differed in the level
of among-expert disagreement, with the widest varia-
tion emerging from the simulated increase in herring
(Figure 4b). Hypothetical scenarios representing expected
ecosystem state related to increases in herring predator
(whales) and prey (zooplankton) abundance produced
variable responses among cognitive maps, but these re-
sponses did not diverge into distinct groups. In contrast,
the hypothetical scenario related to an increase in her-
ring produced two significantly divergent perspectives
(Figure 5a). One expert group predicted a 182% greater
reorganization of the ecosystem and a 78% higher av-
erage percent change in relative abundance relative to
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Figure 5 Divergent views among experts driven by variation in
perceived impact of herring to the surrounding ecosystem.
Dendrogram based on hierarchical cluster analysis of changes in
relative abundance of 13 functional groups relative to the steady
state (silhouette width 0.32). Dendrogram branch colors and tips
correspond to two significant cluster units (open and closed tips, and
solid and dashed branches). Barplot of univariate response of each
functional group (b) shows the mean (±1 SE) percent change in the
relative abundance of each functional group underlying the
multivariate clusters. Note the majority of functional groups follow
the same directional shifts in relative abundance with the exception
of pink and chum salmon, which expert groups perceive responding
differently to the simulated herring increase.

the other expert group (Figure 5b). These contrasting
perspectives center on the strength of expected declines
in relative abundance of zooplankton (typically her-
ring prey) and other forage fish (resource and apparent
competitors with herring), and expected increases in her-
ring predators (e.g., groundfish, whales, and seabirds;
Figure 5). Background and demographic characteristics
did not explain the discordant perspectives between these
two expert groups (Table S4). Furthermore, the demo-
graphic composition of these two groups is very simi-
lar, with 85% of the individuals from the cluster anal-
ysis of ecosystem structure found in identical groups that
emerged from cluster analysis of simulated increases in
herring.

For the increased predator and prey scenarios that led
to relative consensus among experts (i.e., lower multi-
variate dispersion in community response to simulated
scenarios), an understanding of differences in perception
of herring ecosystem structure would have inappropri-
ately suggested potential for divergent views over ecosys-
tem functioning (Figure 4a). This diminished divergence
of expert perceptions did not emerge from the increased
herring scenario (Figure 4b). Rather, structural differ-
ences in perception of the herring ecosystem were critical
predictors of functional differences where herring were
the focal point of change.

Discussion

For a wide range of public policy issues, there is an
increasing dependence on scientific expertise to inform
decision-making (Martin et al. 2012) and a broadening
expectation for experts to extend their knowledge to
more disparate areas (Gibbons 1999). Many of these is-
sues (e.g., coastal defense and Hurricane Sandy/Katrina,
Ebola dynamics, and GMO foods) are directly related
to how ecosystems will respond to forecasted increases

in natural and anthropogenic perturbations (Turner
2010). As in other spheres, because of limited data and
the urgency of decision-making, the institutional and
governance structures of natural resource and conserva-
tion management increasingly rely on expert knowledge
(Thuiller et al. 2008). This reliance comes despite
widespread acknowledgment that expert knowledge is
often incomplete, variable, and biased (Martin et al. 2012;
Drescher et al. 2013). We show here that among-expert
differences in perceptions of ecosystem structure are log-
ically tied to consequences for how an individual might
view the outcomes or impacts of predicted future change.
Recognizing this causal chain, and quantifying it explic-
itly, is the first step toward navigating ecosystem-based
conservation decisions that rely on expert knowledge.

Experts are susceptible to known cognitive biases due
to heuristics (i.e., informal rules people use to make
judgments) such as “availability,” the ease with which
an idea can be brought to mind, and “anchoring and
adjustment,” where an individual is provided a particular
value or range of values and adjusts from that “anchor”
(Morgan 2014). To diminish the likelihood of including
these biases in our data set, we attempted to reduce
variation in weighted estimates between variables and
focus measurement on knowledge variation in terms of
network structure, as opposed to variation in probability
estimates (Morgan 2014). Through our approach, we
show that among-expert differences in perceptions of
ecosystem structure are logically tied to consequences for
how an individual might view the outcomes or impacts
of predicted future change. Recognizing and quantifying
causal chains can allow experts to consider multiple
factors that influence one another in a complex web
of interactions, including feedbacks. The exact reasons
underlying differences among expert knowledge and per-
ceptions are unclear. Future studies would benefit from
including meta-knowledge about expert knowledge,
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including dimensions about knowledge confidence in
the relationships represented and epistemic orientations
(Miller et al. 2008), to understand how different “ways of
knowing” maybe more or less valued by different expert
groups and influence expert knowledge representations.

Our results show that experts can exhibit divergent
views about the structure of a complex ecosystem, inde-
pendent of commonly identified “bins” of expertise (e.g.,
local, scientific, traditional). Our inability to predict vari-
ability in perceptions through demographic characteris-
tics stands in contrast to examples from other arenas (e.g.,
political party affiliation and ideologies; Pinello 1999).
Yet, expert backgrounds (e.g., years of experience) do not
always predict expert performance (Burgman, McBride
et al. 2011). Our finding reinforces the concept that ex-
pert knowledge is more fluid and pluralistic than discrete
categories acknowledge (Raymond et al. 2010; Krueger
et al. 2012). However, it is also possible that we did not
detect links among background characteristics and per-
ceptions because there were hidden demographic charac-
teristics we did not test, our study was limited in statistical
power, or perhaps there was some cognitive bias resulting
from our elicitation method (Morgan 2014). Simulated
management scenarios using cognitive maps of the her-
ring ecosystem highlighted additional implications based
on differences in perceptions of how ecosystems may re-
spond to future perturbations. In particular, simulations
of herring recovery using each expert’s unique percep-
tion of food web structure demonstrated that not all ex-
perts perceive herring as having a similar number and
strength of connections to the broader ecosystem and that
this may lead to different predicted outcomes across the
food web. These disparities in perception are particularly
significant because herring sit at the center of the food
web (Watts & Strogatz 1998), as is common for many
marine forage species in coastal ecosystems (Cury et al.
2000). Moreover, similar variability in perception is likely
to be common for complex networks with the potential
to be highly centralized, dynamic, and interactive (e.g.,
financial systems; May 2013).

Among-expert variability in perceptions of the number
and strength of connections between herring and the rest
of the food web portends of variable management advice
by experts when it comes to: (1) protected species (e.g.,
seabirds and marine mammals) that consume herring, (2)
sustainable harvest of commercially valuable fishes that
prey upon herring (e.g., groundfishes and salmon), and
(3) marine ecosystem-based management in the North-
east Pacific. For example, experts were divided in their
expectations about the impacts of a herring increase on
Pink and Chum salmon: one group predicted an increase
while the other predicted a decline (Figure 5b). Un-
der the same scenario, one group of experts perceived

a simulated increase in herring would lead to an 89%
greater increase in whales relative to the other group
(Figure 5b). These results suggest managers of the her-
ring ecosystem are confronted with different knowledge
systems and diverse perceptions that they must recon-
cile or reject as they weigh different (and at times diver-
gent) forms of expertise. As in many other environmental
decision-making contexts, recognition of these variable
perceptions of food web structure may encourage efforts
to fill knowledge gaps in areas where experts disagree.
Where there is expert consensus, promoting social learn-
ing among stakeholders about commonalities in their log-
ical chains of reasoning, despite diverse and cultural back-
grounds, may be a positive force in a system where mis-
trust and differences in values contribute to conflict over
common pool resources (Welch 2015). In contrast, mixed
demographic composition within a cluster of experts with
similar food web perceptions could be associated with dif-
ferences in values as well as mistrust, making it difficult
to find consensus (Burgman, McBride et al. 2011). By in-
cluding diverse sets of expert knowledge, the total space
of available knowledge increases and can be particularly
useful for exploring events and processes that are out-
side the normal range or are difficult to test empirically.
Furthermore, while variable expert perceptions can lead
to conflict, it may also be a positive force through inte-
gration with adaptive management. For example, given a
set of common ecosystem goals, surveys could be used to
describe variation in expert perceptions and to test al-
ternative logical chains of reasoning that compete with
one another, and data which support a group of experts’
knowledge can be used to validate perceptions empiri-
cally. In these cases, conflicting expert knowledge can
be considered an asset, as opposed to a liability, since
knowledge diversity is likely to lead to scrutiny of expert
opinions, leading to more robust conservation decision-
making.

Conclusion

Previous research has demonstrated that expert percep-
tions can vary widely; however, fewer studies have ex-
plored the potential implications of diverse expert per-
ceptions for the management of complex SESs. Our find-
ings demonstrate how the composition of expert pan-
els will strongly influence expert perceptions of ecosys-
tem structure, which can have cascading effects on the
perceived outcomes of future management actions. As
such, binning knowledge into a priori categories based
on expert backgrounds can lead to erroneous conclu-
sions; rather, embracing a diversity of knowledge in
dialogue surrounding alternative management actions
will help address uncertainty, can reduce conflict, and
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potentially improve management outcomes. Demonstrat-
ing the variety of perceptions that exist, and the potential
implications of these variable perceptions given future
management scenarios, is a critical step to moving for-
ward with ecosystem-based conservation in the face of
uncertainty that surrounds complex systems and their
dynamics.
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C., Montes, C. & Martı́n-López, B. (2015) Factors
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I. Cognitive Maps 17	
Cognitive maps have their historical roots in cognitive mapping (Axelrod et al. 1976), originally 18	
developed by Kosko (1986) as a semi-quantitative soft computing method to structure expert 19	
knowledge similar to the way the human mind makes predictions based on logical chains of 20	
reasoning. Cognitive maps are graphical representations of a system that visually illustrate the 21	
relationships or edges between key concepts (nodes) of the system, including feedback 22	
relationships. The justification for representing cognition by means of structural maps is derived 23	
from constructivist psychology (Gray et al. 2014), which suggests that individuals interactively 24	
construct knowledge by creating internal associative representations that help catalogue, interpret 25	
and assign meaning to environmental stimuli and experiences (Raskin 2002). This organized 26	
understanding can then be used to make predictions about the dynamics of the external world, 27	
and therefore, are thought to be the basis of human reasoning. Therefore, cognitive maps can be 28	
considered external representations of internal ‘mental models’ (Jones et al. 2011). Individuals 29	
assimilate external events and accommodate information into these mental model structures to 30	
facilitate reasoning and exchange understanding (Craik 1943; Piaget 1976). 31	
  32	
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II. Expert Elicitation Methods 33	
 34	
We performed an expert elicitation of the number and strength of interactions between pairs of 35	
14 functional groups within the herring-centric food web of Haida Gwaii, British Columbia. To 36	
build cognitive maps of the herring ecosystem in Haida Gwaii, we constructed a food web with 37	
14 functional groups (Table S2), based on published literature, our natural history knowledge of 38	
important ecosystem interactions, and through pilot testing with 5 experts to check survey length 39	
and ensure the clarity and intelligibility of the question format and terminology. 40	

Experts were defined as having technical or local knowledge and/or practical experience 41	
in Haida Gwaii ecosystems and were identified through stratified chain referral sampling 42	
(Biernacki and Waldorf 1981). In total, we contacted 46 potential experts by email. A total of 31 43	
responded positively, 5 declined to participate and 10 did not respond. Authors administered the 44	
survey either in person (13 people) or by phone (18 people), and of the 31 people who 45	
participated, we obtained a total of 27 completed species matrices for analysis.  After completing 46	
the 27 surveys we had exhausted the pool of local experts using the stratified chain referral 47	
sampling produced.  48	

The elicitation consisted of a series of demographic questions detailing information that 49	
could potentially influence responses (e.g., age, gender, years of experience, professional 50	
affiliation, training, and place of residence) (Table S1).  and an interaction matrix with 14 51	
functional groups (Table S2).  52	

Table 1: Number of technical experts per affiliation and gender category. Circles represent the 53	
percentage of the total group (27 experts) represented by a given affiliation or gender category. 54	

 55	

  56	
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 57	

Table S2. Species embedded within each of the 14 functional groups described to participants. 58	
Functional Group Common Name Scientific Name 

Seabirds* Gull species Larus spp. 

 Scoter species Melanitta spp. 

 Sea ducks, e.g. Common 
merganser 

Mergus merganser 

 Marbled murrelet Brachyramphus marmoratus 

Humpback whales Humpback whale Megaptera novaeangliae 

Pinnipeds Northern elephant seal Mirounga angustirostris 

 Harbor seal Phoca vitulina 

 Northern fur seal Callorhinus ursinus 

 California sea lion Zalophus californianus 

 Steller sea lion Eumetopias jubatus 

Dolphins & porpoises Orca Orcinius orca 

 Pacific white sided dolphin Lagenorhynchus obliquidens 

 Dall's porpoise Phocoendoides dalli 

 Harbour porpoise Phocoena phocoena 

Hake, cod & sablefish Hake Merluccius productus 

 Pacific cod Gadus macrocephalus 

 Walleye pollock Theragra chalcogramma 

 Sablefish Anoplopoma fimbria 

Flatfishes Pacific halibut Hippoglossus stenolepis 

 English sole Parophrys vetulus 

 Rock sole Lepidopsetta bilineata 

 C-O sole Pleuronichthys coenosus 
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 Starry flounder Platichthys stellatus 

Rockfishes & lingcod Rockfish Sebastes spp. 

 Lingcod Ophiodon elongatus 

Pink & chum salmon Pink salmon Oncorhynchus gorbuscha 

 Chum salmon Oncorhynchus keta 

Chinook & coho 
salmon 

Chinook salmon Oncorhynchus tshawytscha 

 Coho salmon Oncorhynchus kisutch  

Herring Pacific herring Clupea pallasii 

Other forage fishes Northern anchovy Engraulis mordax 

 Sand lance Ammodytes hexapterus 

 Surf smelt Hypomesus pretiosus 

 Sardine Sardinops sagax 

 Capelin Mallotus villosus 

 Eulachon Thaleichthys pacificus 

Zooplankton* Krill Thysanoessa spinifera 

 Copepod Calanoida species 

 Tunicate Oikopleura spp. 

 Barnacle larvae Cirripedia nauplii 

Eelgrass Eelgrass Zostera marina 

Kelp Giant kelp Macrocystis pyrifera 

  Macrocystis integrifolia 

 Ground cover kelps Laminariales 

 Bull kelp  Nereocystis luetkeana 

*Functional group may include other species in addition to those listed here. 59	

 60	
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We asked respondents how they perceived the strength of interaction between each species 61	
group. To guide respondents in completing the interaction matrix, authors asked respondents 62	
“does Species X have a strong negative, weak negative, neutral, weak positive or strong positive 63	
direct effect on Species Y?” Respondents were also given an opportunity to comment on the 64	
species groupings, include new species groups, and provide information on their uncertainty 65	
about interactions. To capture uncertainty, we followed the IPCC protocol (Table S2), where we 66	
assigned the default level of certainty at IPCC level 4 (Likely, 66-100% probability), and asked 67	
respondents to indicate if their certainty values were different than the default. 68	

Table S3. IPCC certainty values 69	
 70	

Certainty Level Description 
1 Very unlikely 0-10% probability 
2 Unlikely 0-33% probability 
3 About as likely as not 33-66% probability 
4 Default. Likely 66-100% probability 
5 Very likely 90-100% probability 
 71	

 72	
  73	
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Expert Elicitation Protocol 74	
Below we provide a detailed description of the expert elicitation protocol. 75	
 76	
Step 1. Potential respondents were contacted in advance via email to invite their participation in 77	
the elicitation, as follows: 78	
 79	

Dear Respondent, 80	
I am writing to invite your participation in a research survey. The purpose of this research 81	
survey is to determine how perceptions of key socioeconomic and ecological interactions 82	
related to Pacific herring in Haida Gwaii vary among different groups of technical experts. 83	
We have identified you as a technical expert on Pacific herring in Haida Gwaii, Canada.  84	
 85	
This survey is being conducted by scientists affiliated with the Ocean Tipping Points project 86	
(http://www.oceantippingpoints.org), including myself. 87	
 88	
We will conduct the survey by phone [in person], at a time that is convenient for you. It will 89	
require up to 1 hour of your time. Individual responses will remain anonymous, except to the 90	
small group of researchers conducting the survey at the National Oceanic and Atmospheric 91	
Administration, Stanford University, and the University of California Santa Barbara. 92	
 93	
Please let me know if you are available on the following dates and times for the survey: 94	
 95	
Thank you in advance, 96	
Interviewer Y 97	

 98	
Step 2. We confirmed each respondent’s participation, either by phone or in person, and a date 99	
and time for the interview. We then alerted the respondent that s/he would receive and email on 100	
the day of the interview with a few additional instructions. For both phone and in person 101	
interviews, we suggested to the respondent that s/he remain in front of a computer during the 102	
interview.  103	
 104	
Step 3. Prior to the elicitation, we sent the respondent a blank species matrix (Table S1) and the 105	
demographic information questions: 106	
 107	
Step 4: Our team conducted one-on-one interviews with respondents over the phone or in person. 108	
Interview protocol took approximately 1-2 hours, depending on the respondent. Each interviewer 109	
conducted the elicitation using a generic script below, asking each technical expert to answer 110	
some demographic questions and to fill in the species matrix guided by the interviewer.  111	
 112	
 113	
SCRIPT 114	

a) Preamble: Before beginning the survey we’d like to ask a few quick questions about you. 115	
You’ll find this in the “Survey Instructions” folder in a file called: 116	
“Blank_Demographic_Info.xlsx”. It includes questions about your educational 117	
background, area of expertise, experience with Haida Gwaii, etc.  118	

b) Intro: Our interview comprises a set of questions related to species interactions. We have 119	
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sent you the matrix of interactions as an excel file, and you can start by focusing on the 120	
first column while we ask you the first set of questions. The general format of the 121	
questions is: 122	
i) Does Species X have a weak positive, strong positive, neutral, weak negative or 123	

strong negative direct effect on any of the species in the list in front of you? 124	
ii) We define an effect as something that is sufficient to cause a noticeable increase 125	

(positive effect) or decrease (negative effect) in the number of individuals in a 126	
population. 127	

c) Time horizon: Please focus on a time horizon of the last 5 years and the next 5 years. 128	
d) Certainty: describe IPCC uncertainty levels in Table S2  129	
e) Recording:  We would like to record this conversation in the event we need to go back 130	

and clarify any of your responses. Is that ok with you? 131	
f) Ask respondent if s/he has any questions or needs clarification. 132	
g) Open the empty interaction matrix:  133	

i) Ask respondent to make sure s/he has the species descriptions table in front of 134	
her/him. 135	

ii) Begin elicitation 136	
(1) Fill in responses for species interactions- Responses are filled in as positive (2,1) 137	

or negative (-1,-2) or neutral (0). Asking the respondent does Species X have a 138	
strong negative, weak negative, neutral, weak positive or strong positive direct 139	
effect on Species Y? 140	

iii) Prompt respondent with: Are there any species not represented here that are 141	
substantially positively or negatively affected directly by herring?  142	

iv) Read back responses to confirm you have captured what was said. 143	
v) Note that for the other forage fish group, it was efficient for us to ask the respondent 144	

if their responses would differ from the ones they gave related to herring. 145	
vi)  Note that some respondents choose to respond differently for the species that are 146	

grouped into functional groups. It is ok to ungroup them. 147	
h) BE SURE TO THANK YOUR RESPONDENT!! 148	
i) Save your respondents answers and any notes associated with them carefully labeled with 149	

both respondent information and your information so we know who conducted the survey 150	
if we have questions.  151	

 152	
Step 5: Interviewers sent an email to respondents thanking him/her for his/her time. 153	
  154	
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III. Cluster Analysis 155	
 156	
We evaluated the optimal number of clusters using the silhouette coefficient (Kaufman and 157	
Rousseeuw 2009) We estimated the silhouette coefficient for 2 to 26 groups and selected the 158	
cluster groupings that yielded the highest average silhouette coefficient. Significant clusters were 159	
identified as groups that have average coefficients > 0.25 (Kaufman and Rousseeuw 2009). We 160	
used the hclust, cluster.stats, and pam functions in R.3.1.1 to conduct all cluster and partitioning 161	
analyses (R Development Core Team 2014).  162	
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IV. Supplementary Tables and Methods 163	

Table S4. Multivariate analysis testing whether demographic characteristics predict variation in 164	
food web network metrics. To test whether demographic characteristics predict variation in the 165	
food web structural metrics we used multivariate permutation tests (PERMADISP and 166	
PERMANOVA Anderson et al. 2011; Anderson et al. 2006) to assess whether different a priori 167	
groupings differ in multivariate mean (left column) and multivariate dispersion (right column). 168	
Similar to MANOVA, PERMANOVA compares dissimilarity variance components within a 169	
group versus between groups; however, rather than using a standard F-ratio, a pseudo F-ratio 170	
(which we call Fπ following Chase 2007) is calculated through permutations of the dissimilarity 171	
matrix. Because of multiple non independent comparisons, we adjusted p-values using a 172	
Benjamini-Hochberg correction (Benjamini and Hochberg 1995). 173	

 Multivariate Mean Multivariate Dispersion 

Demographic Characteristic Fπ P-value Fπ P-value 

On or Off Island 1.244 0.762 2.86 0.762 

Haida 1.584 0.762 0.357 0.762 

Canadian Government 0.632 0.82375 0.564 0.823 

DFO 0.995 0.762 0.135 0.762 

Parks 0.388 0.838 1.501 0.838 

Academic 0.683 0.82375 0.389 0.823 

NGO 0.66 0.82375 0.752 0.823 

Haida Government 0.468 0.838 1.319 0.838 

Gender 1.174 0.762 0.237 0.762 

Age 1.69 0.762 2.72 0.762 

  174	
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Table S5. Demographic predictors of three scenarios simulating press perturbations to the food 175	
web at the bottom (zooplankton increase), middle (herring increase), and top (whale increase). 176	
To test whether demographic characteristics predict variation in food web structural metrics we 177	
used multivariate permutation tests (PERMADISP and PERMANOVA Anderson et al. 2011; 178	
Anderson et al. 2006), which ask whether different a priori groupings differ in multivariate mean 179	
(left column) and multivariate dispersion (right column). We also demonstrate how post hoc 180	
groupings that emerged from network structural metrics (listed as “Structural Clusters” below) 181	
effectively predict variation in response to each of the three simulated scenarios (Fig. S1). 182	
Because of multiple non independent comparisons, we adjusted p-values using a Benjamini-183	
Hochberg correction (Benjamini and Hochberg 1995). 184	

      

Scenario      

Zooplankton 
increase  Multivariate Mean Multivariate Dispersion 

 Demographic Characteristic Fπ P-value Fπ P-value 

 On or Off Island 0.878 0.645 0.06 0.838 

 Haida 1.634 0.350 0.689 0.630 

 Canadian Government 1.959 
0.350 

2.43 0.386 

 DFO 1.742 0.350 0.233 0.776 

 Parks 0.351 0.941 7.51 
0.108 

 Academic 0.383 0.941 0.307 0.776 

 NGO 0.914 0.599 2.074 0.386 

 Haida Government 1.367 0.458 3.873 
0.216 

 Gender 0.582 
0.936 

0.101 0.838 

 Age 1.572 0.350 1.318 0.582 

 Structural Clusters 2.534 0.035 11.343 0.008 

      

Herring  Multivariate Mean Multivariate Dispersion 
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increase 

 Demographic Characteristic Fπ P-value Fπ P-value 

 On or Off Island 1.431 0.4704 1.554 0.401 

 Haida 0.647 0.667 0.356 0.610 

 Canadian Government 1.023 0.667 4.51 0.164 

 DFO 2.166 0.213 6.538 
0.072 

 Parks 0.632 0.667 0.566 0.527 

 Academic 0.948 0.667 0.044 0.845 

 NGO 0.729 0.667 0.771 0.511 

 Haida Government 0.628 0.667 2.425 0.271 

 Gender 2.425 0.213 2.46 0.276 

 Age 0.763 0.667 1.058 0.511 

 Structural Clusters 14.154 0.001 3.376 0.082 

      

      

Whale 
Increase  Multivariate Mean Multivariate Dispersion 

 Demographic Characteristic Fπ P-value Fπ P-value 

 On or Off Island 1.048 0.464 0.056 0.840 

 Haida 1.127 0.451 0.351 0.727 

 Canadian Government 1.817 0.156 3.506 0.332 

 DFO 1.398 0.390 1.326 0.477 

 Parks 0.236 0.972 1.842 0.332 

 Academic 2.386 
0.104 

2.294 0.332 
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 NGO 0.526 0.707 1.867 0.332 

 Haida Government 1.459 0.390 0.190 0.764 

 Gender 1.279 0.411 0.638 0.611 

 Age 1.133 0.451 0.649 0.611 

 Structural Clusters 9.738 
0.036 

2.385 0.115 

      

 185	

  186	
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Links Between Mental Model Structure and Response of Mental Models to Scenarios 187	

The number of connections and interaction strengths described in expert’s cognitive maps 188	
are effective predictors of how the perceived ecosystem of each expert responded to simulated 189	
future scenarios. For example, structural groupings predict significant variability in the 190	
multivariate response of the ecosystem to all three scenarios (Fig. S1), and a correlation test 191	
reveals greater ecosystem reorganization in food webs with higher average interaction strength 192	
(Fig. S2, r = 0.67, p = 0.0001). This link between cognitive map structure and function 193	
highlights the mechanism underlying among-expert variation in perceived ecosystem response to 194	
simulated perturbations.   195	

  196	
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Figure S1. The capacity of two clusters of experts (white and green) based on structural 197	
properties of the system to predict variation in ecosystem response to three perturbations. Left 198	
hand side describes non-metric multidimensional scaling plots where blue circles and green 199	
squares each represent expert’s perceived multivariate change in functional group relative 200	
abundance. Right hand side describes corresponding mean +/- 1SE ecosystem reorganization 201	
index for each of the scenarios. Overall, structural clusters significantly predict (P < 0.05, Table 202	
S4) variation in changes in mean functional group relative abundance for all three scenarios.  203	

  204	
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Figure S2. Positive correlation between a structural property of each expert’s mental model of 205	
the food web and the amount the ecosystem fluctuates in response to the increased herring 206	
scenario. Each point represents a single expert, and point color and shape corresponds to the 207	
group in which each expert fell in the hierarchical cluster analysis (Fig. 1). See main text for 208	
additional details on calculation of the ecosystem reorganization index. 209	

	210	




