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Abstract
Objective
To determine the ability of CSF biomarkers to predict disease progression in progressive
supranuclear palsy (PSP).

Methods
We compared the ability of baseline CSF β-amyloid1–42, tau, phosphorylated tau 181 (p-tau),
and neurofilament light chain (NfL) concentrations, measured by INNO-BIA AlzBio3 or
ELISA, to predict 52-week changes in clinical (PSP Rating Scale [PSPRS] and Schwab and
England Activities of Daily Living [SEADL]), neuropsychological, and regional brain volumes
on MRI using linear mixed effects models controlled for age, sex, and baseline disease severity,
and Fisher F density curves to compare effect sizes in 50 patients with PSP. Similar analyses
were done using plasma NfL measured by single molecule arrays in 141 patients.

Results
Higher CSF NfL concentration predicted more rapid decline (biomarker × time interaction)
over 52 weeks in PSPRS (p = 0.004, false discovery rate–corrected) and SEADL (p = 0.008),
whereas lower baseline CSF p-tau predicted faster decline on PSPRS (p = 0.004). Higher CSF
tau concentrations predicted faster decline by SEADL (p = 0.004). The CSF NfL/p-tau ratio
was superior for predicting change in PSPRS, compared to p-tau (p = 0.003) or NfL (p = 0.001)
alone. Higher NfL concentrations in CSF or blood were associated with greater superior
cerebellar peduncle atrophy (fixed effect, p ≤ 0.029 and 0.008, respectively).

Conclusions
Both CSF p-tau and NfL correlate with disease severity and rate of disease progression in PSP.
The inverse correlation of p-tau with disease severity suggests a potentially different mechanism
of tau pathology in PSP as compared to Alzheimer disease.
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Progressive supranuclear palsy (PSP) has been a focus of tau
biomarker and anti-tau therapeutic development due to the high
correlation between its classical phenotype, now called
Richardson syndrome (PSP-RS), and PSP pathology, involving
a characteristic pattern of 4microtubule binding repeat (4R) tau
deposition in various brain regions and strong genetic links to
tau gene (MAPT) polymorphisms.1–4 In Alzheimer disease
(AD), elevated CSF total tau and phosphorylated tau 181 (p-
tau) and decreased β-amyloid1–42 (Aβ42) are useful for di-
agnosis and as pharmacodynamic biomarkers in clinical trials.5

In PSP, however, despite strong links to tau, CSF tau and p-tau
concentrations are often lower than in age-matched controls,
and do not change over the course of 1 year.6–8 An unresolved
question is whether lower CSF tau and p-tau concentrations
have clinical significance in PSP, similar to low Aβ42 for AD. To
date, the only CSF analyte that displays clear clinical correlates
in PSP is neurofilament light chain (NfL). NfL was the only
fluid biomarker to show longitudinal changes correlating with
clinical and regional MRI volume changes in a recent PSP
clinical trial.6 Although recent studies have demonstrated the
potential utility of using plasma NfL to diagnose PSP and
predict disease progression,9–12 CSF analyte concentrations
generally have stronger relationships to clinical features of other
disorders.13 The goal of this study was to determine the clinical
correlates of CSFNfL, Aβ42, tau and p-tau, and plasmaNfL and
their ability to predict disease progression using data from
a well-characterized PSP clinical trial cohort.

Methods
Patients
Historical data were taken from the previously reported AL-108-
231 international, randomized, double-blind, placebo-controlled,
phase 2/3 trial of davunetide for PSP (clinicaltrials.gov, NCT
01110720).6 This trial enrolled 313 patients meeting clinical
criteria for PSP-RS at 48 centers in Australia, Canada, France,
Germany, the United Kingdom, and the United States. In the
current study, 2 subgroups were analyzed: one with available CSF
(n= 50) and another previously reportedwith available plasma (n
= 141).11 Twenty-two patients had bothCSF and plasma samples
(figure e-1, links.lww.com/WNL/A66).

Standard protocol approvals, registrations,
and patient consents
Patients provided informed consent at the time of recruitment
and procedures were approved by local ethics committees.6

Clinical evaluation
See supplemental Methods, links.lww.com/WNL/A68.

TheMini-Mental State Examination (MMSE)14 was obtained
at baseline. Neurologic assessments were based on the Pro-
gressive Supranuclear Palsy Rating Scale (PSPRS).15 The
Repeatable Battery for the Assessment of Neuropsychological
Disease Severity (RBANS)16 and 3 measures of executive
function (color trails,17 letter-number sequencing [LNS],18

and phonemic fluency19) were used to measure neuro-
psychological status. The color trails test is a language-free
version of the trails-making test. It consists of part 1 (CTT1)
and part 2 (CTT2), which measure sustained attention and
set-shifting, respectively. Assessment of overall disability re-
lied on the Schwab and England Activities of Daily Living
(SEADL) scale and a global measure of disease severity was
obtained with the Clinical Global Impression of Severity
(CGI-S).20 PSPRS and SEADL scores were obtained at
baseline, 6-, 13-, 26-, 39-, and 52-week visits. Each of these
time points is referred to as an interval. The RBANS and
measures of executive function were obtained at baseline, 26-,
and 52-week visits. The CGI-S was obtained at baseline and
week 52.

Biomarkers
CSF and plasma collections were performed according to
the Alzheimer’s Disease Neuroimaging Initiative protocol at
baseline and week 52.21 The INNO-BIA AlzBio3 (Fujirebio,
Gent, Belgium) platform was used to measure CSF Aβ42,
tau, and p-tau. CSFNfL concentrations were measured using
the Uman Diagnostics (Umea, Sweden) ELISA kit (NF-
Light kit). For NfL measurements, samples were diluted 4×
prior to running the assay and then a correction factor of 4
was used to determine final concentration. All Alzbio3 and
NfL analyses were performed in duplicate by a centralized
laboratory. Plasma NfL concentrations were determined
using the NF-Light kit transferred onto the Simoa platform
using a homebrew kit (Quanterix, Boston, MA) as previously
described.11

MRI data
Whole-brain, ventricular, midbrain, and superior cerebellar
peduncle (SCP) volumetric measures obtained from 1.5T or
3T structural MRI scans at baseline and week 52 were avail-
able in 127 of 141 cases with available plasma and in 46 of 50
with available CSF (figure e-1, links.lww.com/WNL/A66).
The magnet strength was determined by site availability and

Glossary
4R = 4 microtubule binding repeat; Aβ42 = β-amyloid1–42; AD = Alzheimer disease; CGI-S = Clinical Global Impression of
Severity; CI = confidence interval; CTT1 = color trails test 1; CTT2 = color trails test 2; FDR = false discovery rate; LNS =
letter-number sequencing;MMSE =Mini-Mental State Examination;NfL = neurofilament light chain; p-tau = phosphorylated
tau 181; PSP = progressive supranuclear palsy; PSP-RS = progressive supranuclear palsy–Richardson syndrome; PSPRS =
Progressive Supranuclear Palsy Rating Scale; RBANS = Repeatable Battery for the Assessment of Neuropsychological Disease
Severity; SCP = superior cerebellar peduncle; SEADL = Schwab and England Activities of Daily Living.
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no patients switched scanners during the study.22 MRI scans
met standards established by the Mayo Clinic’s Aging and
Dementia Imaging Research Laboratory and volumetric data
were generated using the Boundary Shift Integral technique
or label propagation in voxel-based morphometry (SPM5) as
previously described.6

Statistical analyses
Baseline values were compared to those at 52 weeks using
Wilcoxon signed rank test. Tests for normality were conducted
with the Shapiro-Wilk test. Biomarker data were log-
transformed prior to further analyses because they were not
normally distributed. Initial exploratory analyses included
Pearson product-moment correlations between baseline or 52-
week change in CSF biomarker concentrations (Aβ42, tau, p-
tau, NfL, p-tau/tau, Aβ42/tau, Aβ42/p-tau, NfL/tau, and NfL/
p-tau) and baseline or 52-week change in clinical scores and
brain volumes. SEADL and CGI-S were analyzed with Spear-
man rank correlations but considered equivalent to Pearson
correlations for false discovery rate (FDR) adjustment pur-
poses. Linear mixed effects analyses controlling for age, sex, and
baseline MMSE were used to determine the ability of baseline
CSF biomarkers to predict a change in clinical measures over 6,
13, 26, 39, and 52 weeks. Dependent variables included
SEADL, CGI-S, PSPRS, RBANS, color trails, LNS, and pho-
nemic fluency scores.Mixed linearmodels examining the ability
of CSF biomarkers to predict changes in volumetric MRI data
(whole-brain, ventricular, midbrain, and SCP volumes) were
corrected for magnet strength and total intracranial volume,
instead of MMSE. Separate models examined the effect of
including baseline PSPRS score as a covariate. A compound
symmetry repeated covariance matrix was used in all models
and biomarker values were mean-centered. To account for the
effect of baseline values, a term for biomarker by time in-
teraction was introduced in addition to the random intercepts.
In a first set of analyses, baseline CSF biomarker values were
entered as continuous predictor variables. In a second set of
analyses, and to test whether biomarker cutoff values could
discriminate patients with a faster decline, baseline CSF bio-
marker values were entered as categorical variables, di-
chotomized at the 50th percentile value. Similar analyses were
conducted with baseline plasma NfL as a predictor variable. To
test the superiority of biomarkers to predict outcomes and to
test for the value of combining different biomarkers in a ratio,
the significance of the difference between F values from 2 given
mixed linear models was computed with the Fisher distribution
variance ratios. For all analyses, we accepted a p < 0.05, cor-
rected for multiple comparisons across all dependent variables
for a given biomarker, using FDR.23 Data were analyzed using
SPSS (version 24; SPSS/IBM, Chicago, IL).

Results
Baseline associations of CSF analytes with
clinical and imaging variables
At baseline, CSF p-tau and NfL, but not Aβ42 or tau, corre-
lated with clinical, neuropsychological, and volumetric MRI

measures (table 1 and figures e-2 to e-10, links.lww.com/
WNL/A66). Biomarker ratios containing p-tau or NfL, except
for p-tau/tau, correlated with clinical, executive, or volumetric
variables. NfL was the only biomarker that changed median
values over time (18% increase in CSF, p = 0.005, and 13%
increase in plasma, p < 0.001, Wilcoxon test). CSF and plasma
NfL concentrations were correlated (r = 0.64, p = 0.001).
Although correlations between the annual change in NfL
concentrations and the change in clinical variables have been
previously reported,6 no such correlations were observed in
this smaller sample for any of the biomarkers.

Baseline CSF values predict
longitudinal change
Baseline CSFNfL, p-tau, and tau were strong predictors of the
rate of change in clinical variables over 52 weeks. Biomarker
concentration by time interactions were observed with higher
CSF NfL concentration as a predictor of faster annual wors-
ening in PSPRS (2.5 points per log NfL ng/mL increase per
interval, 95% confidence interval [CI] 0.99–4.1, p = 0.004,
FDR-corrected) (figure 1) and SEADL (−0.06 points per log
NfL ng/mL increase per interval [i.e., 13-week follow-up],
95% CI −0.04 to −0.009, p = 0.008) (figure 2). Biomarker
concentration by time interactions were also observed with
lower baseline p-tau as a predictor of faster decline in PSPRS
(−5.3 points per log p-tau ng/mL increase per interval, 95%
CI −8.3 to −2.3, p = 0.004), but with higher tau as a predictor
of faster worsening in SEADL (−0.04 points per log tau ng/mL
increase per interval, 95%CI −0.07 to −0.01, p = 0.004, figure 1).
Fixed effects of NfL without interaction with time were
observed with higher NfL associated with lower SCP volumes
(p = 0.029) (figure 3). No relationships were observed be-
tween Aβ42 and any variables.

Baseline plasma NfL concentration interacted with time as
a predictor of faster disease progression measured by
PSPRS (1.8 points per log plasma NfL pg/mL increase per
interval, 95% CI 0.94–2.7, p < 0.008), SEADL (−0.02
points per log plasma NfL pg/mL increase per interval, 95%
CI −0.04 to −0.007, p = 0.012), and RBANS (−6.3 points
per log plasma NfL pg/mL increase per interval, 95% CI
−9.6 to −3.0, p < 0.004). Plasma NfL was a superior pre-
dictor of the annual rate of change of RBANS (p = 0.004)
and PSPRS (p = 0.016) compared to CSF NfL (table e-1,
links.lww.com/WNL/A67). For PSPRS, this superiority
was not attributable to the higher number of available
plasma samples, since the difference remained after
a comparison was run only in cases with available CSF and
plasma (n = 22, p = 0.015). In this smaller sample, no
difference was observed between plasma and CSF NfL for
the prediction of RBANS (n = 22, p = 0.160).

Median baseline CSF analyte values identify
patients with more severe disease
To test whether biomarker threshold values could identify
patients with different rates of decline, patients were grouped
based on a median split in biomarker concentration. No
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Table 1 Clinical scores, brain volumes, and fluid biomarker concentrations at baseline and 1-year follow-up

Values

Sex, M/F, n 20/30

Age, y, mean (SD) 67.7 (5.7)

MMSE, mean (SD) 26.9 (3.2)

Median (IQR) 28 (3)

Magnet strength, 1.5T/3T, n 85/69

Week 0 Week 52 Change p Value

PSPRS, mean (SD) 39.9 (9) 51 (12) 12.1 (10) <0.001

SEADL, mean (SD) 0.47 (0.17) 0.33 (0.15) −0.16 (0.12) <0.001

Median (IQR) 0.5 (0.3) 0.3 (0.3) −0.2 (0.1)

CGI-S, mean (SD) 4.1 (0.71) 4.8 (0.84) 0.87 (0.7) <0.001

Median (IQR) 4 (1) 5 (1) 1 (1)

RBANS, mean (SD) 72.4 (12) 69.6 (10) 5.8 (9) 0.001

Color trails 1, mean (SD) 171 (67) 187 (59) 28 (62) 0.014

Median (IQR) 183 (135) 205 (87) 9 (83)

Color trails 2, mean (SD) 243 (70) 256 (67) 33 (55) 0.002

Median (IQR) 283 (98) 300 (75) 13 (71)

LNS, mean (SD) 6.5 (2) 6.2 (2) −0.91 (2) 0.016

Phonemic fluency, mean (SD) 10.1 (5) 8.7 (5) −1.8 (3) 0.006

Median (IQR) 9 (6) 7 (7) −2 (6)

Whole brain, mm3 × 103, mean (SD) 1,296.1 (116) 1,286.4 (126) −12.9 (10) <0.001

Ventricles, mm3 × 103, mean (SD) 49.7 (21) 51 (23) 4.4 (3) <0.001

Median (IQR) 45.9 (22) 48.2 (25) 3.6 (4)

Midbrain, mm3 × 103, mean (SD) 7 (1) 6.7 (0.9) −0.26 (0.1) <0.001

SCP, mm3, mean (SD) 407.2 (128) 369.1 (113) −38 (42) <0.001

Aβ42, ng/mL, mean (SD) 381.1 (106) 371.1 (119) 11.4 (105) 0.770

Median (IQR) 381 (168); 48 356 (160); 24 −8 (154)

Tau, ng/mL, mean (SD) 61.8 (31) 60.8 (23) 2.6 (22) 0.417

Median (IQR) 56 (24); 49 57 (28); 24 0 (23)

p-Tau, ng/mL, mean (SD) 25 (8) 25.8 (15) −1.2 (9) 0.129

Median (IQR) 22 (8); 49 23 (6); 24 −1 (5)

NfL, ng/mL, mean (SD) 5,926 (6,196) 6,486 (8,170) 2,124 (8,134) 0.005

Median (IQR); n 4,559 (3,507); 50 5,180 (3,088); 24 820 (1,461)

Plasma NfL, pg/mL, mean (SD) 44.2 (31) 52.8 (38) 8.1 (23) <0.001

Median (IQR); n 37.3 (26); 141 43.5 (33); 140 4.9 (15)

Abbreviations: Aβ42 = β-amyloid1–42; CGI-S = Clinical Global Impression of Severity; IQR = interquartile range; LNS = letter-number sequencing; MMSE =Mini-
Mental State Examination; NfL = neurofilament light chain; p-tau = phosphorylated tau 181; PSPRS = Progressive Supranuclear Palsy Rating Scale; RBANS =
Repeatable Battery for the Assessment of Neuropsychological Disease Severity; SCP = superior cerebellar peduncle; SEADL = Schwab and EnglandActivities of
Daily Living.
Mean (SD) are reported for normal data. In addition, median and 75th–25th IQR are reported for data that are not normally distributed.
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differences in the progression rates were observed between
low and high medians for any of the CSF biomarkers. Nev-
ertheless, CSF NfL and p-tau stratified patients by disease
severity at baseline. Patients with p-tau ≤22 ng/mL had
SEADL values that were −0.10 points (95% CI −0.19 to
−0.01, p = 0.004) lower than patients with p-tau >22 ng/mL.
Patients with higher CSF NfL (>4,559 ng/mL) had values
that were 11 points (95% CI 5–16, p = 0.008) worse on
PSPRS, −0.13 points (95% CI −0.22 to −0.04, p = 0.012)
worse on SEADL and 1 point worse (95% CI 0.68–1.3, p =
0.004) onCGI-S than patients with lowNfL (≤4,559 ng/mL).

For measures of executive function, patients with high NfL
took 38 seconds (95% CI 0.8–76, p = 0.016) longer to
complete CTT1, 45 seconds (95% CI 3–82, p = 0.013) longer
to complete CTT2, and showed a −2 point (95% CI −0.79 to
−4, p = 0.020) difference in LNS scores. Remarkably, high
CSF NfL was also associated with more severe SCP atrophy
(−84 mm3, 95% CI −0.38 to −170, p = 0.029). Higher plasma
NfL (>37.3 ng/mL) predicted worse performance and more
severe atrophy with significant group by time interactions for
PSPRS (p = 0.025), SEADL (p = 0.029), and RBANS (p =
0.004), compared to lower plasma (≤37.3 ng/mL). When

Figure 1 Progressive Supranuclear Palsy Rating Scale (PSPRS) change predicted by baseline CSF biomarker concentration

(A–C) PSPRS as a function of baseline biomarker concentration (log transformed, ng/mL) from linear mixed effects models. Each patient’s longitudinal PSPRS
scores appear as a vertical array of dots of increasing saturation (lightest at baseline to darkest at 52weeks). Each individual’s rate of change in PSPRS scores is
depicted by the vertical distance between dots. In the examples within the purple rectangles in B and C, the rate of change is small at either high CSF
phosphorylated tau 181 (p-tau) (≈log 1.8 or 63 ng/mL) or lowneurofilament light chain (NfL) (≈log 3.2 or 1,600 ng/mL) concentrations (*), whereas it is relatively
higher at low p-tau (≈log 1.2 or 16 ng/mL) and high NfL (≈log 4.5 or 31,600 ng/mL) (**), reflecting a time by biomarker interaction. There was no relationship
between baseline CSF tau and rate of PSPRS change (A). p Values adjusted for false discovery rate (FDR) are shown for the interactions. The regression lines
represent fixed effects of biomarkers on PSPRS scores and dotted lines represent 95% confidence intervals fit to the mean value of all time points for each
individual. Fixed effects were present only for NfL, but did not survive FDR correction. FDR-adjusted p values are shown for (biomarker) × time interactions.
Models are corrected for age, sex, and baseline Mini-Mental State Examination.

Figure 2 Schwab and England Activities of Daily Living (SEADL) scale change predicted by baseline CSF biomarker
concentration

(A–C) SEADL as a function of baseline biomarker concentration (log-transformed) from linear mixed effects models. Predicted scores are represented by
arrays of dots of increasing intensity, and are associated with a particular baseline biomarker level. As revealed when comparing the purple rectangles at the
extremes of the x axis, for tau (A) and neurofilament light chain (NfL) (C), there is higher variability in SEADL scores (i.e., rate of progression depicted by the
vertical distance between dots) with higher values on the x axis, which reflects significant time by biomarker interactions. p Values (false discovery rate
[FDR]–corrected) are shown for (biomarker) × time interactions. The regression lines represent fixed effects of biomarker concentrations on SEADL scores.
Fixed effects were observed for tau and phosphorylated tau 181 (p-tau) (B), but these did not survive false discovery rate adjustment. Dotted lines represent
95% confidence intervals. Models are corrected for age, sex, and baseline Mini-Mental State Examination.
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used as dichotomized categorical variables, CSF NfL had
stronger associations with baseline PSPRS (p < 0.001),
SEADL (p = 0.014), and CGI-S (p = 0.002), compared to
plasma NfL. Controlling for baseline PSPRS did not alter the
results. No relationships were observed between clinical, ex-
ecutive, or neuroimaging outcomes and groups defined based
on CSF Aβ42 or tau.

CSF biomarker ratios predict longitudinal
change better than individual values
NfL/p-tau was superior to p-tau (Fisher distribution variance
ratios, p = 0.003) or CSF NfL (p = 0.001) alone in predicting
annual change in PSPRS. A baseline NfL/p-tau value >198.9
was better at identifying patients with low baseline and follow-
up CTT1 and CTT2 scores compared to p-tau ≤22 ng/mL
(p = 0.004 and p = 0.002, respectively) and CSF NfL >4,559
ng/mL (p = 0.031 and p = 0.006, respectively). The NfL/
p-tau ratio offered no advantage in predicting changes in other
clinical or neuroimaging variables (table e-1, links.lww.com/
WNL/A67, and figure 4). Baseline p-tau/tau was superior
for predicting the rate of annual decline in SEADL to p-tau (p
= 0.001), NfL (p = 0.009), NfL/p-tau (p = 0.009), and plasma
NfL (p = 0.001). Other ratios including Aβ42/tau, Aβ42/
p-tau, and NfL/tau did not relate to clinical or MRI measures.

Discussion
We found that baseline concentrations of NfL, in CSF or
plasma, and CSF p-tau were useful predictors of rates of change
in clinical and neuropsychological status in PSP. These bio-
markers were also associated with disease severity at baseline as
reflected by clinical rating scales, neuropsychological measures
of executive function scores, and SCP volume measured by
MRI. Similar to studies in other diseases and a previous study of
plasma NfL in PSP,11 higher CSF NfL concentrations were
associated with greater disease severity and faster rates of

disease progression. These associations are important because
they reflect magnitudes of difference in clinical rating scales that
were previously shown to be clinically meaningful.24 For ex-
ample, the observed concentration range of CSF NfL spans 2
log units, which corresponds to a difference of about 5 points in
PSPRS scores. This represents the difference between having
normal gait vs being wheelchair-bound.

Unexpectedly, we found that lower p-tau concentrations were
associated with greater disease severity and more aggressive
disease progression on multiple rating scales. This was not the
case for CSF tau concentration, for which higher baseline
concentration predicted faster rates of SEADL change, but no
other clinical or imaging association. Combining CSF NfL
and p-tau in a ratio further increased the prediction value for
change in PSPRS over either analyte alone. CSF was superior
to plasma NfL concentration for stratification of baseline
disease severity as measured by SEADL, CGI-S, and PSPRS,
but plasma NfL was superior to CSF for predicting rates of
change. These data suggest that both CSF NfL and p-tau are
useful biomarkers to measure disease severity and predict
change in PSP.

Our findings are consistent with previous studies demon-
strating normal or low normal CSF tau and p-tau in
PSP,7,8,25,26 and extend these results by demonstrating that
low CSF p-tau has strong clinical correlates. Unlike in AD,
where higher p-tau and tau concentrations are associated with
increasing disease severity (asymptomatic vs mild cognitive
impairment vs dementia)27 and predict the development of
clinical disease,28 in PSP the opposite appears to be true.
Moreover, cross-sectional correlations between CSF p-tau
with clinical measures of disease severity appear to be stronger
in PSP than in AD.29 CSF Aβ42 had no predictive value in
PSP, but lower p-tau concentrations were associated with
greater disease severity and predicted more rapid disease
progression over time, which is analogous to the association of

Figure 3 CSF neurofilament light chain (NfL) is correlated with superior cerebellar peduncle (SCP) volume

(A) Tau, (B) phosphorylated tau 181 (p-tau), (C) NfL. SCP volume presented as a function of baseline biomarker concentration (log-transformed), from linear
mixed effects model. A fixed effect of CSF NfL on SCP volume (p = 0.008, false discovery rate–corrected) is represented by a red regression line. Dotted lines
represent 95% confidence intervals. No biomarker concentration by time interactions were observed. Models are corrected for age, sex, magnet strength,
and total intracranial volume.
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low CSF Aβ42 as an early and persistent finding in AD. The
findings suggest that although AD and PSP are both tauo-
pathies featuring insoluble deposits of hyperphosphorylated
tau in neurons (and glia in PSP) at autopsy, the mechanisms
by which tau protein abnormalities either cause or reflect the
underlying causes of neurodegeneration in these disorders are
likely to be different. One possible explanation might be that
CSF tau concentrations are related to the pathogenic tau
isoforms found in each disease. In AD, both 3 and 4 micro-
tubule binding domain repeat (3R) and 4R tau are found in
neurofibrillary tangles, whereas in PSP mostly 4R tau is found
deposited in neurons and glia. Another possibility is that low
CSF p-tau concentrations reflect a key pathogenic mechanism
in PSP that is different from AD. A genetic polymorphism
near the MOBP gene that increases the risk of PSP is asso-
ciated with increased caspase-mediated tau cleavage via in-
creased expression of appoptosin, which can be detected in
PSP brains at autopsy.30 Therefore, low CSF p-tau might
reflect increased tau cleavage in PSP. Finally, as tau can spread
transcellularly in a prion-like fashion, and different tau prion
strains may be associated with different diseases, low CSF

p-tau in PSP might be a feature of a pathogenic tau prion
strain found in PSP.31

Our results support the utility of CSF and plasma NfL as PSP
biomarkers. NfL is abundant in large-caliber myelinated
axons, where it contributes mechanoresistance. NfL con-
centrations seem to reflect active neuronal injury, based on
its variations that mirror acute clinical decline, such as that
seen in neurodegeneration, hypoxia, and neuro-
inflammation.32 Similar to AD, higher NfL concentrations
were associated with worse disease and predicted faster
progression.33 Nevertheless, the dynamic range and varia-
tion rate of NfL concentrations in neurodegenerative dis-
eases are still poorly understood.

Our study has important limitations. The findings were not
replicated in an independent cohort, because a cohort with
comparable characterization and biospecimen availability is
difficult to build. This highlights the importance of capitaliz-
ing on the unique opportunities for biomarker discovery of-
fered by certain study designs, such as clinical trials, especially

Figure 4 CSF neurofilament light chain (NfL)/phosphorylated tau 181 (p-tau) predicts clinical decline and stratifies patients
by disease severity

(A–C) Clinical assessments as a function of baseline biomarker concentration, from linear mixed effects models corrected for age, sex, and baseline Mini-
Mental State Examination. Significant biomarker by time interactions (i.e., differences in the rate of change in clinical scores over time as function of NfL/p-tau
concentrations) are observed for Progressive Supranuclear Palsy Rating Scale (PSPRS) and Schwab and England Activities of Daily Living (SEADL) scores. False
discovery rate (FDR)–adjusted p values are shown for the interactions. The regression lines represent fixed effects of biomarker concentrations on clinical
scores. Fixed effects were present in PSPRS, but did not survive FDR adjustment. Dotted lines represent 95% confidence intervals. (D–F) Median values are
displayed for NfL/p-tau ≤198.9 in blue and >198.9 in red. Bars represent 95% confidence intervals. Asterisks represent fixed effects of NfL/p-tau group as
a categorical variable. CGI-S = Clinical Global Impression of Severity.

Neurology.org/N Neurology | Volume 90, Number 4 | January 23, 2018 e279

Copyright    2017 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.ª

http://neurology.org/n


in rare diseases. Further analysis is needed to understand the
relative value of CSF and plasma NfL measures. This was
limited by the relatively small number of samples, which
might reflect a selection bias with retention of patients with
less disability and better able to undergo lumbar puncture.
The comparison between the prognostic performance of CSF
and plasma NfL might also have been influenced by the use of
different methodologies to measure CSF and plasma NfL
concentration.34 Insight into the dynamics of clinical–
biomarker relationships were out of the scope of the study and
will require future longitudinal biomarker analyses. We did
not control for white matter disease burden, which could have
affected the relationships between the fluid biomarkers and
MRI measures. Only patients with the classical PSP-RS phe-
notype were included in this study. It is uncertain how the
results relate to other variant PSP phenotypes.4 Finally, al-
though the PSP-RS phenotype is highly specific for PSP pa-
thology, the lack of neuropathologic data remains a relevant
caveat.

This study provides strong evidence supporting the clinical
relevance of NfL and p-tau for patient stratification and as
predictors of neurologic, cognitive, and functional decline in
clinical trials of new therapies for PSP.
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Study question
Can CSF biomarkers predict disease progression in patients with
progressive supranuclear palsy (PSP)?

Summary answer
Baseline concentrations of neurofilament light chain (NfL), in CSF
or plasma, and CSF phosphorylated tau 181 (p-tau) are useful
predictors of disease progression rate as well as PSP severity.

What is known and what this article adds
Associations between CSF biomarkers and PSP disease pro-
gression suggest that the former might be indicative of mean-
ingful changes in clinical scale ratings. This study demonstrates
CSF p-tau and NfL correlations with PSP disease severity and
progression rate.

Participants and setting
Two patient groups were analyzed, one comprising 50 partic-
ipants with available CSF and the other 141 participants with
available plasma. Twenty-two patients had both CSF and plasma
samples.

Design, size, and duration
Data were obtained from an international, randomized, double-
blind, placebo-controlled, phase 2/3 trial of davunetide for PSP,
which enrolled 313 patients who met Progressive Supranuclear
Palsy Rating Scale (PSPRS) criteria at 48 centers in Australia,
Canada, France, Germany, the United Kingdom, and the United
States. Clinical evaluation, biomarker collection, and MRI scans
were obtained at baseline and week 52.

Primary outcomes, risks, and exposures
Primary outcome measures were associations between baseline
CSF amyloid β1-42, tau, p-tau, and NfL concentrations and
changes in clinical (PSPRS and Schwab and England Activities of
Daily Living [SEADL]), neuropsychological, and regional brain
volumes as assessed via MRI.

Main results and the role of chance
A rapid decline in PSPRS (p = 0.004) and SEADL (p = 0.008)
was predictable via higher CSF NfL concentrations, while faster
decline in PSPRS (p = 0.004) was predictable by lower baseline
CSF p-tau. Faster decline in SEADL (p = 0.004) was predictable
by higher CSF tau concentrations. Compared to p-tau (p =
0.003) or NfL (p = 0.001) alone, the CSF NfL/p-tau ratio was

a better predictor of PSPRS changes. A correlation between
higher CSF or blood NfL concentrations and greater cerebellar
peduncle atrophy was observed (p = 0.029 and 0.008,
respectively).

Bias, confounding, and other reasons for caution
Results were not replicated in an independent cohort and the
relatively small number of samples might reflect a selection bias.
Different methodologies were used to measure CSF and plasma
NfL concentrations; this might have influenced the comparison
of their prognostic performances. White matter disease burden
was not controlled for, affecting assessments of relationships
between fluid biomarkers and MRI measures. Interpretation of
the results should also consider the lack of neuropathologic di-
agnosis confirmation.

Generalizability to other populations.
The study included patients with the classical PSP Richardson
syndrome phenotype, which may limit generalizability to
patients with other variant phenotypes.

Study funding/potential competing interests
Funding for this study was obtained via NIH/NIA grants and the
Tau Consortium. Go to Neurology.org/N for full disclosures.

CSF neurofilament light chain (NfL)/phosphorylated
tau 181 (p-tau) predicts clinical decline and stratifies
patients by disease severity

CGI-S = Clinical Global Impression Severity; PSPRS = Progressive Supranuclear
Palsy Rating Scale; SEADL = Schwab and England Activities of Daily Living.
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