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1Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri

2Division of Biostatistics and Department of Radiology, Population Neuroscience and Genetics 
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Abstract

Trait stability of measures is an essential requirement for individual differences research. 

Functional MRI has been increasingly used in studies that rely on the assumption of trait stability, 

such as attempts to relate task related brain activation to individual differences in behavior and 

psychopathology. However, recent research using adult samples has questioned the trait stability 

of task-fMRI measures, as assessed by test-retest correlations. To date, little is known about trait 

stability of task fMRI in children. Here, we examined within-session reliability and long-term 

stability of individual differences in task-fMRI measures using fMRI measures of brain activation 

provided by the Adolescent Brain Cognitive Development (ABCD) Study Release v4.0 as an 

individual’s average regional activity, using its tasks focused on reward processing, response 

inhibition, and working memory. We also evaluated the effects of factors potentially affecting 

reliability and stability. Reliability and stability (quantified as the ratio of non-scanner related 

stable variance to all variances) was poor in virtually all brain regions, with an average value of 

.088 and .072 for short term (within-session) reliability and long-term (between-session) stability, 

respectively, in regions of interest (ROIs) historically-recruited by the tasks. Only one reliability 

or stability value in ROIs exceeded the ‘poor’ cut-off of .4, and in fact rarely exceeded .2 

(only 4.9%). Motion had a pronounced effect on estimated reliability/stability, with the lowest 

motion quartile of participants having a mean reliability/stability 2.5 times higher (albeit still 

‘poor’) than the highest motion quartile. Poor reliability and stability of task-fMRI, particularly in 

children, diminishes potential utility of fMRI data due to a drastic reduction of effect sizes and, 

consequently, statistical power for the detection of brain-behavior associations. This essential issue 

urgently needs to be addressed through optimization of task design, scanning parameters, data 

acquisition protocols, preprocessing pipelines, and data denoising methods.

1. Introduction

Task-based functional magnetic resonance imaging (fMRI) has become a leading 

methodological approach in cognitive neuroscience. While initial application of fMRI 
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focused on group-level effects such as average differences in regional brain activation 

between different stimuli, more recently fMRI has been increasingly applied to individual 

differences research such as across-subject correlation between task-related brain activation 

and other variables such as genetic markers, behavioral and cognitive performance, 

psychological traits, and psychopathology. Much of this research critically relies on 

the assumption that the magnitude of task-related regional activation is a stable trait-

like measure, with individual differences between subjects prevailing over within-subject 

fluctuations between testing occasions, which is often quantified by test-retest reliability.1

However, recent studies have shown generally poor test-retest reliability of task-fMRI 

measures (Elliott et al., 2020; Herting, et al., 2018; Noble et al., 2021). Importantly, 

reproducibility of group-averaged patterns of activation can still be high despite poor 

stability of intra-individual differences in the magnitude of activation (Chaarani et al., 

2021; Herting et al., 2018), since averaging reduces error variance, as prescribed by basic 

statistical theory. In the most representative study to date, Elliott et al. (2020) performed a 

meta-analysis of 56 test-retest reliability studies using various sensory, motor, and cognitive 

tasks, finding an average reliability of .397. Task specific average reliability [limiting to 

studies that reported all reliabilities calculated, though most were region of interest (ROI) 

only and not whole brain] ranged from a low of −.02 for an implicit memory encoding task 

(Brandt et al., 2013) to a high of .87 for a pain stimulation task (Taylor et al., 2009). All 

studies surveyed in Elliott et al. (2020) had sample sizes under 60 subjects, most subjects 

were adults, and test-retest intervals were all under six months, with most under one month. 

Moderator analyses did not identify significant differences in reliabilities when comparing 

task type, event vs block design, scan duration, intertrial interval length, or clinical vs 

non-clinical sample, but did find lower reliabilities in subcortical relative to cortical brain 

regions. In a recent review, Noble et al., (2021) identified factors that tend to lead to higher 

test-retest reliability: shorter test-retest intervals, simple compared to complex tasks, brain 

regions with stronger activation, cortical regions rather than subcortical, and non-clinical 

populations. Recent studies in our lab examining the factors affecting test-retest reliability 

of fMRI measures from risk-taking and response inhibition tasks found that reliability 

increased with shorter interscan intervals, increasing scan duration, in ROIs relative to whole 

brain, and with lower subject movement, though the use of denoising via multirun spatial 

ICA (Glasser et al, 2018) plus FIX (Salimi-Khorshidi et al., 2014) ameliorated the negative 

impact of increased subject movement (Korucuoglu et al., 2021).

A major implication of poor reliability for research relying on individual differences is 

diminished measured effect sizes and statistical power for detecting associations with other 

variables, or diminished ability to detect changes over time in longitudinal or treatment 

studies (Elliott et al., 2020). Detecting small effects requires large samples, which is 

1It is important to distinguish between measures intended to capture a stable trait-like attribute versus measures that may be heavily 
influenced by state effects (such as attention, caffeine level, hydration, previous night sleep quality, current anxiety level, etc.). 
A measure could in principle have a high test-retest reliability if measured in a consistent and well-controlled subject state, yet 
empirically appear to have a low reliability because possible state influences are either not controlled, or the relevant state influences 
affecting the measurement are simply unknown. While it is highly valuable from a scientific perspective to study the effect of state on 
both within- and between-subject variance (and thus reliability), a measure that is only reliable under limited, state-specific conditions 
is by-definition not a stable “trait-like” measure.
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especially problematic for MRI research, given the high cost of assessments (Dick et al., 

2021).

Most previous studies of test-retest stability of task-fMRI were conducted in adult samples, 

and evidence for temporal stability of individual differences in task-fMRI in children is 

scarce (Herting et al., 2018), despite the widespread use of task-fMRI in developmental 

research in pediatric samples. Stability of individual differences is particularly important for 

longitudinal studies that aim to establish prospective associations between developmental 

changes in task-related brain activations and behavior. As one of the primary goals of much 

of developmental psychiatric imaging research is to track how neurofunctional development 

is associated with future onset and course of mental disorders and substance use (Bjork et 

al., 2018; Feldstein Ewing et al., 2018; Giedd et al., 2008; Volkow et al., 2018), knowing 

what neurofunctional variables show stable individual differences is critical. Systematic 

age-related changes due to development do not necessarily preclude test-retest stability 

of individual differences, provided it is operationalized as rank-order stability, such as 

with measures of “consistency” or “relative” agreement rather than “absolute” agreement 

(Briesch et al., 2014; Shrout and Fleiss, 1979). However, individual variation in the rate of 

developmental changes will result in decreases in longitudinal test-retest stability because it 

would alter rank-ordering between individuals.

The Adolescent Brain Cognitive DevelopmentSM (ABCD) Study is an ongoing longitudinal 

project examining the neuropsychological development of ~12,000 individuals nine to 

ten years old at enrollment from 21 sites across the United States of America through 

adolescence (Casey et al., 2018). The ABCD Study(R) protocol included three fMRI 

tasks focused on neurocognitive constructs deemed essential for the understanding of 

adolescent development: response inhibition (Stop Signal Task; SST), reward anticipation 

and processing (Monetary Incentive Delay; MID), and working memory (nBack; Casey et 

al., 2018). However, reliability of brain activations elicited by these tasks in the ABCD 

data has not been established. The recent 4.0 release of ABCD data contains fMRI data 

for two longitudinal fMRI assessments conducted two years apart (baseline and the first 

follow-up), and each of these sessions has two approximately five-minute runs for each task. 

This enables test-retest reliability assessment at two time scales (within session and between 

sessions).

Our goal was to examine both within-session, between-run reliability (which is analogous 

to split-half internal consistency reliability in psychometrics; Heale and Twycross, 2015) 

and between-session longitudinal stability of regional brain activations elicited in the three 

ABCD fMRI tasks. This information is essential to evaluate potential utility of the task fMRI 

data for predictive and inter-individual association analyses, as well as to evaluate potential 

effects of different region- and subject-level factors on reliability such as relevance of the 

brain region to the targeted neurocognitive construct, the magnitude of activation, amount of 

in-scanner movement, and the effect of differences in pubertal development.

Due to the specifics of the ABCD Study, our approach differs somewhat compared to 

most fMRI reliability studies (surveyed in Elliott et al., 2020). While most studies use 

an intraclass correlation analysis approach, the multi-scanner, multi-site, family inclusive 
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sample of the ABCD Study merited the use of a linear mixed-effect model (LME) based 

estimate of reliability and stability capable of controlling for these confounds. Moreover, the 

intervals between the scans being compared differ (same session or two years, vs. one day to 

six months) and the two-year span between currently available ABCD visits is occurring 

across a major period of brain development during adolescence. Our between-session 

analyses may thus be subject to developmental effects that could make a task appear less 

stable than reliability analyses using a short test-retest interval or a similarly-long interval 

between points in adulthood that would presumably be less impacted by developmental 

differences. For this reason, similar to Baranger et al. (2021), we avoid labeling between-

session results as test-retest reliability and instead prefer the term longitudinal stability. 

(Note that the consistency-based LME measure used here allows for group level differences; 

stability does not decrease if everyone changes in the same direction and to the same extent.)

We hypothesized that both within-session reliability and longitudinal stability would be 

poor on average, given previous research for the MID, SST, and nBack (Blokland et al., 

2017; Caceres et al., 2009; Fleissbach et al., 2010; Holiga et al., 2018; Korucuoglu et 

al., 2021; Plichta et al., 2012; Schlagenhauf et al., 2008; Zanto et al., 2014), with within-

session reliabilities potentially negatively impacted by variable within-session change across 

individuals. We acknowledge upfront that stability values could be negatively impacted by 

the long retest interval (Noble et al., 2021) and developmental change between sessions (this 

was explored by including relevant pubertal variables from the ABCD Study in an expanded 

LME model examined in the supplement). Nonetheless, it is important to empirically 

establish the reliability and stability of the ABCD task fMRI data since the results have 

important implications for other studies using those data.

It is also important to investigate some of the factors that may influence reliability/stability, 

as a way to understand potential avenues for maximizing them. In that regard, we expected 

ROIs to have modestly higher values than regions with lesser task relevance and by 

extension less consistent incidence of activation in the literature. We expected within-session 

reliability to increase with age, as movement decreases with age in developmental samples 

(Engelhardt et al., 2017) and movement is a considerable source of additional variance in 

imaging research (Bright and Murphy, 2017; Diedrichsen and Shadmehr, 2005). Consistent 

with our previous findings in an adult sample (Korucuoglu et al., 2020; Korucuoglu 

et al., 2021), we expected more active regions to be modestly more reliable/stable. As 

developmental change typically occurs at different times and rates (Marceau et al., 2011) 

and the pubertal hormones associated with development are also related to functional 

activity in reward, emotional processing, and cognition processes targeted by the imaging 

tasks (Dai and Scherf, 2019), we expected regions that exhibit greater mean longitudinal 

change to also have lower longitudinal stability (i.e., a negative correlation of between-

session change with between-session stability) as it seems likely (although not certain) that 

regions with greater mean longitudinal change will concurrently be more likely to have 

changes in relative ranking between individuals over that interval given the variance in onset 

and speed of change, and thus lower stabilities. Thus, the relationship between reliability/

stability and activity and change are explored in the supplemental materials. An overview of 

research questions and main findings is summarized in Figure 1.
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2. Methods

2.1 Participants

The individuals and data used for our study come from the ABCD Study’s “Curated Annual 

Release 4.0” (https://nda.nih.gov; DOI 10.15154/1523041). This data release includes two 

sessions worth of imaging data (structural, task fMRI, and resting state fMRI), with 10,814 

individuals in the baseline session (having structural scans that passed ABCD’s pre- and 

post-processing quality control), and approximately two thirds (n=7,363) having processed 

data available from their first follow-up visit (on average two years later). Task fMRI 

data was required to pass ABCD’s quality control recommended inclusion flag2, leaving 

7,932 to 9,353 individuals, depending on task, within the baseline session [mean (SD) age 

= 9.94 (0.63), 51% male across tasks] and 5,979 to 6,593 individuals at first follow-up 

[11.96 (0.65) years old, 53% male] (Table 1). Data for 15 participants were dropped as the 

scanner manufacturer associated with their data was inconsistent with the other participants 

from their site and we did not want to include possibly erroneous data in our random 

effects models. Participants were recruited primarily through school systems with the aim 

of reflecting American diversity in sex, urbanicity, race and ethnicity, and socioeconomic 

status (Garavan et al., 2018). Informed assent was gathered for ABCD participants and 

consent from their parents or guardians. All procedures were approved by the central ABCD 

Institutional Review Board (IRB) and/or the IRB for the local scanning site.

2.2 ABCD Study: Data, Processing and Task Description

Each of the three fMRI tasks collected by ABCD consist of two approximately five-minute 

consecutive runs. The released task-activation data were processed through ABCD’s “Data 

Analysis, Informatics and Resource Center” (DAIRC) image processing pipeline (Hagler et 

al., 2019), which includes motion correction and frame censoring by degree of movement, 

correction for susceptibility-induced distortions, functional-structural coregistration, activity 

normalization, and activity sampling onto the cortical surface, carried out using FreeSurfer 

(Fischl et al., 2002), FSL (Jenkinson et al., 2012), and AFNI (Cox, 1996). Imaging data 

quality and task performance were evaluated by ABCD’s DAIRC as part of quality control. 

Based on their evaluation, at baseline, 21% of MID, 33% of nBack, and 30% of SST 

scans failed quality control; at follow-up those percentages were 16%, 21%, and 24%, 

respectively. A breakdown of the number of subjects who passed the ABCD’s quality 

control measures is available in Table 1. Poor behavioral performance and insufficient fMRI 

frames (due to excess movement) appear to be the main causes of participant exclusion 

for both sessions. Additionally, a mismatch between the time stamps of the scans and their 

associated E-Prime behavioral files resulted in the cautionary exclusion of some participants. 

The ABCD Release 4.0 data provides estimated activation betas for each run and modeled 

contrast included in the task general linear model, for cortical parcels in the anatomically-

defined Desikan-Killiany parcellation (68 parcels, Desikan et al., 2006) and a more granular 

gyral- and sulcal-specific Destrieux parcellation (148 parcels, Destrieux et al., 2010), as 

well as for thirty subcortical structures based on the FreeSurfer segmentations (Fischl et al., 

2Variables imgincl_{mid,nback,sst}_include of the abcd_imgincl01 instrument. See “ABCD Release 4.0 release notes”, available at 
DOI 10.15154/1523041
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2002). These approaches use the individual’s own structural data to derive the boundaries of 

these different regions, rather than applying a generic common space labeled atlas. A more 

granular parcellation than the Destrieux parcellation is not currently provided by ABCD, nor 

is data provided currently for a functionally-derived parcellation.

The ABCD fMRI task battery includes the Monetary Incentive Delay (MID), Stop-Signal 

(SST), and nBack tasks (Casey et al., 2018). The MID task is designed to elicit functional 

activity when people are anticipating and experiencing different magnitudes of reward and 

loss. The SST is designed to elicit response inhibition and error monitoring activity by 

asking participants to respond quickly to a “Go” cue, unless it is followed by a second 

“Stop” cue that prompts participants to cancel their response. The Emotional nBack is 

designed to elicit brain activations related to working memory, with a value-added probe 

of social information processing by showing participants blocks of images of places or 

emotional or neutral faces. The task requires participants to determine whether the current 

image matches a static target (0-back condition) or the image that occurred 2 images back 

(2-back condition). These tasks were implemented by ABCD because brain signatures of 

reward anticipation, response inhibition, error processing, and working memory change 

considerably during adolescence (Blakemore et al., 2010; Sheffield Morris et al., 2018) and 

have important implications for risk of substance use and psychopathology (Bjork et al., 

2017; Giedd et al., 2008). For more information about these tasks, see the Supplemental 

Methods Section S1.1 and Casey et al. (2018).

2.3 Data Analysis

Linear mixed-effects (LME) models were applied to beta values from the Destrieux 

parcellation (the most granular of the parcellations provided by the ABCD Release 4.0, 

allowing for better localized estimates of reliability, stability, activity, and change) and 

selected FreeSurfer subcortical structures (limited to those with gray matter, excluding 

ventricles and white matter, leaving 19 structures: left and right hemisphere accumbens, 

amygdala, caudate, cerebellum cortex, hippocampus, pallidum, putamen, thalamus, and 

ventral diencephalon, plus the brainstem, which contains both gray and white matter). 

Between-session stability analyses used beta values provided by ABCD which averaged 

activity from each run within a session, weighted by the number of usable frames (between 

session stability of specific runs is examined in Supplement Section S1.3.8). Reliability 

and stability were calculated from an LME model that included nested effects of scanner 

model [e.g., Siemens Prisma (Prisma Fit recoded as Prisma), GE Discovery MR750, Philips 

Achieva, and Philips Ingenia], site, family, and individual, comparing the stable variation 

associated with site, family, and individual to this stable variation plus the model residual; 

i.e.,

Variance Ratio= Site + Family + Individual Variance / Site + Family + Individual + Residual Variance .

Consistent with the framework of Generalizability Theory (Briesch et al., 2014), the residual 

variance from the within-session reliability analyses was divided in half to make the 

reliability estimates (based on two five-minute runs) reflective of averaging across two 

runs. We excluded variance related to the scanner model from our calculations of reliability 
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and stability as scanner-specific variance does not reflect individual differences in activity. 

This exclusion allows us to estimate reliability and stability as if they were derived from 

data all collected on the same scanner model. However, we decided to include site variance 

as part of the stable (numerator) variance as we cannot discount the possibility that there 

may be demographic differences between sites that are of interest. Namely, while some 

of the estimated site variance may be associated with differences in testing procedure 

and not reflect individual differences (e.g., research assistants at one site doing a better 

job of preparing participants to move less), site specific variance may also reflect valid 

community level differences (e.g., obesity rates differ by state and obesity is associated 

with neurobiological differences and increases in movement (Hodgson et al., 2017, Meng 

et al., 2020; Wang et al., 2020)). Thus, since the goal of the ABCD Study is to capture 

a representative sample of developing American children, we have kept site variance as a 

variance component in both the numerator and denominator terms of the variance ratio. 

Notably, the resulting reliability/stability values will always be higher than if site variance 

was excluded, which seems a reasonable ‘positive’ bias to accept given the general finding 

of poor reliability/stability (so that we do not unduly bias in the direction of overly 

pessimistic results). Per Cicchetti (1994), reliabilities below .4 are frequently considered 

poor, .4–.59 as fair, .6–.74 as good, and .75–1.0 as excellent.

LME models varied by analysis and were implemented using R version 4.1.0’s (R Core 

Team, 2021) nlme package (Pinheiro et al., 2021). The within-session reliability analyses 

used the following LME model:

y   Age  +  Run, random  =   1 Scanner/Site/Family/Individual

while the stability analyses used this LME model:

y   Age_at_Baseline  *  Time_Between_Sessions, random  =    1 Scanner/Site/Family/Individual

Only intercept was allowed to vary as random slope LME models perform poorly when only 

two timepoints of data are available. Roughly 1% of LME models failed to converge; values 

from these analyses were omitted from summaries and statistics computed using the LME 

results. Reliability and stability values for all regions were also calculated using an intraclass 

correlation approach (ICC(3,2) for reliability and ICC(3,1) for stability, Shrout and Fleiss, 

1979) and can be found in the Supplementary Output - ICC spreadsheet for the analyses 

covered in the main text. Reliability and stability for each model that converged can be 

found in the Supplementary Output - Reliability and Stability spreadsheet.

Analyses controlling for pubertal differences were performed to try to mitigate individual 

differences in development that would negatively impact stability. The pubertal measures 

included in these analyses were hormone levels for DHEA, estradiol, and testosterone 

and the pubertal developmental score3. These pubertal variables were entered into the 

3Hormone level variables were hormone_scr_dhea_mean, hormone_scr_hse_mean (estradiol), and hormone_scr_ert_mean 
(testosterone) from the file abcd_hsss01 and the pubertal developmental score was the average of the first five values (4th and 
5th sex specific) of the PDS scale from the abcd_ppdms01 file.
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LME formula by including the value at baseline, the difference between follow-up and 

baseline values, and the interaction of the two (e.g., R syntax: + <measure>_at_Baseline * 

Difference_in_<measure> + …, so that the main effects of each and their interaction were 

modeled as three fixed effects). Only hormone values that passed ABCD’s quality control 

were included in the analysis4. These models were run separately for each sex as estradiol 

was unavailable for males. All fixed effect variables were demeaned for the LME analyses. 

LME models of the reliability and stability of within and between session change, run 

specific stability, and stability for subgroups with high and low intersession intervals were 

also calculated – see Supplementary Methods Section S1.3 for details.

The variance component estimates from the LME model (scanner model, site, family, 

individual, and residual) are supplied in the Supplementary Output - Full spreadsheets, 

as well as the relative proportion of each to the total variance and total stable variance 

(including scanner). Those spreadsheets also include the value, standard error, degrees of 

freedom, t-statistic, p-value, and Cohen’s D effect size for each fixed effect, the model 

loglikelihood, Akaike information criterion, Bayesian information criterion, and reliability/

stability calculated with the scanner variance incorporated. These extensive tables are 

provided so that interested individuals can explore the quantitative model results in their 

entirety.

The initial ABCD quality controlled (QC) dataset was the basis for the creation of three 

additional datasets that were used to examine the effects of statistical approaches to 

data cleaning, namely outlier removal (QC+OR), motion regression (using the framewise 

displacement variable5) followed by outlier removal (QC+MV+OR), and rank normalization 

(QC+Rank). Results from these datasets were compared using paired-t tests. Group 

differences for datasets and other comparisons are sometimes expressed as Cohen’s D effect 

sizes as the large number of values being compared (167 regions * 26 contrasts) may result 

in a weak effect appearing important due to it being highly statistically significant; reporting 

the actual effect size gives a sense of the strength of any difference. For more details, see the 

Sections S1.2 and S1.3.2 of the Supplement.

Within-session reliability, longitudinal stability, activity, and change statistics (activity/

change methods described in Supplemental Section S1.3.1) for each contrast and dataset 

were converted into CIFTI ‘pscalar’ (parcellated scalar; Glasser et al., 2013) format 

for display and data dissemination purposes. Regional values from models that failed 

to converge are left blank. Data is available on BALSA at https://balsa.wustl.edu/study/

7qMqX. Maps of significant activity and change were created for only the QC and 

outlier removed (QC+OR) datasets, as the movement regression (QC+MV+OR) and rank 

normalization (QC+Rank) approaches both mean center the data, rendering the computation 

of activity and change in those datasets moot. Region and contrast specific reliability, 

4Exclusion variables were from the abcd_hsss01 file and followed the naming pattern 
hormone_scr_{dhea,hse,ert}_rep{1,2}_{ll,qns,nd}(ll = “below lower level of sensitivity”, qns = quantity not sufficient, and nd = 
none detected).
5tfmri_{mid,nback,sst}_{all,run1,run2}_beta_mean.motion using the harmonized “DEAP” variable name, as specified in the “21. 
abcd_4.0_mapping.csv” file in the ABCD Release 4.0 release notes, which also provides the mapping to the NDA instrument and 
corresponding NDA variable name in which the mean framewise displacement values can be located.
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stability, activity, and change values are also provided as supplemental tables. The R code 

used to generate the datasets, reliability, stability, activity, change, and variance components 

are provided as supplements. All subsequent statistical analyses comparing reliability, 

stability, activity, and change were performed using SPSS v27 (IBM Corp, 2020).

2.4 Reliability, Stability, Activity, and Change

2.4.1 Regions of Interest—As our primary analysis we examined if the regions most 

consistently recruited by the cognitive demands of each specific task in previous research 

were more reliable, stable, significantly more active, or subject to greater within or between-

session change. To this end, of the total 26 contrasts (10 MID, 9 nBack, 7 SST) included 

in the processing of the ABCD Release 4.0 data, we identified a priori ROIs for eight 

targeted contrasts by taking the coordinates of the reported cluster peak and subpeaks6 

from meta-analyses that report important regions for each process targeted by the task/

contrast, converting to Montreal Neurological Institute (MNI) coordinates if necessary 

using the converter included with GingerALE version 3.0.2 (Eickhoff et al., 2011), and 

identifying the Destrieux parcel or subcortical structure in which this coordinate resides. 

These regions were not identified based on ABCD data but from previously published 

meta-analyses. Reliance on extant Destrieux parcels/FreeSurfer segmentations that overlap 

with literature-consensus activation maxima also avoids circularity compared to deriving 

ROIs from activation in the ABCD data itself. The same approach was used by Korucuoglu 

et al (2021). This is not an ideal approach as the parcels/structures are originally generated 

based on an individual’s specific anatomy and some variation in location within MNI space 

can be expected, but is reasonable given that the meta-analyses themselves report results 

in a common (MNI or Talairach) space. Moreover, reliability and stability are high when 

there are stable individual differences. We recognize that regions where individuals vary 

a great deal in their functional responses to a stimulus may nonetheless be very stable, 

but not significantly active at the group level, while conversely a stimulus may exhibit a 

strong group level response but be completely unreliable. As we are unaware of relevant 

meta-analyses focused specifically on identifying reliable/stable regions (without regard to 

group level activation), we defined our a priori ROIs from group level analyses instead.

The specific targeted contrasts and their associated meta-analyses are as follows: MID: 

anticipation of loss (large and small loss trials admixed) vs neutral, anticipation of reward 

(large and small reward trials admixed) vs neutral, and reward (positive) vs missed-reward 

(negative) notification in reward trials (henceforth referred to as reward feedback) from 

Oldham et al. (2018); nBack: 2- vs 0-back from Yaple et al. (2018), and emotional face vs 

neutral face and face vs place contrasts, both in Muller et al. (2018); SST: correct stop vs 

correct go from Swick et al. (2011) and incorrect stop vs correct go from Neta et al. (2015). 

There were a total of 57 unique regions (35 ignoring laterality) across the 8 contrasts. 

Between 7 and 20 ROIs were identified for each contrast, with 20 regions appearing in at 

least 2 contrasts. Supplemental Figures S1–S3 illustrate the location of the ROIs for each 

contrast and Supplemental Table 1 lists the ROIs by contrast.

6A part of a large cluster with activity higher than its surrounding voxels that is not the highest point in the entire cluster.
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2.4.2 ROI vs Non-ROI Comparison—The resulting ROIs can be considered to 

represent the regions that meta-analyses have established as among the most “task relevant” 

for the principal domains (i.e., contrasts) targeted by each task. To examine the impact 

of this “task relevance”, for each of reliability, stability, activity, and change (both within 

and between-session), we directly compared the ROI results with the remaining regions 

(“non-ROIs”, i.e., rest of the brain) for each of the 8 aforementioned contrasts, using an 

independent sample t-test. We used an FDR correction across the number of contrasts, but 

the analyses for reliability, stability, activity, and change were each treated independently.

2.4.3 Whole Brain—As there is no definitive consensus as to what regions should 

be considered ROIs, and since, to the best of our knowledge, meta-analyses to guide 

selection of ROIs were unavailable for 18 of the 26 available contrasts, unbiased, whole-

brain analyses were also conducted for all contrasts. Of note, these whole brain analyses 

included four condition vs baseline contrasts, while the ROI analyses were restricted solely 

to condition vs condition contrasts.

2.5 Movement Quartile Comparison Analyses

To examine the effects of in-scanner movement on reliability and stability, the QC 

dataset was first subdivided into four subgroups based on quartiles of mean framewise 

displacement, then framewise displacement was regressed from beta values (within quartile), 

and finally subject level outliers greater than 3 standard deviations from the mean were 

removed (within quartile recursively, until no new additional outliers were identified). 

Reliabilities and stabilities were computed separately for each movement quartile. Each 

quartile’s regional values were compared against each other quartile for each reliability/

stability measure using paired t-tests. Comparisons surviving an FDR correction for the 

number of contrasts are reported in the form of the average difference between quartiles. 

This was done for both ROIs from the 8 targeted contrasts and at the whole brain level 

across all contrasts. Further details can be found in the Supplemental Section S1.2.4.

2.6 Secondary Analyses

Analyses of variables affecting reliability and stability are explored in the supplemental 

methods (Section S1). Unless otherwise noted, these analyses were based on LME model 

results from the QC+OR dataset and performed at the whole brain level for each contrast 

separately. These include the association between reliability/stability with other reliability 

measures (including the paired comparison of reliability at baseline and follow-up), the 

absolute value of activation, and the absolute value of within/between session change 

(Section S1.3.3), differences in reliability based on region (cortical vs subcortical, S1.3.4; 

occipital vs non-occipital; S1.3.5), comparison of results from condition vs condition and 

condition vs baseline contrasts (S1.3.6), differences in stability after accounting for pubertal 

variables (S1.3.7), the effect of the amount of data on stability (S1.3.8), comparison of the 

degree of change within and between sessions and the reliability/stability of that change 

(S1.3.9), differences in movement within and between sessions (S1.3.10), differences in 

stability based on differences in intersession interval (S1.3.11), and the relationship between 

an individual’s absolute value of activity and standard error of the mean (S1.3.12).
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3 Results

3.1 Reliability, Stability, Activity, and Change in ROIs

Mean reliability and stability in ROIs, averaged across the targeted contrasts for all 3 tasks 

in the full “QC” dataset, was .076 (SD=.060) for within-session reliability at baseline, .100 

(.068) for within-session reliability at follow-up, and .072 (.066) for longitudinal stability 

(Figure 2A). All ROI reliabilities and stabilities were poor (i.e., < .4) except for stability in 

the right inferior occipital in the face vs place contrast of the nBack. In the QC dataset, only 

1.2% of ROI analyses had reliabilities or stabilities over .3 while only 4.9% had reliabilities 

or stabilities over .2. These poor reliability and stability values occurred despite the fact that 

the ROIs were indeed generally activated at the group level by their respective tasks (Figure 

2B) – 90 of 108 ROIs were statistically “active” (after FDR correction) at baseline and 87 

were active at follow-up (one model, for the right amygdala in the face vs place contrast, did 

not converge). ROIs were also subject to statistically significant change in activation (Figure 

2C), but only in 67 ROIs within-session at baseline, 61 ROIs within-session at follow-up, 

and 37 ROIs between-session.

Data cleaning slightly increased mean reliabilities and stabilities (though average values 

remained poor) from .083 (.066) for the QC dataset (mean (SD) across stability and both 

reliabilities) to .096 (.071) for QC+OR, to .094 (.071) for QC+MV+OR, and to .095 (.070) 

for QC+Rank. While these increases in mean values were small, they occurred consistently, 

such that the increase was highly significant (all p values from paired t-tests comparing data 

cleaning types to QC dataset < .001, Cohen’s D for paired comparisons of QC vs QC+OR 

dataset: −0.344; vs QC+MV+OR: −0.313; vs QC+Rank = −0.444; Figure 2A).

A much bigger impact was observed by subsetting participants into different movement 

quartiles (using the QC dataset), where mean reliability and stability in ROIs was three 

times higher in the lowest movement group [1st quartile; average (SD) across reliability 

and stability of .166 (.116)] compared to the highest movement group (4th quartile; .053 

(.046); paired comparison significance p < .001; 1st-4th Cohen’s D = 1.136; Figure 2D). 

Nonetheless, mean reliabilities and stabilities even of the lowest motion quartile remained 

well within the ‘poor’ range. Mean and standard deviations for ROIs by contrast and dataset 

can be found in Table 2.

The preceding analysis used mean reliabilities and stabilities across a priori defined ROIs 

as a way to broadly summarize our findings. However, the different tasks and contrasts are 

targeting different aspects of functional processing and it is natural to wonder if reliability 

and stability may be higher in particular contrasts. Thus, analyses were repeated at the 

contrast level. Mean reliability and stability values (across the ROIs for each contrast) was 

highest in the 2 vs 0-back contrast [mean (SD) for within-session reliability at baseline: .124 

(.065); for reliability at follow-up: .171 (.091); longitudinal stability: .118 (.073)] and was 

lowest in the emotion vs neutral face contrast [within-session reliability at baseline: .019 

(.033); for reliability at follow-up: .016 (.023); longitudinal stability: .022 (.016)]. Contrast 

specific comparisons of data cleaning approaches found statistically significant increases in 

reliability only in the baseline session; stability was significantly greater primarily in the 

QC+Rank vs QC comparisons (Table 2). Contrast specific comparisons of the 1st and 4th 
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movement quartiles generally confirmed our finding of higher reliability and stability values 

in the lowest movement quartile for the individual contrasts, with a significant difference in 

17 of 24 comparisons (Table 2).

3.2 Comparison of ROIs and Non-ROIs

Reliability and stability values in the a priori ROIs were not statistically significantly higher 

than values in non-ROIs, regardless of data cleaning method (Figure 2A), even though post 
hoc comparisons found ROIs were significantly more active (independent sample t-tests 

comparing the absolute value of the intercept of the within-session LME results of ROIs 

vs non-ROIs using the QC+OR dataset; baseline: Cohen’s D 0.257, p = .011; follow-up: 

Cohen’s D 0.246, p < .015, between session: Cohen’s D .328, p = .001, Figure 2B). ROIs 

were subject to greater within-session change at baseline and follow-up than non-ROIs, but 

only before data cleaning (QC Cohen’s D baseline: 0.217, p = .047, follow-up: 0.222, p = 

.047, QC+OR baseline and follow-up p = .161; Figure 2C).

Contrast specific analyses generally found no significant differences between ROIs and 

non-ROIs for reliability, stability, |Activity|, and |Change|, with a few exceptions. Stability 

values were statistically significantly greater in ROIs relative to non-ROIs only for the 2 

vs 0-back contrast of the nBack (ROI stabilities .07 higher than non-ROIs), significantly 

weaker stability was observed in ROIs in the anticipation of loss vs neutral contrast (ROI 

stabilities .02 lower than non-ROIs; Supplemental Figure 5 shows contrast specific violin 

plots). Differences in reliability between ROIs and non-ROIS were not observed at the 

contrast level. Greater absolute value of activity in ROIs relative to non-ROIs was observed 

in only the 2 vs 0-back at follow-up (|Activity| 0.06 higher in ROIs relative to non-ROIs; 

Supplemental Figure 6). Greater absolute value of change in ROIs relative to non-ROIs was 

found only in the SST between sessions (|Cohen’s D| of intersession change .03 higher for 

correct stop vs correct go and .05 higher in incorrect stop vs correct Go in ROIs relative to 

non-ROIs; Supplemental Figure 7). Overall, separating ROIs into contrasts (some with as 

few as 7 ROIs) largely eliminated the significant effects of greater ROI relative to non-ROI 

|Activity|, while the increased specificity allowed us to identify ROI vs non-ROI differences 

in the 2 vs 0-back and anticipation of loss vs neutral contrasts.

3.3 Whole Brain Analyses

Since meta-analyses to guide ROI selection were not available for most (18 of 26) of the 

provided ABCD task contrasts, and since what qualifies as a “region of interest” is partly 

subjective, whole brain region-wise analyses were also performed for all contrasts. Using the 

QC dataset, across all regions and contrasts, mean (SD) within-session reliability was .098 

(.119) for baseline, .107 (.105) for reliability at follow-up, and .072 (.079) for longitudinal 

stability. Contrast and dataset specific mean (SD) reliability and stability values can be 

found in Supplemental Table 2. Figure 3 (top) shows the mean reliability and stability for 

each region for the QC dataset (across all available 26 contrasts). Occipital reliability and 

stability values tend to be higher than other brain regions, while subcortical and orbital 

frontal regions were lower than the rest of the brain. Figure 3 (bottom) shows histograms 

of reliability and stability values in ROIs, non-ROIs, condition vs baseline contrasts, and 

condition vs condition contrasts without identified ROIs (labeled “Other”). The histograms 
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show that ROIs have similar distributions to non-ROIs and that the high end of the 

distribution is primarily regions from condition vs baseline contrasts. Complete data (and 

figures) for reliability and stability per region and for each contrast by data cleaning and 

reliability/stability type can be found on BALSA at https://balsa.wustl.edu/study/7qMqX.

The data cleaning comparison applied to the whole brain analysis found that removing 

outliers again slightly increased mean reliability and stability values – from a mean (SD) of 

.093 (.101) for the QC dataset to .107 (.113) for QC+OR (p < .001); see Supplemental 

section S2.2 and Supplemental Table 3 for a comparison of values by data cleaning 

approaches. Scatterplots comparing region specific reliabilities/stabilities in the 2 vs 0-back 

contrast before and after outlier removal showed that values were greater in the QC+OR 

dataset relative to the QC dataset in most regions (132, 130, and 155 of 167 total regions for 

within-session reliability at baseline, within-session reliability at follow-up, and longitudinal 

stability, respectively; Supplemental Figure 4, panels A and B).

3.4 Movement Quartile Comparison Analyses

A comparison of reliabilities and stabilities computed separately in each of the movement 

quartiles showed significantly higher values for both in the quartiles with less movement. 

Figure 2D shows the average values for ROIs by quartile. For the whole brain, the average 

reliability increased from .066 for the 4th (highest) movement quartile to .184 for the 1st 

(lowest) movement quartile within the baseline session (Δ = .118), from .079 to .183 within 

the follow-up session (Δ = .104), and longitudinal stability increased from .053 to .130 (Δ = 

.077). Increasing reliability and stability values with less movement was observed in 69 of 

78 analyses (3 × 26 contrasts) when comparing 1st to 4th quartiles in paired t-tests, though 

a minority (2) were significantly less reliable or stable with less movement. Figure 4 shows 

similar results for the reliability values at follow-up across the whole brain, but separated 

into each of the 26 contrasts provided by ABCD (analogous violin plots for within-session 

reliability at baseline and between-session stability can be found as Supplemental Figures 8 

and 9). Those results show that the nBack task had the contrasts with the highest reliability 

and stability values. Medial and lateral cortical maps of the reliability and stability values 

for the 2 vs 0-back contrast are shown for all movement quartiles in Figure 5. This 

figure demonstrates decreasing reliability and stability values with increasing movement 

and greater reliability within-session at follow-up (when participants were older) relative 

to the baseline session (see also Figure S4, panel D). Table 2 provides the mean values 

for the 1st and 4th quartile by contrast for ROIs. A whole brain comparison of reliability 

and stability values and their components across quartiles for each of the 26 contrasts is 

provided in Supplemental Tables 4 and 5. Complete data for regional reliability and stability 

by movement quartile are available on BALSA at https://balsa.wustl.edu/study/7qMqX.

3.5 Other Factors Affecting Reliability and Stability

A number of additional analyses were conducted to better understand possible associations 

between reliability, stability, and other factors. A fuller overview of results can be found 

in the supplemental materials, but briefly, reliability and stability were positively correlated 

with each other, |activity|, and |change| (Supplementary Sections S2.1.1-S2.1.4, Tables S5, 

S6, and S7); within-session reliability increased from baseline to follow-up, predominantly 
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due to a drop in residual variances ( S2.1.5, Tables S8 and S9, Figure 5 and Figure S4D); 

relative to subcortical regions, cortical regions were more reliable, stable, had greater 

|activity|, and had greater (predominantly between sessions) |change| (S2.3, Table S10); 

occipital regions were more reliable, stable, and active relative to non-occipital regions 

(S2.4 and Table S11); reliability and stability were significantly higher in condition vs 

baseline conditions relative to condition vs condition contrasts (S2.5, Table S12, Figure 

3); controlling for pubertal variables increased stability but only by an average of .011 

across the whole brain (S2.6, Table S13); stability stayed the same or increased for most 

anticipatory MID contrasts and emotion vs neutral nBack contrasts when calculated with 

only one run (S2.7, Table S14); within-session change was very unreliable (average .037) 

and between-session change was unstable (0.020) across the whole brain, though correlated 

with reliability/stability of activity and the absolute values of activity and change (S2.8, 

Tables S15 and S16); movement increased within session and decreased between sessions 

(S2.9); and increased intersession interval was associated with higher stability (S2.10, Table 

S17).

4 Discussion

4.1 Poor Overall Within-Session Reliability and Longitudinal Stability

Our main finding was that within-session reliability and longitudinal stability of individual 

differences in task-related brain activation was consistently poor for the publicly released 

fMRI data from all three ABCD tasks. Data cleaning approaches like outlier removal, 

movement regression, and rank normalization led to a very small, albeit statistically 

significant, increase in reliability and stability (average change of less than .015). While 

the finding of poor within-session reliability and longitudinal stability in the ABCD task 

fMRI data is concerning, it did not come as a surprise, given the mounting evidence for 

generally lackluster reliability of task-fMRI in mostly adult samples (Elliott et al., 2020; 

Herting et al., 2018; Noble et al, 2021). However, the present estimates are far below the 

.397 average reliability of task-fMRI activation estimated in the meta-analysis by Elliott 

et al. (2020). The question then arises, what factors could contribute to this particularly 

disappointing outcome? Previous reliability studies largely involved adult participants who 

will likely move less in the scanner and used shorter retest intervals relative to the between 

session analyses (within-session analyses, which have no retest interval, would presumably 

be subject to habituation/automation/task-reorganization effects that would diminish over 

a few weeks; Spohrs et al., 2018). Although average reliability and stability values in the 

ABCD task fMRI data are poor overall, and thus subject to a “floor effect” with limited 

variability of values across tasks, contrasts, and brain regions, we have examined these 

and other factors as potential determinants of reliability and stability. Some dataset/contrast 

combinations had values in the fair to excellent range, however these typically occurred in 

the condition vs baseline contrasts where activity is not specific to task relevant processing 

and in the low movement quartile datasets. Moreover, the highest reliabilities and stabilities 

were also in occipital lobe, raising the possibility that non-specific responses to actionable 

visual stimuli are what is most reliable and stable.
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4.2 Factors affecting reliability and longitudinal stability

4.2.1. Task design and specific contrasts—Overall, reliability and stability were 

substantially higher for the working memory contrasts, although they were still in the 

poor range. These task differences may be related to the use of an adaptive procedure to 

equalize performance across subjects in the MID and SST tasks, which could also attenuate 

individual differences in task-related brain activation, thereby reducing variance between 

individuals and consequently decreasing reliability/stability estimates.

Within tasks, there were differences in reliability and stability between specific contrasts, 

which was most evident for nBack task (because reliability for MID and SST was close 

to zero, there was too little variability to examine differences across contrasts within those 

tasks). Contrasts of an active condition vs a passive (e.g., fixation) baseline consistently 

showed higher reliabilities and stabilities than contrasts between two active conditions (e.g., 

greater reliability and stability of 2-back vs baseline compared with 2-back vs 0-back). 

This is consistent with psychometric and neurofunctional evidence (Baranger et al., 2021; 

Caruso, 2004; Infantolino et al., 2018) that contrast (difference) scores typically show 

lower reliability than their constituent measures because error variances of both constituents 

contribute to the error variance of the difference score and activity is highly correlated 

for different condition vs baseline contrasts (which represent the constituent measures for 

a direct condition vs condition contrast). For fMRI measures, this results in a trade-off 

between reliability or stability and validity of activation metrics. For example, an activation 

elicited by emotional faces relative to baseline shows higher reliabilities than activation of 

emotional faces relative to neutral faces (which is totally unreliable in the ABCD data). 

Similarly, Baranger et al. (2021) recently demonstrated using a number-guessing reward task 

that reward activation contrasted with baseline had greater reliability than reward contrasted 

directly with loss. However, contrasts with a passive baseline lack specificity because they 

may include nonspecific activation unrelated to the specific construct of interest (e.g., 

general sensory or motor related activation), resulting in poor discriminant validity. Thus, 

it is unclear whether the stable activation in the condition vs baseline working memory/

face/emotion processing contrasts reflects functional activity related specifically to working 

memory/face/emotion processing.

One matter that cannot be addressed using the provided ABCD data but should be 

considered is if the task design and/or scanning parameters are ideal for capturing reliable 

and stable activity. Several of the studies analyzed in Elliott et al.’s (2020) meta-analysis 

of task reliability examined functional activity in the same domains as the tasks used in 

the ABCD data, with almost all finding substantially higher reliabilities than reported here, 

with most reporting reliability based on a priori ROIs (Blokland et al., 2016; Caceres et 

al., 2009; Cannon et al., 2017; Fliessbach et al., 2010; Fournier et al., 2014; Heckendorf et 

al., 2019; Holiga et al., 2018; Johnstone et al., 2005; Keren et al., 2018; Lois et al., 2018; 

Manoach et al., 2001; Nord et al., 2017; Plichta et al., 2012; Plichta et al, 2014; Sauder 

et al., 2013, Schlagenhauf et al., 2007; van den Bulk et al., 2013; Wei, et al., 2004; Zanto 

et al., 2014). While some of this can possibly be attributed to differences in demographics 

(e.g., age related movement differences) and scan length [highly variable, ranging from 4 

minutes (Holiga et al., 2018) to nearly an hour (van den Bulk et al., 2013)], it is worth 
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noting that there are alternate designs that may be more reliable (at least superficially in 

the absence of a direct comparison). For example, while the emotion processing studies 

examined by Elliott et al (2021) generally had poor average reliabilities (Cannon et al., 

2018; Fournier et al., 2014; Holiga et al., 2018; Lois et al., 2018; Nord et al., 2017; Plichta 

et al., 2012; Plichta et al., 2014; Sauder et al., 2013; and van Den Bulk et al., 2013), these 

averages were closer to the .4 cutoff between ‘poor’ and ‘fair’ reliability than the .02 average 

we observed in ROIs. Due to time considerations, emotional processing in the ABCD task 

fMRI is assessed as an implicit component of the nBack task, in which participants are 

asked to match if an image is the same as one shown at the beginning of a block (0-back) 

or two images earlier (2-back). But participants are not asked to examine or compare the 

emotions shown in the images themselves (Casey et al., 2018). In contrast, the emotional 

content of the images was explicitly assessed in most of the other studies (Cannon et al., 

2018; Holiga et al., 2018; Lois et al., 2018; Nord et al., 2017; Plichta et al., 2012; Plichta 

et al., 2014; Sauder et al., 2013; and van Den Bulk et al., 2013). It may be the case that 

emotion processing reliability is so poor in the ABCD task because emotional valence was 

not explicitly queried as part of the nBack task. Furthermore, scan parameters differ in some 

important aspects across the aforementioned earlier studies relative to ABCD, with voxel 

sizes typically greater than 3 mm, and repetition times (TRs) of 2 sec or greater, since 

these studies did not use multiband acceleration. While the use of multiband acceleration 

in ABCD raises the possibility of some detrimental effects on reliability due to g-factor 

penalties and signal ‘leakage’ (Todd et al., 2016; Todd et al., 2017), the total acceleration 

used in the ABCD task fMRI scans is modest (multiband factor of 6, with no in-plane 

acceleration), and consistent with recommendations from other studies (Risk et al., 2018; 

Risk et al., 2021; Xu et al., 2013). Additionally, research from our lab (Korucuoglu et al., 

2021) applying ABCD scan parameters to young adults found higher reliability estimates 

(~.4) than with the children in the ABCD Study, undermining the hypothesis that scan 

parameters are responsible for these differences. An overview of the average reliabilities and 

scan parameters from studies examined in Elliott et al.’s (2020) meta-analysis that addressed 

the same domains as ABCD’s fMRI tasks can be found in Supplemental Table S18.

4.2.2. Regions of Interest—We hypothesized that a priori ROIs would be more reliable 

and stable than other (“non-ROI”) brain regions. Task fMRI has historically been focused 

on the activity in particular regions engaged in particular cognitive processes, and it seemed 

reasonable that individual differences in the degree of activation under task performance 

would be more consistent in those regions than other regions that may be less constrained 

by the task and whose activity may fluctuate more (e.g., due to participant state). Indeed, 

this premise has been fundamental to the whole task fMRI endeavor. However, contrary 

to this expectation, our analyses show that, except for the 2 vs 0-back contrast of the 

nBack, a priori ROIs are not more reliable or stable than the rest of the brain. Furthermore, 

across tasks, higher reliability and stability values were observed largely in occipital 

regions that are generally of limited interest in the context of the neurocognitive constructs 

targeted by the tasks used in ABCD. Secondary analyses found that reliability and stability 

were also significantly correlated (across regions) with the absolute value of group-level 

(mean) activity in most contrasts. This was most prominent in the face vs place contrast 

of the nBack (correlations between .798–.823), with most of these relationships having 
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a correlation in the range of .4–.5 (Table S7). This is inconsistent with our finding of 

greater activity in ROIs relative to non-ROIs but not accompanying greater reliability and 

stability in ROIs for most contrasts. A possible explanation is that the effect of activity 

on reliability/stability was not strong enough to manifest as greater values in ROIs relative 

to non-ROIs. It is worth noting that, unlike the other meta-analyses used to identify ROIs 

(Mueller et al., 2018; Neta et al., 2015; Oldham et al., 2018; and Swick et al., 2011), the 

meta-analysis used for the 2 vs 0-back was the only one based solely on children (Yaple et 

al., 2018). It may therefore be possible that the ROIs for the 2 vs 0-back contrast were more 

appropriate for the ABCD data, although this would require that activation shifts spatially 

in an appreciable manner with development. A different approach to identifying ROIs (e.g., 

data driven relative to based on published meta-analyses) may have given different results. 

While the lack of significant differences between ROIs and non-ROIs may make focusing 

on ROIs seem unwarranted, we believe it is important to recognize that having reliable 

and stable activity is more important in task specific regions. Additionally, without an 

ROI specific analysis, researchers could incorrectly assume that poor mean reliability and 

stability values, when averaged across the whole brain, were skewed downward by task 

non-relevant regions where one wouldn’t necessarily expect activity to be consistent (rather, 

our secondary analyses found that activity in the occipital lobe was actually most reliable/

stable, a region generally ignored in these specific tasks since visual activation is not the 

focus of the task). Notably, while we have used violin plots to illustrate distributions, all 

data is available as spatial maps within the BALSA database so researchers can look up the 

reliability/stability of a specific region for a specific contrast for a specific subset of data 

(i.e., cleaning method or movement quartile).

4.2.3 In-scanner movement—To examine the effect of movement on reliability and 

stability, participants were separated into quartiles based on movement and reliability and 

stability values were calculated separately for each quartile. The comparison of values 

between movement quartiles showed that the lowest quartile (the least moving participants) 

had an average whole brain reliability/stability of .143 while the highest movement quartile 

average was nearly half that value at .073. Although both quartile values are in the “poor” 

range, this significant difference indicates that efforts to mitigate the impact of movement 

(including frame censoring and motion parameter regression at the preprocessing stage, as 

well as excluding subjects with high movement at the point of defining the initial sample) 

did not fully control for the effect of movement on reliability and stability. Decreased 

values due to movement may be the result of either movement adding noise to estimated 

activity or a loss of data due to censoring frames with above threshold movement. Frame 

removal diminishes the amount of data available for analysis, which can reduce the precision 

of activation estimates and negatively affect reliability and stability values, resulting in a 

trade-off between data quality and quantity. Though this cannot be addressed using the 

released data, reprocessing ABCD data with different movement thresholds or removing 

an equal number of frames from low movement subjects (to match frame removal rates 

from high movement subjects) may better establish how movement affects reliability and 

stability. As amount of movement (mean framewise displacement) and number of censored 

frames are highly correlated (r = 72 in the MID task), we cannot say whether the loss of 

data or subthreshold movement effects in the retained frames are responsible for the poorer 
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reliability and stability values in high movement quartiles. More generally, our finding 

of a strong effect of our movement quartiles on reliability and stability values calls for 

approaches to reduce the impact of movement. While the large ABCD sample size means 

there is still sufficient power to identify effects with only a quarter of the sample, movement 

itself is frequently associated with measures of interest (e.g., fluid intelligence, externalizing 

behavior, adiposity; Hodgson et al., 2017; Lukoff et al., 2020; Siegel et al., 2017) and 

limiting analyses to only low movement samples may therefore lead to a biased sample 

with results that are not representative of the general population. Data driven noise removal 

(ICA-FIX, Salimi-Khorshidi et al., 2014) has been found to increase reliability in high 

movement adult participants, though by only .06–.08 (Korucuoglu et al., 2021). However, 

given substantially more movement in children, ICA-FIX may potentially lead to larger 

reliability and stability gains in children, including ABCD data.

4.3. Implications of Low Reliability in the ABCD Task fMRI Data

The main (and certainly unwelcome) conclusion from the present analysis is that poor 

reliability and stability of child task fMRI activity in the MID, nBack, and SST tasks of 

the currently released ABCD data calls into question their suitability for many analyses 

focused on individual differences, as well as any analyses that rely on the assumption 

(explicit or implicit) that brain activation measures represent reliable and stable trait-

like variables. Such studies include correlations between brain activations and individual 

differences in behavior or psychopathology (particularly, prospective longitudinal brain-

behavior associations), within-subject analyses of longitudinal changes, genetic associations, 

effects of individual differences in environmental exposures, and many other research 

designs. Reliability imposes the upper limit on the measurable correlation between variables 

(Nunnally et al., 1970; Vul et al., 2009), and traits with low reliability or stability cannot 

produce high correlations with other traits, even other highly reliable or stable ones. One 

particular positive of the ABCD Study is that its very large sample size affords enough 

statistical power to detect significant correlations even with low-reliability/stability traits. 

These correlations will predictably be very low, though that does in itself not preclude the 

ability to generate some predictive insights into biological mechanisms (Dick et al., 2021).

Since ABCD is an ongoing longitudinal study, a question arises whether there is a possibility 

that poor reliability and stability found in the present analysis is related to the participants’ 

young age, and thus whether, in subsequent longitudinal waves, these values will improve. 

Some evidence supports this expectation. Our secondary analyses found that within-session 

reliability increased from the baseline to follow-up session for most contrasts, albeit by 

a small amount. Part of this increase is likely due to a reduction in detrimental movement-

related effects, since movement decreased between sessions. However, the overall increase 

over two years was small, with the largest increase in average whole-brain contrast 

wide reliability being .04. Nevertheless, one can reasonably expect at least some small 

improvement of reliability/stability with age, at least until the propensity to move in the 

scanner stabilizes (around the mid-teenage years; Satterthwaite et al., 2012). Our recent 

study of test-retest reliability of the ABCD SST task in a sample of young adults showed fair 

and even good reliability for some contrasts/ROIs, though using a different preprocessing 

pipeline and parcellation (Korucuoglu et al., 2021).
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Another parsimonious account of the lackluster reliability and stability values found here 

(as well as an account for the slight improvement with age from baseline to follow-up) 

is the possibility of inconsistent task engagement in children compared to adults. This 

has been evidenced not only by decreases in trial-to-trial reaction time variability from 

childhood to adulthood in signal detection tasks (Tamnes et al., 2012), but also evidenced in 

developmental pupillometry studies, where for example, task-demand-elicited noradrenergic 

activation (indexed by pupil dilation) waned during memory encoding in children, while 

remaining active in adults (Johnson et al., 2014). This effect was correlated with poorer 

recall in children. It stands to reason that as ABCD participants mature into more consistent 

task engagement, this will entail deeper and more consistent encoding of task information, 

that would lend itself to greater reliability and stability.

Researchers using ABCD task-fMRI data are strongly urged to select variables that show 

at least some trait stability and evaluate the upper boundary of expected correlations or 

effect sizes for other analyses. For example, attenuation of observed correlation between 

two variables can be easily estimated if reliabilities or stabilities of both variables are 

known with the formula rObservedA,ObservedB = rA,B * sqrt(ReliabilityA*ReliabilityB) where 

rA,B is the “true” correlation between two constructs (Nunnally, 1970); in the ABCD 

sample, longitudinal stability of non-imaging variables can be readily computed using data 

from subsequent assessment waves. However, reporting “reliability adjusted” correlations is 

generally inadvisable as the measurement errors responsible for low reliability or stability 

can be correlated between variables and applying the above formula can bias results, 

erroneously increasing or decreasing the estimated “true” correlations (Saccenti et al., 

2020). For cognitive neuroscience research outside of ABCD, we suggest that establishing 

and reporting test-retest reliability and stability of task-fMRI phenotypes is imperative for 

planning studies and publishing results. In particular, computations of statistical power 

should account for imperfect reliability of task-fMRI data, because poor reliability leads 

to the reduction of the measured effect size and, consequently, increases the sample size 

needed (Baugh, 2002). Post hoc power analyses (calculated with the pwr.r.test R function; 

Champley, 2018) examining the sample sizes needed to find a significant (alpha = 0.05) 

correlation between a variable with a reliability of .8 and a true correlation of .3 with 

variables with reliabilities of .100, .110, and .076 (the average reliabilities within-session 

at baseline, at follow-up, and the average longitudinal stability for the a priori ROIs from 

the QC+OR dataset), found that sample sizes would need to be 1085, 988, and 1432 

participants, respectively. While those numbers are far below the sample available for the 

ABCD Study, this greatly exceeds the average sample size for fMRI studies (Poldrack et 

al., 2017) and is consistent with research finding that large samples are needed to find a 

consistent correlation between imaging data and other variables (Marek et al., in press).

The preponderance of small effects in imaging research that would necessarily result from 

poor reliability and stability is one of the reasons large, consortium-scale studies like the 

ABCD are needed (Dick et al., 2021). As the statistical approaches to increasing reliability/

stability addressed here had small effects that did not increase reliabilities or stabilities 

out of the ‘poor’ range, developmental task fMRI researchers may need to plan studies 

around the limitation of poor task reliability. Since restricting analyses to low movement 

participants doubled reliability/stability relative to high movement, an even greater emphasis 
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on accounting for movement, either through participant training or processing, may be 

warranted (although given the already profound emphasis on the movement confound, 

with no clear solution to date, progress on this front may be challenging). Neglecting the 

reliability and stability challenges in task fMRI research may result in further proliferation 

of small sample, underpowered studies and dissemination of spurious, false positive and 

non-replicable findings that undermine the credibility of cognitive neuroscience research 

relying on task-fMRI data.

Researchers planning for future studies may want to take notice of a recent review by 

Elliott et al. (2021) where they identify four strategies to obtaining reliable fMRI data: 1) 

obtaining longer runs of data (somewhat contradicted by our secondary analyses finding 

that more data can sometimes result in lower reliability, possibly due to factors such as 

changing arousal); 2) modeling trial by trial variance rather than just using average beta 

values (a concept explored by Chen et al. (2021) using Flanker data, who report that 

different modeling approaches can greatly increase reliability by removing error variance 

across trials, though this is not possible from the currently released ABCD data); 3) using 

a multi-echo fMRI scan acquisition to better identify blood-oxygen level-dependent signal 

from noise; 4) optimizing stimulus design, with them recommending using more naturalistic, 

ecologically valid stimuli rather than the abstract constructs on a black screen that are 

common in fMRI task research.

Our results do not necessarily mean that task fMRI activity is inherently unreliable or 

unstable. It remains unknown how much the reliability of task fMRI could be increased 

by acquiring more data per individual, although the resting-state literature suggests that 

the gains could be substantial (Birn et al., 2013; Gordon et al., 2017) if the challenges 

regarding learning and adaptation effects in task performance can be managed. Also, the 

task data released by the ABCD Study reflects only one approach to task fMRI processing 

and processing approaches can vary substantially, as do subsequent results, even when 

using the same data (Botvinik-Nezer et al., 2020). Identifying processing approaches that 

promote reliable and stable individual level data, rather than just maximizing the statistical 

significance of group-level activity, is vital to identifying reproducible individual differences 

in functional activity. Cohort (e.g., age) effects may also be a profound factor in the current 

results. For example, we have reported that SST task activity in young adults has fair 

to good reliability [using an intraclass correlation (ICC) approach] while using the same 

scanner, task design, and scan acquisition parameters as the ABCD Study, but processed 

using a different pipeline (though also with a shorter intersession interval of ~6 months; 

Korucuoglu et al., 2021). While an increase in reliability with age is expected (due to 

less motion), we cannot definitively say that this was the source of the higher reliability 

in that study, since there were processing differences as well, including the use of the 

Human Connectome Project pipelines (Glasser et al., 2013) and parcellation using a more 

functionally relevant multi-modal parcellation (Glasser et al., 2016). Notably, ICA-FIX 

(Glasser et al, 2018; Salimi-Khorshidi et al., 2014) was able to increase reliability in subjects 

with high movement (Korucuoglu et al., 2021), albeit to a small extent (average whole brain 

increase in ICC of .06). Ultimately, alternate approaches to processing ABCD data and 

better accounting for noise and movement may result in more reliable data.
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4.4 Limitations

These analyses are not without limitations. Reliability values will be influenced by 

differences in within-session change while stability will be influenced by between-session 

change/development that cannot be fully accounted for given the way the data was processed 

for public release (i.e., whole run beta values compared to a more granular analysis of 

possible temporal effects, such as block by block estimates of activation). Also, the number 

of sessions available (2) is currently a limitation, as more advanced statistical approaches 

to modeling and accounting for individual differences in change are not available with 

only two sessions of data (e.g., mixed effects modeling of nonlinear trajectories, Herting 

et al., 2018). Meta-analyses were only available for 8 contrasts, so a priori ROIs were not 

identified for the remaining 18 of 26 released contrasts. We investigated reliability in a 

univariate framework, and it is possible that more multivariate-oriented analyses will have 

higher reliability (Kragel et al., 2020), although this remains to be established. The inclusion 

of site variance in our stability estimates likely mixes stable variation due to demographic 

differences or sample ascertainment biases with stable variation due to undesired differences 

in data collection. (However, this biases the reliability/stability estimates in a strictly 

positive manner; excluding site variance would have resulted in even lower values.) As 

the ABCD Study initiated enrollment with a narrow age range, participant age and date are 

highly correlated across the longitudinal waves, thus age effects are potentially confounded 

with undesirable temporal changes (e.g., changes in scanner performance over time). 

Last, data was only available for structurally-based parcellations. However, functionally 

derived parcellations are frequently more granular, likely to be more relevant, and may be 

accompanied by increased reliability and stability.

5 Conclusions

Overall, reliability and stability of task-fMRI data in the ABCD sample was very poor. 

Movement decreases reliability and stability values, but even selecting only the lowest 

movement quartile for analysis didn’t raise average reliability or stability out of the 

poor range. Reliability and stability values were only very minimally improved by the 

investigated data cleaning approaches. Reliability and stability were generally not better in a 
priori ROIs relative to the rest of the brain. Reliability/stability tended to be best in working 

memory related and condition vs baseline contrasts. Decreases in movement with age may 

somewhat increase reliability and stability in later ABCD assessment waves. For the amount 

of task fMRI data collected in the current study (~ 10 min per participant), using the ABCD 

imaging protocol and current ABCD analysis pipelines, the MID and SST tasks, and to 

a lesser extent the nBack task as well, may not be practical for other studies examining 

childhood development unless they can obtain sample sizes in the 1500+ range.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Summary of findings and the relevant results sections, tables, and figures. Numbers 

under Results Sections, Tables, and Figures preceded by an S indicate they are in 

the Supplementary Materials. Regional results from each analysis can be found in 

Supplementary - Reliability and Stability Output, Supplementary - Full Output, and as 

parcellated scalar data in CIFTI format on BALSA. (https://balsa.wustl.edu/study/7qMqX).
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Figure 2: 
Violin plots with embedded box plots showing the distribution of reliability/stability (A 

and D), absolute values of activity (B), and absolute values of within- and between-session 

change (C) for a priori ROIs (red) and non-ROIs (blue). Data was cleaned using different 

data-cleaning approaches (A) and also separated into movement quartiles (D) to assess 

the impact of those factors on reliability and stability. QC: all data that passed ABCD’s 

quality control; QC+OR: QC dataset with outliers removed; QC+MV+OR: QC dataset 

with movement regressed and then outliers removed; QC+Rank: QC dataset with rank 

normalization. The movement quartiles analysis used the dataset with QC cleaning for 

the initial quartile separation and then had movement regressed out and outliers removed 

(separately for each quartile). Activity and change analyses are available only for the QC 

Kennedy et al. Page 29

Neuroimage. Author manuscript; available in PMC 2022 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and QC+OR datasets as the movement regression and rank normalization processes demean 

the data, making meaningful between region comparisons impossible. For the embedded 

box plots, the horizontal dash indicates the median, with the box indicating the interquartile 

range (IQR, 25th to 75th percentile) and ‘outliers’ greater than 1.5 IQR from the median 

are shown with individual data points. ROI: Regions of Interest. Green line indicates the 

boundary for fair-good reliability/stability (0.6); red line indicates the boundary for poor-fair 

(0.4).
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Figure 3: 
Top: Task fMRI reliability and stability by region, averaged across all 26 contrasts released 

by the ABCD. Bottom: Histograms of reliabilities and stabilities across all contrasts 

and regions. Background histogram shows the full range of the distribution; the inset is 

zoomed in and thresholded at 300 to better display the distribution of values. Orange: 

Reliability/stability from a priori ROIs for the 8 condition vs condition contrasts for which 

meta-analyses to guide ROI identification were available; Red: Reliability/stability from 

non-ROIs for those same 8 contrasts; Green: Reliability/stability from condition vs baseline 

contrasts; Blue: Reliability/stability from the remaining (18) condition vs condition contrasts 

(for which meta-analyses to guide ROI identification were not available). ROI: Regions of 

Interest. CvsB: Condition vs baseline. All data based on the whole brain analysis using the 

QC dataset.
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Figure 4: 
Violin plots with embedded box plots showing the distribution of task and contrast specific 

reliability within-session at follow-up for the 1st and 4th movement quartiles, using all 

regions from the whole brain analysis. The movement quartiles analysis used the dataset 

with QC cleaning for the initial quartile separation and then had movement regressed 

out and outliers removed (separately for each quartile). Violin plots for within-session at 

baseline and between session are available as Supplemental Figures S8 and S9. Green line 

indicates the boundary for fair-good reliability (0.6); red line indicates the boundary for 

poor-fair (0.4). MID: Monetary incentive delay task, nBack: Emotional nBack task, SST: 

Stop signal task. Ant: Anticipation, Bk: Back, Cor: Correct, Em: Emotion, Fb: Feedback, 
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Fc: Face, Fix: Fixation, Inc: Incorrect, Lrg: Large, Ls: Loss, N: Neutral, Neg: Negative, Pl: 

Place, Pos: Positive, Rw: Reward, Sm: Small, St: Stop.
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Figure 5: 
Destrieux parcellation cortical reliability and stability for each movement quartile (1st = 

lowest, 4th = highest movement) for the nBack 2 vs 0-back contrast. LME models that did 

not converge are shown in gray. The a priori ROIs for this contrast are outlined in green.
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