
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Part of speech tagging of Levantine

Permalink
https://escholarship.org/uc/item/0f62r9f8

Author
Monirabbassi, Azadeh

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0f62r9f8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Part of Speech Tagging of Levantine

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Azadeh Monirabbassi

Committee in charge:

Professor Garrison W. Cottrell, Chair
Professor Roger Levy
Professor Sanjoy Dasgupta

2008

Copyright

Azadeh Monirabbassi, 2008

All rights reserved.

The thesis of Azadeh Monirabbassi is approved

and it is acceptable in quality and form for publi-

cation on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2008

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . v

List of Tables . vi

Abstract of the Thesis . vi

1 Introduction . 1
1.1 Goals of This Work . 1
1.2 Linguistic Facts . 3
1.3 Related Work . 7

2 Linguistic Resources . 13
2.1 Corpora . 13

3 Part-of-Speech Tagging . 17
3.1 Methodology . 17

3.1.1 Basic Model . 17
3.1.2 Two-Layer Markov Model 24

3.2 Results and Discussion . 29
3.3 Conclusion . 36

Bibliography . 42

iv

LIST OF FIGURES

Figure 3.1: Diagram of 2-layer Markov Model 26
Figure 3.2: Accuracy of 2-Layer Markov/Basic Markov Mixture Model

Versus k . 30
Figure 3.3: Accuracy of Basic HMM with EM on Emission and Transi-

tion Versus EM Iteration Count . 31
Figure 3.4: Accuracy of 2-Layer Markov Model Versus EM Iteration Count 32

v

LIST OF TABLES

Table 2.1: Lexical Overlap Between LA Development Set and ATB . . . 16

Table 3.1: Frequency of Words in LA Versus Length 33
Table 3.2: Confusion Matrix (by count) for Basic Model with EM (1

iteration) (first column represents the gold tags) 37
Table 3.3: Confusion Matrix (by count) for 2-Layer Markov/Basic Markov

Mixture Model with EM (1 iteration, k = 4) (first column represents
the gold tags) . 37

Table 3.4: Confusion Matrix (by percentage) for 2-Layer Markov/Basic
Markov Mixture Model with EM (1 iteration, k = 4) (first column
represents the gold tags) . 38

Table 3.5: Confusion Matrix (by percentage) for 2-Layer Markov/Basic
Markov Mixture Model with EM (1 iteration, k = 4) (first column
represents the gold tags) . 38

Table 3.6: Description of Tagset Used in the Penn Arabic Treebank . . . 39
Table 3.7: Best Accuracies Per Method 40

vi

ABSTRACT OF THE THESIS

Part of Speech Tagging of Levantine

by

Azadeh Monirabbassi

Master of Science in Computer Science

University of California San Diego, 2008

Professor Garrison W. Cottrell, Chair

The goal for this project is to explore strategies in adapting a Part of

Speech (POS) tagger that was trained on Modern Standard Arabic sentences for

tagging Levantine sentences, a dialect of Modern Standard Arabic, leveraged by

methods of morphological analysis. I propose a tagging model that supports an

explicit representation of the root-template patterns of Arabic. I will analyze the

functionality and performance of the algorithms, and will compare the results. In

leveraging the MSA POS tagger for tagging Levantine data, I achieved a peak

accuracy of 73.28% which is 6% higher than the baseline for a standard Hidden

Markov Model based tagger.

vii

1

Introduction

1.1 Goals of This Work

Part-of-Speech Tagging is the process of labeling or tagging the words of a

text corpus according to a set of grammatical rules based on the individual and

contextual roles of the words. Here are some part-of-speech tag examples: singular

proper nouns such as Obama (NNP), possessive personal pronouns such as mine

(PRP$), and adjectives such as rebellious (JJ). This task is subject to all of the

hurdles encountered by any other statistical classification method. Part-of-speech

tagging is not an easy task due to the fact that different words can take on different

tags at different times because of their semantic ambiguity. For example, the word

‘plays’ is usually viewed as the third person of the verb ‘play’, but it could also

be the plural of the noun ‘play’ in the context of a theatrical act. In order to

best tackle this problem we need a good model to represent the data and a good

1

2

methodology for part-of-speech tagging.

The Arabic language is a language of multiple dialects with just one writing

standard. For this reason there are not enough standard corpora of the different

dialects of Arabic for natural language processing purposes other than informal

blogs, emails, and other online materials. Also, these informal materials are not

written with a uniform or standard rule. The news, the media and all of the official

affairs are documented in Modern Standard Arabic (MSA) which is not spoken by

anyone and is not acquired as a child’s first language. While there is sufficient

annotated MSA data, very little annotated data exists in the dialects.

Here I consider Levantine Arabic, a group of Arabic dialects spoken in

the 100 km-wide eastern-Mediterranean coastal strip known as the Levant, i.e. in

Syria, Palestine, western Jordan and Lebanon. In this paper I address the problem

of tagging transcribed spoken Levantine Arabic (LA). This work is based on the

assumption that it is easier to manually create new resources that relate LA to

MSA than it is to manually create syntactically annotated corpora in LA. This

approach assumes the existence of annotated LA corpus only for development and

testing.

This report is organized as follows. I first discuss related work and available

corpora and present linguistic issues in LA and MSA. I then discuss the approaches

I took for part-of-speech tagging of Levantine using MSA corpora and different

methods of morphological analysis that boost tagging accuracy. I summarize and

discuss the results in section 3.2.

3

1.2 Linguistic Facts

Levantine is a dialect of Arabic spoken in Jordan, Syria, Lebanon, and

Palestinian territories. Although all native Arabic speakers speak a regional deriva-

tion of Arabic, Modern Standard Arabic is the official language and literary stan-

dard used in books, newspapers, official documents, as well as the language taught

in all levels of school. Written documents of the colloquial dialects do not exist

in abundance except for plays, some poetry, blogs, and emails. Except for the

primary school books for children, most MSA literature is unvocalized, meaning

that the short vowels are missing (i.e. a, e, i, o, and u). In MSA, qatala means

‘he killed’, and qutila means ‘he was killed’. These examples are both vocalized.

The unvocalized version of both of the previous examples is qtl. Here I discuss

some of the differences and similarities between the Levantine dialect and MSA. I

will touch on the differences in the sound system, and emphasize grammatical and

lexical differences, which have a significant influence on the accuracy of this task.

The following are the most significant comparisons between these two languages.

MSA’s word order is Verb-Subject-Object whereas the usual word order for

Levantine is Subject-Verb-Object. The following examples, transliterated with the

Buckwalter transliteration scheme, show the same sentence in VSO and SVO word

orders: yaktubuwna Almodar∼isuwna Alr∼isAlAti ‘write the teachers the letters’

is in VSO form and Almodar∼isuwna yaktubuwna Alr∼isAlAti ‘the teachers write

the letters’ is in SVO form.

4

MSA nouns have three cases, nominative, genitive, and accusative. Nor-

mally singular nouns take the endings u, i, and a in the definite form and N, K,

and F in the indefinite form for nominative, genetive, and accusative respectively.

These endings, which play a grammatical role, are referred to as case endings.

Case endings are present only in formal or literary language with the exception of

indefinite accusative nouns ending in any letter but ta marbuta, or hamza, in which

case the F is written on the top of the letter alif added to the end of the word with

alif still showing up in unvowelled texts. In short, any words ending in the letter

ta marbuta or the letter hamza get an alif added with an ’F’ on top. This makes

our job easier when dealing with the unvocalized version of the MSA and Levan-

tine data sets since for the most part, Levantine has lost the case endings for the

nouns with the exception of the F that sits on the top of the letter alif. Without

the case endings the Levantine and MSA versions of a given word are more likely

to be similar. In MSA, nouns are marked for definiteness and indefiniteness. The

definiteness is marked by the article Al-, while indefiniteness is usually indicated

by the suffixes N, -F, and K, which follow the case marker as mentioned earlier.

Levantine nouns are marked for definiteness and indefiniteness, as they are in all

varieties of Arabic. Although there are different variations of the definite article

Al in Levantine, such as l-, il-, and li- depending on the following consonant, our

Levantine development data set only uses the Al- article for consistency and con-

venience purposes. For example Al-kuwiyt in MSA becomes li-kwiyt in Levantine

which means ‘Kuwait’. Here are some examples of definite and indefinite markers

5

in MSA and Levantine. In MSA, Al+kitAb+a ‘book’ is Accusative + definite and

mAdiy+AF ‘materialistic’ is Accusative + indefinite. In Levantine, Al+kteb ‘book’

is definite and mAdiy+AF ‘materialistic’ is indefinite.

In my project, I am not using the extended POS tags which represent num-

ber, gender, subject, object, etc. If I were, the lack of case endings in Levantine

would hurt my project since case endings are indicative of the POS roles repre-

sented by the extended POS tags. Instead, in Levantine sometimes the lack of

some case endings is compensated by the addition of the same vowel or a differ-

ent one somewhere before the last consonant. For example, the word >noti ‘you’

(feminine) becomes <not. In this case, > is phonologically the same as the case

ending i. There are many such differences between Levantine and MSA at different

positions in a word, which make the same word (a word of the same root) look

different in the two languages. Fortunately due to the usage of the unvocalized

MSA training and Levantine development datasets, this inconsistency does not

cause any problems, except in cases where the difference is caused by long vowels

which are not omitted in the unvocalized version as in the example of the word

book. In MSA unvocalized version of the word book is ktAb, and in Levantine it

is ktb.

MSA nouns have three numbers, singular, dual, and plural. The dual num-

ber is missing in Levantine Arabic. For example, instead of the word $Aqilayn,

which means ‘(two) workers’, $Aqiliyn, which means ‘workers’ is used in Levantine.

Levantine Arabic has two genders: masculine and feminine, which are ex-

6

pressed as suffixes following nouns and circumfixes surrounding verbs. Gender

distinctions are absent in the plural form in Levantine unlike in MSA.

Some of the most significant features of the verb system in Arabic are

person, number, tense, and aspect which are marked by prefixes and suffixes.

There is one basic stem (form 1) plus nine derived stems, each with a range of

meanings, such as reflexivity, and causativity. Each form has its own set of active

and passive participles and verbal nouns.

In Levantine, verbs always maintain their plural agreement whereas in MSA

the singular form is used when the verb precedes the subject, which is usually the

case since MSA’s word order is VSO. Also in Levantine, in the imperfect tense,

the present aspect marker b is used which does not exist in MSA. In addition, the

template vowels used for the same verb tense are sometimes different in MSA and

Levantine. A combined example for all three is ya$rabuwna AlrijAl ‘the-men drink’

in MSA, which becomes AlrijAl byi$rabuw in Levantine. In the Levantine dialect

a vowel and a consonant of a word stem can switch positions. This only occurs

in the ‘they’ and ‘you’ (plural) forms of the imperfect tense, with the exception of

cases in which the template vowel of the word is a. For example, byuktubuw ‘they

write’ becomes byukutbuw, but byi$rabuw ‘they drink’ remains unchanged.

In the Levantine dialect, among the negative particles are mi$ as in huwe

mi$ huwn or ‘He is not here’, and a set of conjugated words such as manni and

manna meaning ‘I am not’ and ‘we are not’ respectively. These particles are absent

in MSA and instead the verb layosa, or ‘is not’ is conjugated for all pronouns to

7

convey non-existence. The letter $ is another negative particle in Levantine that

negates a verb as in hum byuHub∼uw $ Al$∼ugl hdA, ‘they do not like this job’. In

MSA the negative particle ma and la are exclusively used for the past and present

tenses respectively, and serve as a prefix. In Levantine the negative particle ma is

used to negate both the past and the future tenses. In addition, in Levantine some

verbs are negated using the circumfix m + $ which is absent in MSA.

As I mentioned earlier, the prefix b is a present tense indicator in Levantine,

but it is absent in MSA where the template of the verb dictates the tense. The

following examples show the difference between the present tense of the verb ‘to

travel’ in Levantine and MSA. hm bsAfrw means they travel in Levantine when

hm ysAfrwn means the same thing in MSA.

1.3 Related Work

In the previous work on Levantine using the MSA training corpus done

by Rambow et al.[5], three different goals were met: lexicon induction from cor-

pora, POS tagging, and parsing of Levantine. In the first task the goal was to

build a lexical or translation mapping between the two languages’ (language and

dialect) corpora. Given such a translation lexicon, a probability was assigned to

every translation pair taking the statistics of the two corpora into account. The

Expectation-Maximization algorithm was used with the assumption that the pair

of corpora was a sample from a weighted mixture of two conditional distributions

8

in which the words of one corpus were generated given the words of the other

corpus under the given translation lexicon. The accuracy of the results depended

upon the distribution of frequent words which in turn is influenced by the genre

similarity of the corpora. This was done on comparable and unrelated corpora and

proved to be a difficult task. The content and the size of the corpora are other

factors that contribute to the accuracy. One method of partially normalizing for

the factors above that was used was extraction from the larger of the two corpora

in order to better match the distributions of the two corpora which resulted in an

improvement in accuracy.

The second task, POS tagging, dealt with the adaptation problem, adapting

the MSA tagger for Levantine, with different sources of information; basic linguistic

knowledge about both languages, varying sizes and qualities of MSA-Levantine

lexicon, and a small tagged Levantine corpus. The results showed that the small

and high-quality lexicon of the most common Levantine words yielded the biggest

boost in the accuracy.

The final experiment was parsing Levantine using an MSA parser. To com-

pensate for the lack of parallel corpora, explicit linguistic knowledge was used to

perform sentence transduction, treebank transduction, and grammar transduction.

From all of the above approaches it was concluded that better accuracy

could be achieved by allowing the models to exploit knowledge about the language,

hence the goal of this project is to exploit morphological acquisition.

In the approach taken by Habash and Rambow[6], tokenizing and morpho-

9

logically tagging are the same operation consisting of three phases: obtaining a

list of all possible analyses for the words in a sentence from the morphological an-

alyzer, applying the classifiers for selected morphological features to words of the

text, and using the output of the classifiers to choose from the analyses returned

by the morphological analyzer. The algorithm used here was the support vector

machine (SVM)-based Yamcha (Yet Another Multipurpose CHunk Annotator) in-

stead of an exponential model. Habash and Rambow showed that the use of a

morphological analyzer is beneficial in POS tagging, and their results are the best

published to date for tokenization of naturally occurring input and POS tagging

of MSA (98% on the Penn Arabic treebank).

Habash, Rambow, and Kiraz[7] present a morphological analyzer and gen-

erator for the Arabic language family. Their work is novel in that it explicitly

addresses the need for processing the morphology of the dialects. Their method

provides an analysis to a root+pattern template representation, separate phono-

logical and orthographic representations, and combination of morphemes from dif-

ferent dialects. They add two general requirements for morphological analyzer.

First, the morphological analyzer must be accompanied by a morphological gen-

erator. The second requirement is that a representation should be used that is

defined in terms of a lexeme and attribute-value pairs for morphological features

such as aspect or person. In their approach, there are three levels of representa-

tion; lexeme level, morpheme level, and surface level in which words are a string

of characters. They implement a multiple automaton of five tiers, a multi-tape

10

finite state automaton and represent the word using a context-free grammar. The

use of a finite state technology makes their technique usable as a generator and an

analyzer.

Diab, Hacioglu, and Jurafsky present,[8] an SVM based approach with a

polynomial kernel of degree 2, to automatically tokenize, POS tag, and annotate

base phrases in Arabic text. They adapt highly accurate tools developed for En-

glish text and apply them to Arabic. In the process of word tokenization, each

letter in a word was tagged with a label indicating the morphological identity of the

token to which it belonged. By token, one means stem+affix, proclitic, or enclitic.

The POS tagging was a 1-of-24 classification task from the collapsed tag set in the

ATB. In base phrase chunking 9 types of chunked phrases are recognized using a

phrase IOB (Inside a phrase, Outside a phrase, and Beginning of a phrase) tagging

scheme with an I and a B for each chunk and a single O tag. They report that the

SVM-TOK tokenizer achieves an F score of 99.12, the SVM-Part of Speech tagger

achieves an accuracy of 95.49%, and the SVM-Base Phrase chunker yields an F

score (a measure of accuracy that takes into account both precision and recall) of

92.08.

Adler and Elhadad deal with morphological disambiguation of the Hebrew

language by combining morphemes into a word in both agglutinative and fusional

ways[9]. They present an unsupervised stochastic model. They use a morphological

analyzer that deals with the data sparseness problem caused by the affixational

morphology nature of Hebrew. They present a text encoding method for languages

11

of the affixational morphology nature in which the knowledge of word formation

rules helps in the disambiguation. They use a Hidden Markov Model with the

Baum-Welch (EM) algorithm in a way that the segmentation and tagging can

be learned simultaneously. They use backoff smoothing, suggested by Thede and

Harper (1999), with an extension of additive smoothing for the lexical probabilities.

Reported results on a large scale corpus (6M words) were 92.32% for POS tagging,

and 88.5% for full morphological disambiguation.

Brants’ Trigrams ‘n’ Tags (TnT) [10] was proposed to be an efficient statis-

tical part-of-speech tagger. Brants argues that a tagger based on Markov models

performs at least as well as other approaches of the time, including the Maximum

Entropy framework. Described in this paper are the basic model of TnT, the

techniques used for smoothing and for handling unknown words, and evaluations

on two corpora. When Brants’ paper was published, a recent independent com-

parison of 7 taggers [15] had shown that Markov models combined with a good

smoothing technique and with handling of unknown words works better than the

leading Maximum Entropy framework which had a very strong position among the

statistical approaches. Brants shows that this method yields the highest accuracy

as well as being the fastest on training and testing. The most effective smoothing

paradigm used in [10] is the linear interpolation of unigrams, bigrams, and tri-

grams with lambda 1, lambda 2, and lambda 3 as weights respectively. Handling

the unknown words was done by suffix analysis; tag probabilities are set according

to the word’s ending. The probability distribution for a particular suffix is gener-

12

ated from all words in the training set that share the same suffix of a predefined

maximum length. Probabilities were smoothed by successive abstraction using a

sequence of increasingly more general context that recursively eliminates charac-

ters from the suffix. Additionally, different parameters were used for capitalized

words than non-capitalized words in order to enhance the accuracy. Also, Brants

reduced the processing time of the Viterbi algorithm by using a beam search which

excluded a state of a smaller value from further processing. According to Brants in

[10] a tagger based on Markov models yields great results and that the only other

method that has comparable results is the Maximum Entropy framework. Brants’

method yielded a tagging accuracy of 96-97% on the Penn Arabic Treebank.

2

Linguistic Resources

2.1 Corpora

The corpora used in this project were the MSA treebank (ATB) from the

Linguistic Data Consortium (LDC) [14], consisting of 625,000 words (750,000 to-

kens after tokenization) of newspaper and newswire text, and the Levantine Arabic

Treebank (LATB), also from the LDC. ATB is morphologically disambiguated by

hand and syntactically annotated with reduced and elaborate tag sets. The corpus

is split into 10% development data, 80% training data, and 10% test data. The

training data consists of 17,617 sentences and 588,244 tokens.

The Levantine treebank consists of 33,000 words of transcribed telephone

conversations. This data was collected as part of the LDC CALL HOME project

[5]. The speech effects have been removed for more text-like data. As mentioned

before the LATB is only used for development and testing, not for training. The

13

14

development data consists of 1928 sentences and 11,151 tokens. The test data

consists of 2051 sentences and 10,644 tokens.

All the available corpora are transliterated into ASCII characters using the

Buckwalter transliteration scheme [13]. For all the experiments in this project

I use the collapsed or the reduced POS tag set that focuses on major parts of

speech, excluding morphological information, number, and gender, and both the

vocalized and non-vocalized versions of the treebanks. I ran all of my experiments

on the unvocalized versions because the vocalized versions were hand-voweled and

would detract from my goal of minimizing human supervision. All the data is

derived from the parsed trees in the treebank. The MSA training data set that

was mainly used in my experiments was untokenized, unvocalized, and contained

660,307 words of which 41,659 were unique, 24 unique tags, and 18,970 sentences.

The unvocalized and untokenized Levantine development data set contained 15,249

words of which 2091 were unique, 21 unique tags, and 1928 sentences. The average

sentence length of the MSA corpus is 33 words while that of the Levantine corpus

is 6, due to the informal register of the Levantine corpus. A register is a subset of

a language that is used in a specific setting and for a given purpose. The register

distinguishes amongst variations in a language with respect to the user and takes

into account social background, geography, sex, and age. Even though MSA and

LA have a considerable number of words in common, they are quite different from

one another. Table 2.1 shows the lexical overlap between the two languages by

type, or the number of unique words, and token which is the total number of

15

words. One can also infer the difference between the frequency distributions of the

tag between the two languages.

In the ATB, some words have been given no morphological analysis and

have been assigned the POS tag of NO FUNC. The Arabic treebank has some

inconsistencies in addition to the NO FUNC tagged words. There are more unique

tags in the vocalized version (28) than the unvocalized (26). I also noticed that

the preposition ‘-hum’, the third person masculine plural personal pronoun, has

two tags in the vocalized version, PRP, the reduced version, and CVSUFF 3MP

which carries more detailed information such as third person masculine plural.

Additionally, there are a couple of tags, VERB, and VB that are comprised of

a mixture of past tense, imperative, and present tense verbs, even though there

already exist the tags VBD (past), VBP (present) and VBN (past participle).

Additionally, most of these verbs tagged as VB and VERB are not vocalized in the

vocalized version and some are even misspelled, although most of these misspellings

are as a result of a common ommission of the letters hamza, shadda, fathatan,

dammatan, and kasratan.

16

Table 2.1: Lexical Overlap Between LA Development Set and ATB

By Type By Token

% in MSA Only % in Both % in LA Only % in MSA Only % in Both % in LA Only Frequency

NN 93.69 5.3 1.01 78.32 21.59 0.09 163586

IN 62.71 31.64 5.65 16.72 83.27 0.01 100738

JJ 95.21 3.94 0.85 84.73 15.14 0.12 58015

NNP 97.56 2.25 0.19 92.07 7.89 0.03 43724

PUNC 90.91 9.09 0 99.4 0.6 0 43105

CC 45.45 54.55 0 2.46 97.54 0 40043

VBD 94.01 4.38 1.6 78.51 21.26 0.23 24313

VBP 90.47 3.16 6.37 83.45 15.08 1.47 21403

NNS 97.78 1.72 0.5 91.39 8.53 0.08 19494

PRP 54.72 26.42 18.87 4.3 95.63 0.07 15127

PRP$ 23.08 69.23 7.69 1.66 98.33 0.01 12992

CD 98.26 1.52 0.22 91.94 8.04 0.03 11291

RP 37.31 44.78 17.91 18.66 81.19 0.14 8399

WP 63.33 33.33 3.33 6.89 93.1 0.01 8165

DT 60.71 21.43 17.86 25.31 74.59 0.1 4956

RB 44.29 34.29 21.43 56.98 42.53 0.48 3221

NOFUNC 96.14 2.87 0.99 95.85 3.42 0.72 2629

VBN 95.39 4.48 0.13 93.31 6.65 0.04 2797

WRB 50 25 25 20.1 79.08 0.82 611

UH 48 44 8 28.44 70.62 0.95 211

VB 56.82 13.64 29.55 62.5 14.29 23.21 74

NNPS 100 0 0 100 0 0 31

VERB 88.89 11.11 0 88.89 11.11 0 9

NUMCOM 100 0 0 100 0 0 2

3

Part-of-Speech Tagging

3.1 Methodology

3.1.1 Basic Model

In the original experiments I used a hidden Markov Model (HMM) to rep-

resent the data. Let wi represent the ith word in a sequence of words and let ti

represent the ith tag. We can compute the probability of seeing a sequence of tags,

T = t1, t2, · · · , tn as:

P (T) = P (t1)P (t2|t1)P (t3|t2, t1)P (tn|tn−1, · · · , t1)

In order to decrease the complexity of this model we can assume that each

tag only depends on the immediately preceding tag (also called the Markov prop-

erty), which gives us:

17

18

P (T) = P (t1)P (t2|t1)P (t3|t2)P (tn|tn−1)

This is called a first order Markov model which can also be called a Bigram

model when used to represent sequences of words or letters. Note that in our case,

we are presented with a sequence of words and asked to determine the most likely

sequence of tags. Thus we can consider the tags to be hidden states and the words

to be observations. If we assume that the ith word depends on the ith tag alone,

using Bayes rule we can compute the probability of a given tag in the ith position

as:

P (ti|wi, ti−1) =
P (wi|ti)P (ti|ti−1)

P (wi|ti−1)

This gives us what is called the Hidden Markov Model. Since for POS

tagging we are only concerned about arg maxti P (ti|wi, ti−1) and P (wi|ti−1) is not

a function of ti we can see that we need to estimate three parameters for our model.

The first parameter is P (wi|ti), also known as the emission probability. The second

parameter is P (ti|ti−1), or the transition probability. Finally, we need to estimate

the vector consisting of p(t) for all t, which is called the π vector. The π vector is

a distribution on initial states for the tags. Combining all the parameters in our

model we get:

P (~t|~w) =
P (w1|t1)P (t1)

∏n
i=2 P (wi|ti)P (ti|ti−1)

P (~w)

19

When given a sequence of words W = w1, w2, · · · , wn, or a sentence, our

goal is to find the sequence of tags T = t1, t2, · · · , tn which maximizes P (W |T).

One efficient way of doing this is to use the Viterbi algorithm[1]. In the Viterbi

algorithm, P (ti|w1, w2, · · ·wn) is computed from the transition and emission ma-

trices using Bayes rule for every word in the sequence. The optimal path for each

state as well as state probabilities are stored for each word, with the most probable

state and path being chosen at the end.

Basic Approach

The simplest way to compute the parameters for our HMM is to use relative

frequency estimation, which is to count the frequencies of word/tag and tag/tag

combinations as well as the frequencies of tags at the beginning of each sentence.

The problem with this approach is that there are many words seen in the test

set that are absent in the training set. In these situations, P (wi|ti) is zero for all

tags which means that there can be no paths of tags corresponding to a sequence

of words containing wi. Note that this method, and all subsequent methods, are

supervised because the tagging in the training set is done by humans.

One simple way to avoid this problem is to find all the columns in the

emission matrix which contain all zeros, replace them with a constant value α =

10−20. This is similar to add-alpha smoothing, except that in my method only

the elements in the all-zero columns are affected, whereas in add-alpha smoothing,

α is added to every single entry. Note that this method does not yield a true

20

probability distribution. Experimentally both methods yielded nearly identical

results. We will consider the accuracy of this method to be a baseline. For the

MSA development set, this was 93.55% and for the LA development set this was

69.21%.

Another possible improvement that I tried was implementing a trigram

model for the tags instead of a bigram. However, due to the sparseness of the

resulting transition matrix for P (ti|ti−1, ti−2), this method did not work as well as

expected, even with add-alpha smoothing.

Using Morphological Properties

In order to deal with the sparsity of the emission model, I tried forming

equivalence classes over words based on morphological properties. The circumfixes

from each word were extracted (more on how this was done later in this section),

and equivalence classes were formed for words sharing the same circumfix. For

words that did not appear in the training corpus, the average value of P (w|t) for

all words sharing the same circumfix in the training corpus was computed using

relative frequency estimation and used to fill the empty (all-zero) columns of the

emission matrix. For words that did not share a circumfix with any word in the

training corpus, the average value of P (w|t) for the entire corpus was used instead.

In order to test the potential effectiveness of this method I first relied on

the circumfixes given in the Treebank (the tokenized version). Using the above

described method with these circumfixes raised the accuracy of the tagger when

21

tested on MSA. However, these circumfixes were found by humans and are not

available for use in the untokenized training data.

In order to replicate these results with the untokenized training data, I

tried finding the equivalence classes by looking at the first n letters and the last

k letters of the words in the untokenized MSA corpus, however, the accuracy was

lower than the baseline accuracy found with the basic method described earlier for

all combinations of n and k when cross validating on MSA. However, I was also

able to obtain an improvement in accuracy on MSA by finding circumfixes using

a method similar to that of Schone and Jurafsky[2]. This method was applied

to English, German, and Dutch and has never been used on Semitic languages.

Specifically, I induce the circumfixes in five steps:

1) Reverse the letters for all the words in the corpus and add them to a word

trie. Branch points are found and are assumed to be prefixes (with no maximum

length.) These tentative prefixes are extracted and stored.

2) I make another pass through the word database, this time searching our

prefix database for all possible prefixes for each word and adding the remaining

stems (words with prefixes removed), as well as the original words, to a new word

trie. The words and stems are added without reversing their letters. I again find

branch points, with the branch points assumed to be suffixes. I then extract the

suffixes and store them.

3) Step 2 is repeated, but I reverse the letters in the stems and words before

adding them to the new word trie in order to find prefixes.

22

4) At this point I have a set of pseudo-prefixes (found in 3) and pseudo-

suffixes (found in 2). I pass through the word database and find all possible

pseudo-prefix and pseudo-suffix pairs that can fit a given word. These are stored

as candidate circumfixes.

5) All candidate circumfixes are ranked based on the number of stems to

which they appear attached. Stems that have only one circumfix associated with

them are not counted. All words are then tokenized based on the highest scoring

circumfix to which they can be attached. For example, YakotubAni meaning ‘they

write (dual masculine)’ becomes Ya + kotub + Ani.

Using Expectation Maximization

Another possible way to improve results from the basic model is to use

Expectation Maximization (EM) in order to fine tune the parameters (transition

matrix, emission matrix, and π vector) for the test set[3]. The basic concept of

EM is to iteratively increase the likelihood of an input sequence given a set of

initial parameters. The EM process consists of two steps and assumes that the

data is divided into two parts, the observed data and the unobserved data. The

combination of the observed and unobserved data is called the complete data.

In the expectation step, the expected value of the the complete data given the

observed data and the current set of parameters is computed. In the maximization

step, parameters are chosen that maximize the likelihood of the complete data.

An efficient way to compute EM for hidden Markov models is to use the

23

Baum-Welch algorithm[4]. In the Baum-Welch algorithm, P (ti = T |w0 · · ·wN)

where ti is the ith tag in the sequence of N words, is computed for every possible tag

T using the forward-backward algorithm. Using the forward-backward algorithm

we can also compute P (ti−1 = T1, ti = T2|w0 · · ·wN) where T1 and T2 can be

any combination of tags and ti and wi are defined as before. Based on these

probabilities, improved estimates for the emission matrix, transition matrix, and

π vector values are computed as follows:

P (T) ≈
∑N

i=1 P (ti = T |w0 · · ·wN)

N
(3.1)

P (T1|T2) ≈
∑N

i=1 P (ti−1 = T1, ti = T2|w0 · · ·wN)

N · P (T1)
(3.2)

P (W |T) ≈
∑

i∈{i : W=wi} P (ti = T |w0 · · ·wN)

N · P (T)
(3.3)

This process can be repeated until it converges on a local maximum, as

shown in [11]. The difference between the expectation and maximization steps

may not be apparent at first sight, however, Lloyd Welch’s paper gives a thor-

ough explanation of how the Baum-Welch algorithm falls into the category of EM

algorithms [11].

In order to initialize the process I first computed the emission matrix, transi-

tion matrix, and π vector values using relative frequency estimation on the training

set smoothed with the alpha parameter, as described earlier. I then experimented

with iteratively updating the emission and transition probabilities using Baum-

Welch as described above on the test set. I first updated only the emission prob-

24

ability, then the transition probability, and lastly both at once. The best results

were obtained by altering both of the parameters, but for only one iteration (see

Figure 3.3).

One helpful method that I tried was inserting a dummy tag at the end of

every sequence. This allowed the algorithm to have additional knowledge of the

structure of the corpus by inserting ”end of sentence” tags. For example, certain

tags may have different probabilities of occurrence when near sentence boundaries.

This led to a slight increase in accuracy. As a result, I used this technique in all

of my Levantine experiments.

3.1.2 Two-Layer Markov Model

Since when testing on the LA development set, 65% of errors occur in

words that are rare or nonexistent in the training set (occurring fewer than four

times), it made sense to focus my efforts on the emission probabilities. This idea is

supported by measuring the cross entropy between the various data sets we have

at our disposal. The cross entropy between the transition matrices for the MSA

training and the MSA development sets is 2.239 nats, whereas the cross entropy

between the transition matrices for the MSA training set and the LA development

set, which is the same size as the MSA development set, is 2.740 nats. This

relatively small difference in cross entropy between the transition matrices for the

MSA training and LA development sets leads us to believe that our assumption

that the inaccuracy in computing the emission probabilities is the most significant

25

factor in tagging error is valid.

Another way to utilize the morphological properties of the words in addition

to using equivalence classes based on affixes is to model each word as a Markov

Model with the characters representing states. We can see this illustrated in Figure

3.1. In training we must compute transition probabilities and π vectors for the

letters in the words corresponding to each tag in addition to transition probabilities

and π vectors for the tags. In testing, I again used the Viterbi algorithm to find

the most likely sequence.

Experimentally it turned out that the best results were obtained by using

a combination of the basic model and the two-layer Markov model. For words

that existed in the training set, the basic model was used. For words that did

not exist in the training set, the emission probability calculated from the 2-layer

Markov model was used, effectively filling in the all-zero columns of the emission

matrix with better informed numbers than simply alpha. Because in computing

the most likely tag sequence with the Viterbi algorithm, we are only concerned with

arg maxti p(wi|ti), there is no need to do any normalization between the columns.

In my original experiment with the two layer Markov model, I used a bi-

gram model to represent the letters in each word and I used relative frequency

estimation to compute the parameters. However, because of the limits of a bigram

model, I implemented K-gram models with K ranging from 1 to 10. In order to

avoid problems with sparseness, I implemented Kneser-Ney smoothing for the let-

ter model as described in Chen and Goodman’s paper[12]. Kneser-Ney smoothing

26

T1 T3T2 T4

L1 L3L2 L4

L1 L3L2 L4 L5

L1 L3L2

L1 L3L2 L4

...

Figure 3.1: Diagram of 2-layer Markov Model

is one of many smoothing methods based on weighted interpolation between a

higher and lower order distribution.

Two-Layer MM with EM

Because my best results were obtained by combining the two layer model

and the basic model, the easiest way to apply EM and still maintain the benefit

of the two-layer Markov model is to use EM to estimate the transition matrix,

27

emission matrix, and π vector values using Baum-Welch as described earlier for

the basic model, and simply substitute the emission probabilities from the 2-layer

model only for words that did not exist in the training set.

A more difficult method of using EM is to modify Baum-Welch in order

to learn the parameters for the 2-layer model. In order to use EM to learn the

transition probabilities for the MMs representing the words, we need to replace

P (w|t) with P (l1|t)P (l2|l1, t) · · ·P (ln|ln−1, · · · , l1, t) in the forward-backward algo-

rithm stage. Using this, we can again obtain P (ti = T |w0 · · ·wN) and P (ti−1 =

T1, ti = T2|w0 · · ·wN). We can compute P (T) and P (T1|T2) exactly as before. Let

M be the total number of letters. Then we can compute the parameters P (L|T),

the probability of seeing the letter L, and P (L1, L2|T), the probability of seeing

the consecutive letters L1 and L2 as follows:

P (L|T) ≈
∑

i∈{i : L∈wi} P (ti = T |w0 · · ·wN)

M · P (T)
(3.4)

P (L1, L2|T) ≈
∑

i∈{i : L1,L2∈wi} P (ti = T |w0 · · ·wN)

(M −N) · P (T)
(3.5)

Thus we have updated both transition probabilities and π vectors for the

letters in the words corresponding to each tag and the transition probabilities and

π vectors for the tags. Note that in this case, P (L|T) is analogous to the π vector

in the simple HMM and P (L1, L2|T) is analogous to the transition probability in

the simple HMM.

When considering using this model with Kneser-Ney, we must be aware of

28

certain issues that may arise. In Chen and Goodman’s paper on smoothing[12],

pKN(wi|wi−1
i−n+2), the Kneser-Ney probability of a given n-gram, is defined as

pKN(wi|wi−1
i−n+2) =

N1+(•wi
i−n+2)

N1+(•wi−1
i−n+2•)

where

N1+(•wi
i−n+2) = |{wi−n+1 : c(wi

i−n+1) > 0}|

N1+(•wi−1
i−n+2•) = |{(wi−n+1, wi) : c(wi

i−n+1) > 0}| =
∑
wi

N1+(•wi
i−n+2)

Note that N1+ represents the number of words that have one or more counts,

and • represents a free variable that is summed over. For example:

N1+(wi−1
i−n+1•) = |{wi : c(wi−1

i−n+1wi) > 0}|

where c(wi−1
i−n+1wi) represents the number of times wi−1

i−n+1wi occurs in the corpus.

From this we can see that we may have a problem adapting this for use with EM.

Since when we iterate in EM we have probabilities instead of counts, we are forced

to replace expressions like c(wi) with
∑
wi

P (t|wi). It is then not clear how one

must deal with instances in which one must evaluate expressions like:

c(wi
i−n+1) > 0

or the even more ambiguous instances in which one must evaluate expressions like:

29

c(wi
i−n+1) = 1

which occur frequently when calculating probabilities using Kneser-Ney. This re-

sults in very poor performance when adapting Kneser-Ney for use with EM in

the 2-layer Markov Model, as was seen in my experiments in which I ended up

assigning different ranges of
∑
wi

P (t|wi) to integer values of c(wi). Because of this,

my best results were obtained by using the simple substitution method described

earlier.

3.2 Results and Discussion

We have adapted a Part of Speech tagger that was trained on Modern

Standard Arabic sentences in order to tag Levantine sentences. For a side by

side comparison of the accuracies obtained with various methods used on the LA

development set, please refer to table 3.7. My experiments show that the best

results on the development set were achieved by the two-layer Markov / basic

Markov mixture model with simple EM and Kneser-Ney smoothing, with a peak

accuracy of 73.28% with three iterations and k = 4, where k is the length of the K-

grams used in Kneser-Ney smoothing (please see Figure 3.2). This method involved

initializing with the ATB and using EM on the LA treebank. As we can see in table

3.1, most LA words are four letters in length, which makes sense given that k = 4

performs the best. This accuracy is slightly higher than the 73% accuracy achieved

30

0 1 2 3 4 5 6 7 8 9 10 11
70

70.5

71

71.5

72

72.5

73

73.5

74

74.5

75

k

ac
cu

ra
cy

Training: train123.tree.coll.clean Test: dev.tree.noEDIT−SING.noPRN−INTJ−UNF.coll

0 iterations
1 iteration
2 iterations
3 iterations
4 iterations

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

0 iterations 71.72 71.44 72.68 72.9 71.81 71.39 71.33 71.32 71.32 71.32

1 iteration 72.18 71.94 72.76 73.13 72.21 71.77 71.71 71.7 71.7 71.7

2 iterations 71.96 71.92 72.72 73.26 72.3 71.86 71.78 71.77 71.77 71.77

3 iterations 72.18 72.05 72.75 73.28 72.32 71.9 71.83 71.82 71.82 71.82

4 iterations 72.01 71.84 72.5 73.07 72.07 71.64 71.57 71.56 71.56 71.56

Figure 3.2: Accuracy of 2-Layer Markov/Basic Markov Mixture Model Versus k

31

0 2 4 6 8 10 12 14 16 18 20
66

66.5

67

67.5

68

68.5

69

69.5

70

70.5

iteration count

ac
cu

ra
cy

Training: train123.tree.coll.clean Test: dev.tree.noEDIT−SING.noPRN−INTJ−UNF.coll

n iterations 0 1 2 3 4 5 6 7 8 9

% accuracy 69.16 70.19 70.04 69.46 68.63 68.01 67.37 67.03 66.71 66.65

n iterations 10 11 12 13 14 15 16 17 18 19

% accuracy 66.75 66.68 66.54 66.60 66.60 66.52 66.45 66.46 66.41 66.45

Figure 3.3: Accuracy of Basic HMM with EM on Emission and Transition Versus

EM Iteration Count

32

0 1 2 3 4 5 6 7 8 9 10
70.85

70.9

70.95

71

71.05

71.1

71.15

iteration count

ac
cu

ra
cy

Training: train123.tree.coll.clean Test: dev.tree.noEDIT−SING.noPRN−INTJ−UNF.coll

n iterations 0 1 2 3 4 5 6 7 8 9 10

% accuracy 70.92 70.91 71.13 71.11 71.12 71.02 70.94 70.92 70.89 70.89 70.88

Figure 3.4: Accuracy of 2-Layer Markov Model Versus EM Iteration Count

33

Table 3.1: Frequency of Words in LA Versus Length

Length % in LA Corpus
0 0.67
1 3.96
2 12.96
3 26.59
4 28.41
5 13.87
6 9.90
7 3.16
8 0.72
9 2.89
10 0.05

by Rambow et all in “Parsing Arabic Dialects” [5] using basic linguistic knowledge

such as category-dependent probability mass redistribution from the MSA-only

words to the LA-only words according to the unigram probability distribution of

the part-of-speech, the distribution over the lengths of words for each POS tag,

and the first and last few characters of each word.

The other methods that I tried performed as follows. As a baseline, I con-

sider the performance of a bigram tagger whose parameter values are estimated

from annotated MSA data. I divided the MSA training dataset (the vocalized ver-

sion) into 10% test and 90% training. I then ran a 10-fold cross-validation test on

the remaining 90% and chose the parameters (transition matrix, emission matrix,

and π vector) with the best accuracy of the ten tests (92.95%) to run the algorithm

on the 10% of the data reserved for testing purposes. This resulted in an accuracy

of 91.54%. When tested on the development set of MSA sentences, the tagger

34

performs reasonably well, with a 93.55% accuracy. Note that the morphological

approach resulted in a 1.7% improvement in accuracy when using the circumfixes

found in the tokenized treebank, and a 0.13% improvement in accuracy when using

the circumfixes induced from the corpus using the trie method described by Schone

and Jurafsky[2].

When trained on the MSA training set and tested on the LA development

set, the basic method produced an accuracy of 69.21%. However, with the addition

of EM, this method produced slightly different accuracies depending on which

parameters EM was allowed to modify. When EM was allowed to modify the

emission matrix only, the resulting accuracy was 69.60%. For transition only,

this accuracy was 69.66%. When EM was allowed to modify both, the resulting

accuracy was 70.19%. Refer to Figure 3.3 for more details.

When using a trigram relative frequency estimation and add-alpha smooth-

ing to represent the tags in the basic model, the accuracy plummeted to 51.01%

when tested on the LA development set. This is most likely because of the sparse-

ness of the resulting transition matrix.

The results for the modified 2-Layer MM version of Baum-Welch were

promising, but not superior to some of the previous methods. When using this

method with a simple bigram model for the letters in each word, I obtained an

accuracy of 71.13%. This is better than the baseline accuracy for this model with

no EM, which was 70.92% (please see Figure 3.4). However, it appears that us-

ing Kneser-Ney smoothing and higher order k-grams when representing letters in

35

words caused a more significant improvement than EM did, and as a result, the

modified Baum-Welch method does not perform as well.

The 2-layer Markov Model in which Kneser-Ney smoothing was used for n-

grams in the words and Baum-Welch was used to learn all the parameters, did not

work as well as I had hoped because of the reasons explained in the Methodology

section. After one iteration, the accuracy plummeted to 70.65%, after which it

eventually converged to 70.38%.

Tables 3.2 and 3.3 are the confusion matrices corresponding to the best

results obtained using both methods.

Close observation of the confusion matrices shows that major confusions

occur in the following areas in descending order:

• Singular proper nouns (NNP) are being guessed as singular common nouns

(NN), punctuations (PUNC), perfect verbs (VBD), coordinating conjunc-

tions (CC), and adjectives (JJ).

• Plural common nouns (NNS) are being confused with singular common nouns,

IN, and adjectives.

• Adjectives are primarily guessed as singular common nouns, singular proper

nouns, VBD, IN, and CC.

• Cardinal numbers (CD) are being confused with NN, JJ, and NNS.

• Singular common nouns are guessed as JJ, IN, NNP, CC, and perfect verbs.

36

• Perfect verbs (VBD) are guessed mostly as NN, CC, VBP, and INs.

• INs are confused with NNs, adverbs (RB), and particles (RP).

• Personal pronouns (PRP) are being confused with CC, IN, NNP, possessive

personal pronouns (PRP$), and NN.

• PRP$ tags are being tagged as PRP and IN.

One can notice that the major improvement in accuracy between the two

methods is on present verbs, common nouns, and adjectives, while there was a

decline for the particles. This is not surprising due to the morphological analysis

of the words in the second method, since verbs of present tense are prefixed with

a present-tense indicator in LA which is absent in MSA. Similarly, for the most

part, nouns and adjectives have different vowels in MSA and LA while sharing the

same root. Particles on the other hand are known to be fundamentally different in

the two languages. Perhaps the sub-structure analysis of the particles has created

some confusion with words of other types.

3.3 Conclusion

In this paper my goal was to develop a part-of-speech tagger for a dialect

of Modern Standard Arabic (MSA) called Levantine, using MSA as the training

data and testing on a Levantine corpus. The need for this stems from the lack

of enough annotated data in Levantine. The task proved to be nontrivial due to

37

Table 3.2: Confusion Matrix (by count) for Basic Model with EM (1 iteration)

(first column represents the gold tags)

NNP PUNC NNS JJ CD NN VBD IN PRP PRP$ VBP CC WP RP NOFUNC VBN RB WRB DT UH VB VERB
NNP 259 15 0 6 0 35 8 1 0 0 1 4 0 0 3 0 0 0 0 0 0 0

PUNC 0 464 0
NNS 0 2 71 2 1 14 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JJ 50 14 4 556 0 138 37 22 0 0 3 9 3 1 0 0 0 0 0 7 0 0
CD 0 3 5 6 47 13 1 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0

NN 70 24 3 127 2 2175 81 82 4 0 10 24 5 9 11 5 0 0 0 20 4 0
VBD 9 2 0 8 0 24 205 16 2 0 20 10 2 2 2 11 0 0 0 0 0 4
IN 8 6 0 4 0 111 1 1478 4 5 0 3 12 35 0 0 73 0 0 0 0 0

PRP 31 23 0 5 0 33 38 67 1043 42 2 48 0 2 0 0 0 0 0 0 0 0
PRP$ 2 0 0 0 0 0 0 24 33 402 0 1 0 0 0 0 0 0 0 0 0 0

VBP 42 39 0 104 2 115 126 144 5 1 336 45 6 5 0 4 0 0 0 0 1 0
CC 1 0 0 0 0 0 0 0 0 0 0 424 0 0 0 0 0 0 0 0 0 0
WP 18 0 0 0 0 4 0 0 0 0 0 1 111 4 0 0 0 0 0 0 0 0
RP 120 5 0 5 0 153 16 16 8 0 0 12 114 98 119 0 0 0 0 1 0 0

NOFUNC 1 2 1 3 0 5 2 10 0 0 3 1 0 0 0 0 0 0 0 0 0 0
VBN 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
RB 38 10 0 1 0 107 22 35 0 0 5 43 3 1 0 0 45 0 0 0 0 0

WRB 0 0 0 0 0 4 0 5 0 0 0 1 0 9 0 0 0 2 0 0 0 0
DT 1 2 0 12 30 0 2 18 1 0 4 0 0 0 0 0 0 0 68 0 0 0
UH 0 0 0 2 0 6 6 0 0 2 0 1 0 0 0 0 0 0 0 39 0 0
VB 1 0 0 1 0 5 24 7 0 0 15 13 0 1 0 1 0 0 0 0 0 0

VERB 0

Table 3.3: Confusion Matrix (by count) for 2-Layer Markov/Basic Markov Mixture

Model with EM (1 iteration, k = 4) (first column represents the gold tags)

NNP PUNC NNS JJ CD NN VBD IN PRP PRP$ VBP CC WP RP NOFUNC VBN RB WRB DT UH VB VERB
NNP 254 0 3 6 0 50 9 0 0 0 3 0 0 0 7 0 0 0 0 0 0 0

PUNC 0 464 0
NNS 3 0 80 2 0 6 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0
JJ 54 0 14 597 0 133 18 1 0 0 9 0 0 0 7 0 0 0 0 9 0 0
CD 0 0 4 13 46 15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

NN 125 0 7 132 1 2285 22 4 2 0 8 2 1 7 37 3 0 0 0 20 0 0
VBD 13 0 3 11 0 45 209 1 0 0 11 0 0 2 6 11 1 0 0 0 0 4

IN 21 0 0 0 0 116 0 1467 4 5 0 1 30 13 6 0 77 0 0 0 0 0

PRP 9 1 0 0 0 152 2 57 1042 64 0 6 0 0 1 0 0 0 0 0 0 0
PRP$ 2 0 0 0 0 0 0 29 25 405 0 1 0 0 0 0 0 0 0 0 0 0

VBP 116 0 1 23 0 183 64 17 3 0 530 0 0 0 31 6 1 0 0 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 424 0 0 1 0 0 0 0 0 0 0
WP 20 0 0 1 0 2 0 0 0 0 0 0 114 0 0 0 0 0 0 1 0 0
RP 161 0 0 10 0 114 5 12 7 0 0 0 99 72 131 0 0 34 0 22 0 0

NOFUNC 4 0 2 5 0 11 3 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0
VBN 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0
RB 39 0 1 10 0 136 5 20 0 0 3 0 0 21 15 0 58 0 0 2 0 0

WRB 6 0 0 0 0 3 0 0 0 0 0 0 0 3 1 0 0 8 0 0 0 0
DT 0 0 0 1 0 7 6 0 1 1 0 0 0 0 0 0 0 0 73 0 0 0
UH 1 0 0 1 0 7 6 0 1 1 0 0 0 0 0 0 0 0 0 39 0 0
VB 4 0 1 1 0 25 8 2 0 0 27 0 0 0 0 0 0 0 0 0 0 0

VERB 0

38

Table 3.4: Confusion Matrix (by percentage) for 2-Layer Markov/Basic Markov

Mixture Model with EM (1 iteration, k = 4) (first column represents the gold tags)

NNP PUNC NNS JJ CD NN VBD IN PRP PRP$ VBP CC WP RP NOFUNC VBN RB WRB DT UH VB VERB
NNP 78.0 4.5 0.0 1.8 0.0 10.5 2.4 0.3 0.0 0.0 0.3 1.2 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PUNC 0.0 100.0 0.0
NNS 0.0 2.1 75.5 2.1 1.1 14.9 1.1 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
JJ 5.9 1.7 0.5 65.9 0.0 16.4 4.4 2.6 0.0 0.0 0.4 1.1 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0
CD 0.0 3.8 6.2 7.5 58.8 16.2 1.2 3.8 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NN 2.6 0.9 0.1 4.8 0.1 81.9 3.0 3.1 0.2 0.0 0.4 0.9 0.2 0.3 0.4 0.2 0.0 0.0 0.0 0.8 0.2 0.0
VBD 2.8 0.6 0.0 2.5 0.0 7.6 64.7 5.0 0.6 0.0 6.3 3.2 0.6 0.6 0.6 3.5 0.0 0.0 0.0 0.0 0.0 1.3
IN 0.5 0.3 0.0 0.2 0.0 6.4 0.1 84.9 0.2 0.3 0.0 0.2 0.7 2.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0

PRP 2.3 1.7 0.0 0.4 0.0 2.5 2.8 5.0 78.2 3.1 0.1 3.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PRP$ 0.4 0.0 0.0 0.0 0.0 0.0 0.0 5.2 7.1 87.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VBP 4.3 4.0 0.0 10.7 0.2 11.8 12.9 14.8 0.5 0.1 34.5 4.6 0.6 0.5 0.0 0.4 0.0 0.0 0.0 0.0 0.1 0.0
CC 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WP 13.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.7 80.4 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 18.0 0.7 0.0 0.7 0.0 22.9 2.4 2.4 1.2 0.0 0.0 1.8 17.1 14.7 17.8 0.0 0.0 0.0 0.0 0.1 0.0 0.0

NOFUNC 3.6 7.1 3.6 10.7 0.0 17.9 7.1 35.7 0.0 0.0 10.7 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VBN 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80.0 0.0 0.0 0.0 0.0 0.0 0.0
RB 12.3 3.2 0.0 0.3 0.0 34.5 7.1 11.3 0.0 0.0 1.6 13.9 1.0 0.3 0.0 0.0 14.5 0.0 0.0 0.0 0.0 0.0

WRB 0.0 0.0 0.0 0.0 0.0 19.0 0.0 23.8 0.0 0.0 0.0 4.8 0.0 42.9 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0
DT 0.7 1.4 0.0 8.7 21.7 0.0 1.4 13.0 0.7 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.3 0.0 0.0 0.0
UH 0.0 0.0 0.0 3.6 0.0 10.7 10.7 0.0 0.0 3.6 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.6 0.0 0.0
VB 1.5 0.0 0.0 1.5 0.0 7.4 35.3 10.3 0.0 0.0 22.1 19.1 0.0 1.5 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0

VERB 0.0

Table 3.5: Confusion Matrix (by percentage) for 2-Layer Markov/Basic Markov

Mixture Model with EM (1 iteration, k = 4) (first column represents the gold tags)

NNP PUNC NNS JJ CD NN VBD IN PRP PRP$ VBP CC WP RP NOFUNC VBN RB WRB DT UH VB VERB
NNP 76.5 0.0 0.9 1.8 0.0 15.1 2.7 0.0 0.0 0.0 0.9 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PUNC 0.0 100.0 0.0
NNS 3.2 0.0 85.1 2.1 0.0 6.4 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
JJ 6.4 0.0 1.7 70.9 0.0 15.8 2.1 0.1 0.0 0.0 1.1 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 1.1 0.0 0.0
CD 0.0 0.0 5.1 16.5 58.2 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NN 4.7 0.0 0.3 5.0 0.0 86.0 0.8 0.2 0.1 0.0 0.3 0.1 0.0 0.3 1.4 0.1 0.0 0.0 0.0 0.8 0.0 0.0
VBD 4.1 0.0 0.9 3.5 0.0 14.2 65.9 0.3 0.0 0.0 3.5 0.0 0.0 0.6 1.9 3.5 0.3 0.0 0.0 0.0 0.0 1.3
IN 1.2 0.0 0.0 0.0 0.0 6.7 0.0 84.3 0.2 0.3 0.0 0.1 1.7 0.7 0.3 0.0 4.4 0.0 0.0 0.0 0.0 0.0

PRP 0.7 0.1 0.0 0.0 0.0 11.4 0.1 4.3 78.1 4.8 0.0 0.4 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PRP$ 0.4 0.0 0.0 0.0 0.0 0.0 0.0 6.3 5.4 87.7 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VBP 11.9 0.0 0.1 2.4 0.0 18.8 6.6 1.7 0.3 0.0 54.4 0.0 0.0 0.0 3.2 0.6 0.1 0.0 0.0 0.0 0.0 0.0
CC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WP 14.5 0.0 0.0 0.7 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 82.6 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0
RP 24.1 0.0 0.0 1.5 0.0 17.1 0.7 1.8 1.0 0.0 0.0 0.0 14.8 10.8 19.6 0.0 0.0 5.1 0.0 3.3 0.0 0.0

NOFUNC 14.3 0.0 7.1 17.9 0.0 39.3 10.7 0.0 0.0 0.0 3.6 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VBN 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0
RB 12.6 0.0 0.3 3.2 0.0 43.9 1.6 6.5 0.0 0.0 1.0 0.0 0.0 6.8 4.8 0.0 18.7 0.0 0.0 0.6 0.0 0.0

WRB 28.6 0.0 0.0 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3 4.8 0.0 0.0 38.1 0.0 0.0 0.0 0.0
DT 0.0 0.0 0.0 1.1 0.0 7.9 6.7 0.0 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.0 0.0 0.0 0.0
UH 1.8 0.0 0.0 1.8 0.0 12.5 10.7 0.0 1.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.6 0.0 0.0

NNPS 0.0
NUMCOMMA 0.0

VB 5.9 0.0 1.5 1.5 0.0 36.8 11.8 2.9 0.0 0.0 39.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VERB 0.0

39

Table 3.6: Description of Tagset Used in the Penn Arabic Treebank

Tag Description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
NN Noun, singular or mass

NNS Noun, plural
NNP Proper noun, singular

NNPS Proper noun, plural
PRP Personal pronoun
PRP$ Possessive pronoun
PUNC Punctuation

RB Adverb
RP Particle
UH Interjection

VBD Verb, past tense
VBN Verb, past participle
VBP Verb, present
WP Wh-pronoun

WRB Wh-adverb
NO FUNC

NUMERIC COMMA

40

Table 3.7: Best Accuracies Per Method

Method Accuracy
Trigram with no EM 51.01%
Basic HMM with no EM 69.21%
Basic HMM with EM on Emission 69.60%
Basic HMM with EM on Transition 69.66%
Basic HMM with EM on Both 70.19%
HMM / 2-Layer Markov mixture with modified Baum-Welch and KN 70.65%
HMM / 2-Layer Markov mixture with modified Baum-Welch 70.92%
HMM / 2-Layer Markov mixture with no EM and KN 73.13%
HMM / 2-Layer Markov mixture with simple EM and KN 73.28%

lexical, grammatical, and inflectional differences as well as the difference in register

between MSA and its dialect. The Arabic language is a very complicated template-

based language with sophisticated and complex inflectional rules. The inflections

often consist of adding interleaving vowels to the word roots and thus making the

morphological analysis of the language a challenging task. I obtained my results by

analyzing the morphological properties of Levantine via a novel idea of representing

words as a sequence of characters emitted from a sequence of tags called the two-

layer Markov Model shown in Figure 3.1. The best accuracy was achieved by using

the 2-layer Markov / basic Markov mixture model with simple EM and Kneser-Ney

smoothing described in the methodology section. Using this method I achieved an

accuracy of 73.28% which is at least as good as that achieved by Rambow et al.

in[5]. For future study, one could experiment with different methods of adapting

Kneser-Ney smoothing to the 2-layer model. Because Kneser-Ney smoothing uses

41

discrete counts instead of probabilities, its adaptation for use with this model is

non-trivial and there is a lot of room for possible fine-tuning. Additionally, if a

model is devised that takes into account the Arabic root template morphology, it

may be possibe to further improve accuracy.

Bibliography

[1] Viterbi, A.J. (1967). Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Transactions on Information Theory,
13(2), 260–269.

[2] Schone, P., & Jurafsky, D. (2000). Knowledge-Free Induction of Morphology
Using Latent Semantic Analysis. In Proceedings of the Fourth Conference on
Computational Natural Language Learning and of the Second Learning Language
in Logic Workshop (pp. 67–72). Somerset, New Jersey: Association for Compu-
tational Linguistics.

[3] Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
39, 1–38.

[4] Baum, L.E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization tech-
nique occuring in the statistical analysis of probabilistic functions in Markov
chains. The Annals of Mathematical Statistics, 41(1), 164–171.

[5] Rambow, O., Chiang, D., Diab, M., Habash, N., Hwa, R., Sim’an, K., Lacey,
V., Levy, R., Nichols, C., & Shareef, S. (2005). Parsing Arabic Dialects. Final
Report, 2005 JHU Summer Workshop.

[6] Habash, N., & Rambow, O. (2005). Arabic tokenization, part-of-speech tagging
and morphological disambiguation in one fell swoop In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics (pp. 573–580).
Ann Arbor, MI: Association for Computational Linguistics.

[7] Habash, N., Rambow, O., & Kiraz, G. (2005). Morphological Analysis and
Generation for Arabic Dialects. In Proceedings of the ACL Workshop on Com-
putational Approaches to Semitic Languages (pp. 17–24). Ann Arbor, MI: As-
sociation for Computational Linguistics.

[8] Diab, M., Hacioglu, K., & Jurafsky, D. (2004). Automatic Tagging of Arabic
Text: From Raw Text to Base Phrase Chunks. In Proceedings of HLT/NAACL.
Boston, MA

42

43

[9] Adler, M., & Elhadad, M. (2006). An unsupervised morpheme-based HMM
for hebrew morphological disambiguation. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and the 44th annual meeting
of the ACL (pp. 665–672). Sidney, Australia: Association for Computational
Linguistics.

[10] T. Brants. (2000). TnT - a statistical part-of-speech tagger. In Proceedings of
the 6th Applied NLP Conference. Seattle, WA.

[11] Welch, L.R. (2003). Hidden Markov Models and the Baum-Welch Algorithm
In IEEE Information Theory Society Newsletter (pp. 1, 10–13).

[12] Chen, F. & Goodman, J. (1996). An empirical study of smoothing techniques
for language modeling In Proceedings of the 34th annual meeting on Association
for Computational Linguistics (pp. 310–318). Santa Cruz, CA.

[13] http://www.ldc.upenn.edu/myl/morph/buckwalter.html

[14] Mohamed Maamouri, Ann Bies, & Tim Buckwalter (2004). The penn arabic
treebank: Building a large-scale annotated arabic corpus In NEMLAR Confer-
ence on Arabic Language Resources and Tools. Cairo, Egypt.

[15] Jakub Zavrel & Walter Daelemans (1999). Evaluatie van part-of-speech tag-
gers voor het corpus gesproken nederlands. In CGN technical report. Katholieke
Universiteit Brabant, Tillburg.

