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Wavelets and Other Bases for 

Fast Numerical Linear Algebra 

Bradley K. Alpert 

Abstract. The fundamental ideas of wavelets are introduced within 
the context of mathematical physics. We present essential background 
notions of mathematical bases, and discuss Fourier, polynomial, and 
wavelets bases in this light. We construct several types of wavelets 
and wavelet-like bases and illustrate their use in algorithms for the 
solution of a variety of integral and differential equations. 

§1. Introduction 

The solution of problems of physics, requiring the numerical solution of 
differential and integral equations, ranks among the most compute-intensive 
applications currently feasible. The field of scientific computation is concerned 
with both hardware and algorithmic improvement for the modelling of increas­
ingly complex problems. Recently, the development of new mathematical bases 
for scientific computation has enabled the construction of algorithms which are 
dramatically more efficient than earlier algorithms. Wavelets permit the accu­
rate representation of a variety of functions and operators without redundancy. 
Through the ability to represent local, high-frequency information with local­
ized basis elements, wavelets allow adaption in a straightforward, consistent 
fashion. 

For a variety of applications, sparse matrix representation of differential 
operators has been the key to efficient algorithms. Integral operators, by con­
trast, are represented in classical bases as dense matrices. These representa­
tions lead to algorithms which, for large-scale problems, are often prohibitively 
slow. The most notable exception to this rule is for convolutional operators, 
which are represented in the Fourier basis as diagonal matrices, and which 
have correspondingly fast algorithms. Wavelets can be viewed as a "diagonal­
izing" basis for a wider class of integral operators. The quotes are necessary 
here, because the statement is only approximately true. Wavelet expansions of 
integral operators are not exactly diagonal; rather, they have a peculiar band 
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2 Bradley K. Alpert 

structure. Furthermore, the sparse band structure represents an approximation 
(to arbitrary precision) of the original integral operator. 

Despite these caveats, the solution of a wide range of integral equations 
is transformed using wavelets from a direct procedure requiring order O(n3

) 

operations to one requiring only order O( n). Here n is the number of points in 
the discretization of the domain. 

Many time-dependent problems formulated as partial differential equa­
tions require adaptive representations in carrying out the time evolution. Typ­
ically, a small part of the domain has most of the activity, and the represen­
tation must have high resolution there. In the rest of the domain, such high 
resolution is wasted (and costly). Various adaptive mesh techniques have been 
developed to address this issue, but they often suffer accuracy problems in the 
application of operators, multiplication of functions, and so forth. Wavelets 
offer promise in providing a consistent, simple adaptive framework. 

In §2 we provide background to the study of wavelets by reviewing the 
definition and some examples of mathematical bases. In §3 we present several 
constructions of wavelets and wavelet-like bases and discuss their fundamental 
properties. In §4 we introduce the application of wavelets to the solution of 
integral equations and to the representation of differential operators. Finally, 
we summarize in §5. 

§2. Function Representations in Mathematical Physics 

2.1 Mathematical Bases 

The norm of a sequence a = (al,a2, ... ), a measure of its size, will be 
defined by the formula 

( )

1/2 
lIallZ2 = Lan

2
. • 

n 

The space 12 consists of the square summable sequences a: Ilalll2 < 00. 

The norm of a function I : n ~ lR, will be defined as the L2-norm 

where n is the domain of I. In this chapter we restrict ourselves primarily to 
n = lR and to functions I with 11111£2 < 00 (i.e., I E L2); the function norm 
11111£2 will be abbreviated 11111. A sequence offunctions iI, 12, ... converges to a 
function I if the difference In - I becomes arbitrarily small, i.e., if II In - III ~ 0 
as n ~ 00. A series of functions L:n In converges to I if the sequence of partial 
sums SI, S2, ... converges to I. The partial sum Sn is defined by the formula 

n 

Sn(X) = LIj(x). 
j=1 



Bases for Fast Numerical Linear Algebra 3 

The linear span, or closure F, of a set of functions F = {II, h, ... } C £2 
is the set of linear combinations 

00 

f(x) = 2: an fn(x) 
n=l 

that are contained in £2. The restriction that the sum be square integrable is 
equivalent to the requirement that the sequence of coefficients (alIIflII ,a211h II, 
... ) be square summable, or in [2. A set of functions F is linearly independent 
if any proper subset F' of F has linear span F' which is a proper subset of the 
linear span F of F: 

F' C F and F' 1= F =? F' =1= F. 

A set of functions F is a basis for a space S if F = Sand F is linearly 
independent. We will concern ourselves with bases for £2(JR). 

Stability and Orthogonality. If a function is represented in terms of 
functions that are not linearly independent, the representation is not unique. 
For example, if 

linear span{lI, 12, h,···} = linear span{/2, /3, ... }, 

and 

n 

then the coefficient al can be chosen arbitrarily. On the other hand, linear 
independence is enough to guarantee representational uniqueness in theory, 
but is not sufficient when numerical computations are carried out to finite 
precision. The functions (fo, II, ... ), defined by the formula 

if x E [0,1]; 
otherwise; 

are linearly independent but f11 can be represented as a linear combination of 
fo, ... ,flO to 6 digit accuracy. Perturbation of a function· 

11 

f(x) = 2: an fn(x) 
n=O 

by one part in a million can correspond to variations of II a II I2 by several per 
cent (even if each Ii were normalized so II Ii II = 1). The monomials are there­
fore seriously deficient for numerical use as a basis. In computations, they are 
replaced by the orthogonal polynomials. 

The inner product of two functions f, 9 E L2(JR) is the integral 

(f, g) = I: f(x) g(x) dx. 
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Two functions f and g are orthogonal if (J, g) = o. An orthogonal basis is a basis 
in which the functions II, 12, ... are pairwise orthogonal: (Ji, fJ) = 0 for i =1= j. 
The basis is orthonormal if (Ii, fj) = bij . 

An orthonormal basis is, in a sense, a natural representation language 
for functions. Perturbation of the coefficients in the representation of a func­
tion produces a commensurate perturbation in the function. Similarly, if the 
function is perturbed the coefficients change nearly the same amount: the rep­
resentation is stable. Another important characteristic of orthonormal bases is 
that it is simple to determine the expansion coefficients. Given an orthonormal 
basis {iI, 12, ... } for L2(JR) and a function f E L2(JR), the coefficients in the 
expansIOn 

00 

f(x) = Lan fn(x) 
n=l 

are given by the inner product 

n E IN. 

Without orthogonality, the coefficients must be obtained by the (often expen­
sive) solution of a system of equations. We mention at this point that recent 
results suggest that frames may offer the simplicity of orthogonal bases without 
their rigidity [10], [11]. 

Truncated Expansions. Though a function f may be specified by an 
infinite expansion, actual computations require finite representations. Gener­
ally, an infinite basis is abbreviated to a finite basis, which corresponds to 
truncating the expansion. If the first n terms are retained, we have 

n 

f (x) = L a j fJ (x) + En (x), 
j=l 

where the truncation error En(x) is given by 

00 

En(x) = L aj fJ(x). 
j=n+l 

The computation cost generally increases with n, so it is desirable for the error 
En to decay with increasing n as rapidly as possible. If k is the largest integer 
such that the quantity 

is bounded as n -7 00, then we say the expansion for f is kth-order convergent. 
If, instead, 

for all k, the expansion is super-algebraicly convergent. 
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2.2 Classical Bases 

We now give a few concrete examples of bases in use for a variety of 
computational tasks. 

The fundamental representation for periodic functions is the Fourier basis 
for L2[_7r, 7r], 

n E 'll, 

which is an orthogonal basis under the (complex) inner product 

(j,g) = i: f(x)g(x)dx, 

where 9 is the complex conjugate of g. Many properties of the Fourier basis 
make it well-suited to computation. Differentiation and integration of functions 
represented in the Fourier basis is simple: 

~: (x) = n f n (x), 

The transformation of a function tabulated at n equispaced points on the inter­
val [-7r, 7r] into an n-term Fourier expansion, or its inverse transformation, is 
accomplished rapidly by the Fast Fourier Transform. In addition, convolutions 
are diagonal operators in the Fourier basis. Suppose we are given an integral 
operator 

(KJ)(x) = i: K(x,Y)f(y)d~, 
where the kernel K(x, y) is convolutional, i.e., 

K(x, y) = k(x - y). 

The element Kmn of the matrix representing the operator K in the Fourier 
basis, given by the formula 

Kmn = i: i: k(x - y) eimx e-
iny 

dx dy, m,n E 'll, 

satisfies Kmn = 0 if m =1= n, as can be seen by integrating. The ability in 
the Fourier basis to manipulate convolutions efficiently, as diagonal operators, 
leads to much of the strength of the basis as a computational tool. 

Another class of bases are the orthogonal polynomials. Given an interval 
I C lR and a positive weight function w : I ---+ lR, we can define an inner 
product 

(j,g)w = lJ(x)g(x)w(x)dx. 

There is a sequence of polynomials, PO,Pl, ... , with Pj of degree j, which is 
orthogonal with respect to the weight w, i.e., (Pm, Pn)w = 0 if m =1= n. The 
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sequence forms a basis for the functions defined on the interval I which are 
square integrable with weight w. The sequence is uniquely determined by w up 
to leading coefficients, and can be computed by the Gram-Schmidt orthogo­
nalization process. For I = [-1, 1] and w( x) = 1, the sequence is the Legendre 
polynomials; they form an orthogonal basis for L2[-1, 1]. The transformation 
of tabulated functions to expansions of orthogonal polynomials is inexpensive 
in certain cases (including Legendre [5]). Differentiation and integration is gen­
erally simple and fast; the formulae for these operations depend on the weight 
w. 

2.3 Time-Frequency Localization 

One issue which arises commonly in physical problems, and to which classi­
cal bases are not well suited, is the representation of very short, high-frequency, 
signals. An example in music is the attack, or beginning, of a played note, w,hich 
introduces high-frequency components which decay rapidly as the note is sus­
tained. In image processing, edges (localized high freqencies) are encountered 
at irregular spacings. The same is true for seismic data. Generally, there is a 
need for bases for which the ele'ments representing the highest frequencies are 
most localized in time (or space). 

The short-time Fourier transform, in which the exponential einx is mul­
tiplied by a localized window function such as e-(x-a)2 /b, for various a, is an 
attempt to localize the Fourier basis elements. It does not however, localize 
different frequencies differently. The window width parameter b must be cho­
sen for the degree of localization desired. The short-time Fourier transform 
also possesses the complication that no choice of window function leads to an 
orthogonal basis. 

Wavelet bases have been developed to handle time-frequency localization 
cleanly. 

§3. Construction of Bases of Wavelets 

The term wavelets denotes a family of functions of the form 

1/2 (x - b) Wa,b(X) = lal- W -a- , a, b E JR, a =1= 0, (1) 

obtained from a single function w by the operations of dilation and translation. 
Such families, while named rather recently (Grossman and Morlet [13]), were 
used much earlier in the study of certain integral operators. Recent develop­
ments, however, have created widespread interest in wavelets among mathe­
maticians and engineers. Explicit constructions of functions w leading to bases 
for L2(JR) have propelled wavelets into applications in signal processing and 
the numerical solution of integral equations and partial differential equations. 

In this section we present constructions of wavelets and wavelet-like bases; 
in §4 we give a sampling of their numerical applications. 
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3.1 Haar Basis 

The simplest example of a basis of wavelets, the Haar basis, consists of 
piecewise constant functions. The "pieces," or intervals on which the functions 
are constant, are of arbitrarily small size, and the basis is complete for L2(JR). 
We start by defining the function </J : JR -+ JR to be the characteristic function 
of the interval [0,1), 

</J(x) = {I, if x E [~, 1); 
0, otherwIse. 

The integer translates of </J span the space Vo of functions constant on unit 
intervals, 

The sum here is taken over all k E 7l; the requirement that r E L2(JR) is 
equivalent to L:k Ctk 2 < 00. From the space Vo we define for each n E 7l the 
space Vn by taking dilates of functions in Vo, 

VI consists of functions constant on intervals of length 2, V-I consists of func­
tions constant on intervals of length ~, and so forth. We therefore have the 
containment hierarchy 

(2) 

(note the decreasing subscripts). The only function in all subspaces is constant 
on JR (and contained in L2) so is identically zero; the union of the subspaces 
contains functions arbitrarily close to any function in L2 so its closure coincides 
with L2, 

n n 

The closure UVn is spanned by dilates and translates </J( 2n x - k) of </J, but 
the dilates and translates are not linearly independent (so do not form a basis). 
This fact is evident from the containment hierarchy (2). To construct a basis, 
one can exploit the hierarchy and construct difference spaces: for each n E 'll 
we define the space Wn to be the orthogonal complement of Vn in Vn- 1 , 

(3) 

It is easily verified that W n is a dilate of Wo, 

and that, analogous to Vo, the space Wo is spanned by integer translates of a 
single function, 
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Here'the translated function w : lR -+ lR is 

{ 

1, if x E [0,1/2); 
w(x) = -1, if x E [1/2,1); 

0, otherwise. 

Through (3) L2 can be decomposed into a direct sum of the Wn , 

n n 

so L2 is spanned by dilates and translates of w, 

The normalized dilates and translates Wnk(X) = 2- n / 2w(2-n x - k), n, k E 'll 
form an orthonormal basis for L2(lR). They are wavelets, according to the 
definition (1), with coefficients a, b taking the discrete values a = 2n and 
b = 2n k for n, k E '!l. 

One last point about the Haar basis. Toward the goal of accurate, practical 
representation of functions the Haar basis provides little help. Given a function 
f with several continuous derivatives, the expansion of f in the Haar basis, 

f(x) = Lank Wnk(X), 

n,kE71 

converges only slowly. In general, as the number of terms in a truncated expan­
sion for f doubles, the error from neglecting the discarded terms is cut in half, 
so the expansion is first-order convergent. For typical functions, high accuracy 
is achieved only with a very large number of terms. This slow convergence 
limits the practical value of the Haar basis for numerical applications. 

3.2 M ultiresolution Analysis 

The Haar basis is not new, but until recently there was no known or­
thogonal basis of wavelets in which the wavelet function W was even continu­
ous, much less differentiable. In 1985 Y. Meyer [16] constructed such a basis 
with W E COO(lR). This was a surprise which seemed very improbable, and 
Meyer [15] and S. Mallat [17] developed a framework, the multiresolution anal­
ysis, in which to understand these bases. The Haar basis was presented in §3.1 
within this framework; we now make the framework explicit. 

A multiresolution analysis [9] consists of a sequence of closed subspaces 
Vn , n E '!l, in L2(lR) such that they lie in a containment hierarchy, 

... C V2 C VI C Vo C V-I C V- 2 •. " (4) 
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they have intersection that is trivial and union that is dense in L2(R), 

(5) 
n n 

they are dilates of one another, 

(6) 

and there exists a scaling function ¢l E Vo whose integer translates span Vo; 

Vo = { f E L2(R) I f(x) = L ak ¢l(x - k) } . (7) 

The spaces Vn are all alike when the scale is ignored; nevertheless, a journey up 
the containment hierarchy can be thought of (roughly) as adding ever higher 
frequencies while retaining low frequencies. 

The multiresolution analysis leads directly to a scalewise, orthogonal de­
composition of L2(lR). The orthogonal complement of Vn in Vn- 1 , denoted by 
Wn , is the building block: 

(8) 

The spaces W n , n E 7l, are dilates of Wo and their direct sum is L\ 

(9) 
n n 

The space Wo is spanned by integer translates of a function w. Intuitively, the 
space V_I, spanned by integer translates of two functions (¢l(2x) and ¢l(2x -
1)), is twice the size of Vo, spanned by integer translates of ¢l; Wo is the 
difference between these two spaces. The argument is made rigorous using 
group representations (omitted here). Using this characterization of Wo, and 
equation (9), we write L2 as the space spanned by dilates and translates of w, 

where Wnk(X) = 2- n / 2w(2- n x - k). 
What can be said about the wavelet function w? We have W E Wo C V-I, 

so 
w(x) = L bk ¢l(2x - k), 

kE7Z 

for some coefficients ... b_ I , bo, bI , .... Furthermore, a similar expansion holds 
for the scaling function ¢l (since ¢l E Vo C V-d: 

¢lex) = L ak ¢l(2x - k), 
kE7Z 
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for coefficients ... a_I, ao, aI, .... In §3.3 we will see that the choice for bk given 
by . 

(11) 

yields the desired orthogonality Wo..l Yo. The task of choosing ak so that the 
translates of <P are mutually orthogonal, in addition to possessing other prop­
erties, is also addressed in §3.3. 

Example. For the Haar basis, the scaling function satisfies the recurrence 
equation 

<p(x) = <p(2x) + <p(2x - 1) 

and the wavelet function is given by the formula 

w(x) = <p(2x) - <p(2x - 1), 

following equation (11). The inner products J <p(x - k)w(x)dx, as well as 
J <p(x - k) <p(x) dx and J w(x - k) w(~) dx, vanish for k =I 0. 

3.3 Daubechies Wavelets 

Constraints can be placed on the coefficients ak in the expansion for the 
scaling function <p, 

<p(x) = Lak<P(2x-k), (12) 
kE7}; 

so that <p satisfies various properties. 1. Daubechies [9] constructed a class 
{N<P I N E :IN"} of scaling functions, such that each N<P vanishes outside a 
finite interval, satisfies the orthonormality requirement 

i: N<P(X - k) N<P(X - 1) dx = SkI, k,l E 'll, (13) 

and has regularity N<P E CJLN (lR), where J-l ~ .35. An important additional 
property of her scaling function N<P is that low-order polynomials can be ex­
pressed as a linear combination of its translates: 

xi = L af;. N<P(X - k), j = 0, ... ,N -1, (14) 
kE7}; 

where af;. = J N<p(X - k) xi dx. This latter property leads to good approxi­
mation properties; functions with several continuous derivatives have rapidly 
convergent expansions in bases of Daubechies wavelets. 

We now explore these properties of N<P and the corresponding constraints 
on the dilation coefficients ak. We also present a method for computing the 
values of N<P. (We drop the prefixed subscript for <p where convenient.) 

Compact Support. If only a finite number of the coefficients ak for <p are 
nonzero, then <p vanishes outside a finite interval. In particular, if all coefficients 
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other than am, am+I, ... , an vanish, then </l vanishes outside the interval [m, n]. 
To see this, observe that the iteration of 

n 

</li+I(X) = 'E ak</li(2x-k) 
k=m 

maps a function </li supported on [a, b] to the function </li+I supported on 
[(a+m)/2,(b+n)/2]. 

Consistency. Integration of the dilation equation (12) determines l: ak: 

JOO </lex) dx = Joo 'E ak </l(2x - k) dx 
-00 -00 kE71 

= - 'E ak </l(2x - k) 2dx 1 Joo 
2 k -00 ' 

1 Joo = 2 'E ak </lex) dx. 
k -00 

But J </l( x) dx =1= 0, since the sum of translates of </l is a nonzero constant 
(equation (14) with j = 0). Dividing through by J </l( x) dx yields 

(15) 

The dilation equation is homogeneous, so it determines </l only up to a constant 
factor. It is convenient to choose the factor so that 

i: </lex) dx = 1, (16) 

which will be assumed in the following discussion. 

Orthogonality. We examine the consequences of equation (13) by com­
bining it with the dilation equatio~ (12): 

bkl = i: </l(x - k) </l(x - 1) dx 

= Joo 'E am </l(2(x -k) - m) 'E an </l(2(x -1) - n) dx 
-00 mE71 nE71 

1 Joo = 2 'E 'E am an </l(2(x - k) - m) </l(2(x -1) - n) 2dx 
m n -00 

= ~ 'E 'E am an b2k+m,21+n 
m n 
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hence 

~ L a2k+m a2l+m = bkl, 

mE71 

Bradley K. Alpert 

k,l E 'll. (17) 

Equation (17) is the fundamental relation which ensures the orthogonality of 
the translates' of the scaling function ¢>. To establish the orthogonality between 
the translates of the wavelet function 

w(x) = L bk ¢>(2x - k), (18) 
kE71 

we use the coefficients bk given by equation (11) and apply equation (17) to 
obtain 

I: w(x - k)w(x -l)dx 

= 100 L bm ¢>(2(x - k) - m) L bn ¢>(2(x - I) - n) dx 
-00 m n 

= ~ L b2k+m b2/+m 
m 

1 "'( 1)2k+m ( 1)2l+m = 2" ~ - al-2k-m - al-2/-m 
m 

1 
= 2" L al-2k-m al-21- m 

m 

Finally, the orthogonality between the ¢> and w translates is established (with­
out equation (17)!) by 

100 1 
¢>(x - k) w(x -I) dx = - L a2/+m b2k+ m 

-00 2 
m 

1 '" (1)2k+m = 2" ~ a2i+m - al-2k-m 

m 

=0. 

The last statement follows from the observation that in the summation, each 
product ai aj occurs twice, with opposite signs. 

To summarize, equation (17), combined with the coefficient definition bk = 
(-1)k a1 _k, ensures the orthogonality relations J ¢>(x - k) ¢>(x - I) dx = Dkl, 

J ¢>(x - k)w(x -l)dx = 0, and J w(x - k)w(x -l)dx = Ski. 

Approximation. The projection of a function f E L2(JR) on the space 
Vn is defined by the formula 
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In(x) = L l:tnk ¢>nk(X), 
ke1l 

where the (orthonormal) basis functions for Vn are given by 

and the coefficients are 

l:tnk ~ i: ¢>nk(X) I(x) dx. 

13 

The rate of convergence of the sequence ... , II, 10, 1-1, ... -+- I is of interest, for 
it dictates the computational cost of representing I to a prescribed accuracy 
using some In. A theory of approximation by translates was developed by 
G. Strang and G. Fix [20]. Although their result was derived in the context of 
finite element analysis, it is directly applicable here. They proved that for an 
arbi trary lEe N (lR) the sequence 10, 1-1, 1-2, ... has order of convergence N 
if and only if polynomials of degree less than N are contained in Vo. This is 
the property given in equation (14), for Vo = span{N¢>(x - k) IkE 'lZ}. Thus 
the Daubechies scaling function N¢> gives rise to wavelets whose expansions are 
Nth-order convergent. 

The low-order polynomials are contained in Vo, so they are orthogonal to 
W o, hence to w. In terms of the dilation equation coefficients, we may write 
for j = 0, ... , N .,- 1 

° = i: xi w(x)dx 

= 1: L ex -: +ky b.</>(2x - k)dx 
k 

= 2-i - 1 t (~) L ki - r bk i oo 

(2x - ky ¢>(2x - k) 2dx (19) 
r=O k 00 

The integrals J xr ¢>(x) dx are all non-zero (since xr can be written as a linear 
combination of translates of ¢> for r = 0, ... ,N -1). Consecutively substituting 
j = 0,1, ... ,N - 1 into equation (19) yields L:k bk k i = 0, j = 0, ... ,N - 1, 
from which we obtain 

"" k . L.,..(-I) ak kJ = 0, j = 0, ... ,N-1. (20) 
k 
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Figure 1. Daubechies scaling function 24> (top) and corresponding wavelet 
function 2W. Here 2W has been translated to the interval [0,3] by using coeffi­
cients bk = (-1)k a2N_1 _k. 

Daubechies [9] constructs the scaling function N4> by the choice of nonzero 
coefficients ao, ... ,a2N -1 to satisfy equations (11) and (17), as well as a regu­
larity condition on N4>. It is remarkable that the regularity requirement leads 
to good approximation properties, and is equivalent to (20). 

Examples. The scaling function 14> coincides with the scaling function 
X[O,l) of the Haar basis. 

The function 24> is given by the formula 

24>(X) = ~[(1+J3) 24>(2x) + (3+J3) 24>(2x-1) 

+ (3 - J3) 24>(2x - 2) + (1- h) 24>(2x - 3)]. 

Figure 1 shows the graphs of 24> and the corresponding wavelet function 2 w. 
Note that, unlike 14>, they are continuous. They do not, however, possess con­
tinuous derivatives. What is not obvious from the figure is their second-order 
approximation property: the functions f( x) = 1 and f( x) = x are given by 
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Figure 2. Scaling function 5 </> (top) and corresponding wavelet function 5 w, 
translated. In addition to their fifth-order approximation, they have greater 
smoothness than the second-order functions (Figure 1). 

linear combinations of the scaling functions 

1 = L 2</>(X - k), 
kE'/L, 

~( 3-.)3) x = L.., k + 2</>(X - k), 
kE'/L, 2 

x E JR. 

For increasing N, the scaling functions N</> are increasingly regular. Fig­
ure 2 shows the graphs of 5</> and 5W, each of which has a continuous first 
derivative. 

Computation of </>. We have produced no explicit representation for </>; 
how it is computed? There are at least three approaches. The most obvious is 
to begin with some initial estimate </>0 and calculate </>1, </>2, ..• by iteration of 
the dilation equation (12). Another method [9] calculates the Fourier transform 
~ from an explicit formula involving the dilation coefficients. In the third, very 
elegant approach, suggested by Strang [19], the values </>(1), ... , </>(2N - 2) at 
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integer nodes are obtained by solving a linear system and are used to obtain 
the values at half-integer nodes, then quarter-integer nodes, and so forth, by 
the dilation equation. The linear equations 

2N-l 

<p(j)= L ak<P(2j-k), j = 1, ... ,2N - 2 
k=O 

are deficient in rank by one (they determine <p only within a constant factor). 
Discarding one of them and adding the equation 

2N-2 

1 = L <p(j), 
j=1 

we obtain a non-singular system; it is solved to get <p(1), .. . , <p(2N - 2). 
This technique is fast, easy, and accurate; it was used to generate the 

graphs in Figures 1 and 2. 

3.4 M ulti-Wavelets 

We introduce now another class of bases for L2(lR) which differ from 
wavelets iri that instead of a single scaling function <p, there are several func­
tions <Po, ... , <p N -1 whose translates span the space Vo. This difference enables 
high-order approximation with basis functions supported on non-overlapping 
intervals; the price is the lack of regularity of the functions. 

In the framework of multiresolution analysis, this class is very simple. 
On the interval [0, 1), each scaling function <Pi is a dilated, translated, and 
normalized Legendre polynomial: 

<pi(X) = { .J2i + 1 Pi(2x - 1), if x E [0,1); 
0, otherwise; 

i = 0, ... , N -1, 

where Po, PI, ... are the Legendre polynomials. The rest of the basis construc­
tion (almost) follows, just by turning the "crank" of multiresolution analysis. 
The space Vo consists of the span of the integer translates of the scaling func­
tions <Po, ... , <p N -1. The spaces Vn for n E 7Z are dilates of Vo, and the difference 
spaces Wn are defined, as before, by (8). 

Construction of Basis. The basis functions for Wn are not unique, of 
course, until we add additional constraints. Following [2], we construct or­
thonormal basis functions NWO, ... , NWN-l, which vanish outside the interval 
[0, 1), whose integer translates span Wo, and which are orthogonal to polyno­
mials of maximum degree, 

[: NWj(x)xi dx, i = 0, ... , N - 1 + j. 

We start with 2N dilates and translates of <Po, ... , <p N -1, which span the space 
of functions that are polynomials of degree less than N on the interval [0, t) 
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and on [t, 1), then orthogonalize N of them, first to the functions <Po, ... , <P N -1 , 

then to the functions <P N, ... , <P2N -1, and finally among themselves. We define 
fJ, Jl, ... ,fJv -1 by the formula 

{ 

-<pj(2x), 
f}(x) = <pj(2x - 1), 

0, 

if x E [0,1/2); 
if x E [1/2,1); 
otherwise; 

note that the 2N functions <Po, ... , <PN-1, fJ, ... , fJv-1 are linearly indepen­
dent, hence span the space of functions that are polynomials of degree less 
than N on [0, t) and on a,O). 

1. By the Gram-Schmidt process we orthogonalize fJ with respect to <Po, ... , 
<P N -1, to obtain fJ, for j = 0, ... ,N -1. This orthogonality is preserved by 
the remaining orthogonalizations, which only produce linear combinations 
of the fJ. 

2. The next sequence of steps yields N - 1 functions orthogonal to <P N,· of 
which N - 2 functions are orthogonal to <P N+1, and so forth, down to 
1 function which is orthogonal to <P2N-2. First, if at least one of fJ is 
not orthogonal to <P N, we reorder the functions so that it appears first, 
UJ,<PN) =I O. We then define f] = fJ - aj· fJ where aj is chosen so 
U] , <P N) = 0 for j = 1, ... , N - 1, achieving the desired orthogonality 
to <PN. Similarly, we orthogonalize to <PN+b ... , <P2N-2, each in turn, to 
obtain fJ, ft, fi, ... , f~+l such that Uj+2, <Pi) = 0 for i = 0, ... , N -l+j. 

3. Finally, we do Gram-Schmidt orthogonalization on f~~l, fff-2 ... , fJ, in 
that order, and normalize to obtain NWN-1, NWN-2, ... , NWO. 

The resulting basis functions NWO, ... , NWN-1 are polynomials of degree N-1 
on the intervals [0, t) and [t, 1). The basis for L2(JR) consists of the translates 
and dilates of NWO, ... , NWN~l. In addition, we can construct in this fashion 
a basis for a finite interval. For instance, L2[O,l] has an orthonormal basis 
consisting of <Po, ... , <PN-1 plus those translates and dilates of NWO, ... , NW N-1 
that are supported in the interval [0,1]. 

Approximation. The space Vo consists of functions which are piecewise 
polynomial, of degree less than N. The expansion of an arbitrary function 
f E CN(JR) in a multi-wavelet basis of order N is Nth-order convergent. The 
argument for this case is simpler than the general argument of Strang and 
Fix [20], and we give it here. We define translates and dilates <pj,k by the 
formula 

n, k E 'Il, 

such that the set {<pj,k I j = 0, ... , N - 1; k E 'Il} is a basis for Vn. The 
projection of f on Vn is defined (as before) by the formula 

N-1 
fn(x) = L L aj,k <pj,k(x), (21) 

k€71 j=O 
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where 

The approximation error IIln - III is bounded, according to the following 
lemma. 

Lemma 1. Suppose that the function I : [0, 1] ~ 1Ft is N times continuously 
differentiable, I E eN[O, 1]. Then In (given by equation (21)) approximates I 
with mean error bounded as follows: 

IIln - III ~ 2-nN +. sup II(N)(x)l· 
4 N. xE[O,l] 

(22) 

Proof: We divide the interval [0, 1) into subintervals on which In is a poly­
nomial; the restriction of Into one such subinterval In,k is the polynomial of 
degree less than N that approximates I with minimum mean error. We then 
use the maximum error estimate for the polynomial which interpolates I at 
Chebyshev nodes of order N on In,k. 

We define In,k = [2 nk, 2n(k + 1)) for n = 0, -1, ... ; k = 0, ... , 2n -1, and 
obtain 

IIln - 1112 = 11 [In(x) - I(x )]2 dx 

= L J [In(x) - l(x)]2 dx 
k In,k 

~ L J [e~kl(x) - l(x)]2 dx 
k I n •k 

~ L [ (~1;;;; sup If(N)(x)l) 2 dx 
k lIn'k xEln,k 

and by taking square roots we have bound (22). Here e!:kl denotes the poly­
nomial of degree N -1 which agrees with I at the Chebyshev nodes of order N 
on In,k, and we have used the well-known maximum error bound for Chebyshev 
interpolation (see, e.g., [1]) .• 

The error of the approximation In of f therefore decays like 2- nN and, 
since it requires 2n N basis elements, we have convergence of order N. Despite 
the lack of regularity of the scaling functions <p j (and the projections f n), the 
convergence is similar to that obtained with the Daubechies wavelets. 

Examples. The multi-wavelets case N = 1 coincides with the Haar basis 
(again). 
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Figure 3. Wavelet functions for the piecewise polynomial multiwavelet bases 
for N = 4 (top) and N = 5. Note that each function is even or odd about the 
interval midpoint. ' 

For N = 2, the wavelet functions are given by 

{ 
v'3 (1 - 4x), 

2WO(X) = v'3 (4x - 3), 
0, 

if x E [0,1/2); 
if x E [1/2,1); 
otherwise; 

if x E [0,1/2); 
if x E [1/2,1); 
otherwise. 

For larger N, the wavelet functions can also be derived explicitly, but the 
expressions naturally get rather long. Figure 3 shows the graphs of the wavelet 
functions for N = 4 and N = 5. 

3.5 Discrete Wavelet-Like Bases 

The Daubechies wavelet bases of §3.3 and the multi-wavelet bases of §3.4 
lie in the space of square-integrable functions L2(lR). We consider now an ana­
logue of the multi-wavelet bases which lies in the space of functions defined 



20 Bradley K. Alpert 

on a discrete set of points {x I, ... , X n} C JR. The structure of this analogue 
is essentially similar to that of the multi-wavelet bases, but the discrete con­
struction is more convenient when the representation of a function (and its 
related operators) is based on its values at a finite set of points. Such represen­
tations arise in finite-difference computations and in Nystrom discretizations 
for integral equations; these are discussed in this connection in §5. 

The primary difference in the present construction from the multi-wavelet 
bases is the lack of complete scale invariance. In other words, the spaces Vn in 
the discrete construction are not dilates of a single space Vo, rather only nearly 
so. 

Construction of Bases. This construction follows that in [6J. The dis­
crete set of points {x}, ... , xn} is ordered so that Xl < ... < X n . We assume 
that the number n of points satisfies n = 2m N, where N is the order of 
approximation required, and m is a positive integer. We define Vo to be the N­
dimensional vector space of polynomials of degree less than N on {x I , ... , X n}, 

Vo = span {(xli, ... , x n
i ) I j = 0, ... , N - I} . 

We define V-I to be the 2N-dimensional space of vectors which are poly­
nomial of degree less than N on {Xl, ... ,Xn /2} and on {X n /2+1, ... ,Xn }, In 
general, V-i is the 2i N-dimensional space consisting of vectors which are poly­
nomial of degree less than N on {XI, ... , X n /2 j }, on {X n /2 j +b'." X2n/2 j }, and 
so forth, up to {X n - n /2 j +I, ... ,Xn }, for j = O, ... ,m. Thus V-m is the entire 
n-dimensional vector space. 

The difference space W _ i, for j = 0, 1, ... , m - 1, is again defined by (8). 
The procedure to construct a basis for V- m , which exploits the decomposition 

consists of an orthogonalization procedure to construct a basis for each of the 
W _ i. The result is an orthogonal matrix with rows which are the basis vectors, 
as shown in Figure 4. We construct the basis by the construction of a sequence 
of bases, for the decompositions 

WI - m EB Vl - m 

W I - m EB W2 - m EB V2 - m 

W 1 - m EB W2 - m EB .•. EB W- 1 EB V-I 

W l - m EB W 2 - m EB··· EB W- 1 EEl Wo EEl Vo. 

The bases are given by the finite sequence of matrix products U1 , U2 U1 , ••. , 

Um ··· U1 • Before we can specify the matrices U1 , ••. , Um, we require some 
additional notation. 
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.' 

Figure 4. The matrix represents a wavelet-like basis for a discretization with 
n = 128 points, for N = 4. Each row denotes one basis vector, with the dots 
depicting non-zero elements. The first n/2 rows form a basis for W l - m , the 
next n/4 form a basis for W 2- m , and so forth. All but the final N rows are 
orthogonal to polynomials of degree less than N, of which Vo is composed. 

Suppose S is a matrix whose columns 81, ... ,82N are linearly independent. 
We define T = Orth(S) to be the matrix which results from the column-by­
column Gram-Schmidt orthogonalization ofS. Namely, denoting the columns 
of T by h, ... , t 2N, we have 

linear span {tI, ... ,td = linear span {8l , ... , 8d 

tjTtj = 8ij 
i,j = 1, ... ,2N. 

For a 2N x 2N -matrix S we let SU and SL denote two N x 2N -matrices, SU 
consisting of the upper N rows and SL the lower N rows of S, 

Now we proceed to the definition of the basis matrices. Given the set of 
points {Xl, ... , Xn} E R with Xl < ... < X n , where n = 2m N, we define the 
2N x 2N moments matrices Ml,i for i = 1, ... , n/(2N) by the formula 

(; 
X Ui +l 

x .. +1

2N

-

1 

) 
X ui +2 

2N-l 

Ml i = 
X ui +2 

(23) , 

x ui +2N 
2N-l 

X ui +2N 
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where Uj = (i - 1 )2N. The first basis matrix U1 is the n x n-matrix given by 
the formula 

where U1,i T = Orth(M1,i) and nl = n/(2N). The second basis matrix is U2U1 , 

wi th U 2 defined by the formula 

U2 = (In/2 ) 
U~ , 

where Ij is the j x j identity matrix and the n/2 x n/2-matrix U~ is given by 
the formula 

U2,1 
L 

U22 
L 

, 

U2,n2 
L 

U~ = 
U2,1 

U 

U2,2 U 

where n2 = n/(4N), U2,jT = Orth(M2 ,i), and the 2N x 2N-matrix M2,i IS 

given by 

M . _ (Ul,2i-l U M 1,2i-l) 
2,1 - U UM ' 1,2i 1,2j 

for i = 1, ... ,n/( 4N). In general, the jth basis matrix, for j = 2, ... ,m, IS 

Uj ... U1 with Uj defined by the formula 
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where Uj is given by the formula 

U~ = U 
J U"l J, 

U
J
" no L , ) 

UJ"n" U , ) 

where nj = n/(2j N), Uj,i is given by 

and Mj,i is given by 

Mj,i = (Uj- 1,2i-1 ~ Mj-1,2i-1 ) , 
Uj~1,2i M j- 1,2i 

23 

(24) 

(25) 

for i = 1, ... , n/(2j N). The final basis matrix U = Um '" U1 represents the 
wavelet-like basis of parameter N on Xl, .•• , X n' Note that the matrices U and 
Uj are of dimension n x n, Uj is n/2j- 1 x n/2j- 1 , Uj,i and Mj,i are 2N x 2N, 
and Uh and UY,i are N x 2N. In the computation of the basis, an adjustment 
must be made to these formulae to ensure numerical stability (see [6]). 

§4. Linear Algebraic Operations 

Very little indication has been presented, so far, of the value of wavelets 
for numerical linear algebra. Before embarking on the body of this section, we 
present an example showing the use of wavelets. 

Example. For problems in electromagnetics, it is often necessary to deter- .r 

mine the potential field due to a given distribution of charges. This is done by 
convolving the potential due to a point charge with the actual charge density. 
For a charge at the origin, this potential has the form 1/ r in three dimensions 
and log r in two dimensions. We consider a simplified example, in which the 
function fa : 1ft -4 lR, given by fa(x) = log Ix - ai, is to be represented. On 
any interval separated from a, the expansion of fa in orthogonal polynomials 
converges rapidly. An interval I is separated from the point a if its distance 
to a is at least as great as its length. Expanding fa on such an interval I, we 
obtain 

00 

fa(x) = I>~j pj(x), 
j=O 
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Figure 5. The function f(x) = log Ix - .21, defined on the interval [0,1]' is 
expanded in the multi-wavelet basis of order 8 to six-digit accuracy. The solid 
line segments indicate the intervals of support of the basis functions in the 
resulting representation. 

where CXj = IJPj(x)fa(x)dx, and PO,Pl, ... are the orthonormal polynomials 
for the interval I. If we approximate fa on I by keeping just the first n terms 
of the expansion, the truncation error decays exponentially in n (this is easy 
to show). For instance, keeping 8 terms yields six-digit accuracy; keeping 18 
gives fifteen digits. 

How does this connect with wavelets? In constructing the multi-wavelet 
bases, we built spaces Vn consisting of functions which are locally low-order 
polynomials. The multi-wavelet basis functions are ~rthogonal to these low­
order polynomials, and are themselves locally supported. When fa is expanded 
in a multi-wavelet basis, all basis functions lying on intervals separated from a 

have small coefficients, and can be neglected, up to a precision which depends 
on the order N. This property is illustrated in Figure 5. The representation 
of the function consists only of those basis functions supported near the sin­
gularity. It is this representational parsimony which leads to the usefulness of 
wavelets in a variety of applications. 

4.1 Integral Equations 

A linear integral equation on the interval [a, b] is an equation of the form 

f(x)., + lb K(x, y) fey) dy = g(x), (26) 

where f : [a, b] -+ IR is the unknown, K : [a, b] X [a, b] -+ IR is the kernel, and 
9 : [a, b] -+ IR is the right hand side. The equation is an equation of the first 
kind if , = 0, otherwise of the second kind. There is a rather complete theory 
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for the existence and uniqueness of solutions to first- and second-kind integral 
equations, developed by Fredhohn (see, e.g., [12] or [14]). Integral equations 
form a powerful tool for the mathematical formulation of a wide range of 
physical problems; their relative neglect, compared with differential equations, 
is due in part to the historical lack of efficient solution techniques. Recently 
there has been substantial progress toward eliminating this deficiency. 

Any equation to be solved numerically must be reduced to a finite di­
mensional problem, or discretized. There are two basic approaches to the dis­
cretization of integral equations. In one, often called the Galerkin method, 
expansions of f, K, and 9 are made in some basis, the expansions are trun­
cated, and the resulting finite system of linear equations is solved numerically. 
In the second, developed by Nystrom, the integral is approximated, at each of 
n points, by an n-point quadrature, yielding again a system of equations that 
is solved numerically. 

Galerkin Method. Suppose that {bl , b2 , ••• } is an orthonormal basis for 
L2[a, b]. The expansions of f, 9 E L2[a, b] in the basis are given by 

00 00 

f(x) = L fj bj(x), g(x) = Lgj bj(x), (27) 
j=1 j=1 

where the coefficients Ii and gj are given by 

j E IN. 

Similarly, the expansion for K E L2([a, b] x [a, b]) is the integral in both coor­
dinates 

00 00 

K(x,y) = LLKij bi(x) bj(y), (28) 
i=1 j=1 

where the coefficient Kij is the double integral 

Kij = lb lb bi(X)bj(y)K(x,y)dxdy, i,j E IN. 

Substitution of equations (27) and (28) into integral equation (26) yields an 
infinite system of equations in the coefficients Ii, gj, and K ij , namely, 

00 

h . 'Y + L Kij fj = gi, i E IN. (29) 
j=1 

The expansion for K may be truncated at a finite number of terms, producing 
the finite system of equations 

n 

fi . 'Y + L Kij fj = gi, i = 1, ... ,no (30) 
j=1 
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Figure 6. The integral operator with kernel K(x, y) = log Ix - yl is discretized 
by the Galerkin method, with the multi-wavelet basis of order N = 4. The 
truncation is set at n = 128 basis functions. The dots represent elements above 
a threshold, determined so that the relative error € is bounded at 10-3 . 

For most applications, with classical bases (e.g., Fourier or orthogonal polyno­
mials) the matrix j{n = {Ki j}i,j=l, ... ,n is dense (nearly all of its elements are 
nonzero). There may be substantial cost in computing all elements Kij ~ Even 
after the elements are computed, the cost of the application of the n x n-matrix 
j{n to a vector is of order O(n2 ). The solution of (30), if obtained by a direct 
scheme such as Gaussian elimination, requires order O(n3 ) operations. If (30) 
is solved by an iterative method, which requires an order O(n2 ) matrix-vector 
product on each iteration, the number of iterations may be large, depending 
on the conditioning of the original integral equation. For large-scale problems, 
these costs are often prohibitive. 

The denseness of j{n depends on both the kernel K and the basis. For a 
wide variety of kernels arising in problems of potential theory, the matrix [(n is 
sparse, to high precision, if the basis is chosen to be a wavelet basis. This theme 
was developed by G. Beylkin, R. Coifman, and V. Rokhlin [8] for Daubechies 
wavelets. For these problems, the kernel K(x, y) = log Ix - yl serves as a good 
model. The value of the kernel varies smoothly as a function of x and y away 
from the diagonal x = y, where the kernel is singular. In the example at the 
start of this section we saw what happens when fa(x) = log Ix - al is expanded 
in the x-coordinate in a multi-wavelet basis. Now we propose to expand the 
kernel K(x, y) = log Ix - yl in both coordinates in a multi-wavelet basis; one 
example of the matrices which result is shown in Figure 6. 

Nystrom Method. An alternative to the Galerkin method for the dis-
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cretization of integral equations, the Nystrom method approximates the inte­
gral operator 

(K,J)(X) = lb K(x,y) f(y) dy 

by a quadrature for selected values of x. We define the operator R by the 
formula 

n 

(RJ)(x) = ~WjK(x,xj)f(xj), 
j=l 

which approximates K, for appropriate choice of quadrature weights Wj and 
nodes x j. The values of x are chosen to coincide with the quadrature nodes 
Xl, ... ,Xn , and the original integral equation (26) is approximated by the sys­
tem of equations 

n 

f(xi) . I' + ~Wj K(Xi' Xj) f(xj) = g(Xi), i = 1, ... ,no (31) 
j=l 

(Compare to the Galerkin discretization (30).) For the trapezoidal rule, the 
quadrature weights Wj are equal, except at the ends j = 1 and j = n. For 
kernels with singularities, however, the trapezoidal rule does not provide a good 
approximation of the integral. Quadratures have been developed in which the 
weights near the ends and near the singularities are altered to yield rapidly­
convergent schemes [3]. In this case each weight depends on the argument Xi 
as well as the quadrature node Xj, so it becomes Wij, for i,i' = 1, ... ,no 

Even with these adjustments to the trapezoidal rule, most of the qu_adra­
ture weights have constant value and the smoothness of the matrix gn = 

{wijK(Xi,Xj)h,j=I, ... ,n depends primarily on the smoothness of the kernel g. 
For a kernel which is smooth except for diagonal singularities, the matrix Ji:n 
can be transformed by a change of basis to a sparse matrix, to high preci­
sion. In particular, the wavelet-like basis matrix U defined in §3.5 can be used 
to obtain the similarity-transformed matrix U Ji:n UT , which has the desired 
sparse structure. In fact, a picture of U Ji:n UT is nearly indistinguishable from 
Figure 6. 

Remark. The Galerkin method and Nystrom method are two techniques 
for the discretization of integral operators: which is preferred? Both are con­
ceptually straightforward and an error analysis has been developed for each 
method (see, e.g., [12]); the Nystrom method offers, however, some compu­
tational benefits. Using the Nystrom method with the trapezoidal rule, or 
high-order corrected trapezoidal rule, the kernel is evaluated just once for each 
element in the computed matrix. With the Galerkin method, on the other 
hand, a matrix element corresponds to an integral of the kernel with the basis 
elements in both coordinates. An appropriate quadrature must be applied to 
compute each of these elements, generally requiring many kernel evaluations. 
This complication usually makes the Galerkin method uncompetitive with the 
Nystrom method. 
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Use of the Nystrom method was the primary motivation behind the de­
velopment of the discrete wavelet-like bases. 

4.2 Sparsity in Wavelet Bases 

The example at the beginning of the section suggests that the number of 
basis functions required to represent the function fa (x) = log I X - a I to precision 
€ is of order O(log( 1 / €)). This is indeed the case for this function, as well as 
other functions analytic except at separated, integrable singularities. Since the 
Nystrom discretization j(n consists of columns with elements described by 
functions like fa, one might expect that its transformation U j(n would be 
sparse (to high precision), containing only O( n log n) non-negligible elements. 
This is the case. Furthermore, the complete similarity transformation U j(n UT , 

which exploits the smoothness in the rows of j(n, as well as the columns, is 
yet more sparse, containing only O( n) non-negligible elements. 

The story for the matrix f(n is similar, but here the matrix contains 
O( n log n) non-negligible elements. This sparsity is proved for several specific 
examples in [2]. 

4."3 Multiplication of Integral Operators 

The product of two integral operators with smooth kernels itself has a 
smooth kernel, and it can be represented as a sparse matrix in wavelet coordi­
nates. 

We define integral operators IC1 and IC 2 by the formula 

(ICd)(x) = lb Ki(X, y) f(y) dy, i = 1,2. 

The product operator IC 3 = IC1 IC2 is given by the formula 

(IC 1 IC 2 f)(x) = lb K 1(x,t) lb K 2(t,y) f(y) dy dt 

= l (l K 1(x,t) K2 (t, y) dt) f(y)dy 

= lb K3(X, y) f(y)dy, 

where the kernelIC3 of the product has the form 

If kernels Kl and K2 are analytic except along the diagonal X = t, where they 
have integrable singularities, then the same is true ofthe product kernel K 3 . As 
a result, the product operator IC 3 also has a sparse representation in a wavelet 
basis. 
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4.4 Solution of Integral Equations 

The representation of integral operators as sparse matrices, via transfor­
mation to wavelet coordinates, leads to new methods for the solution of integral 
equations. The integral equation (26), written in operator notation as 

(, + K,)f = g, 

has (formal) solution 
f = CT + K,)-l g. 

The operator (,+K)-1 can be applied to 9 with the conjugate gradient method 
(conjugate residual if A = ,+ K, is nonsymmetric). This well-established 
method for sparse matrices is very fast if A is well conditioned. The num­
ber of iterations, which grows as the square root of the condition number 
(linearly in the condition number for conjugate residual), becomes rather large 
for poorly-conditioned problems. 

Alternatively, one can directly invert A, obtaining a sparse inverse, or 
compute a sparse LU-factorization of A. 

Schulz Method of Matrix Inversion. Schulz's method [18] is an itera­
tive, quadratically convergent algorithm for computing the inverse of a matrix. 
Its performance is characterized as follows. 

Lemma 2. Suppose that A is an invertible matrix, Xo is the matrix given by 
Xo = AT fllAT All, and for m = 0,1,2, ... the matrix X m+1 is defined by the 
recurslOn 

X m+1 = 2Xm - XmAXm· 

Then X m +1 satisfies the formula 

Furthermore, Xm -+ A-I as m -+ 00 and for any € > 0 we have 

(32) 

III - XmAIl < € provided m 2: 2log2 J>:(A) + log21og(lf€), (33) 

where J>:(A) = IIAII·IIA -111 is the condition number of A and the norm is given 
by IIAII = (largest eigenvalue of AT A)I/2. 

Proof: Equation (32) is obtained directly from thedefinitibn of X m +1 . Bound 
(33) is equally straightforward. Noting that AT A is symmetric positive-definite 
and letting >'0 denote the smallest and >'1 the largest eigenvalue of AT A We 
have 

III - XoAl1 = III - 111~11111 
=1->'0/>'1 
= I-J>:(A)-2. 

(34) 
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Figure 7. One of the multi-wavelet basis functions for N 4 is convolved 
with log Ixl and the image graphed. The function decays as the Nth power of 
the distance from its center, so effectively vanishes beyond the neighbors of the 
interval of support of the basis function. 

From equation (32) we obtain J - XmA = (J - XoA?m, which in combination 
with equation (34) and simple manipulation yields bound (33) .• 

The Schulz method is a notably simple scheme for matrix inversion and its 
convergence is extremely rapid. It is rarely used, however, because it involves 
matrix-matrix multiplications on each iteration; for most problem formula­
tions, this process requires order O(n3 ) operations for an n X n-matrix. As 
we have seen above, on the other hand, an integral operator A represented in 
a discrete wavelet-like basis has only O( n) elements (to finite precision). In 
addi tion, AT A and (AT A) m are similarly sparse. This property enables us to 
employ the Schulz algorithm to compute A-I in order O(n) operations. 

Sparse L U Factorization. For dense matrices, computation of the in­
verse is almost never desirable. The decomposition into lower-triangular and 
upper-triangular (LU) factors requires roughly one third as many operations, 
and is equally useful. One might suppose that this advantage would also hold 
for sparse matrices with sparse inverses: perhaps it is possible to factor the 
sparse matrix A = U kn UT into L U factors which are themselves sparse. 

Unfortunately, direct factorization of A produces substantial fill-in of zero 
elements, and lower and upper triangular factors that are not sparse. This fill-in 
results from a "smearing" of the near-diagonal blocks. These blocks represent 
the interactions Ui T kn Uj of basis elements Ui and Uj that are supported on 
adjacent intervals (see Figure 7). 

Reordering the basis elements of U, we can construct a basis for which 
the elements are sorted into "levels" such that the basis elements on different 
intervals, but on one level, are separated from each other, and only interact 
with the elements of a single interval on each higher level. This ordering is 
illustrated in Figure 8. The reordered basis can then be used to transform the 
Nystrom discretization kn of the integral operator into a sparse matrix lacking 
sub diagonal and superdiagonal blocks. In this form, shown in Figure 9, direct 
Gaussian elimination produces sparse lower- and upper-triangular factors. 
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Figure 8. The matrix represents a reordering of the rows (basis vectors) of 
the matrix in Figure 4. In this order the basis is used to transform j{n into a 
matrix supporting sparse L U factorization (shown below) . 
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Figure 9. The non-negligible matrix elements (€ = 10-3 ) are shown for the 
integral operator with kernel log Ix - yl expressed in the basis shown above. 
The matrix can be factored into lower- and upper-triangular matrices with no 
increase in the number of elements. 
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The technique of basis reordering for sparse L U factorization of integral 
operators, as described, works very well for one-dimensional problems, even 
outperfonning the Schulz method. For numerical examples, the reader is re­
ferred to [4], [6]. It does not appear, however, that the method of factorization 
cleanly generalizes to higher dimensional problems, where the Schulz method 
is expected maintain its good perfonnance. 

4.5 Representation of Differential Operators 

We have seen that integral operators can be expressed in wavelet bases as 
sparse matrices, to high precision. Certain differential operators, by contrast, 
are represented exactly by (infinite) sparse matrices. In [7] G. Beylkin deter­
mines the representations of various operators using Daubechies wavelets. Here 
we illustrate his technique for the derivative operator d/dx. 

For a function represented as a wavelet expansion 

f(x) = 2: Onk Wnk(X), 
n,k 

the derivative 

is detennined by the derivative of the basic wavelet function w. Through the 
definition (18) of w, its derivative is given in turn by the equation 

dw '" d -(x) = L..t bk-cjJ(X - k). 
dx k dx 

Differentiation, therefore, is reduced to the determination of coefficients Cnk in 
the expansion for dcjJ / dx, 

where Cnk is given by the inner product 

100 dcjJ 
Cnk = Wnk(X) -d (x) dx, 

-00 x 
n, k E 'll. 

The application of the definitions of cjJ and ware used to reduce the coefficients 
Cnk to the coefficients 

100 dcjJ 
Ck = _ 00 cjJ( x - k) dx (x) dx, k E 'll. (35) 
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We apply the dilation equation (12) to equation (35) to obtain 

100 d4> 
Ck = L a, d(2x -l) 2 L am 4>(2(x - k) - m) dx 

-00 I X m 

100 d4> 
= L L a, am -d (2x -1) 4>(2x- 2k - m) 2dx 

I m -00 X 

= L L a, am C2k+m-l, 

I m 

k E 7l. 
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(36) 

The scaling function 4> = N4> is supported on the finite interval [0,2N - 1]. 
As a result, we see from (35) that Ck = 0 for Ikl ~ 2N - 1 (the integrand 
vanishes). Also, integration by parts yields C-k = -Ck. Combining these two 
observations, (36) becomes a system of2N -2 equations in the 2N -2 unknowns 
Cll ... ,C2N-2' Due to its homogeneity, the rank of the system is deficient by 
one, and another equation is required to determine the scale of the Ck. The 
supplemental equation is obtained from the fact that the function f( x) = x is 
a linear combination of translates of 4>, for N ~ 2. In particular, 

where 

11k = i: 4>(x - k) x dx 

= i: 4>(x - k)(x - k) dx + i: 4>(x - k) kdx 

= i: 4>( x ) x dx + k 

= 110 + k. 

Combining (37) with 

1 = L 4>(x - k) 
k 

and differentiating by x yields 

which in combination with (35) gives the desired supplemental equation 

(37) 

(38) 

Equations (36) and (38) may be solved directly to obtain the coefficients 
Cl,···, C2N-2· 
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As mentioned above, similar techniques can be used to obtain higher 
derivatives and certain other differential and integral operators, including, for 
instance, the Hilbert transform. This development suggests that the evolution 
of a variety of differential equations in wavelet bases may become efficient, 
which would strengthen the arsenal of the numerical analyst attacking prob­
lems requiring highly adaptive schemes. 

§5. Summary 

We have illustrated the construction of wavelets and similar wavelet-like 
bases, their properties of orthogonality, approximation, compact support, and 
most distinguishingly, time-frequency localization through dilati~n invariance 
(and near-invariance). These bases lead to the sparse representation of inte­
gral operators and the rapid solution of integral equations. Differential oper­
ators are also represented as sparse matrices in wavelet bases, which permits 
the construction of adaptive algorithms for time-dependent partial differential 
equations. 
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