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Abstract
Optogenetics and chemogenetics are powerful tools, allowing the specific activation or inhibition of targeted neuronal 
subpopulations. Application of these techniques to sleep and circadian research has resulted in the unveiling of several 
neuronal populations that are involved in sleep–wake control, and allowed a comprehensive interrogation of the circuitry 
through which these nodes are coordinated to orchestrate the sleep–wake cycle. In this review, we discuss six recently 
described sleep–wake and circadian circuits that show promise as therapeutic targets for sleep medicine. The parafacial zone 
(PZ) and the ventral tegmental area (VTA) are potential druggable targets for the treatment of insomnia. The brainstem circuit 
underlying rapid eye movement sleep behavior disorder (RBD) offers new possibilities for treating RBD and neurodegenerative 
synucleinopathies, whereas the parabrachial nucleus, as a nexus linking arousal state control and breathing, is a promising 
target for developing treatments for sleep apnea. Therapies that act upon the hypothalamic circuitry underlying the circadian 
regulation of aggression or the photic regulation of arousal and mood pathway carry enormous potential for helping to reduce 
the socioeconomic burden of neuropsychiatric and neurodegenerative disorders on society. Intriguingly, the development of 
chemogenetics as a therapeutic strategy is now well underway and such an approach has the capacity to lead to more focused 
and less invasive therapies for treating sleep–wake disorders and related comorbidities.

Key words:  parafacial zone; ventral tegmental area; hypercapnia; REM behavioral disorder; aggression; photic regulation of 
arousal and mood

Statement of Significance

The development of molecular genetic tools such as optogenetics and chemogenetics has revolutionized neurobehavioral research in 
general, and sleep and circadian science in particular. In this review, we discuss six recently described sleep–wake and circadian circuits 
that carry great potential in leading to the development of novel pharmacological treatments and interventional strategies for reducing the 
burden of sleep–wake disruption and related neurological comorbidities.
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Introduction: Genetically Engineered 
Receptors and Channels as Tools or 
Therapeutics?

The increasingly widespread availability of tools such as 
chemogenetics and optogenetics has equipped basic sleep and 
circadian scientists with an unprecedented ability to interrogate 
the neural circuitry subserving arousal state change. As our 
understanding of these circuits has continued to expand, so 
too have the opportunities for exploiting these circuits for their 
therapeutic potential, whether this be through the discovery 
of novel pharmacological targets, developing gene-based 
treatments or uncovering new ways in which lifestyle habits 
and sleep–wake hygiene can be modified to better achieve 
patient outcomes.

The success of genetically engineered receptors as a 
neuroscientist’s tool largely relies on two factors: Firstly (and 
arguably most importantly), these receptors are engineered such 
that they are no longer activated by endogenous ligands in vivo. 
Instead, they may be activated by injectable pharmacologically 
inert ligands specific to the receptor (chemogenetics) [1, 2] or the 
delivery of specific wavelengths of light via an implanted optical 
fiber (optogenetics) [3, 4], allowing an investigator temporal control 
over particular subsets of neurons. Secondly, these receptors can 
be expressed within the brain in both a neuroanatomically and 
neurochemically specific manner. Localization of the receptor is 
achieved using a highly precise brain injection of a small quantity 
of a viral vector (commonly, adeno-associated viral vectors 
[AAVs]) carrying the transcript for the receptor to the particular 
brain region of interest. Typically, the receptor transcript is 
packaged within a Flip-Excision-Switch (FLEX) cassette such that 
the functional receptor can be expressed only in the presence of 
cre-recombinase (cre). Cre-driver mouse lines are then employed 
whereby which cre is expressed downstream of a selected 
promoter, thus ensuring expression of the receptor specifically 
in neurons expressing the select protein. By taking advantage 
of these receptors as tools, investigators can effectively hijack a 
neural circuit and evaluate the effect that exciting or inhibiting a 
specific neuronal node has upon behavior [5].

In addition to their effectiveness as a neuroscientist’s tool, 
genetically engineered receptors show considerable potential 
as a therapeutic strategy in their own right. Conceptually, one 
can imagine a scenario whereupon the downregulation of a 
hyperexcitable node or the increased activation of a depressed 
node within a network may stabilize a neural circuit and 
thereby improve symptoms or normalize behavior. For instance, 
suppose one could express an excitatory chemogenetic receptor 
within a typically sleep-promoting node such as the parafacial 
zone (PZ) [6] in a patient with insomnia. Administration of 
the chemogenetic ligand would activate the PZ, trigger sleep-
promoting circuitry, and bring about sleep, acting as a more 
selective hypnotic agent.

Attractive as such a proposal is, several hurdles must be 
overcome before such a scenario could become a reality. For 
example, before brain delivery in humans, appropriate viral 
vector and chemogenetic receptor combinations must be selected 
that display sufficient receptor expression, low toxicity, and little 
endogenous constitutive activity. Additionally, chemogenetic 
ligands are required that are both biologically inert in the absence 
of the chemogenetic receptor and that break down to nontoxic, 
biologically inert metabolites. Nevertheless, progress on all of these 

fronts is underway (for review see [2]), and recently, successful 
injections of AAVs carrying functional inhibitory chemogenetic 
receptors have been made in nonhuman primates [7]. There 
exists some uncertainty, however, upon the practicability of 
chemogenetically activating neuronal subpopulations in humans. 
Due to the potentially supraphysiological activation of neurons 
using this method, legitimate concerns arise regarding the risk 
of neurotransmitter depletion at transfected synapses, altered 
plasticity within neuronal circuits and the uncertainty of other 
long-term side-effects resulting from repetitive chemogenetic 
activation of a circuit. In mouse models, relatively long behavioral 
effects can be induced from a single low-dose CNO injection (>6 hr 
[6, 8, 9]), demonstrating that sustained chemogenetic activation 
of a neuronal population is achievable. Additionally, plasticity 
changes within neuronal circuits may even, in some instances, be 
a desirable effect of repeated chemogenetic activation. However, 
more thorough and more long-term studies must be carried out in 
animal models before the feasibility of chemogenetic activation 
as a therapeutic strategy can be fully assessed. Nevertheless, one 
chemogenetic tool that shows some therapeutic potential, and 
that has recently been tested in mouse models, is the inhibitory 
mutated human glycine receptor (hGlyR). hGlyR is an inhibitory 
ionotropic receptor that is gated by the drug, ivermectin (IVM) [10–
12]. Since hGlyR is inhibitory, concerns about supraphysiological 
activation of the neurons in which it is expressed is not a concern. 
Moreover, because hGlyR is a human protein, and IVM has already 
been approved by the FDA for use in humans and animals as an 
antibiotic against worm infestations, this chemogenetic tool is 
especially well suited for clinical use.

One ongoing challenge is that the immense complexity 
of the circuitry governing arousal and circadian rhythms 
remains incompletely understood. While the elucidation of 
these circuits will undoubtedly lead to the development of 
more appropriate therapeutic targets, there have already been 
considerable strides in our understanding of these circuits 
in recent years, with several new circuits and circuit nodes 
revealed. This review spotlights six novel sleep–wake and 
circadian circuits that were presented at the recent SLEEP 2018 
meeting and that demonstrate the variety of ways in which 
circuit-based sleep and circadian research can contribute to 
the development of targets for therapeutic interventions.

Parafacial zone GABAergic neurons: a new target for 
sleep enhancement

The past two decades of sleep research have seen a dramatic 
increase in the number of identified brain areas involved in 
slow-wave sleep (SWS, the deepest stage of nonrapid eye 
movement [NREM] sleep) control, including the well-known 
ventrolateral preoptic area (VLPO) [13, 14], nNOS-expressing 
cortical neurons [15], and the PZ [16]. This past year has been 
particularly prolific; neurons involved in SWS control have 
been described in the nucleus accumbens [17], zona incerta 
[18], the rostromedial tegmental nucleus [19], and even in the 
ventrolateral periaqueductal gray matter (vlPAG) [20]. Among 
all of these sleep-promoting neuronal populations, the PZ 
GABAergic neurons are arguably the most potent at inducing 
and maintaining deep sleep.

The PZ is located in the brainstem, dorsal and lateral to the 
facial nerve [21], and contains neurons that are specifically 
active during sleep [22]. PZ GABAergic neurons are not only 
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necessary for maintaining a normal amount of sleep [21], but 
their activation is also sufficient to induce and maintain deep 
SWS [6]. PZ cell body–specific lesions and disruption of PZ 
GABAergic transmission result in insomnia, whereas acute 
and specific chemogenetic activation of PZ GABAergic neurons 
induces SWS with a short latency, increases SWS amount and 
consolidation, and enhances slow-wave activity (SWA, a marker 
of SWS quality) [6]. PZ GABAergic neurons likely bring about 
sleep through their inhibition of the parabrachial nucleus (PB) 
[6]. The PB in turn projects to the basal forebrain (BF), which 
innervates the cortex to promote electrocortical arousal [23] 
(Figure 1A). Impressively, the sleep-promoting drive of PZ 
GABAergic neurons is so powerful that it can counteract the 
wake-promoting action of psychostimulants such as modafinil 
and caffeine [13].

Modafinil is commonly used to treat the excessive daytime 
sleepiness associated with many disorders such as narcolepsy 
[24]. It induces long lasting wakefulness that is associated with 

enhanced cognitive capability but not with hyperactivity, in 
both human and animals [25]. However, the wake-promoting 
action of the modafinil R-enantiomer (armodafinil) is nullified 
by chemogenetic activation of PZ GABAergic neurons. 
Furthermore, SWS is actually enhanced, resulting in a SWS 
phenotype indistinguishable from that observed following 
chemogenetic activation of PZ GABAergic neurons in the 
absence of armodafinil treatment [26]. Although the mechanism 
of action of modafinil remains a mystery, these findings 
suggest some of its potential neural targets. Since armodafinil’s 
capacity to induce arousal is completely negated in the face of 
chemogenetic activation of PZ GABAergic neurons, one might 
conjecture that armodafinil acts upon nodes within the sleep-
promoting PZ GABAergic circuit. For example, while armodafinil 
may act upon upstream sites to increase inhibitory tone to PZ 
GABAergic neurons or even directly inhibit them, chemogenetic 
activation of PZ GABAergic neurons supersedes this inhibitory 
input. Alternatively, armodafinil may act upon downstream 
populations that receive substantial inhibitory tone from PZ 
GABAergic neurons. In this case, it follows that the inhibitory 
tone from chemogenetically activated PZ GABAergic neurons 
overrules the action of armodafinil and the neural activity of 
downstream targets remains depressed (Figure 1A).

Similarly, chemogenetic activation of PZ GABAergic neurons 
significantly attenuates the wake-promoting action of caffeine, 
the most widely used psychostimulant [27]. However, in the 
presence of caffeine, the dramatic enhancement of SWS typically 
observed following chemogenetic activation of PZ GABAergic 
neurons is mitigated, and levels of arousal are comparable to 
the control condition (i.e. when not chemogenetically activated 
and in the absence of caffeine). Moreover, SWS cortical EEG is 
significantly more desynchronized than following chemogenetic 
activation alone, indicating decreased SWS quality [26]. Since 
activation of PZ GABAergic neurons and caffeine (a well-known 
adenosine antagonist) counteract each other’s effects upon 
arousal, it can be hypothesized that the PZ’s sleep-promoting 
actions could be mediated by adenosine. Adenosine is a sleep 
factor that has long been known to promote SWS and SWA 
homeostasis [28]. Because adenosine and PZ GABAergic neurons 
both promote sleep in a manner that is antagonized by caffeine, 
it is plausible that they may act upon a shared sleep-promoting 
circuit (Figure 1A). Understanding the relationship between the 
PZ and the sleep-promoting actions of adenosine may help in 
uncovering novel non-GABAergic pharmacological candidates 
to assist in the treatment of insomnia.

It is the case that new and more selective sleep-promoting 
drugs are in great demand in sleep medicine. Indeed, sleep-
promoting drugs, and more specifically the ones enhancing 
GABAergic transmission, are frequently associated with next 
day “hangover.” It is likely that this “hangover” associated with 
GABAergic sleep-promoting drugs is due to the action of these 
drugs on ALL central GABAergic neurons (including cortical 
GABAergic neurons) and that a more selective activation 
of GABAergic neurons within the PZ alone may mitigate 
the “hangover” effect while still bringing about the desired 
sleepiness. Interestingly, a recent study suggested that activating 
PZ GABAergic neurons also improves learning and memory, 
indicating that cognitive abilities are enhanced, rather than 
disrupted, following PZ GABAergic activation [29]. Although such 
a drug may not treat the underlying cause of insomnia (which 
is often the consequence of other pathological changes within 

Figure 1.  PZ GABA and VTA dopamine sleep–wake circuitries. (A) Activation of 

PZ GABAergic neurons inhibits the parabrachial nucleus (PB), which reduces 

excitatory drive to the basal forebrain (BF) and subsequently the prefrontal 

cortex (PFC), bringing about a switch in cortical activity from wakefulness to 

SWS. Remarkably, PZ activation causes a wake-to-sleep switch even in the 

presence of psychostimulants such as modafinil and caffeine. The wake-

promoting actions of modafinil may be upstream of the PZ, directly (or 

indirectly) inhibiting PZ GABAergic neurons. Alternatively, modafinil may have 

excitatory actions upon wake-promoting circuitries that are under powerful 

inhibition from the PZ. Additionally, the sleep-promoting actions of the PZ 

may utilize a common mechanism to the sleep-promoting factor adenosine 

since PZ-mediated SWS enhancement is partially blocked by the adenosine 

antagonist, caffeine. (B) Activation of VTA dopamine terminals in the nucleus 

accumbens (NAc) induces potent arousal. This is likely through the combined 

actions of dopamine inhibition of the adenosine 2A receptor (A2A)/dopamine 

D2 receptor (D2)-expressing sleep-promoting NAc neurons and activation of 

dopamine D1 receptor (D1)-expressing wake-promoting NAc neurons.
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the brain or due to a disrupted lifestyle resulting from stress, 
shift work, or a noisy environment), it may well be efficacious 
in treating insomnia symptoms. As such, SWS induction via 
PZ activation is of great interest from a clinical perspective in 
developing therapeutics to help reduce the burden of insomnia.

In conclusion, PZ GABAergic neurons’ effectiveness in 
fully or partially counteracting the wake promoting action of 
potent psychostimulants, and to induce and enhance SWS and 
SWA, indicates that these neurons play a central role in sleep 
induction and maintenance. Critically, any drug that specifically 
activates PZ GABAergic neurons is likely to become a selective 
and specific sleep-promoting treatment.

Ventral tegmental area regulation of sleep and 
wakefulness

The ventral tegmental area (VTA) is a brain hub for the regulation 
of motivation, reinforcement learning, and reward processing [30, 
31]. It contains intermingled glutamatergic, dopaminergic, and 
GABAergic neurons [32]. VTA dopaminergic neurons are attractive 
candidates for regulating sleep–wake states as pharmacological 
substances that modulate dopamine neurotransmission are 
among the strongest known stimulants [33], and their arousing 
effects are abolished in mice deficient in dopamine signaling 
[34, 35]. In humans, genetic variations in dopaminergic 
signaling pathways modulate the negative effects of sleep loss 
on behavior and performance [36]. Nonetheless, for several 
decades, dopamine has been considered as the only monoamine 
not involved in sleep–wake regulation [37, 38], mainly because 
early electrophysiological findings suggested that the VTA and 
substantia nigra pars compacta (SNc) dopaminergic neurons 
do not change their mean firing rates across sleep–wake states 
[39–42] and lesions of dopaminergic VTA and SNc neurons do not 
modify time spent in wakefulness [43, 44]. However, recent studies 
using detailed single-unit electrophysiological measurements 
and calcium-dependent fiber-photometry recordings have 
revealed robust alterations in VTA dopaminergic neuron 
activity across arousal states [45, 46]. Furthermore, optogenetic 
and chemogenetic activation of VTA dopaminergic neurons 
indicate that activity in these neurons can induce and maintain 
wakefulness [46, 47] and is potent enough to initiate arousal from 
isoflurane anesthesia [48]. In contrast, chemogenetic inhibition of 
VTA dopaminergic neurons can promote sleep [19, 46] or sleep-
preparatory behaviors, despite the presence of salient stimuli 
such as a potential mate, predator odor, or palatable food [46]—
suggesting a prominent role for VTA dopaminergic circuitry in 
salience-induced arousal [49].

VTA dopaminergic neurons project to many brain regions 
including the nucleus accumbens (NAc), central amygdala 
(CeA), dorsolateral striatum (DLS), and medial prefrontal cortex 
(mPFC). Short phasic optogenetic stimulations (5  s at 25 Hz, to 
mimic burst firing [45, 50]) of VTA dopaminergic projections in 
the NAc, CeA, and DLS, but not the mPFC, promote transitions 
from NREM sleep to wakefulness. Stimulating VTA dopaminergic 
projections within the mPFC and CeA can also initiate a transition 
from rapid eye movement (REM) sleep to wakefulness [46]. 
Importantly, stimulating VTA dopaminergic projections to the NAc 
can maintain wakefulness throughout the entirety of a prolonged 
stimulation paradigm (2  s per min at 25 Hz for 6  hr), whereas 
the stimulation of other projections cannot [46], highlighting the 

strength of the VTA-NAc connection in inducing arousal. These 
findings are consistent with recent studies implicating the NAc 
in sleep–wake regulation [17, 51–53]. Adenosine A2A/dopamine 
D2 receptor–expressing NAc GABAergic neurons promote NREM 
sleep [17], whereas dopamine D1 receptor–expressing GABAergic 
NAc neurons promote wakefulness [52]. Projections from VTA 
dopaminergic neurons to the NAc may therefore cause arousal 
through the inhibition of adenosine A2A/dopamine D2-expressing 
(sleep-promoting) NAc neurons and the excitation of dopamine 
D1-expressing (wake-promoting) NAc neurons (Figure 1B).

In addition to dopaminergic neurons, the VTA also contains 
a large GABAergic population [32]. VTA GABAergic neurons have 
been suggested to tightly control activity in VTA dopaminergic 
neurons in the context of motivation and reward [54, 55]. 
Interestingly, both single-unit recordings from putative VTA-
GABAergic neurons [56] and recent fiber-photometry recordings 
from vesicular GABA transporter (VGAT) expressing VTA 
neurons [57] demonstrate strong activation during wakefulness 
and REM sleep, and low activity during NREM sleep—a similar 
activity pattern to VTA dopaminergic neurons [45, 46]. In 
apparent contradiction, however, chemogenetic activation of 
VTA GABAergic neurons promotes NREM sleep, whereas lesions 
promote wakefulness [44]. Since VTA GABAergic neurons are 
not physiologically active during NREM sleep, one reconciliatory 
explanation is that VTA GABAergic neurons have the capacity to 
fine-tune activity in wake-promoting populations and as such, 
their robust chemogenetic activation ultimately results in the 
inhibition of wake-promoting neurons, whereas their inhibition 
disinhibits these neurons, permitting wakefulness.

Dysregulation of arousal is a hallmark of many psychiatric 
disorders [58]. Moreover, such disorders, including major 
depression, bipolar disorder, schizophrenia, and substance 
abuse, are accompanied by alterations in VTA neuronal 
activity [59, 60]. Despite this, very little is known about the 
mechanistic relationship between sleep–wake disturbances, 
neuropsychiatric disorders, and dysregulation of VTA neurons 
[58, 61]. Additionally, it is now recognized that sleep–wake 
disturbances are not merely a side effect of psychiatric disorders, 
but are in fact thought to play a causative role in the progression 
of these disorders [58]. The circuitry described herein highlights 
the importance of the VTA as an important node in sleep–wake 
regulation and provides a framework with which to investigate 
the causal role of the VTA in sleep–wake disturbances associated 
with psychiatric disorders. Understanding the relationship 
between how the VTA controls arousal and how its activity is 
dysregulated over the progression of neuropsychiatric disease 
will be fundamental for identifying and developing therapeutic 
interventions to improve mental health.

A dedicated brainstem circuit underlies REM sleep 
behavior disorder

REM sleep behavior disorder (RBD) is a neurological disorder 
characterized by the loss of muscle atonia during REM sleep, 
which can lead patients to “act out” their dreams [62–64]. 
Patients often display violent behavior resulting in injury to 
themselves or their bed partners [63–65]. More importantly, 90% 
of people with RBD eventually develop a neurodegenerative 
synucleinopathy (e.g. Parkinson’s disease [PD], Multiple System 
Atrophy, or dementia with Lewy bodies) 10 to 15 years after their 
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RBD diagnosis [62, 63, 66–68]. The strong link between RBD and 
these neurodegenerative diseases [69, 70], and the occurrence 
of symptoms exclusively during REM sleep, has led to the 
hypothesis that neurodegeneration within the circuit controlling 
muscle atonia during REM sleep underlies RBD [62, 68–70].

The release of GABA and glycine onto motoneurons is 
critical for the silencing of muscle activity during REM sleep 
[71]. Simultaneous antagonism of glycine, GABA-A, and 
GABA-B receptors causes REM sleep without atonia [72, 73], 
while transgenic mice lacking normal glycine and GABA 
transmission show motor behaviors during REM sleep similar 
to those observed in people with RBD [74]. A specific two-part 
circuit in the brainstem functions to release GABA/glycine onto 
motoneurons of the spinal cord and inhibit muscle activity [75, 
76]. A group of cells located at the mesopontine junction called 
the sublateral dorsal tegmentum (SLD) has been hypothesized 
to not only control the entrance into REM sleep but also the 
muscle paralysis that characterizes the state [75–79]. Activation 
of cells in this region induces REM sleep muscle atonia, whereas 
lesions cause REM sleep without atonia [76]. The majority of 
REM sleep-active cells in the SLD are glutamatergic [80, 81], and 
long-term impairment of glutamate transmission from SLD 
cells using short hairpin RNA (shRNA) induces periods of REM 
sleep without atonia and reduces the overall amount of REM 
sleep [82]. Glutamate cells located in the ventral part of the SLD 
are thought to control the atonia of REM sleep by connecting to 
cells in the ventral medulla (vM) [78].

GABA/glycine cells located in the vM constitute the second 
part of the circuit that controls REM sleep muscle atonia by 
releasing these inhibitory neurotransmitters onto motoneurons. 
Lesions of the vM cause periods of REM sleep without atonia 
[83–87], and blocking GABA release from vM cells by shRNA 
increases motor activity during REM sleep [88]. When GABAergic 
transmission in vM cells is impaired, mice display periods 
of REM sleep with complex motor behavior such as “trying to 
jump or run” [88]. In addition, recent work has demonstrated 
that optogenetic inhibition of SLD glutamate release at the level 
of the vM induces intense motor activity during REM sleep [89]. 
Together, this evidence supports the idea that the described 
2-part REM sleep circuit (i.e. glutamate SLD → GABA/glycine vM; 
Figure 2A) is responsible for suppression of muscle activity in 
REM sleep since damage to either part of this circuit leads to 
symptoms identical to those observed in patients suffering from 
RBD [68, 78].

Several lines of evidence support the hypothesis that 
targeted neurodegeneration of cells in the SLD-vM circuit leads 
to RBD: (1) Imaging studies show that neuronal integrity is lost 
in the SLD region of people with RBD [90]; (2) these patients 
show pathological synuclein aggregates in the brainstem 
including in the SLD and vM regions [91–93]; and (3) RBD is one 
of the strongest prodromal indicators of synucleinopathies 
with 90% of people with RBD eventually developing a more 
severe neurodegenerative disorder like PD [94–96]. Our current 
understanding of synucleopathic processes indicates that 
misfolding of the protein α-synuclein (α-syn) into fibrils leads 
to the formation of pathological aggregates known as Lewy 
bodies and neurites [63, 68, 97, 98]. These aggregates eventually 
interact with mitochondria to cause cell death [99] and can 
be transferred through cell-to-cell contact in a prion-like 
manner [98, 100]. Earlier signs of α-syn aggregates are present 
in the brainstem, including in the SLD-vM circuit [91, 92], and 

eventually these aggregates propagate rostrally through the 
neural axis to cause degeneration of neurons involved in PD 
(i.e. dopamine cells in the substantia nigra; Figure 2A) [68, 97]. 
It remains untested whether targeted degeneration of the 
circuit controlling REM sleep muscle atonia underlies RBD. 
Virally mediated overexpression of α-syn, which has been used 
previously to model PD [101–103], can be adapted to model RBD 
by targeting the SLD-vM circuit that controls REM sleep muscle 
atonia [68]. It is quite clear that the development of such a 
model, mimicking the neurodegenerative aspect of RBD and 
its primary symptom (i.e. loss of muscle atonia), is crucial for 
understanding the pathogenesis of RBD and the development of 
potential treatments.

Brain circuitry for regulating arousal to hypercapnia

Obstructive sleep apnea (OSA) is characterized by repeated 
episodes of loss of airway dilator muscle tone during sleep, 
resulting in airway collapse and increased circulating blood 
CO2 levels (hypercapnia), followed by brief arousals that restore 
airway patency [104–111]. These repeated arousals result in 
sleep disruption, which in turn causes cognitive impairment, 
as well as cardiovascular and metabolic morbidities [108, 

Figure 2.  Circuitry underlying RBD and hypercapnic arousals. (A) Glutamate cells 

in the sublaterodorsal tegmental nucleus (SLD) cause REM sleep muscle atonia 

by activating GABA/glycine cells in the ventromedial medulla (vM), which in turn 

inhibit motor neurons (MN). RBD is caused by Lewy pathology (i.e. aggregation 

of α-syn) within the circuit controlling REM sleep muscle atonia (i.e. SLD → vM), 

which results in REM sleep without atonia and RBD. Eventually these aggregates 

propagate rostrally through the neural axis to cause degeneration of neurons 

involved in synucleinopathy (e.g. Parkinson’s disease). (B) Increased pCO2 

(hypercapnia) causes activation of both central and peripheral chemoreceptors 

whose signals are integrated in the nucleus of the solitary tract (NTS) and 

retrotrapezoid nucleus (RTN). The NTS and RTN activate neurons expressing 

CGRP in the external lateral parabrachial (PBelCGRP) nucleus, a node that causes 

cortical arousal, largely through projections to the basal forebrain (BF), and 

to a lesser extent through the central nucleus of the amygdala (CeA) and the 

lateral hypothalamus (LH). The thickness of the arrows emanating from the 

PB represents the relative contribution of each network connection in eliciting 

hypercapnia-induced arousal.
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112–118]. Preventing arousal from sleep, while preserving the 
respiratory drive that reinitiates breathing, could potentially 
prevent these negative consequences arising from frequent 
OSA-based arousals. As such, understanding the precise circuits 
that mediate cortical EEG and respiratory responses to apnea is 
critical in the development of treatments for people with OSA.

Several brainstem cell groups, such as the serotonergic 
dorsal raphe nuclei [119–123] and the noradrenergic (NA) locus 
coeruleus (LC) neurons [124–126], may play a modulatory role 
[127] in mediating hypercapnia-arousal circuitry. However, the 
parabrachial nucleus (PB) of the rostral pons likely plays a major 
role in triggering hypercapnia-induced arousals [128–143]. The 
PB serves as a hub, receiving chemosensory information from 
upper airway afferents (that respond to pulmonary negative 
pressure associated with apneas) and from the retrotrapezoid 
nucleus (RTN) and the nucleus of the solitary tract (NTS) in 
the medulla (which sense hypercapnia and hypoxia; Figure 
2B), while exerting powerful control over both cortical arousal 
[144–148] and respiration [136, 147, 149–155]. It is thought that 
the ascending projections of the PB promote cortical arousal 
[146, 147, 156–158], whereas its descending projections regulate 
respiration [143, 159].

As such, the PB is perfectly anatomically located to 
simultaneously control airway dilator muscles and trigger 
arousals during sleep apneas. Abolishing glutamate 
transmission specifically in the external lateral PB (PBel), 
through cell body lesions or through deleting the vesicular 
glutamate transporter 2 (VGlut2) gene, prolongs hypercapnia-
induced arousal latencies, indicating a critical role of PBel 
glutamate transmission in hypercapnia-induced arousal [146]. 
Many of the PBel neurons that display cFos activation following 
hypercapnia [143] also express calcitonin gene–related peptide 
(CGRP, PBelCGRP) [160] and project to the forebrain, suggesting that 
the PBelCGRP neurons may be responsible for forebrain arousal 
during hypercapnia. Indeed, optogenetic activation of PBelCGRP 
neurons triggers short latency arousals, whereas chemogenetic 
activation significantly increases net wakefulness [147]. 
Additionally, optogenetic inhibition of PBelCGRP neurons during 
hypercapnia significantly increases the latency to arousal or 
prevents arousal altogether, indicating that the PBelCGRP neurons 
comprise an essential node of the hypercapnia-arousal circuitry. 
Importantly, silencing of the PBelCGRP neurons affects neither the 
respiratory drive during hypercapnia, nor the arousal threshold 
to an acoustic, somatosensory, or vestibular stimulation [147]. 
Forebrain targets of PBelCGRP neurons include the substantia 
innominata in the basal forebrain (BF), the CeA, and the lateral 
hypothalamus (LH; Figure 2B). Optogenetic silencing of PBelCGRP 
terminals in these brain areas increases the latency to arousal 
during hypercapnia, demonstrating that the PBelCGRP neurons 
can elicit arousal responses via direct projections to multiple 
arousal-promoting target sites. Projections to the BF appear 
to be most critical for the hypercapnia-arousal response since 
inhibiting this pathway most potently suppresses hypercapnic 
arousals. In contrast, inhibiting PBelCGRP projections to the CeA 
results in a more modest suppression of the hypercapnia arousal 
response, whereas inhibition of PBelCGRP terminals in the LH is 
comparatively least effective in preventing hypercapnic arousals 
[147]. The PBel thus has the capacity to orchestrate hypercapnia-
induced awakenings, preserve the respiratory drive, and thereby 
permit an individual to survive the apneic event.

Although pharmacotherapy is not yet available for OSA, 
current research focuses on identifying druggable targets that 
can selectively activate the circuits that regulate the upper 
airways [161]. Another line of investigation seeks to quantify 
the “arousal threshold” in people with OSA, with the goal 
of providing more personalized therapeutic interventions 
for patients with a low-arousal threshold [162]. A  deeper 
knowledge of the neural circuitries governing hypercapnic 
arousal, such as the PBelCGRP circuit described here, is crucial for 
this endeavor since hypercapnia is not the only stimulus that 
activates PBelCGRP neurons, which are also responsive to various 
potentially dangerous or aversive stimuli [157, 163–168]. As such, 
it is plausible that different classes of aversive stimuli may be 
encoded or processed by different subpopulations of PBelCGRP 
neurons [169], resulting in modulation of the hypercapnia-
arousal response. Understanding how these afferents modulate 
PBelCGRP activity may inform novel strategies for preventing 
the low-threshold arousals experienced during hypercapnic 
events. In sum, the PBelCGRP neurocircuitry has the capacity to 
yield valuable therapeutic targets for preventing cortical arousal 
while preserving respiratory drive, ultimately preventing OSA 
and its negative secondary health consequences.

A circuit for the circadian control of aggression

The central circadian clock, located in the suprachiasmatic 
nucleus (SCN) of the hypothalamus, is required for daily 
rhythms of physiology and behavior. SCN neurons can function 
as individual oscillators with rhythmic electrical activity on 
a period of about 24 hr [170] under the control of clock genes 
[171]. Although this same genetic machinery is present in 
cells throughout the brain and body, the SCN is necessary to 
synchronize such peripheral oscillators and maintain rhythmic 
behavior [3]. Importantly, axonal output appears to be the 
primary method by which the SCN establishes such synchrony 
in vivo [172], and the majority of SCN axons target a nearby 
region known as the subparaventricular zone (SPZ) [173]. Indeed, 
circadian rhythms of sleep–wake, locomotor activity, and 
feeding behavior have been shown to be regulated by a pathway 
from the SCN, through the SPZ [174], to the dorsomedial nucleus 
of the hypothalamus (DMH; Figure 3) [172, 174].

Neural pathways by which the circadian system directly 
regulates more complex behaviors, such as particular social 
behaviors, have remained more elusive. For example, although 
evidence from hamsters [175], rats [176], and humans [177] 
previously demonstrated temporal differences in aggressive 
behavior, it was unclear whether the SCN clock directly 
regulated a rhythm in aggression [178, 179]. Neurons within the 
ventromedial nucleus of the hypothalamus (VMH), specifically 
those that express estrogen (Esr1) and progesterone receptors 
in the ventrolateral VMH (VMHvl) [180, 181] regulate aggression 
in male mice. These neurons are not directly connected to 
the SCN but receive an inhibitory input from GABAergic SPZ 
(SPZGABA) neurons (Figure 3), which act as a critical intermediary 
between vasoactive intestinal polypeptide (VIP) neurons of the 
SCN (SCNVIP) and Esr1-expressing VMHvl neurons [10]. SPZGABA 
neurons that project to the VMH are predominantly active during 
the early light period, a time of day when nocturnal mice are 
usually at rest. Deletion of the VGAT gene in SPZ neurons (which 
eliminates the ability of these neurons to release GABA) results 
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in increased aggression propensity in male mice during the early 
light period. Importantly, corticosterone levels and locomotor 
activity are not increased following VGAT deletion from SPZGABA 
neurons, indicating that the increased aggression observed 
during the early light period is not due to increased stress or 
locomotor activity in these animals. Similarly, chemogenetic 
inhibition of SPZGABA neurons during the early light period (but 
not during the early dark period) causes reversible increases in 
aggression. As such, it is apparent that aggression propensity 
in male mice follows a daily rhythm that is contingent upon 
proper functioning of SPZGABA neurons and that the SCNVIP → 
SPZGABA → VMH circuit constitutes a critical pathway through 
which the central circadian clock gates aggression propensity 
across the day.

Since circadian dysfunction and aggression are comorbid 
factors in numerous neuropsychiatric, neurodevelopmental, 
and neurodegenerative disorders, the SCNVIP → SPZGABA → VMH 
circuit is a potentially fruitful target upon which to develop 
pharmaceuticals that ameliorate circadian-related behavioral 
symptoms associated with these disorders. For instance, 
neurodegenerative diseases such as Alzheimer’s disease 
(AD) and related dementias are accompanied by progressive 
disruption in sleep–wake and other circadian rhythms. One 
particular feature of circadian dysfunction in people with AD 
and related dementias is “sundowning syndrome,” a poorly 
understood clinical phenomenon characterized by agitation, 
aggression, and delirium during the early evening [182–184]. The 
neurobiology of sundowning remains unknown [185]; however, 
the temporal periodicity of its symptoms is indicative of a 
possible disturbance within the SCN clock, or in the pathways by 
which the SCN modulates particular rhythms such as aggression. 
Notably, disrupting the SCNVIP → SPZGABA → VMH pathway leads 
to increased aggression during the early resting phase in mice 
[10], which is temporally analogous to the time of day that 
people with AD and dementia experiencing sundowning display 
increased agitation and aggression. Although this suggests that 
the SCNVIP → SPZGABA → VMH circuit may be compromised in 
AD and dementia, it also raises the intriguing possibility that 

light therapy may alleviate some of the behavioral symptoms of 
sundowning since the activity of the SCN is entrained by light 
input from the retina [186]. Indeed, studies exploiting light as a 
therapeutic tool in people with AD and dementia have already 
shown beneficial effects in reducing agitation and improving 
emotion [187–189]. Therefore, the SCNVIP → SPZGABA → VMH 
pathway as a circuit substrate is a promising therapeutic target 
for the treatment of circadian dysfunction and aggression in 
patients who display sundowning, and successful interventions 
acting upon this pathway have the capacity to greatly improve 
the quality of life for people with AD and dementia and their 
caretakers.

A circuit for the photic regulation of arousal 
and mood

The noradrenergic (NA) locus coeruleus (LC) promotes high 
levels of vigilance and arousal [124, 190] and tonic discharge of 
NA-LC cells is highest during waking, and virtually silent during 
REM sleep. Additionally, LC activity anticipates sleep–wake stage 
transitions [191], is necessary for maintaining alertness under 
novel conditions [192], and its activation is sufficient to alter EEG 
measurements of anesthetic depth and accelerate recovery of 
consciousness [193]. The LC is also involved in specific cognitive 
functions such as learning and memory [194–196], as well as 
attention and behavioral flexibility [197, 198].

A distinct circadian rhythm of firing activity is unmasked 
when competing inputs to the LC are blocked under anesthesia, 
and this is under indirect control of the master circadian clock 
in the SCN [199, 200]. The SCN receives a major excitatory 
input from melanopsin-expressing intrinsically photosensitive 
retinal ganglion cells (ipRGCs) [201], which release glutamate 
and pituitary adenylate cyclase-activating polypeptide (PACAP) 
at the SCN, thereby entraining the circadian clock [202–204]. 
The SCN, in turn, mediates LC activity via a DMH relay; SCN 
input onto the  DMH is both direct and indirect, via the SPZ 
[205–207] (Figure 3). Together, this retina → SCN → DMH → LC 
pathway can be referred to as the photic regulation of arousal 
and mood (PRAM) pathway, reflecting the potential impact that 
perturbation of this circuit has upon arousal and mood [208]. 
Notably, each relay along this pathway has a documented role 
in promoting or modulating arousal. For example, activation 
of RGCs induces an arousal-like phenotype in mice [209, 210] 
or sleep behavior, depending on the activating wavelength 
[210], whereas lesions of the SCN result in the disturbance of 
circadian rhythms in animals [211, 212] and humans [200], 
and DMH lesions disrupt the circadian pattern of arousal and 
corticosterone [174, 213]. It is currently unclear through which 
specific cell types arousal information is conveyed from the 
DMH to the LC; however, the orexin (hypocretin) neurons are an 
attractive candidate, as these neurons are important for sleep–
wake regulation and are apparently under circadian control [206, 
207]. Consistent with the proposed role of the PRAM pathway, 
orexin neurons are themselves critical for mood [214] and for 
maintaining consolidated arousal [215–217]. Furthermore, 
optogenetic activation of orexinergic terminals within the LC 
rapidly triggers arousal in mice, indicating a functional DMH-
orexin → LC arousal promoting circuit, which may be the source 
of circadian input to the LC [124, 190, 218–222]. Additional study 
is required to determine whether orexin neurons and/or neurons 

Figure 3.  Circadian circuitry underlying behavioral aggression and the PRAM 

pathway. A  midsaggital section of a mouse brain illustrating loci involved in 

circadian modulation of aggressive behavior and PRAM-associated arousal and 

affective behavior. Light input to the retina activates the SCN, which in turn 

inhibits the SPZ. Since the SPZ is primarily inhibitory, SCN activation disinhibits 

downstream targets of the SPZ such as the ventromedial hypothalamus (VMH), 

leading to aggression. Disruption of this pathway in people with AD and 

dementia may result in aggressive behavioral symptoms such as sundowning. 

Similarly, light input to the retina activates the SCN, in turn activating the DMH, 

possibly via disinhibition of SPZGABA neurons. Increased DMH activity stimulates 

the LC, increasing arousal and modulating affect. Activating this pathway carries 

potential as a possible therapeutic strategy for treating disorders of arousal and 

mood.
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of other phenotypes play a critical role in PRAM signaling. This 
knowledge will lead to a better understanding of the limits of 
utility of the PRAM pathway.

Since the LC is under indirect control of light stimulation at 
the retina, this makes the ipRGCs a prospective candidate with 
which one can modulate activation of the PRAM pathway to 
affect arousal and behavior. Importantly, ipRGCs project to and 
influence the activity of nonimage forming neuronal circuitries 
and can therefore allow for efficient control of the PRAM 
pathway without promoting significant effects on conscious 
vision [202–204]. Moreover, the retina is particularly unique as 
it is the only part of the central nervous system that can be 
accessed without the risk of invasive brain surgery, and thus, 
is a promising target for novel human therapeutics, such as 
chemogenetic therapies. As such, the eye presents an alternate 
route for direct administration of viral vectors that carry the 
genetic information required for neurons to manufacture 
therapeutic proteins (for example, chemogenetic receptors). 
Indeed, intravitreal injections (IVIs) are now commonly used in 
clinical ophthalmology settings as a mechanism for delivering 
treatments for blinding diseases. The IVI is a low-cost and rapid 
procedure and there is now compelling data to indicate that it 
is a safe and effective method of delivering treatments to the 
retina [223]. Appropriating this technique for the delivery of 
viral vectors for the treatment of neuropsychiatric disease has 
the capacity to offer enormous advantages over direct brain 
injection [224–227].

Specifically, this method of delivery may be appropriate 
for targeting expression of excitatory chemogenetic receptors 
to the retina (using specially designed promoters [e.g. PACAP] 
to exclusively drive expression of the chemogenetic receptor 
in ipRGCs), in order to acutely manipulate the PRAM pathway. 
Selective control of the PRAM pathway is likely to have immense 
clinical applications for numerous disorders, particularly for 
those that are characterized by dysfunctional LC activity. An 
obvious example of a potential future clinical application 
of PRAM stimulation is for the treatment of depression, as 
depression is often characterized by dysfunctional LC activity, 
as well as disruption of circadian rhythms [228] and sleep 
patterns [229, 230]. Additionally, the typical etiology of seasonal 
affective disorder (SAD), a form of depression, is decreased 
light availability [231]. Therefore, it is possible to envisage that 
patients could receive a single IVI delivery of the viral vector, 
which would enable the PRAM pathway to be activated by a 
DREADD-activating ligand, perhaps in the form of a daily pill. 
Previous studies investigating the effect of bright light therapy 
on the treatment of SAD provide encouraging evidence for 
retinal-based treatments for depression. Remission rates of SAD 
using bright light therapy range from 64% [227] to 74% [225]. 
Whilst attractive, bright light therapy is not without limitations. 
Light therapy typically involves several hours of light exposure 
per day which limits its feasibility. Importantly, exposure to 
bright blue light has been reported to cause retinal damage [224, 
226], which may also limit its use as a therapy. PRAM stimulation 
may be superior to light therapy because it circumvents these 
limitations and may have fewer side effects. It is tempting to 
predict that activation of the PRAM pathway may be used as a 
novel treatment for at least some forms of depression in the 
future, including SAD. Although further research is required 
to understand the precise mechanisms underlying PRAM-
mediated regulation of arousal, the PRAM pathway represents 

an exciting new direction for the treatment of arousal and mood 
disorders in humans.

Conclusion
With the advent of chemogenetic and optogenetics, much 
progress has been made in recent years in dissecting the neural 
circuitry underlying arousal state change in both health and 
disease. This has resulted in the characterization of a large 
number of previously unrecognized cell populations and circuits 
associated with sleep and arousal, thereby informing new and 
unexplored targets for therapeutic intervention. This review has 
highlighted some of the most promising and exciting work in 
circuit-based sleep and circadian research, with a particular focus 
on how these circuits might be exploited for their therapeutic 
potential. It is hoped that these advances will ultimately lead to 
novel treatments for sleep–wake and circadian disruption and 
associated comorbidities.
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	226.	 Remé CE. The dark side of light: rhodopsin and the silent 
death of vision the proctor lecture. Invest Ophthalmol Vis Sci. 
2005;46(8):2672–2682.

	227.	 Rohan  KJ, et  al. Randomized trial of cognitive-behavioral 
therapy versus light therapy for seasonal affective disorder: 
acute outcomes. Am J Psychiatry. 2015;172(9):862–869.



14  |  SLEEPJ, 2019, Vol. 42, No. 5

	228.	 Koenigsberg  HW, et  al. 24-h Monitoring of plasma 
norepinephrine, MHPG, cortisol, growth hormone and 
prolactin in depression. J Psychiatr Res. 2004;38(5):503–511.

	229.	 Perlis  ML, et  al. Self-reported sleep disturbance as a 
prodromal symptom in recurrent depression. J Affect Disord. 
1997;42(2–3):209–212.

	230.	 Posmontier  B. Sleep quality in women with and without 
postpartum depression. J Obstet Gynecol Neonatal Nurs. 
2008;37(6):722–735; quiz 735.

	231.	 Association AP. Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5®). American Psychiatric Publishing, 
Washington, DC; 2013.




