# UC Irvine UC Irvine Previously Published Works

### Title

Metallation of azobenzenes by fluorine-abstraction: structure of a ruthenium complex containing nonafluoro(phenylazo)phenyl-2 C , N  $\acute$  and diphenyl-2-( $\eta$ -cyclopentadienylphenyl)phosphine groups

**Permalink** https://escholarship.org/uc/item/0f54h3f1

**Journal** Chemical Communications, 0(5)

#### ISSN

1359-7345

#### Authors

Bruce, Michael I Gardner, Richard CF Goodall, Brian L <u>et al.</u>

### **Publication Date**

1974

#### DOI

10.1039/c39740000185

## **Copyright Information**

This work is made available under the terms of a Creative Commons Attribution License, available at <a href="https://creativecommons.org/licenses/by/4.0/">https://creativecommons.org/licenses/by/4.0/</a>

Peer reviewed

#### 185

#### Metallation of Azobenzenes by Fluorine-abstraction: Structure of a Ruthenium Complex Containing Nonafluoro(phenylazo)phenyl-2C,N' and Diphenyl-2-(n-cyclopentadienylphenyl)phosphine Groups

By MICHAEL I. BRUCE, \*† RICHARD C. F. GARDNER, BRIAN L. GOODALL, and F. GORDON A. STONE (Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

and ROBERT J. DOEDENS\* and JAMES A. MORELAND

(Department of Chemistry, University of California, Irvine, California 92664)

Summary The formation of metallated azobenzene derivatives by fluorine-abstraction reactions using nucleophilic transition metal reagents has been achieved; the structure of an *ortho*-metallated complex, derived from decafluoroazobenzene and also containing a  $Ph_2P(C_6H_4-C_5H_4)$  ligand is described.

FORMATION of ortho-metallated derivatives of azobenzenes has involved loss of a hydrogen atom from an aromatic ring as molecular hydrogen, methane, or hydrogen chloride.<sup>1</sup> With palladium(II) chloride evidence for an electrophilic reaction has been generally accepted.<sup>2</sup> However, electronrich transition metal complexes appear to metallate azobenzenes by a nucleophilic mechanism.<sup>3</sup> Since fluorocarbons, particularly polyfluoroaromatic compounds, are particularly susceptible to nucleophilic attack it seemed possible that penta- and deca-fluoroazobenzene could be metallated by loss of fluoride, establishing a new reaction path for the formation of carbon-metal  $\sigma$ -bonds by orthometallation.

The ruthenium compound  $\operatorname{RuMe}(\operatorname{PPh}_3)_2(\eta-C_5H_5)$ , which is very prone to form metallated complexes,<sup>4</sup> reacts with decafluoroazobenzene in light petroleum at 100° to afford dark green  $\operatorname{RuC}_6F_4N$ :  $\operatorname{NC}_6F_5(\operatorname{Ph}_2\operatorname{PC}_6H_4-\eta-C_5H_4)$ , m.p. 116° [*M*, 770 <sup>19</sup>F n.m.r., (CCl<sub>3</sub>F) 115·8, 142·5, 156·7, and 167·1 (1:1:1:1, C<sub>6</sub>F<sub>4</sub>), and 147·9, 158·6, 162·3 p.p.m. (2:1:2, C<sub>6</sub>F<sub>5</sub>)]. The <sup>1</sup>H n.m.r. spectrum contained four multiplets at  $\tau$  4·22, 4·44, 4·58, and 5·09, all of equal intensity, but not the sharp singlet expected for the  $\eta$ -C<sub>5</sub>H<sub>5</sub> group. These data are consistent with an unusual structure, established by a single crystal X-ray diffraction study (Figure), in which substitution of both a C<sub>6</sub>F<sub>5</sub> and an  $\eta$ -C<sub>5</sub>H<sub>5</sub> ring has occurred.

Crystals of diphenyl-2- $(\eta$ -cyclopentadienylphenyl)phosphinenonafluoro(phenylazo)phenyl-2C,N'-ruthenium are monoclinic, space group  $P2_1/c$ , with a = 15.650 (14), b = 13.338(11), c = 14.741(11) Å,  $\beta = 97.38(3)^\circ$ . Calculated (Z = 4) and observed densities are 1.68 and 1.71(3) g/cm<sup>3</sup> respectively. The structure analysis was based upon 3092 independent nonzero intensities collected by the  $(\theta - 2\theta)$  scan technique on a Picker diffractometer. Solution of the structure was achieved by Patterson and Fourier methods. Full-matrix isotropic least-squares refinement, in which the three phenyl rings were treated as groups, converged to a conventional R factor of 0.075.

The co-ordination geometry is of the familiar  $(\eta - C_5 H_5)$ -ML<sub>3</sub> type, distorted somewhat by the constraints of the chelate rings. The metallated nonafluoro(phenylazo)phenyl ligand is nonplanar, with the free pentafluorophenyl ring twisted by 64.2° from the Ru-Cl-C(6)-N(1)-N(2) plane.

† Present Address: Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, S.A. 5001, Australia.

#### J.C.S. CHEM. COMM., 1974

Bond distances involving this ligand include Ru-C(l) =2.018(10) Å, Ru-N(2) = 2.014(8) Å, and N(1)-N(2) = 1.324-(11) Å. Linkage of the cyclopental dienvl carbon atom C(17)with the phenyl carbon C(19) forms a  $\sigma$ ,  $\pi$ -chelating arrange-



ment of the sort previously observed in two iron carbonyl complexes.<sup>5</sup> The C<sub>5</sub>H<sub>4</sub> ring is nearly perpendicular (dihedral angle =  $91.0^{\circ}$ ) to the phenyl ring to which it is bound. Distances within the substituted cyclopentadienyl ring are equal within experimental error; however C(13) and C(17) are somewhat closer to the metal atom [mean Ru-C distance = 2.190(11) Å] than are the other three ring carbon atoms [mean Ru–C distance = 2.248(12) Å]. Other distances involving this ligand include Ru-P = 2.283(3) Å, P-C(18) =1.803(7) Å and C(17)-C(19) = 1.472(12) Å.

Reaction between pentafluoroazobenzene and decacarbonyldimanganese affords two complexes in low yields, readily identified as compounds in which the  $C_6F_5$ - and  $C_6H_5$ -rings, respectively, have been metallated;  $MnC_6F_4N$ ; N-Ph(CO)<sub>4</sub>, m.p. 145-148°, [M, 420, <sup>19</sup>F n.m.r., 115, 138, 149, and 162 p.p.m., (1:1:1:1);  $MnC_6H_4N: NC_6F_5(CO)_4$ m.p. 77-79°, [M, 438, <sup>19</sup>F n.m.r. 150.5, 155.0, 161.0 p.p.m., (2:1:2)]. Pentafluoroazobenzene and palladium chloride react to give only (ClPdC<sub>6</sub>H<sub>4</sub>N: NC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>.

We thank the S.R.C. and the National Science Foundation for support.

(Received, 9th January 1974; Com. 027.)

FIGURE. The molecular structure of  $RuC_6F_4N: NC_6F_5$  (Ph<sub>2</sub>PC<sub>6</sub>-H<sub>4</sub>- $\eta$ -C<sub>6</sub>H<sub>4</sub>). Fluorine atoms have been omitted for clarity.

<sup>5</sup> L. F. Dahl, R. J. Doedens, W. Hubel, and J. Nielsen, J. Amer. Chem. Soc., 1966, 88, 446; P. J. Van Vuuren, R. J. Fletterick, J. Meinwald, and R. E. Hughes, *ibid.*, 1971, 93, 4394.