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ABSTRACT

Objective: We tested the value of measuring modularity, a graph theory metric indexing the rela-
tive extent of integration and segregation of distributed functional brain networks, for predicting
individual differences in response to cognitive training in patients with brain injury.

Methods: Patients with acquired brain injury (n5 11) participated in 5 weeks of cognitive training
and a comparison condition (brief education) in a crossover intervention study design. We quan-
tified the measure of functional brain network organization, modularity, from functional connec-
tivity networks during a state of tonic attention regulation measured during fMRI scanning before
the intervention conditions. We examined the relationship of baseline modularity with pre- to
posttraining changes in neuropsychological measures of attention and executive control.

Results: The modularity of brain network organization at baseline predicted improvement in atten-
tion and executive function after cognitive training, but not after the comparison intervention.
Individuals with higher baseline modularity exhibited greater improvements with cognitive train-
ing, suggesting that a more modular baseline network state may contribute to greater adaptation
in response to cognitive training.

Conclusions: Brain network properties such as modularity provide valuable information for under-
standing mechanisms that influence rehabilitation of cognitive function after brain injury, and may
contribute to the discovery of clinically relevant biomarkers that could guide rehabilitation efforts.
Neurology® 2015;84:1568–1574

Brain injuries impair components of goal-directed cognition, such as attention and working
memory, disrupting the ability to accomplish life goals. Although improvements after training
of higher cognitive functions in patients with brain injury are documented,1 there is a deficiency
of research on neural factors that explain significant variation in recovery of function and
response to rehabilitation across individuals. Measurable brain network properties that likely
influence the capacity of individuals to benefit from rehabilitation could provide valuable clin-
ical biomarkers that could guide the treatment of cognitive dysfunction after brain injury.

The state of functional brain networks may influence how the brain manages information and
changes with experience.2–5 Rehabilitation of complex cognitive functions may be influenced by
the relative extent of integration and segregation of functional networks (i.e., “modules”) dis-
tributed across distant brain regions.6 Cortical lesions and subcortical axonal damage can disrupt
this “modular” network organization7,8 normally exhibited by the brain.9,10 Thus, we hypoth-
esized that differences in brain modularity among individuals might predict the potential for
patients to learn during cognitive training after brain injury. In the present study, we examined
the graph theory metric of modularity, an index of the balance between functional integration
and segregation of networks, during a state of tonic attention regulation as patients underwent
fMRI scanning. We investigated baseline modularity as a putative basis for variation in the
response of patients with acquired brain injury to a previously implemented cognitive training
protocol for attention and executive functions.11
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METHODS Patients. Sixteen patients (age range: 24–62

years; sex: 9 women) with chronic acquired brain injury ($6

months) participated in the intervention study. Physicians and

treatment providers from several San Francisco Bay Area hospitals

referred participants to our study. Entry criteria including clear

reports of plausible mechanism of injury, with evidence of neu-

rophysiologic disruption (loss of consciousness, posttraumatic

confusion/amnesia), and clear onset of impaired executive func-

tion, with reports of current function corroborated by patients

and significant others. All participants were on stable medication

regimens and had no active illicit drug use, severe depression,

aphasia, or other criteria that would impede participation in the

intervention or measurements. Three participants completed par-

tial baseline assessments, but withdrew because of changes in health,

family situation, and job demands. Of the remaining participants, 11

participated in the MRI and neuropsychological measures necessary

for inclusion in the present study (others declined because of claustro-

phobia, concerns regarding discomfort from positioning, fatigue, or

illness); therefore, results are constrained to these individuals. The

source of brain injury varied among the patients, resulting from trauma

(n5 8), stroke (n5 1), tumor resection (n5 1), and chemotherapy

(n 5 1). Eight of the patients had lesions affecting cortical and

white matter regions that were visible with MRI using fluid-

attenuated inversion recovery and magnetization-prepared rapid

acquisition with gradient echo images. The location of the lesions

varied among participants. A more thorough description of the

demographic and injury characteristics of this subset of patients is

provided in our previous report.12

Standard protocol approvals, registrations, and patient
consents. Participants provided informed consent according to

procedures approved by the institutional review boards of the

California Pacific Medical Center, University of California, San

Francisco, and San Francisco VA Medical Center.

Intervention design. The cognitive training in goal-oriented

attention self-regulation involved 20 hours of group-based

training, 3 hours of individual training, and approximately 20

hours of home practice over 5 weeks. Training incorporated 2

key components: (1) regulation of distractibility via mindfulness-

based attention regulation training; and (2) active application and

practice of goal-oriented attention self-regulation skills in daily

life and with self-generated complex goals.11,13 Trainers

monitored the engagement of participants in all aspects of

cognitive training, either directly during training sessions or by

referring to the participants’ logbooks. The comparison

intervention consisted of a 2-hour educational session about

brain health and wellness. This experimental condition did not

involve cognitive skills training and was primarily used to

examine the effects of repeated testing.

In a crossover design, we randomized eligible patients to

receive either the cognitive training (8/16 patients) or education

intervention (8/16 patients) during the first 5-week study period.

The patients then switched over to the alternative intervention for

the second 5-week study period. Of the 11 patients completing

the measures necessary for the present study, 4 started with cog-

nitive training and 7 started with education intervention. All pa-

tients completed neuropsychological testing at 3 time points:

assessment 1 before any participation in interventions, assessment

2 at the end of the first study period (5 weeks), and assessment 3

at the end of the second study period (10 weeks). Although most

patients (6 of 11 patients) in the present study completed MRI

scans at all 3 assessment periods, 5 patients could not be included

in the education analysis because of technical issues with MRI

scans, leaving 6 data points for the education analysis.

Neuropsychological testing. Attention and executive function
were measured using a composite score composed of the average z
score of the following neuropsychological measures: Letter Num-

ber Sequencing, Wechsler Adult Intelligence Scale III14; Auditory

Consonant Trigrams at 9, 18, 3615; Digit Vigilance Test time and

errors16; Design and Verbal Fluency Switching17; Trails B16;

Stroop Inhibition/Switching time and errors; and Stroop Inhibi-

tion time and errors.17 To minimize practice effects, whenever

feasible, alternative test forms (Verbal Fluency Switching, Digit

Vigilance) were used for repeated administrations, and/or norms

for repeated testing were used (Auditory Consonant Trigrams).

We quantified changes in attention/executive functions after

each intervention condition by subtracting the composite atten-

tion and executive function domain score after the intervention

condition from before intervention.

Brain imaging methods: MRI acquisition and
preprocessing. We acquired a 5-minute fMRI scan after

subjects underwent T1-weighted magnetization-prepared rapid-

acquisition gradient echo and T2-weighted fluid-attenuated

inversion recovery structural scans. Before the fMRI scan,

patients received the following instructions: “For the next

5 minutes, relax and focus on the cycle of your breathing. It is

ok to let your mind wander, but try to refocus on your breathing.

Keep your eyes open and do not fall asleep.” We restricted the

analysis of fMRI data to baseline scans, defined as the first

available MRI scan before participation in the intervention

conditions.

We acquired images using a 3-tesla Siemens Magnetom Trio

whole-body magnetic resonance scanner (Siemens AG, Erlangen,

Germany) with a transmit-receive 12-channel quadrature bird-

cage head coil at the University of California, San Francisco Neu-

roscience Imaging Center. Eligible subjects underwent a sequence

consisting of 300 T2*-weighted echoplanar images, with slice

thickness, 5 mm; 0.5 mm slice gap; 18 slices; repetition time,

1,000 milliseconds; echo time, 27 milliseconds; flip angle, 62°;

and matrix, 64 3 64 axial field of view, discarding the first 3

volumes to allow for scanner equilibration.

We conducted image preprocessing using Analysis of Func-

tional Neuroimaging Software (AFNI: v2008-07-18-1710).18

We slice-time–corrected and realigned the echoplanar image data

using a 6-parameter affine registration to correct for head motion.

We regressed out the mean nuisance signal from estimated head

motion, ventricles, and white matter. Using SPM8, we seg-

mented CSF and white matter and eroded and merged the iden-

tified clusters to produce a mask of the ventricles and of the white

matter for each subject. In the case of segmentation failures, we

hand-corrected and/or hand-drew the masks. We generated the

nuisance covariates by finding the mean time series of voxels

within the nuisance masks.

The results from scans in which participants exceeded our a

priori motion threshold of 2-mm rotation or translation were

handled by removing the frame in which the event occurred

and the 2 preceding frames before preprocessing. This procedure

was necessary for only one of the 28 reported scans. Any signifi-

cant relationships between movement parameters and modularity

were ruled out by examining data for Pearson correlations

between movement parameters and modularity scores.

fMRI data analysis: Modularity analysis. Blood oxygen

level–dependent fMRI signal was used to identify large-scale

brain functional networks on a subject-by-subject basis. Whole-

brain parcellation was conducted in native space using the

anatomical automatic labeling atlas, which parcellates the brain

into 90 cortical and subcortical (45 per hemisphere) regions of
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interest.19 With each region of interest serving as a network node,

use of the standard anatomical atlas allowed us to define

anatomically standardized brain networks for each subject.

Adjacency matrices were constructed by computing Pearson

correlations between the mean time series (i.e., average across

voxels) of each pair of nodes.20 Adjacency matrices were

binarized by applying a threshold fixing the total number of

edges to a particular connection density, allowing direct

comparison of network properties across participants.21,22

Network analysis was conducted across a range of connection

densities (0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, and

0.25), ranging from 0.05 to 0.25 in increments of 0.025, to

reduce the impact of threshold selection on results. The Python

package NetworkX was used to create and analyze the graphs.23

Graphs were partitioned into subnetworks (i.e., modules)

using a simulated annealing technique that maximizes modularity

across the brain.24,25 This data-driven approach results in a net-

work partition that maximizes modularity without taking into

account a priori knowledge of brain network organization or

specifying the number of networks that must be present. It

achieves this by searching for the partition that maximizes the

number of connections within modules and minimizes the num-

ber of connections between modules. The modularity metric

reflects the strength of modular network organization by sum-

ming the difference between the fraction of within-module con-

nections to the total fraction of connections across modules, thus

ranging from 0 (random) to 1 (completely modular). The extent

of modular organization was characterized for each individual,

with the integrated modularity—the sum of modularity values

across all computed connection densities—used as the primary

metric of interest. Although the report focuses on the integrated

modularity metric, all results were consistent across individual

cost values.

RESULTS Baseline measurements of modularity. We
computed integrated modularity values, the sum of
modularity values across all connection densities, for
each subject (range: 2.35–4.39; median: 3.44; mean:
3.5 6 0.6). Figure 1 illustrates networks for subjects

Figure 1 Examples of modular brain graphs

Brain graphs illustrating identified modules, with the nodes and edges in each module represented by a different color. Representative graphs are shown for
the individuals with the lowest and highest baseline modularity (respectively, 0.25 and 0.48) at a cost of 0.15.
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with the lowest and highest modularity values at cost
0.15 (range: 0.25–0.48; median: 0.36; mean: 0.376
0.07), for which all brain graphs were composed of 3
to 6 modules. To assess whether a relationship
between the presence or absence of visible lesions
and baseline modularity existed, we compared mod-
ularity scores for the individuals with brain lesions
against those without lesions. We found no signifi-
cant difference in modularity scores in patients with
and without lesions (data not shown).

Relationship between baseline modularity and the effects

of cognitive training. As previously reported, perfor-
mance on tests of attention/executive functions
improved after the cognitive training intervention,

but not after the education intervention.11 Here, we
determined the extent to which improvement in
attention/executive functions after cognitive training
could be predicted by differences in baseline modularity
(measured before training).We found that baseline mod-
ularity values correlated positively with improvement in
attention/executive functions after cognitive training
(Pearson correlation r 5 0.61, p , 0.05; see figure
2A). Specifically, patients with higher baseline
modularity exhibited greater improvement in
attention/executive functions with cognitive training
relative to those with lower baseline modularity. There
was no relationship for the education intervention.

Relationship between baseline neuropsychological

function and the effects of cognitive training. We deter-
mined the extent to which changes in attention/
executive functions after cognitive training could
be predicted by differences in baseline executive
function (measured before training). We found no
significant correlation between these 2 variables
(Pearson correlation r520.19, p. 0.57; see figure
2B). As expected, baseline neuropsychological func-
tion did not relate to changes with the education
intervention.

DISCUSSION We have proposed that the integration
of distributed brain networks has a critical role in the
recovery and rehabilitation of goal-directed cognitive
control functions.6,26 We investigated the relationship
between a property of brain network organization and
the response of patients with acquired brain injury to
cognitive training and education intervention. Before
participation in cognitive training, we assessed brain
network organization using the network parameter
modularity, which indexes the balance between
integration and segregation of brain networks.
Patients engaged in a constrained “rest task” during
5-minute fMRI scans, which allowed for a brief assay
of functional network organization during a period of
tonic attention regulation. Baseline modularity
measured during a regulated “resting” brain state
predicted the magnitude of improvement in
attention/executive functions observed following
cognitive training. As expected, we did not observe
improvement in attention/executive functions or a
predictive relationship of modularity following the
education intervention (which assessed for practice
effects via repeated testing). The sample size for the
education intervention was small, but our previous
study with a larger group did not observe a
systematic change in attention/executive functions
following the education intervention.11 Of note,
baseline attention/executive functions did not predict
response to training, supporting the notion that brain
measures may provide markers of function not
captured by traditional behavioral measures.

Figure 2 Relationship between baseline measures of integrated modularity and
behavior with response to training

Relationship of baseline integrated modularity (A) or baseline attention/executive functions
(B) with change in attention/executive functions after cognitive training (black symbols) and
education interventions (white symbols). *p , 0.05.
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Measurements of large-scale brain network organi-
zation have been useful for explaining injury-related
cognitive deficits,27,28 symptom severity,29 and recov-
ery.30 Modular network organization may be of par-
ticular importance for patients with acquired brain
injuries. Theoretical work suggests that modularity
constrains the flow of information across the brain2

and enhances the ability of networks to rapidly recon-
figure in response to environmental influences and
tasks.3,4,31 Lower modularity (but not other overall
network measures) was shown to be associated with
more severe symptoms in patients with mild postcon-
cussive syndrome 6 months postinjury,32 suggesting
that disruptions of modular network organization
may interfere with processes of recovery from brain
injuries more generally. We extend this work by iden-
tifying a relationship between modularity and learn-
ing in the context of rehabilitation training.

Our findings further the study of neural factors
that influence learning, suggesting that modularity
during a regulated brain network state may mediate
an individual’s readiness to learn and engage in train-
ing. Fluctuations in brain state influence brain activ-
ity and behavior.33 Modularity influences learning
and behavioral plasticity, reflecting an important
aspect of a dynamically regulated brain state.5,34 Reg-
ulation of brain state between periods of engagement
in goal-directed cognitive tasks likely influences per-
formance during later episodes of goal-directed
action.35 So-called “resting” states are associated with
higher modularity than “working” states,36 suggesting
that more modular network configurations may serve
as an ideal launching platform for engagement in
goal-directed cognition. The brief assay of functional
brain organization developed for the purpose of the
present study uses a tonic self-regulation task. We
chose this method to provide some constraint on
the intended mental activity during scanning. It is
not clear whether similar results would be found with
a more standard, unconstrained “rest” scan; future
work could explore differences between the con-
strained tonic self-regulation task used in the present
study (relax and focus on breathing) vs the more com-
mon unconstrained “rest” task (mind wandering). It
is possible that the tonic attention regulation task may
be a more sensitive predictor of learning and focus
than a standard, unconstrained rest task.

Variability in brain structure, especially from het-
erogeneous brain lesions, has been a challenge for the
study of brain–behavior relationships in recovery and
rehabilitation. Network theory provides a potential
unifying framework for addressing questions in the
context of structural variability across individuals.
Quantitative measures that characterize large-scale
brain network organization may be useful for under-
standing brain function in patients, providing

information beyond structural, behavioral, and other
functional measurements. For example, the effects of
heterogeneous lesions have been difficult to charac-
terize, but we previously demonstrated that the effect
of focal lesions on brain network organization among
patients with focal lesions depends on the role that the
lesion site has in large-scale brain networks.8 Specifi-
cally, lesions to regions important for communication
between functional networks lead to more profound
disturbances to modular network organization than
lesions to regions important for communication within
functional networks. Even when other techniques
reveal no apparent structural damage, disrupted brain
function may be apparent in properties reflecting char-
acteristics of functional brain networks.37,38 In the pre-
sent study, the magnitudes of modularity measured
could not be explained by whether or not patients
had visible lesions on structural MRI scans.

The link between functional brain network orga-
nization and behavioral consequences of training/
learning have not been well explored. Studies that
investigate neural factors that may underlie variability
in response to training are particularly scarce. This
study provides a preliminary foundation to build
on, which suggests that biomarkers of brain network
organization such as modularity may have utility in
guiding rehabilitation approaches after brain injury.
A recent investigation of the relationship between
brain network parameters and response to a behav-
ioral intervention (placebo analgesia induced by ver-
bal suggestion) also documented an association
between baseline functional network organization
and efficient translation of behavioral information
into a therapeutic response.39 This line of work sup-
ports the possibility that further characterization of
individual brain network properties may contribute
to advances in the personalization of medical treat-
ment, where measurements reflecting brain network
properties may inform treatment approaches by add-
ing to information from structural brain characteriza-
tion and measurements of behavior.

The present study has some notable limitations,
while providing hypotheses for future investigation.
The study design involved a preset duration of train-
ing for the purposes of standardizing the study proto-
col, and thus the study did not address questions
regarding possible differences with other durations
of therapy. Also, the education intervention had a
small sample size. This arm was included in the study
design primarily to control for effects not specific to
the cognitive training intervention, such as changes
from random fluctuation or from repeated testing.
Although the main findings for the cognitive training
intervention are not affected by the smaller compari-
son sample, the data may not be sufficient to confi-
dently confirm the specificity of the main findings.
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Moreover, a larger overall sample size for both types
of interventions may allow for examination of other
brain–behavior relationships.

This line of research will benefit from further inves-
tigations of the importance of brain network parame-
ters for the timing, duration, and approach to
rehabilitation training after brain injury. It is possible
that some individuals are more or less “ready to learn”
than others, and that different approaches could be
valuable for different patients based on parameters of
brain-state regulation. Investigation of the time course
of changes in network properties and behavior over the
course of training may reveal important insights into
the biological mechanisms that support the learning
process. Furthermore, the predictive value of modular-
ity incites questions regarding to what extent brain
network parameters may be modified by training,
medications, or other intervention approaches. For
example, is it possible that the regulation of functional
brain network organization might be a target of inter-
vention, in preparation for other rehabilitation treat-
ments? Changes in network parameters with cognitive
training will be a subject for future work using longi-
tudinalMRI. These lines of investigation have much to
reveal about the role of brain network function in the
learning process and the parameters that underlie indi-
vidual differences in disruption and recovery after brain
injuries.
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