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Overview - Hydrology in a World of Artificial Intelligence

Hydrology has historically lagged in adopting and advancing interdisciplinary knowledge, in-

cluding Machine Learning (ML) research and applications. However, this trend is gradually

changing as the hydrologic community begins to increasingly recognize the immense poten-

tial of ML in addressing complex water-related challenges. The increasing availability of

big data from remote sensing, climate models, in-situ measurements, and human-generated

texts, images, sounds coupled with the growing computational capabilities, has opened up

increasingly new avenues for ML-driven hydrologic research.

The advancement of ML in hydrology is not just a matter of academic interest but an essential

step towards tackling the pressing water issues facing California, and our precious planet’s

environment. Climate change coupled with unsustainable, and often misinformed resources

management is putting unprecedented pressure on our water resources, necessitating innova-

tive solutions that can help us better understand, predict, and manage hydrologic systems.

Traditional hydrologic models, while valuable, often struggle to capture the nonstationarity

and nonlinearities inherent in these systems, particularly when it comes to understanding

the complex interactions between human behavior and evolving environmental conditions.

ML, with its ability to learn from data and uncover hidden patterns, offers a promising

complementary approach to address these challenges.

In my PhD research, I have focused on leveraging ML to address three key problems in hydrol-

ogy: (1) understanding the evolution of research topics and interdisciplinarity in hydrologic

sciences using Natural Language Processing (NLP), (2) exploring the complex interactions

between droughts and human awareness by applying Computer Vision and NLP to remotely

sensed and human-generated data, and (3) developing a global drought prediction model

using a novel Computer Vision technique. I demonstrated the capability and versatility of

ML in advancing hydrologic knowledge, capturing anthropogenic behaviors, and informing

x



real-world decision-making. My research not only pushes the boundaries of what is possi-

ble with ML in hydrology but also lays the groundwork for future studies in this exciting

interdisciplinary field.

However, the impact of my research extends beyond the academic realm. To ensure that

our endeavors benefit society most, we must keep fostering strong collaborations between

hydrologists, ML experts, and stakeholders like water managers, policymakers, and local

communities. This involves developing ML tools that are not only scientifically rigorous

but also user-friendly, interpretable, and adaptable to different contexts. Although not con-

tained in this dissertation, during my doctoral pursuit, I have engaged in multiple other

collaborative research projects which leveraged ML for tasks such as post-processing the US

National Water Model, estimating inputs to the Rangeland Hydrology & Erosion Model, and

an educational module for hydrologists for building ML intuition. We need to increasingly

invest in ML education and capacity building within the hydrologic community, empower-

ing researchers and practitioners with the skills and knowledge to harness these powerful

techniques effectively and ethically.

As the field of ML continues to evolve at a rapid pace, with breakthroughs like ChatGPT,

Claude 3, Bard, DALL-E, Sora, etc. showcasing the unprecedented potential of Generative

Artificial Intelligence, and the possibility of Artificial General Intelligence (AGI) in the hori-

zon, the hydrology community must also adapt and position itself to leverage these advance-

ments. AGI may trigger unprecedented rates of technological advancements with profound

implications for hydrology. It could lead to the development of hyper-intelligent systems

capable of autonomously managing water resources, predicting and mitigating natural disas-

ters, and optimizing water infrastructure. However, it also raises important questions about

the role of human expertise, the transparency and accountability of AI systems, and the

potential for unintended consequences. As we approach this uncharted territory, it is crucial

xi



that hydrologists engage in proactive discussions and collaborations to ensure that the de-

velopment and deployment of these technologies align with the principles of sustainability,

equity, and societal well-being.

Finally, as we navigate the rapidly evolving landscape of ML in hydrology, it is crucial that

we prioritize scientific integrity and societal benefit over narrow interests or contractual obli-

gations. The models and techniques we develop and adopt should be chosen based on their

reliability, robustness, realism, and generalizability, rather than on biased considerations.

We stand at an exciting juncture in the history of hydrologic sciences with unparalleled

opportunities for discovery, innovation, and societal impact.
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Abstract

This dissertation presents three interconnected studies that leverage advanced computa-

tional techniques, including Natural Language Processing (NLP), Computer Vision, Machine

Learning, and Big Data analytics to gain insights into various aspects of hydrologic sciences

and drought research.

In the first study, we applied NLP to assess topic diversity in approximately 75,000 research

articles from eighteen water science and hydrology journals published between 1991 and

2019. We found that individual water science and hydrology research articles are becoming

increasingly diverse in the sense that, on average, the number of topics represented in in-

dividual articles is increasing, which may be a sign of increasing interdisciplinarity. This is

true even though the body of water science and hydrology literature as a whole is not be-

coming more topically diverse. Topics with the largest increases in popularity were Climate

Change Impacts, Water Policy & Planning, and Pollutant Removal. Topics with the largest

decreases in popularity were Stochastic Models and Numerical Models. At a journal level,

Water Resources Research, Journal of Hydrology, and Hydrological Processes are the three

most topically diverse journals among the corpus that we studied.

The second study focused on understanding the relationship between droughts and drought

awareness, which is crucial for decision-making, policy development, and socioeconomic out-

comes related to water management and conservation strategies. We used computer vision

(UNet models) to analyze nonlinear, lagged correlations between Standardized Precipitation

Evapotranspiration Index (SPEI) and Google Trends Search Interest within the Continen-

tal United States (CONUS). We also used Twitter data to asses people’s sentiments about

droughts. The most important drivers of this relationship are the variability and ranges

of drought trends and severity, as well as climatic extremes. This relationship was the

strongest for Western states, followed by Northeastern, Southeastern, and Central regions.

Search interest tends to lag droughts by a period of ˜1-3 months. We also found evidence

that reductionist linear approaches, such as Principal Component Analysis, might not be
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as effective as UNet models in capturing the nuanced relationship between droughts and

drought awareness at various dimensions and scales. We subsequently applied sentiment

analysis on a set of 2.5 million georeferenced tweets related to droughts and found that peo-

ple’s sentiments towards drought have become increasingly positive with decreasing neutral

sentiments since 2014 within the United States.

In the third study, we propose a novel approach for global drought prediction using the Vision

Transformer (ViT) model, leveraging its ability to contextually learn spatial and temporal

patterns from high-dimensional climate data. Using a sliding window approach, we trained

the ViT model on a global dataset spanning from January 1970 to December 2004, using Sea

Surface Temperature (SST), 2-meter Air Temperature (T2M), and Total Precipitation (TP)

as input variables, and the Standardized Precipitation Evapotranspiration Index (SPEI)

(looking ahead 0, 1, and 2 months) as the target variable. The model’s performance is

evaluated on a test dataset from January 2005 to December 2020 using accuracy, precision,

recall, and F1 score metrics. Our results demonstrate the ViT model’s effectiveness in

predicting drought occurrences, with high accuracy scores ranging from 0.9456 to 0.9475 and

precision scores from 0.8747 to 0.8781 for a three-month prediction horizon. The model’s

relatively lower recall scores (0.6285 to 0.6465) indicate room for improvement in capturing

all drought occurrences, particularly in regions with complex or sporadic drought patterns.

The findings of this study indicate substantial potential of the ViT model in predicting

increasingly complex meteorological drought occurrences on a global scale.

Collectively, these studies contribute to the advancement of hydrologic sciences by providing

operational tools and insights for researchers, policymakers, and all stakeholders in the field

of water resources science and management.
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CHAPTER 1

Hydrology Research Articles are Becoming More Topically

Diverse

1.1. Introduction

In the early stages of hydrology and water resources science, the focus was on bringing

together natural scientists, engineers, and social scientists (Harshbarger and Evans, 1967).

Freeze (1990) identified a separation between physical and social sciences in water research

and encouraged the journal Water Resources Research (WRR) to encourage then-limited

partnerships to encourage the mixture of these topics. A report by the National Research

Council (1991) focused on the importance of a diverse educational base in hydrology, and

encouraged multidisciplinary hydrological research as necessary to understand (and predict)

the full global water cycle. Over the next decade, hydrologic sciences became central to

new research topics (e.g., hydroclimatology, hydrometeorology, geobiology, hydroecology,

hydrogeomorphology, ecogeomorphology, earth system dynamics, etc.) (National Research

Council, 2012).

In the modern era, Montanari et al. (2013) argued that the Scientific Decade 2013-2022 would

focus on advanced monitoring and data analysis techniques, and that diversity in water sci-

ence could be sought through connecting economic sciences and geosciences. Montanari et al.

(2015) later argued that this branching of sub-topics in hydrologic sciences has given rise

to a vibrant interdsiciplinary research culture that focuses on a wide range of spatial and

temporal scales, and interactions between water, earth, and biological systems. Ruddell and

Wagener (2015) mentioned that hydrology education must expand beyond traditional scopes

to address the evolving and unique needs of society (e.g., data and modeling driven cybere-

ducation, developing an international faculty learning community, hydro-economics, etc.).
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Vogel et al. (2015) described a modern hydrologic science that develops deeper understanding

of human-nature connections. He argued that every theoretical hydrologic model introduced

previously is in need of revision to properly capture nonstationarity in nature; proposing

knowledge discovery through ‘Big Data’ to understand the coupled human/hydrologic sys-

tem. The 21st century saw a sharp rise in demand for more robust, diverse hydrologic models

which account for nonstationarity associated with climate change (e.g., Milly et al., 2008;

Bayazit, 2015; Galloway, 2011), and leverage large samples of available data (Gupta et al.,

2014). Nearing et al. (2021) argued that modern data science has the potential to trans-

form water science given concerted effort to bring together hydrologists with data scientists,

computer scientists, and statisticians.

Regardless of how we perceive open challenges in the discipline, it is important for scientists

and practitioners to have some idea about whether and how the water science and hydrology

science community is changing. In this study, we identify and quantify trends and inter-

actions in and between different subtopics within the discipline. Specifically, we measure

trends and diversity of different sub-topics within the discipline, and we use these analyses

to provide some insight into the state of topic diversity in the field. Water research arti-

cles encompass a wide range of research topics including groundwater, streamflow, climate

change, eco-hydrology, biogeochemistry, water quality etc., all of which are consequential to

global socioeconomic well-being. McCurley and Jawitz (2017) attempted to assess interdis-

ciplinarity in hydrology by analyzing instances of topic keywords in article titles, however,

their corpus consisted of article titles from only one journal - WRR, and used pre-identified

keywords and topics. In this paper we look at a broad spectrum of water science and hydrol-

ogy research publications (our corpus encompasses 18 high-impact journals), and use data

science techniques to help (partially) automate the process of identifying distinct sub-topics

in the discipline.

One of the major challenges faced by all scientific communities is the increasing volume of

peer reviewed literature – Figure 1.1 quantifies this phenomenon in hydrology and water
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science. Recent advances in computational linguistics, machine learning, and a variety of

application-ready toolboxes for Natural Language Processing (NLP) can help facilitate anal-

yses of vast electronic corpora for a variety of objectives (Cambria and White, 2014). These

techniques, which include information retrieval, text categorization, and other text mining

techniques based on machine learning have been gaining popularity in information systems

since the 1990s (Sebastiani, 2002).

Figure 1.1. Number of articles published per year between 1991 and 2019
in 18 major water research journals (Source: Web of Science)

Topic modeling is a particular type of NLP that uses statistical algorithms to extract seman-

tic information from a collection of texts in the form of thematic classes (Jiang et al., 2016).

Topic models can be applied to massive collections of documents (Blei, 2012) and have been

used to recommend scientific articles based on content and user ratings (Wang and Blei,

2011). Topic modeling has also been used to cluster scientific documents (Yau et al., 2014),

improve bibliographic search (Jardine and Teufel, 2014; Pham et al., 2018; Shu et al., 2009;

Tang et al., 2008; Paul and Girju, 2009), and for a variety of application-specific objectives

such as statistical modeling of the biomedical corpora (Blei et al., 2006), bibliometric ex-

ploration of hydropower research(Jiang et al., 2016), in the analysis of research trends in

3



personal information privacy (Choi et al., 2017), development of meta-review in cloud com-

puting literature (Upreti et al., 2016), literature review of social science articles (Li and Liu,

2018), discovering themes and trends in transportation research (Sun et al., 2017), identifying

contribution of authors in knowledge management literature (Jussila et al., 2017), explor-

ing the history of cognition (Priva and Austerweil, 2015), and exploring topic divergence

and similarities in scientific conferences (Hall et al., 2008). As opposed to scientometrics

techniques (Mingers and Leydesdorff, 2015), which have been traditionally used for ranking

articles and authors based on citation data, topic modeling allows for a contextual under-

standing of particular scientific domains and disciplines.

Motivated by the success of topic modeling in a wide range of applications, we explore its

potential to aid bibliometric exploration of peer-reviewed water science literature. In partic-

ular, we explore the question of whether peer-reviewed water science literature is increasing

in diversity with respect to sub-topics in the discipline. The specific hypotheses that we will

explore are:

• Individual hydrology research papers are becoming more topically diverse, i.e. it is

increasing at the level of individual research projects.

• The hydrology and water science corpus as a whole is becoming more topically-

diverse.

• There is a difference in per-paper topic diversity between different water science

journals.

• Some topics are negatively correlated to diversity in the community research output.

1.2. Methods

Table 1.1 lists notation used throughout this paper, including variables and indices related to

the model and corpus. The corpus that we analyzed is described in Subsection 1.2.1 below.

We analyzed this corpus using sequential Latent Dirichlet Allocation (LDASeq) in GenSim

(Řehřek and Sojka, 2011), based on Blei and Lafferty (2006)’s Dynamic Topic Model (DTM),

to identify dominant topics and to associate topics with individual research articles. LDASeq
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is described in 1.6.1 — this NLP method identifies topics by associating a unique set of words

that frequently co-appear together in timestamped documents and assigns weights to each

of those words based on their likelihood of appearance within a particular topic.

Table 1.1. List of notation for indices, parameters and variables

Notation Meaning
Indices

d Documents index
k Topics index
j Journals index
t Years index

Corpus Parameters
M Number of documents
Nd Number of words in document d
td Year of publication of document d
jd Journal of document d
At Slice of documents based on year of publication

LDASeq Model Components
K Number of topics
Kopt Optimal number of topics
α Parameters of a Dirichlet prior on on the per-document topic distribution
β Parameters of a Dirichlet prior on the per-topic word distribution
µk Distribution of topics over document d
µkd Weight of topic k assigned to document d
z list of K topics
zd Per-word topic vector for document d
zk Particular topic from a list of K topics
wd Word collection in document d

Derived Distributions
µkj Weight of topic k over all documents in journal j
µkt Average weight for topic k over all documents at time t
µ̂k Mean weight of topic k over all documents
µkjt Weight of topic k in journal j at time t
µm Topic distribution over entire corpus of M documents

Derived Metrics & Functions
p LDA model perplexity score
c LDA model coherence score

JSD Jensen-Shannon Divergence
KLD Kullback-Leibler Divergence
I Indicator function
Hj Shannon Diversity of journal j
Hd Shannon Diversity per document d

Ĥt Mean Shannon Diversity of topics in documents per year
Hjt Shannon Diversity of topics in documents per journal per year
r Correlation coefficient
rk,j Correlation coefficient between topics k and j
rµ,Hd

Correlation coefficient between document-topic distributions µ and their corresponding article diversity scores

1.2.1. Corpus. Peer-reviewed abstracts offer snapshots of the historical and current

trends and developments in both theoretical and applied research. In this study, we use

abstracts because they are intended to be concise representations of full-texts and are used

often for bibliometric analyses (Griffiths and Steyvers, 2004; Gatti et al., 2015). The corpus

that we use consists of abstracts from all peer-reviewed articles published in eighteen water

science journals between 1991 and 2019 - this is all water science journals with a 2018 Impact
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Table 1.2. Repository of article-abstracts

Journal Name Abbreviation IF Years Available Total Abstracts
Advances in Water Resources AWR 1.384 1991-2019 3395

Environmental Science: Water Research and Technology ESWRT 1.104 2015-2019 641
Groundwater GW 0.911 1991-2013 2093

Hydrology and Earth System Sciences HESS 2.134 1997-2019 4106
Hydrogeology Journal HGJ 0.940 1998-2019 2298
Hydrological Processes HP 1.417 1991-2019 6694

Hydrological Sciences Journal HSJ 0.913 1991-2019 2598
International Soil and Water Conservation Research ISWCR 1.134 2015-2019 189

Journal of the American Water Resources Association JAWRA 1.026 1997-2019 2461
Journal of Contaminant Hydrology JCH 0.960 1991-2019 2568

Journal of Hydrology JH 1.830 1991-2019 12636
Journal of Hydrometeorology JHM 2.410 2000-2019 2072

Journal of Hydrology: Regional Studies JHREG 1.378 2015-2019 376
Journal of Water Resources Planning and Management JWRPM 1.418 1991-2019 1123

Water Research WR 2.721 1991-2019 15336
Water Resources and Industry WRI 1.255 2015-2019 76
Water Resources Management WRM 1.097 1996-2019 3647

Water Resources Research WRR 2.135 1991-2019 12170

Factor (IF) of greater than 0.9 (Scimago Journal and Country Rank). The list of journals

and journal abbreviations, along with corresponding IFs, years of available data, and total

number of abstracts, are listed in Table 1.2. In total, 74,479 article-abstracts were acquired

from the Web of Science core collection in the form of bib files. Methods for pre-processing

this corpus are described in 1.6.1.

1.2.2. Analysis Methods. To reiterate from the introduction, the hypotheses that

we want to test are about whether hydrology and water science research is becoming more

topically diverse over time. We will test these hypotheses by exploring sub-topics within the

discipline, and measuring whether individual research articles, individual journals, and the

body of water science and hydrology literature as a whole is becoming more topically diverse.

The analysis tools that we use to address these research questions are described below. This

analysis was applied to the posterior document-topic and topic-word expectations from a

trained LDASeq model with 45 topics (Kopt = 45). We used a combination of objective-

subjective method to choose the opitmal number of topics. Details of this process can be

found in 1.6.1.

1.2.2.1. Temporal Trends in Topic Distributions. There are multiple methods of analyz-

ing temporal trends and distributions of topics. Griffiths and Steyvers (2004) applied a
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disjointed time-blind topic model and rearranged documents according to their publication

dates. Blei and Lafferty (2006) developed a sequential topic modeling approach that learns

time-dynamic parameters for the document-topic and topic-word distributions constrained

by linear filtering theory. Wang and McCallum (2006) introduced a non-Markov joint mod-

eling framework where topics are associated with a continuous distribution over document

timestamps. We initially tested Griffiths and Steyvers (2004)’s approach of time-unaware

topic modeling and post-hoc aggregation of results according to timestamp for benchmark-

ing. Due to the sequential nature of our data, we chose dynamic topic modeling (Blei and

Lafferty, 2006) approach for this study because, unlike a time-blind topic model, it provides

a qualitative scope into the contents of a large textual dataset in addition to providing us

with a quantitative, predictive model for our sequential corpus.

We calculated temporal topic distributions for a given year µkt, as the proportion of all topic

weights over all papers from a given year, t:

(1.1) µkt =

∑M
d=1 µkd I(td − t)∑M

d=1 I(td − t)
.

µkd represents the weight for topic k assigned to document d, td is the year in which document

d was published, and I is an indicator function such that I(0) = 1 and I(x) = 0 for x ̸= 0.

Henceforth, I will carry the same meaning.

Statistical significance of these trends were assessed using standard linear regression analysis

between variables. In each case, we computed the (i) Pearson correlation coefficient (r) as

the strength of association between variables, (ii) the p-value for the t-test of the correlation

coefficient against a null hypothesis of zero-trend, and (iii) the Bayes Factor (B10) as a

measure of the strength of evidence toward the alternate (nonzero-trend) hypothesis.

1.2.2.2. Measurement of Topic Diversity. Shannon entropy (Shannon, 1948) is a classic

diversity metric that is used - among many other things - in ecology studies to quantify

the diversity of species in a given ecosystem or location (e.g., Harte and Newman, 2014;

Sherwin and Prat i Fornells, 2019). Intuitively, we propose that articles can be analogous

7



to ecological sites and topics are analogous to species. We used the Shannon Entropy based

metric applied to topic distributions to measure diversity at corpus and article levels.

1.2.2.3. Measuring Diversity at the Article Level. We used Shannon entropy to measure

the topic diversity Hd for each article in our corpus as:

(1.2) Hd = −
K∑
k=1

(µkdlog(µkd)),

Where µk is the distribution of topics over document d. We also calculated the mean Shannon

diversity in documents per year as Ĥt:

(1.3) Ĥt =

∑M
d=1 Hd I(td − t)∑M

d=1 I(td − t)
,

Finally, we calculated the Shannon diversity of topics in documents per journal per year Hjt

as:

(1.4) Hjt =

∑M
d=1Hd I(|jd − j| + |td − t|)∑K

l=1

∑M
d=1 Hd I(|jd − j| + |td − t|)

,

Shannon diversity is represented using the natural unit of information (nat), where 1 nat

represents the information contained in an event when the probability of that event occuring

is 1/e.

1.2.2.4. Measuring Diversity at the Journal and Corpus Level. We calculated Shannon

diversity at the corpus level and then computed these corpus indexes for both the entire

corpus and for each journal. To do this, we began by calculating the K-nomial distribution

over topics µj in a particular set of articles j (either a journal or the whole corpus, although

we will hereafter refer to subscript j as referring to a specific journal):

(1.5) µkj =

∑M
d=1 µkd I(jd − j)∑K

l=1

∑M
d=1 µld I(jd − j)

,

where µkj is the relative popularity of a particular topic in a particular journal as a fraction

of popularity of all topics in the journal. We then calculated the total entropy of each µj

topic distribution as Hj, which is a measure of the Shannon diversity of the per-journal topic
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distributions:

(1.6) Hj = −
K∑
k=1

(µkjlog(µkj)),

The popularity of a particular topic in a particular journal for a particular year, µkjt is a

fraction of the popularity of all topics in that journal and year:

(1.7) µkjt =

∑M
d=1 µkd I(|jd − j| + |td − t|)∑K

l=1

∑M
d=1 µld I(|jd − j| + |td − t|)

,

We used these per-year, per-journal topic distributions to construct timeseries of individual

topic popularity in each journal, µkjt, which allowed us to quantify the evolving diversity of

topic distributions in individual journals over time.

1.2.3. Correlation Between Pairs of Topics. We calculate the correlation coefficient

between pairs of topics. This allows us to broadly separate frequently co-occuring (i.e., exist

within the same article) topics from the ones which do not frequently co-occur.

The correlation coefficient between topic weights over the whole corpus M for each pair of

topics, rk,j, was calculated as:

(1.8) rk,j =

∑M
d=1 (µkd − µ̂kd)(µjd − µ̂jd)√∑M

d=1 (µkd − ˆµkd)2
√∑M

d=1 (µjd − µ̂jd)2
,

where µkd is the weight for topic k assigned to document d, and µ̂kd is the mean weight for a

topic k assigned over all documents in the corpus, and µjd is the weight for a topic j assigned

to document d, and µ̂jd is the mean weight for topic j assigned over all documents in the

corpus. We only report correlations greater than 0.2.

1.2.4. Correlation between Topics and Per-article Diversity. We observe the

correlation between topics and per-article diversity in water science articles by observing the

statistical relationship between topic distribution weights and article diversity. This allows

us to identify which topics participate more or less often in articles with greater or lesser

topic diversity. Intuitively, a negative statistical relationship between topic distribution
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weights and article diversity indicates decreasing article diversity when certain topics are

more present within an article.

We denote the correlation coefficient between document-topic distributions and their corre-

sponding article diversity scores (entropy metrics) as rµ,Hd
.

1.3. Results and Analysis

1.3.1. Naming the Topics. The first step towards using the posterior expectations

of the LDASeq model is naming the topics. We identified and named K = 45 topics by

first looking at the topic-word distributions (the set of words most likely to appear within

a particular topic), and the per-document topic distributions (from the titles of 100 articles

most closely associated with each topic). We reinforced our choices of topic names with an

informal survey sent to four qualified hydrologists outside of our research group. Figure 1.2

illustrates the topic-word distributions of K = 45 topics in the form of wordclouds, along

with our chosen topic names.

This topic naming analysis was similar to what was done by McCurley and Jawitz (2017),

who looked at topic diversity in WRR papers as described in the introduction. Those au-

thors assigned seven topics in hydrology prior to their analysis: catchment-hydrology, hydro-

geology, hydro-meteorology, contaminant hydrology, socio-hydrology, and hydro-climatology.

Our post-hoc identified topics extracted using LDASeq were conceptually similar to these,

however LDASeq was able to extract a larger and more nuanced set of topics through unsu-

pervised learning.
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Figure 1.2. Wordclouds show the words most strongly associated with each
topic, and the sizes of words within the wordclouds are proportional to their
likelihood of appearance within individual topics. Statistically significant
trends are indicated by black dots on the left axes(20/45 are significant) their
respective plots. Topic trends are independent and not depicted relative to
each other (see Figure 1.3).
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1.3.2. Temporal Trends of Topics in the Full Corpus. The popularity of each topic

changes with time, and these trends are also shown in Figure 1.2. Some topics demonstrated

statistically significant rising trends in popularity (table 1.3). Some of these rising topic

trends (e.g. ’Rainfall-Runoff’, Precipitation’, ’Rainfall’, ’Spatial Variability’) might be at-

tributed to researchers increasingly leveraging the availability and accessibility of hydrology

related data, both in terms of breadth and depth. Other topics demonstrated statistically

significant downward trends (table 1.3). The remainder of topics do not demonstrate any

significant trend within our corpus.

Figure 1.3 shows the relative popularity of topics over time plotted on the same scale (Figure

1.2 shows the same topic trends but not normalized). Considering the relative popularity of

topics in 1991 vs. 2019, topics that lost the most popularity within our corpus (over -50%)

are “Stochastic Models” (-62%), “Numerical Modeling” (-61%), “Solute Transport” (-56%).

Conversely, the topics that gained the most (over +50%) are “Climate Change Impacts”

(+155%), “Water Policy & Planning” (+143%), “Pollutant Removal” (+117%), “Water-

shed Features” (+72%), “Irrigation” (+60%), “Modeling” (+57%), “Precipitation”(+57%),

and “Rainfall”(+55%). These changes in the popularity of topics can be, perhaps, inter-

preted as shifting focus of researchers who publish their works within the journals in our

corpus. These changes reflect the increasing effects of climate change on water availabil-

ity and rainfall, increasing water stress and an ever more pressing need for sustainable and

efficient water management (e.g., Mehran et al., 2017; Tabari, 2020; Padrón et al., 2020; Gud-

mundsson et al., 2021). In addition to leveraging the availability of data, water researchers

are responding to the needs of the time.
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Table 1.3. Rising and falling temporal trends of topics (only statistically
significant trends are reported)

Rising Trends
Topic p-val BF10

Rainfall-Runoff 1.24E-04 253.82
Water Policy and Planning 2.42E-04 139.38
Precipitation 1.92E-04 171.40
Spatial Variability 8.20E-05 367.25
Rainfall 1.30E-04 242.14
Groundwater Supply & Demand 5.12E-09 2.50E+06
Watershed Features 5.61E-13 1.13E+10
Climate Change Impacts 1.06E-14 4.47E+11
Ecosystem Studies 4.46E-03 10.74

Falling Trends
Topic p-val BF10

Wastewater Treatment 4.86E-07 3.85E+04
Hydrogeology 1.41E-10 6.86E+07
Mass-balance and Transfer 1.94E-10 5.11E+07
Stochastic Models 1.34E-14 3.58E+11
Hydrochemistry 2.21E-11 3.79E+08
Microbiology 1.52E-07 1.11E+05
Quantitative Methods 5.38E-16 7.05E+12
Surface Water Quality 2.35E-06 9.13E+03
Numerical Modeling 3.54E-10 2.93E+07
Sedimentology 5.51E-08 2.83E+05
Aquifers 6.43E-10 1.69E+07
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Figure 1.3. Temporal variation of topic popularity relative to each other.

1.3.3. Are Articles becoming More Topically Diverse? The corpus-wide mean

per-article diversity metric is shown in Figure 1.4. Our findings indicate the average diversity

of topics within individual water science articles is increasing overall. Regression-based trend

analysis for the Shannon diversity metric time from the entire corpus are: r = 0.95, p-value

= 1.36e-14, B10 = 3.39e+11, indicating a statistically significant trend at any reasonable

significance threshold.

To gain an intuitive interpretation of this change in diversity, we applied another metric from

ecological/biological sciences - ENS (Effective Number of Species). In our case, we will call

it ENT (Effective Number of Topics), where ENT = e(Hd). As an example, if ENT = x
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for mean per-article diversity Ĥt for year(t), Ĥt is equivalent to articles containing x count

of equally-common topics. In our corpus, the mean effective number of topics (ENT ) per

article steadily rose from 13.62 in 1991 to 15.29 in 2019. This means a 4.44% rise in mean

per article topic diversity translates to 12.26% rise in the number of equally-common topics

per article between 1991 and 2019. This rising ENT can also be interpreted intuitively as

an indicator of water researchers absorbing knowledge from topics within other disciplines

through interdisciplinary collaborations and education.

Figure 1.4. Mean per-article diversity (left axis) and ENT per year (right
axis). The dashed lines represent the mean per-article diversity and ENT over
the entire corpus.

1.3.4. Which Journals Are Contributing to Per-Article Diversity? To under-

stand which journals are contributing to the trend of increasing diversity of topics in indi-

vidual research articles, we calculated the mean diversity of articles per year for each of the
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eighteen journals as shown in Figure 1.5. As before, we used linear regression to assess the

significance of temporal trends in these per-journal time series.

Water Resources Research WRR demonstrates the strongest rise (as an individual journal)

in the mean diversity of topics per article published between 1991 and 2019 (R = 0.92, p-

value = 2.39e-12, BF10 = 2.77e+09). Other journals with overall rise in per-article diversity

within our corpus are Advances in Water Resources AWR (R = 0.69, p-value = 5.69e-05,

BF10 = 513.33), Water Research WR (R = 0.67, p-value = 9.14e-05, BF10 = 336.08),

Journal of Contaminant Hydrology JCH (R = 0.67, p-value = 1.05e-05, BF10 = 297.751),

and Journal of Hydrology JH (R = 0.57, p-value = 1.57e-03, BF10 = 27.06). While these

results do not directly translate to a rise of interdisciplinarity within these journals, they

most certainly indicate increasing diversification of topics. This increasing diversification can

be driven by multiple factors, which again includes researchers creating new and absorbing

knowledge from other disciplines.

Journals which demonstrate moderate rises in per-article diversities are Water Resources

Management WRM (R = 0.46, p-value = 0.026, BF10 = 2.68), and Hydrogeology Journal

HGJ (R = 0.43, p-value = 0.05, BF10 = 1.59). Journal of Water Resource Planning & Man-

agement JWRPM (R = 0.28, p-value = 0.15, BF10 = 0.62), Journal of the American Water

Resources Association JAWRA (R = 0.11, p-value = 0.64, BF10 = 0.29), and Hydrological

Processes HP (R = 0.02, p-value = 0.94, BF10 = 0.24) do not demonstrate any significant

trend at a significance level of α = 0.01. Average diversity of articles published in Hydrologic

Sciences Journal HSJ (R = -0.46, p-value = 0.01, BF10 = 4.11), Hydrology & Earth System

Sciences HESS (R = -0.36, p-value = 0.09, BF10 = 1.00), and Journal of Hydrometeorology

JHM(R = -0.30, p-value = 0.21, BF10 = 0.59) decreased. The rest of the journals do not

have publication records long enough for trend analysis. The declining per-article diversity

trends could mean that these journals are increasingly favoring a particular set of topics or

that researchers working on certain topics are favoring these journals.
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Figure 1.5. Mean per-article diversity (Shannon entropy) per-journal over
time

1.3.5. Is the Whole Corpus becoming More Topically Diverse? Figure 1.6 shows

the temporal variability of topic entropy (diversity) over time for the entire corpus (dashed

black line) and for each individual journal (solid colored lines). This differs from the average

per-article diversity metrics reported in the previous subsection in that these metrics are cal-

culated over the topic distributions averaged over all papers in the corpus (journal). Whereas

the per-article diversity metrics diversity of (presumably) individual research projects, the

corpus metrics measure the diversity of topics overall in a journal or corpus and measure the

mixture of topics at community level rather than at the level of individual research projects.

The diversity for the entire corpus rose very slightly in the late 1990s and, since then,

the entropy of the entire corpus has remained steady or slightly decreased. However, no

definite trend exists overall (R = -0.43, p-value = 0.02, BF10 = 0.69). This emphasized

the disentanglement of per-article diversity from corpus diversity - showing that, increasing

article-level diversity does not necessarily translate to overall corpus diversity.
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We used Figure 1.6 to also visualize the per-journal topic diversity trends. Statistically sig-

nificant upward diversity trends can be seen for Advances in Water Resources AWR (R =

0.79, p-value = 2.68e-07, BF10 = 6.59e+04), Water Resources Research WRR (R = 0.713,

p-value = 1.39e-05, BF10 = 1824.36), Journal of Water Resources Planning & Management

JWRPM (R = 0.69, p-value = 3.73e-05, BF10 = 745.97), and Hydrogeology Journal HGJ

(R = 0.52, p-value = 0.01, BF10 = 5.13). Journals which demonstrated statistically sig-

nificant downward trends were Water Research WR (R = -0.64, p-value = 1.70e-04, BF10

= 191.81) and Hydrological Sciences Journal HSJ (R = -0.59, p-value =8.04e-04, BF10 =

48.40). Other journals did not demonstrate any significant trend in entropy over time. Here

again, evidences of disentanglement between per-article diversity and overall corpus diversity

can be seen at a journal level.

Figure 1.6. Temporal variation of the diversity of each journal, as measured
by the entropy of that journal’s topic distribution in a particular year.

1.3.6. Overall Journal Diversity. The stacked bar plots in Figure 1.7 show the rel-

ative fraction of topic representation in each journal, with the total height of each bar

representing the journal’s topic entropy. Water Resources Research WRR (3.45 nats), Jour-

nal of Hydrology JH (3.40 nats), Hydrological Processes HP (3.35 nats), and Journal of
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the American Water Resources Association JAWRA (3.25 nats) are the most topically di-

verse journals in our corpus. We can again intuitively interpret these values in terms of

ENT , meaning that these journals have published the highest numbers of equally-common

topics within the entire dataset. The overall Shannon Diversity per journal decreases for

more specialty journals – i.e., journals which focus atmospheric science topics - Journal

of Hydrometeorology JHM and water management topics - Water Resources Management

WRM , Journal of Water Resources Planning & Management JWRPM . Journals with a

fairly recent publication history – i.e., Environmental Science: Water Research and Tech-

nology ESWRT , International Soil and Water Conservation Research ISWCR, Journal of

Hydrology: Regional Studies JHREG, and Water Resources and Industry WRI had lower

overall diversity compared to the rest of the corpus, which is expected.
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Figure 1.7. Total bar height represents the overall diversity of topic dis-
tributions of each journal for the whole study period. The stacked color bars
represent the fraction of papers representing each individual topic in that jour-
nal.

1.3.7. Correlations Between Topic Pairs. To reiterate from Section 1.2.3, we ob-

serve the correlations (both positive and negative) between pairs of topics to understand

which topics co-appear frequently in our corpus.

1.3.7.1. Co-appearing Topics. An intuitive way to depict inter-topic correlations rk,j are

chord-diagrams. rk,j correlation coefficients measure relationships between per-paper topic

weights, meaning that a higher rk,j value indicates papers that contain word groups associ-

ated with topic k also tend to contain word groups associated with topic j. Positive correla-

tion coefficients between pairs of topics indicate some degree of co-appearance of these topics

in research articles, and vice-versa. Positive and negative inter-topic correlations are shown
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in Figure 1.8, where the width of each chord represents the overall correlation between a

pair of topics. For ease of viewing, positive correlations are only plotted for rk,j > 0.20 and

negative correlations rk,j < -0.20. Inter-topic correlation plots for the entire corpus lends us

a snapshot of co-appearing topics.
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Figure 1.8. Inter-topic correlations: positive correlations in the upper sub-
plot and negative correlations in the lower subplot. Only correlations |rk,j| >
0.20 are shown.

22



1.3.7.2. Positive and Negative Inter-Topic Correlations. Positive Correlations or likeli-

hood of co-occurrence can be observed for a range of topics, e.g. between “Rainfall” and

“Streamflow”, “Rainfall” and “Spatial Variability”, “Uncertainty” and “Stochastic Mod-

els”, “Land Surface Flux” and “Hydrogeology”, “Groundwater” and “Solute Transport”,

and “Microbiology” and “Wastewater Treatment”. Anti-correlations indicate that there

are set of vocabulary in the water science literature that are largely not shared between

sub-communities. For example, “Pollutant Removal” and “Land Surface Flux”, “Pollutant

Removal” and “Vadose Zone”, “Water Policy and Planning” and “Uncertainty”, “Numer-

ical Modeling” and “Reservoir Management”, and “Irrigation” and “Sediment Transport”

are less likely to co-appear within our corpus. These negative correlations between topics

indicate potential for expanding avenues of collaborative research.

1.3.8. Correlation between Individual Topics and Per-article Diversity. Reit-

erating from Section 1.2.4, we quantify relationships between per-article diversity and cor-

responding topic weights. Some topics in our corpus tend to reduce the paper-wise diversity

when they appear in an article (meaning they are less likely to appear alongside a wide vari-

ety of other topics). Statistical relationship between mean per-article Shannon Diversities Hd

and their corresponding topic distribution weights µ are shown in Figure 1.9. Topics which

demonstrate statistically significant relationships with per-article diversity are indicated with

black dots on their corresponding bars.

23



Co
rr

el
at

io
n 

Co
ef

fic
ie

nt
 (r

)

Topics

Figure 1.9. Pearson correlation coefficients for statistical relationships be-
tween per-article Shannon diversity metrics and per-topic distribution weights.
Statistically significant relationships are indicated with black dots on their cor-
responding bars.

Figure 1.10 shows the temporal behavior of these negatively correlated (rµ,Hd
< −0.05)

topics. “Wastewater Treatment” (r = 0.74, p-value = 6.54e-06, BF10 = 3602.16) was the only

topic becoming less negatively correlated with per-article diversity, indicating an increasing

co-appearance with a wider variety of other topics in individual articles. Opposite trend was

observed for “Modeling” (r = -0.88, p-value = 4.93e-10, BF10 = 2.12e+07),“Water Policy

and Planning” (r = -0.63, p-value = 2.28e-4, BF10 = 147.57), “Precipitation” (r = -0.87,

p-value = 2.53e-09, BF10 = 4.71e+06), and “Climate Change Impacts” (r = -0.87, p-value
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= 1.30e-09, BF10 = 8.69e+06). “Soil Chemistry” (r = 0.17, p-value = 0.37, BF10 = 0.34)

does not demonstrate any significant trend.
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Figure 1.10. Trends of Pearson correlations between per-article Shannon
diversity and topic distributions for topics which negatively correlate (rµ,Hd

<
−0.05) with per-article diversity.

1.4. Conclusions & Discussion

We use semantic-based topic diversity to quantify two types of topic diversities in hydrology

and water science articles: (i) within individual articles and (ii) across corpora (both within

individual journals and within a corpus of all water science journals with a 2018 IF greater

than 0.9). We tested the hypotheses that diversity was increasing in both respects and found

evidence to support one of those hypotheses but not the other. Individual researchers appear

to be broadening their scope across different subtopics in the discipline (i.e., per-paper topic

diversity is increasing – Figure 1.4), and while individual topics are changing in popularity
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over time (Figure 1.3), the water science and hydrology corpus as a whole is not increasing,

nor decreasing, in diversity (Figure 1.6).

The primary findings of this study are (see the four hypotheses outlined in Section 3.1):

(1) At an article level, the average (Shannon) diversity of topics in individual research

papers is increasing over the entire corpus (r = 0.95, p-value =1.36e-14, B10 =

3.39e+11). There was a 4.44% rise in mean per-article topic diversity, translating

to a 12.26% rise in the number of equally-common topics per article between 1991

and 2019.

(2) At a corpus level, the average (Shannon) diversity of topics in the whole corpus is

neither increasing nor decreasing (r = -0.43, p-value = 0.02, BF10 = 0.69).

(3) At a journal level, the most topically-diverse water science journals are Water Re-

sources Research WRR (3.45 nats), Journal of Hydrology JH (3.40 nats), Hydro-

logical Processes HP (3.35 nats), and Journal of the American Water Resources

Association JAWRA (3.25 nats). Certain journals are increasing in their average

per-article topic diversity (Water Resources Research WRR, Advances in Water Re-

sources AWR, Water Research WR, Journal of Contaminant Hydrology JCH, and

Journal of Hydrology JH), and three journals are decreasing in their average per-

article topic diversity (Hydrological Sciences Journal HSJ , Hydrology and Earth

System Sciences HESS, and Journal of Hydrometeorology JHM).

(4) At a topic level, certain topics are more semantically different from the others in

a sense that their appearance in an article tend to reduce the article diversity.

These topics are: “Wastewater Treatment”, “Modeling”, “Biodegradation”, “Soil

Chemistry”, “Water Policy and Planning”, “Precipitation”, and “Climate Change

Impacts”.

Our interpretation of these findings is that water science research articles are becoming

more topically diverse. The increasing mixture of research topics in articles is most likely a

bottom-up effect driven by changing efforts, attitudes, and vision by individual researchers
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and - perhaps - of increasingly multidisciplinary education, as called for by National Research

Council (1991). However, diversity of the overall corpus is not increasing. If it were the case

that both per-paper diversity and the overall corpus diversity were increasing, it would have

been difficult to disentangle these effects. The hydrology community could benefit from

top-down policies and actions which encourage more topically diverse and cross-disciplinary

research, which we think will raise overall diversity.

The ability to automatically detect distinct sets of vocabularies (as topics) is a strength of

unsupervised dynamic topic modeling, however it is important to remember that any results

from an analysis of topic model outputs is related to the words that define the topics. As

more topics emerge within our discipline through new knowledge, increasing collaborations,

and conducive policies, we expect topic modeling to continue being helpful towards tracking

the evolution of hydrological sciences.

1.4.1. Future Outlook. The volume of scientific research in general is growing rapidly.

This makes it difficult for researchers to be confident about fully understanding the state of

the science, and also makes it challenging to expand into new research topics since so much

background information is available for synthesis. We expect that in the future machine

learning methods like topic modeling will be an integral part of the tool set available to

help scientists synthesize scientific literature. While this paper provides multi-level (per-

paper, per-journal, and whole-corpus) contextual insights into the current state of topic

diversity in water research, we envision that similar NLP-based efforts might help us address

problems related to semantically synthesizing diverse bodies of water science and hydrological

literature. There have been several biobliometric analyses of hydrology literature (e.g., Clark

and Hanson, 2017; Zare et al., 2017; Rajaram et al., 2015; Koutsoyiannis and Kundzewicz,

2007; McCurley and Jawitz, 2017), however NLP has the potential to allow for faster, and

more contextual analyses of larger corpora. LDASeq also allows us to look at the evolution of

topics in terms of their probabilistic distance and also their varying word-topic distributions.

This paper serves as a preface to a currently undergoing hydrology topic evolution study.
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Interdisciplinary research has been identified as one of the ways to solve the world’s biggest

problems (Ledford, 2015). However, academia continues to be strangled by traditional stereo-

types: interdisciplinary proposals are less likely to receive funding (Bromham et al., 2016)

and institutions continue to enable this discrimination (Ledford, 2015). While we cannot

definitively say that interdisciplinarity is increasing in hydrological sciences, the increasing

per-article diversity is an indicator that it may be. This article lays the groundwork for

further, and much needed, focus on interdisciplinarity in hydrological sciences.
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1.6. Appendix - Chapter 1

1.6.1. Preprocessing the Corpus. Performance of dynamic topic modeling is influ-

enced by the quality of input training data. Article-abstracts were preprocessed into a

canonical format for efficacious feature extraction (Feldman et al., 2007). To prepare the

data, we used separate temporally-segregated dataframes of abstracts and metadata from

each journal. All sets of data were processed through identical multi-layered cleaning rou-

tines. We used Spacy and NLTK Python libraries to filter non-semantic elements such as

stopwords, punctuation, and symbols, and in addition we manually identified and removed
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unwanted elements that were common in our article abstracts (the cleaned abstracts are

available in the repository linked in the Data and Code Availability statement at the end of

this article).

In the next step, we formed bi-grams and segmented texts by tokenizing with whitespaces

as word boundaries. This was followed by lemmatization, to extract semantic roots from

conjugations, etc. Using this corpus, we created a map between words and integer identifiers.

We then converted this dictionary into a bag-of-words format, making the corpus ready for

ingestion by an LDASeq model implemented in Gensim - a Python library for NLP (Řehřek

and Sojka, 2011).

1.6.2. Dynamic Topic modeling. To understand dynamic topic modeling, we must

start with Latent Dirichlet Allocation (LDA). LDA builds on another more traditional topic

modeling approach (Latent Semantic Analysis) (Landauer et al., 1998), and captures the

intuition that text documents exhibit multiple topics in different proportions. Documents

are represented as mixtures of topics (per-document topic distributions) and each topic is

characterized by a distribution over words (per-topic word distributions).

We can build an intuition of this model as follows. It is assumed that the per-document topic

distributions of all documents in a corpus share a common Dirichlet prior (parameterized

by parameters α), and that the per-topic word distributions also share a (different) common

Dirichlet prior (parameterized by parameters β). The distribution over a particular word w

in a document d with topic distribution µd can be understood as (Blei et al., 2003):

(1.9) p(w|µd, β) =
K∑
k=1

p(zk|µd)p(w|zk, β),

where zk is a particular topic from K total topics. Treating the per-document topic dis-

tribution as latent and integrating over all Nd words in each document d and over all M

documents in corpus D gives:

(1.10) p(D|α, β) =
M∑
d=1

∫
µd

p(µd|α)

(
Nd∏
n=1

p(wdn|µd, β)

)
dµd
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The above is an intuition only. In actuality, LDA assumes a generating model (i.e., a model

of how the corpus was produced) that samples each µd once for each word in a corpus, which

means that each document contains a mixture of topics, which is why each document has

its own topic distribution (called a per-document topic distribution). This means that each

document d can be associated with an Nd vector of topics, zd, - one topic assignment (out of

K total topics) for each word in the document. This generating model is described in more

detail by

In a static topic model (LDA), it is implicitly assumed that the documents are drawn from

a fixed set of topics in an exchangeable sense. However, for many collections of documents,

the order of the documents reflect an evolving set of topics. In the Dynamic Topic Model

(DTM) or LDASeq (Figure 1.11), we divide the data by timestamps and then model each

slice of documents with a number of topics where topics in time slice td evolve from the

topics associated with slice td-1. Unlike the static LDA model, the uncertainty about the

distributions over words cannot be modeled by a Dirichlet prior β. We instead chain the

natural parameters of each topic in a state space model which evolves with statistical noise.

In the same way, the uncertainty over the per-document topic distribution in each time slice

is modeled using a logistic normal distribution with a mean α. In this way topics and topic

proportion distributions are chained together, sequentially tying a collection of topic models.

Here, we use an LDASeq implementation in the Python Gensim package. We trained our

models with the number of passes set to 5000 and chunksize (number of documents in a batch)

set to 100. For finding the optimal number of topics, we used a parallelized implementation of

LDA in Gensim to train individual models with topic sizes ranging from K = 10 to K = 80;

each model trained using 40 shared-memory cores on a single node of a high performance

cluster. Using these settings it takes on the order of a few hours to train a single model:

between 3-15 hours per model on our particular machine, depending on K. Given that the

LDASeq models take in the order of weeks to run, we used the parallelized static LDA for
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Figure 1.11. Graphical model of a DTM with three time slices. Natural
parameters βt,k and the mean parameters αt of the logistic normal distribution
for topic proportions of each topic evolve together. A represents the slices of
documents.

this analysis, because our objective was to estimate a range of topics which might be optimal

for both these classes of models.

1.6.3. Choosing an Optimal Number of Topics. Ideally it is desirable to maximize

the number of topics identified by LDASeq to increase variety and “depth” in terms of

how the model partitions subtopics in the discipline. In practice, a number of topics, K,

above some (unknown) optimal number of topics, Kopt, increases the occurrence of common

words among different topics, resulting in compromised quality of topics (Lu et al., 2011).
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We therefore adopted a hybrid quantitative/qualitative approach for deciding the optimal

number of topics, Kopt.

1.6.3.1. Data-Driven Approach to Choose an Optimal Number of Topics. We used a com-

bination of perplexity p and coherence c scores to evaluate model performance over a range

of different numbers of topics. Details on how coherence and perplexity are calculated, and

their underlying algorithms are given in 1.6.4.

We trained LDA models using identical hyperparameters for different numbers of topics from

K = 10 to K = 80, logging the coherence c and perplexity p scores for each value of K.

The goal of this multi-model training routine was to acquire a range of values of K within

which Kopt was likely. The resulting scores are plotted in Figure 1.12. Coherence (higher is

better) peaked at around K = 25 with substantial noise around that value, and there was no

clear optimum in perplexity (lower is better). Therefore, to determine Kopt we additionally

qualitatively considered a range of K = 25 to K = 50 (see next subsection).

Figure 1.12. Variation of topic coherence c and perplexity p based on LDA
models trained for a range of topic numbers (K = 10 to K = 80). Lower
perplexity and higher coherence indicate a better model. These values guide
our subjective analysis for choosing Kopt
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1.6.3.2. Qualitative Approach to Choosing Optimal Number of Topics. Qualitative per-

ception of topics is a common step in essentially all topic modeling research (e.g., Sun et al.,

2017; Paul and Dredze, 2014; Jiang et al., 2016) and allows for data-driven evaluation metrics

to be supported by manual validation. We assessed the quality of topics for various values

of K, looking for increasing or decreasing occurrence of similar words within certain topics

and backtracking into the dataframe to observe the titles of documents associated with each

topic. We drew on our prior experience in hydrology to make these assessments, and also

solicited input from several other professional hydrologists. We used the aforementioned

range of values of K, and this subjective assessment to choose Kopt = 45.

1.6.4. Perplexity and Coherence. Perplexity is a popular metric for evaluating lan-

guage models (Chen et al., 1998). Perplexity is an information theory metric that measures

something like how surprised the model might be on the introduction of new data (Zhao et al.,

2015). Formally defined by (Blei et al., 2003), perplexity for a collection of M documents is:

(1.11) p = exp

{
−
∑M

d=1 log p(wd)∑M
d=1Nd

}

Perplexity is a decreasing function of the probability assigned to each per-document word

distribution. Lower perplexity indicates a better model.

Topic coherence c is a measure of similarity in semantics between the high probability words

in a certain topic. We use Gensim′s built-in topic coherence model, which is an implemen-

tation of the method described by (Röder et al., 2015). Calculating topic coherence is a

four-stage process involving segmentation of word subsets, probability calculation, confirma-

tion measure, and aggregation.

Figure 1.13 Röder et al. (adapted from 2015) illustrates these four steps. t represents an

input collection of words, and the first stage creates a set of different kinds of segmentation

of words S from t, since coherence measures the fitting together of words or a set of words.

Secondly, probabilities of occurrence of words P are calculated based on reference corpus.
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Figure 1.13. Illustration of the four stages of the unified topic coherence
framework. In stage 1, input words t are segmented into smaller sets S. Prob-
abilities of occurrence P of words are calculated based on the reference corpus
in the second stage. In the third stage, P and S are ingested to measure φ
between pairs of words S. Coherence c is calculated in the final step.

Confirmation measure ingests both P and S to yield the agreements φ of pairs of S. In the

final step, the aforementioned scores are aggregated to compute coherence c.
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CHAPTER 2

Drought Awareness over Continental United States

2.1. Introduction

Economic damage caused by droughts in the United States is estimated to be in the tens of

billions of dollars annually (Smith and Matthews, 2015). Public perceptions and attitudes

towards droughts – both pre- and post-drought – are indicators of public reception of water

management and conservation measures (Campbell et al., 2004; Clarke and Brown, 2006).

Adams et al. (2013) assessed the influence of attitudes and perceptions regarding multiple

factors on water conservation use in nine U.S. states and found that public perception of

the importance of water resources management significantly influenced water conservation

outcomes. A study on the sociological impacts of drought perception in South-Central

Nebraska revealed that crop and livestock producers were becoming increasingly concerned

about water scarcity resulting from droughts (Woudenberg et al., 2008). Similar concerns

were shared by farmers in a study conducted in the Jucar River Basin in Spain (Urquijo

and De Stefano, 2016) and in South Africa (Bahta et al., 2016). After a record breaking

drought in Texas in 2011, residents were significantly more concerned with water availability

and water conservation (Gholson et al., 2019). A recent study on two cities in Alabama

found that public awareness of drought is significantly dependent on geographic, physical,

and social contexts (Shao et al., 2022). That study used Google Trends data in addition to

survey data, and suggested that future studies consider Twitter data to gain a more complete

understanding of social responses to drought hazards.

Understanding the complex relationship between droughts and people’s perception about

droughts, offers key insights for decision makers who can leverage these insights for early
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warnings, public service announcements, or targeted water conservation initiatives. Rec-

ognizing shifts in sentiments has the potential to aid in tailoring effective messaging to

communities. Such insights directly align with societal objectives, notably, reducing water

consumption.

Evaluating public responses to drought through traditional surveys can be costly and limited

in scale and interpretability due to biases (McLafferty, 2016; Vaske, 2011; Fisher, 1993;

Groves, 2006). The rise of internet and social media use, with 92% of U.S. households

having computer access and 85% broadband subscriptions in 2018 (Martin et al., 2021),

and the availability of these data open avenues for large-scale web-based studies. Previous

research has effectively used large-scale online data, including Google Trends Search Interest,

as a proxy for surveys in diverse fields such as epidemiology, mental health, political science,

telemedicine, population health, etc. (Carneiro et al., 2018; Yang et al., 2010; Stephens-

Davidowitz, 2014; Hong et al., ????; Arora et al., 2019; Mellon, 2013).

Previous studies, differing significantly in approach and scope of this study have also explored

questions surrounding public awareness of droughts. Gonzales and Ajami (2017) used the

relative number of Google searches for the term ’California drought’ as an indicator of public

interest to suggest that multiple socio-political factors have contributed to growth in public

awareness during and following droughts. Kam et al. (2019) leveraged google trends data

and standard precipitation indices and found that there was no detectable social response

during the onset of the 2011-2017 California droughts. Kim et al. (2019) they found that

drought severity (as indicated US Drought Monitor (USDM) data) in most Northeastern

and Southeastern U.S. states showed significant temporal correlations with corresponding

Google search interest in droughts, while most Western and Central U.S. states displayed

weaker or insignificant correlations.

In this paper, we use computer vision models trained on lagged data to investigate the

non-linear, heterogeneous relationship (and their drivers) between meteorological droughts

and people’s search interest on the topic of ”drought” - allowing for a more holistic view of
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the spatial and temporal variability (at state and regional levels) of drought awareness over

Continental United States (CONUS). We also complement this investigation by leveraging

social media data to understand how people’s sentiments towards drought in the U.S. has

varied.

2.1.1. Research Questions. In this paper, we address the following specific research

questions:

• Is there a relationship between droughts and drought awareness, as measured by

Search Interest, and what factors drive this relationship?

• What are people’s sentiments about drought, as indicated from social media posts,

and have these sentiments changed over time?

2.2. Methods

In this section, we discuss the data-driven experimental approaches and methods that we

used to address the research questions outlined above.

To address the first research question, we broke it down into a set of sub-queries. We first

looked at the averages, trends, and variances of the state-wise search interests and SPEI

across CONUS within our study period (2004-2020). We also investigated any existence of

statistically significant linear correlation among the corresponding variables. We then applied

six computer vision (UNet) models trained on lagged drought (input) data and corresponding

Search Interest (target) data to investigate the existence of nonlinear dynamics between these

variables. We then conducted a feature importance analysis to find out the most important

drivers of this nonlinear relationship. We further compared these results with a Principal

Component Analysis applied on the same dataset. We then explored the variability of these

relationship aggregated at the state and regional levels and looked at the best lagged models

per state and computed the sum of the R-squared (cumulative and population-weighted) per

model predictions.
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Table 2.1. Overview of data sources and availability

Data Abbreviation Source Years
Available

Years Used

Standardized
Precipitation and
Evapotranspiration
Index

SPEI spei.csic.es 1900-2020 2004-2020

Google Trends Search
Interest

SI Google
Trends API
(trends.google.com)

2004-Present 2004-2020

Tweets NA Twitter API
(devel-
oper.twitter.com
/en/docs/twitter-
api)

2006-Present 2008-2020

To address the second research question, we performed sentiment analysis on a subset of

2.5 million georeferenced tweets containing drought-related terms, with the aim of tracking

changing people’s sentiments towards drought over time in the United States.

2.2.1. Data. Table 3.1 summarizes the three data types used in this study, including

where the data was sourced and the temporal periods that we acquired and used.

2.2.1.1. Standardized Precipitation and Evapotranspiration Index (SPEI). We use the

Standardized Precipitation and Evapotranspiration Index (SPEI) (Begueŕıa, 2022) as our me-

teorological drought dataset. Intuitively, SPEI serves as a quantitative measure of droughts

by providing a standardized index to assess moisture deficit over time and space. It is

calculated by taking the difference between total precipitation and total potential evapo-

transpiration (PET) over a given period of time (e.g., monthly). SPEI is is expressed in

units of standard deviations calculated over local (per pixel) climatologies, allowing us to

assess whether it is drier or wetter than expected conditions. Calculating SPEI involves the

following steps:
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(1) Calculate the difference between precipitation (P ) and reference evapotranspiration

(ET0) for each month or time step:

(2.1) Di = Pi − ET0i

where Di is the difference between precipitation and reference evapotranspiration

for the i-th month or time step, Pi is the precipitation for the i-th month or time

step, and ET0i is the reference evapotranspiration for the i-th month or time step.

(2) Calculate the climatic water balance for each month or time step:

(2.2) WBi =
n∑

j=1

Di−j+1

where WBi is the climatic water balance for the i-th month or time step, and n is

the time scale (e.g., 3, 6, or 12 months).

(3) Fit a probability distribution, such as the three-parameter log-logistic distribution

with the Maximum Likelihood Estimation (MLE) method, to the climatic water

balance values:

(2.3) F (WB) =
1

1 +
(

WB−α
β

)−γ

where F (WB) is the cumulative probability distribution of the climatic water bal-

ance, and α, β, and γ are the distribution parameters that need to be estimated.

(4) Calculate SPEI by transforming the fitted probability distribution to a standard

normal distribution:

(2.4) SPEI = Φ−1(F (WB))

where SPEI is the Standardized Precipitation Evapotranspiration Index, Φ−1 is

the inverse standard normal cumulative distribution function, and F (WB) is the

cumulative probability distribution of the climatic water balance.
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SPEI can be calculated for a variety of time periods, ranging from 1 month to 48 months.

We use monthly data in our analysis because Google Search Interest (target) data has the

same temporal resolution. Positive SPEI values indicate wetter conditions, while negative

values indicate drier conditions. We created images of monthly averaged SPEI over CONUS

for each month from January 2004 to December 2020 to be used as input data for training

and prediction for our analysis. Fig 2.1 shows an example of one of these SPEI maps.

Figure 2.1. Example of a SPEI map fed into our UNet models(Date:
08/2019). The image is in grayscale (darker shades represent lower SPEI -
drier conditions), without coordinates, grids, or legend consistent with our ac-
tual input images.

2.2.1.2. Google Trends Search Interest (SI). We acquired Google Search Interest (SI) data

from Google Trends using the Trends API. The Trends API allows programmatic access

to Google trends data and track the popularity of different topics over time and place.

We selected ”Drought” as a topic. When a topic is selected, Google Trends aggregates

all searches related to the concept of drought, regardless of the specific terms or phrases

used. This includes searches in different languages and searches using related terms (e.g.,

”water shortage,” ”dry weather”). The topic approach provides a broader view of public
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interest or concern about drought as a general subject. It captures the overall awareness and

information-seeking behavior related to drought without being limited to a specific keyword.

Given a specific topic, T , and a time range from t1 to tn, the search interest for T at each

time point, ti, is calculated as:

(2.5) SI(T, ti) =
S(T, ti)

Smax(T )
× 100

where SI(T, ti) is the search interest for the topic T at time point ti, S(T, ti) is the search

volume for T at ti, and Smax(T ) is the maximum search volume for T within the specified

time range. We use monthly state-wise SI data on “Drought” topic from 2004 to 2020 to

create maps over the CONUS. Fig 2.2 shows an example of a Google SI target map.

Figure 2.2. Example of a Google SI map (Date: 08/2019) used as a target
image during model training and testing. The image is in grayscale(darker
shades represent higher search interest), without coordinates, grids, or legend)
consistent with our actual target images used for model training and testing.

2.2.1.3. Tweets. We acquired Twitter data (Tweets) using the Twitter API. Our data

set consists of 2.5 million (restricted to English language) tweets related to the “Drought”

topic from 2008 to 2020. We use the Twitter data primarily for sentiment analysis. Since
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the Twitter data was only partially geotagged with user supplied locations, we leveraged the

GeoNames gazetteer database (Ahlers, 2013)to tag tweets which reference a location within

the United States. We then applied the Sentiment Analysis to those tweets.

2.2.2. Analysis Methods.

2.2.2.1. Search Interest and SPEI Averages, Trends, and Variances. Both droughts and

people’s search interest in droughts varies spatially and temporally in a multi-directional

(complex and nonlinear) manner rather than follow a steady trend. We first calculated the

averages, trends (using linear regression), and variances aggregated by states for both search

interest and SPEI. We then investigated for any statistically significant linear correlation

between these corresponding variables.

2.2.2.2. Relationship between droughts and search interest. We used machine learning

models to investigate the non-linear relationship(s) between meteorological droughts and

search interest over CONUS. Specifically, we trained U-Net models (Ronneberger et al., 2015)

to predict SI from SPEI maps. Details of our model architecture, training, and evaluation are

in Appendix 2.6.1). In summary, we trained 6 models on 6 sets of lagged SPEI maps as inputs

(from 0 months lag to 5 months lag) and the target data were their corresponding search

interest maps. Correlation between (out-of-sample) search interest predictions made by these

trained models and real search interest data is an estimate of the non-linear correlation

between SPEI and SI at a given lag time. We evaluated the models on time periods not

used for training (training period: 01/01/2004 - 07/31/2017 and test period: 08/01/2017 -

12/31/2020). This approach, aligning with the standard 80/20 training/testing data split,

ensured a robust assessment of the models’ ability to generalize across different time frames

and drought scenarios. We report the models’ performances based on the per pixel coefficient

of determination (R2) between the model predicted and observed search interest during the

test period:
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(2.6) Oa,b(t) = U(Ta,b(t))

where Oa,b(t) is the U-Net output for pixel (a, b) at time t, Ta,b(t) is the input data for pixel

(a, b) at time t, and U is the U-Net model function.

We then tested the model performance over time (using the coefficient of determination or

R2) for each individual pixel.

(2.7) R2
a,b = R2(Oa,b(t), Ga,b(t))

where R2
a,b is the coefficient of determination for pixel (a, b), Ga,b(t) is the ground truth (SI)

data for pixel (a, b) at time t, and R2 is the coefficient of determination function. We then

created a binary mask array based on the geometry of CONUS and constructed heatmaps

of the R2 values averaged over states and then aggregated to regions (as defined by the US

Census Bureau) (U.S. Census Bureau, 2021). This approach allows us to observe overall

model prediction performances over time across CONUS, and also by individual states and

regions. We further evaluated the strength of correlation and significance of the statistical

relationship between the model R2 and corresponding averaged, trends, and variance of

search interest and SPEI.

For contrast, we applied Principal Component Analysis (PCA) on the same dataset. The

PCA served as a linear, dimensionality reduction technique to identify the major patterns

of variance in droughts and corresponding people’s search interest state-wise and regionally.

Our objective was to evaluate the strengths and limitations of nonlinear versus linear methods

in capturing the dynamics of drought awareness.

2.2.2.3. Drivers of the relationship between droughts and drought awareness. We investi-

gated the most important drivers of the relationship between droughts and drought aware-

ness. We first generated the histograms per state to visualize the distribution of (i) SPEI, (ii)

trends of SPEI, (iii) variance of SPEI, (iv)length of droughts, and (v)severity of droughts.
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To calculate the length of droughts, we first selected a threshold of SPEI value of -1.0 and

below to classify a drought occurrence based on commonly accepted standards in drought

assessment. We recorded the number of consecutive months a pixel was in drought condition

considering it as a continuous drought period and then aggregated the results by state. For

drought severity, we identified all time points per pixel in drought conditions within the

study period and computed the mean SPEI value.

For each metric, we fitted an appropriate statistical distribution to the data. We assumed

a Weibull distribution for drought lengths and normal distribution for rest of the metrics.

We then extracted the parameters (for normal distributions: mean, standard deviation,

skewness, kurtosis, interquartile range, and for Weibull distribution: form and scale) of these

distributions. We then We trained a Random Forest Regressor model using the parameters

derived from the distribution fits as input features, with the R² values from our Unet models

as the target variable. We then conducted a feature importance analysis to identify the

drivers that most influence the relationship between droughts and drought awareness.

2.2.2.4. Best Lagged Model Per State. In our analysis, the term ’lag’ refers to the time

lag between variation in SPEI and corresponding changes in people’s search interest. We

mapped the models (between 0 month lagged and 5 months lagged) which demonstrate the

best overall predictive value per state.

To perform this analysis, we followed these steps:

First, we calculated the highest R2 value for each model:

(2.8) max r squareda,b =
6

max
k=1

R2
a,b,k

where max r squareda,b is the highest R2 value for pixel (a, b), and R2
a,b,k is the R2 value for

pixel (a, b) in model k.

Then we assigned each pixel with the highest R2 value:
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(2.9) best model indexa,b = arg
6

max
k=1

R2
a,b,k

where best model indexa,b is the index of the model with the highest R2 value for pixel (a, b).

We then aggregated these values to a state level.

We also computed the sum of per model R2 values and compared it with the population-

weighted sum per model. The population weights were imparted by multiplying the averaged

per-state per-model R2 with the per-state population of 2020 according to the US Census

Bureau.

2.2.2.5. Sentiment analysis on Twitter data. We performed sentiment analysis on 2.5

million tweets related to drought topics. Sentiment analysis allows us to understand the

tone of human generated texts. We used VADER (Valence Aware Dictionary and Sentiment

Reasoner) – a lexicon and rule-based sentiment analysis tool that is specifically designed to

work with social media data sets (Hutto and Gilbert, 2014). The overall sentiment score

(compound score) assigned to a tweet is a number between -1 and 1. A score of -1 points

towards a very negative sentiment while a score of 1 indicates a very positive sentiment. A

score of 0 indicates a neutral sentiment. Fig. 2.3 demonstrates some examples of how some

tweets about drought can receive a positive compound score (positive sentiment).

To analyze people’s sentiment about droughts within the United States, we first randomly

sampled a fraction (20%) of the tweets per year from our corpus. We then leveraged the

US GeoNames data from the GeoNames database which contains detailed geographic infor-

mation about locations within the United States, including place names (in various forms),

latitude and longitude coordinates, and other geographic identifiers (Ahlers, 2013). We then

defined a function to check if the text from tweets (either from a location-related field or the

tweet text itself) contains any place names listed in the geonames dataframe. We iterated

through unique place names in the GeoNames data and checked for their presence in the

tweet text, marking the tweet as related to the US if any matches were found.
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We then applied a time-series analysis of the percentages of different sentiments on tweets

pertaining to the United States. We also calculated the overall percentages of these senti-

ments.

Figure 2.3. Examples of tweets about droughts which were assigned with
positive sentiments

2.3. Results and Analysis

In this section we address the research questions laid out previously and discuss the results

of our analyses.

2.3.1. Is there a relationship between droughts and drought awareness as mea-

sured by search interest, and what factors drive this relationship? In order to gain

a comprehensive understanding of the dynamics between droughts and drought awareness,

we break down this complex question into a subset of smaller questions.

2.3.1.1. How have drought conditions and drought awareness varied across CONUS from

2004 to 2020? We first look at the averages, trends, and variances of search interest on

droughts and SPEI across CONUS (Figure 2.4). Our objective with this analysis is to

provide an overview of droughts and drought awareness and investigate any simple linear

correlation between them within our study period of 2004-2020.
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The average search interest map (Figure 2.4(A)) demonstrates the spatial variations in public

awareness of droughts. Overall drought awareness were the highest for California, New

Mexico, South Dakota while the lowest awareness were seen for Mississippi, Tennessee, Ohio,

Pennsylvania, New York, and Florida. California and New Hampshire had the strongest

increasing trend of drought awareness between 2004 and 2020, while the rest of the CONUS

states demonstrated slightly increasing to stable trends (Figure 2.4(B)). We observed the

highest degrees of variability in drought awareness (Figure 2.4(C)) for Wyoming, California,

North and South Dakotas, Montana, New Mexico, Vermont and New Hampshire.

The average SPEI map (Figure 2.4(D)) provides an overview of climatic tendencies in mois-

ture balance (droughts) across CONUS states. The overall driest conditions were seen in

Arizona, Georgia, Oregon, New Mexico, Utah whilst most Midwestern and Northeastern

had wetter conditions relative to the rest of the CONUS. The strongest increasingly dry

to drought conditions were observed over Arizona, New Mexico, California, Utah, Nevada,

Colorado, Maine, Vermont and New Hampshire (Figure 2.4(E)). Conversely, strongest in-

creasingly wet conditions were observed for North Carolina, Virginia, Tennessee, Kentucky,

Massachusetts, and Wisconsin. The highest fluctuations in drought conditions were seen

over Texas, Florida, and Michigan (Figure 2.4(F)), indicating the least predictable moisture

conditions over these states. These variances were also notable for California, Idaho, Col-

orado, Montana, and North Carolina while the least variances were seen for majority of the

New England states.

We found statistically significant inverse relationship (R = -0.64, p = 7.61e-07) between the

trend in SPEI and search interest (Figure 2.4(H)), indicating that drought awareness has

generally increased in states with increasingly dry to drought conditions. We did not find

any statistically significant correlation between averages of and variances in SPEI and search

interest.

2.3.1.2. Are there nonlinear relationships between droughts and drought awareness? As

described in the methods section, we trained six UNet models (of the same architecture and
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Figure 2.4. This panel shows the per-state (over CONUS) search interest
and SPEI averages, trends, variances, and their (linear) correlations. (A)
Average search interest for drought-related terms per state - darker shades
indicate increased public awareness or concern about drought conditions. (B)
Trend of drought search interest over time - showing the magnitude of the
slope from a linear regression analysis of search interest against time. (C)
Variance in search interest per state, with color intensity denoting the degree of
variability in public search behavior. A higher variance (darker shade) suggests
fluctuating public interest, possibly in response to episodic drought events or
media coverage. (D) Average SPEI per state - greener shades indicate wetter
average conditions, and red shades depict drier conditions. (E) Trends in SPEI
per state - gradient reflects the slope of the trend, where green represents an
increasing wetness trend, and red indicates an increasing dryness trend. (F)
Variance in SPEI per state, capturing the fluctuations in drought conditions
- darker shades of red states have experienced more significant variability in
SPEI. (G) Correlation between average SPEI and search interest across states.
(H) Correlation between the trend in SPEI and search interest. (I) Correlation
between the variance in SPEI and search interest.
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hyperparameter settings but trained on 6 sets of lagged data) and tested their predictions

for the period of June 2017 to December 2020. We measured the association (R2) between

the per-pixel values of target images and predicted pixel values by the U-Net models, and

then aggregated and averaged them by individual states (Fig. 2.5). The U-Net’s capacity

for capturing nonlinear relationships is a key in this analysis. Results highlight significant

nonlinear associations between variability in SPEI and corresponding changes in drought

awareness. Although there is some degree of variability between the models, some of the

common strongest nonlinear associations were seen for Colorado, Nebraska, and Arizona,

suggesting heightened awareness in response to fluctuating drought conditions, while the

least associations were observed over North Dakota, Mississippi, and New York.

2.3.1.3. What factors drive this relationship? As mentioned in section 2.2.2, we extracted

a diverse range of parameters from the distributions fitted to SPEI, SPEI trends, SPEI

variances, drought length, and drought severity data. We then trained a Random Forest

Regressor using these parameters as input features and our UNet model R2 as targets and

carried out a feature importance analysis to identify the most important factors driving the

nonlinear dynamics between droughts and drought awareness.

Figure 2.6 shows the results of the feature importance analysis. The interquartile range of the

trend data was the most influential feature, showing that middle 50% spread of SPEI changes

over time is highly predictive of the UNet model R2 - indicating that periods of moderate

variability in drought conditions are significantly important to the shifts in public search

interest on droughts. SPEI median was the second most important feature. Variability

of SPEI trends was another important feature indicating that both average fluctuations

and mean fluctuations of drought conditions were key factors driving the dynamics between

droughts and drought awareness. Drought severity range, drought mean, and drought trends

mean were also important drivers. SPEI variance kurtosis and trend kurtosis were both

key drivers in this relationship, suggesting that the ’tailedness’ or the presence of extreme
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Figure 2.5. R2 values per-pixel averaged over per-state for the six models
trained on lagged SPEI input data. Here ’ML’ indicates ’Months Lagged’(0-5
months). Significant nonlinear correlations are observed for all the six model
predictions.

variability in drought conditions (outliers) significantly influenced the nonlinear dynamics

between droughts and drought awareness.

2.3.1.4. How do the nonlinearity captured by the UNets and the PCA’s dimensionality

reduction compare at the state and regional levels? We aggregated the UNet models’ average

R2 over states and regions (Fig. 2.7). We observed spatial variability of the average R2 in

both state and regional levels, with some degree of association found all over CONUS. The

strongest relationships were observed for the Western region, followed by the Northeastern,

Southeastern, and the Central regions.
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Figure 2.6. Ranked feature importances derived from the Random Forest
Regressor model predicting UNet R² values. R² score from 10-fold cross-
validation is 0.20, and the mean squared error (MSE) is 0.009

We additionally compared these results with the results of a PCA (a reductionist approach

with two components) performed over our dataset (SPEI and Search Interest). The objec-

tive of the PCA was to identify the principal components (PCs) that captured the largest

variances within our dataset. We found that PC1 had an explained variance of 25%, and
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PC2 had roughly 17%. We represent the spatial variability (by states and then aggregated

by regions) of PC1 scores (indicating how regions relate to the patterns of variance captured

by the principal component) in Fig. 2.7 and found the highest PC1 scores for California,

South Dakota, and New Mexico while there was no to negative relationship for the other

states. Regionally, we also saw some positive PC1 scores for the Western states with none

or negative scores for the other regions. These findings further point towards significantly

nuanced interactions between droughts and drought awareness - likely better captured by

our UNet models (non-linear approach) which can account for the various dimensions and

scales at which these interactions occur.

Kim et al. (2019) previously applied PCA to understand the spatiotemporal patterns of

drought awareness over CONUS. Our findings are different to Kim et al. (2019)’s. We

designed our Computer Vision models to capture the complex nonlinear dynamics between

droughts and drought awareness which linear and reductionist methods such as PCA might

miss. Our method also allows pixel-wise prediction capability which is not possible with PCA.

There are differences between their dataset and ours in terms of the periods of analysis as well

as the drought indicators used, however, it makes sense that the complex interplay between

any indicator of droughts and drought awareness would be better captured by nonlinear

methods rather than linear ones.

2.3.2. Is there a time lag between droughts and changes in drought awareness?

We mapped the models with the best overall R2 values per state (color-coded to indicate

the lag time from zero to five months) and found a very nuanced spatial distribution across

CONUS (Fig. 2.8). We also quantified the overall and population-weighted sums of the

models’ R2 values to comparatively assess each model’s explanatory power across CONUS.

We found that search interest tends to lag changes in drought conditions mostly between

1-3 months. There are multiple factors which could drive such observations, including for

example, whether a region primarily relies on rain or water storage for agriculture. Several

studies have discussed the diverse impact of droughts and ensuing water scarcity on public
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Figure 2.7. Comparative analysis of UNet model R2 and PCA results at the
state and regional levels. The top left map illustrates the overall UNet models’
R2 values averaged over states. The top right map shows the average values
aggregated by region. The bottom left map presents the PCA Component 1
scores by state. The bottom right map portrays regional PCA Component 1
scores.

reactions and opinions. For example, AghaKouchak et al. (2014) argued that concurrent

droughts and extreme heatwaves from climate change have significant social implications,

and they could influence public opinions and reactions. Drier conditions are increasingly

linked to public health issues (Barrera et al., 2023; Moyo et al., 2023) and vegetation health

as well (Chilakala et al., 2023; Bao et al., 2023), which impact people’s interest in droughts.
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Figure 2.8. Panel showing the best lagged UNet model per state (left), over-
all and population-weighted sums of models’ R2 (right). Here ’ML’ should be
understood as ’months lagged’, indicating models trained on lagged data from
0 to 5 months.

2.3.3. How have people’s sentiments about droughts changed over time? As

previously discussed in section 2.2.2, we applied sentiment analysis on 2.5 million tweets

containing drought terms and analyzed a subset of these tweets which point to a location

inside the United States. Figure 2.9 shows the timeseries of the percentages of these senti-

ments. We observed a clear increasing trend (pre-2014: R= -0.919, p-value = 0.009462 and

post-2014: R = 0.9378, p-value = 0.00179) of positive sentiments in tweets post-2014 when it

started rising sharply, contrary to it’s clear decreasing trend from 2008 to 2014. Conversely,

we saw a clear positive trend of neutral sentiments from 2008 to 2014 and a clear decreasing

trend post-2014 (pre-2014 neutral sentiment: R = 0.898, p-value = 0.015, post-2014 neutral

sentiment: R = -0.9687, p-value = 0.0003). There were no clear trends seen for percentages

of negative sentiments.

The inflection point around 2014 possibly point towards some significant environmental

policy shifts at the national and/or global levels at that time. California’s groundbreaking

Sustainable Groundwater Management Act (SGMA) was passed by the California Legislature
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in 2014 and became effective in January 2015 (Leahy, 2015). This act was a response to

the severe drought conditions and the largely unregulated use of groundwater resources

in California. In January 2014, then US President Barack Obama’s State of the Union

address focused on environmental policies. Another major policy implementation around

that time include the Clean Power Plan of 2015, developed under the Clean Air Act which

aimed to set statewise targets for carbon emmissions reductions (Carbonell, 2014). Broad

public discourse on climate change related topics (which include droughts) also surrounded

a Nebraska judge’s ruling in February 2014 that the governor’s approval of the Keystone

XL pipeline was unconstitutional (Hestres, 2014). The IPCC reports from 2014 and 2015,

which were part of the IPCC Fifth Assessment Report (AR5), also drew global attention

towards increased frequency and intensity of extreme weather events, including droughts

(Mach et al., 2016).

Our findings also suggest that the public sentiments towards droughts may be becoming

more polarized (decreasing percentage of neutral sentiments). This is likely due to multiple

factors which could include increasing severity of droughts, increasing politicization of climate

change (McCright and Dunlap, 2011; Chinn et al., 2020; Bolsen and Druckman, 2018),

increased regulations over groundwater to prevent groundwater overdraft (Gage and Milman,

2021), and spread of misinformation over the social media sphere (Treen et al., 2020; Freiling

and Matthes, 2023). One possible reason for these trends could be that as drought conditions

worsen or become more prevalent, public awareness and concern grow, leading to more online

searches and discussions about the topic (Brulle, 2010). Positive sentiments could arise from

discussions around successful drought management strategies, water conservation efforts, or

community resilience. Negative sentiments might stem from the adverse impacts of droughts,

such as crop loss, water shortages, and the associated socio-economic hardships. It can also

be said that the rise in sentiment polarity is influenced by increasing public engagement with

environmental issues more broadly. As discussions around specific environmental phenomena
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(like droughts) become increasingly popular, it is reasonable to think that they will become

sentimentally charged and polarized.

Figure 2.9. Sentiment analysis of tweets related to droughts inside the
United States. Each tweet is assigned with a positive, neutral, or negative
sentiment. The time series of the percentages of the sentiments are represented
in the left figure and overall the percentages of the sentiments are presented in
the pie chart to the right. Trends and significance of the time series - pre-2014
negative sentiment: R = 0.106, p-value = 0.842, post-2014 negative sentiment:
R = 0.7052, p-value = 0.076, pre-2014 neutral sentiment: R = 0.898, p-value
= 0.015, post-2014 neutral sentiment: R = -0.9687, p-value = 0.0003, pre-2014
positive sentiment: R= -0.919, p-value = 0.009462, post-2014 positive senti-
ment: R = 0.9378, p-value = 0.00179.

2.4. Conclusions & Discussion

We applied U-Net models and compared them with linear and reductionist approaches to

understand the complex dynamics between droughts and drought awareness within CONUS.

To do this, we leveraged SPEI, Google Trends SI, and Twitter data. The primary findings

of this study are (see the research questions outlined in Section 3.1.1):

• We found significant nonlinear relationships between droughts and drought aware-

ness as evidenced by the spatial variability of the UNet models’ R2 values between

predicted and observed drought awareness.

• We discovered that the most important drivers of this nonlinear relationship are the

variability and extent of drought trends and severity, as well as climatic extremes.
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• We also found that reductionist linear approaches, such as a PCA, might not be

effective in capturing the nuanced relationship between droughts and drought aware-

ness at various dimensions and scales.

• The strongest nonlinear associations were observed over the Western CONUS, fol-

lowed by the Northeastern, Southeastern, and lastly the Central regions.

• We found that changes in drought awareness tends to lag changing drought condi-

tions by around 1 to 3 months.

• Upon applying sentiment analysis to a subset of 2.5 million tweets about droughts

which reference a location within the United States, we found that post-2014, the

percentage of tweets with positive sentiments about droughts have increased notably,

while the percentage of tweets with neutral sentiments have reduced significantly.

We also found that people’s reactions to droughts may be becoming more polarzied.

Our findings strongly underscore the nonlinearity of the dynamics between droughts and

drought awareness within the CONUS. We also unraveled the complexity of this relation-

ship by analyzing the driving factors behind it. While dimensionality reduction with linear

methods such as the PCA might provide some insights, our custom UNet models (with pixel-

level predictions) were significantly better at capturing these interactions and explaining the

variances of the variables involved. We also saw that the temporal variability of people’s

sentiments about droughts coincide with major policy implementations and public discourses

about droughts.

Our observations provide significant insights into changes in human behavior with vary-

ing climatic conditions across the CONUS. We expect these findings to better inform the

stakeholders at various levels making decisions on water resources management, conservation,

policies, legislation, communication, and education. Future studies can build on our research

by exploring (and modeling) the relationships between various natural and anthropogenic

driven phenomena and anthropogenic responses. We particularly encourage future studies
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to understand meteorological droughts’ impact on agricultural, hydrological, and socioeco-

nomic droughts and quantifying the multidimensional non-stationary interplay between these

phenomena and their corresponding human responses at various scales. The results of our

study boosts the feasibility of training large-domain drought prediction models in the sense

that we provided the evidence that we can now better predict changes in drought aware-

ness based on predicted drought conditions. As the impacts of anthropogenic-driven climate

change become increasingly felt and realized by humans across the world, we expect future

experiments to discover and decode more complex relationships between extreme weather

events (such as droughts) with people’s engagement on different platforms across the global

web. Given this scenario, computer vision models, such as our custom U-Nets, will continue

to be significantly useful towards understanding (evolving) human-drought interactions.
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2.6. Appendix - Chapter 2

2.6.1. The U-Net Model. Computer vision techniques such as image segmentation

has surged in popularity in recent years, with applications in scene understanding, medical

image analysis, robotic perception, video surveillance, augmented reality, and image com-

pression among others (Minaee et al., 2021). Deep learning models such as Convolutional
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Neural Networks (CNN) are being increasingly applied in environmental sciences, e.g., air

quality modeling (Qin et al., 2019), image classification (Hasan et al., 2019; Zeng et al., 2019)

etc. In hydrological sciences, CNNs have been used for lake water level forecasting (Barzegar

et al., 2021), prediction of groundwater potential mapping (Panahi et al., 2020), hydrological

time series forecasting modeling (Guo-yan et al., 2019; Hussain et al., 2020), rainfall forecast-

ing (Tu et al., 2021; Adaryani et al., 2022), flood susceptibility mapping (Wang et al., 2020),

daily runoff prediction (Song, 2022), evapotranspiration estimation (Li et al., 2022), and

rapid production of fluvial flood inundation (Kabir et al., 2020) among other applications.

In this study, we approach understanding human-meteorological drought(MD)interactions

using large-scale (CONUS scale) maps/images, making CNNs ideal candidates for our ob-

jectives. We used U-Net, which is a deep learning model used that was developed for image

segmentation to learn relationships between meteorological droughts and search interest. In-

puts to the model are SPEI maps over the CONUS and targets are Google SI maps over the

CONUS.

2.6.2. Model Architecture. The U-Net is a convolutional neural network with an

encoder-decoder architecture. Our model architecture (Fig. 2.10) has two encoder blocks.

Each encoder block has two convolutional layers followed by ReLU activation functions and

one Max-pooling layer. The first encoder block captures low-level features of the input im-

ages, e.g. edges, corners and textures. The second encoder block builds on the first one by

capturing higher level features and patterns. A middle block consisting of two convolutional

layers and ReLU activation functions processes the high-level features captured by the en-

coder blocks. There are two decoder blocks - the first one starts the upsampling process

to generate the output image. It consists of a transposed convolutional layer (also called

deconvolutional layer) followed by two convolutional layers and corresponding ReLU acti-

vation layers. The first decoder block combines the features from the middle block with

the high level features of the second encoder block. The second decoder block continues the

upsampling process by combining the features from the first decoder block with the low-level
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features from the first encoder block. It has one transposed convolutional layer followed by

two 3x3 convolutional layers and one 1x1 convolutional layer to produce the final output

image. In a broad sense, this allows the model to skip connections, allowing information

to flow directly from the encoder to the decoder blocks, helping the network preserve finer

features in the output image.

Figure 2.10. Our custom U-Net Model Architecture (image generated with
Hiddenlayer library).

2.6.3. Model Training. We split our training and testing data using an 80/20 ratio,

so that 163 months of SPEI data and corresponding SI data were used for training and 41

months of data were used for testing. We trained six U-Net models on the six different sets of

SPEI images (as defined earlier). Starting from zero months lag (0ml) to 5 months lag (5ml).

These lags allow us to statistically explore any temporal trends between meteorological

drought events and anthropogenic response to these events (in terms of when people within

our study domain become interested in topics related to droughts). The training process

involved feeding input SPEI images and their corresponding SI labels to the model and

loss function, respectively. We used an adaptive moment (ADAM) optimizer with a Mean

Squared Error (MSE) loss, a batch size of 1 image, and 20 training epochs.

2.6.4. Model Evaluation. We evaluated models on the test set of 41 images. The

output of the U-Net models are probability maps that have the same shape as the input

image (i.e., the same spatial resolution as the SPEI images). These vectors represent the

probability of each pixel belonging to the target class (SI maps). We then calculated the

average R-squared scores for each model.
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CHAPTER 3

DroughtVision - Predicting Global Meteorological Droughts with

Vision Transformers

3.1. Introduction

Drought is a complex natural hazard that can have severe and widespread impacts on the

environment, economy, and society. Accurate and timely prediction of drought occurrences

is crucial for effective water resource management, agricultural planning, and disaster risk

reduction (Wilhite, 2000; Mishra and Singh, 2010). Droughts are often characterized by their

slow onset, long duration, and wide spatial extent, making their prediction a challenging task

Traditionally, drought prediction models have relied on statistical methods, such as regression

analysis, time series analysis, and probability-based approaches (Mishra and Singh, 2011).

These models often utilize various drought indices, such as the Standardized Precipitation

Index (SPI) (McKee et al., 1993), the Palmer Drought Severity Index (PDSI) (Palmer, 1965),

and the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al.,

2010), to quantify and predict drought conditions based on meteorological variables. How-

ever, these statistical models have limitations in capturing the complex and nonlinear rela-

tionships between the input variables and drought occurrences, especially in the context of

changing climate conditions (Mishra and Singh, 2011; Hao et al., 2018).

In recent years, machine learning (ML) techniques have emerged as promising tools for

drought prediction, offering the ability to learn intricate patterns and relationships from

large datasets (Hao et al., 2018). Various ML algorithms, such as artificial neural networks

(ANNs) (Morid et al., 2007), support vector machines (SVMs)

In this chapter, we aim to address the gap in global-scale drought prediction by proposing

a novel approach based on the Vision Transformer (ViT) model (Dosovitskiy et al., 2020).
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The ViT model, originally developed for computer vision tasks, has demonstrated strong

performance in capturing long-range dependencies and learning hierarchical representations

from complex data (Dosovitskiy et al., 2020). By adapting the ViT model to the task

of drought prediction, we leverage its ability to learn spatial and temporal patterns from

high-dimensional climate data. Our work builds upon recent advancements in applying

transformer-based models to Earth system modeling (Rasp et al., 2021; Pathak et al., 2022)

by applying them to the specific problem of global drought prediction.

3.1.1. Research Question. In this chapter, we address the following specific research

questions:

• Can the Vision Transformer model predict meteorological drought occurrences on a

global scale from Sea Surface Temperature, 2-m Temperature, and Total Precipita-

tion?

3.2. Methods

In this section, we discuss the data-driven experimental approaches and methods that we

used to address the research questions outlined above.

3.2.1. Data. Table 3.1 summarizes the data types used in this study, including where

the data was sourced and the temporal periods that we acquired and used. We used the

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 dataset (Hersbach

et al., 2020) to obtain pre-calculated monthly averaged variable data for model inputs. ERA5

provides a comprehensive and consistent record of the Earth’s atmosphere, land surface, and

ocean waves from 1950 to the present. The dataset is generated using the ECMWF Integrated

Forecast System (IFS) and assimilates a vast array of observations from satellites, weather

stations, and other sources. All data are provided on a regular grid with a spatial resolution

of approximately 31 km and a temporal resolution of 1 hour.

3.2.1.1. Sea Surface Temperature (SST ). SST is the temperature of the ocean surface. In

ERA5, SST is derived from a combination of satellite observations Operational Sea Surface
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Table 3.1. Overview of data sources and availability

Data Abbreviation Source Years
Available

Years Used

Sea Surface
Temperature

SST ERA5 dataset
(ECMWF)

1950-Present 1970-2020

2-meter Temperature T2M ERA5 dataset
(ECMWF)

1950-Present 1970-2020

Total Precipitation TP ERA5 dataset
(ECMWF)

1950-Present 1970-2020

Standardized
Precipitation and
Evapotranspiration
Index

SPEI spei.csic.es 1900-2020 1970-2020

Temperature and Sea Ice Analysis) and in-situ measurements from buoys and ships. The

analysis uses the NEMOVAR data assimilation system, which combines the observations

with a prior estimate of the ocean state from the NEMO ocean model (Madec et al., 2017).

3.2.1.2. 2-meter Temperature (T2M). T2M in ERA5 is calculated using the IFS (In-

tegrated Forecast System) model’s land surface scheme, which is based on the HTESSEL

(Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) model (Balsamo et al.,

2009). The land surface scheme simulates the energy and water balance at the Earth’s sur-

face, taking into account factors such as solar radiation, surface albedo, soil moisture, and

vegetation cover. The IFS model assimilates a variety of observations, including surface

synoptic observations (SYNOP), ship and buoy measurements, and satellite-derived data, to

constrain the model’s surface temperature estimates.

3.2.1.3. Total Precipitation (TP ). TP in ERA5 is derived from a combination of satellite

observations, rain gauge measurements, and the IFS model’s atmospheric moisture budget.

The primary satellite data used for precipitation comes from the GPM (Global Precipitation

Measurement) mission, which provides estimates of rainfall and snowfall based on microwave

and radar measurements (Huffman et al., 2015). Rain gauge measurements from the GPCC

(Global Precipitation Climatology Centre) and other national and regional networks are used
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to calibrate and validate the satellite data. The IFS model’s atmospheric moisture budget is

used to provide a first guess of precipitation, which is then adjusted based on the available

observations using the 4D-Var data assimilation system.

3.2.1.4. Standardized Precipitation and Evapotranspiration Index (SPEI). We use the

Standardized Precipitation and Evapotranspiration Index (SPEI) (Begueŕıa, 2022) as our

meteorological drought dataset. SPEI serves as a quantitative measure of droughts by pro-

viding a standardized index to assess moisture deficit over time and space. It is calculated

by taking the difference between total precipitation and total potential evapotranspiration

(PET) over a given period of time (e.g., monthly). SPEI is is expressed in units of standard

deviations calculated over local (per pixel) climatologies, allowing us to assess whether it is

drier or wetter than expected conditions. Calculating SPEI involves the following steps:

(1) Calculate the difference between precipitation (P ) and reference evapotranspiration

(ET0) for each month or time step:

(3.1) Di = Pi − ET0i

where Di is the difference between precipitation and reference evapotranspiration

for the i-th month or time step, Pi is the precipitation for the i-th month or time

step, and ET0i is the reference evapotranspiration for the i-th month or time step.

(2) Calculate the climatic water balance for each month or time step:

(3.2) WBi =
n∑

j=1

Di−j+1

where WBi is the climatic water balance for the i-th month or time step, and n is

the time scale (e.g., 3, 6, or 12 months).

(3) Fit a probability distribution, such as the three-parameter log-logistic distribution

with the Maximum Likelihood Estimation (MLE) method, to the climatic water
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balance values:

(3.3) F (WB) =
1

1 +
(

WB−α
β

)−γ

where F (WB) is the cumulative probability distribution of the climatic water bal-

ance, and α, β, and γ are the distribution parameters that need to be estimated.

(4) Calculate SPEI by transforming the fitted probability distribution to a standard

normal distribution:

(3.4) SPEI = Φ−1(F (WB))

where SPEI is the Standardized Precipitation Evapotranspiration Index, Φ−1 is

the inverse standard normal cumulative distribution function, and F (WB) is the

cumulative probability distribution of the climatic water balance.

SPEI can be calculated for a variety of time periods, ranging from 1 month to 48 months.

We use monthly data in our analysis consistent with our ERA5 data. Positive SPEI values

indicate wetter conditions, while negative values indicate drier conditions. SPEI value <

0 is generally accepted as dry to drought conditions (Vicente-Serrano et al., 2010; Potop

et al., 2014; Stagge et al., 2015; Spinoni et al., 2015; Begueŕıa et al., 2014) and we used this

threshold to count drought occurrences.

3.2.2. Data Preprocessing and Data Loading. We preprocessed the input and tar-

get datasets to be compatible with our state-of-the-art machine learning modeling pipeline.

We adjusted the latitude and longitude of the input dataset to ensure consistency and then

resampled them to a 1-degree spatial resolution using bilinear interpolation. This step in-

volved defining new latitude and longitude ranges with 1-degree intervals and interpolating

the data to match the new grid. We applied a similar approach for our target (SPEI) dataset

as well.
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We designed a custom dataloader for our pipeline which takes parameters such as the se-

quence length (number of months of input data), the predict length (number of months to

predict), and a boolean flag indicating whether the dataset is used for training or testing. We

used 12 months as the input sequence length and 3 months as the predict length (predicting

on 12th(Lead Time 0), 13th(Lead Time 1), and 14th(Lead Time 2) month).

We applied Min-Max scaling to the input data to normalize them so that all the input

variables per grid point and time step have a value between 0 and 1. We then created a

mask to identify the NaN values (land values) in the SST data and replaced these NaN

values with corresponding T2M values. We also created a similar mask for NaN SPEI values

(Ocean values) and replaced them with a placeholder value. We then converted the SPEI into

a binary dataset by setting all SPEI values < 0 to 1 (indicating ”dry to drought” conditions)

and setting SPEI values > 0 to 0 (indicating ”no droughts”). Figure shows examples of

SST, T2M, TP, and SPEI images resulting from the preprocessing and used for training and

testing our Vision Transformer Model.

3.2.3. The Transformer Network. The Transformer network (Vaswani et al., 2017)

has revolutionized the field of natural language processing and has been successfully applied

to various tasks, including computer vision. The core idea behind the Transformer architec-

ture is to capture long-range dependencies and contextual information through self-attention

mechanisms, eliminating the need for recurrent or convolutional layers.

The Transformer consists of an encoder and a decoder, but in the Vision Transformer (ViT)

model, we only use the encoder part. The encoder is composed of multiple identical layers,

each containing two sub-layers: a multi-head self-attention mechanism and a position-wise

fully connected feed-forward network.

The self-attention mechanism allows each element in the input sequence to attend to and

compute a weighted sum of the other elements, based on their relevance or importance.

The attention scores are calculated by computing the dot product between the query, key,

and value vectors, which are derived from the input embeddings. The dot products are then
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Figure 3.1. Examples of the input variables and target variable used for ViT
model training and testing. The top-left image shows a SST+T2M image, top
right shows a T2M image, bottom left shows a TP image. The bottom right
shows a SPEI binary image indicating the presence or absence of drought
conditions. The data is from a sample batch of the test dataset, representing
a single time step. The color scale represents the normalized values of each
variable, with higher values in red and lower values in blue.

scaled and passed through a softmax function to obtain the attention weights. These weights

are used to compute a weighted sum of the value vectors, resulting in the attended features

for each element. The attention equation can be represented as:

(3.5) Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the

dimension of the key vectors. The softmax function is applied to the scaled dot product of
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Q and KT to obtain the attention weights, which are then used to compute a weighted sum

of the value vectors V .

To capture different aspects of the input, the self-attention mechanism is applied multiple

times in parallel, known as multi-head attention. Each attention head computes its own set

of query, key, and value vectors and performs the attention computation independently. The

outputs from all the heads are then concatenated and linearly transformed to obtain the

final attended features.

The position-wise feed-forward network consists of two linear transformations with a ReLU

activation in between. It is applied independently to each position in the sequence, allowing

the model to learn non-linear interactions between the attended features.

The Transformer architecture also incorporates positional embeddings to capture the posi-

tional information of the input elements. These embeddings are added to the input embed-

dings to provide the model with a sense of order and relative position.

3.2.4. DroughtVision - A Vision Transformer Model. In our drought prediction

task, we utilized the Vision Transformer (ViT) model, which adapts the Transformer archi-

tecture to process visual data.

Patch Embedding: We concatenated the SST, TP, and T2M data along the channel dimen-

sion to form a multi-channel input tensor. This tensor was then split into patches of a fixed

size (16x16) to serve as the input sequence to the Transformer. Each patch was linearly pro-

jected into a hidden dimension using a convolutional layer followed by a flattening operation.

This step converted the patches into a sequence of embeddings.

Class Token: We introduced a learnable class token embedding, which was prepended to

the sequence of patch embeddings. The class token served as a global representation of the

entire input and was used for the final prediction.

Position Embeddings: Learnable position embeddings were added to the patch embeddings

to capture positional information. These embeddings helped the model understand the

spatial relationships between the patches.
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Transformer Encoder: Transformer encoder layers (64 layers) were stacked to learn the

contextual representations of the input. Each layer consisted of multi-head self-attention

(128 heads) and a feed-forward network.

Decoder: The class token representation from the final Transformer encoder layer was passed

through a decoder, which consisted of a linear layer followed by a sigmoid activation function.

The sigmoid function was applied element-wise to the output of the linear layer, squashing the

values to the range [0, 1]. This produced a probability-like output, indicating the likelihood

of drought conditions for each spatial location and time step.

Output Reshaping: The output from the decoder was reshaped to match and align with the

spatial dimensions (height and width) of the target SPEI data and the number of predicted

time steps. Figure 3.2 is a high-level representation of our custom ViT model training

pipeline and its various components.

3.2.4.1. Model Training. We trained our ViT model using a variety of hyperparameter

settings. For every training routine, we first initialized the model with specified hyperpa-

rameters (e.g. hidden dimension, size of patches, number of transformer layers, number of

attention heads, etc.). Since our task was binary classification (drought vs. no drought), the

binary cross-entropy loss (BCELoss) was chosen as the loss function. BCELoss measures the

dissimilarity between the predicted probabilities and the true binary labels, penalizing the

model for incorrect predictions.

We applied the Adam optimizer to update the model’s parameters during training. Adam is

an adaptive learning rate optimization algorithm that combines the advantages of AdaGrad

and RMSProp, adapting the learning rates for each parameter based on their historical

gradients. The learning rate and other hyperparameters of the optimizer were set based on

default values.

In the training loop, the model iterated over the training data for a specified number (20)

of epochs. In each epoch, the model was trained on batches of input data (SST, T2M,

TP) and corresponding target (SPEI) labels. For each batch, the ViT model performed a
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forward pass, generating predicted probabilities for each spatial location and time step. The

binary cross-entropy loss was computed between the predicted probabilities and the true

(target) binary labels. The gradients of the loss with respect to the model’s parameters were

computed using backpropagation and the optimizer updated the model’s parameters based

on the computed gradients to minimize the loss. We monitored the training loss for each

epoch to monitor the training progress.

3.2.4.2. Model Evaluation. We tested the model performance on 20% of our dataset. For

each batch in the testing data, the model performed a forward pass, generating predicted

probabilities for each spatial location and time step. The predicted probabilities were stored

for each month (Lead Times 0, 1, 2) separately and concatenated along with true labels

across all batches. We converted the predicted probabilities to binary predictions using

a tunable threshold and then computed the model skills using various evaluation metrics:

Accuracy, Precision, Recall, and F1 scores.

Accuracy measures the proportion of correct predictions (both drought and no drought) out

of the total predictions. Precision measures the proportion of true positive predictions (cor-

rectly predicted droughts) out of the total positive predictions. Recall (Sensitivity) measures

the proportion of true positive predictions out of the total actual drought occurrences, and

F1 scores measures the harmonic mean of precision and recall, providing a balanced measure

of the model’s performance.

3.3. Results and Analysis

In this section we address the research question laid out previously and discuss the results

of our analyses.

3.3.1. Can the Vision Transformer model predict meteorological drought oc-

currences on a global scale from Sea Surface Temperature, 2-m Temperature,

and Total Precipitation? To investigate if the relationship between SST, T2M, and TP,

and drought occurrences was learned by the ViT model, we look at the overall model skill
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Figure 3.2. High-level representation of the ViT model training flow. The
input images are broken down into equal-sized patches which are then em-
bedded into tensors. Class token are prepended, position embeddings are
learned, and the combined embeddings are fed to the transformer encoder.
During model training, class token representations are learned and afterwards
decoded. The decoder outputs are passed through a sigmoid function in the
final layer and the outputs are generated. Binary cross-entropy loss function
is used per epoch to inform the optimizer which also adjusts the learning rate
of the network.

scores during our evaluation period (01/01/2005-12/31/2020) for the individual 3 months

per input sequence.

3.2 shows the accuracy, precision, recall, and F1 scores for the three months per input

sequence.

The accuracy scores for all three months were consistently high, ranging from 0.9456 to

0.9475. This indicates that the model correctly predicts the drought status (drought or no
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drought) for a large majority of the locations. The high accuracy scores demonstrate the

model’s overall effectiveness in distinguishing between drought and non-drought conditions.

The precision scores, which measure the proportion of true positive predictions among all

positive predictions, were also quite significant. The precision scores range from 0.8747 to

0.8781, suggesting that when the model predicts a drought, it is correct in a significant

proportion of cases. These high precision scores indicate that the model has a low false

positive rate and is mostly reliable in identifying actual drought occurrences. The precision

scores decrease very slightly steadily from 0 months to 2 months lead times, as shown in

Figure 3.3.

The recall scores, which measure the proportion of actual drought occurrences that are cor-

rectly predicted, are relatively lower compared to the precision scores. The recall scores range

from 0.6285 to 0.6465, indicating that the model misses some actual drought occurrences.

Recall scores slightly improve for lead time of 1 month compared to lead time of 0 month.

This might indicate the model is capturing the global dependencies within input images and

input and target images for correctly predicting actual drought occurrences with one month

lead time.

The F1 scores, which provide a balanced measure of precision and recall, ranged from 0.7323

to 0.7447. These scores indicate significant overall performance of the ViT model, considering

both its ability to correctly identify droughts and its effectiveness in minimizing false positives

and false negatives.

Month Accuracy Precision Recall F1 Score
0 0.9475 0.8781 0.6465 0.7447
1 0.9456 0.8770 0.6285 0.7323
2 0.9471 0.8747 0.6462 0.7433

Table 3.2. Evaluation metrics for each month.

We further investigate whether our ViT model captures meaningful relationships beyond the

inherent temporal autocorrelation present in the SPEI data. We first calculate the temporal

extent over which the SPEI values at a particular pixel remain significantly correlated with
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Figure 3.3. Precision and recall scores and skill loss percentages for the
predicted months. Recall scores slightly improve for lead time of 1 month
compared to lead time of 0 month.

each other (correlation length) and generate an exponential decay correlogram. Figure 3.4

shows that the autocorrelation of SPEI values decreases as the lag (in months) increases.

The threshold line represents a specific autocorrelation value of exp(-1). The lag at which the

autocorrelation crosses this threshold is considered the correlation length. We can observe

that the majority of the pixels have a correlation length of around 2-3 months, as the

autocorrelation values fall below the threshold within that time range. This suggests that

the SPEI values have a relatively short-term memory or persistence, meaning that the SPEI

values are more strongly correlated with their recent past values, and the influence of past

values diminishes quickly over time. Our ViT model is designed to for near-future predictions

(2-3 months), allowing it to contextually learn short-term dependencies between the input

variables and SPEI data while also being aware if the long-term dependencies.

Figure 3.5 presents a visual comparison of the actual and predicted drought maps and counts

for each of the three months. It is evident that the model captures the overall spatial pat-

terns of drought reasonably well. The predicted drought maps mostly resemble the actual

drought maps, indicating that the model has learned to identify the key features and pat-

terns associated with global drought occurrence. There are some significant discrepancies
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Figure 3.4. Autocorrelation decay of SPEI values (blue dots) with increasing
lag in months. The rate of decay in the autocorrelation provides information
about the persistence of SPEI values over time. The threshold line (red dashed
line) represents a specific autocorrelation value (exp(-1) or 0.37). The lag at
which the autocorrelation crosses this threshold is considered the correlation
length. Majority of the pixels have a correlation length of around 2-3 months.

between the actual and predicted maps as well, particularly in regions where droughts are

less prevalent or have a more sporadic nature. We also observe that the ViT model is slightly

under-predicting the drought occurrences and slightly over-predicting the no-drought counts.

We also looked at the spatial representation of the true positives and false positives (Figure

3.6). There are some distinct regions, such as over the Sahara, Mongolia, Siberia, parts

of the Middle East, Eastern Europe, Greenland and Canada where the model is incorrectly

predicting drought occurrences. It makes sense physically that most of these regions are prone

to complex and persistently dry to drought conditions. Further investigation is required to

understand the underlying reasons behind these false-positive results.

Our results also indicate that there are inherent patterns and dependencies between SST,

T2M, TP and meteorological drought occurrences. Multiple previous studies have linked

temperature and precipitation with drought occurrences, frequencies, and intensity (Vicente-

Serrano et al., 2010; Dai, 2011; Trenberth et al., 2014; Mukherjee et al., 2018; Schubert et al.,

2016). However, we acknowledge that while these variables exhibit a strong relationship with

drought occurrences, there may be other factors influencing global drought dynamics.
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Figure 3.5. Comparison of the actual and predicted drought maps for the
three individual months per prediction. The maps on the left show the actual
drought conditions, while the maps on the right display the model’s predic-
tions. The bar plots to the right indicate the counts of predicted and true
droughts or no droughts. Based on the drought counts, our ViT model under-
predicts droughts by about 26% and overpredicts drought conditions by about
3.5%.

3.4. Conclusions & Discussion

We developed a Vision Transformer (ViT) based model to predict meteorological drought

occurrences on a global scale using sea surface temperature, 2-meter air temperature, and

total precipitation (TP) as input variables. We trained the model using a sliding window

approach on data from January 1970 to December 2004 and evaluated its performance on

75



Figure 3.6. The true positive and false positive maps for each of the three
predicted months. The true positive maps (left column) highlight the re-
gions where the model correctly predicted drought occurrences, while the false
positive maps (right column) indicate the areas where the model incorrectly
predicted droughts when there were none.

data from January 2005 to December 2020. The model’s skill was assessed using a diverse

set of metrics. The primary findings of this study are (see the research question outlined in

Section 3.1.1):

• The ViT model was able to distinguish between drought and non-drought conditions.

• The model was mostly reliable in identifying actual drought occurrences.
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• The model missed some actual drought occurrences, particularly in regions with less

frequent or more complex drought patterns possibly driven by other factors

• The model captured global associations between SST, T2M, TP and drought oc-

currences.

The findings of this study indicate substantial potential of the ViT model in predicting

meteorological drought occurrences on a global scale.

Our study has certain limitations in the sense that the ViT model misses some actual drought

occurrences, indicating the need for understanding the underlying reasons and further refine-

ment and tuning of the model. Our method also does not account for other types of droughts,

such as agricultural or hydrological droughts. We also acknowledge the need for introducing

a more diverse set of input variables (such as soil moisture and vegetation indices) and using

other drought indices and datasets to increase the generalizability of this model. Future

direction of this study may also involve (i) performing a robust feature importance analysis

to understand the importance of different variables for predictions, (ii) exploring the use of

long short-term memory networks for better capturing temporal dependencies, (iii) exper-

imenting with various timescales, and (iv) integrating predictions with socioeconomic and

environmental data for a more holistic assessment.

Our ViT model leveraged the Attention mechanism of Transformer networks to gain a broad

context of global climatic variables and learns their complex and nonlinear relationships with

drought occurrences. The non-stationarity of global climate (made increasingly complex by

anthropogenic-driven climate change) poses challenges to traditional drought forecasting ap-

proaches, emphasizing the need for increasingly broader contextual understanding capability

provided by our model. By continuing to leverage deep learning and satellite-derived climate

variables, we can develop more reliable and effective tools for drought monitoring and early

warning systems. The findings of this study contribute to the ongoing efforts in understand-

ing and mitigating the impacts of droughts under a changing climate, and pave the way for

further research and development in this critical area.
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