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Abstract

Geometric– and Learning–Based Perception and Control for Robotic Systems

by

Saman Fahandezhsaadi

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

A reliable, accurate, and robust robotic system is highly dependent on perception, the
ability of a robot to sense and interpret its environment. A variety of sensing technologies
and methods can be integrated for perception purposes depending on a particular robotic
setting and the surrounding. Uncertainty, environment variability, and limited sensing
capabilities are factors that pose challenges to the perception task. This dissertation focuses
on exploiting geometric and probabilistic characteristics as well as hidden structural
properties of robotic systems and their surroundings to address some of these challenges.

A geometric state estimator is presented for an agent with the ability to measure single
ranges to fixed points (anchors) in its environment. The state estimator is generic, and
can be immediately applied to any robot with the range sensor. A greedy optimization
algorithm is developed to select the best measurement in each time step. The selection
algorithm is added to the extended Kalman filter, resulting in choosing the best measure-
ment out of all the available range values. The effectiveness of the presented estimator
algorithm is demonstrated through experimental setup for a flying robot.

The estimation accuracy is improved under the assumption that the ranging infrastructure
is not perfect. A real–time restructure of the setup allows to enhance the localization
accuracy of the ego agent. The estimator is incorporated into an adaptive algorithm. Using
a mobile UWB ranging sensor, the mobile anchor moves to improve localization accuracy
of the main robot. The algorithm reconstructs the range sensor network in real–time to
minimize the covariance matrix in the extended Kalman filter. The presented algorithm is
experimentally validated in a network of range sensors.

A probabilistic–based approach for pose estimation using point clouds is presented. The
point registration algorithm is based on directional statistics, which estimates the rigid
transformation (i.e. rotation matrix and translation vector) between two point cloud
frames. The algorithm outputs the robot’s pose estimation (location and orientation).
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The framework transforms the point registration task on a unit sphere, and solves the
problem in two steps of correspondence and alignment. In particular, a mixture model (as
an example of directional statistics on unit sphere in R3) is adopted and the process of
point registration has been carried out by the two phases of Expectation–Maximization
algorithm. The method has been evaluated with point clouds from LiDAR sensors in an
indoor environment.

A deep graph network is presented, to improve the robustness and accuracy of point
registration. The framework models the point registration task based on the flexible
architecture of Graph Network (GN) blocks. Three main modules–an encoder, a core, and
a decoder–are responsible to perform both steps of correspondence and assignment in
point matching process. The experiments and examination of the proposed model shows
comparable results with other state–of–the–art geometric–or learning–based algorithm in
terms of accuracy as well as robustness with regard to bad initial conditions and presence
of outliers in data points. The flexibility and configurability of the framework allows to
easily change, add, and/or combine various customized deep modules and mechanisms
to the presented graph–based framework.

The last part of this dissertation, studies ReLU network architecture in the domain of
control. The input/output domain and structure of the network and its proximity to
explicit Model Predictive Control (eMPC). The mathematical equivalency of feedforward
ReLU and piecewise affine function is presented, and we investigate the prospect of
representing state feedback policy of eMPC as a ReLU DNN, and vice versa. A sampling
based method has been developed to identify input–space regions in ReLU networks.
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Chapter 1

Introduction

This dissertation presents multiple of closely connected approaches in geometric–, proba-
bilistic–, and learning–based perception and control of robotic systems in various environ-
ments equipped with range sensors, LiDAR sensors, or any other 3D scanning technologies.
The theoretical development in connection with each framework has been equipped with
experimental results that confirms the performance improvement in each application.

1.1 Motivation
A localization technology should be reliable and robust in different situations like in bad
weather or in indoor areas with smoke or dust. Also any sensing technology for robots has
to work in area with limited accessibility or no pre–installed or destroyed infrastructure
in situations like building inspection or rescue mission in disaster area. It also should
be flexible in multi–robot cooperation settings. And finally it should be low cost. But
since there are physical limitations in the hardware level in these technologies, it is still
possible to improve the performance by developing reliable algorithms in the software
level. Audio- or radio-beacon systems are very reliable, flexible and low cost compared to
other sensing technologies like vision-based or laser-based systems.

The localization accuracy of range-based robots is sensitive to the ranging sensor layout,
therefore it is impossible to attain reasonable accuracy in the presence of the constraints
(e.g. limited line–of–sight, crowded indoor settings, dynamic environment with moving
objects) in the environment. without careful planning, which may be difficult in harsh
conditions.

Light Detection and Ranging (LiDAR) as well as 3D scanning sensor technologies share
similar characteristics with ranging sensor, though the former produces extremely rich
data from the environment comparing with the latter. While the beacon infrastructure of
range sensors is missing in LiDAR sensors, localization frameworks such as SLAM and
keypoint matching [28, 24, 14] on robots equipped with LiDAR incorporate keypoints and
landmarks as virtual beacons/anchors in the scenes during the process of localization and
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mapping. In addition, for robotic systems using the 3D LiDAR technology the problem of
point matching (or point registration) is an initial key step towards an accurate and reliable
pose estimation. Therefor the second part of this dissertation focuses on the problem of
point registration as an essential part of robot localization and state estimation.

In addition to the probabilistic view, with the advances in deep neural networks in
the domain of supervised learning, recently a new deep learning–based view of point
registration problem has been emerged. This view adds new mathematical tools and
empirical modules in tackling the persistent problems of point cloud registration to the
existing body of work. Classical methods (mostly geometric–and hybrid with probabilistic
interpretation of corresponding points, as the first step in solving the problem) dealing with
point registration are subject to certain limitations such as converge to a local optimum
near the initialization which makes the problem highly sensitive to the choice of initial
condition. Also, the computation speed (number of iteration to convergence) and accuracy
of these methods suffer from the sensitivity to the amount of outliers, noise, and repetitive
geometry in the scene. The use of deep neural network in the point clouds’ domain has its
own challenges due to the fact that point clouds are unordered and unstructured [141, 140,
121, 97, 53, 69]. Nevertheless in recent years a lot of progress has been made on performing
various tasks (e.g. object classification and detection, semantic segmentation, localization)
[102, 101, 143]. And still it remains an active area of research due to unresolved obstacles,
and since point clouds provide a very rich information of surrounding which is a decisive
part for the success of complex robotic systems such as autonomous driving.

1.2 Outline and Contribution
This dissertation has been organized in the following order. In chapter 2 a geometric–based
state estimator is derived for an agent with the ability to measure single ranges to fixed
points (anchors) in its environment. The state estimator makes no agent–specific assump-
tions and it is generic, and can be immediately applied to any rigid body agent with
the radio–beacon range sensor. As the considered system can only make a single range
measurement at a time, a greedy optimization algorithm has been presented for selecting
the best measurement in each time step. The selection algorithm is added to the extended
Kalman filter which minimizes the variance matrix in the beginning of the correction step
of the Kalman filter, resulting in choosing the best measurement out of all the available
range values at each time. An important property of the partial derivative of the mea-
surement model has been exploited in the process of computing the best anchor to range.
Experiments in an indoor testbed using an externally controlled multicopter demonstrate
the efficacy of the proposed algorithm, specifically showing an improvement over a naïve
strategy of a fixed sequence of measurements. In separate experiments, the algorithm is
also used in feedback control, to control the position of the multicopter. Other anchor
selection methods like [130, 57] only work in a collaborating manner where using infor-
mation from multiples of robots, or completely ignore the geometric property of ranging
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sensor technologies. Also they mostly rely on probabilistic properties of Kalman filter like
Fisher information which are not as reliable as the deterministic geometric property that is
exploited in this presented work.

In chapter 3, the localization accuracy (and eventually the state estimation accuracy) is
further improved for robot agents by introducing a real–time restructure of range sensor
setup. In addition to the optimal algorithmic scheme introduced in chapter one, the
framework in this chapter provides a reliable state estimation with accurate localization
characteristics in the absent of a structured range sensor setting. The method improves the
localization accuracy of robotic systems operating in a range–based localization network,
and it is favorable especially when the robots operate in harsh environments where the
access to a robust and reliable localization system is limited. Although it is only designed
to work with as few as two moving robots, the proposed method can be extended to a
multi–agent cooperative positioning framework using the ranging sensor technologies. A
state estimator is used for a six degree of freedom object using inertial sensors as well as
an Ultra–wideband (UWB) range measurement sensor. The estimator is incorporated into
an adaptive algorithm, improving the localization quality of an agent by using a mobile
UWB ranging sensor, where the mobile anchor moves to improve localization accuracy
of the main robot. The algorithm reconstructs the range sensor network in real–time to
minimize the covariance matrix in the extended Kalman filter. The proposed algorithm is
experimentally validated in a network of range sensors consisting of one mobile and four
fixed anchors. The main agent which should be localized and the mobile anchor are both
quadcopter. The algorithm also show similar result when using multiple mobile anchors
in restructuring the network of range sensors. Although the range measurement based
localization is deployed in various multi–agent positioning and wireless sensor networks
[90, 106, 27, 132, 105], the idea of mobile anchors (i.e. the range sensors that adapt their
locations in such a way to improve the position accuracy of the ego agent) is missing in all
of the previous works. The new approach proposed in chapter 3 addresses this limitation
that can be incorporated naturally in any previous ranging–based perception framework.

Chapter 4 presents a probabilistic–based approach for pose estimation using point
clouds. The point registration algorithm is based on directional statistics [122, 93, 75, 67],
which estimates the rigid transformation (i.e. rotation matrix and translation vector)
between two point cloud frames. The final result will be the estimation of robot’s pose
(its location and orientation) that is equipped with a LiDAR sensor capable of scanning
the 3D environment. The method improves the robustness of point registration and
consequently the robot localization in the presence of outliers which always occurs due
to occlusion, dynamic objects, and sensor errors. The framework transforms the point
registration task on a unit sphere, and solves the problem in two steps of correspondence
and alignment. In particular, a mixture model (as an example of directional statistics on
unit sphere in R3) is adopted and the process of point registration has been carried out by
the two phases of Expectation–Maximization algorithm. Other methods mostly use the
positional information of point clouds, but the presented method utilizes both position
as well as surface normals of each data point for pose estimation. The method has been
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evaluated with point clouds from LiDAR sensors in an indoor environment. Previous
methods of point registration like ICP or GICP are sensitive to outliers and initialization
of the algorithm, both of these disadvantages have been resolved and the results show
improvements in those fronts.

Chapter 5 presents a novel deep neural network for pose estimation which improves the
shortcomings in previously introduced models for the task of point registration. To remedy
prior limitations, a deep point registration method consists of blocks of graph structure
has been introduced. The graph–based architectures have demonstrated relational inductive
biases [7, 21, 98, 144], a key property in deep learning algorithms that leads to combinatorial
generalization. The framework models the point registration task based on the flexible
architecture of Graph Network (GN) blocks. Three main modules–an encoder, a core, and
a decoder–are responsible to perform both steps of correspondence and assignment in
point matching process. The experiments and examination of the proposed model shows
comparable results with other state–of–the–art geometric–or learning–based algorithm in
terms of accuracy as well as robustness with regard to bad initial conditions and presence
of outliers in data points. The flexibility and configurability of the framework allows to
easily change, add, and/or combine various customized deep modules and mechanisms
to the presented graph–based framework.

Parallel to the previous chapter concerning with the study of mathematical structure of
graph neural network, the last part of this dissertation investigates specific deep neural
architectures in a different task domain. Chapter 6 examines the input/output domain and
structure of famous Multi–Layer Perceptron (or MLPs) and its link to Model Predictive
Control (MPC). As the first step, feedforward rectifier (ReLU) MLPs and their relation
to the piecewise affine (PWA) functions as an essential linking mathematical entity has
been studied. Afterward, this chapter investigates the prospect of representing explicit
state feedback policy of model predictive control (eMPC) as a ReLU DNN, and vice
versa. The complexity and architecture of the DNN has been discussed by introducing
bounds on domain partitioning of such neural networks. A sampling based method has
been developed for input–space identification of ReLU networks. The method ultimately
approximates a PWA function over polyhedral regions as an equivalent for the networks.
Inverse multiparametric linear or quadratic programs (mp–LP or mp–QP) are another
connection in reconstruction of constraints and cost function given a PWA function that
has been investigated as a potential way of representing eMPC solution by means of PWA
functions and eventually ReLU networks.

1.3 Outlook
The goal of this dissertation is to highlight the benefits of carefully exploiting geometric
and probabilistic characteristics as well as hidden structural properties of robotic systems
and their surroundings in the field of perception and control.

The geometric characteristics can be utilized to further improve the existing algorithms
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for localization and state estimation. The probabilistic properties such as directional
statistics in this dissertation was employed to extract probabilistic aspects of the perception
modules to enhance the quality of pose estimation. In addition, the use of LiDAR–based
sensors provides a rich set of information from the environment that anticipates the
incorporation of efficient deep learning–based approaches to cope with the huge amount
of processing data at each time.

The experimental parts of this dissertation demonstrate the theoretical implication
of incorporating those characteristics to improve the accuracy and robustness of state
estimation in robotic systems. The experiments and discussions also illuminate the chal-
lenges that needs to be overcome in the future, so that the combination of all the presented
theatrical findings can be deployed successfully on a wide range of robots and dynamical
systems.
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Part I

Geometric State Estimation
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Chapter 2

Optimal Measurement Selection

2.1 Overview
Low cost, flexible, and reliable localization technology is a key enabling technology for
robotics. One of the main current limitations for the deployment of autonomous agents is
the agents’ ability to reliably and accurately determine their position. Various different
sensing technologies exist for localization, ranging from purely self-contained on the agent
to globally distributed satellite navigation.

Different technologies represent a variety of different trade-offs, with varying require-
ments of computational power, electric power, precision, reliability, and accuracy. Perhaps
the most widely used localization technology relies on satellites (e.g. GPS or Galileo) –
these systems work reliably and accurately when the agent has a clear line-of-sight to the
satellites (typically, outdoors, and far from tall structures), some example robotic systems
are [23, 134, 51, 6, 52]. However, the reliance on a clear line of sight to the satellites is also
the main drawback, leading to very poor (or nonexistent) localization in the presence of
tall structures (e.g. in cities) or indoors.

In research laboratories, a popular in-door alternative is to use optical motion capture
equipment, which can yield extremely precise measurements (errors on order of millime-
tres) at high rates, but only over small volumes (on the order of 100m3). Such systems
provide extremely rich data, but they are expensive, fragile, and are very constrained – for
examples of robotic systems relying on motion capture are [50, 77, 73].

Another paradigm relies exclusively on sensors on the agent itself, for example cameras
or laser range finders. Here, the agent may fuse the measurements with other sensors, to
simultaneously build a map of its environment, and localize within it (the SLAM problem)
[36, 88, 112, 20]. Such systems are attractive, since they are self-contained, but also require
substantial computational power, heavy sensors/cameras – this leads to large, heavy,
complex, and energy-hungry agents. Such systems may also be fragile, especially in
environments with visual changes (e.g. smoke, changing light conditions and shadows,
etc.).
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Alternatively, radio- or audio-beacons can be installed indoor, to build an indoor
analogue of GPS, such as in [99, 62, 114, 100, 84]. Such systems may be created out of
relatively low-cost components, provide high-quality localization over large areas, and do
not impose particularly large restrictions on the individual agents using the localization
system. However, they do require the installation of infrastructure, and as such are less
flexible than vision-based systems. Ultra-wideband (UWB) radio ranging is an example of
such localization system. In [57, 31], this type of technology (e.g. radio beacon) is used to
solve the SLAM problem based on the robot cooperation with sensor networks.

Utilizing the UWB as range sensor for localization purposes is well-developed in the
literature. Range-only SLAM is a precise way of localizing wireless sensor networks (WSN)
node positions [120]. In [30], the UWB ranging sensor is used for the range-only SLAM
approach. In [130], a method is described based on the Fisher information matrix of the
Kalman filter which improves the target tracking accuracy of the wireless network. The
method is related to our proposed method in this chapter which selects sensors for future
measurements.

A schematic of UWB ranging system is given in Fig. 2.1. Furthermore, such systems
typically use active measurements, wherein a measurement involves the transmission of a
radio/audio message from the localization infrastructure to/from the agent. Since these
communications use the same frequency band, this imposes a constraint on the number of
simultaneous measurements.

In this chapter, a flexible state estimator, and an algorithm for selecting the optimal
localization measurement will be presented, so that an agent may maximize its localization
quality. A first-principles model is developed for an autonomous agent localizing by
measuring distances to fixed (known) locations in the world, which is incorporated in a
Kalman filter for six degrees-of-freedom (6DOF) state estimation. The results are validated
in a series of experiments, where the estimator is deployed on a low-cost quadcopter
system.

A2

A5

A6 A8

A1

A3 A4

A7

Figure 2.1: A schematic of the proposed systems: an agent (here a quadcopter) operates in
a space prepared with multiple radio anchors at known locations (indexed A1-A8) in the
Figure. At any given instant in time, the vehicle can only measure a distance to one anchor.
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2.2 Modeling
We consider the problem of estimating the state of an agent, modelled as a generic six
degree of freedom rigid body, equipped with an inertial measurement (accelerometer and
rate gyroscope), and with the ability to measure the distance to any of a fixed set of points
in its environment. The body’s degrees of freedom are three in translation, and three in
rotation; yielding a six-dimensional state vector to estimate. The goal is to have as general
as possible a model, so that the resulting estimator may be applied to a variety of types of
agents without modification.

Equations of motion

The convention here is of using bold-face symbols for vector/matrix quantities, and
regular font for scalars. Specifically, the position of the object is denoted as x, expressed in
a coordinate system fixed with respect to the ground. The object’s velocity and acceleration
are given respectively by v and a, again expressed in the ground. The orientation of
the object is encoded with the rotation matrixR, and the angular velocity is given by ω.
The rotation matrix is defined so that multiplication by R is equivalent to a coordinate
transformation to the inertial frame, from the body-fixed frame. The time derivatives of
these quantities are given as

d

dt
x = v (2.1)

d

dt
v = a (2.2)

d

dt
R = RS(ω) (2.3)

where S(ω) is the skew-symmetric matrix version of the cross product, so that S(x)y =
x× y. Note we do not use the derivative of the angular velocity, as the angular velocity
can be reliably estimated directly from the rate gyroscope outputs.

Inertial measurements

The agent’s inertial measurement unit outputs accelerometer and rate gyroscope measure-
ments, α and γ, respectively. Both sensors are assumed to be well-calibrated, specifically
having no scale errors nor bias offset.

The rate gyroscope measures the angular velocity, corrupted by an additive noise νγ ,
and the measurement is modeled as

γ = ω + νγ (2.4)
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The accelerometer measures the ‘proper acceleration’ of the vehicle, in the vehicle’s body-
fixed coordinate system, as given by:

αm = R−1 (a− g) + να (2.5)

where we again assume corruption by an additive noise να, and g is the gravitational
acceleration vector, constant in the earth-fixed frame – see [66] for a good tutorial. A typical
‘z-up’ coordinate system would have g = (0, 0,−9.81) m/s2.

Range measurement system

At discrete times, the agent is able to measure the distance from itself to one of a set of
fixed positions in the world (here, called ‘anchors’). The anchors are at known positions pi
in the world, and a measurement ρi to anchor i is modelled as

ρi = ‖x− pi‖+ νρ (2.6)

where ‖·‖ is the Euclidean norm, and νρ is a scalar, additive noise. Note that this assumes
that the radio antenna is located at the same point as the inertial measurement unit; this
assumption can be relaxed easily however. Furthermore, no dependency is assumed on
the orientation, though this has been shown to be a potentially important effect [65].

A single distance measurement between the agent and an anchor consists of a set of
four radio messages, which allow the agent and the anchor to determine the distance
between them by measuring the time-of-flight of the radio signal (see [84] for a similar
scheme). The agent can communicate only with one anchor at a time, meaning that only a
single range measurement can be taken at any instant in time.

2.3 Estimator
The goal of the estimator is to estimate the 12-element state of the rigid body agent, using
measurements from the inertial measurement unit and the range measurements. We
create a “kinematic” state estimator for a generic 6DOF object, making specifically no
assumptions on the forces or torques acting on the system. This yields a flexible estimator,
that may be readily applied to a variety of rigid bodies; the flexibility comes at the cost of
some precision (if we had an accurate model of the forces/torques acting on the agent, this
information could be used to improve the estimator performance).

The estimator is based on the Extended Kalman Filter (EKF) [118], specifically using
the technique of [83] to encode an attitude in the state with correct-to-first-order statistics.
It is worth mentioning that no trilateration method has been used to calculate the position
of the agent from a set of range measurements. The estimator only relies on a single
measurement at each step of EKF.
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Although the 6DOF agent has twelve states, the estimator’s stochastic state ξ is 9
dimensional:

ξ̂ =
(
x̂, v̂, δ̂

)
(2.7)

with the hat denoting estimated quantities, and where δ is an “attitude error” measure,
assumed to be small. The estimator uses a redundant attitude representation, with a
‘reference attitude’ Rref and the attitude error δ̂ combined yielding the estimator’s attitude
estimate R̂ which is

R̂ = Rref

(
I + S(δ̂)

)
(2.8)

with I the identity matrix. This representation allows for a singularity-free attitude
estimation using only a three-dimensional representation of the attitude error. This is
achieved by enforcing the requirement that δ is zero after each Kalman filtering step – a
complete discussion of this approach is given in [83].

The estimator does not include the angular velocity ω as a state, and instead uses
the measurement from the rate gyroscope directly. This is justified by the high-quality
measurements from modern rate gyroscopes, and is a standard approach in e.g. attitude
estimation for satellites (see, e.g. [76]). Not only is this conceptually simpler than encoding
additional states, it substantially reduces the computational complexity of the resulting
state estimator (since the computational complexity of a Kalman filter scales approximately
like the number of states cubed).

In the prediction stage of the extended Kalman filter, the output of the accelerometer
and rate gyroscope are used, so that the acceleration is given by:

d

dt
v = Rαm + g −Rνα (2.9)

The orientation differential equation is rewritten in terms of δ, with specifically

d

dt
δ = γ − νγ (2.10)

It is assumed that the sensor noise terms να and νγ are zero-mean, and spatially and
temporally independent, so that they can be straight-forwardly modelled as process noise
in the Kalman filter formulation.

The output from the ranging radios is used for the estimator’s measurement update
step. Specifically, given a measured distance ρi (with the subscript i indicating the choice
of anchor to which the range was measured), the measurement equation (2.6) can be
linearized straight-forwardly to apply the Extended Kalman filter formulation.
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Since the measurement model is the distance of the agent from the anchor, the partial
derivative with respect to the estimator state has an interesting property:

H i :=
∂ρi
∂ξ

=

(
∂ρi
∂x

,
∂ρi
∂v

,
∂ρi
∂δ

)
(2.11)

∂ρi
∂x

=
x− pi
‖x− pi‖

=: ei (2.12)

∂ρi
∂v

=
∂ρi
∂δ

= 0 (2.13)

This means that the measurement sensitivity is the unit vector in the direction of the agent
from the anchor ei – a very intuitive property that will be exploited in the next section to
determine which anchor i should be used for the measurement.

The Kalman filter also computes an estimated covariance matrix, Σ relying on the
partial derivatives and using the approach of [83]. The matrix may be partitioned into
blocks, as below

Σ =

Σxx Σxv Σxδ

Σvx Σvv Σvδ

Σδx Σδv Σδδ

 ∈ R9×9 (2.14)

with e.g. Σxδ the 3× 3 cross-covariance between the position and attitude states.

2.4 Anchor selection algorithm
As the agent is only capable of measuring the distance to a single anchor at any given
time, there is the freedom to choose which anchor. A simple algorithm to use is to proceed
sequentially through the list of anchors, consistently following some pre-determined
ordering. Here, instead, we describe a computationally efficient and greedy selection
algorithm that maximizes the information gain from the anchors at each time step. This
is done, specifically, by choosing to get that measurement which produces the largest
decrease in the estimator’s variance, using the matrix trace as measure of size. This is
closely related to the information matrix (Fisher information), which for a Gaussian case
is the same as the inverse of covariance matrix, and provides the measure of information
about the state present in the observations [85]. This means by minimizing the covariance
matrix, the maximum of available information in the measurements can be extracted.

Given a measurement ρi from anchor i, the Kalman filter’s covariance is updated at
each time instant according to the standard Kalman filter equations:

Ki = ΣHi
>(HiΣHi

> + r)−1 (2.15)
Σ+
i = (I −KiHi) Σ (2.16)
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where Σ+
i is the updated covariance matrix after a measurement update, Ki is the EKF

gain matrix, and Hi is the measurement matrix as computed in (2.11). By substituting
(2.15) in (2.16), we define the change in covariance due to a measurement update from
anchor i as ∆Σi

∆Σi = Σ+
i −Σ = −ΣH>i (H iΣH

>
i + r)−1H iΣ (2.17)

with r the (scalar) variance of the ranging noise νρ. Since the measurements are scalar, the
matrix inverse is simply an ordinary division. Also, the matrix Hi is sparse, therefore (2.17)
can be decomposed as

∆Σi =
−1

e>i Σxxei + r

Σxxei
Σxvei
Σxδei

Σxxei
Σxvei
Σxδei

> (2.18)

consisting of the projection of the variance onto the unit vector to the anchor i.
By comparing this change in covariance, different potential measurements (to anchors

at different locations) at any given time can be compared. Notable is the intuitive form that
this change takes, which will be exploited to generate an easily computed metric, below.

Minimizing trace of covariance matrix

The performance metric we minimize is the trace of the covariance matrix after the mea-
surement, that is tr

(
Σ+
i

)
. The trace of covariance matrix is the mean of the norm of the

error squared of state estimator (i.e. tr
(
Σ+
i

)
= E||ξ − ξ̂||2). This metric perfectly makes

sense, since the goal is to reduce the estimation error as much as possible [17].
From the definition of ∆Σi in (2.18), and the linearity of the trace operator, it follows

that this is equivalent to maximizing tr (∆Σi) (i.e. by maximizing the difference between
covariance of Kalman filter before and after measurement, the algorithm chooses the
anchor which reduces the covariance trace the most).

Starting from equation (2.17), using the cyclic property of matrix traces (e.g. tr(AB) =
tr(BA)), we simplify to get

tr(∆Σi) = − H iΣΣH>i
H iΣH

>
i + r

(2.19)

This can be simplified further by exploiting the sparsity ofH i, to yield

tr(∆Σi) = −‖Σxxei‖2 + ‖Σxvei‖2 + ‖Σxδei‖2

e>i Σxxei + r
(2.20)

At a given instant in time, the system computes ∆Σi for each anchor i in the network,
and then selects the maximizing anchor. This is a simple computation, requiring only
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a small number of multiplications to compute, and therefore easily implemented on
computationally limited hardware. (i.e. Using (2.20) with the necessary number of fixed
points in the space (usually 5 or 6), the computation cost is significantly small considering
relatively powerful microcontroller used in today’s robotic systems).

2.5 Experimental validation
The approach is validated in experiment, where a quadcopter is used as the autonomous
agent. A first set of experiments is an ensemble, showing the performance of the algorithm
for the quadcopter under external control, so that the motion is repeatable. These experi-
ments compare performance when using the greedy optimization to that when using a
fixed, sequential measurement sequence. The second experiment demonstrates closed-loop
control of the quadcopter, using the resulting state estimate for feedback control.

Experimental setup

The proposed algorithm was tested on a Crazyflie 2.0 quadcopter (shown in Fig. 2.3), with
approximate mass of 30g, and a scale of approximately 105mm. The quadcopter is equipped
with an STM32F4 microcontroller, uses an Invensense MPU9250 inertial measurement
unit, and a Decawave DW1000 module for the ultra-wideband ranging measurements.
The anchors shared the same computational and sensing hardware. All computations
for the state estimation (including the measurement selection) were performed on the
microcontroller. Measurements from the accelerometer and rate gyroscope were taken
at 500Hz, and range measurements were taken at approximately 60Hz. The estimator
performance is quantified by using a ceiling-mounted motion capture system, whose
measurements are taken as ground truth.

The anchor arrangement as well as the quadcopter’s commanded trajectory can be seen
in Fig. 2.4. In general at least four anchors is needed in order to estimate a unique position
in the space (otherwise the estimate of position may be arbitrarily rotated, reflected, or
even translated). But in real-time implementation, it is a good practice to have more
than four anchors for redundancy. Since the estimator uses only one range measurement
at a time from one anchor, increasing the number of anchors will not affect the results
theoretically, though this should be investigated in real-time experiment. Notable is that
three anchors are placed in very close proximity to one another, so that their measurements
convey very similar information. This was chosen so as to highlight the effect of the greedy
optimization algorithm that was proposed in this chapter.

Estimation only

In the first set of experiments, the state estimate is not used for control, and instead an
offboard controller is used. This offboard controller uses measurements from the motion
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Figure 2.2: Estimation using ultra-wideband ranging localization (optimal anchor selec-
tion). The left column of plots shows the position in [m], the middle column shows the
velocity in [m/s], and the right column shows the attitude of the quadcopter in [deg.]. The
experiment illustrates the comparison of true states (driven from motion caption system)
against our estimator using the optimal anchor choice. As seen, quadcopter takes off and
hovers for 2s, then starts moving along the y axis horizontally for 8sec., and finally lands
at the origin. The yellow area around the mean values on the plots shows the square
roots of the diagonals of EKF covariance matrix (i.e. one standard deviation). Note that
the estimator does not compute the estimate in terms of yaw, pitch, and roll angles; the
estimator output is simply transformed into this format as it is easier to parse in a figure.
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Figure 2.3: The quadcopter used in our experiments as the mobile agent. The UWB
ranging sensor (sees in this picture) works at the rate of approximately 60 Hz.

capture system, and consists of a set of cascaded controllers similar to that of [73]. The use
of the offboard controller resulted in repeatable experiments, where the quadcopter moved
along very similar trajectories for each flight (which therefore yields a fair comparison). For
all experiments, the estimator of Section 2.3 runs exclusively on the agent’s microcontroller.

The estimator outputs were examined and compared with two different EKF settings:
when the quadcopter sequentially ranges to anchors (the naïve approach), and when the
quadcopter uses the optimization of Section 2.4. The reference trajectory path is also shown
in Fig. 2.4.

The experiment was repeated ten times for each algorithm, and the resulting root mean
square error (RMSE) for each trial are shown in Table 2.1. Due to the system’s stochastic
nature, the best run using the naïve sequential selection approach is better than the worst
run using the optimization algorithm. Nonetheless, a clear improvement is observed on
average, with an RMSE reduction of approximately 11% in position and velocity, and 17%
in attitude when using the optimal measurement selection algorithm.

Fig. 2.2 shows experimental data from a representative trial using the optimal anchor
selection algorithm. The graph shows that the estimated state is close to the ground truth
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Figure 2.4: Anchor setup and quadcopter trajectory. The set of five anchors are all located at
z = 0, and the quadcopter’s motion is confined to a plane where x = 0, with the horizontal
motion at a height of 2m.

data from the motion capture system, with specifically also the estimator variance being a
reliable indication of estimate quality. The results are closely related to our conclusion on
maximizing the most informative direction in the space. The extreme anchor arrangement,
gives very little information in the x direction to the estimator, and this creates large
uncertainty on that direction. Notable also is the large initial uncertainty in attitude for
the rotation about gravity. This is because this state is unobservable without horizontal
motion, and the uncertainty rapidly decreases when the vehicle executes the side-to-side
motion.
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Closed-loop tracking experiment

The second experiment demonstrates that the estimator performs sufficiently well to allow
the quadcopter to fly without the use of the external system. The result of the experiment in
position can be seen in Fig. 2.5. As seen in the graph, the quadcopter tracks the command
in y and z directions well, but performs more poorly in the x direction. This is due to the
larger uncertainty in this direction, stemming from the anchor layout.

2.6 Conclusion
This chapter presented a computationally low-cost algorithm for estimating the six degree
of freedom state of a rigid body equipped with an inertial measurement unit and operating
inside a system of range-measuring radios. Specific attention was paid to the optimal
selection of a ranging measurement, where the resulting approach is based on greedily
minimizing the trace of the estimator covariance matrix. Although increasing the rate of
measurement can potentially improve the estimator performance, the hardware limitation
is always an issue. Also, even with higher measurement rate, the proposed algorithm can
be used to improve the performance further more. The resulting algorithm can be deployed
on low-cost, computationally constrained devices. The estimator has the advantage that it
makes no specific assumptions about the agent’s motion, and could thus be immediately
applied to a large variety of agents.

A series of flight experiments were performed to demonstrate the efficacy of the
estimator as implemented on a low-cost quadcopter. Over twenty repeated experiments
with the quadcopter externally controlled, a substantial improvement due to the selection
of the anchor using the greedy optimization approach compared to using a naïve sequential
ranging algorithm was shown. Further experiments showed that the estimator performs
sufficiently well to be used for closed-loop control as well, even for fast, unstable systems
such as quadcopters.
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Figure 2.5: Closed-loop control of the quadcopter using the presented optimal anchor
selection algorithm. The plot represents the position of quadcopter. The blue, green, and
red lines show the command position, the onboard position estimator (EKF), and the
motion capture system output (ground truth), respectively. The yellow area around the
estimation shows one standard deviation on position in each direction.
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Chapter 3

Restructure of a ranging-based
localization network

3.1 Overview
An accurate, robust, and accessible localization system is crucial for robot operation in
the case of, for example, emergency services, building fault detection in disaster areas,
or rescue missions. We assume that in these situations the pre-installed infrastructure is
destroyed or limited (i.e. no access to GPS signal), and therefore a local and stand-alone
alternative localization system is vital. Also, the harsh environment of these situation
requires to use reliable sensory devices. For example, the sensors should function in smoke,
dust, and in foggy or heavy rain conditions where optical systems cannot be used reliably.
An infrastructure (e.g. radio/audio beacons) for the local positioning system is important
to be placed in the environment such that it maximizes the localization accuracy, but it is
most likely impossible due to limited accessibility of such environment. The proposed
method in this chapter will address above issues by using a reliable range measurement
sensor with mobile infrastructure setting.

The recently popular ultra-wideband radio ranging is a flexible, relatively low-cost, and
reliable localization technology mostly for but not limited to indoor environments – see e.g.
[109, 29, 110, 39, 74]. The infrastructure components (i.e radio-beacon) of the system are
easy to setup in the environment. The radio-beacon (here called ‘anchor’) communicates
via radio messages with an agent which is equipped with UWB sensor. The result is a
range measurement, the distance between the agent and each individual anchors.

The UWB sensors are used in a wide range of localization methods. For example, in
conjunction with the SLAM (simultaneous localization and mapping) problem, a particular
UWB transmitter-receiver configuration on an agent is used in [30]. The authors explain
that it is crucial to use UWB ranging specially in emergency situation, when other tech-
nologies like camera- or laser-based sensors fail to operate in such harsh environment. The
UWB technology also has medical applications. For example, authors in [19] developed
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an algorithm to improve the localization accuracy of surgical devices using UWB sensor
in highly reflective and dense indoor environments such as operating rooms where mul-
tipath and no-line-of-sight conditions are an issue. In [64], authors developed a Kalman
filter estimator using fusion of inertial measurement unit with UWB ranging sensor for
localization in crowded and dynamic environments like imaging rooms, where technical
devices like C-arm imaging systems or operating tables are moving.

The range measurement based localization is also used in multi-agent cooperative
positioning and wireless sensor network [90, 106, 27, 132, 105]. The main idea is to
localize several agents (or wireless sensor nodes) with the capability of exchanging their
information (i.e. relative distance, position, orientation, etc). Our proposed method
considers using several fixed UWB anchors as well as mobile anchors, the ones that adapt
their positions in order to improve the position accuracy of the agent. In other words, the
cooperation occurs between an agent and a set of mobile anchors. Since the localization
accuracy is sensitive to the anchor arrangement, it is hard to achieve reasonable accuracy
with restricted anchor’s arrangement without careful planning, which may be difficult in
harsh conditions. In this chapter, the position of mobile anchors is assumed to be known
(i.e. they have access to a separate, independent localization technology), whereas the
agents rely only on the mobile and fixed anchors for localization, since they don’t have
access to any localization infrastructure. Future work will look at generalizing this by
removing the separate localization technology which mobile anchors currently rely on. A
schematic of our proposed system is shown in Fig. 3.1

In this chapter, we use a state estimator with no assumption on force-torque, and we
develop an adaptive localization algorithm on top of the estimator for moving a known
ranging measurement point (i.e. a mobile anchor), so that an agent may minimizes its
position uncertainty. The state estimation consists of a general six degrees of freedom
(6DOF) model with measurement model as agent’s distance to known positions in the
world. The adaptive algorithm maximizes the agent’s localization quality in the least-
square sense. The results are validated in a series of experiments, where the estimator is
implemented on a quadcopter system.

3.2 System Model
We consider model of a generic 6 degree of freedom (3 in translation and 3 in rotation)
rigid body for the purpose of estimating the states of an agent. The agent is equipped with
inertial measurement unit (accelerometer and rate gyroscope) and a range measurement
sensor that allows to measure the distance to any of fixed or mobile sets of anchors (with
known location) in its environment. In the following subsections we will briefly describe
the underlying models of the estimator.
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Figure 3.1: A schematic of the proposed systems: an agent (here a quadcopter) operates in
a space prepared with combination of one mobile (indexed as M1) and four fixed radio
anchors (indexed A1-A4). At the left, the ellipse representing the position uncertainty
is extended in the direction which there is no anchors present. At the right, the mobile
anchor moves to the area with no anchors and reduces the uncertainty around the agent.

Equations of motion

We will use the convention of using bold-face symbols for vector/matrix quantities, and
regular font for scalars. In the model, the position of the rigid body (agent) is denoted as
x, its velocity as v, and acceleration as a, all expressed in the inertial frame fixed to the
ground. The rotation matrix and the angular velocity are given respectively byR and ω,
where the rotation matrix represents the orientation of the agent. The multiplication by the
rotation matrix will result a coordination transformation from the body-fixed frame to the
inertial frame. The time derivatives of these quantities are given as

d

dt
x = v (3.1)

d

dt
v = a (3.2)

d

dt
R = RS(ω) (3.3)

note that S(ω) is the skew-symmetric matrix version of cross product, where S(x)y =
x× y.
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Inertial measurements

The inertial measurement unit outputs the accelerometer and rate gyroscope measure-
ments, α and γ. The accelerometer measures the ‘proper acceleration’ in the body-fixed
frame which we assume it is corrupted by additive noise να.

αm = R−1 (a− g) + να (3.4)

The gravitational acceleration is in the inertial frame fixed to the ground, and has magni-
tude g = (0, 0,−9.81) m/s2. The rate gyroscope measures angular velocity of the agent in
the body-fixed frame. The measurement is modeled as

γ = ω + νγ (3.5)

here the the measurement is corrupted by νγ . Both να and νγ are assumed to be zero
mean, based on the fact that the sensors are well calibrated and scale/bias-free.

UWB Range measurement system

The UWB radio mounted on the agent communicates with other radios in the environment.
At each time instant, the agent measures the distance from its position at x to one of fixed
or mobile position at pi (anchor’s position) in the world. This measurement ρi to anchor i
is modelled as the Euclidean norm corrupted with additive scalar noise νρ with zero mean.

ρi = ‖x− pi‖+ νρ (3.6)

The UWB radio uses two-way ranging time-of-flight based algorithm to calculate the
distance (see [84] for two-way ranging scheme). The agent can communicate only with
one anchor at a time, meaning that only a single range measurement can be taken at any
instant in time.

3.3 State estimator
For the state estimation, an extended Kalman filter (EKF) [118] presented in this section
estimates the 12-element state of the agent consist of position, attitude and their derivatives.
The kinematic model makes the Kalman filter an estimator for a generic 6DOF rigid body
with no assumption on forces or torques acting on the agent. The EKF uses the technique
of [83] to encode an attitude in the state with correct-to-first-order statistics.

The estimator does not include the angular velocity as a state, instead uses the output
of rate gyroscope measurement; assuming that the modern sensors output high-quality
measurements which is a standard approach in attitude estimation for satellites [76]. Thus,
the estimator’s stochastic state ξ is a 9 dimensional vector:

ξ̂ =
(
x̂, v̂, δ̂

)
(3.7)
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with the hat denoting estimated quantities, and where δ̂ represents attitude error measure,
assumed to be small. The estimator uses a redundant attitude representation, with a
‘reference attitude’ Rref and the attitude error δ̂ combined yielding the estimator’s attitude
estimate R̂

R̂ = Rref

(
I + S(δ̂)

)
(3.8)

with I the identity matrix. This representation allows for a singularity-free attitude
estimation using only a three-dimensional representation of the attitude error – a complete
discussion of this approach is given in [83].

The EKF uses the output of accelerometer and rate gyroscope for the prediction step,
so the state differential is given by

d

dt
v̂ = Rαm + g −Rνα (3.9)

d

dt
δ̂ = γ − νγ (3.10)

In the measurement update step, the estimator uses the output of the UWB ranging radios.
The linearization of measurement equation (2.6) is as follows

H i :=
∂ρi
∂ξ

=

(
∂ρi
∂x

,
∂ρi
∂v

,
∂ρi
∂δ

)
(3.11)

∂ρi
∂x

=
x− pi
‖x− pi‖

=: ei (3.12)

∂ρi
∂v

=
∂ρi
∂δ

= 0 (3.13)

Note that the measurement sensitivity with respect to the agent’s position ei is the unit
vector in the direction of anchor i from the agent.

The estimate covariance matrix Σ computed by EKF relies on the partial derivatives
of linearization process and using the approach of [83]. This is the partitioned matrix as
below

Σ =

Σxx Σxv Σxδ

ΣT
xv Σvv Σvδ

ΣT
xδ ΣT

vδ Σδδ

 ∈ R9×9 (3.14)

with e.g. Σxδ the 3 × 3 cross-covariance between the position and attitude states. The
very intuitive property of measurement sensitivity will be used in the following section to
determine how the anchors can move in order to maximize the localization quality of the
agent.
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3.4 Mobile anchor algorithm
The measurement model as described in (3.12) is sensitive to the location of the anchors
pi. This means, it is possible to affect the variance of the state estimates by moving the
anchors. This allows to create an optimization problem in order to move the anchors in
the direction which minimizes the estimation error of the agent’s position. The covariance
matrix is used as the metric for estimation quality. In the following subsections we will
discuss this approach in detail.

Least squares approach

The least-square approach is used as an easy-to-analyze approximation of the EKF used to
estimate the agent’s location. This is motivated by the least squares interpretation of the
Kalman filter.

All the derivations in this section are assumed to be for a single mobile anchor with
N − 1 fixed anchors. It is simple to generalize the derivation for multiple mobile anchors,
since the desired moving direction of each anchor decouples. All the quantities without
number subscription are introduced for the single mobile anchor.

Notable is that we have two sets of decision variables in this section. The position
estimate of the agent x is the decision variable for the least squares problem. The mobile
anchor’s position p is the decision variable for minimizing the variance of the agent’s
position estimate. We are using these two variables throughout this section.

We consider again the ranging measurement model in (2.6). Note, here we look at
a batched version of this equation (i.e. the equation is concatenation of scalar measure-
ments at each discrete time step for N anchors, fixed or mobile anchors), which is an
approximation of EKF

ρ = h(x,p) + νρ (3.15)
ρ
ρ1
...

ρN−1

 =


‖x− p‖
‖x− p1‖

...∥∥x− pN−1∥∥

+


νρ
νρ1
...

νρN−1

 ,
where ρ is the measurement vector, νρ is the additive noise vector with zero mean, and
h(x, p) is the nonlinear measurement model (vector-valued equation) mapping the posi-
tion of an agent in R3 to the batch of anchors’ measurements in RN . The partial derivative
of the nonlinear model with respect to the agent’s position will result a N × 3 Jacobian
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matrix

H(x̂, p) =
∂h(x, p)

∂x
=


e>

e>1
...

e>N−1

 ∈ RN×3 (3.16)

where ith row of the matrix is the unit vector pointing from the agent to anchor i. Assuming
noise in (3.15) to be zero mean with isotropic covariance Var(νρ) = qI , the position estimate
can be found by minimizing the 2−norm squared of noise

x̂ = arg min
x
‖νρ‖2

As stated before, for the nonlinear measurement model this will be done iteratively by
linearizing the model at each time step, and moving in the direction of the gradient descent.

Statistical properties

Since we use the linearized version of the equation, the mean of the estimated position is
zero (i.e. unbiased estimator) but the variance is

Var(x̂) ≈ ((H>H)−1H>)qI((H>H)−1H>)>

= q(H>H)−1 (3.17)

For brevity, we useH instead ofH(x̂, p) from now on. Our goal is to minimize the effect
of noise on the state estimates (i.e. to minimize the variance of the state estimates by
varying the anchor location). Specifically, we choose to minimize the largest eigenvalue of
the covariance matrix, which is equivalent to maximizing the smallest eigenvalue of its
inverse:

max
p

min
i

λi(H
>H) (3.18)

By expanding matrix H>H , the max-min problem can be converted to a simple form.
Substituting (3.16) in matrixH , the result is the sum of N rank-one matrices

H>H =
[
e e1 . . . eN−1

]

e>

e>1
...

e>N−1

 (3.19)

= ee> +
N−1∑
i=1

eie
>
i
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Since all ei and e are unit vectors (the direction to the anchors), the trace of H>H is
always constant and equal to the number of anchors:

tr(H>H) = tr(e>e) +
N−1∑
i=1

tr(e>i ei) = N (3.20)

The trace of a matrix is also equal to the sum of its eigenvalues; that means the sum of
eigenvalues of the covariance matrix in this problem is constant.

tr(H>H) =
3∑
i=1

λi = N (3.21)

Using this fact, the max-min optimization problem can be transformed to

max
λ,t

t

subject to 1>λ = N

t ≤ λi ∀i
0 ≤ λi ∀i

(3.22)

where t is a slack variable, and λ is a vector representing the eigenvalues of matrixH>H .
This problem can be solved by introducing its dual problem. Since (3.21) shows that the
sum of eigenvalues is constant, we can conclude that (3.22) is equivalent to the following
problem

max
p

det(H>H) = max
i

3∏
i=1

λi (3.23)

It can be shown that for both problems the maximum occurs, when all the eigenvalues
are equal. Specifically, (3.18) has interpretation for robust design (it minimizes the worst
variance direction) as opposed to (3.23) which minimizes the volume of ellipsoid associ-
ated with the covariance matrix [17]. This shows that this method satisfies both design
approaches (i.e. minimizing the largest variance direction will result in minimizing the
ellipsoid volume).

Mobile anchor

Since the matrix consists of the mobile anchor’s position, its determinant depends on the
position of the mobile anchor at each time step.

H>H =
(x̂− p)(x̂− p)>

‖x̂− p‖

+
N−1∑
i=1

(x̂− pi)(x̂− pi)>

‖x̂− pi‖
∈ R3×3
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By taking partial derivative with respect to the mobile anchor’s position p = (x, y, z) we
can find a direction that the mobile anchor can move in order to minimize the determinant
of the covariance matrix

∂det(H>H)

∂p
=

 d
dx

det(H>H)
d
dy

det(H>H)
d
dz

det(H>H)

 (3.24)

We rewrite the inverse of the covariance matrix in a compact form as

H>H =

m1 m2 m3

m2 m4 m5

m3 m5 m6

 (3.25)

wheremi are functions of mobile anchor’s position. As an example,m1 andm6 have the
form (note that x̂1, x̂2, x̂3 are the three first states of the estimator representing the agent’s
position):

m2 =
(x̂1 − x)(x̂2 − y)

‖x̂− p‖2
, m6 =

(x̂3 − z)2

‖x̂− p‖2

Representing the inverse of the covariance matrix in the compact form of (3.25) allows to
derive the determinant of the matrix and its partial derivative in terms of functions mi,
and then substitute back the mobile anchor’s position. At the end, (3.24) will be a set of
three closed form equations in terms of the mobile anchor’s position as well as the agent’s
position, which can be easily implemented.

We choose the control action as the velocity command for the mobile anchor which is
the Jacobian of the determinant of the covariance matrix multiplying by a gain value s > 0
as follows

vcmd = s
∂det(H>H)

∂p

This is exactly the same as moving on the direction of gradient ascent iteratively until the
mobile anchor reaches to the top (max point of determinant) and stays there. For sequence
of steps the mobile anchors move as follows

p(k + 1) = p(k) + (∆t)vcmd (3.26)

where k is time steps and ∆t is the discrete time interval. In the following section we will
present the real-time experimental results of this approach.
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Figure 3.2: Closed loop control of quadcopter using UWB ranging sensor with and without
use of mobile anchor. The experiment illustrates the square roots of the diagonals of EKF
covariance matrix (i.e. one standard deviation). As seen using mobile anchor, decreases
uncertainty (position and velocity) dramatically in the x direction, since there are enough
fixed anchors along y direction but nothing in the x direction (see Fig. 3.3). Note that
the estimator does not compute the estimate in terms of yaw, pitch, and roll angles; the
estimator output is simply transformed into this format as it is easier to parse in a figure.

3.5 Experimental validation
The approach is validated in experiment, where two quadcopters are used, one as au-
tonomous agent and one as mobile anchor. A first set of experiments just uses the fixed
anchors as the only UWB measurement setting. The second experiment uses one mobile
anchor in addition to the fixed anchors. Results will be presented by comparing the agent’s
variance computed by the onboard EKF for the two different experiment settings.
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Figure 3.3: Top view. Red dots represent the position of fixed anchors in both sets of
experiments. The black dot is the fifth fixed anchor in the first and the initial position of
mobile anchor in the second set of experiments. The set of four anchors are all located at
z = 0. The blue path is the projection of the mobile anchor trajectory on xy plane.

Experimental setup

The testbed we used to examine our algorithm is a Crazyflie 2.0 quadcopter, with approxi-
mate mass of 30g, and motor-to-motor distance of 105mm. We used two quadcopters as
the agent and the mobile anchor in our experiments. The quadcopter is equipped with
an STM32F4 microcontroller, an Invensense MPU9250 inertial measurement unit, and a
Decawave DW1000 radio module for the ultra-wideband ranging measurements. Beside
the mobile anchor which shared the same hardware, all the fixed anchors also have the
same computational and sensing hardware. The state estimation (EKF) for the agent was
performed on the microcontroller, but the mobile anchor used motion capture system for
its own localization, and was commanded by the trajectory according to (3.26) computed
off-board on a computer. Measurements from the accelerometer and rate gyroscope were
taken at 500Hz, and range measurements were taken at approximately 80Hz. The effec-
tiveness of our approach on the estimator performance is quantified by using the motion
capture system, whose measurements are taken as ground truth.

The top view of the anchor arrangement can be seen in Fig. 3.3. Notable is that the
anchors are placed such that their measurements carry sufficient information in the y
direction, but not very much in the x direction. This was chosen so as to highlight the
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Root mean-square error (RMSE)
Average difference %4 fixed, 1 mobile 5 fixed anchors

position [m] 0.156 0.182 -14.3%
velocity [m/s] 0.374 0.409 -8.6%
attitude [deg.] 5.140 5.315 -3.3%

Table 3.1: Comparison of estimation error from experiments

importance of mobile anchor and our proposed algorithm.

Experiment with mobile anchor

Two sets of similar experiments were conducted to verify the advantage of using mobile
anchor against only fixed anchors to improve the localization accuracy. In the first set of
experiments, we used five fixed anchors placed on the ground as pictured in Fig. 3.3. We
ran this test several times while the quadcopter hovers at the same position at origin and
the EKF described in Section 2.3 runs on the quacopter’s microcontroller. In the second set
of experiments, we used four fixed anchors in addition to one mobile anchor. The mobile
anchor starts from its initial position (black dot in Fig. 3.3) and moves according to the
algorithm described in Section 3.4.

Table 3.1 compares the average root mean square error (RMSE) on state estimates of
the quadcopter (position, velocity, attitude) from several trials for both sets of experiments.
As seen the average RMSE is improved by about 14%, 9%, and 3% for position, velocity
and attitude respectively. The results show larger improvement on position rather than
other states. This represent the fact that the proposed algorithm have direct impact on the
position estimate quality but not on velocity and attitude. Fig. 3.4 shows the determinant
of inverse covariance matrix in the proposed algorithm det(HTH)−1. This verifies that
the mobile anchor has moved to decrease the position uncertainty around the agent.

Fig. 3.2 shows the experimental data of a trial of both experiments, which is the
comparison of one standard deviation of state estimates. Comparing the monotonic
decrease in the uncertainty of position in x direction (blue line) with no improvement
in y shows that our intuition about anchor’s arrangement was correct; absence of any
anchor along the axis of symmetry between the fixed anchors causes insufficient available
information along that axis, but when the mobile anchor starts to move towards the axis
the uncertainty also decreases accordingly.

As the agent navigates in the environment to reach the target position, the localization
network (anchors) is capable to reconstruct itself in real time accordingly. Although the
proposed algorithm for the mobile anchor was derived assuming that the agent’s position
is fixed (i.e. no dynamic model was introduced), the algorithm works reliably even for the
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Figure 3.4: Determinant of the inverse of the covariance matrix. The plot shows the
increase of the determinant as expected when the mobile anchor moving in the direction
of gradient ascent; that means the state estimate variance is decreasing.

moving agent. As an example, Fig. 3.5 shows an experiment when the quadcopter tracks
a trajectory, and the mobile anchor adapts its position based on the proposed approach
reducing the uncertainty of the quadcopter’s position estimate.

3.6 Conclusion
This chapter presented a EKF estimator for estimating a 6DOF states of an object using
accelerometer, rate gyroscope, and UWB ranging sensor. Specifically, the chapter was
focused on developing a method to use UWB mobile anchor and improving the localization
quality of an agent. This was done by minimizing the determinant of the covariance matrix.
The minimization will result a set of closed form equations representing a direction that
the mobile anchor moves in that direction at each time instant.

By using an UWB mobile anchor and the presented method, the quadcopter was able to
reliably fly (hovering and tracking a trajectory) while the fixed anchors was set in specific
locations to cause a large uncertainty in one direction which makes the flight very hard.
The experimental results presented in this chapter have shown a improvement on the
position estimate (about 14%), which had also an indirect impact on the improvement of
the velocity and attitude estimates. In addition, the result of a trajectory tracking scenario
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Figure 3.5: Closed loop control of the quadcopter using one mobile anchor. The plot
shows that the quadcopter is tracking a horizontal trajectory (dashed blue) along the y
axis. Despite the fact that the method was developed for a fixed agent, the results show
that it can be used for moving agents as well.

showed that the proposed method can be applied for the moving agents, and will result to
reducing the overall uncertainty of the state estimates.
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Part II

Probabilistic Pose Estimation
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Chapter 4

Point Registration with Directional
Mixture Model

4.1 Overview
The problem of point registration or matching plays a crucial role in many engineering
applications and scientific disciplines from robot navigation, odometry and autonomous
vehicles to graphics, object modeling, and medical imaging. In all of these applications,
it is important to acquire a very accurate point registration, despite the sensors errors
and limitations. The goal of point registration is to use 3D dataset observation and
try to find the best rigid transformation hypothesis that maps one frame to the next.
The rigid transformation (R, t) ∈ SE(3) consists of a rotation matrix R ∈ SO(3) and a
translation vector t ∈ R3; and a 3D point x ∈ R3 can be accordingly transformed rigidly as
T (x) = Rx+ t.

Recently, the point registration algorithms have received extensive focus from academia
and industries in autonomous driving, since the rapidly developed 3D sensing technology
endows the intelligent vehicle the capacity of accurate mapping and localization. Supe-
riority of 3D LiDAR which can reliably employed during night, bad weather (e.g. rain,
snow), and in terms of computing complexity, makes it a suitable choice of 3D perception
for intelligent vehicles. However, the limited sensor’s coverage, intrinsic sensor errors,
and outliers caused by occlusion or unpredictable traffic participators in the real traffic
scenarios are formidable challenges which require to be addressed when trying to deploy
the point registration algorithm in intelligent vehicles.

A standard approach for point registration problem is the Iterative Closest Point (ICP)
algorithm [11] which solves the problem in two iterative steps: finding the correspondence
points and then minimizing the sum of squared residuals to find the best transformation.
The ICP method is sensitive to the outliers and the solution is heavily influenced by the
initialization. There are several variants of ICP method that try to improve the original
method in different regards: ICPp2pl, ICPpl2pl, GICP [70, 115, 113]. In all of these methods
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Figure 4.1: Two data samples drawn from Kent distribution. Left: Samples drawn from
a single Kent PDF. Arrows show µ the mean direction of samples as well as γ1,γ2 major
and minor axes which depend on the orientation of samples. Right: Shows a mixture of
two Kent distributions with different parameters. The pointcloud surface normals with
different concentrations, can be modeled as a mixture of Kent distributions.

both rotation matrix and translation vector are found together iteratively. In addition, the
correspondence phase is hard-assignment or one-to-one.

Our proposed method solves the problem of point registration in a probabilistic fash-
ion by incorporating the orientational information from the pointcloud. The method is
mainly motivated by the fact that it can robustify the registration to noise and outliers
by incorporating surface normals. In particular, the surface normals are assumed to be
drawn from a directional distribution called Kent distribution. Directional statistic is a
suitable way to represent pointcloud features like surface normals, since they represent a
directional pattern in the pointcloud and also they are invariant with respect to translation.
In this approach the estimation of rigid transformation can be decoupled into two steps:
first, the rotation matrix between two frames can be estimated using the surface normals,
and second, the translation vector can be found using the positional information of the
pointcloud. The decoupling of rotation matrix from translation vector is also addressed in
[125].

Many previous works use the probabilistic approach (i.e. soft-assignment) for the
correspondence phase [104, 72, 86]. In contrast to hard-assignment or one-to-one corre-
spondence in classical ICP methods, in this method the points are associated to each other
in two frames according to a probability distribution. [86] formulated the point registration
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problem as a maximum likelihood (ML) estimation problem by using Gaussian mixture
model (GMM). [33] also use GMM to describe and register multiple pointclouds jointly
that are assumed to be drawn from an underlying distribution. There are other variants of
GMM method with different noise and outlier conditions [54, 48].

Recently, [78] and [12] proposed point registration with Von Mises–Fisher distribution
which is also a directional distribution defined on a unit sphere for 3D points. The method
is a hybrid method that combines both directional and positional information into a
hybrid of Gaussian and Von Mises distributions. Although the method improves the
registration with regard to outliers, its isotropic assumption is not realistic in the real world
applications. In contrast, Kent distribution accounts for anisotropic (i.e. the ovalness of
surface normals on a unit sphere) dataset as seen in Fig. 4.1. This will further address the
problem of outliers in dataset. Based on the proposed statistical framework, the iterations
of finding correspondences and updating transformations are now considered as a type of
Expectation-Maximization (EM) procedure.

The rest of this chapter is organized as follows; first we start by preliminaries and
introducing nomenclatures, including the definition of Kent distribution. Then we intro-
duce the mixture model that describes the probabilistic relationship between points in two
frames. Then, we detail the steps in the EM algorithm in the proposed method. We present
the results from the experiments on ETH dataset, and finally we make the concluding
remarks and discuss the future directions.

4.2 Methods
Preliminaries

Throughout the chapter we use the following notations for pointclouds:

• M , N– number of points in the model and observed pointclouds, respectively,

• Y = {yi}m=1,...,M , yi ∈ R3– the model pointcloud,

• X = {xi}n=1,...,N , xi ∈ R3– the observed pointcloud,

• Ỹ = {ỹm ∈ R3 : ‖ỹi‖2 = 1}i=1,...,M– the surface normals of model data,

• X̃ = {x̃n ∈ R3 : ‖x̃i‖2 = 1}i=1,...,N– the surface normals of observed data,

• µy the positional mean of the model pointcloud,

• µx the positional mean of the observed pointcloud,

• zn, 1 ≤ n ≤ N , the hidden random variable in the mixture model.
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Figure 4.2: Example from the KITTI dataset [37]. Figures show two urban scenes pointcloud
data and associated surface normals on a unit sphere. As seen, as the vehicle moves, the
surface normals are also moving on the unit sphere which indicates the rotation between
consecutive frames.
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Kent distribution is the spherical analogous of the bivariate Gaussian distribution which
was introduced by [59]. Since the distribution is defined over the set of unit vector on a
sphere, it is suitable for representing surface normals of data points in a pointcloud. The
distribution can be represented with 5 parameters (κ, β,µ,γ1,γ2) as1,

FB5(x̃) = c(κ, β)−1 exp
{
κµT x̃+ β

[
(γT1 x̃)2 − (γT2 x̃)2

]}
,

where κ ≥ 0 is the concentration, β ≥ 0 describes ovalness, µ ∈ R3 is the mean direction,
and γ1,γ2 ∈ R3 are the major axis and minor axis of the orientation of the distribution,
respectively. Together, Γ = (µ,γ1,γ2) creates an orthogonal matrix representing the
total orientation of data on the sphere. c(κ, β) is the normalization term which can be
expressed, in general, with an infinite sequence of the Modified Bessel functions, but it can
be simplified under the assumption of 2β < κ and large κ as c(κ, β) = 2πeκ

(κ2−4β2)1/2
.

Problem formulation

The point registration problem can be modeled as a mixture of Kent distributions. The
distribution which describes the probability of an observed data point corresponding to a
model data point has the form [12],

FB5(x̃n|zn = ỹm) =

c(κ, β)−1 exp
{
κỹTmx̃n + β

[
(γT1 x̃n)2 − (γT2 x̃n)2

]}
, (4.1)

where ỹm are substituted as the mean directions, and consequently the marginal distribution
of an observed data point x̃n can be computed as,

p(x̃n) =
M∑
m=1

πmFB5(x̃n|zn = ỹm) + π0p0(x̃n). (4.2)

In general, the membership probabilities are part of parameter estimation in mixture
models, but here they are assumed to be constant and identical. We also add a uniform
distribution which accounts for the noise/outlier in the data points as p0(x̃n) = 1

N
. π0 can

be chosen empirically based on the approximate amount of noise/outlier in the dataset.
Fig. 4.2 shows an example of two urban scenes and the estimated surface normals which
represents a mixture of Kent distributions. Normals rotate on the sphere in consecutive
frames and are invariant to the translation along the trajectory of the vehicle.

By assuming that all surface normals of the observed data points x̃1, . . . , x̃N are inde-
pendent, the likelihood function is

L(Θ) = p(X̃|Ỹ ; Θ) =
N∏
n=1

p(x̃n), (4.3)

1In the original paper the distribution was called Fisher-Bingham with 5 parameters, therefore we use
the same notation FB5(.) in this chapter as well.
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and the log-likelihood function can be computed as

logL(Θ) =
N∑
n=1

log p(x̃n) (4.4)

=
N∑
n=1

log
M∑
m=1

(πmFB5(x̃n|zn = ỹm) + π0p0(x̃n)) ,

where the parameters are Θ = (κ, β,γ1,γ2,R). The matrixR rotates the surface normals
of the observed pointcloud X̃ to the surface normals of the model pointcloud Ỹ , and has
been expressed implicitly in (4.1) as ỹm = Rx̃n. Rotating surface normals does not change
other parameters in the distribution as stated in the following lemma.

Lemma 1 IfR is an orthogonal matrix, and x̃ ∼ FB5(κ, β,µ,γ1,γ2), then, ỹ ∼ FB5(κ, β,Rµ,Rγ1,Rγ2)
when ỹ = Rx̃.

Proof 1 From the definition of Kent distribution we know that we always have x̃∗ ∼ FB5(κ, β, I)
when x̃∗ = ΓT x̃. Then if x̃∗ = (RΓ)T ỹ, therefore, x̃∗ = ΓTRT ỹ, which means ỹ = Rx̃.

This is also intuitive that the orientation parameter does not change the compactness
of the Kent distribution, since the rotation matrix is orthogonal, therefore κ and β are
preserved. This helps us to estimate the change of the orientation of surface normals
without considering any changes in the compactness and ovalness.

Log-likelihood function in (4.4) assumes a prior knowledge of point correspondence
(i.e. the correspondence between points in two pointclouds). However, in practice we don’t
know those correspondences and we refer to the observed data as incomplete. Since the
correspondence between surface normals in observed and model data is missing, the hidden
variable zn is introduced in EM algorithm to represent their probabilistic assignment.
We describe an EM-like approach in the next section in order to iteratively solve for
incomplete-data version of the maximum likelihood (ML) problem.

Algorithm 1 Main Algorithm
Input: observed and model pointclouds: X , Y .
Output: R, t

1: Surface normals estimation X̃ , Ỹ according to Section 4.3
2: Divide Ỹ , X̃ to K groups according to Section 4.3
3: Update Θk in parallel for each group k = 1, . . . , K according to Algorithm 2.
4: AverageRk according to equation (4.14).
5: Update t according to equation (4.15).
6: ReturnR, t.
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4.3 Point Registration Algorithm
In this section we describe the proposed approach for 3D point registration using Kent
distribution. The method relies on decoupling of rotation from translation by estimat-
ing rotation based on surface normals and translation from the positional data points.
Algorithms 1 and 2 outline the steps of the method.

Surface Normals Estimation

Several methods exist to estimate the surface normals associated with each point in the
pointcloud [61]. In this chapter we compute the normals using principal component
analysis (PCA) method. To improve the performance of the proposed method, we pre-
process the surface normals with: a) orientation consistency and b) outliers removal. The
orientations of surface normals computed by PCA are ambiguous (i.e. it is impossible to
solve for the sign of normal vectors). To ensure we have consistent surface normals in
the algorithm, we use a defined viewpoint vp to make their orientation consistent [107].
All normals ni of points xi with the same directions should satisfy ni · (vp − xi) > 0. We
also use a modified version of outlier removal method for the surface normals. We utilize
cosine similarity in order to remove normals that are far away from their mean direction. The
method is detailed in [142] and [108].

Clustering with Spherical k-means

In the most of urban scene pointclouds, the majority of surface normals are estimated
based on prominent surfaces such as buildings which generate the pattern of surface
normals concentrated in specific areas on the sphere (for example see Fig. 4.2). Therefore
we use spherical k-means approach [49] to cluster surface normals and use those normals
from the same cluster in both observed and model data points. This helps to run the
algorithm in parallel for the smaller size of data points in each cluster and finally take an
average to find the overall rotation matrix in each step. It is worth noting that the spherical
clustering is closely related to ML estimate of Von-Mises distribution which is the same as
Kent distribution when β = 0 [5]. Fig. 4.3 depicts steps in order to prepare surface normals
for the EM algorithm which will be explained in the following subsection.

EM-like Algorithm

A variant of EM approach is adopted here to estimate the parameter Θ. As stated in
Section 4.2, since the point correspondence is not available (i.e. the observed data is
viewed as being incomplete), log-likelihood function in (4.4) cannot be optimized directly.
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Algorithm 2 EM-like Algorithm
Initialization: κ, β,γ1,γ2,R

1: while not converged do
2: E-step: Compute posterior probabilities τmn according to equation (4.6)
3: M-step:
4: UpdateR according to equation (4.12)
5: Compute parameters using moment estimates according to Section 4.3
6: end while
7: Return κ, β,γ1,γ2,R

The complete-data log-likelihood function is given by

logLc(Θ) =
N∑
n=1

M∑
m=1

P (zn|x̃n)

(
log π0 + log p0(x̃n) (4.5)

+ log πm + log FB5(x̃n|zn = ỹm)

)
,

where P (zn|x̃n) is the posterior correspondence probability that links the observed data
to the realization of hidden variables. The parameters will be found by minimizing the
negative of the conditional expectation of logLc(Θ) iteratively in the following two steps.

E-step

The hidden correspondence-label zn will be handled by the E-step, which is computing
the posterior probability distribution τmn. This posterior distribution plays the role of
soft-assignment between the model normals ỹm and the observed normals x̃n, and can be
computed as

τmn = P (zn = ỹm|x̃n) =
πmFB5(x̃n|zn = ỹm)

p(x̃n)
, (4.6)

for m = 1, . . . ,M , n = 1, . . . , N , and where the denominator is defined in (4.2). The
posterior probability of assigning observed normal to an outlier is τ0n = 1−

∑M
m=1 τmn. By

replacing τmn in (4.5) we have the function that needs to be maximized in the M-step,

Q(Θ) =
N∑
n=1

M∑
m=1

τmn
(

log π0 + log p0(x̃n) (4.7)

+ log πm + log FB5(x̃n|zn = ỹm)
)
.
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Figure 4.3: The process of preparing surface normals from pointcloud data. 1) pointcloud
2) estimating surface normals 3) outlier removal 4) spherical clustering.

M-step

This step requires to find the parameter Θ of the distribution by maximizing the Q(Θ)
function

Θ∗ = arg maxΘ Q(Θ). (4.8)

Although the optimization problem in (4.8) has closed form solution for some types of
probability distributions, unfortunately due to the orthogonality constraints on Kent
distribution parameters and rotation matrix, this constrained nonlinear problem is hard to
solve. Therefore we solve the problem in two sub-steps: finding rotation matrix and then
updating Kent distribution parameters.
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Rotation Matrix Update:

Substituting in (4.7) we have

Q(Θ) =
M∑
m=1

N∑
n=1

τmn

(
log π0 + log p0(x̃n)

+ log πm + log c(κ, β)−1

+ κỹTmRx̃n + β
[
(γT1Rx̃n)2 − (γT2Rx̃n)2

])
. (4.9)

The optimal rotation matrix can be found by maximizing Q-function with respect to the
rotation matrix which belongs to the set of special orthogonal matrices SO(3) defined as

SO(3) = {R ∈ R3×3|RTR = I, detR = 1}. (4.10)

After removing constant terms and also minimizing negative of Q-function, the constraint
optimization problem can be written as,

R∗ = arg minR∈SO(3) −Q(Θ) = arg minR∈SO(3)

M∑
m=1

N∑
n=1

τmn
(
− κỹTmRx̃n + β

[
(γT2Rx̃n)2 − (γT1Rx̃n)2

])
= arg minR∈SO(3) − κ

M∑
m=1

N∑
n=1

τmnỹ
T
mRx̃n

+ β
M∑
m=1

N∑
n=1

τmn(x̃TnR
T (γ2γ

T
2 − γ1γ

T
1 )Rx̃n). (4.11)

Using matrix trace and its cyclic property, the first term above can be rewritten as

M∑
m=1

N∑
n=1

τmnỹ
T
mRx̃n =

M∑
m=1

N∑
n=1

tr(τmnỹ
T
mRx̃n) =

M∑
m=1

N∑
n=1

tr(Rτmnx̃nỹ
T
m) = tr(R

M∑
m=1

N∑
n=1

τmnx̃nỹ
T
m).
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The second term in (4.11) also can be simplified the same way,

M∑
m=1

N∑
n=1

τmnx̃
T
nR

T (γ2γ
T
2 − γ1γ

T
2 )Rx̃n =

M∑
m=1

N∑
n=1

tr
(
τmnx̃

T
nR

T (γ2γ
T
2 − γ1γ

T
1 )Rx̃n

)
=

M∑
m=1

N∑
n=1

tr
(
RT (γ2γ

T
2 − γ1γ

T
1 )Rτmnx̃nx̃

T
n

)
=

tr

(
RT (γ2γ

T
2 − γ1γ

T
1 )R

M∑
m=1

N∑
n=1

τmnx̃nx̃
T
n

)
.

By substituting the following matrices

A = γ2γ
T
2 − γ1γ

T
1

B =
M∑
m=1

N∑
n=1

τmnx̃nx̃
T
n

C =
M∑
m=1

N∑
n=1

τmnx̃nỹ
T
m,

and rearranging the terms, we can rewrite (4.11) in a compact matrix form as

R∗ = arg minR∈SO(3) βtr(RTARB)− κtr(RC). (4.12)

Since the constraint in (4.10) is the set of special orthogonal group or the set of rotation
matrices which are smooth, it is convenient to use Riemannian manifold optimization. We
use the manifold optimization solver from the package in [16].

Distribution Parameters Update:

After updating the rotation matrix, we need to update distribution parameters as well.
Recalling equation (4.9), we just retain terms that depend on the parameters and also
substitute the optimal rotation matrix from previous step,

(κ∗, β∗,γ∗1,γ
∗
2) = arg minγT1 ·γ2=0

M,N∑
m,n=1

τmn

(
− log c(κ, β)−1

− κỹTmR∗x̃n + β
[
(γT2R

∗x̃n)2 − (γT1R
∗x̃n)2

])
. (4.13)
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There are some attempts to solve variant of this problem (in the context of mixture of
Kent distributions) iteratively using BFGS quasi-Newton method with reparametrization
of variables [12] or BSLM approach [87], but there is no guarantee to find a solution
considering the nonconvex nature of the problem. A more convenient method to solve for
parameters, as described in [92], is the moment estimation method. The method should be
adapted for the mixture of Kent distribution, as it is only described before for the unimodal
Kent distributions. Here we compute the weighted sample moments as follows,

¯̃x =

∑N
n=1 Tn(R∗x̃n)

Np

S =

∑N
n=1 Tn(R∗x̃n)(R∗x̃n)T

Np

where Tn =
∑M

m=1 τmn and Np =
∑M

m=1

∑N
n=1 τmn. Using the above weighted moments, the

rest of the method has been explained in [59], and we exclude the details here for brevity.
Using the moment estimate instead of ML estimate makes the EM algorithm to lose the

theoretical convergence guarantees, however as stated in [59], the moment estimation is
very close to ML estimate in case of small eccentricity 2β

κ
or large κ, which is a usual case

in practice.

Rotation averaging and Translation:

Finally we need to compute average of the rotations from different clusters and estimate
the translation. Rotation averaging in Euclidean sense can be computed as,

R = RUdiag(
1√
Λ1

,
1√
Λ2

,
s√
Λ3

)UT (4.14)

where R =
∑N
i R

∗
i

N
, N2UTDU = N2R

T
R, and D = diag(Λ1,Λ2,Λ3). Also s = 1 if det(R)

is positive and s = −1 otherwise [79]. R∗i are the optimal rotation matrices found by
the algorithm for each cluster in the dataset. The translation vector also can easily be
computed based on the positional mean of rotated observed data and model data,

t∗ = µy −R∗µx. (4.15)

This is valid, since it is the optimal translation in the sense of Euclidean norm which has
been used in ICP-based methods as well.

4.4 Experimental Results
In this section the proposed method is tested and verified via 3D pointcloud registration
on real indoor scanner pointclouds [96]. We pre-processed the pointcloud frames before
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Figure 4.4: Top: Example of staircase pointcloud with 20% outliers (blue points) and its
associated surface normals. Bottom: Comparison of rotation and translation errors.
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applying the algorithm. In the first stage, frames were down sampled to 10% of the original
size (about 10, 000 points) which was empirically chosen. In addition, all the processes
on the surface normals described in Section 4.3 was performed. The proposed method
was implemented in MATLAB. The algorithm was initialized with identity rotation matrix
and zero translation vector. The distribution parameters were initialized in E-step based
on the current frame. We empirically found best results with 15 neighborhood points for
surface normals estimation. We adopt the error metric for comparison of estimated and
true rotation matrices from [129],

eR̂ = cos−1
(

tr(RT R̂)− 1

2

)
where R̂ andR are estimated and true rotation matrix, respectively. And for the translation
error we have l2-norm of the difference of estimated and true translation et̂ = ||t̂− t||2.

Outlier Robustness

We performed a set of point registration experiments comparing the robustness of the
proposed method with ICP and NDT methods. Fig. 4.4 shows an example of frame with
outlier points in blue. It can be seen that how the positional outliers impact and spread their
associated surface normals on the unit sphere. The bottom plots illustrate the average of
rotation and translation errors with different level of outliers injected into the pointclouds
over Ntrials = 100 trials. As seen, ICP and NDT methods have inconsistent and higher
error with regard to outliers which makes them unreliable in practice. In contrast, the
proposed method has relatively lower errors and consistent with the level of outliers.

Performance Evaluation

The results from comparison of different point registration methods are tabulated in
table 4.1. The results show the average rotation and translation error on the sequence of
same frames from the dataset. For NDT [123], the grid size is set as 2.0, 4.0, 2.0, 1.0 meters
with aligns the pointclouds in a finer-coarser-to-finer manner, and for CICP [32] the scale
factor is σ = 1.0 meter with a decay rate of 0.96. Fig. 4.6 represents an example of the
point matching of two consecutive frames. The green is the pointcloud that is transformed
back into the model pointcloud based on the estimated rigid transformation found by the
proposed method. As seen in the table 4.1, the proposed algorithm outperforms other
methods with regard to translation error and generates satisfying rotation errors compared
with the state-of-the-art NDT and GICP. It is reasonable to infer that the more information
involved, the more accurate of the point registration algorithm. For instance, the ICP and
CICP based on point-to-point distance produce the worse matching results. Likewise,
GICP and NDT utlize more geometrical information like curvatures and more abstracted
covariance matrices, which guarantees the better results.
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Figure 4.5: Top: Example of staircase pointcloud with 20% outliers (blue points) and its
associated surface normals. Bottom: Comparison of rotation and translation errors.
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Table 4.1: Comparison of PR Methods

Trials ICP PointNetLK RPM-Net Ours
angular error Avg. eR̂ 1.27 0.847 0.305 0.74
translation error Avg. et̂ 0.403 0.0054 0.003 0.018

The proposed feature-based point registration method has two advantages over other
methods: firstly only the directional information is utilized for rotation estimation and
secondly the computationally expensive correspondence phase in ICP- or NDT-based
methods is avoided, but the registration results are still competitive even with NDT or
GICP. On the other hand, since the indoor pointcloud is free of most of missing data
comparing with outdoor scenes, we expect our method would perform better in the
presence of outliers, occluded, and missing data as presented in the previous experiment
case.

Finally as stated in Section 4.3, although using moment estimate method makes the
EM algorithm without convergence guarantee, since the algorithm utilizes the highly
concentrated surface normals on the unit sphere (i.e. large κ) the moment estimate is
closely related to ML estimates. In fact, the empirical results from our experiment show
that (4.7) the Q-function is not decreasing after each iteration of the algorithm.

4.5 Conclusion
In this chapter, our proposed feature-based method for 3D point registration was pre-
sented and evaluated with examples of indoor pointclouds. The algorithm incorporates
surface normals in the scene as directional information to be used within our cohesive and
probabilistic framework which improves the registration accuracy comparing to ICP-based
methods. The method utilizes the fact that the translation-invariant property of surface
normals decouples the estimation of rotation from translation. Additionally, the proposed
method provides a robust mechanism that rejects outliers in the correspondence phase in
a probabilistic fashion. The computation time comparison is not analyzed in this chapter
and one possible future direction can be reducing the computation time of the proposed
algorithm.
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Figure 4.6: An example of matching quality (i.e. frames alignment) in two consecutive
frames from indoor scanning data set [96] using the proposed method. Purple: the model
pointcloud. Green: the transformed pointcloud.
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Chapter 5

Deep Graph Network Point Registration

5.1 Overview
In recent years with the sensory advancement of robotic systems equipped with LiDAR
(Light Detection and Ranging) technologies, deployment of fast and accurate algorithms
is inevitable for processing and extracting information from 3D data points in real-time
applications. A lot of progress has been made in most computer vision tasks from image
classification and detection to semantic segmentation and reconstruction. But since 3D
point clouds are unstructured and have permutation ambiguity, make them a difficult
choice when using deep learning neural architectures.

The point registration or point cloud matching is a crucial part in many engineering
applications and scientific disciplines such as robot navigation, autonomous driving,
graphics, object modeling, and medical imaging. Introduction of Lidar sensors and other
3D range scanners offers an opportunity to obtain ample amount of sensor information
from the environment in the form of 3D point clouds. It is important to acquire a very
accurate point matching, despite the sensors errors and limitations enforced by each
setting.

The point registration utilizes 3D point dataset of observations and tries to find the
best rigid transformation hypothesis that maps one frame of the pointcloud to the other.
The rigid transformation (R, t) ∈ SE(3) consists of a rotation matrix R ∈ SO(3) and a
translation vector t ∈ R3; and a point x ∈ R3 can be accordingly transformed using the
following equation T (x) = Rx+ t.

The point registration has recently received extensive attention in autonomous driving,
since the rapidly developing 3d sensor technology enriches the intelligent vehicle with
the capacity of accurate mapping and localization. Superiority of 3D LiDAR over other
sensing technologies like camera which can be reliably employed in night and bad weather
(e.g. rain, snow) makes it a suitable choice of 3D perception for intelligent vehicles.
However, the limited sensor’s coverage, intrinsic sensor errors, and outliers caused by
occlusion or unpredictable traffic participators in the real traffic scenarios are burdensome
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challenges which needs to be addressed when we deploy the point registration algorithms
in autonomous driving.

In this work we introduce a flexible graph-based deep learning model for point reg-
istration on 3D point clouds. In particular inspired by the development of a new graph
network formalism in [7], a graph-based framework has been introduced that consists of
three main parts (i.e. graph network blocks). First the input to the model which is two point
cloud frames are transformed into a graph representation. Then,

1. the graph representation of inputs will be encoded into a latent representation by a
graph network block;

2. the latent representation is passing through the core graph network multiple times;

3. and finally the decoder decodes the latent graphs into the output graph. The global
attribute of the output graphs represents the rigid transformation.

We train and test our model on ModelNet40 dataset [135]. We also compare our results with
the recent state-of-the-art method in the field of point registration. The proposed method
is flexible and configurable in its structure, and it is possible to incorporate other modules
into it, in order to improve the results.

The graph networks are far better in terms of inductive biases comparing with convo-
lutional or fully connected layers. They are invariant to permutations of the input signal,
which makes them a suitable choice when we work with unordered and unstructured
form of data like point cloud in our case. Graph networks are flexible and configurable.
It is easily possible to incorporate other mechanisms and structures within the graph net
blocks. They are also flexible in terms of the size and shape of input and output, a property
that is lacking in other deep learning algorithms. And most importantly related to the task
of point registration, by using graph network the local geometry of each point as well as
the whole structure and topology of point clouds in a larger range are considered in estab-
lishing correspondences between frames. This ultimately helps in an accurate alignment
estimate of the two frames. This property will be reinforced later by the introduction of
non-local mechanism that explicitly encodes the long-range dependencies in each frame.

5.2 Related Work
The problem of point registration can be divided into two main categories of geometric-
and learning-based approaches.

Geometric Point Registration

The classical methods of point registration are based on geometry of the point clouds such
as coordinates of the points and surface normals, or other geometric features. The focus of



CHAPTER 5. DEEP GRAPH NETWORK POINT REGISTRATION 55

these methods is to solve the nonlinear least-square problem in an accurate and efficient
way. Two main methods are ICP-based and globally optimal methods.

The point registration problem can be solved with geometric-based approach with the
Iterative Closest Point (ICP) algorithm as the most popular technique [11]. ICP solves the
problem in two steps iteratively, 1) finding the correspondence points between frames
(or alignment phase), and 2) minimizing the sum of squared residuals to find the rigid
transformation (or registration phase). Several variants of ICP method improving the
original method has been introduced such as ICPp2pl, ICPpl2pl, GICP [70, 115, 113]. But,
one major limitation of ICP-based methods is that it can only converge to a local optimum
near the initialization, and its convergence region is fairly small, especially when there are
noise or outliers in the point cloud data.

Other geometric-based methods are globally optimal methods that try to find the global
solution, and ultimately avoid the sensitivity to initialization [136, 137]. The globally
optimal methods are mostly using branch-and-bound optimization techniques [18, 82,
94, 89] or other global optimization approaches (e.g. truncated L2−norm, second order
cone programming (SOCP), consensus set maximization [3, 60, 68]) to find the global
solution. But unfortunately these type of methods are very slow, make a lot of unrealistic
assumptions, and they are only practical in some limited scenarios, and clearly they are not
suitable for real-time applications. In addition to ICP-based method, some other schemes
use the concept of point set correlation (i.e. soft assignment) to iteratively harden the
point-to-point correspondence. The logic behind these methods follows the fact that the
convergence area of ICP can be widened by soft assignment techniques [40, 126, 26], so
that the algorithm can converge to a better solution.

Finally, there are also some probabilistic methods that can be grouped as a subcategory
of geometric-based methods [104, 72, 86]. These methods are distinct in their probabilistic
interpretation of alignment phase between two point cloud frames, so with that the
least-square problem in their geometric-based counterparts are modeled as a maximum
likelihood problem. The probabilistic approach is based on soft assignment–the process
of assigning multiple points to a point across frames with a probability–instead of hard-
assignment or one-to-one association of points in the frames.

Deep Learning Point Registration

Very recently, the learning-based approaches for point registration has been introduced,
which is gaining popularity in the community due to its benefits over geometric approaches.
The methods are mostly focused on the correspondence phase or alignments (authors put
forward various combinations of back bone feature extractors [102] for 3D point clouds,
transformer networks [127] for feature representation, and outlier filtering techniques like
RANSAC [35] for refining the final results [25]), and for the registration phase (or pose
optimization) they still use the singular value decomposition to solve the problem similar
to classical counterparts. In this sense, they are hybrid method, using both geometric- and
learning-based modules to solve the problem.
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Authors in [139] have incorporated both point correspondence and registration phases
in an end-to-end trainable network with a match matrix at the end which resembles the
kernel correlation in classical methods, so it needs to be deployed iteratively in order
to converge to the final alignment. Similarly, [71] uses an end-to-end formalism for
registration, utilizing 3D CNN as the correspondence generating layer to final alignment
in one iteration.

Using only fully connected layers (i.e. MLPs) in the deep neural network architecture
will result poor discriminative ability, which leads to a large proportion of incorrect point
correspondences, and consequently results an inaccurate point registration due to the
wrong alignment of frames [138, 111, 2].

Inspired by natural language processing, authors in [133] use a combination of point
encoding network, attention-based module and Pointer Networks [128] to solve the reg-
istration problem. The results show that the method should be applied iteratively (or
recursively) in order to refine the alignment and ultimately improve the registration quality,
which may takes more time required for a on-line inference algorithm.

In this section, we describe the point registration problem formulation, later we intro-
duce the graph network representation of point cloud frames. The input and output of
each block of graph network should be a graph with the same structure but with different
attributes. We explain the details of this specific framework and the graph representation
of the point clouds in the following sections.

5.3 Problem Formulation

Preliminaries

Point registration problem Throughout the paper we use the following notations. M , N
are the number of data points in the target and source point clouds (subscribed with T and
S), respectively. PT = {yi}m=1,...,M , yi ∈ R3+d and PS = {xi}n=1,...,N , xi ∈ R3+d denote
the target and source point cloud Cartesian position plus any additional d−dimensional
feature space which can be extracted by any feature off-the-shelf descriptor and used in our
pipeline. Given two point cloud frames, we seek to find the rigid transformation T (R, t) ∈
SE(3) between the target and source frames, which can be represented generally as an
operator PT = TR,t (PS). Since in general we do not assume the one-to-one feature
correspondence between frames, therefore the point clouds can have different number of
points, i.e. M 6= N .

Graph We define graph as a 3-tuple G = (u, V, E), which is directed with attributes on
nodes V = {vi}i=1:Nv , vertices E = {ek, rk, sk}k=1:Ne , and a global or graph-level attribute
u. Nodes can be a receiver or a sender, where rk and sk are the index of receiver and sender
nodes, respectively.
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Figure 5.1: Graph Network (GN) Block. The building block of our proposed method is based
on the GN block. It consist of nodes, edges, and graph–level attribute u. Input/output
of the block should also be in standard graph form explained in this work. An input
graph attributes pass through a set of computational steps based on update/aggregation
functions to result the output graph.

Graph Network (GN) Terminology

Inspired by the new graph network (GN) formalism in [7], we briefly explain the main
block of GN and its internal structure. This frameworks defines a class of functions for
relational reasoning over graph-structured representation of point clouds. The GNs make
the building blocks of our proposed graph-based framework for 3D point registration.
The GN block consists of three main entities: 1) nodes, 2) edges, and 3) graph-level or
global attribute, as seen in Fig. 5.1. Nodes and edges carry out attributes that can be in any
structural form like vector, matrix, or tensor. Note that the input and output of GN blocks
should be in graph form as well.

In its complete form, within each block there exists three update functions φ(·) and three
aggregation functions ρ(·), responsible for per-edge, per-node, and per-graph updates and
for aggregating information that comes from nodes and edges, respectively. Per-edge and
per-node functions are reused across all edges and nodes. This means that a single graph
network can be used on any graph representations with different size and shape.

e′k = φe (ek, vrk , vsk , u) ē′i = ρe→v (E ′i)

v′i = φv (ē′i, vi, u) ē′ = ρe→u (E ′) (5.1)

u′ = φu (ē′, v̄, u) v̄′ = ρv→u (V ′)

where E ′i = {e′k, rk, sk}rk=i, k=1:Ne , V ′ = {v′i}i=1:Nv , and E ′ =
⋃
iE
′
i = {e′k, rk, sk}k=1:Ne .

Obviously, the aggregation must be a symmetric function with respect to the input ar-
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Figure 5.2: Graph Network Blocks. The proposed architecture for the task of point reg-
istration consists of three main graph network blocks: Encoder, Core, and Decoder. The
Encoder embeds the first latent graph from graph representation of point clouds P S and
P T . The core block has been repeated M times to represent the message–passing processes
in graph theory. M steps are constructed recurrently with shared parameters to also
capture the temporal information which exists during iterative point cloud alignment. The
Decoder extracts rigid transformation information from the last latent graphs. For more
detail see Fig. 5.3

guments (i.e. permutation invariant, since in general the order of nodes/edges is am-
biguous). A GN block can have any arbitrary combination of update and aggregation
functions depending on its functionality and design purpose. Finally, in a specific order
update/aggregation functions should be executed on any input graph (i.e the computation
proceeds from edges, to nodes, and to the global level). For more detail see [7].

Graph Representation

The initial source and target graphs are constructed in such a way that connects neighbors
of each point in Cartesian coordinate p = (x, y, z) within a certain radius. A standard
kd−tree algorithm is utilized for this task. Given the point clouds P S ,P T , we create a
graph representation with data points as nodes pi, and directed edges (dij, sk = i, rk = j)
(both sides as multi-graph) as the distance connection between points in each point cloud
frame. This initial graph later be feed into the encoder block for node and edge embedding.

We choose the radius to rather be large enough in order to capture long-distance
dependencies in the structure of 3D point clouds (at the extreme end, this can be a fully
connected multi-graph representation of a frame with relatively moderate number of
points). Although this initial graph topology can be seen simple and inadequate, but
our aim is to embed the latent node/edge features automatically by the use of proposed
Encoder-Core-Decoder architecture which we explain next.
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Figure 5.3: Diagram of the proposed deep graph network operating on a pair of point
clouds. Top Diagram shows three main blocks of the model. The Core blocks doesM –step
message–passing with shared parameter in each GNm

c . Bottom Diagram shows the details
of the model and the input/output in each part of the model. The first latent graphsG0

S
G0
T carry the embeddings based on non–local mechanism introduced in Encoder section

5.4. The concatenation of both graphs enters the Core block when message–passing process
aggregates information across both graphs, and also captures temporal relationships due
to the use of shared functions and parameters in the structure of Core block. The Decoder
simply extract rigid transformation which was encoded as the global entity in the graphs.
At the end, the transformation performed on the source frame estimates the target frame
(This has been used during the training phase for computing the loss function comparing
it with the true transformation between frames).
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Figure 5.4: Encoder GN Block. For implementing the non–local mean, the edge update
function φe(·) is a MLP with arguments as the dot product of positional data points (a
scalar pairwise–interaction function) and a vector–valued non–pairwise function (also
represented as a MLP). The edge–to–node aggregation function ρe→v (·) is only summation
(or mean in case of normalizing the sum). The rest are also MLPs which will be described
in Experiential Evaluation section 5.5.

5.4 Graph-based Point Registration
Now that all the necessary elements are defined, the details of the proposed graph-based
model will be presented in this section. The overall goal of the proposed deep learning
architecture is to find the discrepancy in pose structure–which is indicative of the rigid
transformation–between the two graph representation of point clouds. But since the
point correspondence is not one-on-one between frames, the model should learn other
local/global structural characteristics in frames in order to be able to ultimately find an
accurate alignment in the presence of outliers, noise, occlusion, and non-overlap effects. In
the following the mechanisms used in the proposed model will be explained that address
these essential requirements such that results a robust model for point registration task.

Encoder graph net

The encoder block, Enc : P → G, embeds the point cloud representation P S (or P T )
as a latent graph G0

S (or G0
T ), where G = (u, V, E) is the graph described in section 5.3.

The node embedding functions v′i = φv(pi) are learned MLPs on data points position.
The edge functions e′ij = φe(dij) are also MLPs on pairwise relative distance, which
embed the topological relation between pairs, such as local geometry, long range relation,
or directional dependencies. e′ij are directed edges from sender i to receiver j. The
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graph-level attribute u representing global properties is the point cloud pose which can
be embedded separately but also it is possible to be as part of nodes’ features (as a
relative pose between correspondence pairs). The encoder block defined here is shared (i.e.
shared MLPs) between the two initial graph representations. The Non-local embedding
mechanism as an important part in the encoder block will be explained below.
Non-local Mechanism One of the main functionality of the encoder is the non-local
mechanism [131]. Non-local mean can be formulated as the normalized summation of a
pairwise and unitary functions on neighboring nodes in the graph as

yi ∝
∑
∀j
f(vi, vj)g(vj),

where vj’s are neighboring nodes of vi. The non-local mechanism captures the long-range
dependencies between entities of its input signals. In our proposed framework, it expresses
the global structural properties of the point clouds as a latent feature space. In graph
matching, both local geometry of each point as well as the global structure and topology
are considered in establishing correspondences, so that more correct correspondences
are found. So it is beneficial to exploit the exact concept in point clouds for establishing
more accurate correspondences between two frames by use of non–local mechanism.
We consider dot product as the pairwise-interaction function, which is a proxy for the
similarity between any location in the input signal. In another words, the global features
are the representation of pairwise relationship between points with their neighbors. Non-
local mechanism is robust to outliers, and it is insensitive to noise which both are rather a
local phenomenon than global.

For implementation, as you see in Fig. 5.4, it is simply possible to incorporate the
equations within the encoder block. The updates are the pairwise and unitary MLPs, and
the aggregation function is the summation (a permutation–invariant function) as it is the
case for the non-local mean.

Core graph net

The core block, Core : G → G, is a full GN with all the update and aggregation functions.
The M steps applied to the input graphsG0

S , G
0
T with shared weights as a sequence. The

target frame can be interpreted as the transformed version of the source frame, in another
words GM

T = T θ
(
G0
S
)
, where θ = (R, t) is the learned weights of the model. So in this

case, the core block is a learned function that transforms the latent source graph to the
latent target graph. In the case of point registration, both the message-passing as well as
recurrent setting are natural to the structure of the problem.

As the two graph representation of point clouds are fed into the model, they are
merged (concatenated) along the entire model passing through several modules, so by
keep tracking their indices, they will be reconstructed at the end of the model after the
decoder block.
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Figure 5.5: Core GN Block. All the update functions φe(·), φv(·), φu(·) in this block are
MLPs with shared parameters across pair of point clouds and all nodes and edges. All the
aggregation functions ρe→v(·), ρe→u(·), ρv→u(·) are just normalized sum of the functions’
input. The message-passing and recurrent property also is implemented in the structure of
the Core block.

Message-passing The M–step pass resembles the message-passing operation on graphs,
the process of propagating information across the graph. The message-passing process
is similar to the breaking down the process of registration of one frame to another into
smaller infinitesimal steps.
Recurrent behavior The recurrent architecture also has been built when the core is applied
in a sequential setting. The recurrent formalism guarantees the sequential nature of rigid
transformation preventing any discontinuity or jump in the process of learning point
registration (improves stability of convergence).

Decoder graph net

The decoder block Dec : G → P extracts information from the last latent graph GM . No
aggregation function is used in this block. The nodes, edges, and global attributes of
the decoded output graph can be used for any task-specific purposes. in addition to
extracting the rigid transformation, the decoder merges the two latent graphGM

S andGM
T

by applying the learned transformation on the source point cloud.

Loss function

In geometric-based methods, the registration can be done by iteratively minimizing
the residuals in the least-square sense; or by maximum likelihood problem similar to
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Figure 5.6: Decoder GN Block. This block only updates φe(·), φv(·), φu(·) nodes, edges,
and graph–level entities with no aggregation as the final step in the model. The decoder
independently decodes the edge, node, and global attributes (does not compute relations,
etc.), on each message-passing step.

expectation-maximization approach. For the training of deep learning models a similar
formulation can be used for the loss function. Specifically, the minimization applies to
the residual of estimated rigid transformation matrix with the true transformation. For
the loss function the Frobenius norm has been chosen. The norm measures the difference
between ground truth transformation with the estimate from the proposed model. Another
term also added to incorporate a soft constraint that should be enforced on any rotation
estimation to be an orthogonal matrix.

Loss = ‖G−1estGgt − I‖F + α‖R−1estRest − I‖F (5.2)

where Gest, Ggt ∈ SE(3) are estimated and ground truth rigid transformations, and
Rest ∈ SO(3) is the ground truth rotation matrix. The training loss is computed for
each processing step of the core block. The reason is to encourage the model to solve
the problem in as few steps as possible, and force the model to learn the infinitesimal
changes in transformation matrix. This is possible due to the fact that we synthesize the
data points needed for the training, and breaking down the registration task into smaller
transformations, which allows computing the loss of the intermediate steps along the way.

5.5 Experimental validation
The process of training and testing of the proposed graph neural network constructed
based on combination of train/test point clouds, and evaluation and comparison with
other geometric and deep state–of–the–art methods in terms of estimation error, training
time and inference time.
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Figure 5.7: Examples of input to the trained model and the output registered results. Row
1 & 3: Two point clouds (source and target), each containing 2048 points, are set as the
input to the model. Row 2 & 4: The output point clouds have been aligned and translated,
showing that the trained model correctly finds the rigid transformation between frames.
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Table 5.1: Comparison of Deep point registration Methods, in [deg.] & [m]

error metric ICP FGR PointNetLK RPM-Net DCP-v2 Ours
Avg. eRest 2.99 0.936 1.58 3.35 1.14 3.11
Avg. etest 0.29 0.014 0.022 0.086 0.002 0.051

Dataset

Modelnet40 has been used as the main dataset for training of the proposed model [135].
They contains of CAD model (mesh) of 40 object categories that are divided into training
and testing portions. All the dataset are randomly sampled from surface and volume of
meshes into point clouds with 4096 positional points. All the points have been normalized
into a unit box centered at origin. Only a subset of data points are used for training and
testing, since 4096 is excessive particularly when the number of neighboring is large to
cover the global topology of the objects, bu comparison has been made for the different
inference time when using different number of points for estimation.

Training

In terms of the training of deep point registrations, depending on the model architecture,
and in particular the graph-based models, it is easily possible to train the model with
synthesized data that are noise and outlier free, dense, and uniform across the topology of
objects.1 Also synthetic rigid transformation can be used, so the labels for a supervised
learning training process are ready to use. Also, comparing with geometric methods that
need to be run on CPU, the proposed method can be run directly on GPU as part of a
neural network pipeline. And this allows to run some part of the model in parallel, and
ultimately have faster solution time for point registration.

All the source point clouds have been rotated and translated randomly in the range
of [−30,+30]◦ and [−0.5, 0.5] m, respectively. The combined values represent a rigid
transformation matrix that works as the label for the computation of loss function at the
end of each forward pass. The random rotation for each input is divided into infinitesimal
rotation as a batch, which can be fed into the model and the model can learn infinitesimal
rotations at the core block 5.4, when M = 10 steps of message–passing takes place. Small

1Although in practice deep neural networks tend to better generalize with adding noise into the input
data, but one can argue this is not the case for point cloud registration. The noise adding has been seen as
a regularization [13] in loss optimization problem or data augmentation [41]. But generalization was the
main goal by indicating the use of graph representation of point clouds as the way of introducing Relational
Inductive Biases, so that no such noise adding be needed. In addition, point clouds are inherently unordered
and unstructured, so adding noise does not help in that front. The results in this chapter shows the training
improvement. Although noise are not added for training but they were for the testing to measure the
robustness of the proposed model.
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Figure 5.8: Left to Right: The progress in objects alignment (three objects: vase, airplane,
and bottle) during M–step message passing process inside the core block 5.4. The training
loss is computed for each processing step of the core block. The reason is to encourage the
model to solve the problem in as few steps as possible, and force the model to learn the
infinitesimal changes in transformation matrix.

step rotations are more numerically stable since they have simple representation and the
composition of infinitesimal rotations is commutative.

All update functions in the model including those in the encoder, core, and decoder
blocks are MLPs (fully connected layers). All MLPs have two hidden layers with ReLU
activation followed by an output layer. Each layer has size 128, and all layers are followed
by normalization layer [4], which is found to be improving the training stability.
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Table 5.2: Accuracy results in the presence of noise & outliers

% outlier/noise FGR PointNetLK RPM-Net DCP-v2 Ours
5 1.05 1.89 3.37 1.11 2.41
10 1.06 1.89 3.42 1.13 2.42
15 2.11 2.24 3.76 1.18 2.59
20 2.67 3.08 3.88 1.34 2.71

Results

We adopt the error metric for comparison of estimated and true rotation matrices from
[129] as,

eRest = cos−1
(

tr(R>gtRest)− 1

2

)
whereRest andRgt are estimated and true rotation matrix, respectively. The metric eRest
returns the angle of rotation matrixR>gtRest in degrees. For a perfect estimation this should
be zero since the composition of a rotation matrix with its transpose is the identity matrix.
And for the translation error we have l2-norm of the difference of estimated and true
translation as

etest = ||test − tgt||2

Seen in Table 5.1 are the average rotation and translation error over a random set of point
clouds drawn randomly from the the test portion of dataset, and also randomly chosen
from different 40 categories. As seen, though different with other methods in structure
and use of features, the proposed model still produces competitive results with some of
the methods listed in the table.

Seen in Fig. 5.9 are examples of point registration for different object with Gaussian
noise (with zero mean and unit variance) synthetically injected into the dataset. Objects
are aligned relatively correct even with noise, showing that the proposed method is robust
enough to demonstrate good results with corrupted data (noise or outliers in point cloud).
Table 5.2 shows the accuracy of rigid transformation estimates when different levels of
noise has been injected into dataset. The comparison in the table shows the results are
competitive with other deep learning methods. One important property in the result
points to the fact that by increasing the amount noise in the dataset the proposed method
performs relatively stable with small error, confirming the long–range features as the
source of alignment rather than local features that can be corrupted by noise or existence
of outliers in point clouds.

In Table 5.3 the inference time has be compared with other methods with different
number of points in point clouds. Subsampling from objects in ModelNet40 dataset it is
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Figure 5.9: Three examples of point matching in the presence of noise and outliers.
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Table 5.3: Comparison of Inference time in millisecond

no. points ICP FGR PointNetLK RPM-Net DCP-v2 Ours
512 7.97 22.01 161.2 65.85 7.9 210.21
1024 16.68 84.30 176.34 143.4 8.3 276.30
2048 28.634 147.65 209.07 445.67 73.7 634.21

possible to test the trained model with different number of points. As expected, as the
number of points increases so the inference time for estimation. Since the graph network
tries to find global and long-range dependencies in the point clouds the process of inference
takes relatively more time comparing with other methods, so this can be further improved
in future works by incorporating other attention and relational mechanism that can capture
global dependencies faster.

5.6 Conclusion
A deep graph-based framework has been proposed for the task of point registration
between two point clouds. Since the model is based on correspondence between two
frames in the latent space and not initialization of the frames, it makes the solution less
sensitive and more robust with to initialization errors.

Using non–local mechanism in the model helps to encode the global features of point
clouds that makes the correspondence less affected by noise. The structure of graph
network in this work naturally supports the combinatorial generalization, since the com-
putations are not strictly at the system level, but rather they apply shared weights and
computations across the entities and relations as well (i.e. The training of the model is
not driven purely by the input signals, but the relationship between different parts of the
architecture plays an important role in learning the underlying task of registration in this
example). This allows never–before–seen signals to be reasoned about using the graph
network models.

By utilizing the proposed model, it is possible to combine and utilize other recently
proposed mechanisms such as attention–based, interaction–based, and relational networks
within this model. This helps to use the benefits of each of these modules under a unified
setting of graph network which makes it easy to understand, accessible, and easy to
implement by using only one neural network platform.
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Part III

Control and Deep Learning
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Chapter 6

In Proximity of ReLU Architecture and
eMPC

6.1 Overview
In recent years, deep neural networks (DNN) has had tremendous success in computer
vision, speech recognition, and other areas of machine learning [63, 42, 117, 95]. Despite
all these unprecedented performances in learning tasks, a theoretical understanding of
DNN’s architecture, features, and properties is still unexplored. Also, all of these successes
are related to the supervised learning and are concerned mostly with function fitting
(e.g. classification, function approximation, and regression). In contrast, in reinforcement
learning (RL), the concept of feedback makes it hard to study in theory since the statistical
properties are dynamic/changing, and also they are hard to train in practice. Another
shortcoming of DNN in RL is the absence of theoretical guarantees regarding stability,
robustness, and convergence. All these issues need a great deal of consideration.

On the other hand, model predictive control is a powerful tool for control and decision
making in robotics and other safety-concerned applications due to its adaptability, robust-
ness, and stability-safety guarantees. In specific, explicit MPC allows us to pre-compute
the optimal control policy u∗t = f(x(t)) as a function of current state x(t), and deploy it
on-line in real-time. This prevents the issue of solving optimization problem in real-time
on embedded systems which are typically limited with regard to memory capacity and
computation power. But deployment of an explicit MPC suffers from increasing number
of regions which grows exponentially (in the worst case) with the number of constraints
[1, 9]. This demands significant amount of storage and computational complexity.

Several attempts have been made to address those shortcomings in explicit MPC [8, 38,
56, 55, 43, 119]. But in contrast, regarding deep reinforcement learning, all the attempts
were mainly focused on empirical results, and analyzing its architecture only to appear in
literature in very recent years. Here we focus more to mention some of these new findings
regarding the DNN. Authors in [116] investigate the complexity of DNN by studying
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the number of polytopic regions that they can attain. The paper also provides a tighter
upper-bound (compared to previous bounds [80]) on the maximal number of regions that
can be partitioned by a ReLU DNN. The paper [34] discusses the geometric properties of
DNN for classification and how to improve the robustness of such DNN to perturbation by
analyzing those properties. In [10] authors present a method that adds stability guarantee
to the deep gradient descent algorithm.

Although these two specific areas of research (deep RL and MPC) have strong con-
nection in (adaptive) optimal control theory [124], but from mathematical point of view
there is another link between these two: Both ReLU DNN and solution to the mp-LP or
mp-QP in explicit MPC represent a PWA function on polyhedra. This gives a great amount
of motivation to investigate the possibility of reconstructing one from the other in order to
benefit from advantages in both approaches.

Since the presumption concerning DNN that they have tens of thousands of parameters
(weights and biases) seems reasonable for vision or language applications, but in fact a
DNN can represent a very complex function with much less number of parameters. This is
a compelling property when we are dealing with representing a control policy as a DNN.
As an example, Fig. 6.1 shows a 2–layer ReLU network with just 84 parameters chosen
randomly. The plot shows how a very small size network can subdivide the input-space to
many polytopes and different affine policy pieces over each region.

In the following, we first provide mathematical definition of ReLU DNN and its
structural properties in Section 6.2. Then in Section 6.3, we present a brief overview of
existing theorems that represent connection between ReLU nets and PWA functions, and
discuss challenges which prevent us to have an explicit association. Also we present a
sample-based method in order to identify the underlying PWA function that a ReLU DNN
can represent. Finally in Section 6.4, we provide a numerical example that examine a
simple network and its equivalent PWA function.

6.2 Preliminaries and Problem Formulation
In this section we define feedforward ReLU DNN and discuss some properties of these
models and their ability to map input-space to the complex family of PWA functions.

Notation and Definitions

Definition 1 A rectifier (ReLU) feedforward network is a layered neural network with L ∈ N
hidden layers (depth of the net) with input and output dimensions n0, nL+1 ∈ N respectively.
Each hidden layer l is composed of an affine transformation fl : Rnl → Rnl+1 followed by a rectifier
activation function rect(x) : x 7→ max(x, 0)

fl = Wlhl−1 + bl

hl = rect(fl) = max{fl, 0},
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Figure 6.1: This example shows the level of complexity that a feedforward neural net-
work (NN) can represent. The plot shows how just a 2-layer NN maps input-space
x ∈ R2, (x1, x2) to the output-space y ∈ R with 7 ReLU activation units in each layer (total
of 84 parameters). The network creates a complex continuous PWA function which can be
a close approximation of a highly nonlinear function.
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Figure 6.2: Illustration of L–layer ReLU DNN f : Rn0 → RnL+1 . Depending on application
and complexity of function to be approximated, DNN can have an arbitrary number of
layers (i.e. depth) and activation units in each layer (i.e width). Note that DNNs are
recognized just by the number of hidden layers. Also as seen, the output layer is just a linear
transformation of last hidden layer without activation mapping.

where the max is an element-wise function, Wl ∈ Rnl×nl−1 , bl ∈ Rnl , fl ∈ Rnl , hl ∈ Rnl , and
h0 ∈ Rn0 is defined as the input to the network. We call fl pre-activation and hl post-activation
functions at hidden layer l. The output layer is just a linear transformation W (L+1) and does not
count as part of the hidden layers. Finally, any ReLU net with L > 1 layers is called L–layer
DNN and can be represented as a function f : Rn0 → RnL+1

f = WL+1 ◦ hL ◦ fL ◦ . . . ◦ h2 ◦ f2 ◦ h1 ◦ f1

where ◦ denotes function decomposition.

Definition 2 Every layer l ∈ {1, 2, . . . , L} of a ReLU DNN has nl activation units which is
called width of the layer. Each activation unit receives the rectified weighted sum of the previous
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post-activation values hl−1 plus a bias. The jth activation unit in layer l is denoted by hl,j ∈ R

fl,j = W>
l,jhl−1 + bl,j

hl,j = max{fl,j, 0},

where W>
l,j and bl,j are the jth row and the jth element of matrix Wl and vector bl respectively.

An illustration of a L–layer ReLU DNN is shown in Fig. 6.2. Each blue circle in the
figure represent an activation unit. Depending on the structure of DNN it can have
any width size for each hidden layer. The total number of parameters for each DNN
θ = {W1:L+1, b1:L} can be a basis to compare different architectures by varying depths and
widths.

ReLU DNN Expressiveness

Despite the DNN’s empirical successes, some fundamental questions about how and why
these results are achieved is absent in literature. Neural net expressivity is a subject that tries
to answer some of these questions such as how the depth, width, and the type of layers
impact the function that the network represents, and also how these properties affect its
performance. Here we try to provide some of these findings. First we present a set of
theorems that deal with these types of questions.

First, since the post-activation h(s) := max{s, 0} is itself a PWA function and also
the structure of ReLU networks is a series of composition of affine and post-activation
functions, therefore the result is a PWA function that is defined over the regions of the
input-space. This has been stated in the following theorem.

Theorem 1 Given a neural network with ReLU activation, the input-space is partitioned into
convex polytopes.

Proof 2 The complete proof can be found in [103]. But as sketch of proof, consider the first layer
l = 1; each pre–activation function establishes a hyperplane on the input-space since f1,j =
W1,jx+ b1,j = 0. All such hyperplanes associated to each unit provide a hyperplane arrangement
which partitions the input-space into polytopes. By induction, it can be shown that this is true for
all other layers in DNN. Fig. 6.3 illustrates the theorem for a 2-layer DNN.

Another important property of ReLU networks is the number of polytopic regions that
they can realize on their input-spaces. This helps on two fronts: 1) To understand the
complexity of a specific architecture based on the lower- and upper-bound of the number
of regions and 2) To design an architecture based on the number of regions that is necessary
for an specific application. A lower–bound on the number of regions is described in the
following theorem
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Theorem 2 The maximal number of regions computed by a ReLU neural network, with n0 inputs,
L hidden layers, and widths nl ≥ n0 ∀l ∈ {1, 2, . . . , L}, is lower-bounded by(

L−1∏
l=1

bnl
n0

cn0

)
n0∑
j=0

(
nL
j

)
. (6.1)

where b·c is the floor function on fractions.

Proof 3 Proof can be found in [81] or [91].

From the hyperplane arrangement it can be shown that the maximal number of regions for
any ReLU networks with a total of N activation units is bounded from above by 2N [81].
This bound is very loose, and not very useful. But there is also a tighter upper-bound on the
number of regions,

Theorem 3 The maximal number of regions of a ReLU neural network, with n0 inputs, L hidden
layers, and widths nl ≥ n0 ∀l ∈ {1, 2, . . . , L}, is upper-bounded by∑

(j1,...,jL)∈J

L∏
l=1

(
nl
jl

)
(6.2)

where J = {(j1, . . . , jL) ∈ ZL : 0 ≤ jl ≤ min{n0, n1 − j1, . . . , nl−1 − jl−1, nl}, ∀l ∈ [L]}

Proof 4 See Theorem 1. in [116].

These theoretical backgrounds give us better understanding of how a structure of neural
network impacts its performance and also helps us to use some of these properties in order
to construct the link with explicit MPC in the following sections.

explicit MPC and PWA functions

Given a dynamical system, the purpose of a constrained optimal control is to solve an
optimization problem with a set of constraints on states xt and actions ut in order to find
a sequence of actions u∗0:∞ that controls the system to a desired/reference state. We can
formulate such problem as an infinite-horizon optimization problem

J∗∞(x(0)) = min
u0,u1,...

∞∑
t=0

q(xt, ut)

s.t. xt+1 = Axt +But,

xt ∈ X , ut ∈ U ,

x0 = x(0),

∀t = 0, 1, . . . .

(6.3)
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Figure 6.3: A ReLU DNN subdivides the input-space into polytopes. In fact, each hidden
layer divides the input-space from the previous layer hl−1, and this recursively subdivides
the input–space of the whole network for the deeper layers forward. Here we have a
2–layer ReLU net with input x ∈ R2 and four activation units in each layer. The left plot
shows the pre-activation functions f1 = W1x+ b1 that is equivalent to four hyperplanes in
R2. Hidden units are activated in one side of their corresponding hyperplanes. The right
plot shows both hyperplanes from the first and second layers in blue and red, respectively.
The hyperplanes in the second layer, as seen in the plot, are not straight lines, but rather
they are bent at the first layer boundaries (blue lines). When those hyperplanes pass
through different regions partitioned by the first layer, they will be bent. Therefore we still
have four activation boundaries for four units in layer 2, but they are not straight lines. In
the right plot we can see all the regions that the network can partition on the input-space.
Also it represents different affine functions over each polytope.
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This problem (6.3) cannot be solved easily due to its infinite horizon nature with constraints
on states and actions [15]; instead model predictive control (i.e. receding horizon control) is a
suitable approach to follow, which mimics (6.3) by appropriate choice of p(xN), q(xk, uk),
and Xf as the following,

J∗0 (x(t)) = min
u0:(N−1)

p(xN) +
N−1∑
k=0

q(xk, uk)

s.t xk+1 = Axk +Buk,

xk ∈ X , uk ∈ U ,
xN ∈ Xf ,
x0 = x(t),

∀k = 0, . . . , N − 1.

(6.4)

Equation (6.4) can be seen as a multiparametric program (mp) in which x(t) is the vector of
parameters. In particular for the case of linear and quadratic cost functions with polyhedral
constraints, it transpires that the solution to problem (6.4) is in fact a PWA function of the
parameters u∗(t) = f(x(t)), an explicit solution to the MPC controller.

In a number of instances we may be interested in the constructing the PWA function
corresponding to a ReLU net which is also the solution of a mp–LP/mp–QP problem. This
may arise when, for example, we want to measure the suboptimality of a trained network
with the solution of an explicit MPC. Inverse mp–LP/QP studies this idea, constructing
such optimization problems from PWA functions. The following theorem expresses this in
detail,

Theorem 4 Every continuous piecewise affine function f : Rm → Rn can be obtained as a linear
map of the unique explicit solution f̂(x) of multi-parametric linear program in the form of

f̂(x) ∈ arg minz J(z, x)

s.t. (z, x) ∈ Ω,
(6.5)

with dimension n̂, when n̂ ≤ 2n.

The proof presented in [45] is constructive, that means the proof establishes a procedure
that results to the formulation of a mp-LP from a PWA function. The proof follows from
the fact that every PWA function can be decomposed to two convex function and from
there it is straightforward to construct a mp-LP for a convex PWA function. Note that,
although the proof is constructive, it is still very hard (or even impossible) to implement it
as an algorithm.

Now, referring to Fig. 6.4 we can have a better understanding of the whole picture
in relating the ReLU feedforward to the PWA functions, mp-LP/mp-QP, and ultimately
explicit MPC. Although it is possible to use learning to find an approximation of an explicit
MPC policy, yet constructing a deep network from a PWA function needs to be studied
further in the future works.
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Figure 6.4: This illustration gives an entire perspective that this chapter tries to depict.
ReLU DNNs represent PWA function on polyhedra which subdivide the input-space. As-
suming that the input to the neural network is the parameter x(t), the network can exactly
act as an explicit state feedback policy. The dashed arrows indicate the needs for further
study of methods -analytical or approximate- which can reconstruct the mathematical
structures of each block from the other in a constructive manner.

6.3 Explicit MPC and ReLU DNN
In this section we connect the ReLU DNN and explicit MPC through their underlying
connection which is PWA functions. As mentioned in previous sections we know that
every ReLU DNN has a continuous PWA function representation on the input-space,
and vice versa (but not necessary in an explicit closed form, since constructing such a
connection is not easy in general).

Identification of Input-Space in ReLU DNN

In order to identify the different regions partitioned by ReLU NN on the input-space, we
present an approximate method here that is an extension of the method introduced in [81].
We will show that it is possible to construct each pieces of a PWA function by extending
the PWA representation of a shallow network (i.e. L = 1).

Since every dimension of the output-space can be treated independently, here we
assume the construction of a scalar-valued function f : Ω ⊂ Rn0 → R from a DNN model
(i.e the output-space is scalar nL+1 = 1), but as mentioned, the proposed method can be
applied separately for each dimension in the case of vector-valued DNN models. Any
scalar-valued affine function which is defined over its convex region Ωi can be written as

fi(x) = u>x+ c, x ∈ Ωi, (6.6)

where u> ∈ Rn0 and c ∈ R. In order to construct u> and c in (6.6), we first consider a NN
with one layer and then extend it to the deep nets.
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Shallow Network

Note that we can reformulate a scalar rectifier function as

rect(h) = I(h) · h, (6.7)

where I(h) is an indicator function defined as follows

I(h) =

{
1 h > 0

0 otherwise
(6.8)

Now considering a single layer NN f : Rn0 → R, we rewrite it with the help of indicator
function as

f(x) = W2diag

(
I(W1,1x+ b1,1)
I(W1,2x+ b1,2)

...
I(W1,n1x+ b1,n1)


)

(W1x+ b1). (6.9)

Simplifying (6.9), f(x) can be written more compactly as

f(x) = W2diag(If1(x))W1x+W2diag(If1(x))b1, (6.10)

where diag(Ifl(x)) is the compact form of indicator function for pre-activation fl in layer l.
From (6.10) we can see that given input x weight u> and bias c can be computed.

Deep Network

Now we can extend the derivation in (6.10) for deep network. Given an input x from a
region Ωi we can construct the corresponding weight u> and bias c for each affine map fi.
The weight is computed by

u> = WL+1diag(IfL(x))WL . . .

diag(If2(x))W2 diag(If1(x))W1, (6.11)

A bias of the affine map c also can be computed similarly

c = WL+1diag(IfL)WL . . . diag(If2)W2 diag(If1)b1

+WL+1diag(IfL)WL . . .diag(If2)b2

+
...

+WL+1diag(IfL)bL (6.12)

Both equations (6.11) and (6.12) depend on input x, so we need to use a (large enough)
set of samples from the input-space to be able to identify different affine responses of the
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output. It is worth mentioning that from (6.11) and (6.12) it is also possible to derive the
corresponding affine function for each activation unit up to a specific hidden layer instead
of the whole network. This means that any activation unit in any stage of a deep neural
network can be written as a PWA function over the input-space of the network. This needs
further study, but as a preliminary, we can ask "is there any connection between layers of a
neural network and for example the horizon in model predictive control?"

Learning DNN with Exact Architecture

Several literature study the concept of learning approximate MPC through supervised or
reinforcement learning process [22, 47]. But we can utilize the structure of PWA control
policy to further improve the process of learning [58]. The following theorem is the key
concept in the process.

Theorem 5 Any convex PWA function f : Rn0 → R, which also can be formulated as pointwise
maximum of N affine functions f(x) := maxi=1,...,N fi(x), can be exactly presented by a ReLU
DNN with width nl = n0 + 1, ∀l ∈ [L] and depth N .

Proof 5 See Theorem 2 in [44].

Depending on the dimension of control input u ∈ Rm, it may be needed to train up to 2m
networks. In fact, every element in the control input vector can be treated separately. Each
element u∗(x(t)) : Rn0 → R is a PWA function which needs to be decomposed into the
difference of two convex PWA functions. Finally, theorem 5 gives an exact design structure
for each network. And presumably, this should result a better learning (smaller loss value,
faster convergence, better accuracy), which ultimately impacts the performance of the
controller that the trained network substitutes.

6.4 Experimental validation
In this section we present a simple example (as a proof of concept) to illustrate the way
to construct a mp-LP from a ReLU DNN. We examine a 2-layer feedforward net with
n1 = n2 = 2 (i.e. total of four activation units) and one dimensional input/output x, y ∈ R.
The two hidden layers are constructed as follows

h1 =

[
h1,1
h1,2

]
= max{0,W1x+ b1}

= max

{
0,

[
−3/2

2

]
x+

[
3
−2

]}
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Figure 6.5: The plots show a scalar PWA function and its decomposition to two convex
functions, f(x) = γ(x)− η(x).
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h2 =

[
h2,1
h2,2

]
= max{0,W2h1 + b2}

= max

{
0,

[
−1 −1
1/2 −1

]
h1 +

[
1
2

]}
,

and the linear map for the output layer is

y = W3h2 =
[
1 −1

]
h2.

The PWA function equivalent to the above feedforward network is

y = f(x) =



0 x ≤ 2
3

−3
2
x+ 1 2

3
≤ x ≤ 1

1
2
x− 1 1 ≤ x ≤ 6

5

−3x− 4 6
5
≤ x ≤ 2

x 2 ≤ x

(6.13)

since the PWA function (6.13) is not convex nor concave, we can decompose it into the
difference of two convex functions γ(x) and η(x) as follows

γ(x) =


−x x ≤ 1

x− 2 1 ≤ x ≤ 6
5

7
2
x− 5 6

5
≤ x

η(x) =


−x x ≤ 2

3
1
2
x− 1 2

3
≤ x ≤ 2

5
2
x− 5 2 ≤ x

Then we can construct the mp-LP counterpart that its solution is the same as PWA function
(6.13). Introducing decision variable z ∈ R2, we can write

J∗(x) = min
z∈R2

[
1 −1

] [z1
z2

]
s.t. − x ≤ z1 x ≥ z2

x− 2 ≤ z1 − 1

2
x+ 1 ≥ z2

7

2
x− 5 ≤ z1 − 5

2
x+ 5 ≥ z2,

x ∈ [0, 3]

(6.14)

and then we can construct f(x) with linear map T as

f(x) = T f̂(x) =
[
1 1

]
f̂(x)
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Figure 6.6: The plots show the explicit solution to the mp-LP (6.14) using MPT3 toolbox
[46]. Top & center: show plots of the optimizers z∗1 = γ(x) and z∗2 = −η(x) which both are
functions of the parameter x. the solution exactly results the PWA function (6.13). bottom:
The plot depicts the optimal value J∗(x) which is a function of parameter x and also is
convex and PWA as we know from the theory of mp-LP (corollary 11.5 in [15]).

In fact the explicit solutions to the mp-LP are

z∗1 = γ(x),

z∗2 = −η(x),

f̂(x) =
[
γ(x) −η(x)

]T
,

which exactly follows the constructive proof in [45].
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6.5 Conclusion
We presented an overview of ReLU deep neural networks; and discussed several structural
properties of such models which are key concepts of using a ReLU network as an explicit
state feedback policy for a model predictive controller. Specifically, we argued since any
ReLU network models a PWA function on polyhedra, it would be a perfect choice to use a
ReLU network instead of state feedback policy computed by an explicit MPC procedure
considering storage and execution complexity of such controllers in real-time. We also
presented a sample–based method that identifies different affine pieces of a ReLU networks.
For future work, alongside further development of some initial findings in this dissertation,
other very recently new ideas such as representing ReLU DNN as a mixed-integer linear
problem [116] can be the subject of further investigation.



86

Bibliography

[1] Alessandro Alessio and Alberto Bemporad. “A Survey on Explicit Model Predictive
Control”. In: Nonlinear Model Predictive Control: Towards New Challenging Applica-
tions. Ed. by Lalo Magni, Davide Martino Raimondo, and Frank Allgöwer. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 345–369. ISBN: 978-3-642-01094-1.

[2] Yasuhiro Aoki et al. “PointNetLK: Robust & Efficient Point Cloud Registration
Using PointNet”. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2019.

[3] Erik Ask, Olof Enqvist, and Fredrik Kahl. “Optimal Geometric Fitting under the
Truncated L2-Norm”. In: 2013 IEEE Conference on Computer Vision and Pattern Recog-
nition. 2013, pp. 1722–1729. DOI: 10.1109/CVPR.2013.225.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. 2016.
arXiv: 1607.06450 [stat.ML].

[5] Arindam Banerjee et al. “Clustering on the Unit Hypersphere Using Von Mises-
Fisher Distributions”. In: J. Mach. Learn. Res. 6 (Dec. 2005), pp. 1345–1382. ISSN:
1532-4435.

[6] Martin Barczyk and Alan F Lynch. “Integration of a triaxial magnetometer into a
helicopter UAV GPS-aided INS”. In: IEEE transactions on Aerospace and Electronic
Systems 48.4 (2012), pp. 2947–2960.

[7] Peter Battaglia et al. “Relational inductive biases, deep learning, and graph net-
works”. In: arXiv (2018). URL: https://arxiv.org/pdf/1806.01261.pdf.

[8] A. Bemporad and C. Filippi. “Suboptimal Explicit Receding Horizon Control via
Approximate Multiparametric Quadratic Programming”. In: Journal of Optimization
Theory and Applications 117.1 (Apr. 2003), pp. 9–38. ISSN: 1573-2878.

[9] Alberto Bemporad. “Model Predictive Control Design: New Trends and Tools”. In:
Jan. 2007, pp. 6678–6683.

[10] Felix Berkenkamp et al. “Safe Model-based Reinforcement Learning with Stability
Guarantees”. In: Advances in Neural Information Processing Systems 30. Ed. by I.
Guyon et al. Curran Associates, Inc., 2017, pp. 908–918.

https://doi.org/10.1109/CVPR.2013.225
https://arxiv.org/abs/1607.06450
https://arxiv.org/pdf/1806.01261.pdf


BIBLIOGRAPHY 87

[11] Paul J. Besl and Neil D. McKay. “A Method for Registration of 3-D Shapes”. In:
IEEE Trans. Pattern Anal. Mach. Intell. 14.2 (Feb. 1992), pp. 239–256. ISSN: 0162-8828.

[12] Seth Billings and Russell Taylor. “Generalized iterative most likely oriented-point
(G-IMLOP) registration”. In: International Journal of Computer Assisted Radiology and
Surgery 10.8 (Aug. 2015), pp. 1213–1226. ISSN: 1861-6429.

[13] Chris M. Bishop. “Training with Noise is Equivalent to Tikhonov Regularization”.
In: Neural Computation 7.1 (Jan. 1995), pp. 108–116. ISSN: 0899-7667. DOI: 10.1162/
neco.1995.7.1.108. eprint: https://direct.mit.edu/neco/article-
pdf/7/1/108/812990/neco.1995.7.1.108.pdf. URL: https://doi.
org/10.1162/neco.1995.7.1.108.

[14] Elizabeth R. Boroson and Nora Ayanian. “3D Keypoint Repeatability for Het-
erogeneous Multi-Robot SLAM”. In: 2019 International Conference on Robotics and
Automation (ICRA). 2019, pp. 6337–6343. DOI: 10.1109/ICRA.2019.8793609.

[15] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid
Systems. Cambridge University Press, 2017. ISBN: 9781107652873.

[16] N. Boumal et al. “Manopt, a Matlab Toolbox for Optimization on Manifolds”. In:
Journal of Machine Learning Research 15 (2014), pp. 1455–1459.

[17] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004, p. 387. ISBN: 0521833787.

[18] Thomas M. Breuel. “Implementation techniques for geometric branch-and-bound
matching methods”. In: Comput. Vis. Image Underst. 90 (2003), pp. 258–294.

[19] D. Briese, H. Kunze, and G. Rose. “UWB localization using adaptive covariance
Kalman Filter based on sensor fusion”. In: 2017 IEEE 17th International Conference on
Ubiquitous Wireless Broadband (ICUWB). Sept. 2017, pp. 1–7. DOI: 10.1109/ICUWB.
2017.8250968.

[20] C. Cadena et al. “Past, Present, and Future of Simultaneous Localization and
Mapping: Toward the Robust-Perception Age”. In: IEEE Transactions on Robotics 32.6
(Dec. 2016), pp. 1309–1332. ISSN: 1552-3098. DOI: 10.1109/TRO.2016.2624754.

[21] Michael Chang et al. “Automatically Composing Representation Transformations as
a Means for Generalization”. In: International Conference on Learning Representations.
2019. URL: https://openreview.net/forum?id=B1ffQnRcKX.

[22] Steven Chen et al. “Approximating Explicit Model Predictive Control using Con-
strained Neural Networks”. In: American Control Conference (ACC). 2018.

[23] Am Cho et al. “Wind estimation and airspeed calibration using a UAV with a
single-antenna GPS receiver and pitot tube”. In: IEEE transactions on aerospace and
electronic systems 47.1 (2011), pp. 109–117.

https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1162/neco.1995.7.1.108
https://direct.mit.edu/neco/article-pdf/7/1/108/812990/neco.1995.7.1.108.pdf
https://direct.mit.edu/neco/article-pdf/7/1/108/812990/neco.1995.7.1.108.pdf
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1109/ICRA.2019.8793609
https://doi.org/10.1109/ICUWB.2017.8250968
https://doi.org/10.1109/ICUWB.2017.8250968
https://doi.org/10.1109/TRO.2016.2624754
https://openreview.net/forum?id=B1ffQnRcKX


BIBLIOGRAPHY 88

[24] Siddharth Choudhary et al. “Information-based reduced landmark SLAM”. In: 2015
IEEE International Conference on Robotics and Automation (ICRA). 2015, pp. 4620–4627.
DOI: 10.1109/ICRA.2015.7139839.

[25] Christopher Choy, Wei Dong, and Vladlen Koltun. “Deep Global Registration”. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020,
pp. 2511–2520. DOI: 10.1109/CVPR42600.2020.00259.

[26] H. Chui and A. Rangarajan. “A feature registration framework using mixture
models”. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image
Analysis. MMBIA-2000 (Cat. No.PR00737). 2000, pp. 190–197. DOI: 10.1109/MMBIA.
2000.852377.

[27] Jose A. Costa, Neal Patwari, and Alfred O. Hero III. “Distributed Weighted multi-
dimensional Scaling for Node Localization in Sensor Networks”. In: ACM Trans.
Sen. Netw. 2.1 (Feb. 2006), pp. 39–64. ISSN: 1550-4859. DOI: 10.1145/1138127.
1138129.

[28] Matthew N. Dailey and Manukid Parnichkun. “Landmark-based Simultaneous
Localization and Mapping with Stereo Vision”. In: In Proc. Asian Conference on
Industrial Automation and Robotics. 2005, pp. 108–113.

[29] T. Deissler and J. Thielecke. “Feature based indoor mapping using a bat-type UWB
radar”. In: 2009 IEEE International Conference on Ultra-Wideband. Sept. 2009, pp. 475–
479. DOI: 10.1109/ICUWB.2009.5288802.

[30] T. Deißler and J. Thielecke. “UWB SLAM with Rao-Blackwellized Monte Carlo
data association”. In: 2010 International Conference on Indoor Positioning and Indoor
Navigation. Sept. 2010, pp. 1–5. DOI: 10.1109/IPIN.2010.5647596.

[31] J. Djugash et al. “Range-only SLAM for robots operating cooperatively with sen-
sor networks”. In: Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. 2006, pp. 2078–2084. DOI: 10.1109/ROBOT.2006.
1642011.

[32] Shaoyi Du et al. “Robust rigid registration algorithm based on pointwise correspon-
dence and correntropy”. In: Pattern Recognition Letters (2018). ISSN: 0167-8655.

[33] Georgios D. Evangelidis and Radu Horaud. “Joint Alignment of Multiple Point
Sets with Batch and Incremental Expectation-Maximization”. In: IEEE Trans. Pattern
Anal. Mach. Intell. 40.6 (2018), pp. 1397–1410.

[34] Alhussein Fawzi et al. “Classification regions of deep neural networks”. In: CoRR
abs/1705.09552 (2017). arXiv: 1705.09552.

[35] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartogra-
phy”. In: Commun. ACM 24.6 (June 1981), pp. 381–395. ISSN: 0001-0782. DOI: 10.
1145/358669.358692. URL: https://doi.org/10.1145/358669.358692.

https://doi.org/10.1109/ICRA.2015.7139839
https://doi.org/10.1109/CVPR42600.2020.00259
https://doi.org/10.1109/MMBIA.2000.852377
https://doi.org/10.1109/MMBIA.2000.852377
https://doi.org/10.1145/1138127.1138129
https://doi.org/10.1145/1138127.1138129
https://doi.org/10.1109/ICUWB.2009.5288802
https://doi.org/10.1109/IPIN.2010.5647596
https://doi.org/10.1109/ROBOT.2006.1642011
https://doi.org/10.1109/ROBOT.2006.1642011
https://arxiv.org/abs/1705.09552
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692


BIBLIOGRAPHY 89

[36] Christian Forster et al. “Collaborative monocular slam with multiple micro aerial
vehicles”. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE. 2013, pp. 3962–3970.

[37] Andreas Geiger et al. “Vision meets Robotics: The KITTI Dataset”. In: International
Journal of Robotics Research (IJRR) (2013).

[38] Tobias Geyer, Fabio D. Torrisi, and Manfred Morari. “Optimal Complexity Re-
duction of Polyhedral Piecewise Affine Systems”. In: Automatica 44.7 (July 2008),
pp. 1728–1740. ISSN: 0005-1098.

[39] S. Gezici et al. “Localization via ultra-wideband radios: a look at positioning aspects
for future sensor networks”. In: IEEE Signal Processing Magazine 22.4 (July 2005),
pp. 70–84. ISSN: 1053-5888. DOI: 10.1109/MSP.2005.1458289.

[40] Steven Gold et al. “New Algorithms for 2D and 3D Point Matching: Pose Estimation
and Correspondence”. In: Advances in Neural Information Processing Systems 7, [NIPS
Conference, Denver, Colorado, USA, 1994]. Ed. by Gerald Tesauro, David S. Touretzky,
and Todd K. Leen. MIT Press, 1994, pp. 957–964. URL: http://papers.nips.
cc/paper/977-new-algorithms-for-2d-and-3d-point-matching-
pose-estimation-and-correspondence.

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[42] Ian Goodfellow et al. “Maxout Networks”. In: Proceedings of the 30th International
Conference on Machine Learning. Ed. by Sanjoy Dasgupta and David McAllester.
Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, Georgia, USA: PMLR,
June 2013, pp. 1319–1327.

[43] P. Grieder and M. Morari. “Complexity reduction of receding horizon control”. In:
42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
Vol. 3. Dec. 2003, 3179–3190 Vol.3.

[44] B. Hanin. “Universal Function Approximation by Deep Neural Nets with Bounded
Width and ReLU Activations”. In: ArXiv e-prints (Aug. 2017). arXiv: 1708.02691
[stat.ML].

[45] Andreas Hempel, Paul J. Goulart, and John Lygeros. “Every Continuous Piecewise
Affine Function Can Be Obtained by Solving a Parametric Linear Program”. en. In:
2013 European Control Conference (ECC). European Control Conference (ECC 2013);
Conference Location: Zürich, Switzerland; Conference Date: July 17-19, 2013; . IEEE,
2013, pp. 2657–2662. ISBN: 978-3-033-03962-9.

[46] M. Herceg et al. “Multi-Parametric Toolbox 3.0”. In: Proc. of the European Control
Conference. http://control.ee.ethz.ch/~mpt. Zürich, Switzerland, July
2013, pp. 502–510.

[47] Michael Hertneck et al. “Learning an Approximate Model Predictive Controller
with Guarantees”. In: CoRR abs/1806.04167 (2018). arXiv: 1806.04167.

https://doi.org/10.1109/MSP.2005.1458289
http://papers.nips.cc/paper/977-new-algorithms-for-2d-and-3d-point-matching-pose-estimation-and-correspondence
http://papers.nips.cc/paper/977-new-algorithms-for-2d-and-3d-point-matching-pose-estimation-and-correspondence
http://papers.nips.cc/paper/977-new-algorithms-for-2d-and-3d-point-matching-pose-estimation-and-correspondence
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1708.02691
https://arxiv.org/abs/1708.02691
http://control.ee.ethz.ch/~mpt
https://arxiv.org/abs/1806.04167


BIBLIOGRAPHY 90

[48] R. Horaud et al. “Rigid and Articulated Point Registration with Expectation Condi-
tional Maximization”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33.3 (Mar. 2011), pp. 587–602.

[49] Kurt Hornik et al. “Spherical k-Means Clustering”. In: Journal of Statistical Software
50 (Sept. 2012), pp. 1–22.

[50] J.P. How et al. “Real-time indoor autonomous vehicle test environment”. In: IEEE
Control Systems Magazine 28.2 (Apr. 2008), pp. 51–64. ISSN: 0272-1708.

[51] Yang Hui et al. “An unmanned air vehicle (UAV) GPS location and navigation
system”. In: Microwave and Millimeter Wave Technology Proceedings, 1998. ICMMT’98.
1998 International Conference on. IEEE. 1998, pp. 472–475.

[52] J Jang and C Tomlin. “Longitudinal stability augmentation system design for the
DragonFly UAV using a single GPS receiver”. In: AIAA Guidance, Navigation, and
Control Conference and Exhibit. 2003, p. 5592.

[53] Mohammed Javed, Md Meraz, and Pavan Chakraborty. “A Quick Review on Recent
Trends in 3D Point Cloud Data Compression Techniques and the Challenges of
Direct Processing in 3D Compressed Domain”. In: CoRR abs/2007.05038 (2020).
arXiv: 2007.05038. URL: https://arxiv.org/abs/2007.05038.

[54] Bing Jian and Baba Vemuri. “Robust Point Set Registration Using Gaussian Mixture
Models”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (Sept.
2011), pp. 1633–1645.

[55] T. A. Johansen and A. Grancharova. “Approximate explicit constrained linear model
predictive control via orthogonal search tree”. In: IEEE Transactions on Automatic
Control 48.5 (May 2003), pp. 810–815. ISSN: 0018-9286.

[56] Tor Arne Johansen. “Approximate explicit receding horizon control of constrained
nonlinear systems”. In: Automatica 40 (2004), pp. 293–300.

[57] G. Kantor and S. Singh. “Preliminary results in range-only localization and map-
ping”. In: Proceedings 2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292). Vol. 2. 2002, 1818–1823 vol.2. DOI: 10.1109/ROBOT.2002.
1014805.

[58] Benjamin Karg and Sergio Lucia. “Efficient representation and approximation of
model predictive control laws via deep learning”. In: arXiv preprint arXiv:1806.10644
(2018).

[59] John T. Kent. “The Fisher-Bingham Distribution on the Sphere”. In: Journal of
the Royal Statistical Society. Series B (Methodological) 44.1 (1982), pp. 71–80. ISSN:
00359246.

[60] Jae-Hak Kim, Hongdong Li, and Richard Hartley. “Motion estimation for multi-
camera systems using global optimization”. In: 2008 IEEE Conference on Computer
Vision and Pattern Recognition. 2008, pp. 1–8. DOI: 10.1109/CVPR.2008.4587680.

https://arxiv.org/abs/2007.05038
https://arxiv.org/abs/2007.05038
https://doi.org/10.1109/ROBOT.2002.1014805
https://doi.org/10.1109/ROBOT.2002.1014805
https://doi.org/10.1109/CVPR.2008.4587680


BIBLIOGRAPHY 91

[61] Klaas Klasing et al. “Comparison of surface normal estimation methods for range
sensing applications”. In: Proceedings - IEEE International Conference on Robotics and
Automation (May 2009), pp. 3206–3211.

[62] Sivanand Krishnan et al. “A UWB based localization system for indoor robot
navigation”. In: Ultra-Wideband, 2007. ICUWB 2007. IEEE International Conference on.
IEEE. 2007, pp. 77–82.

[63] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–
1105.

[64] M. J. Kuhn et al. “Adaptive leading-edge detection in UWB indoor localization”.
In: 2010 IEEE Radio and Wireless Symposium (RWS). Jan. 2010, pp. 268–271. DOI:
10.1109/RWS.2010.5434259.

[65] A. Ledergerber and R. D’Andrea. “Ultra-Wideband Range Measurement Model
with Gaussian Processes”. In: Proceedings of the IEEE Conference on Control Technology
and Applications. IEEE. 2017.

[66] R. Leishman et al. “Quadrotors and Accelerometers: State Estimation with an
Improved Dynamic Model”. In: IEEE Control Systems Magazine 34.1 (2014), pp. 28–
41. ISSN: 1066-033X. DOI: 10.1109/MCS.2013.2287362.

[67] Christophe Ley and Christophe Ley. Applied Directional Statistics: Modern Methods
and Case Studies. CRC Press, 2018.

[68] Hongdong Li. “Consensus set maximization with guaranteed global optimality for
robust geometry estimation”. In: 2009 IEEE 12th International Conference on Computer
Vision. 2009, pp. 1074–1080. DOI: 10.1109/ICCV.2009.5459398.

[69] Weiping Liu et al. “Deep Learning on Point Clouds and Its Application: A Survey”.
In: Sensors 19.19 (2019). ISSN: 1424-8220. DOI: 10.3390/s19194188. URL: https:
//www.mdpi.com/1424-8220/19/19/4188.

[70] Kok-Lim Low. Linear Least-Squares Optimization for Point-to-Plane ICP Surface Regis-
tration. Jan. 2004.

[71] Weixin Lu et al. “DeepVCP: An End-to-End Deep Neural Network for Point Cloud
Registration”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV).
2019, pp. 12–21. DOI: 10.1109/ICCV.2019.00010.

[72] Bin Luo and Edwin R. Hancock. “Structural Graph Matching Using the EM Algo-
rithm and Singular Value Decomposition”. In: IEEE Trans. Pattern Anal. Mach. Intell.
23.10 (Oct. 2001), pp. 1120–1136. ISSN: 0162-8828.

[73] Sergei Lupashin et al. “A platform for aerial robotics research and demonstration:
The Flying Machine Arena”. In: Mechatronics 24.1 (2014), pp. 41–54. ISSN: 0957-4158.

https://doi.org/10.1109/RWS.2010.5434259
https://doi.org/10.1109/MCS.2013.2287362
https://doi.org/10.1109/ICCV.2009.5459398
https://doi.org/10.3390/s19194188
https://www.mdpi.com/1424-8220/19/19/4188
https://www.mdpi.com/1424-8220/19/19/4188
https://doi.org/10.1109/ICCV.2019.00010


BIBLIOGRAPHY 92

[74] M.R. Mahfouz et al. “Investigation of High-Accuracy Indoor 3-D Positioning Using
UWB Technology”. In: IEEE Transactions on Microwave Theory and Techniques 56.6
(2008), pp. 1316–1330. ISSN: 0018-9480.

[75] K. V. Mardia. “Statistics of Directional Data”. In: Journal of the Royal Statistical
Society. Series B (Methodological) 37.3 (1975), pp. 349–393. ISSN: 00359246. URL: http:
//www.jstor.org/stable/2984782.

[76] F Landis Markley. “Attitude error representations for Kalman filtering”. In: Journal
of guidance, control, and dynamics 26.2 (2003), pp. 311–317.

[77] Nathan Michael et al. “The grasp multiple micro-UAV testbed”. In: IEEE Robotics &
Automation Magazine 17.3 (2010), pp. 56–65.

[78] Z. Min, J. Wang, and M. Q. Meng. “Robust Generalized Point Cloud Registration
With Orientational Data Based on Expectation Maximization”. In: IEEE Transactions
on Automation Science and Engineering (2019), pp. 1–15. ISSN: 1545-5955.

[79] Maher Moakher. “Means and Averaging in the Group of Rotations”. In: SIAM J.
Matrix Anal. Appl. 24.1 (Jan. 2002), pp. 1–16. ISSN: 0895-4798.

[80] Guido Montufar. “Notes on the number of linear regions of deep neural networks”.
In: Mar. 2017.

[81] Guido F Montufar et al. “On the Number of Linear Regions of Deep Neural Net-
works”. In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahra-
mani et al. Curran Associates, Inc., 2014, pp. 2924–2932.

[82] David M Mount, Nathan S Netanyahu, and Jacqueline Le Moigne. “Efficient algo-
rithms for robust feature matching”. In: Pattern Recognition 32.1 (1999), pp. 17–38.
ISSN: 0031-3203. DOI: https://doi.org/10.1016/S0031-3203(98)00086-
7. URL: https://www.sciencedirect.com/science/article/pii/
S0031320398000867.

[83] M.W. Mueller, M. Hehn, and Raffaello D’Andrea. “Covariance correction step for
Kalman filtering with an attitude”. In: Journal of Guidance, Control, and Dynamics
(2016), pp. 1–7.

[84] Mark W Mueller, Michael Hamer, and Raffaello D’Andrea. “Fusing ultra-wideband
range measurements with accelerometers and rate gyroscopes for quadrocopter
state estimation”. In: IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2015, pp. 1730–1736.

[85] Arthur G. O. Mutambara. Decentralized Estimation and Control for Multisensor Systems.
1st. Boca Raton, FL, USA: CRC Press, Inc., 1998. ISBN: 0849318653.

[86] Andriy Myronenko and Xubo Song. “Point Set Registration: Coherent Point Drift”.
In: IEEE transactions on pattern analysis and machine intelligence 32 (Dec. 2010),
pp. 2262–75.

http://www.jstor.org/stable/2984782
http://www.jstor.org/stable/2984782
https://doi.org/https://doi.org/10.1016/S0031-3203(98)00086-7
https://doi.org/https://doi.org/10.1016/S0031-3203(98)00086-7
https://www.sciencedirect.com/science/article/pii/S0031320398000867
https://www.sciencedirect.com/science/article/pii/S0031320398000867


BIBLIOGRAPHY 93

[87] Hien Nguyen. A Novel Algorithm for Clustering of Data on the Unit Sphere via Mixture
Models. Sept. 2017.

[88] Gabriel Nützi et al. “Fusion of IMU and vision for absolute scale estimation in
monocular SLAM”. In: Journal of intelligent & robotic systems 61.1 (2011), pp. 287–299.

[89] Carl Olsson, Fredrik Kahl, and Magnus Oskarsson. “Branch-and-Bound Methods
for Euclidean Registration Problems”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 31.5 (2009), pp. 783–794. DOI: 10.1109/TPAMI.2008.131.

[90] F. Olsson, J. Rantakokko, and J. Nygårds. “Cooperative localization using a foot-
mounted inertial navigation system and ultrawideband ranging”. In: 2014 Inter-
national Conference on Indoor Positioning and Indoor Navigation (IPIN). Oct. 2014,
pp. 122–131. DOI: 10.1109/IPIN.2014.7275476.

[91] Razvan Pascanu, Guido Montúfar, and Yoshua Bengio. “On the number of inference
regions of deep feed forward networks with piece-wise linear activations”. In: CoRR
abs/1312.6098 (2013). arXiv: 1312.6098.

[92] David Peel, William J Whiten, and Geoffrey J McLachlan. “Fitting Mixtures of Kent
Distributions to Aid in Joint Set Identification”. In: Journal of the American Statistical
Association 96.453 (2001), pp. 56–63.

[93] Arthur Pewsey and Eduardo Garc’ia-Portugu’es. “Recent advances in directional
statistics”. In: arXiv: Methodology (2020).

[94] Frank Pfeuffer, Michael Stiglmayr, and Kathrin Klamroth. “Discrete and geomet-
ric Branch and Bound algorithms for medical image registration”. In: Annals of
Operations Research 196 (2012), pp. 737–765.

[95] Chris Piech et al. “Deep Knowledge Tracing”. In: Advances in Neural Information
Processing Systems 28. Ed. by C. Cortes et al. Curran Associates, Inc., 2015, pp. 505–
513.

[96] François Pomerleau et al. “Challenging data sets for point cloud registration algo-
rithms”. In: The International Journal of Robotics Research 31.14 (Dec. 2012), pp. 1705–
1711.

[97] Florent Poux et al. “SMART POINT CLOUD: DEFINITION AND REMAINING
CHALLENGES”. In: vol. IV-2/W1. Oct. 2016. DOI: 10.5194/isprs-annals-IV-
2-W1-119-2016.

[98] Marcelo O. R. Prates. “Learning to solve NP-complete problems”. In: 2019.

[99] Nissanka B Priyantha et al. “The cricket compass for context-aware mobile applica-
tions”. In: Proceedings of the 7th annual international conference on Mobile computing
and networking. ACM. 2001, pp. 1–14.

https://doi.org/10.1109/TPAMI.2008.131
https://doi.org/10.1109/IPIN.2014.7275476
https://arxiv.org/abs/1312.6098
https://doi.org/10.5194/isprs-annals-IV-2-W1-119-2016
https://doi.org/10.5194/isprs-annals-IV-2-W1-119-2016


BIBLIOGRAPHY 94

[100] Amanda Prorok et al. “Indoor navigation research with the Khepera III mobile
robot: An experimental baseline with a case-study on ultra-wideband positioning”.
In: International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE.
2010, pp. 1–9.

[101] C. Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a
Metric Space”. In: NIPS. 2017.

[102] Charles R Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation”. In: arXiv preprint arXiv:1612.00593 (2016).

[103] Maithra Raghu et al. “On the Expressive Power of Deep Neural Networks”. In:
Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina
Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
International Convention Centre, Sydney, Australia: PMLR, Aug. 2017, pp. 2847–
2854.

[104] Anand Rangarajan et al. “A robust point matching algorithm for autoradiograph
alignment”. In: Visualization in Biomedical Computing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 277–286. ISBN: 978-3-540-70739-4.

[105] Ioannis M. Rekleitis, Gregory Dudek, and Evangelos E. Milios. “Multi-robot Explo-
ration of an Unknown Environment, Efficiently Reducing the Odometry Error”. In:
Proceedings of the Fifteenth International Joint Conference on Artifical Intelligence - Vol-
ume 2. IJCAI’97. Nagoya, Japan: Morgan Kaufmann Publishers Inc., 1997, pp. 1340–
1345.

[106] S. I. Roumeliotis and G. A. Bekey. “Distributed multirobot localization”. In: IEEE
Transactions on Robotics and Automation 18.5 (Oct. 2002), pp. 781–795. ISSN: 1042-296X.
DOI: 10.1109/TRA.2002.803461.

[107] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Robot Manipulation.
Springer Publishing Company, Incorporated, 2013. ISBN: 9783642354786.

[108] Radu Bogdan Rusu et al. “Towards 3D Point Cloud Based Object Maps for House-
hold Environments”. In: Robot. Auton. Syst. 56.11 (Nov. 2008), pp. 927–941. ISSN:
0921-8890.

[109] J Sachs. “Handbook of Ultra-Wideband Short-Range Sensing: Theory, Sensors,
Applications”. In: (Dec. 2012), p. 25.

[110] Zafer Sahinoglu, Sinan Gezici, and Ismail Gvenc. Ultra-wideband Positioning Systems:
Theoretical Limits, Ranging Algorithms, and Protocols. New York, NY, USA: Cambridge
University Press, 2011.

[111] Vinit Sarode et al. “PCRNet: Point Cloud Registration Network using PointNet
Encoding”. In: ArXiv abs/1908.07906 (2019).

https://doi.org/10.1109/TRA.2002.803461


BIBLIOGRAPHY 95

[112] Davide Scaramuzza et al. “Vision-controlled micro flying robots: from system
design to autonomous navigation and mapping in GPS-denied environments”. In:
IEEE Robotics & Automation Magazine 21.3 (2014), pp. 26–40.

[113] Aleksandr Segal, Dirk Hähnel, and Sebastian Thrun. “Generalized-ICP”. In: Proc. of
Robotics: Science and Systems (June 2009).

[114] Marcelo J Segura, Vicente A Mut, and Hector D Patiño. “Mobile robot self localiza-
tion system using IR-UWB sensor in indoor environments”. In: Robotic and Sensors
Environments, 2009. ROSE 2009. IEEE International Workshop on. IEEE. 2009, pp. 29–
34.

[115] Jacopo Serafin and Giorgio Grisetti. “NICP: Dense Normal Based Point Cloud
Registration”. In: Proceedings of the ... IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems
(Sept. 2015), pp. 742–749.

[116] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. “Bounding
and Counting Linear Regions of Deep Neural Networks”. In: CoRR abs/1711.02114
(2017). arXiv: 1711.02114.

[117] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529 (2016), pp. 484–503.

[118] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John
Wiley & Sons, 2006.

[119] J. Spjøtvold, P. Tøndel, and T. A. Johansen. “Continuous Selection and Unique
Polyhedral Representation of Solutions to Convex Parametric Quadratic Programs”.
In: Journal of Optimization Theory and Applications 134.2 (Aug. 2007), pp. 177–189.
ISSN: 1573-2878.

[120] John R. Spletzer. A New Approach to Range-only SLAM for Wireless Sensor Networks.

[121] Przemysław Spurek et al. “HyperFlow: Representing 3D Objects as Surfaces”. In:
ArXiv abs/2006.08710 (2020).

[122] Suvrit Sra. “Directional Statistics in Machine Learning: A Brief Review Suvrit Sra”.
In: Applied Directional Statistics (2018).

[123] T. Stoyanov, M. Magnusson, and A. J. Lilienthal. “Point set registration through min-
imization of the L2 distance between 3D-NDT models”. In: 2012 IEEE International
Conference on Robotics and Automation. Apr. 2012, pp. 5196–5201.

[124] R. S. Sutton, A. G. Barto, and R. J. Williams. “Reinforcement learning is direct
adaptive optimal control”. In: IEEE Control Systems Magazine 12.2 (Apr. 1992),
pp. 19–22. ISSN: 1066-033X.

[125] Queens Maria Thomas, Oliver Wasenmüller, and Didier Stricker. “DeLiO: Decou-
pled LiDAR Odometry”. In: CoRR abs/1904.12667 (2019). arXiv: 1904.12667.

https://arxiv.org/abs/1711.02114
https://arxiv.org/abs/1904.12667


BIBLIOGRAPHY 96

[126] Yanghai Tsin and Takeo Kanade. “A Correlation-Based Approach to Robust Point
Set Registration”. In: Computer Vision - ECCV 2004. Ed. by Tomáš Pajdla and Jiří
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