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Chapter 1

Introduction and Background

Materials

In the Bayesian framework, parametric modeling of a data vector y assumes that y is charac-

terized by a parametric distribution Fθ(y). The collection of parameters θ is modeled using

a prior distribution p(θ). Thus the general form of a Bayesian parametric model is written

as:

y|θ ∼ Fθ(y)

θ ∼ p(θ) (1.1)

Inferences for the parameters can be obtained using the posterior density obtained via Bayes’

rule, f(θ|y) = f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ ∝ f(y|θ)p(θ), and predictive inference can be obtained using the

predictive density;

f(ynew|y) =

∫
f(ynew|θ)p(θ|y)dθ (1.2)
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where ynew ⊥ y|θ.

In Bayesian parametric models, inferences will be sensitive to the choice of the probability

model Fθ(y). Here, we would like to relax parametric assumptions.

A Bayesian non-parametric model generally involves an infinite-dimensional parameter space,

which of course is a paradox in terminology. However, since we live in a finite dimensional

world, non-parametric models are often approximated by using a large but finite number of

parameters. We would argue that they are thus flexibly parametric. Bayesian non-parametric

models, such as those based on the Dirichlet Process (DP), allow the number of parameters,

in theory to be infinite, but in applications, the number of parameters grows to adapt to the

data.

1.1 The Dirichlet Process

The DP (Ferguson 1973) [11] is a stochastic process that has been widely used for the

Bayesian non-parametric modeling of data. In particular, we assume that data, say (X1, . . . , Xn),

are distributed according to an unknown distribution G. Since we use the Bayesian approach,

we need a so-called prior distribution for G. This is a complicated matter, that has been

studied in great detail starting with Ferguson (1973) and before. Here we describe the

Dirichlet Process, a particular richly parametric probability model for G.

1.1.1 The Formal Definition of DP

Before defining the DP, we introduce the Dirichlet distribution. Let Z1, Z2, ..., Zk be indepen-

dent random variables with Zj
⊥∼ Γ(αj, 1), where αj ≥ 0 for all j, and αj > 0 for some j, and

define Yj =
Zj∑k
i=1 Zi

, for j ∈ {1, 2, ..., k}. Then the distribution of (Y1, Y2, ..., Yk) is defined
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as the Dirichlet distribution with parameter (α1, α2, ..., αk), denoted by (Y1, Y2, ..., Yk) ∼

D(α1, α2, ..., αk).

The Dirichlet distribution is a multivariate generalization of the Beta distribution, which is

often used as a prior distribution for multinomial data in Bayesian analysis. The distribution

has mean E(Yj) =
αj
α

and variance V ar(Yj) =
αj
α

(1− αj
α

)/(1 + α) with α =
∑k

i=1 αi.

Ferguson (1973) [11] formally extended the simple Dirichlet distribution to the DP, and

established its existence using the Kolmogorov’s Consistency Theorem. Briefly, let µ be a

non-null finite measure on a measurable space (Ω,F). The random probability measure G is

defined as a DP on (Ω,F) if for every finite k, and measurable partition (A1, ..., Ak) of Ω, the

distribution of (G(A1), ..., G(Ak)) is Dirichlet distributed as D(µ(A1), ..., µ(Ak)), denoted by

G ∼ DP(µ). In practice, µ can be represented as µ = αG0, where α > 0 is a concentration

parameter and G0 is the so-called base distribution of the DP. We write the DP as

G ∼ DP(α,G0)

Since the Dirichlet distribution is a multivariate generalization of the Beta distribution, we

have G(A)|α,G0 ∼ Beta
(
αG0(A), α(1−G0(A))

)
for any A ∈ F . We can see that the base

distribution is the mean of the DP (E(G(A) ) = G0(A)), and the concentration parameter is

related to the variance
(
V ar(G(A) ) = G0(A)(1−G0(A))

1+α

)
. Figure 1.1 shows that the variance

of the DP decrease when α increases.

1.1.2 Stick-breaking Process

Sethuraman (1994) [34] provided a constructive representation of the DP, named a stick-

breaking process. Let {Wi : i = 1, 2, . . .} be an infinite set of independent and identically

distributed Beta(1, α) variables, and {Xi : i = 1, 2, . . .} be a set of independent random
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Figure 1.1: Plots of sample CDF’s from G ∼ DP(α, G0 = N(0, 1)) with four α values. In
each plot, the black line is the CDF of the base distribution, N(0, 1), and the gray lines are
the empirical CDF’s of 15 realizations from G. The Sethuraman characterization in Equation
(1.3) was used to obtain the samples based on truncation at 1000 terms in the sum.
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samples drawn from the base distribution G0. Also define Pi = Wi

∏i−1
j=1(1 −Wj). Then if

G ∼ DP(α,G0), G can be expressed as:

G(·) =
∞∑
i=1

PiδXi(·) (1.3)

where δXi(·) is the point mass at Xi.

We used the stick-breaking process to draw samples from DP
(
α,G0 = N(0, 1)

)
in Figure

1.1. With this process, it is apparent that DP is discrete with probability one.

1.1.3 Polya Urn Scheme

Blackwell and MacQueen (1973) [4] provided an alternative approach to the DP by exploiting

its connection with generalized Polya Urn schemes. In [4], they defined a Polya sequence

and described the connection between Polya sequences with the DP.

A Polya sequence with parameter µ (µ = αG0) is a sequence of random variables {Xi : i =

1, 2, . . .} taking values in Ω, that satisfy

P (X1 ∈ A) = G0(A)

P (Xi+1 ∈ A|X1, . . . , Xi) = Gn(A) (1.4)

for any A ⊂ F , where Gn(·) = α
α+n

G0(·)+ 1
α+n

∑n
i=1 δXi(·), where δx(·) denotes point mass at

x. They proved if {Xn : n = 1, 2, . . .} is a Polya sequence with parameter αG0, Gn converges

to G ∼ DP(α,G0) with probability one.

Ferguson also established that the Polya Urn scheme describes the marginal distribution of

a random sample from the DP, G. The form shown in Equation (1.4) is extremely useful for
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posterior sampling using the Gibbs sampler in the context of a marginalized DP, because it

can be used to derive full conditional distributions for parameters.

1.1.4 Chinese Restaurant Process

The Chinese restaurant process (CRP) gives a nice way to describe the Polya Urn scheme,

which clearly shows the clustering capability of the DP. The process can be described as

follows:

• Initially imagine an empty restaurant containing an infinite number of tables.

• The first person to enter sits down at a table (selects a cluster), and orders food from

the menu for the table (selects parameters from the base distribution for the cluster).

Then everyone else who joins the table shares the same food (parameters) with him/her.

• The second person to enter sits down at a table. With probability α
1+α

he/she sits down

at a new table (selects a new cluster) and orders food for the table; with probability

1
1+α

he/she sits with the first person and shares the food (parameters) with him/her.

• When the (n+ 1)th person enters (n ≥ 2), he/she sits at a new table with probability

α
n+α

and at table k with probability nk
n+α

, where nk is the number of customers currently

sitting at table k.

We continue by letting G0 describe the base distribution used to sample food dishes from

the menu when new tables are selected and denoting {Xi : i = 1, 2, . . .} to be the food

(parameters) for each person. The distribution of {Xi : i = 1, 2, . . .} is identical to the

marginal distribution of say {X ′i : i = 1, 2, . . .}, where X ′i|G ∼ G and G ∼ DP(α,G0).

Customers are grouped into clusters (tables) with the Chinese restaurant process (or DP).

Instead of fixing the number of clusters, the DP allows it to grow as more customers (data)

6



come in. Thus a cluster analysis based on DP has an advantage over finite mixture models.

The Chinese restaurant process also implies the more customers (data points) there are at a

table (cluster), the more likely it is that new customers (new data points) will join it. That

is the so-called “the rich get richer” property of the DP.

1.2 Dirichlet Process Mixture

The DP has been established (Sethuraman 1994 [34], Ferguson 1973) as a potentially poor

model for modeling the distribution of data. This had led to the development of the Dirichlet

Process Mixture (DPM) (Lo 1984 [21], Escobar 1994 [8]). Both the DP and DPM involve

placing distributions on distributions.

The application of the DP as a model for the distribution of data is limited since the DP

is discrete with probability one as shown in Figure 1.1. It is not reasonable to model the

distributions of responses like blood pressure and BMI as discrete. Instead, the DPM is an

infinite DP weighted mixture of parametric densities, which provides a flexible but continuous

model for the data. It is a random mixture since the mixing distribution, the DP, is random.

Escobar (1994) [8], Escobar and West (1995) [9] recognized the potential for DP mixture

(DPM) of parametric distributions. We discuss this as follows.
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1.2.1 The DPM model

Let y = {y1, y2, ..., yn} be the data, and θ = {θ1, θ2, ..., θn} be a collection of corresponding

parameters. The DPM model is expressed below:

yi|θi
⊥∼ F (yi|θi)

θi|G
i.i.d∼ G i = 1, . . . , n

G ∼ DP (α,G0) (1.5)

where F (·|θ) is the parametric distribution selected for the observations, and the parameters,

θi’s, are modeled with the DP. Thus, using Equation (1.3), we obtain

F (yi|G) =
∞∑
j=1

PjF (yi|θ̃j) (1.6)

where Pi’s are defined as in Equation (1.3), and θ̃j
i.i.d∼ G0.

Integrating out G, and using exchangeability of (θ1, . . . , θn), we obtain the conditional form

θi|θ−i ∼
1

α + n− 1

[ n∑
j=1,j 6=i

δθj(θi) + αG0(θi)
]

(1.7)

where θ−i = {θ1, . . . , θi−1, θi+1, . . . , θn}. This result also corresponds to Equation (1.4) from

the Polya Urn scheme.

With Bayes rule, the full conditional distribution can be written as:

θi|θ−i,y ∼ c
[∑
j 6=i

f(yi|θj)δθj(θi) + α
(∫

f(yi|θ)dG0(θ)
)
Hi(θi)

]
(1.8)

where Hi is the posterior distribution of θ based on single observation yi and the prior G0,
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and c is the normalizing constant. The pdf of Hi is h(θ|yi) = f(yi|θ)G0(dθ)∫
f(yi|θ)G0(dθ)

. Equation (1.8) is

used for posterior sampling using the Gibbs sampler for marginalized DP based models.

Escobar and West (1995) [9] examined the problem of univariate density estimation and

modality assessment. They used a DPM model to analyze the data involving velocities of

distant galaxies diverging from our own (Roeder 1990) [32]. The DPM for the velocity data

was a DP mxiture of normal distributions with DP mixing on the mean and precision, {µ, τ},

of the normal distribution.

In their paper, the predictive density f(ynew|y) was obtained using the following methods.

Firstly, they assigned normal/inverse-gamma (gamma for precision τi) distributions to G0

as µi|τi ∼ N(m, λ
τi

) and τi ∼ Γ( s
2
, S
2
), which made the integral

∫
f(yi|θ)dG0(θ) in Equation

(1.8) tractable due to conditional conjugacy. Similar to Equation (1.7), the distribution of

θnew|θ is

θnew|θ ∼ 1

α + n

[ n∑
j=1

δθj(θ
new) + αG0(θ

new)
]

(1.9)

With f(ynew|θnew) ∼ N(µnew, τnew), we obtain

f(ynew|θ) =

∫
f(ynew|θnew)p(θnew|θ)dθnew

∼ 1

α + n

[ n∑
j=1

N(ynew|µj, τj) + αTs(
yi −m√

(λ+ 1)S/s
)
]

(1.10)

where Ts is the student-t distribution with degrees of freedom s. Using Equation (1.2), the

predictive density is:

f(ynew|y) =

∫
f(ynew|θ)dp(θ|y) (1.11)
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Direct evaluation of Equation (1.11) is computationally complicated. Generally, Monte Carlo

approximation is used to approximate the density.

1.2.2 Gibbs Sampler for the DPM

In Bayesian non-parametric models with the DP, it is not possible to have a closed-form

for the joint posterior distribution. As such, inferences are generally made numerically via

Gibbs sampling.

Gibbs sampling is a method for constructing a Markov chain Monte Carlo sample from the

joint posterior. This method is extremely useful for a DPM model since we have the full

conditional distributions for each parameter in analytical form as seen in Equation (1.8).

In order to obtain posterior samples from p(θ|y), we implement the Gibbs sampler as follows:

1. We begin with the initial value θ(0).

2. Draw posterior samples for θ using the Markov Chain Monte Carlo (MCMC) method.

At the jth MCMC iteration, for each i ∈ {1, . . . , n}, sample θji from the conditional

distribution θi|y, θj1, . . . , θ
j
i−1, θ

j−1
i+1 , . . . , θ

j−1
n using Equation (1.8). Thus, sample each θi

from its full conditional distribution, making use of the most recent values of θ−i, and

updating θi with its new value as soon as it has been sampled.

3. Repeat step 2 for j = 1, 2, . . . till the Markov chain converges.

In the Galaxy example from Escobar and West (1995) [9], Gibbs sampling was used for

the posterior inference. We illustrate the sampling procedure for DPM models with this
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example. The model for the galaxy velocity data is:

yi|θi = {µi, τi} ∼ N(µi,
1

τi
),

θi|G ∼ G,

G ∼ DP(α,G0). (1.12)

where the parameter space θ is {µ, τ}. In addition, the base distribution G0 was chosen to

be normal/gamma model due to conjugacy;

µi|τi ∼ N(m,
λ

τi
), τi ∼ Γ(

s

2
,
S

2
).

Let fn(·|µ, τ), ft(·|df) denote the density functions of N(µ, τ−1) and t(df) with degrees of

freedom df , respectively. The full conditional distribution is:

θi|θ(−i),y, α ∼
∑
j 6=i

qijδθj(θi) + qi0Hi(θi), (1.13)

where qij ∝ fn(yi|µj, τj), qi0 ∝ α ft(
yi−m√
(λ+1)S/s

|s) subject to
∑

j 6=i qij + qi0 = 1. Hi is nor-

mal/gamma distribution with

µi|τi,y ∼ N(
λyi +m

λ+ 1
,

λ

(λ+ 1)τi
),

τi|y ∼ Γ(
s+ 1

2
,
S

2
+

(yi −m)2

2(λ+ 1)
).

Escobar and West proved that the Markov chain converges to the posterior distribution using

results in Tierney (1994) [39]. In addition, the concentration parameter α of the DP is a
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critical smoothing parameter in the model, which is related to the number of components in

the mixture model. It was regarded as a random variable and was assigned with a gamma

prior distribution.

1.3 Sampling Schemes

Posterior Bayesian non-parametric models, a variety computational algorithms have been

commonly used to solve issues and improve efficiency. For example, Metropolis-Hastings

sampling is widely used for sampling parameters for which the full conditional is not analyt-

ically tractable. Reversible-jump MCMC has been used for sampling posterior distributions

with varying dimensions. We will introduce the two algorithms in this section.

1.3.1 Reparameterization to the DP

Suppose we have (θ1, . . . , θn) where

θi|G
i.i.d∼ G, G ∼ DP (α,G0).

Then we can sample θi’s using the Polya Urn Scheme in Equation (1.7). The properties of

MCMC samples taken as in Equation (1.7) are not efficient (MacEachern and Muller 1998

[22]). So we must consider improved methods.

Let K be the number of distinct values in θ = (θ1, . . . , θn), and let φ = {φ1, . . . , φK} to

denote the K distinct values in θ. We define a vector of cluster indicators S = {si : i =

1, . . . , n} with each si = j if θi = φj. Then knowing θ is equivalent to knowing (S,φ).

MacEachern and Muller [22] realized that they could sample θ more efficiently according to

the Polya Urn Scheme by sampling (S,φ).
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Neal 2000 [24] presents a particular finite Dirichlet mixture that is useful for deriving full

conditional distributions (s,φ). The model considered is:

yi|si,φ
⊥∼ F (yi|φsi),

si|π
⊥∼ Multinomial(π1, . . . , πL),

φsi ∼ G0,

(π1, . . . , πL) ∼ Dirichlet(
α

L
, . . . ,

α

L
). (1.14)

Ishwaran and Zarepour (2002) [16] proved that
∑L

j=1 πjδφj converges to DP(α,G0) in dis-

tribution as L→∞. Thus model (1.14) can be regarded as an approximation to the DPM

model when L → ∞. So we can use this representation to sample for DPM model using

parameters (s,φ) instead of θ. Compared to sampling using Equation (1.7), the Gibbs sam-

pler based on this representation is far more efficient and achieves convergence much faster.

We will introduce the full conditional distributions used for Gibbs sampling below.

By integrating out the mixing proportions π, we write the conditional distribution for si in

the following form

P (si = s|s−i) =
n−i,s + α/L

n− 1 + α
(1.15)

where S−i = {s1, . . . , si−1, si+1, . . . , sn} and n−i,s is the number of sj satisfying sj = s for all

j 6= i.
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As L→∞, the conditional distribution above becomes:

P (si = s|s−i) =


n−i,s
n−1+α , if s ∈ s−i

α
n−1+α , if s is a new label.

(1.16)

Gibbs sampling for {si : i = 1, . . . , n} is based on the following conditional probabilities:

P (si = s|s−i, yi,φ) =


b
n−i,s
n−1+αF (yi|φs) if s ∈ s−i

b α
n−1+α

∫
F (yi|φ)dG0(φ) s is a new label.

(1.17)

where b is the normalizing constant.

The full conditional distribution for {φs : s = 1, . . . , K} is:

f(φs|S, y) ∝
( ∏
i,si=s

F (yi|φs)
)
dG0(φs) (1.18)

In forthcoming data analyses, we will use this representation of the DPM model for posterior

sampling and inferences. The details of the sampler will be introduced in chapter 2 using

the model built for the hormone data from Study of Women’s Health Across the Nation

(SWAN).

1.3.2 Algorithm for Non-conjugate Prior in DPM

In the DPM given in model (1.5), Gibbs sampling is used to sample the cluster membership

si for each individual using Equation (1.17). When φ is assigned with a conjugate prior, this

step is simple since the integral
∫
F (yi|φ)dG0(φ) can be computed analytically. When the

prior is not conjugate, the integral has no analytical form and requires numerical approxima-
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tion, which can be computationally challenging. In order to resolve the problem, we discuss

Algorithm 8 proposed by Neal (2000) [24].

We retain the notation defined in Model (1.5) and Equation (1.17). Below is the algorithm

used to sample the cluster membership si for each individual i:

• Let K−i be the number of distinct elements of s−i. For simplicity, we let s−i be labeled

with values in {1, . . . , K−i}. Then the corresponding parameters are {φ1, . . . , φK−i}.

In addition, we need to specify a positive integer h in the procedure. We use h = 3 in

our analysis.

• Check whether si ∈ s−i.

• If yes, draw h values from φ ∼ G0 independently, and label them as {φK−i+1, . . . , φK−i+h}.

• If no, let φK−i+1 = φsi . Then draw h− 1 values from φ ∼ G0 independently, and label

them as {φK−i+2, . . . , φK−i+h}.

• Draw a new value for si from {1, . . . , K−i + h} using the following probabilities:

P (si = s|s−i, yi, φ1, . . . , φK−i+h) =


b
n−i,s
n−1+αF (yi|φs) if 1 ≤ s ≤ K−i

b α/h
n−1+αF (yi|φs) if K−i + 1 ≤ s ≤ K−i + h

(1.19)

• Update φsi with the φ value corresponding to the new si.

As h → ∞, this algorithm approaches the behavior of the Polya Urn Scheme described at

Equation (1.17), since the h values for φs drawn from G0 effectively produce a Monte Carlo

approximation to the integral
∫
F (yi|φ)dG0(φ).

The equilibrium distribution of the Markov chain defined by this algorithm is exactly correct
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for any value of h. It does not require h to be large for a Monte Carlo approximation.

For example, when h = 1, this algorithm resembles the “no gap” algorithm proposed by

MacEachern and Muller (1998) [22].

1.3.3 Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm is a Markov chain Monte Carlo (MCMC) method

for obtaining a sequence of random samples from a probability distribution for which direct

sampling is difficult. It was first used by Metropolis (1953) [23] and extended to more general

cases by Hastings (1970) [15]. This algorithm is well-known to the majority of Bayesian

statisticians and has been discussed in detail in multiple books and articles, so we limit our

introduction to the basic ideas in this section.

Considering the general Bayesian model (1.1), we are interested in the posterior distribution

f(θ|y) = f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ . The M-H algorithm is particularly useful for posterior sampling in

many cases because: (1) the distribution of θ|y is not required to be recognizable; and (2)

the evaluation of normalizing factor
∫
f(y|θ)p(θ)dθ, which is often extremely difficult in

practice, is not needed.

The M-H algorithm draws posterior samples from f(θ|y) by constructing a Markov chain,

{θj : j = 0, 1, . . .}, that has a stationary distribution f(θ|y). Let q(θ′|θ) be a conditional

density that is easily sampled, for example a normal distribution. The Markov chain can be

constructed with the following steps:

1. Pick an arbitrary value for θ0.

2. At each iteration j(j ≥ 0), generate a candidate parameter θ′ from q(θ′|θj).

3. Calculate the acceptance probability α(θj, θ
′) = min{1, f(y|θ

′)p(θ′)q(θj |θ′)
f(y|θj)p(θj)q(θ′|θj)}.
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4. Let θj+1 = θ′ with probability α(θj, θ
′), and θj+1 = θj with probability 1− α(θj, θ

′).

5. Repeat step 2-4 till convergence.

1.3.4 Reversible Jump MCMC

The reversible-jump MCMC sampler (Green, 1995 [12]) provides a general framework for

MCMC simulation in which the dimension of the parameter space can vary between iterates

of the chain. The reversible jump sampler can be viewed as an extension of the Metropolis-

Hastings algorithm onto more general state spaces.

Reversible-jump MCMC can be applied to Bayesian change-point problems, where the num-

ber and location of change-points are unknown. For example, Fan and Brooks (2000) [10]

used it to model the shape of prehistoric tombs, where the curvature of the dome changes an

unknown number of times. In our analysis in Chapter 5, we will use the method to model

the serology scores collected from cows, where both whether and when the cow was infected

with Johne’s disease is unknown.

We now consider a general setting of the method. Suppose that for observed data y we

have a collection of candidate models {Mk : k = 1, . . . , K}. The index k can be considered

as an auxiliary model indicator variable. Each model Mk has an nk-dimensional vector of

unknown parameters, θk ∈ Rnk , where nk can be different for each k = 1, . . . , K. Hence the

joint posterior distribution is

f(k, θk|y) ∝ L(y|k, θk)p(θk|k)p(k)

where L(y|k, θk) is the likelihood under model k.

The MCMC sampler of the reversible-jump algorithm, which is targeted to have the posterior
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distribution as its stationary distribution, is constructed over the state space Θ = {(k, θk) :

k = 1, . . . , K; θk ∈ Rnk}. The dimension of (k, θk) can vary over the state space.

The reversible-jump algorithm is regarded as an extension of the M-H algorithm since it also

constructs a Markov chain with reversibility and resembles the M-H acceptance probability

α(θ, θ′) = min{1, f(y|θ
′)p(θ′)q(θ|θ′)

f(y|θ)p(θ)q(θ′|θ) }. The difference is that there are two kinds of moves for the

update of θ in the reversible-jump MCMC. One is a “within-model” move, which fixes model

k and only updates θk with an appropriate MCMC scheme. The other is the a “between-

models” move, which simultaneously updates the model indicator k and the parameters θk

according to the general reversible proposal and acceptance mechanism.

In practice, the construction of proposal moves between different models is achieved via the

concept of “dimension matching”. Suppose that we are currently in state (k, θk) in modelMk

and wish to propose a move to state (k′, θk′) in model Mk′ , which is of a higher dimension

(nk′ > nk). In order to match dimensions of the two model states, we generate a random

vector u of length nk′ − nk from a known density qk→k′(u). The current state θk and u are

then mapped to the new state θk′ = gk→k′(θk, u) through a one-to-one mapping function

gk→k′ : Rnk × Rnk′−nk −→ Rnk′ . The acceptance probability of the proposal is then:

α(Mk,Mk′) = min{1, f(k′, θk′|y)q(k′ → k)

f(k, θk|y)q(k → k′)qk→k′(u)
| ∂gk→k

′(θk, u)

∂(θk, u)
|} (1.20)

where qk→k′(u) is the probability of proposing a move from model Mk to Mk′ , and the

partial derivative is the determinant of the Jacobian matrix, that is used for the parameter

transformation between (θk, u) and θk′ . We will use this acceptance probability in Equation

(1.20) for our change-point model in Chapter 5.

In the example above, the proposal θk is deterministic for the reverse move fromMk′ toMk.

More generally, we can relax the condition by allowing longer length of the vector u, say du.

In this case, non-deterministic reverse moves can be made by generating a random vector u′
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of length du′ from qk′→k(u
′), so that the dimension matching condition, nk + du = nk′ + du′ ,

is satified. Then the one-to-one mapping is (θk′ , u
′) = gk→k′(θk, u). The corresponding

acceptance probability becomes:

α(Mk,Mk′) = min{1, f(k′, θk′|y)q(k′ → k)qk′→k(u
′)

f(k, θk|y)q(k → k′)qk→k′(u)
| ∂gk→k

′(θk, u)

∂(θk, u)
|} (1.21)

1.4 Trajectory modeling

In longitudinal studies, we are interested in the developmental trajectory of some response,

which describes the course of the behavior over time. Generally, longitudinal trends are

non-linear.

1.4.1 Sigmoid Function

In longitudinal epidemiological studies, it is useful to characterize an individual’s reaction to

some stimulus like disease infection in order to provide early detection of disease. Considering

some measure of symptoms which indicates the reaction, it intuitively should have a “S”-

shape curve: the reaction to the infection should be mild at the initial stage and get stronger

and stronger with the progressing of the disease. After some time, the measure of the reaction

gradually levels at some equilibrium level. Of course, with some diseases, the infection marker

may just increase without bound until death.

A sigmoid function, whose shape is like “S”, is naturally suitable for fitting such a develop-

mental trend. Figure 1.2 shows how a four-parameter sigmoid function looks. In our data

analysis in Chapter 4, we use it to model the progression of serology scores collected from

cows.
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Figure 1.2: Four-parameter sigmoid function with {tc = 0, y0 = 0, h = 1, r = 1}

This four-parameter sigmoid function is mathematically defined as below:

s(t|tc, y0, h, r) = y0 +
h

1 + e−r(t−tc)
(1.22)

As the name implies, the function s(t) has four parameters {tc, y0, h, r}, which determine

the location and shape of the sigmoid curve.

The function in Figure 1.2 has the four parameter values {tc = 0, y0 = 0, h = 1, r = 1}.

Among them, {tc, y0} indicate the location of the curve. y0 is the lower bound of s(t) and

tc is the x-axis coordinate value of the half-height point. Note s(t) is symmetric about the

half-height point at coordinate (tc, y0 + h
2
). {h, r} are the shape parameters. As shown in

Figure 5.2, h is the limiting range of s(t) and r is related to the changing rate of the curve.

When r > 0, the curve is increasing as shown in the figure. When r < 0, the curve is

monotonically decreasing. In addition, the curve reaches its maximum changing rate at the

half-height point, where d s(t)
dt
|t=tc = 4/r.

It might be worth mentioning that the most general (flexible) sigmoid function has five

parameters, and the one extra degree of freedom allows the curve to be asymmetric about
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the half-height point. The mathematical form of the function is

s(t|tc, y0, h, r1, r2) = y0 +
h

1 + w(t)e−r1(t−tc) + (1− w(t))e−r2(t−tc)

where w(t) = 1
1+e−v(t−tc)

and v = 2r1r2
|r1+r2| . We did not choose it because: (1) model simplicity;

(2) the data did not show significant asymmetric pattern.

1.4.2 Basis Functions

In mathematics, a basis function is an element of a particular basis for a function space.

Every continuous function in the function space can be represented as a linear combination

of basis functions, just as every vector in a vector space can be represented as a linear

combination of basis vectors. In a longitudinal data analysis, it allows flexibility in the

trajectory shape to fit the developmental trend with basis functions.

The most commonly used basis function is the polynomial basis {ti : i = 0, 1, . . .} on t ∈ R.

In statistics, they have been used for polynomial regression, in which the relationship between

the independent variable x and the dependent variable y is modeled. Polynomial regression

fits a nonlinear relationship between the time t and the corresponding conditional mean

of response y, denoted E(y|t), with a linear combination of the basis functions E(y|t) =

β0 + β1t+ . . .+ βpt
p.

It is important to choose the function space, which is determined by the order p for the

polynomials. The higher the value p, the more closely the trajectory will fit the data. When

p → ∞, E(y|t) can represent any trajectory. However, it is not appropriate to use large

number of basis functions in a data analysis due to over-fitting. So the choice of p should

balance model fitting and model complexity. In our analysis, we chose basis functions up to

cubic terms (p = 3).
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In addition, simple polynomial basis is not the only choice for trajectory modeling. For

example, Fourier series are commonly used to model the periodic signals. The Daubechies

wavelet is suitable for modeling the data with abrupt changes or oscillations in a short time.

Below we introduce two sets of basis functions which were used in our analysis.

1.4.3 Legendre Polynomials

In mathematics, Legendre functions are solutions to Legendre’s differential equation,

d

dt

[
(1− t2) d

dt
xk(t)

]
+ k(k + 1)xk(t) = 0.

The solutions for k = 0, 1, 2, . . . form a polynomial sequence called the Legendre Polynomials.

The functions are calculated with Bonnet’s recursion formula:

x0(t) = 1; x1(t) = t

(k + 1)xk+1(t) = (2k + 1)t · xk(t)− k · xk−1(t), k ≥ 1

One important property of the Legendre polynomials is that they are orthogonal on the

interval (−1, 1):

∫ 1

−1
xk(t)xk′(t) dt =

2

2k + 1
δkk′

For data analysis, we prefer to using standardized basis functions by multiplying a constant√
2k+1
2

times each xk(t). Figure 1.3 shows standardized Legendre basis functions up to degree

5.
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Figure 1.3: The first 6 Legendre basis functions

1.4.4 Orthogonal Polynomials

In a balanced longitudinal study, all observations are collected at a sequence of fixed time

points. In such a case, the time t should be regarded as discrete instead of continuous, and

we need to use a set of basis functions that are defined on discrete time points.

One choice is the set of orthogonal polynomials discussed by William J. Kennedy and James

E. Gentle (1980) [18]. Let t be a vector of fixed time points with length nt. Then orthogonal

polynomials are calculated using the following recurrence relation:

x−1(t) = 0; x0(t) = 1

xk+1(t) = (t− uk+1)xk(t)− vkxk−1(t), k ≥ 0
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Figure 1.4: The first 6 orthogonal polynomial basis functions, which are defined on {t =
0, 1, . . . , 10}

where,

uj+1 =


0, j = 0

∑nt
i=1 ti

(
xj(ti)

)2
∑nt
i=1

(
xj−1(ti)

)2 , j > 0
, vj =


0, j = 0

∑nt
i=1

(
xj(ti)

)2
∑nt
i=1

(
xj−1(ti)

)2 , j > 0

Orthogonal polynomial basis functions also have the orthogonality as indicated in its name:


∑nt

i=1

(
xk(ti)

)2
= ck∑nt

i=1 xk(ti)xk′(ti) = 0, k 6= k′

where ck 6= 0 is a constant. We used the standardized orthogonal polynomial basis functions

in our model, and Figure 1.4 shows the orthogonal polynomial basis functions up to order 5.
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Chapter 2

Clustering Longitudinal Processes

with Dirichlet Process Mixtures

2.1 Introduction

A longitudinal study refers to an investigation where participant outcomes and possibly

treatment or exposure variables are collected at multiple follow-up times. Such studies

play a prominent role in health, social, and behavioral sciences as well as in the biological

sciences, economics, marketing and finance. In a longitudinal study, an interesting question

is to identify trending groups (those with outcomes that start high and stay high, those

that start low and stay low, those that start low and increase to high etc). For example, in

marketing analytics, we would like to cluster customers based on their behavior trends, like

spending habits in the past several months/years. Different business decisions like promotion

strategies could be implemented targeting each “trend group”. In epidemiological research,

it is also interesting to group patients based on the profile of a series of biological responses

like hormone levels for example. We can then look at individual factors that are associated
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with “trend group” membership.

We are motivated by data from the Study of Women’s Health Across the Nation (SWAN),

which involves the collection of hormone data on women through the menopausal transition.

Menopause is a universal female phenomenon defined by a specific event, the final menstrual

period (FMP). Menopausal transition is a series of stages of variable length from pre-, early

peri- and late peri- to post-menopause, each defined by changes in menstrual and hormonal

patterns. The SWAN study is a multi-site longitudinal epidemiologic study designed to

examine the health of women during these years. In the dataset we consider here, 11 years

of E2 (Estradiol) and FSH (Follicle-stimulating hormone) values were collected annually

from 928 women who experienced the menopausal transition. We are interested in clustering

the women based on their hormone profiles through menopause. This particular data set

consists of a rather small subset of the entire SWAN data, which was abstracted for the

purpose of studying the relationship between hormone characteristics and the incidence of

urinary incontinence (UI). Here we restrict ourselves to the hormone profile data only. In

Chapter 4, we jointly model profiles and UI incidence.

In this data analysis, we use a Bayesian semi-parametric model with a Dirichlet Process

Mixture (DPM) model involving curve shapes combined with mixed effects as a clustering

mechanism to group women with similar hormone profiles. In Section 2, we review the

existing clustering algorithms, point out the challenges we face in this analysis, and propose

our solutions and strategies used to overcome the challenges. Then we specify our clustering

model in detail in Section 3. In Section 4, we introduce the algorithms and techniques used

to draw posterior samples. In Section 5, we use a simulation study to establish inference

validity and compare our method with methods for existing clustering models. We illustrate

our method using longitudinal hormone data from SWAN in Section 6.
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2.2 Background

Our goal is to cluster women into groups based on their longitudinal hormone profiles.

However, we face several challenges. In this section, we will discuss the existential difficulties.

We divide the content of the section into three parts: (i) introduction to the conventional

clustering algorithms and their limitations in handling longitudinal data; (ii) discussion

of over-fitting issues and methods for avoiding them; and (iii) a review of some existing

clustering methods for longitudinal data, and our proposal for improving the clustering

performance.

2.2.1 Conventional Clustering methods

Cluster analysis involves the task of grouping a set of objects in such a way that those

in the same group (cluster) are more similar to each other than to those in other groups

(clusters). This general statistical technique is used in many fields, including data mining,

machine learning, pattern recognition, bioinformatics etc., as well as across disciplines. Some

typical clustering methods include (i) the use of hierarchical models, where a hierarchy of

clusters is built based on a measure of dissimilarity, (ii) centroid models (eg: K-means), where

observations are partitioned into K clusters in which each observation belongs to the cluster

with the “shortest” centroid distance to the center, and (iii) mixture models (eg. Gaussian

mixtures), where allocation to clusters/mixtures is based on the posterior probability of

cluster membership, which could be one of a pre-specified number of K clusters, etc.

However, these general clustering methods do not apply here, because the data structure

is different from what we conventionally have for unsupervised learning. In a dataset for

conventional cluster analysis, multiple features/covariates were observed once and only once

for each individual. Then the individuals could be grouped by comparing their values of
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these features using well-known algorithms like K-means. Let us assume that we have

vectors of data measured from r features on n individuals, say yi = (yi1, yi2, ..., yir)
′ for

each i ∈ {1, ..., n}. The observations yij and yi′j are comparable in the sense that they

are observed values on the jth feature for any two individuals i and i′. We anticipate that

there may be, say K, groups of individuals who share common features. If we let si be a

latent variable indicating the “cluster membership” of individual i, eg: si = k if individual

i belongs to cluster k, k = 1, ..., K, then we anticipate that E(yi | si = k) = (µk1, . . . , µkr)
′

for all k = 1, . . . , K. The general goal is to decide which individuals belong to which cluster

based on the observed data y = {y1, ...., yn}. This formulation presumes that there are no

missing data, that observations are comparable across j, and that there are exactly the same

number, r, of observations on each individual.

Longitudinal data analysis generally involves a scalar response that was measured repeat-

edly in time for each individual. Longitudinal data for individual i thus involves outcomes

yi = (yi1, yi2, . . . , yiri)
′ corresponding to times ti = (ti1, ti2, . . . , tiri)

′. The observation vectors

from different individuals are generally not comparable. Firstly, ri is not necessarily equal to

ri′ , which means the individuals have unequal numbers of observations. Secondly, the obser-

vations yij and yi′j may not be comparable since tij is generally not equal to tij′ for studies

with an unbalanced design. Thirdly, missing data are very common in longitudinal studies.

All these differences in data structures lead to inappropriate of application of algorithms like

K-means to longitudinal data directly.

Moreover, we are interested in trajectory/trend patterns in time, thus the conventional

methods mentioned above are far from optimal for clustering individuals by comparing the

observation values. Functional data analysis is a form of longitudinal analysis that is used

to model such trends. We base our cluster analysis on them.

Define yi and ti as above. Our goal is to provide a model that allows for a variety of shapes

in mean responses. Let Xi denote an ri×(p+1) design matrix of basis functions up to degree
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p and let βi = (βi0, βi1, . . . , βip)
′ be a vector of regression coefficients corresponding to these

basis functions for individual i. The mean response is modeled as a linear combination of

basis functions, namely E(yi | Xi, βi) = Xiβi, which allows considerable flexibility in terms

of profile shapes.

Instead of clustering individuals by comparing the observed yi’s, cluster analysis will be

based on regression coefficient vectors, βi. In order to accomplish this, we consider a discrete

hierarchical model for βi where the βi’s are allowed to cluster. An obvious and clear advantage

is that the study design does not have to be balanced, and missing data are also allowed.

2.2.2 Over-fitting in longitudinal analysis

Over-fitting is an issue requiring consideration for cluster analysis based on longitudinal

profiles. Since clustering is based on β’s, we have to estimate each individual coefficient

vector βi. That would be problematic when individual data are sparse, since estimation of

βi was only based on the single vector yi. Over-fitting could result in fitted curves with

peculiar shapes for these individuals, which would not demonstrate the real trends of these

individual’s responses, resulting in poor statistical inferences.

Moreover, the over-fitting issue may not be resolved by increasing the sample size in such a

case. For example, considering a longitudinal data analysis for customers’ historical spending

behaviors, there is always a portion of customers who do not make purchases very often and

thus we have a limited number of observations from them. Therefore, the over-fitting issue

persists no matter how many more customers are added to the data. In this example, it

would be absurd to remove customers because they did not contribute enough data. We will

develop a method that can handle the over-fitting issue.

Mixture models have been used to classify individuals based on longitudinal data and while
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attentioning to minimize over-fitting. In this case, individual trajectories are assumed to

be the same for subjects in the same mixture component, thus allowing one to borrow

information from similar subjects. For example, Group-Based Trajectory Modeling (GBTM)

by Nagin (1999, 2005) and Growth Mixture Modeling (GMM) by Muthen (2001) have been

widely used for analyzing longitudinal outcome data in psychology, medicine and criminology.

Both methods apply finite mixture models for clustering. Using these methods, individuals

in the same cluster share the same mean trajectory. If we let E(yi | Xi, βi) = Xiβi, then

βi = βj for any two individuals i and j that are clustered. So the observations for all the

individuals in the cluster are used to estimate the cluster mean trajectory, which alleviates

the over-fitting issue.

However, there are significant disadvantages in using these methods. Firstly, the methods

assume independence between any two observations. This is problematic in many scenarios

because the observations from the same individual could be highly correlated compared with

observations from different individuals. Secondly, pre-specifying the number of clusters, K,

is another criticism of the methods, since in many cases we have no knowledge about how

many clusters there might be, especially in an exploratory analysis. The specification of

K has been discussed extensively (McLachlan and Peel 2004, Muthen 2004, Nagin 2005,

Nylund et al. 2007). AIC and BIC criteria have been used to determine K.

In order to overcome these deficiencies, we employ the Dirichlet Process (DP) which involves

an infinite number of random mixtures that can be used to cluster individuals without

having to specify K. For recent examples, Medvedovic and Sivaganesan (2002), Shahbaba

and Johnson (2012) used DP models to cluster gene expression profiles. In the next section,

we consider a DPM model for our analysis.
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2.2.3 Dirichlet Process Mixture (DPM) for longitudinal data anal-

ysis

The DP is a random probability measure (RPM), meaning that it is unknown and uncer-

tain and that its realizations are probability measures. It was formally defined by Fer-

guson (1973), and further characterized by Sethuraman (1994). Let G0 be a non-null fi-

nite measure on a measurable space (Ω,F). A random probability measure, G, is defined

as a Dirichlet process on (Ω,F) if for every finite k = 1, 2, ..., and measurable partition

(A1, ..., Ak) of Ω, the marginal distribution of (G(A1), ..., G(Ak)) is Dirichlet distributed,

D(αG0(A1), ..., αG0(Ak)). We write

G ∼ DP(α,G0)

The base distribution G0 is selected to be continuous, but the DP, G, is almost surely discrete,

which can be seen using the stick-breaking representation by Sethuraman (1994). There is

always a non-zero probability of two or more samples from G being tied. This property of

the DP allows for clustering. If we model the distribution of the βi’s with a DP, individuals

who share the same β value are in the same cluster. So in this way we can group the n

individuals into a random number of K clusters (K ≤ n).

The DP model has been used for clustering longitudinal data. Kleinman and Ibrahim (1998)

[19] used a DP distribution for the distribution of unknown random effects, but without

incorporating trajectories. Ray and Mallick (2004) [40] developed a nonparametric Bayesian

wavelet based model to cluster functional data using the DP. Bigelow and Dunson (2005,

2006) [2] [3] developed a semiparametric Bayesian adaptive spline model to cluster pregnant

women based on their reproductive hormone trajectories. In these models, the DP was

assigned to trajectory parameters β, since the DP is almost surely discrete and can be used
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for clustering.

Their clustering models could be summarized as generalized versions of:

yi|βi, τe ∼ Normal(Xiβi, τ
−1
e Iri),

βi|G
iid∼ G,

G ∼ DP (α,G0),

G0 = N(uβ,Ξ
−1
β ), (2.1)

where Xi is the design matrix of basis functions at ti = (ti1, ti2, . . . , tiri)
′. τe is the unkown

precision and (uβ,Ξβ) are considered known and fixed. Model (2.1) is actually a Dirichlet

Process Mixture (DPM) model for the data, since the normal distributions are mixed using

the DP on the distribution of the βi’s.

Model (2.1) is a simplified version of their models, but emphasizes how clustering will be

accomplished using the DP. The actual models proposed in these papers are more complicated

and sophisticated. Specifically, Wang, Ray and Mallick (2004) [40] proposed a wavelet based

nonparametric model, which assigned a DP to the distribution of the β and τe jointly rather

than simply assigning a parametric prior to τe. Bigelow and Dunson (2005) [2] used a

semi-parametric model with an adaptive spline basis, which allows extra flexibility in the

trajectory shape by considering varying numbers and locations of knots. However, model

(2.1) points out one common feature of the cited models, which is that they all modeled the

random effects β = {βi : i = 1, . . . , n} using a DP.

The most significant advantage of DPM models is that the number of clusters, say K, is

random and model-based. It fits one of our purposes in exploratory data analysis, in which

we generally have no idea how many clusters exist in truth.
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The method has been used to cluster individuals based on longitudinal data. However,

the model performance may not always be ideal, since it may tend to produce too many

clusters. Here we cite a simulation result presented in Bigelow and Dunson (2005) [2] as an

example. In the paper, Figure 1 in their paper shows the data used for their simulation,

which were generated based on four true cluster mean trajectories (solid lines), and Figure

3 shows their statistical inference. Theoretically, we should expect 4 clusters since the true

number of clusters is 4. In fact, 10 clusters were identified by post-processing the MCMC

output of their model. Figure 1 managed to combine the 10 cluster mean curves (dash lines)

manually corresponding to the four true trajectory shapes (solid lines). But this construction

is generally not straightforward. It could be done in this study because the simulated true

cluster trajectories are very different from each other. If we consider a dataset with unknown

cluster information, the task is more difficult, especially for data in which trajectories from

different clusters are not as distinct as those in Figure 3.

Figure 4 in Bigelow and Dunson (2005) [2] illustrates the difficulty of the task when the

model is applied to real data. The plot shows how the women are clustered based on data

from the North Carolina Early Pregnancy Study (EPS)(Wilcox et al., 1988), where data

consist of daily progesterone measurements in women who are trying to become pregnant.

The number of “true” clusters was unknown. Eventually, eight clusters were inferred using

their method. But it is difficult to tell whether the estimated cluster mean trajectories were

different in trend and it is difficult to combine them manually.

This questionable model performance is evidently caused by the individual variation within

cluster in trajectory shapes, which is not accounted for in model (2.1). It is assumed that

all the individuals in a cluster share precisely the same mean trajectory, which may not be

sensible for longitudinal data. From our perspective, responses of two individuals in the

same cluster, while sharing an overall trend, should be allowed to have their own variability

about that trend. In other words, individual variation inside each cluster should be allowed
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whereby two individuals’ trajectories from the same cluster should be more or less different

from each other.

We propose to add trajectory based mixed effects in the model to account for the individual

variation in trajectory shape within clusters. The response y is modeled with N(Xiβi +

Xibi, τ
−1
e Iri). (Note βi is the trajectory coefficient vector of the cluster to which individual

i belongs. There is no identifiability issue between βi and bi since βi is a parameter vector

on the cluster level and bi is on the individual level.) We believe this model will generate

better clustering results because subjects with a similar overall trajectory will be clustered

together in the model, and since perturbations within clusters with overall trajectory shape

will be taken up by Xibi rather than adding new clusters.

We eventually chose to use the marginalized form of the mixed effect model with bi integrated

out. Since bi is a vector on the individual level, and since inferences about it will depend

greatly on the single observation, yi, we are concerned that Markov chains used for fitting

unmarginalized models may get stuck and thus have poor performance. Our experiences in

fitting both forms of the model are consistent with this belief. In the marginalized form of the

model, bi is thus not directly estimated. That does not affect our analysis since we are not

interested in inferences for bi. Our question of interest is how the individuals are clustered,

which is inferred from β. Therefore, the marginalized form of the model is identical to the

non-marginalized form, and evidently has better MCMC properties.

2.3 The Model

In this section, we specify our model in detail, including choice of basis functions. Then we

discuss specification of prior distributions for the corresponding model parameters.

34



2.3.1 Model specification

SWAN data consist of longitudinal hormone observations from n women. Our goal is to

cluster them based on the trends in their hormone trajectories over time. The data consist

of vectors yi = (yi1, yi2, . . . , yiri)
′ corresponding to times ti = (ti1, ti2, . . . , tiri)

′ for individuals,

i = 1, 2, . . . , n. We use orthogonal polynomial basis functions to fit the trajectory. Denote

Xi as the ri× (p+ 1) design matrix containing the basis functions up to pth order for woman

i. We use the following model for the data:

yi|βi ∼ Nri(Xiβi, τ
−1
e Wi)

βi|G
iid∼ G

G ∼ DP (α,G0)

G0 = Np+1(uβ,Ξ
−1
β ) (2.2)

where Wi = Iri +XiΓ
−1XT

i and

Γ =



γ0 0 · · · 0

0 γ1 · · · 0

...
...

. . .
...

0 0 · · · γp


.

This model for the response y is the integrated form of the mixed effects model as below:

yi|βi, bi ∼ N(Xiβi +Xibi, τ
−1
e Ii)

bi ∼ N(0, (τeΓ)−1). (2.3)
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In the model, βi is modeled with a DP, which allows for clustering of individuals. The vector

of the mean trajectory corresponding to times ti is X(ti)βi. If βi = βi′ , any two individuals

i and i′ are in the same cluster.

The vector bi of mixed-effect coefficients is integrated out and posterior sampling is based on

the corresponding marginal likelihood. It is worth mentioning that the covariance structure

for bi is (τeΓ)−1. Conventionally, we model the mixed effect with bij ∼ N(0, τbj) for j =

0, 1, . . . , p. Here we reparameterized its precision for calculation simplicity. We let γj = τbj
τe

.

γj can be interpreted as the precision ratio between mixed effect coefficient bij and white

noise εi for all j = 0, . . . , p. As previously mentioned, the mixed-effect X(ti)bi is used to

account for the variation of individual trajectories within cluster.

With the model above, we can write the likelihood. Let Θ denote the collection of parameters

in the model. The likelihood is

L(Θ) =
n∏
i=1

f(yi|Θi)

∝
n∏
i=1

τ
ri
2
e |Wi|−

1
2 e−

τe
2
(yi−Xiβi)TW−1

i (yi−Xiβi) (2.4)

2.3.2 The Dirichlet Process

As discussed in Section 1.1.2, Sethuramann (1994) constructed the stick-breaking process.

Let θi
iid∼ G0 and wi

iid∼ Beta(1, α), where θi ⊥ wi, for all i = 1, 2, . . .; and define Pi =

wi
∏i−1

j=1(1−wj). Sethuramann defined a random probability measure G(·) =
∑∞

i=1 Pi δθi(·),

and established that G ∼ DP(α,G0). This representation makes clear that the DP is discrete

with probability one.
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Consider model (2.2). We write the density function below using the representation of the

DP:

f(yi|G) =
∞∑
j=1

PjfN(yi|Xiβj, τ
−1
e Wi)

where βj
iid∼ G0 and fN(·|µ,Σ) is the density function for a multivariate normal distribution

with mean µ and covariance Σ. This expression makes clear the nature of the DPM.

Now consider the joint marginal distribution of β = {β1, . . . , βn}, which is complex. However,

it is well-known that the marginal full conditional distribution for βi given all other β values,

β−i = {βj : j = 1, . . . , i− 1, i+ 1, . . . , n}, is characterized by the Polya Urn scheme (section

1.1.3). The conditional distribution has the following form using Equation (1.7):

βi|β−i ∼ c
( n∑
j=1,j 6=i

δβj(βi) + αG0(βi)
)

where c is a normalizing constant.

It is thus possible to sample β using Gibbs sampling. This conditional distribution makes

it possible to derive the full conditional distributions:

βi|β−i,y ∼ c
[∑
j 6=i

fN(yi|βj)δβi(βj) + α
(∫

f(yi|β)dG0(β)
)
Hi(βi)

]
(2.5)

where Hi is the posterior distribution of β based on the single observation yi and the prior

G0. The pdf of Hi is h(β|yi) = fN (yi|β)G0(dβ)∫
fN (yi|β)G0(dβ)

.

Those results will be important for obtaining Markov chain Monte Carlo (MCMC) approxi-

mation to the joint posterior distribution, which is discussed in Section 2.4.

We observe here that sampling from Equation (2.5) will be easy if the integral
∫
f(yi|β)dG0(β)

can be calculated analytically, and if the distribution Hi is easy to sample. Even if Hi is
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not a known distribution, it is possible to sample from it using, for example, the Metropolis-

Hastings algorithm. However, a key impediment to sampling from Equation (2.5) has been

the potential tractability of the integral
∫
f(yi|β)dG0(β). A number of approaches have been

considered, including Bush and MacEachern (1996) [6], MacEachern and Muller (1998) [22],

Neal (2000) [24], Jain and Neal (2002) [17]. Neal (2000) summarized methods up to that

point in time and also provided novel methods, in particular his Algorithm 8, which were

currently used by many. In this chapter, we use a conditionally conjugate prior G0 and

the integral can be computed analytically. We discussed Neal’s Algorithm 8 in Chapter 1,

however we do not use it in this chapter.

Neal (2000) and others before him also realized that the convergence of the MCMC algorithm

using Equation (2.5) could be slow, and proposed his Algorithm 2 to improve efficiency. The

problem is that there are often groups of individuals who are associated with the same β

value with high probability, due to discreteness of the DP. A change in the β value for such

a group would occur only rarely, since the algorithm can not change the β value for more

than one individual simultaneously. Accomplishing such a change requires passage through

a low-probability intermediate state in which individuals in the group do not all have the

same β value.

The main idea in improving the original algorithm was to re-sample β = {β1, . . . , βn} at

each iteration of a Monte Carlo sampler. It was noted that knowing β is equivalent to

knowing S = {s1, . . . , sn} and β? = {β?1 , . . . , β?K}, where β? constitutes the distinct β values

(K ≤ n), and where si is the label identifying which value in β? corresponds to individual

i. For example, let n = 5 and K = 3. If we have the label values S = {1, 2, 2, 1, 3}, and

the distinctive β values β? = {1.2, 4.1, 5.0} with each corresponding to the labels {1, 2, 3}

respectively, then we know β = {1.2, 4.1, 4.1, 1.2, 5.0}.

The solution to the problem is to use the CRP representation of the DP, which has been dis-

cussed in Chapter 1. A Dirichlet distribution mixture model of order L has been established
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to be asymptotic to the DP (α,G0) as L→∞. The following model is used as in Chapter 1

to obtain a nice form for sampling (∫ ,φ).

si|p ∼ Multinomial(p1, . . . , pL)

p1, . . . , pL ∼ Dirichlet(
α

L
, . . . ,

α

L
)

β?s ∼ G0

G0 = Normal(uβ? ,Ξ
−1
β? ) (2.6)

By integrating over the proportions (p1, . . . , pL), and letting L → ∞, we obtain the condi-

tional distribution for si in the following form:

P (si = s|S−i) =


ns,−i
n−1+α , if s ∈ S−i

α
n−1+α , otherwise

(2.7)

where S−i = {sj : j = 1, . . . , i− 1, i+ 1, . . . , n}, and ns,−i is the number of sj which satisfies

sj = s for all sj ∈ S−i.

In the DPM model, we have the full conditional distribution for the cluster label si for Gibbs

sampling as below:

P (si = s|S−i, yi,β?) ∝

 ns,−i f(yi|β?s ) if s ∈ S−i

α
∫
f(yi|β?) dG0(β

?) if s /∈ S−i

(2.8)

With prior β?s ∼ G0 in Equation (2.6), the full conditional distribution for β?s is obtained
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using:

f(β?s |S,y) ∝
( ∏
i:si=s

fN(yi|β?s )
)
dG0(β

?
s ) (2.9)

In this subsection, we derived the full conditional distributions used in the Gibbs sampler

for the parameters involved in the DP. They are based on Algorithm 2 in Neal (2000). In

section 2.4, we will introduce the detailed posterior sampling procedure.

2.3.3 Choice of basis function

An important aspect of the model is the choice of basis functions, Xi(t), which are used to

model a potentially non-linear relationship between response y and time t. It is important

to choose an appropriate basis and its function space, since they could affect the MCMC

convergence significantly.

As discussed in Chapter 1, the choice of basis functions is also related to the study design.

The SWAN study, for example, has a balanced design and the hormone observations were

collected annually from all women. In the data analysis, we decided to use orthogonal

polynomial basis functions up to cubic terms.

We chose to use orthogonal polynomials for balanced data and Legendre polynomials for

unbalanced data in all data analyses in the chapter. Both types of the basis functions are or-

thogonal. We prefer such basis functions due to simplicity. Recall that the non-marginalized

model (2.3) specified bi ∼ N(0, τ−1e Γ−1). Due to orthogonality of the basis functions, we have

specified the covariance matrix (τeΓ)−1 to be diagonal. Otherwise, we would require more

parameters to model the covariance structure. In addition, having orthogonal basis func-

tions takes noise out of the estimation processes leading to more efficient MCMC numerical

approximations.
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2.3.4 Prior Specification

We complete the specification of our model by assigning priors to all parameters. Let

γ = {γj : j = 0, 1, . . . , p} and S = {si : i = 1, . . . , n}. The parameter space is Θ =

{S,β, τe,γ, α}. Note we use β = {β?1 , . . . , β?K} to denote the collection of distinct βi’s in-

stead of β? in order to simplify notation.

Both S and β are latent variables associated with the DP. We only need to assign priors to

τe, γ and α. The gamma prior has been used for them since they are all positive,

τe ∼ Γ(
ae
2
,
be
2

)

γj ∼ Γ(
aγ
2
,
bγ
2

), j = 0, 1, . . . , p

α ∼ Γ(aα, bα)

G0 = Normal(uβ,Ξ
−1
β )

We let ae = 2.02 and be = 0.02. It is a diffuse prior since the distribution has mode ae−2
be

= 1

and variance 10000. Figure 2.1 shows the probability density of this gamma distribution,

which shows the prior assigns probability to a large range of τe. We also let aα = aγj = 2.02

and bα = bγj = 0.02 for all j = 0, 1, . . . , p. In addition, we use uβ = (0, 0, 0, 0)′ and

Ξβ = diag(0.01, 0.01, 0.01, 0.01).

On some occasions, we might be interested in assigning informative priors to {γj : j =

0, 1, . . . , p} since it represents the variation of individual trajectories within cluster. For

example, if we let γj →∞ for all j, model (2.2) is simplified to model (2.1) because Wi → Iri .

Therefore, we can control this variation by assigning an appropriate prior to γ. We discuss

this in detail in Appendix A1.
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Figure 2.1: Probability density function for Gamma(2.02
2

, 0.02
2

)

2.4 Numerical Approximation to Posterior Distribu-

tions

This section presents algorithms used to draw posterior samples and make statistical in-

ferences. We first list the full conditional distributions, and subsequently specify several

algorithms used for Gibbs sampling. Then we briefly introduce the Label Switching issue

and how we deal with it. It is a common issue in the inference for Bayesian mixture models.

We will discuss it in detail in the next chapter. In the last subsection, we focus on statistical

inferences.
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2.4.1 Posterior Distribution

Recall the model approximation in 1.14. The model we built is

yi|si,β ∼ Nri(Xiβsi , τ
−1
e Wi)

si|p ∼ Multinomial(p1, . . . , pL)

p1, . . . , pL ∼ Dirichlet(
α

L
, . . . ,

α

L
)

βsi ∼ G0

G0 = Np+1(µβ,Ξ
−1
β ) (2.10)

with L→∞, where β denotes the collection of clusters’ βs values.

The posterior distribution for parameters Θ = {τe,γ,β,S, α} could be derived from the

likelihood and prior distributions introduced above using

P (Θ|y) =
P (y|Θ)P (Θ)

P (y)
∝ L(Θ)P (Θ)

An MCMC sampling scheme is used to draw samples from posterior distribution. We employ

a combination of Gibbs sampling (Gelfand and Smith 1990) and Metropolis within Gibbs

sampling, plus we use a Gibbs sampler within two of the Gibbs sampling steps in order to

easily sample the parameters α and {γj, j = 0, . . . , p}.

We assigned a conditionally conjugate prior to τe, and the full conditional distribution is:

τe|else ∼ Γ
[(ae + n)

2
, (2.11)(

be +
∑

i(yi −X(ti)βsi)
T
(
X(ti)Γ

−1X(ti)
T + Iri

)−1
(yi −X(ti)βsi)

)
2

]
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We obtain the full conditionals for si and βs as follow using Equation (2.8):

P (si = s|else) ∝


ns,−if(yi|βsi), if s ∈ S−i

αHi(yi), if s 6∈ S−i

βs|else ∼ N(ũβ, Ξ̃
−1
β ) (2.12)

where,

Hi =

∫
f(yi|β,Θ)dG0(β)

= N(yi | Xiµβ,
1

τe
Wi +XiΞ

−1
β XT

i )

ũβ = uβ +
( ∑
i:si=s

τeX
T
i W

−1
i Xi + Ξβ

)−1( ∑
i:si=s

τeX
T
i W

−1
i (yi −Xiµβ)

)
Ξ̃β =

∑
i:si=s

τeX
T
i W

−1
i Xi + Ξβ

Wi = Iri +XiΓ
−1XT

i

2.4.2 Gibbs within Gibbs Algorithm

The conditional distributions for α and γj, j = 0, . . . , p are unrecognizable. We use a method

which we call “Gibbs-in-Gibbs” to draw posterior samples for them.

The idea of this so-called “Gibbs-in-Gibbs” sampler comes from the sampling method of the

smoothing parameter α in the DP by Escobar and West (1995). Let the prior distribution of

α be Γ(aα, bα). We can sample it with two conditional distributions as below. By considering
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an auxiliary variable η, the following trick facilitates the posterior MC sampler;

η|α,K ∼ Beta(α + 1, n)

α|η,K ∼ πηGamma(aα +K, bα − log(η))

+ (1− πη)Gamma(aα +K − 1, bα − log(η)) (2.13)

where πη
1−πη = aα+m−1

n(bα−log(η)) . We tried several different values for (aα, bα), and found the clus-

tering results were insensitive to the prior distribution of α over the range considered. In

the analysis, we have used aα = bα = 0.1 and aα = 2.02, bα = 0.02 in the models.

Eacobar and West (1995) has used it to sample α. The full conditional distribution of α is

P (α|K) ∝ p(α)αK−1(α+n)
∫ 1

0
xα(1−x)n−1 dx. Even though it is not recognizable, it implies

that P (α|K) is the marginal distribution from a joint for α and a continuous quantity η such

that

P (α, η|K) ∝ p(α)αK−1(α + n)ηα(1− η)n−1

Hence, we could use an auxiliary variable η in the sampling procedure. We have two recog-

nizable conditional posteriors P (α|η,K) and P (η|α,K) shown in Equation (2.13). At each

Gibbs iteration, α is sampled in two steps using (2.13): (1) first sampling an η value from

the beta distribution; (2) and then sampling the new α value from the mixture of gamma

distributions.

γ could be sampled using the same idea as for α. Note our model (2.2) is a marginalized

mixed model from (2.3). Taking the mixed term bi as an auxiliary variable, we can write the

probability density function for yi in the following form, where fN(·|µ,Σ) is denoted as the

probability function of multivariate normal distribution with mean vector µ and covariance
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matrix Σ;

f(yi|Θ) = fN(yi|Xiβsi , τ
−1
e Wi)

=

∫
fN(yi|Xi(βsi + bi), τ

−1
e Iri) fN(bi|0, τ−1e Γ−1) dbi

Then, we can write the posterior distribution of γ in a integral form as below.

P (γ|else) ∝
( n∏
i=1

∫
fN(yi|Xi(βsi + bi), τ

−1
e Iri) fN(bi|0, τ−1e Γ−1) dbi

)
· p(γ)

Let B denote the mixed terms, B = {bi : i = 1, . . . , n}. Then P (γ|else) could be regarded

as the marginal distribution of a joint of γ and B;

P (γ, B|else) ∝
( n∏
i=1

fN(yi|Xi(βsi + bi), τ
−1
e Iri) · fN(bi|0, τ−1e Γ−1)

)
· p(γ)

With the mixed terms B as auxiliary variables, it becomes much easier to draw posterior

samples for {γj, j = 0, . . . , p}. Two conditional distributions could be obtained from the

joint distribution P (γ, B|else);

bi|y,Θ ∼ N(µ̃bi , Ξ̃
−1
bi

), i = 1, 2, . . . , n (2.14)

γj|y,B, else ∼ Γ(ãγj, b̃γj), j = 0, 1, . . . , p (2.15)
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where

µ̃bi = (XT
i Xi + Γ)−1XT

i (yi −Xiβsi)

Ξ̃bi = τe(X
T
i Xi + Γ)

ãγj =
1

2
(aγj + n)

b̃γj =
1

2
(bγj + τe

n∑
i=1

b2ij)

At each Gibbs iteration, we sample bi from the normal distribution (2.14) for all i = 1, . . . , n,

and then γj from the gamma distribution (2.15) for all j = 0, 1, . . . , p.

With all the full conditionals listed above, the Gibbs sampling algorithm for posterior sim-

ulation consists of nine steps:

1. Assign appropriate initial values to all the parameters Θ0 = {τ 0e , β0
i , α

0,Γ0}. Then we

obtain all s0i and β0
si

values based on β0
i .

2. At iteration l, draw a new τ le with Equation (2.11) using parameter values from previous

step.

3. Sample cluster membership sl with posterior distribution sli|yi, τ le, βl−1, αl−1,Γl−1 given

in Equation (2.4.1) for all i = 1, . . . , n.

4. Count the number of clusters K l.

5. Update βs with βls | y, sl, τ le, αl−1,Γl−1 using Equation (2.4.1) for all s = i, . . . ,K l.

6. Obtain βli with βli = βls=si .

7. Sample ηl and αl using Equation (2.13).
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8. Sample auxiliary parameter bli from conditional posterior bli|yi, τ le, βli, αl,Γl−1 using

Equation (2.14) for all i = 1, . . . , n.

9. Sample γlj from γlj|y, τ le, βli, αl, Bl using Equation (2.15).

10. Repeat Step 2-9 iteratively for l = 1, . . . , NMC to reach convergence.

2.4.3 Statistical Inference

We are interested in making inferences about parameters Θ = {τe,γ,β,S, α}, especially how

the individuals are clustered. However, it is not easy to draw inferences directly from MCMC

output using ergodic averaging. The main challenge in Bayesian analysis with mixtures is

the non-identifiability of the mixture components, since the labels {si : i = 1, . . . , n} have

no physical meaning in terms of the model. When there are K components in the model,

we can find K! equivalent labelings for the posterior distribution of β. That is, the posterior

distribution is invariant to permutations in the labeling of the parameters. That can cause

problems when we try to estimate parameters that relate to individual components of the

mixture.

Due to identifiability issues mentioned above, we are not able to make inference directly

from MCMC output for the parameters related to individual components of the mixture,

which are S = {si, i = 1, . . . , n} and β = {βs, s = 1, . . . , K}. However, we still can draw

inferences directly using ergodic averaging for τe, γ = {γj, j = 0, 1, . . . , p} and α since they

are not involved with the cluster information. We call them global parameters of the model.

The key goal is to identify the latent clusters from a large number of MCMC samples, say

Nmc, taken from the joint posterior distribution. We use a hierarchical clustering algorithm

that was proposed by Medvedovic and Sivaganesan (2002) and used by Bigelow and Dunson

(2005). A “pairwise distance” measure rij is defined between any two individuals i and j as
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follows:

rij =

∑Nmc
iter=1 I(siteri 6= siterj )

Nmc

. (2.16)

It is the proportion of iterations in which i and j were not classified in the same cluster. Then

the minimum distance rij = 0 means the two individuals have the same mean trajectory and

they were clustered together throughout the MCMC iterations, and the maximum rij = 1

means the two individuals have different trends and they were never in the same cluster.

A dendrogram could be made with the pairwise distances obtained above. A dendrogram is

a tree diagram used to illustrate the arrangement of the clusters produced by a hierarchical

clustering method. It is created by the linkage function which specifies the dissimilarity of

sets of individuals as a function of the pairwise distances in the sets. Some commonly used

linkage functions include complete/maximum linkage, single/minimum linkage and average

linkage. In our analysis, we chose complete linkage to make the dendrogram.

We require a threshold distance for the dendrogram to cluster the individuals based on the

pairwise distances. Individuals with distance smaller than the threshold are allocated to the

same cluster. Thus the threshold is the minimum distance allowed between two individuals

in different clusters. A large threshold yields few clusters, and a small threshold leads to

many clusters. The posterior distribution of K could be helpful in choosing the appropriate

threshold. If the posterior distribution of cluster number K has the mode K0, we could pick

the threshold so that around K0 clusters are obtained from the dendrogram.

It is worth mentioning that no method could be ideal, because of the impossibility of directly

obtaining a result from the Markov Chain due to non-identifiability of the mixture compo-

nents. Researchers have made efforts to deal with label switching, and have attempted to

draw inferences about S directly from MCMC output. But that is difficult, especially for an

infinite mixture model.
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Inference about β is of great interest since each βs provides the mean trajectory of cluster

s for all s = 1, . . . , K. But it can not be estimated easily with ergodic averaging due to the

label switching issue. The difficulty lies in identifying the posterior samples for each cluster.

In the next chapter, we focus on the label switching issue in Bayesian infinite mixture models

and will present our method for constructing the posterior samples for β. In this chapter,

we only use the result obtained from the method when it is needed.

In longitudinal data analysis, we are often interested in predicting the individual’s future

response based on the trajectory trend. For example, in our hormone problem, it would

be interesting to predict hormone values after menopause based on a woman’s hormone

responses collected up to some current time, say tiri for woman i. Let ỹi be the observations

that are to be predicted for individual i, and let yi be the observations already collected from

this individual. Then the prediction is accomplished using the predictive density

f(ỹi|yi) =

∫
f(ỹi|Θ, yi)p(Θ|y) dΘ

2.5 Simulations

In this section, we illustrate the validity of our clustering method by applying it to simulated

datasets. We first simulate two datasets. One is balanced without missing values (denoted

as SimData 1), and the second is unbalanced with missing values (SimData 2). We apply

our model to both in order to check model validity. Then we compare the clustering per-

formance of our clustering model (2.2) with that of model (2.1), which has an independence

assumption, using a third simulated dataset (SimData 3). We finally discuss an MCMC

convergence problem caused by over-fitting.
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2.5.1 Model Validity with Balanced Complete Data

The simulated data are drawn from three clusters with different mean trajectories to show

how the method works. One hundred individuals with 1100 observations in total were simu-

lated from the three clusters of size 61, 28 and 11, respectively. The time scale for the longi-

tudinal data was defined at 11 discrete points {−3,−2, . . . , 7}. At each time point, tij, j =

−3,−2, . . . , 7, the response yij was generated for each individual i, i = 1, . . . , n. This dataset

is balanced and complete. For an individual i that belongs to group s, s = 1, 2, 3, the response

yi was generated using mixed effects model with yi = Xiβs +Zibi + εi, where random errors,

εi, were generated as N(0, 1). We generate the mean curve Xiβs for each cluster, s, using or-

thogonal basis functions up to order 3, and the true coefficients, β, for the three clusters are

(1.5, 4,−1,−0.5)′, (0.25, 2,−0.5, 0)′ and (0, 3,−3,−1.5)′, respectively. The random effects

within cluster are simulated with the mixed terms Zibi; Zi is the design matrix of orthogonal

basis functions up to degree 5, and bi ∼ N6((0, 0, 0, 0, 0, 0)′, diag((1.5, 2, 1.5, 1, 0.1, 0.1)2)).

The true value of γ is (0.44, 0.25, 0.44, 1, 100, 100). The combined simulated data are plotted

in Figure 2.2.

Note that we used Zi up to degree 5 to generate mixed effects instead of using Zi = Xi

with order 3. We would like to “challenge” our model by generating extra variation that the

model does not account for. We want to see whether it still performs well in such a case.

We ran model (2.10) in R for 20000 iterations on a desktop equipped with Intel Core2 Duo

CPU E6550 @ 2.33GHz and 3GB RAM. It took us about 2 hours to get the output. Due to

lack of identifiability, we are not able to make inferences directly from the MCMC output for

the parameters on the cluster level, namely for si:i=1,...,n and βs:s=1,...,K . However, we still can

make inferences directly for other parameters including τe and γj:j=0,1,...,p. Table 2.1 shows

the parameter estimates and 95% posterior probability intervals. Since the model only used

degree 3 for the random effect within cluster, there is no estimate for γ4 and γ5. In addition,
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Figure 2.2: Sphagetti plot of the simulated data, SimData 1.
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Table 2.1: Parameter estimates for simulated data, SimData 1.
95% PI

Parameter Truth Mean Median Lower Upper
τe 1 1.0 1.0 0.95 1.06
γ0 0.44 0.41 0.40 0.27 0.59
γ1 0.25 0.22 0.22 0.14 0.32
γ2 0.44 0.61 0.59 0.35 0.95
γ3 1 0.84 0.81 0.53 1.31
γ4 100
γ5 100

Table 2.2: Posterior Distribution of K for SimData 1
Cluster Number K 3 4

Posterior Probability 0.979 0.021

the posterior mean and median of γ2 and γ3 are somewhat off from the truth even though

they both are within 95% probability intervals.

Inference for the number of clusters K can also be used to assess the validity of the clustering

result. We have three clusters in truth for the dataset. The posterior distribution of K in

Table (2.2) shows the number is 3 with probability 0.979, which fits the truth very well.

In addition, this posterior distribution of K is useful for our analysis using the hierarchical

clustering method. Information about K helps in choosing the appropriate threshold.

We use hierarchical clustering with complete linkage to summarize the clustering information

from the MCMC output. The dendrogram (2.3) was made based on the “pairwise distances”

rij with complete linkage. The threshold was chosen to be 0.65 to obtain 3 clusters since

K = 3 has the largest posterior probability. The dendrogram shows that the 3 clusters were

well separated and identified with our model. We construct Table 2.3 to show the accuracy

of our clustering outcomes; 93% of individuals are correctly clustered.

Figure (2.4) shows that our model can identify the three trajectory patterns in truth. The

allocation of the individuals from our model (lower plot) fits the truth (upper) very well.

Considering the similarity of the 3 cluster mean trajectories, the model performance is sat-
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Figure 2.3: Dendrogram constructed according to hierarchical clustering model for SimData
1 using complete linkage with cutoff=0.65

Table 2.3: Classification Accuracy: SimData 1
Model Classification

Cluster 1 Cluster 2 Cluster 3
Cluster 1 55 2 4

Truth Cluster 2 1 27 0
Cluster 3 0 0 11
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isfying. In addition, Figure (2.5) compares the estimated cluster mean trajectories with the

truth. The three true trajectories are plotted as solid lines, and the fitted mean curves with

95% probability bands in dashed lines. The plots show the three trajectory trends were well

estimated by the model.

2.5.2 Model Validity: Unbalanced Incomplete Data

In longitudinal studies, missing data are very common due to missed appointments, dropouts,

and data analysis occurring before the study has been completed. For example, in the SWAN

data, the hormone observations after FMP are missing for women who have not reached it

yet at the time of data analysis. In addition, many longitudinal studies do not have balanced

designs. In that case, the time scale has to be treated as continuous, and we have to use

continuous basis functions to fit the data. In this simulation study, we are showing the model

validity using Legendre basis functions applied to unbalanced data with missing values. The

simulated data are shown in Figure (2.6).

The dataset was generated in two steps. We created a complete dataset with 100 individuals,

in which each individual has 10 observations at different times for different individuals. The

time of the observations ranges from -1 to 1. We generated individuals from 3 clusters with

mean trajectory generated with Legendre basis functions up to degree 3. Their coefficients

were (2, 4.5,−1,−0.5), (0, 2,−0.5, 0) and (0, 2.5,−2,−2). We also generated individual vari-

ation within clusters and white noise in the data in a similar manner as above. The true

values of the parameters were τe = 1 and γ = (1, 0.44, 4, 1.78).

We then assign missing data to 50 individuals who were randomly selected out of the 100.

The missingness was created as follows: for each selected individual i, a number j was

randomly sampled from {2, 3, . . . , 10}, and then all the observations on and after tij were set

to be missing for the individual.
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Figure 2.4: Sphagetti plots for SimData 1. Upper: true clustering with true mean trajectories
using solid lines. The individuals are plotted with different colors indicating different cluster
memberships. Lower: clustering of the individuals from the model.

Table 2.4: Parameter estimates for unbalanced data, SimData 2
95% PI

Parameter Truth Mean Median Lower Upper
τe 1 1.09 1.09 0.95 1.24
γ0 1 1.25 1.16 0.6 2.4
γ1 0.44 0.42 0.4 0.27 0.65
γ2 4 3.41 3.13 1.62 6.63
γ3 1.78 2.04 1.9 1.16 3.6
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Figure 2.5: The mean trajectories of the 3 clusters for SimData. Solid: true curves; Dashed:
the estimated cluster mean trajectories with 95% probability bands
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Figure 2.6: Scatterplot of unbalanced simulated data with missing values, SimData 2.
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Table 2.5: Posterior Distribution of K for unbalanced data, SimData 2
Cluster Number K 3 4 5 6

Posterior Probability 0.888 0.102 0.009 0.001

Figure 2.7: Dendrogram based on the hierarchical clustering model for SimData 2

Table 2.4 gives the posterior inferences for the global parameters, which shows reasonable

model fitting since all the true parameter values are captured by 95% probability intervals.

Then we obtain the clustering information for the individuals with the posterior distribution

of cluster number K in Table 2.5 and the corresponding dendrogram in Figure 2.7. The

clustering accuracy is presented in Table 2.6, and 75% of the sample has been correctly

classified. Precision is not as good as it was for the balanced data. This is not surprising

considering the extent of missing data, which was 23.9% . We found that the majority of

mis-classified individuals had missing data. We also made the spaghetti plots in Figure 2.8

to show that our model still identified the three trajectory trends well.
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Table 2.6: Classification Accuracy for SimData 2
Model Classification

Cluster 1 Cluster 2 Cluster 3
Cluster 1 28 5 6

Truth Cluster 2 5 25 2
Cluster 3 3 4 22

Figure 2.8: Sphagetti plots of the individuals with clustering for SimData 2. Upper: true
clustering. The individuals are plotted with different color indicating different cluster mem-
bership. The black solid lines are the mean trajectories of the three clusters. Lower: clus-
tering from the model.
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Figure 2.9: The mean trajectory of the 3 clusters for SimData 2. Solid line: true trajectory;
Dashed line: the cluster mean estimate and 95% probability bands.
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2.5.3 Model Comparison

Here we compare the model performance between our model (2.2) and model (2.1). Here we

use another simulated dataset for the analysis. Since model (2.1) is a special case of our model

(2.2) with γj → ∞ for all j = 0, 1, . . . , p. It makes it easy to apply the model by assigning

large values to γ. In this case, we assigned an strongly informative prior Gamma(aγ
2
, bγ

2
) to

γj, with aγ = 106 and bγ = 1. The posterior estimates of γj’s are all greater than 10000.

We generate a new dataset (denoted by SimData 3) for the comparison, because our cluster-

ing model (2.2) has a clear advantage over model (2.1) especially when the clusters are not

easily identified. Figure 2.10(a) is a scatterplot of the simulated dataset, SimData 3. We

can see the trend difference is hardly seen in this plot. This dataset emphasizes a difficulty

in clustering when the trajectory trends are visually indistinguishable. Usually they are cov-

ered by the measurement errors and/or the individual trajectory variations. Figure 2.10(b)

presents the three true cluster mean curves (black solid lines) together with the spaghetti

plot of the individuals in each cluster separated with different colors.

The data were sampled from three tight clusters with 73, 78 and 49 individuals in each

cluster shown in Figure 2.10(b). The dataset has 1671 observations in total for the 200

individuals, and the number of observations for each individual ranges from 2 to 10. The

x-axis is time, which consists of randomly generated continuous values from -1 to 1. The

y-axis represents a continuous time-variate response. The correlation within individuals was

induced by assigning each individual a random term, X(ti)bi, with bi drawn from

Np+1

(


0

0

0

0


,



1 0 0 0

0 1.52 0 0

0 0 0.52 0

0 0 0 0.752


)
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Figure 2.10: SimData 3. (a) is a scatterplot of all the observations; (b) gives the true cluster
mean trajectories (solid black curves) and the spaghetti plot of the individuals in each cluster
distinguished with three colors.

Table 2.7: Posterior Distribution of the Number of Clusters K using model (2.10) for Sim-
Data 3.

K 3 4 5 6
Posterior Prob 0.9283 0.0681 0.0035 0.0001

In addition, the white noise for each observation was drawn from N(0, 0.752).

Table 2.7 lists the posterior probabilities of number of clusters K, and it shows that K = 3

has the highest posterior probability 92.83%. The predictive distribution of βnew in Figure

2.11 shows the location of the three clusters clearly.

We also obtain clustering results using model (2.1) which has no mixed effects, and compare

them with the results from our model presented above.

Using model (2.1), we obtain posterior probabilities of number of the clusters in Table 2.8,

and the predictive distribution of βnew in Figure 2.12. It is clear the model is not capable

of identifying the three true trends in the simulated data, since the number of clusters K
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Figure 2.11: Predictive distribution for a new latent variable, βnew, for SimData 3. Note
the plot was made with the first two elements of the βnew vector {βnew0 , βnew1 } only, since we
could not accommodate all 4 parameters in one plot.
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Table 2.8: Posterior Distribution of the Number of Clusters K using model (2.1); SimData
3.

K 28-30 31-35 36-40 40-45
Posterior Prob 0.038 0.620 0.323 0.019

Table 2.9: Posterior Distribution of the number of clusters K using model (2.1) for SimData
1

Cluster Number K 4 5 6 7 8 9
Posterior Probability 0.018 0.263 0.313 0.312 0.090 0.003

ranges from 28 to 45 in the posterior samples. The predictive distribution also shows that

the model produced too many clusters compared to the truth.

In order to confirm our findings, we apply model (2.1) to SimData 1 and SimData 2. The

posterior distribution of cluster number K is listed in Table 2.9 for SimData 1. The model

anticipates six to nine clusters with high posterior probabilities, which is considerably more

than the truth.

We also applied the model to SimData 2. The clustering result is even messier. The posterior

distribution of K in Table 2.10 shows there were too many clusters in the model compared

with the truth.

We finally check the performance of our model applied to SimData 3. Table 2.11 shows the

inferences for global parameters; the true parameter values are all captured by their 95%

probability intervals.

The dendrogram in Figure 2.13 shows that the three clusters were clearly separated. A

Table 2.10: Posterior Distribution of the number of clusters K using model (2.1) for SimData
2

Cluster Number K 4 5 6 7 8
Posterior Probability 0.001 0.026 0.133 0.31 0.29

Cluster Number K 9 10 11 12 13
Posterior Probability 0.153 0.063 0.018 0.006 0.001
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Figure 2.12: posterior predictive distribution for a new latent variable βnew using model (2.1)
for SimData 3. Note that only {βnew0 , βnew1 } is plotted.

Table 2.11: Global Parameters Estimates for SimData 3
Para- 95% PI
meter Truth Mean Median Lower Upper
τe 0.75 0.75 0.75 0.72 0.79
γ0 0.56 0.65 0.64 0.44 0.91
γ1 0.25 0.22 0.22 0.16 0.29
γ2 2.25 2.87 2.80 1.92 4.21
γ3 1 1.21 1.20 0.91 1.59
α 0.41 0.34 0.05 1.17
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Figure 2.13: The Dendrogram for Hierarchical Clustering Algorithm with Complete Linkage
for SimData 3. The red horizontal line is the threshold at which the clusters were created,
and three clusters are apparent at the top of the tree.

Table 2.12: Clustering Accuracy for SimData 3
Clustering Result

Cluster 1 Cluster 2 Cluster 3
Cluster 1 53 16 4

Truth Cluster 2 1 77 0
Cluster 3 7 1 41

cutoff 0.85 of the mutual distance was chosen to obtain the clustering information of the

individuals.

Table 2.12 shows the accuracy of the clustering result for the simulated data; 171 out 200

individuals were correctly clustered. Considering the close proximity of the three clusters,

85.5% accuracy rate is good. In addition, comparing Figure 2.14 and Figure 2.10b, it is clear

that the three true clusters were identified by our model.
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Figure 2.14: Clustering Results for SimData 3. Colors separate the individuals into different
clusters.

2.5.4 Over-fitting

We have mentioned that over-fitting could be a major issue in estimating trajectory coeffi-

cients for individuals if we use individual coefficients for clustering. Here we apply such a

model listed below to SimData 2 to highlight the issue. In this model, the DPM is applied

to βi, in which the individual curve is estimated based on yi only. Since the data for some

individuals are sparse in the unbalanced dataset, we believe the estimated βi’s could be bad

leading to problematic clustering.
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Table 2.13: Posterior Distribution of K for two Markov Chains using model (2.17) with
SimData 2

Chain 1 Chain 2
Cluster Number K 4 5 6 7

Posterior Probability 0.999 0.001 0.992 0.008

The model is:

yi|βi ∼ Nri(Xiβi, τ
−1
e Iri)

βi|µβi ∼ Np+1(µβi , (τeΓ)−1))

µβi |G
iid∼ G

G ∼ DP (α,G0)

G0 = Np+1(µβ,Ξ
−1
β ) (2.17)

Using this model for SimData 2, we had convergence problems. We ran the model twice

with different initial values for MCMC. The posterior distribution of K was different for the

two chains shown in Table 2.13. In chain 1, there were 4 clusters in most iterations of the

MCMC. But there were 6 in chain 2. Neither chain converged to the true number of clusters

3. In addition, inferences for other parameters were incorrect since all the 95% probability

intervals failed to cover the true values used for simulating the data. For example, the true

value of τe is 1, but its 95% PI is (0.29, 0.35) for chain 1 and (0.3, 0.36) for chain 2. All of

the issues made it impossible to obtain clustering results based on this model for SimData

2.
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Table 2.14: Global Parameter Estimates for the model applied to logE2 data.
95% PI

Parameter Mean Median Lower Upper
σe 0.67 0.67 0.66 0.70
γ0 1.64 1.63 1.14 2.21
γ1 16.67 11.63 3.45 69.40
γ2 3.40 2.87 1.59 7.95
γ3 31.59 23.73 11.27 93.06

2.6 SWAN Data Analysis

The Study of Women’s Health Across the Nation (SWAN) is a multi-center, multi-ethnic,

prospective study of the menopausal transition, which is designed to study women’s health

during this period. Hormone data were collected on women during this time period. In

the dataset, 11 years of E2 (Estradiol) values were collected annually from 928 women. In

addition, the time of Final Menstrual Period (FMP) was also recorded for each woman. In

the analysis, we re-adjusted the time scale by setting ti = 0 to be the year of FMP for woman

i. As a result, the time scale ranges from -10 to 9, and hormone observations are missing in 9

out of the 20 years for each woman. Figure 2.15 shows the scatterplot of the log transformed

E2 hormone data after time re-adjustment. Ultimately, we are interested in characterizing

hormone profiles of women during menopause.

We applied our clustering model to the E2 hormone data using orthogonal polynomial basis

functions for the trajectories. The analysis yields several interesting results. Inferences for

the global parameters are listed in Table 2.14. Among the estimated γj, j = 0, . . . , p values,

the estimate for γ0 = 1.64 is the smallest and much lower than the other 3. This indicates

the individual variation within cluster mostly lies on the intercept of the curve, since γj’s

are precision parameters. The trajectory trend does not have much variation within cluster.

We identified four clusters with different trajectory trends. Table 2.15 shows that the pos-

terior probability for K = 4 is 89.1%.
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Figure 2.15: Scatterplot of logE2 Data from SWAN. The time scale has been re-adjusted to
tFMP = 0.

Table 2.15: Posterior Distribution of the Number of Clusters K for logE2 hormone data
Cluster Number m 3 4 5 6

Posterior Probability 0.046 0.891 0.062 0.002
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Figure 2.16: Dendrogram for Hierarchical Clustering Algorithm with Complete Linkage,
based on logE2 hormone data from SWAN.

We also obtained clustering results for women using the mutual distance defined in Equation

(2.16). Figure 2.16 is the corresponding dendrogram for the hierarchical clustering model

with complete linkage applied to the E2 data, where the 4 clusters were seen to be clearly

separated. The spaghetti plots in Figure 2.17 display the women’s logE2 data in each of the

4 clusters. It is clear that the mean trajectory trends showed in the four plots are appreciably

different from each other, and the women in the same cluster have similar trends. The model

appears to cluster women appropriately based on their E2 profiles.

2.7 Model Expansion and Future Work

In this section, we discuss the potential future work that could be extended from our cluster-

ing model. In the first subsection, we consider different covariance structures to account for
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Figure 2.17: Spagetti plots for the women in each of the four clusters obtained based on
their logE2 profiles. The plots are ordered according to cluster size instead of cluster label.
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the individual variation instead of mixed effects. In the second, we consider a more flexible

model that allows the order of the basis functions to change for different clusters.

2.7.1 Covariance Structure

A major positive feature of model (2.2) is the inclusion of mixed effects which are used to ac-

count for individual variation within clusters. The inclusion appreciably improves clustering

result compared with model (2.1). However, if we compare the mathematical form of model

(2.2) with model (2.1), they are not very different. The only difference is in the covariance

structure for yi. In model (2.2), the covariance has the form τ−1e Wi = Iri +XiΓ
−1XT

i .

We can also use other covariance structures for the model. They may not have the same

clear statistical meaning as random-effect terms, which allow for variation in individual

trajectories. But it does account for the correlation between observations from the same

individual. For example, we could specify a covariance structure with compound symmetry

for yi as follows:

Cov(yi) = τ−1



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


.

where var(yij) = τ−1 and cov(yij, yij′) = ρτ−1, j 6= j′. That is equivalent to having a

mixed-effect model with intercept only.

There are many choices for the correlation structure. Autoregressive and continuous au-

toregressive are another two possible correlation structures. In addition, we can also use

stochastic processes to model the serial correlation among the observations from the same

individual, provided the process could be marginalized analytically.
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2.7.2 Changing the Degree of the Basis Function

It is important to select an appropriate set of basis functions for cluster analysis. We have

chosen the basis functions up to cubic terms (p = 3) for our model. However, this may not

be the ideal choice.

We illustrate using clustering results for the log(E2) profiles from the SWAN data analysis

as an example. In Figure 2.18, we show the four clusters of log(E2) profiles and the cluster

mean trajectories (plotted in black). Even though the trends appear to be well described,

the curve fitting could still be improved. Take cluster 3 (blue) for example, the mean

trajectory indicates that log(E2) reaches its maximum around 6 six years before FMP and

has an increasing trend after year 5. But in fact, the actual spaghetti plots indicate that the

maximum log(E2) value is reached later than the estimate (about 3 or 4 years after FMP),

and the log(E2) trend after FMP is almost flat instead of increasing.

This inaccurate curve fitting is caused by the limited number of basis functions. In this

analysis, We only have 4 polynomials by choosing p = 3. The trajectory shape that is fitted

with a linear combination of the 4 basis functions is highly restricted. For cluster 3, we need

more basis functions to fit the log(E2) trend better.

On the other hand, the E2 profile is not equally complicated for each cluster. For example,

the E2 profile of cluster 2 is almost flat, and a linear curve is good enough to describe the

developmental trend. In this case, we do not want to use quadratic and higher order terms

to model its trend. Therefore, a changing p for different clusters is desired to model cluster

mean trajectories with different complexity at the same time.

We propose the limiting version of the model below to allow for varying p for different
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Figure 2.18: Spagetti plots of the women’s logE2 data in each of the four clusters together
with the estimated cluster mean trajectories.

76



clusters, which is a revision of model (2.10), namely:

yi|si,β ∼ Nri(Xi(psi)βsi , τ
−1
e Wi)

si|π ∼ Multinomial(π1, . . . , πL)

π1, . . . , πL ∼ Dirichlet(
α

L
, . . . ,

α

L
)

{βsi , psi} ∼ G0

G0 = Np+1(µβ,Ξ
−1
β )× Uniform(pmin, pmax)

In this model, we assign a DP to the joint distribution for (β, p) so that each cluster

corresponds to a (β, p) pair. The base distribution we choose for p is a discrete uniform

distribution. Based on some expert information about the trajectory, we select upper and

lower boundaries, pmin and pmax, respectively, which are the lowest and highest order we

would use in the model.

We still use the Gibbs sampler to draw posterior samples for the model parameters. The

sampling algorithms are very similar to those for model (2.10) except that we need to sample

psi from its full conditional with this model. We use reversible-jump MCMC to sample it

since the dimension of parameter space changes with psi . We introduce the algorithm in

Chapter 5 and omit details here.

Unfortunately, MCMC convergence was an issue. We believe the failure might be caused by

too much flexibility in the model. We also could not rule out the possibility of a fatal error

in the R coding. Our future work will focus on resolving the issue.
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2.8 Conclusions

We have introduced a Bayesian semi-parametric model using the DP for the purpose of clus-

tering individuals based on longitudinal data. Unlike other approaches, we integrate mixed

effects into the clustering model to account for individual variation resulting in improved

clustering performance. Furthermore, the method works with missing and unbalanced data.

In a very small simulation study, we have demonstrated the validity of the model using both

balanced and unbalanced data, and have shown the superiority of our model over others. The

application of our method to longitudinal hormone data from SWAN successfully identified

distinctive log(E2) developmental patterns.
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Chapter 3

Label Switching in Bayesian

Nonparametric Models

3.1 Introduction

Label Switching is a well-known issue arising in Bayesian analysis using mixture models. It

describes the the invariance of the likelihood under relabelling of the mixture components,

which is caused by non-identifiability of the mixture components. This leads to intractable

inference on the mixture component level. It is inappropriate to make inferences about

component-specific parameters from the MCMC samples using ergodic averaging of iterates.

This label switching appears in Bayesian non-parametric models with the Dirichlet Process

since it involves infinite mixtures. In chapter 2, we mentioned that label switching causes

difficulty in inference for the cluster mean trajectory coefficients βs. Due to the uncertain

number of mixture components, there are additional label related issues in Dirichlet Process

Mixture models (DPM). In this chapter, we discuss these issues for DPM models, and propose

a method of dealing with them.
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The structure of the chapter is as follows. In section 2, we describe the Label Switching issue

in detail and focus on its special characteristics in DPM models. We introduce notation and

illustrate the issue using the Galaxy Data (Roeder 1990 [32]), which consist of the velocities

of distant galaxies diverging from our own, and were sampled from six conic sections of

Corona Borealis. In section 3, we summarize several common relabeling strategies to remove

label switching, and specifically discuss their applicability in non-parametric models. Then

we propose our method in section 4, and demonstrate its validity and advantages.

3.2 Description of Label Switching

Let y = {yi : i = 1, . . . , n} denote a collection of independent responses. We model the

distribution from which yi is drawn as a finite K-component mixture of distributions;

p(yi|Θ) = π1 f(yi|φ1, ω) + . . .+ πK f(yi|φK , ω)

where f(yi|φ, ω) is a parametric probability density function. Define Θ = {π,φ, ω}, where

ω is a collection of global parameters, and where π = (π1, . . . , πK) and φ = {φ1, . . . , φK} are

component-specific parameters. The components of mixing probabilities π sum to 1, and

φ is a vector or a list of size K, with the kth element being the parameter or the vector of

parameters for mixture component k. The likelihood function is

L(Θ) =
n∏
i=1

[
π1 f(yi|φ1, ω) + . . .+ πK f(yi|φK , ω)

]
(3.1)

Label switching results from exchangeability of the component-specific parameters. For a

permutation ν of (1, . . . , K), ν = (ν(1), . . . , ν(K)), we define the corresponding permutation
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of the parameter space by

ν(Θ) = {(πν(1), . . . , πν(K)), (φν(1), . . . , φν(K)), ω}

Then L(Θ) = L(ν(Θ)) for any permutation ν. Therefore, if Θ̂ is the MLE, ν(Θ̂) is also the

MLE for any ν out of the K! permutations. That means the labels we assign to π and φ

are not identifiable unless we put additional restrictions on the model.

A hierarchical form of the mixture model is helpful for understanding the issue. Let si = j if

subject i in the data belongs to mixture component j. If s = {si : i = 1, . . . , n} were known,

the model would be identifiable. The vector s is regarded as latent, and the mixture model

can be re-expressed as,

yi|si,φ, ω ∼ F (φsi , ω)

si|π ∼ Multinomial(π1, . . . , πK) (3.2)

where F (φsi , ω) is the CDF corresponding to pdf f(yi|φsi , ω) above. Note the label s is a

vector of latent variables indicating cluster membership, which have no statistical meaning.

In Bayesian analysis, we often assign a symmetric prior distribution to π, which is an ex-

changeable prior for all the elements of π. Thus the posterior distribution for π and φ is

invariant to the permutation of the labels.

When s is observed, we make inferences about the component-specific parameters π and φ

using MCMC samples with the known labels. However, when s is latent, there is no guarantee

that each label consistently marks the same component through the MCMC iterations. As

a result, it is not appropriate to make inferences about the component-specific parameters

using MCMC samples.
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Figure 3.1: Histogram of the Galaxy Data

We use results presented in Stephens (2000) [35] to illustrate the problem. The Galaxy Data

were also used in his example. Figure (3.1) gives a histogram of the data. Figure 2 in the

paper illustrates the effect of label switching in the raw output of the Gibbs sampler when

fitting a finite mixture model with 6 normal distributions fitted to the Galaxy Data. Part

(a) of the figure gives the trace plots for the 6 component means using the labels. Observe

that the component means are all bouncing up and down, and that is because each label did

not mark the same component throughout the MCMC iterations. As a result, the marginal

posterior density of component means are nonsensical as shown in Part (b).

3.3 Relabelling Algorithms for Finite Mixture Models

In order to make inferences for component-specific parameters, many relabeling algorithms

have been proposed to process MCMC output to obtain the posterior samples for each

mixture component in mixture models.
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A common response to the label switching issue is to impose an identifiability constraint

(IC) on the parameter space that can be satisfied by only one permutation of a parameter

on the component level in φ. This breaks the symmetry of the prior (and thus of the

posterior) distribution of the parameters and so might seem to resolve the label switching

issue. Concerns about imposing an identifiability constraint have been discussed in Celeux,

Hurn and Robert (2000) [? ] and Stephens (1997 [36], 2000 [35]). The choice of constraint

may be artificial, unless it arises from genuine knowledge or belief about the model. Moreover,

IC does not apply to infinite mixture models, where the number of components is random.

It is impossible to match the component-specific parameters between two MCMC iterations

when they have a different number of components.

Stephens (1997 [36], 2000 [35]) proposed a relabeling algorithm to post process the MCMC

output, in which a loss function was defined based on KullbackLiebler divergence for selecting

permutations at each MCMC iteration. Stephens illustrated with examples that his method

has better performance than IC in many scenarios. But this method still does not apply to

infinite mixture models, because the algorithm uses the same idea as IC to “line up” the

mixture components by switching the labels so that each label would consistently identify

the same mixture component throughout all the MCMC iterations.

We use the Galaxy Data example to show that alignment of mixture components is precarious

even for finite mixture models. We applied a finite Gaussian mixture model using Equation

(3.2) with K = 5 components. Figure (3.2) shows two approximate predictive density

iterates, plotted with different colors. In order to specify components, we use numbers 1-5

as labels in both density curves. We can see that it is impossible to “line up” the components

with any label switching algorithm, because component 2 in red does not exist in blue, and

component 4 in red looks like the combination of 3 and 4 in blue.

An assumption for the cited label switching algorithms ([36], [35], [43]) that align components

is that the mixture components are consistent throughout MCMC iterations. However, this
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Figure 3.2: pdf iterates for the Galaxy Data
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assumption fails unless components are defined beforehand. Absent this definition, compo-

nents are determined by the random partitioning of subjects, which varies from one iteration

to another. With different partitions of subjects, the components formed by the partitions

might have different statistical meaning. There is no guarantee that the components ob-

tained in each iteration are consistent, either in number or meaning. The five components in

red are different from those in blue in Figure (3.2). It is impossible to align the components

in these two iterations, or to attach meaning to one partition versus the other.

3.4 Partitioning of Subjects

The partitioning of subjects leads to the components constructed in the Markov Chain.

The two iterations in Figure (3.2) indicate two very different partitionings of the subjects.

If we use numbers 1, . . . , n to label the Galaxy Data with increasing order, the partition-

ing is {{1, . . . , 7}, {8, 9}, {10, . . . , 44}, {45, . . . , 79}, {80, 81, 82}} for the red iteration, and

{{1, . . . , 7, 8, 9}, {10, . . . , 44}, {45, . . . , 76}, {77, 78, 79}, {80, 81, 82}} for the blue. We can see

that the constructed components are different in the two iterations due to the partitioning

of the subjects.

However, different partitionings may represent the same structure of components. Consider

another iteration from the MCMC output for the Galaxy Data, which we call the green

iteration for convenience (even though it is not plotted in Figure (3.2)). Its partitioning is

{{1, . . . , 7}, {8, 9}, {10, . . . , 44, 45}, {46, . . . , 79}, {80, 81, 82}}, which is slightly different from

the red. However, it indicates the same components as the red iteration.

Therefore, there are two different kinds of randomness to consider: (i) One is random com-

ponent membership on the individual level. A subject could be randomly assigned into any

mixture component with positive probability. Comparing the red and green iterations, sub-
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ject No.45 changes its component membership from 4 to 3. During the MCMC iterations,

an individual might change its component membership frequently, especially for the subjects

who are near the boundary of two components. In such cases, the individuals do not affect

the consistency of components. The Markov Chain retains the same set of components. (ii)

The second is randomness on the component level. An example is the change from red to

blue iteration. All subjects in component 2 in red merged into component 3 to form one

component in blue. In such cases, the component structure changes.

In order to estimate the component-specific parameters, we must know which component

configuration to select for making inferences and which iterations correspond to the same

configuration. The target configuration would certainly be the one with highest posterior

probability, or with at least high posterior probability. Our aim is to find iterations that

consistently correspond to high likelihood configurations and use them as posterior samples

for inference. Yao and Linsay (2009) [43] proposed an algorithm based on highest posterior

density in post processing. They used the parameter values at each iteration as initial values

for an EM algorithm applied to the finite mixture model to find which mode each iteration

would converge to. Then the iterations converging to the global mode would be chosen for

inference. They also show the advantages of the algorithm by comparing with relabeling

algorithms including IC and Stephen’s method.

One drawback of their algorithm is that it only applies to finite mixture models, which limits

its usage. In finite mixture models, the number of clusters, K, is pre-determined and the

partition of subjects is generally consistent throughout MCMC iterations. In Figure (3.2), if

the Markov Chain jumps from red to blue, it requires all subjects in component 2 to change

component membership to component 3, and component 4 splitting into two components,

simultaneously. This will not happen frequently, especially if the chain has found the high

likelihood configuration.

With infinite mixture models, there is more flexibility in the partitioning of subjects, since
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partitioning is random, as is the number of clusters formed. It is common that partitioning

of subjects changes frequently on the component level between MCMC iterations. In the

next section, we will focus on the label related issues in infinite mixture models.

3.4.1 DPM Models and Label Switching

The DPM model has been broadly used for clustering. We analyzed SWAN data in chapter

2, where our goal was to cluster women based on their hormone profiles. Using the notation

from the previous section, the simplest form of DPM is,

yi|φi, ω ∼ Fφi,ω

φi|G
⊥∼ G i = 1, . . . , n

G ∼ DP (α,G0)

ω ∼ P (w) (3.3)

where α is the concentration parameter and G0 is the base distribution of the DP. The global

parameters ω are assigned a prior P (w).

Label Switching arises naturally in Bayesian non-parametric models. As mentioned in the

previous chapter, a finite mixture model is asymptotically equivalent to the DPM model
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Table 3.1: Posterior Distribution of the number of mixture components
Cluster Number K 3 4 5 6 7 8 9 10 10+

Posterior Probability 0.05 0.09 0.16 0.21 0.20 0.14 0.08 0.04 0.03

(3.3) by taking the limit as L→∞. This equivalent model was mentioned in Neal (2000),

yi|si,φ, ω
⊥∼ Fφsi ,ω

si|π
⊥∼ Multinomial(π1, . . . , πL)

φsi ∼ G0

(π1, . . . , πL) ∼ Dirichlet(
α

L
, . . . ,

α

L
) (3.4)

The label switching issue applies to the DPM model above since it could be regarded as

a mixture model. Moreover, since the actual number of clusters, K, is not pre-determined

in the limit as L → ∞, there are additional label related issues caused by inconsistent

partitioning of the subjects, which will be discussed in the next section. Before we discuss

these issues, we would like to point out an important difference between LDA models in

Equation (3.4) and general finite mixture models.

In addition, in order to illustrate the label related issues in non-parametric models, we

continue with the Galaxy Data as an example. We applied model (3.3) to the data and

ran 20000 iterations with 10000 burn-in to obtain posterior samples. Figure (3.3) shows the

predictive density for the data, and Table (3.1) gives posterior probabilities for the actual

number of mixture components.
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Figure 3.3: Histogram of the Galaxy Data, overlaid with the predictive density esimate based
on a DPM model plotted with solid line. The dashed lines are 10 samples of the pdf from
MCMC output.
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3.4.2 Label Related Issues for DPM Models

As mentioned above, the number of clusters K in a DPM is a random variable and changes

from one MCMC iteration to another. This flexibility makes it essential to consider the

randomness on the component level, since it would happen frequently that one component

splits into two or two components merge into one from one MCMC iteration to the next.

This randomness would cause issues in making inferences for component-specific parameters.

In this section, we examine the Gibbs sampler used for DPM models and discuss label related

issues.

If we understand the DP sampling procedure using the Chinese Restaurant Process analogy,

there could always be new tables (components) created at each iteration, and existing tables

(components) removed from the chain. Taking model (3.4) for example, with Gibbs sampling,

si is drawn from its full conditional distribution:

P (si = s|s−i, yi,φ, ω) ∝


n−i,s
n−1+α f(yi|φs, ω) if s = sj for some j 6= i

α
n−1+α

∫
f(yi|φ, ω) dG0(φ) if s corresponds to a new label

where n−i,s is the number of subjects associated with mixture component s except subject i,

and
∑

s n−i,s = n−1. Since K is random, there are always existing components removed from

the chain and new components created. At each MCMC iteration, a component with only

one subject, say individual i, would be removed from the chain in the next iteration, since

si could be updated and moved to another existing table (component) with the probability

shown above. On the other hand, when each si is sampled, there is probability proportional

to α
n−1+α

∫
f(yi|φ, ω) dG0(φ) of creating a new mixture component for individual i. When a

new component is created, we use a new value s to label it. Note the value s is uniquely

used to mark this component. If the component is removed from the chain later, we also

remove its label value s and do not recycle it for other components.

90



Now we require a definition of “cluster” and “mixture component” in our context, because we

assign them different statistical meaning in DPM models. A cluster is a collection of subjects

who have similar characteristics based on some criterion, and it is defined by the partitioning

of subjects. A mixture component is a component distribution in the mixture model, and

it is marked by a unique label. We separate the two concepts since the number of mixture

components is allowed to be more than K in a DPM model. As discussed above, there are

always existing components dropped from the chain and new components created. If we gave

each new component a unique label, eventually the number of labels we obtained from the

Markov Chain would be much larger than the number of clusters K. Table (3.1) shows the

modal cluster number K is six with the highest posterior probability for the Galaxy Data.

However, in the 10000 posterior samples after burn-in, there were 9262 mixture component

labels in the chain.

That leads to the first label related issue in DPM models, which is that a cluster could be

associated with multiple labels. Figure (3.4) shows the trace plot of cluster mean µ’s for

the Galaxy Data. Unlike Figure (??), we are not able to plot the trace of each component

label, since there were too many (9262) mixture components in the Markov Chain after

burn-in iterations. In Figure (3.4), we show the µ trace plots for all components in the same

graph, and use different colors to indicate different components (labels). We can see that

no component survives through all MCMC iterations. It is very common for an existing

component to be substituted by a new component at some iteration. Taking the cluster

with the lowest µ value for example, there are 7 subjects belonging to it. (Note we did not

know which subjects belong to the cluster beforehand.). Table (3.2) shows the labels of the

7 subjects from iteration 7057 to 7062 in the MCMC output. We can see the cluster was

labeled as component 6431 at first. At iteration 7059, a new component with label 6474 was

generated, and it substituted for component 6431 to represent the cluster in the following

two iterations.
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Figure 3.4: Trace plot of µ of all components from MCMC output. The color is used to
indicate different component labels.

This issue is caused by non-identifiability of the mixture components, which is the same as

label switching. But in DPM models, the change of a component’s label does not require

switching with another component. It could be substituted by a new component since K is

not fixed. In Figure (3.4), the color of the trace for each cluster changed many times. Each

change means an existing component for the cluster was substituted by a new component.

So the cluster was represented by multiple components throughout the MCMC output. Ap-

parently, that would lead to problematic inference about the component-specific parameters

with ergodic averaging. For easy reference, we name this issue “label substitution”.

A second issue is that two or more clusters might merge into one mixture component in

some iterations, which we call “label merging”. Figure (3.4) and Table (3.1) show K = 6 is

appropriate for the Galaxy Data. But K is random, and the table also shows there are only
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Table 3.2: Labels of the 7 subjects in Cluster 1 from Iteration 7057 to 7062
Iteration

Subject 7057 7058 7059 7060 7061 7062

sub 1 6431 6431 6431 6431 6474 6474
sub 2 6431 6431 6431 6431 6474 6474
sub 3 6431 6431 6431 6431 6474 6474
sub 4 6431 6431 6431 6474 6474 6474
sub 5 6431 6431 6474 6474 6474 6474
sub 6 6431 6431 6431 6431 6474 6474
sub 7 6431 6431 6475 6431 6474 6474

five or less mixture components in about 30% of MCMC iterations of the Markov Chain.

In these iterations, two or more of the 6 clusters have merged. As a result, one component

(label) would represent multiple clusters. We can see that the 4 clusters in the middle merged

for a while around iteration 6000 in Figure (3.4).

A third issue is that a cluster might split into two or more mixture components in some

iterations, which we call “label splitting”. Both “label merging” and “label splitting” issues

are caused by the randomness on the mixture component level. The two issues appear when

the Markov chain jumps.

A final issue is that a mixture component might not represent any existing cluster. In the

Galaxy Data example, 9262 mixture components appeared in the MCMC output. Among

these components, most of them did not exist for very long, because they were dropped from

the Markov Chain quickly. We call them “transient components”. For example, component

6475 in Table (3.2) is a transient component, because it was created at iteration 7059 and

get dropped in the next iteration. These components have no cluster information value and

should be excluded from post-posterior inferences.

The problems discussed above are common for non-parametric models, and they all affect

the inference of the component-specific parameters using ergodic averaging.
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3.5 Our Solution to Construct Post-Posterior Samples

In this section, we propose a method to deal with the issues mentioned above, which works

well for both finite mixture models and DPM models (infinite mixture models).

In order to construct posterior samples for post processing, we develop a method constructing

what we call a reference partition of subjects. Since the clusters are formed by subjects, we

could identify a reference partition of subjects to have the highest, or modal, posterior

probability. This would surely not be easy and also, we might expect that there would

be many possible partitions with high posterior probability. In the next section, we will

introduce our method of finding a particular reference partition that appears to be quite

useful.

We then use the reference partition to deal with label switching. As mentioned above,

clusters are formed by the partitioning of subjects. Taking the Galaxy Data in Figure (3.4),

for example, it appears that there are six distinctive clusters, which are defined by their

µ values, and fundamentally by the subjects that constitute the corresponding clusters.

Therefore, our idea is, if we can track the subjects associated with each cluster throughout

the MCMC output instead of tracking the labels, we will be able to obtain the posterior

samples for each cluster without considering how it is labeled.

3.5.1 Partitioning of Subjects

In order to determine a reference partition of subjects, we extract information from MCMC

output. First, the number of partitions (clusters) can be informed with its posterior dis-

tribution. For example, we see the posterior distribution of the number of clusters K is

concentrated around six for Galaxy Data since number 5 to 8 all have moderate posterior

probability based on Table (3.1). In addition, the choice seems to be plausible from the trace
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plot for µ’s in Figure (3.4).

In the MCMC output, we do not know how the label changes from one iteration to another for

each cluster. But we do know how the subjects are clustered in any iteration. Subjects with

the same label are associated with the same component, and vice versa. Therefore, we know

the posterior probability of any two subjects being associated with the same component,

which is the proportion of the MCMC iterations where they have the same component label.

This probability could be used as a distance measure between any two subjects. Medvedovic

and Sivaganesan (2002) proposed a mutual distance between any two subjects i and j based

on the idea as follows:

rij =

∑nmc
iter=1 I(siteri 6= siterj )

nmc
(3.5)

where nmc is the number of MCMC iterations after burn-in. Then rij = 0 means the two

subjects are clustered together throughout the MCMC iterations, and rij = 1 means the two

are always associated with different components.

Based on the mutual distance obtained above, we can partition subjects using a hierachical

clustering method that has been used by Biglow and Dunson (2005) [2]. We give algorithm

details in the Appendix. Figure (3.5) is the dendrogram produced by the algorithm, using

the Galaxy Data, which illustrates the arrangement of the clusters. The partition of the

subjects can be obtained by choosing an appropriate cutoff value for the mutual distance.

For the Galaxy Data, it seems to be reasonable to pick 0.6 as the cutoff value resulting in

five clusters. So we choose K = 5 for the analysis, and the allocation of the subjects is shown

in Figure (3.6). If we keep using numbers 1, . . . , n to label the Galaxy Data with increasing

order, the reference partition is {{1, . . . , 7}, {8, 9}, {10, . . . , 44}, {45, . . . , 79}, {80, 81, 82}}.

However, finding the reference partition is not our ultimate goal in the analysis. It is merely

a intermediate step used as a reference cluster configuration in order to construct posterior
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Figure 3.5: Dendrogram made with a hierarchical clustering method for the Galaxy Data

Figure 3.6: Reference partition of the Galaxy Data into five components using the Hierar-
chical Clustering method
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samples for inference. In the next section, we introduce our algorithm to obtain the posterior

samples for the parameters on the cluster level.

3.5.2 Posterior samples for component-specific parameters

In this subsection, we discuss how to decide which iterates of the MCMC output are con-

sistent with the selected reference partition. We compare the observed partition at each

MCMC iteration with the reference partition to select posterior samples as discussed below.

Iterations with the same cluster configuration as the reference will be used for posterior

inference.

The question is, how do we judge whether a given partition has the “same” cluster configu-

ration as the reference or not. We have mentioned that the partitions in MCMC iterations

are more or less different from each other, and of course they will be more or less different

from reference partition as well. In the Galaxy Data example with the reference partition

used there, the question is which MCMC iterations have clusters “similar” to those in the

reference partition.

At this point, we need a definition for “existence of a cluster” within a partition, so that we

know whether any of the five clusters exists in each iteration as in the reference configuration

for the Galaxy example. At iteration 7060 in Table (3.2), the cluster was split into two with

2 subjects labeled with component 6474 and the other 5 labeled with 6431. In this case, it

seems reasonable to think the cluster exists and component 6431 can represent the cluster

because 5 out of the 7 subjects are labeled with it. But we do need a criterion to decide

when a component could represent the cluster, because there is no clear boundary between

randomness on component and individual levels. We adopted an ad-hoc criterion as follows:

if the majority (greater than 50%) of subjects in a known reference cluster are grouped

together in a MCMC iteration, the component corresponding to these subjects is regarded
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to be representative of the cluster at that iteration. Otherwise, we think the cluster does

not exist due to “label splitting”, and the iteration should be removed from the posterior

samples for the cluster.

We also need to remove iterations with “label merging”, in which a cluster merges with some

other cluster(s) at some MCMC iterations to form a larger cluster. For example, in Figure

(3.2) of the Galaxy Data example, clusters 3 and 4 in blue merged into cluster 4 in red.

If we are interested in the partitioning represented by the blue iteration, in which clusters

3 and 4 are separated, then the red iteration should not be used as a posterior sample for

making inferences. So these iterations should be removed from the posterior samples for the

inference.

By comparing with the reference partition at each iteration, we naturally solve the “label

switching” and “label substitution” issues. There is no need to consider the original labels

from the MCMC output. We just need to consistently relabel the clusters that share 50%

or more subjects within each cluster in the reference partition.

In addition, the method also eliminates the “transient components” from the analysis. Since

we only select the components that correspond to the clusters existing in the reference

partition at each iteration, the transient components would not be relabeled and naturally

would be excluded from the post processing sample.

With all the label related issues resolved, we can obtain the posterior samples for each

cluster using the post-processing algorithm below (Algorithm I). After processing, we select

posterior samples that have the same cluster configuration as the reference partition and

label each cluster consistently throughout MCMC iterations. We plot the reconstructed

posterior samples in Figure 3.7.

Algorithm I:
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Figure 3.7: Trace plot of µ for six clusters after post-processing using Algorithm I. Each
cluster is indicated with a unique color.

1. Begin with MCMC output, which has all the labeling information and parameters

corresponding to each label.

2. Determine the number of clusters, K, using its posterior probability and trace plots of

the parameters.

3. Calculate the mutual distance between subjects based on the labels, apply the hierar-

chical clustering method to identify the reference partition of the subjects and label

the K clusters with numbers 1, . . . , K. Use nk, k = 1, . . . , K to denote the number of

subjects in each cluster. This creates the reference cluster.

4. At each iteration, determine if every member of cluster k in the reference configuration

belongs to some cluster in the current iteration. Then if this holds for all K clusters

in the reference configuration, keep the current iterate for further scrutiny. Otherwise,

remove the current iteration from consideration. Thus if the current iterate is subject
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to additional scrutiny, proceed as follows:

• For each cluster k, k = 1, . . . , K in the reference partition, determine whether 50%

or more subjects in the reference cluster k are grouped together in a component of

the current iteration. If not, this cluster k does not exist in the current iteration

according to our criterion. Remove the current iteration from the posterior sample

and proceed to the next iteration.

• If yes, locate the component, and check whether it has been relabeled. If yes,

this cluster k merges together with some other cluster in the current iteration.

Remove the current iteration and proceed to the next iteration.

• If not, cluster k exists in the current iteration, and it is not merged with another

cluster. Relabel the located component with number k.

• Repeat the 3 substeps above for k = 1, . . . , K in each iteration.

5. At the end, the posterior samples for each cluster will be consistently labeled with k

for k = 1, . . . , K.

We illustrate the algorithm with a toy example. Assume the data has 10 observations labeled

with {1, . . . , 10}, and we obtain the reference partition below:

{
{cluster k = 1 : subjects 1, 2, 3}, {k = 2 : 4, 5, 6}, {k = 3 : 7, 8, 9, 10}

}
We then use two iterations in MCMC, which have partition

{
{label 101 : 1, 2, 3}, {label 134 :

4, 5, 6}, {label 234 : 7}, {label 222 : 8, 9, 10}
}

and
{
{label 501 : 1, 2, 3, 4, 5, 6}, {label 621 :

7, 8, 9, 10}
}

, to show how the algorithm works. Note the component labels are different from

the cluster numbers in the reference partition.

For the first iteration, we process it as follows:
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• Start from k = 1, 50% or more of {cluster k = 1 : subjects 1, 2, 3} are in the component

with label 101. Relabel the component with k=1, so that we know it is a posterior

sample for cluster 1.

• When k = 2, 50% or more of {k = 2 : 4, 5, 6} are in the component with label 134.

Relabel it with k = 2 since it has not been relabeled.

• When k = 3, we relabel component 222 with k = 3.

• Proceed to the next iteration.

We could see that component 234, which is a “transient component”, is naturally dismissed

from posterior inferences.

Considering the second iteration, we process it with the following steps:

• Start from k = 1, 50% or more of {cluster k = 1 : subjects 1, 2, 3} are in the component

with label 501. Relabel the component with k = 1.

• When k = 2, 50% or more of {k = 2 : 4, 5, 6} are in the component with k = 1

(originally label 501). Since it has been relabeled, it means that clusters 1 and 2 in

the reference partition are merged in this iteration. So we remove the iteration.

• Proceed to the next iteration.

The process for this iteration shows how we deal with “label merging” issue.

Robert (2010) [31] mentioned “When, given a target π, if an MCMC sampler that never visits

more than 50% of the support of π, it can be argued that the sampler does not converge”.

Later we will use this concept as a method of validating the reference partition. In the

Galaxy example, we kept 6082 iterations out 10000 for the posterior samples. In this case,
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Figure 3.8: Trace plot of µ for the five clusters after post-processing using Algorithm II.
Each cluster is indicated with a unique color.

we believe the Markov chain has converged and that reference partition is well chosen since

more than 50% of the MCMC iterations share the same cluster structure.

In the trace plot Figure (3.4), we found the splitting and merging of components only hap-

pened within clusters 2, 3 and 4. Clusters 1 and 5 existed consistently and all the iterations

could be used for inference for these two clusters. So we realized that the algorithm above

was not the most efficient for selecting the posterior samples, since we removed many samples

that could have been used for inference for clusters 1 and 5. Now suppose a cluster in the

reference partition “exists” in an iteration. Then the component corresponding to it could be

used as part of its posterior samples. With this idea, we updated the post-process algorithm

as below (Algorithm II), and obtained the posterior samples plotted in Figure (3.8)

Algorithm II:

1. Begin with MCMC output that has all the labeling information and the parameters
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corresponding to each label.

2. Determine the number of clusters, K, using its posterior probability and trace plots of

the parameters.

3. Calculate the mutual distance between subjects based on the labels, and apply hier-

archical clustering method to identify the ideal partition (reference partition) of the

subjects. Use nk, k = 1, . . . , K to denote the number of subjects in each cluster. Thus

create the reference partition.

4. Post-process each iteration t, t = 1, . . . , NMC , of the MCMC output. At iteration t,

we implement the following substeps:

• For each cluster k, k = 1, . . . , K, of reference partition, determine whether there

is a component having 50% or more of its subjects in cluster k. If yes, label

the component with k and record the corresponding parameter values as φtk.

Otherwise, let φtk be a missing value denoted by ‘NA’. We then obtain a vec-

tor φt = {φt1, . . . , φtK}.

• If any two non-missing values in φt satisfying φts = φts′ for s 6= s′, set both φts and

φts′ to be ‘NA’, since the two clusters s and s′ are merged together in the current

iteration.

5. We eventually obtain the posterior sample for each cluster k: {φtk : t = 1, . . . , NMC},

and use non-missing values of φtk for posterior inferences in each cluster k.

Comparing Figures 3.7 and 3.8, we can see that Algorithm II efficiently retains more posterior

samples for inference in clusters 1 and 5.
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Table 3.3: Inference of cluster-specific parameters for the Galaxy Data
95% PI

Parameters Mean Median lower upper

µ1 9.71 9.71 9.19 10.24
µ2 16.34 16.20 14.83 19.29
µ3 19.82 19.81 19.46 20.26
µ4 22.89 22.90 21.99 23.73
µ5 32.96 32.97 31.48 34.37
σ1 0.65 0.62 0.41 1.06
σ2 0.86 0.73 0.41 2.14
σ3 0.71 0.69 0.47 1.05
σ4 1.34 1.31 0.70 2.16
σ5 1.01 0.92 0.52 2.07

3.6 Statistical Inference

The primary goal to deal with label related issues is to make inferences for the component-

specific parameters. Table (3.3) shows inferences for component-specific parameters µ and

σ.

We are also interested in how the subjects clustered. The reference partition for the subjects

has given us some information, but it should not be over interpreted as discussed above. With

the posterior samples, we are able to calculate the posterior probabilities that a subject i is

associated with each cluster, P (ki|yi, K = 5). Table (B.5) in the Appendix lists the posterior

distribution for all 82 subjects in the Galaxy Data; P (ki = other|yi, K = 5) is the probability

that subject i is not associated with any of the six clusters, when it might be associated with

a transient component.
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3.7 Discussion

3.7.1 The Partitioning Method

As previously mentioned, there are multiple methods that could be used to obtain the

reference partition. For finite mixture models, maximum a posteriori probability (MAP)

estimate identifies a partition with largest posterior probability, which can be regarded as

the reference partition. That method has been used by Robert (2008).

In DPM models, the MAP estimate may not work well due to the “transient components”.

Since the MAP estimate comes from one selected iteration of the Markov chain, it is possible

that one or more transient components exist in that iteration. If the MAP estimate is

used as the reference partition, it would be problematic to find posterior samples for the

transient components. We thus prefer using the mutual distance defined by Medvedovic and

Sivaganesan (2002) to identify the reference partition using the hierarchical clustering or

K-medroid methods. The transient components would not appear in the reference partition

since it is obtained with the clustering information of the whole Markov chain.

With the mutual distance rij, the two algorithms (hierarchical clustering and K-medroid)

are both capable of identifying a reference partition. Generally we implement both and

compare the two partitions to assure the choice of reference partition. In many cases, they

produce similar reference partitions, and inferences for the component-specific parameters

are consistent.

They also may produce different clustering results sometimes. In the next subsection, we

use the Galaxy Data example to show the discrepancy of the clustering results based on the

two algorithms, and illustrate how to choose the appropriate algorithm. Comparing the two

algorithms, we think K-medroid is more understandable and interpretable. However, the

reference partition was identified more accurately with the hierarchical clustering method in

105



the Galaxy example.

3.7.2 The Reference Partition of Subjects

There are multiple methods that could be used to obtain the reference partition. For example,

we have introduced the method using mutual distances rij and the hierarchical clustering

model in a previous section. But other methods (K-medroids for example) could also be

applied. The partitions obtained from each method might be somewhat different from the

others. Readers might be concerned about the validity of the reference partition that is used

to construct posterior samples.

We would like to re-emphasize that the reference partition is not our primary interest, and

we just use it to identify a useful cluster configuration. Dunson (2010) [7] mentioned that

“it is important to note that one should be very careful to avoid over-interpretation of the

estimated partition. Even if one is able to identify the optimal partition from among the very

high dimensional set of possible partitions, this partition may have extremely low posterior

probability, and there may be a very large number of partitions having very similar posterior

probability to the optimal partition”.

In many cases, the reference partitions from different methods share the same cluster con-

figuration, even though the reference partitions are not exactly the same. They differ from

each other in the partitioning of a small portion of the subjects. We are still able to obtain

consistent inference with different reference partitions in such cases.

However, different reference partitions could certainly lead to different inferences in some

cases. For example, inferences would be surely different if reference partitions have different

numbers of clusters, K. In the Galaxy example, there is ambiguity about K; K = 6 has the

highest posterior probability in Table (B.5). If we choose K = 6 and the K-medroids method
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Figure 3.9: Partition of the Galaxy Data into six components using K-medroids

for obtaining the reference partition, we obtain the allocation of the subjects shown in Figure

(3.9). In addition, the K-medroids algorithm is similar to K-means but can work with an

arbitrary matrix of distances instead of only squared Euclidean distances. The details of the

K-medroids algorithm are given in the Appendix.

The clustering result obtained using K-medroids is different from that based on the hierar-

chical clustering method, though both results look reasonable. The trace plot in Figure (3.4)

indicates six clusters. Figure 3.3 shows the predictive density has only five modes. Figure

(3.10) gives the reconstructed samples using the reference partition based on K-medroids,

in which clusters 4 and 5 are combined in the partition from hierarchical clustering. It is

significant that cluster 5 has small size (2 or 3) with observed values that are near to values

for observations in cluster 4. Thus it is ambiguous whether the subjects in the two clusters

should be separated or combined without knowing the truth.

In order to determine the appropriate reference partition, we compare the posterior samples
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Figure 3.10: Trace plot of µ for the six clusters after post-processing with the reference
partition from K-medroids

selected for inference. As mentioned before, “given a target π, a MCMC sampler should visit

more than 50% of the support of π”. By analogy, if we choose the right reference partition,

we should have at least half of the iterations having the same cluster configuration as the

reference. In the Galaxy Data example, only 3051 iterations were selected out of 10000 for

inference using the reference partition based on the K-medroid method. On the other hand,

6082 iterations were chosen with the reference partition from hierarchical clustering method,

which is clearly the better choice.

3.8 Conclusion

In this chapter, we introduced Label Switching and other issues caused by non-identifiability

of the components in mixture models. It is an issue that hinders us from making inferences

about parameters on the cluster level. We proposed an algorithm to post-process the MCMC
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output and reconstruct an appropriate subset of the posterior samples. Compared with other

post-processing algorithms, which only apply to finite mixture models, our method appears

to work for both finite and infinite mixture models, at least in cases considered. In addition,

our method requires much less complicated computation and much less processing time

compared to other methods. For example, Stephen’s method requires the calculation of a

loss function for all K! combination of labels at each iteration. As for Yao and Lindsay’s

method, it applies an EM algorithm at each iteration by using the sample as the initial

value. Both methods are computationally demanding, while our ad-hoc algorithm is capable

of delivering reasonable results in several seconds.
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Chapter 4

Association between UI and Hormone

Profiles

4.1 Introduction

Menopause is a universal female phenomenon defined by a specific event, the final menstrual

period (FMP). The menopausal transition is a series of stages of variable length from pre-,

early peri- and late peri- to post-menopause defined by changes in menstrual and hormonal

patterns. Irregularity of the menstrual cycle marks the start of the menopausal transition

in most women. Commonly in the mid-40s, cycle length may initially shorten and then

progressively lengthen with the approach of the FMP [27], [37]. This irregularity seems to

correspond to changes in estrogen levels, which are predominantly the consequence of the

decline of ovarian follicle numbers [5]. Ovarian aging may relate to clinical differences in

menopause-specific symptoms and health outcomes such as sleep disturbances, changes in

cognition, changes in bone mineral density, as well as initiation and progression of diseases

of aging such as osteoarthritis.
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Urinary Incontinence (UI), which is used as a measure of health status in our study, is a

common, debilitating and costly problem, particularly in middle-aged and older women. It

is associated with significant morbidity, such as decreased quality of life from social seclusion

and psychological stress. Prevalence estimates in mid-life women range from about 5% for

severe to 60% for mild incontinence [14], [33]. Personal and societal economic impact of

incontinence is substantial with national cost estimates of up to $16 billion annually [42].

UI is thought possibly to be related to the menopausal reduction in endogenous estrogens,

since cross-sectional epidemiological studies have found that the prevalence of incontinence

is associated with the post-menopausal status [30], [38], [1]. However, it remains unclear

whether and how the hormone profile affects the risk of developing UI.

We are motivated by data from the Study of Women’s Health Across the Nation (SWAN),

which involved the collection of hormone data on women through the menopausal transition.

The study is a multi-site longitudinal epidemiologic study designed to examine the health

of women during these years. We are interested in characterizing hormone profiles through

menopause, and in how these changes might affect UI development.

Our approach is to classify women into groups based on their hormone profiles, and then

study how the clustering is associated with women’s health, in particular with regard to UI.

Eventually, we found that certain distinct cluster shapes are related to women’s UI.

In this chapter, we are focused on the analysis of SWAN data using the methods introduced

in the past two chapters and their expansion to account for the UI data. We first introduce

the SWAN data in Section 2. In Section 3, we apply the clustering model presented in

Chapter 2 to both E2 and FSH data to identify different hormone trajectory patterns during

menopause. We also discuss the factors that are related to hormone changes. In Section

4, we analyze longitudinal UI and hormone data with a Bayesian joint model to find the

association between the UI incidence pattern and hormone profiles during menopause. In
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Section 5, we focus on the question about whether the development of UI is associated with

hormone changes.

4.2 The SWAN Data

In this study, we analyze a subset of SWAN data from 928 women enrolled in the Study of

Womens Health Across the Nation (SWAN), who were followed through 11 annual follow-

up visits. Eligibility criteria for entry into the SWAN cohort were age 42-52 years and

self-identification as one of four racial/ethnic groups (African American, Chinese, Japanese,

Caucasian). Exclusion criteria included inability to speak English, Spanish, Japanese, or

Cantonese, no menstrual period in greater than 3 months before enrollment, hysterectomy

and/or bilateral oophorectomy prior to enrollment, and current pregnancy, lactation, or

hormone use.

In the study, annual samples of blood serum levels of estradiol (E2) and follicle-stimulating

hormone (FSH) were collected. In addition, a self-administered questionnaire assessed in-

continence at baseline and at each follow-up visit. Based on response to the question: “In

the past year/since your last study visit, have you ever leaked even a small amount of urine

involuntarily?”, Frequency of incontinence was classified as “almost daily/daily” (daily),

“several days per week” (weekly), “less than one day per week” (monthly), “less than once

a month” or “none”. We defined a binary UI response by letting “any incontinence” be de-

fined as at least monthly occurrence during the year. We considered incontinence occurring

less than once a month as clinically insignificant and thus combined this category with “no

incontinence”.

In the analysis, we adjusted the time scale by anchoring ti = 0 at the year of FMP for

woman i, so that the observations are comparable cross-sectionally. In the SWAN study, the
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menopausal status was assessed annually based on self-reported bleeding patterns. A woman

was considered post-menopausal when she had no bleeding for at least 12 months. FMP was

identified at the first visit when a woman became post menopausal. With the adjustment of

time scale, ti ranges from -10 to 9, which means the data were collected from 10 years before

FMP to 9 years after FMP.

Time-invariant covariates include baseline age, race/ethnicity, BMI, marital status and edu-

cation. A detailed summary of time-invariant covariates is given in Table 4.1. Among the 928

participating women, Caucasians comprised 53.0% of the sample, Americian Africans 21.3%,

Chinese 12.1%, Japanese 13.6%, respectively. With the categorization criteria defined by the

World Health Organization (WHO), 26.3% of women were overweight (25 ≤ BMI < 30)

at baseline, and 25.9% were obese (BMI ≥ 30). In addition, 83.3% of women have college

level or higher education, and 68.5% of them are married.

4.3 Cluster Analysis with Hormone Data

The menopausal transition corresponds to changes in estrogen levels. As the menopause

transition progresses, E2 levels eventually decline significantly and remain low, while FSH

levels increase and remain high [5], [29]. While this general sequence of events has been

assumed to be consistent for most women, several small studies have observed that E2 may

increase immediately prior to the final menstrual period [41], [13]. Moreover, the timing

and magnitude of increase in FSH varies among individuals [28]; aggregation of FSH levels

across individual woman may be misleading and consequently overlook factors related to FSH

developmental patterns. The literature so far has not conclusively defined the variations of

E2 and FSH trajectories or factors related to these variations.

In order to identify distinct E2 and FSH trajectories, we apply our clustering model to both
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Table 4.1: Summary of the time-invariant covariates for the SWAN data
Covariates Numerical Summary
Age at entry (years)

mean(±SD) 52.5(±2.5)

Ethnicity
Caucasion 492(53.0%)
American African 198(21.3%)
Chinese 112(12.1%)
Japanese 126(13.6%)

BMI (kg/m2)
Normal(< 25) 444(47.8%)
Overweight(25− 30) 244(26.3%)
Obese(> 30) 240(25.9%)

Education
College or higher 773(83.3%)
High School or lower 151(16.3%)
Missing 4(0.4%)

Marital Status
Married 636(68.5%)
Single 164(12.6%)
Separated, widow or divorced 117(17.7%)
Missing 11(1.2%)
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E2 and FSH data to group the women based on their hormone profiles. We then show

both clustering results in this section. We are able to identify three distinct developmental

patterns for E2 and four for FSH. With the clustering results, we also try to ascertain which

factor(s) might be related to the variation of the hormone trajectory patterns.

4.3.1 Clustering of E2 Profiles

Let the E2 response be a vector yi = (yi1, yi2, . . . , yiri)
′ corresponding to times ti = (ti1, ti2, . . . , tiri)

′

for woman i, i = 1, 2, . . . , n. In the analysis, we use log-transformed E2 data as yi since the

values are all positive with large variation. The log-transformed E2 data are shown in Figure

4.1.

We retain the same notation used in Chapter 2. The clustering model is built as follows for

the hormone data, including both E2 and FSH;

yi|βi ∼ Nri(Xiβi, τ
−1
e Wi)

βi|G
iid∼ G

G ∼ DP (α,G0)

G0 = Np+1(uβ,Ξ
−1
β ) (4.1)

where Xi is the ri × (p+ 1) design matrix containing the basis functions up to pth order for
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Figure 4.1: Spaghetti plots of logE2 (Upper) and logFSH (Below) from 100 randomly
selected women.

116



Table 4.2: Posterior Distribution of the Number of Clusters K for E2 hormone data
Cluster Number K 4 5 6 7 8

Posterior Probability 0.0002 0.755 0.220 0.024 0.0008

woman i, Wi = Iri +XiΓ
−1XT

i and

Γ =



γ0 0 · · · 0

0 γ1 · · · 0

...
...

. . .
...

0 0 · · · γp


.

We apply the clustering model to E2 hormone data, and it yields some interesting results.

Here, we list the posterior probability distribution for the number of clusters, K, in Table

4.2. According to the methods introduced in section 2.4.3, we can ascertain how the women

are clustered. In Figure 4.2, we show the spaghetti plots of the women in each cluster.

In Chapter 3, we introduced our algorithm to construct the posterior samples for parameters

on the cluster level. Then we are able to make inferences about cluster mean trajectories. In

Figure 4.2, we plot the five mean trajectories with 95% Probability bands using black lines.

The estimated mean trajectories for clusters 4 and 5 may not reflect overall trends well. The

estimated curves are dramatic at early and late times for cluster 4 (ti ≤ −6 and ti ≥ 5) and

at the early stage for cluster 5 (ti ≤ −4). Evidently, the issue is caused by extrapolation

since there were no E2 observations in these time regions. We notice the estimated mean

trajectories for clusters 4 and 5 are similar to that for cluster 3 over the ranges of observed

values, as can be seen in Figure 4.3. We thus combine the three clusters in the following

analysis, and tag the combined cluster as cluster 3. Evidently, our clustering method selected

clusters 4 and 5 because of the missing data.

Eventually, we obtain three distinct E2 profiles shown in Figure 4.4. The three E2 trajectories
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Figure 4.2: Spaghetti plots of the women in each of the five clusters obtained based on their
E2 profiles.
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Figure 4.3: The estimated mean E2 trajectories for clusters 3, 4 and 5, which are separated
with different colors. The trajectories are truncated to the regions with data support for
clusters 4 and 5.

Table 4.3: Global Parameter Estimates for the model applied to FSH data.
95% PI

Parameter Mean Median Lower Upper
σe 0.47 0.47 0.46 0.48
γ0 4.2 4.1 3.1 5.9
γ1 142.1 116.5 46.3 274.3
γ2 12.6 10.17 6.3 32.9
γ3 10.1 9.2 5.6 19.8

are summarized as: gradually decline (Cluster 1, 74.7% of the sample); almost flat (Cluster

2, 4.0%); rise then decline (Cluster 3, 21.3%).

4.3.2 Clustering of FSH profiles

The same analysis was applied to FSH profiles. We list the estimates of global parameters

in Table 4.3. Then we select 12 clusters based on the posterior probability distribution for

K in Table 4.4. Figure 4.5 shows the allocation of the 928 women and the 12 cluster mean

trajectories.

Clustering identified several women with FSH observation outliers, who were located in
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Figure 4.4: Spaghetti plots of the women in each of the three reconstructed clusters based
on their E2 profiles.

Table 4.4: Posterior Distribution of the Number of Clusters K for FSH hormone data
Cluster Number K 10 11 12 13 14 15 16

Posterior Probability 0.007 0.257 0.594 0.128 0.013 0.0014 0.0002
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Figure 4.5: Spaghetti plots for the women in each of the 12 clusters obtained based on their
FSH profiles.
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clusters 7, 10, 11 and 12. These women have extremely low values of FSH observations (< 3

mIU/ml), which are unrealistically small for women during menopause. We thus exclude

them in the following analysis.

In addition, similar to the clustering results for E2, missing data caused extrapolation prob-

lems for the estimation of cluster mean trajectories, and thus lead to separation of similar

FSH patterns. We can see the FSH developmental patterns in clusters 1, 2, 4, 6 and 9 are

all similar in the region over which FSH is observed. Therefore, we combine them into one

cluster and relabel the clusters as shown in Figure 4.6

We obtain four distinctive FSH profiles during menopause with our clustering model, which

we describe as: gradually rise (Cluster 1, 88.1% of the sample); early rise (Cluster 2, 7.5%);

almost flat at low level (Cluster 3, 2.3%); late rise (Cluster 4, 2.1%). The typical FSH

trend is rising gradually during menopause for most women (88.1% of the sample). The

rise starts about 5 years before FMP and reaches the ceiling one to two years after FMP on

average. A relatively small portion of the women (11.9% in total) were found to have different

FSH profiles. FSH for women in cluster 2 rises to a high FSH level very early (about four

years before FMP) and remains at the high level through remainder of menopause. On the

contrary, the women in cluster 3 maintain a relatively low FSH level throughout menopause

and only show a slight increasing trend after FMP. The FSH level for the women in cluster

4 increases during menopause, but the rise starts around FMP, which is much later than for

cluster 1. Our clustering results show that the timing and magnitude of increase in FSH can

vary among individuals.

4.3.3 The Factors Associated with Hormone Profiles

We are also interested in whether other covariates, including race/ethnicity and BMI, were

related to the different hormone trajectories. Such information will help us understand
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Figure 4.6: Spaghetti plots for the women in each of the four reconstructed clusters based
on the FSH profiles. Cluster mean trajectories with 95% probability bands are plotted in
black.
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Figure 4.7: Conditional empirical distribution of race in each cluster based on hormone
profiles. Left: E2; Right: FSH

differences in ovarian aging among different populations, which in turn may relate to clinical

differences in menopausal-specific symptoms and health outcomes.

These differing hormone trajectories were strongly related to BMI and race/ethnicity but

not smoking, physical activity, or demographic variables.

Figure 4.7 shows the conditional empirical distribution of ethnicity in each cluster for both

E2 and FSH. We find some atypical hormone patterns tend to appear more in African

Americans and Caucasians in the sample data. For E2, the typical trend is to drop during

menopause for most women. The flat trend in cluster 2 is atypical. Among the 37 women in

cluster 2, only 2 are Asian (Chinese/Japanese). The barplot also shows the proportion for

Asians is extremely low in cluster 2. Regarding FSH, there are no Chinese in clusters 3 and

4, and the proportion for Japanese is also low.

We used a Chi-square test to test the independence of hormone based cluster membership (E2

and FSH) and ethnicity, and found a statistically significant relationship between them. The

p-values are 0.006 and 0.001 for E2 and FSH, respectively. So the distribution of ethnicity

within clusters varies from cluster to cluster.

124



Figure 4.8: Boxplot of BMI in each hormone cluster. Left: E2 clusters; Right: FSH clusters

We found that women with the flat hormone pattern have higher BMI on average. Figure 4.8

shows that women with the flat E2 trend in cluster 2 have the highest median BMI among

the 3 clusters, and cluster 3 in the FSH clustering also has significantly higher median BMI

than the other three.

We categorized BMI using criteria defined by World Health Organization (WHO): Normal

(18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30) and obese (BMI ≥ 30). The Chi-square

test shows a significant relationship between BMI and hormone clustering. The p-value is

< 0.001 for E2 and 0.023 for FSH. We also constructed a barplot in Figure 4.9 to show the

relationship between hormone patterns and BMI. It clearly shows that the obese group has

higher proportion of women in cluster 2 for E2 and cluster 3 for FSH.

Another interesting finding is that the women with “typical” hormone patterns (cluster 1 in

both E2 and FSH clusters) reaches FMP later in age than others on average. Figure 4.10

shows the median age at FMP in cluster 1 is higher for both E2 and FSH clusters.

In addition, we constructed the barplots in Figure 4.11 to show the relationship between

hormone clustering and other factors including education and marital status. There is no

significant association found for E2 clustering using Chi-square test for independence (p-

value=0.3 for education and p-value=0.2 for marital status). For FSH clustering, the rela-
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Figure 4.9: Conditional distribution of BMI categories in each cluster based on hormone
profiles. Left: E2; Right: FSH

Figure 4.10: Boxplot of age at FMP in each hormone cluster. Left: E2 clusters; Right: FSH
clusters
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tionship is significant with both p-values equal to 0.01. The barplot shows the proportion of

“seperated, widow or divorced” is higher and that of “single” is lower in cluster 3 compared

with the other three clusters.

4.4 Joint Modeling of hormone profiles and UI

Our ultimate goal is to ascertain whether and how UI development is associated with hor-

mone trends through menopause. In the SWAN data, women’s UI status is measured an-

nually. Let ui = (ui1, . . . , uiri) denote the vector of UI status for woman i corresponding to

(ti1, . . . , tiri). We summarize the proportion of UI incidence in each year in Figure 4.12, from

which we could see the trend is women developing UI with aging.

There is a steep drop at year -9 and a quick increase after year 8. It is difficult to tell

whether these are real or not. Because of relatively small numbers of observations in the

pre- and post- stages of menopause, the effects could be purely random. We give the number

of observations at each year in Figure 4.13, which shows the number drops quickly with

time moving away from FMP. In addition, missing data also caused some issues with E2

clustering. In section 3, we found some women with similar hormone profiles were separated

into different clusters due to missing data in these years.

Therefore, we decide to truncate the time scale to (−8, 6) in the following analysis, which

means we only keep the data collected in this time region. Since we are interested in the

menstrual cycle around FMP, we do not lose much information with the truncation.

In addition, the baseline BMI value is missing for 10 women in the data. We removed them

from the analysis because we consider the effect of BMI on UI incidence. We thus have 918

women with 9600 observations in the data.
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Figure 4.11: Conditional distribution of education and marital status in each cluster based
on hormone profiles. The bar without label indicates missing data for education and marital
status.
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Figure 4.12: Sample proportion of UI incidence in each year

Figure 4.13: The barplot shows the number of observations collected each year with the
adjusted time scale.
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Figure 4.14: Sample proportion of UI incidence in each hormone cluster by time. Left: E2;
Right: FSH

In Figure 4.14, we plot the sample proportion of UI incidence in each hormone cluster. The

UI incidence is clearly related to E2 cluster membership, since the UI incidence pattern

is different corresponding to different E2 clusters. The UI incidence rate for cluster 2 is

constantly higher than for the other two clusters through menopause. In addition, the UI

incidence patterns are also somewhat different corresponding to the four FSH clusters.

In this section, we propose a Bayesian semi-parametric approach to jointly model both UI

and hormone data in order to study their association. We will introduce our method and

present the analysis using E2 and UI data in the first subsection, and show the results using

FSH and UI data in the second.

4.4.1 Association between E2 and UI

We are interested in the factors that are associated with UI incidence. We use logistic

regression to model the UI response at each time period. Since the probability of UI incidence

is clearly not constant with time, we use a linear combination of basis functions to fit the

probability trend. In addition, we include time-invariant covariates including BMI and age
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at FMP in the model because they are considered to be related to UI incidence. We jointly

model UI and the hormone trajectory information since we would like to know how the UI

development is related to hormone profiles. We incorporate the logistic regression model with

the clustering model to see how the UI developmental pattern relates to different hormone

profiles.

The joint probability model for UI and hormone trajectory is:

uij|pij ∼ Bern(pij) for all j = 1, . . . , ri

logit(pij) = Xijλi + ziω

yi|βi ∼ Nri(Xiβi, τ
−1
e Wi)

(βi, λi)|G
iid∼ G

G ∼ DP (α,G0)

G0 = Np+1(µβ,Ξ
−1
β ) ∗Np+1(µλ,Ξ

−1
λ ) (4.2)

where

• pij is the UI incidence rate at tij for woman i.

• Xi is the ri × (p + 1) design matrix containing basis functions up to the pth order for

woman i. Since the time scale is the same for UI and E2, we use the same orthogonal

polynomial basis functions that we used for E2 clustering.

• Xij is the jth row of Xi, which is the basis function values at tij for woman i.

• λi is the coefficient vector, which models the UI incidence probability trend for woman

i.

• The DP has been assigned to the joint distribution for β and λ, so that each hormone
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Table 4.5: Global Parameter Estimates for the joint clustering model applied to E2 and UI
data.

95% PI
Parameter Mean Median Lower Upper

σe 0.70 0.70 0.69 0.71
ωbmi 0.35 0.35 0.21 0.50
ωage 0.25 0.25 0.12 0.37
γ0 7.30 7.24 6.02 8.91
γ1 95.45 64.19 21.46 393.86
γ2 13.47 13.09 9.81 19.36
γ3 17.60 16.62 11.38 29.83
α 0.93 0.87 0.35 1.82

profile Xiβi corresponds to a UI development pattern, Xiλi, in the clustering result.

• zi = (zi1, . . . , ziq) is the vector of time-invariant covariates, including BMI and age at

FMP.

• ω = (ωbmi, ωage) is the vector of coefficients for time-invariant covariates BMI and age

at FMP.

Part of the model is based on model (4.1) (same as 2.2), which was discussed in Chapter 2.

Many prior distributions are identical for both models, and the sampling algorithms are also

similar.

With the posterior MCMC samples, we obtain the inferences for the global parameters listed

in Table 4.5. Both BMI and women’s age at FMP are positively associated with UI incidence.

We summarize clustering results in Table 4.6, which shows the posterior probabilities for

K; K = 6 and K = 7 have the highest probabilities, 0.35 and 0.42 respectively. We select

six clusters for our analysis since K = 6 appears more reasonable from the Dendrogram

in Figure 4.15. Even though K = 7 has higher posterior probability than K = 6, we do

not think there are seven distinctive clusters. Iterations with K = 7 indicate a transient

component in addition to the six stable clusters.
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Table 4.6: Posterior Distribution of the Number of Clusters, K, for the joint E2 and UI
model

Cluster Number m 6 7 8 9 10
Posterior Probability 0.350 0.423 0.183 0.039 0.005

Figure 4.15: Dendrogram for Hierarchical Clustering Algorithm, using E2 and UI data from
SWAN.
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Figure 4.16: Six clusters have been identified from the joint modeling of E2 and UI, and each
row has a pair of graphs that plot logE2 (left) and UI (right) patterns for each cluster. The
estimated cluster mean trajectories with 95% probability bands are plotted in black. The
sample data are plotted in different colors for different clusters. Spaghetti plots are made
for E2, and the sample proportions are plotted for UI incidence.
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Figure 4.17: The estimated mean trajectories for the six clusters separated by different
colors.

The cluster mean trajectories are estimated and plotted in Figure 4.16. With the joint

model, we identify the same three E2 patterns that were found in Section 3. Cluster 3 is

the “almost flat” pattern and cluster 6 is “rise then steep decline”. Clusters 1, 2, 4 and 5

are all “slight rise then gradual decline” pattern, and they are separated due to different

UI patterns. We combine the estimated cluster mean trajectories together in Figure 4.17 to

compare the six clusters.

It is interesting to see that the women with the “almost flat” pattern for E2 trajectory (7.1%,

green line) tend to have a high UI incidence rate (≥ 0.8) through menopause. The “rise then

steep decline” pattern (4.7%, magenta) corresponds to a low rate (≤ 0.5).

Most women (88.2%) are clustered with “slight rise then gradual decline” E2 pattern, and

they correspond to four different UI developmental patterns. Some women had no UI and

stayed healthy throughout Menopause (23.5%, red). Some women had UI at baseline and

stayed affected (31.5%, black), some women had no UI at baseline and gradually developed

it during menopause (16.3%, blue), and a portion of women who had UI at baseline showed

UI symptoms decreasing(15.8%, light blue).
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Table 4.7: Global Parameter Estimates for the joint clustering model applied to FSH and
UI data.

95% PI
Parameter Mean Median Lower Upper

σe 0.484 0.484 0.476 0.492
ωbmi 0.39 0.39 0.24 0.53
ωage 0.22 0.22 0.09 0.35
γ0 2.87 2.87 2.47 3.31
γ1 16.42 15.0 9.61 31.13
γ2 13.14 12.53 9.16 20.80
γ3 5.15 5.11 4.31 6.17
α 0.97 0.91 0.37 1.88

Table 4.8: Posterior Distribution of the Number of Clusters, K, for FSH and UI joint model
Cluster Number m 7 8 9

Posterior Probability 0.920 0.078 0.002

4.4.2 Association between FSH and UI

We used the same model to analyze the association between FSH and UI incidence. We

obtained statistical inferences as follows. Table 4.7 gives estimates of global parameters with

95% probability intervals. The estimates of ωbmi and ωage are similar to results from the joint

analysis of E2 and UI above. This is reasonable since they indicate the relationship between

UI incidence and baseline BMI/age at FMP, in both analyses. However, the estimates are

adjusted by inclusion of the effect of FSH in this model and E2 in the previous model.

Table 4.8 shows K = 7 has the dominating posterior probability 0.92, thus we select seven

clusters.

The cluster mean trajectories are estimated and plotted in Figure 4.18. Cluster 7 only

contains one woman, who is identified as an outlier. We exclude it from the following analysis.

We combine the estimated cluster mean trajectories from the remaining six clusters together

in a single plot, Figure 4.19, to compare them. We identify two distinctive FSH profiles,

which correspond to different UI patterns. One is the “gradual rise” profile (95.2% of the
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Figure 4.18: Seven clusters have been identified from the joint modeling of FSH and UI, and
each row has a pair of graphs which plot the FSH (left) and UI (right) patterns for each
cluster. The estimated cluster mean trajectories with 95% probability bands are plotted
in black. And the sample data are plotted in different colors for different clusters. The
spaghetti plots are made for FSH, and the sample proportions are plotted for UI incidence.
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Figure 4.19: The estimated mean trajectories for the seven clusters separated by different
colors.

women) in which FSH starts to increase in the pre- or early peri- menopause stage and

reaches the maximum around FMP. Clusters 2, 3, 4 and 5 all have this profile. The other is

a “late rise” profile (4.8%) in which FSH starts to increase in the late peri-menopause, and

both the increase rate and magnitude are lower than for the “gradual rise” profile.

Similar to the E2 results, there are four different UI developmental patterns corresponding

to the main “gradual rise” FSH profile: consistently affected by UI (37.4%, green line),

consistently healthy (23.0%, red), gradually developed UI (16.5%, blue) and easing of UI

symptoms (18.3%, light blue).

We identified 44 women having the “late rise” FSH profile. There are only two UI devel-

opmental patterns corresponding to this FSH profile: (i) consistently affected by UI (3.3%,

black) and (ii) consistently healthy (1.5%, magenta). We do not see women with the FSH

profile changing UI status from the clustering results. However, it is hard to say whether

there are other UI patterns corresponding to this profile in reality due to the small sample

size.
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4.5 Analysis of hormone profiles with scalar UI re-

sponse

One question of interest is to predict whether a woman who did not have UI at baseline would

develop UI during menopause or not. This prediction might be improved by considering the

relation between hormone patterns and the incidence of UI. In order to answer the question,

we need to process the data first so that the new dataset fits our analysis.

Since we are interested whether a woman developed UI during menopause or not, we only

keep the women who did not have UI at baseline in the sample. We have 456 women with

4794 observations left for the analysis. In addition, we create a scalar UI response denoted

by vi to indicate whether woman i developed UI. We let

vi =

 0 if uij = 0 for all j, j = 0, . . . , ri

1 otherwise

A common strategy for the analysis is to define several summaries of the hormone patterns,

such as the rate of change and average value across a region. These summaries can then

be plugged in as predictors in a generalized linear model (GLM) for the UI development

response. Unfortunately, it is typically not clear how best to choose summaries of the

function, and multicolinearity becomes a concern if many summaries are chosen.

Bigelow and Dunson (2009) [3] proposed a semi-parametric Bayesian approach for assessing

the relationship between functional predictors and a scalar response, which allocates women

to clusters that are defined in terms of the womans progesterone trajectory and risk of early

pregnancy loss (EPL) for the North Carolina Early Pregnancy Study. This model builds

the association between the scalar response EPL and the functional predictor progesterone

trajectory by matching a probability of EPL with each progesterone pattern using the DP.
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We use this joint modeling idea, and combine it with our clustering method to build a model

for our SWAN data analysis.

Our joint model is built as follows:

vi|pi ∼ Bern(pi)

logit(pi) = πi + ziω

yi|βi ∼ Nri(Xiβi, τ
−1
e Wi)

(βi, πi)|G
iid∼ G

G ∼ DP (α,G0)

G0 = Np+1(µβ,Ξ
−1
β ) ∗Np+1(µλ,Ξ

−1
λ ) (4.3)

where both β and π are modeled with DP, so that each hormone profile corresponds to a UI

incidence level in the clustering result.

This model is actually the simplified version of model (4.2) by assuming the UI incidence

rate to be constant with time. So we can easily adapt the prior specification and sampling

algorithm from model (4.2) to obtain results for this analysis.

We applied the model to scalar UI responses and E2 data to find the association between E2

profile and scalar UI response, adjusted by BMI and age to FMP. The inference shows that

BMI is positively correlated with UI incidence, but age at FMP is not. Table 4.9 shows the

detailed estimates of global parameters.

We identified two clusters of E2 profiles together with UI incidence rate. Figure 4.20 plots

the two E2 profiles. Compared to the clustering results with all 928 women in Section 3, the

flat E2 pattern is not showing up in this analysis. We have already found that the flat E2
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Table 4.9: Global Parameter Estimates for the joint clustering model applied to FSH and
scalar UI data.

95% PI
Parameter Mean Median Lower Upper

σe 0.72 0.72 0.70 0.73
λbmi 0.30 0.30 0.09 0.51
λage -0.09 -0.09 -0.28 0.11
γ0 9.7 9.5 7.0 14.1
γ1 51.5 36.6 12.0 200.8
γ2 38.7 20.4 10.5 243.1
γ3 194.7 153.3 41.3 570.1
α 0.28 0.23 0.03 0.78

pattern is associated with high UI incidence through menopause. It makes sense that the

pattern was not singled out because most of the women with it have UI at baseline and have

been removed from the analysis.

The logarithm of the odds ratio for UI incidence between the two clusters is the difference

πs=1 − πs=2. Its posterior median is 0.06 with 95% probability interval (−0.52, 0.61), which

means the UI incidence rates of the two clusters are not statistically different. We obtained

the two clusters mostly due to the difference of E2 profiles.

4.6 Conclusions

While our analysis is disappointing, we point out that it may not have been an ideal analysis

to perform in the first place. Since all the women are observed over different times and are

actually starting at different times with the study ending for them at different times, there is

no single time period over which all women are exposed to the risk of UI. Thus some women

may have much shorter exposure times than others and thus their probabilities of getting

UI should be adjusted in some way to account for this fact. Since this is a dissertation and

not a paper, we include the analysis to help our future thinking on the topic.
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Figure 4.20: The spaghetti plots of the E2 data together with the estimated mean E2
trajectories for the two clusters.
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Chapter 5

Joint Modeling of Bivariate

Longitudinal Screening Data

Diagnostic screening involves testing humans or animals for the presence of disease or infec-

tion. For some diseases, a “gold-standard” test does not exist or is too invasive or expensive

to use. Hence, the goals of diagnostic testing may include: quantifying the performance of

an imperfect test, diagnosing individuals, and estimating disease prevalence in the absence

of a perfect reference test.

Our work is focused on developing a model for bi-variate longitudinal diagnostic outcomes

in the no-gold standard case. We consider the situation where an imperfect binary test is

repeatedly administered to each individual together with a continuous measure, which can

be used to help the disease diagnosis. For infected individuals, we assume the existence of a

change-point corresponding to time of infection and posit appropriate changes to model the

responses thereafter.

In this chapter, we briefly introduce the data in section one. In section two, we propose a

Bayesian hierarchical joint model for the longitudinal diagnostic outcomes. We specify prior
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distributions in section three and illustrate posterior sampling algorithms in section four.

The reversible jump MCMC and Metropolis-within-Gibbs algorithms are also explained in

that section. We check our model with simulated data and show results in section six. In

section seven, we apply the model to the longitudinal screening data for Johne’s disease and

present statistical inferences. In section eight, we identify different developmental trajectories

for serology scores using a Dirichlet Process Mixture model. Some concerns about the model

are also discussed there.

5.1 Background

The motivating dataset for this study consists of joint longitudinal screening data for Johne’s

Disease (JD) in cattle. Johne’s disease is a chronic bacterial infection caused by Mycobac-

terium avium subspp paratuberculosis (Map), which can cause weight loss, reduced milk

production, edema and diarrhea. However, these signs may not manifest themselves for

months to years after infection, if at all. Early diagnosis in this asymptomatic phase is

desirable since infected cows may pass the infection on to herd mates whether or not they

are exhibiting signs of infection.

Our data consist of records from 12 dairy herds known to be infected with JD [25]. Data

were collected from 1984-2003, and tests were performed about every six months. There was,

however, substantial deviation from this testing schedule with one-fourth of inter-test times

below 4 months and one-fourth above 8.3 months. Herd size ranged from 50 to 160 milking

cows (median = 60). Three hundred and sixty five cows from this study were included in

our analysis; the number of observations for each cow ranged from 2 to 23 with a median of

6. At each screening time, both fecal culture (FC) and serum ELISA tests were performed,

although for various reasons, either of these may be missing on a given test date. FC test

results were categorized as positive if at least one Map bacterial colony formed in culture
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Figure 5.1: Data plots for four selected cows, ‘f’ indicates the binary FC test outcome, and
‘s’ represents the ELISA test serology score.

and were categorized negative otherwise. ELISA tests measure antibody concentration on a

continuous scale through the Optical Density (OD), which is standardized relative to positive

and negative control sera on each test plate.

We selected 4 cows from the dataset to plot their serology scores and FC test results in Figure

5.1. Subject 52 represents cows that are likely uninfected since all but one FC results are

negative and since all serology scores are consistently at a low level. The fact that there is

one positive result among six FC observations indicates that the FC test may not be perfect.

Subjects 145 and 171 are likely infected due to multiple positive FC outcomes and increasing

serology scores.
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Observe that there is evidently an appreciable delay before ELISA outcomes begin to increase

after FC tests are positive. It is well-known that there is a lag after infection before a

serological response is mounted; the lag is typically 10-17 months (Lepper, 1989 [20]). Our

method will reflect this issue. A true positive FC outcome, on the other hand, can occur

much sooner after infection.

The existence of the lag leads to a third infection state, which we call the “intermediate”

stage. This state corresponds to cows that have been infected with JD, and which have not

shown any serology reaction due to the lag, at the end of the study. For example, subject

10 in Figure 5.1 might be in this state since its last FC was positive, while its serology score

does not show any reaction, as of the end of the study.

5.2 Model Specification

In this section, a finite mixture model with three latent states is presented to model FC

outcomes and serology scores jointly. In addition, we specify the sigmoid function and its

parameterization that is used to fit the serologic trend.

5.2.1 Joint Modeling of Serology and Fecal Culture Outcomes

We first define the three infection states mentioned above, since one primary goal of our

analysis is to diagnose the disease status of all cows. We use a latent variable ki to denote the

infection state, and ki = 1, 2, 3 represents the “uninfected”, “intermediate” and “infected”

states, respectively.

Let Si = {Si1, . . . , Simi} and Fi = {Fi1, . . . , Fimi} be the serology and FC outcomes collected

at times ti = {ti1, . . . , timi}, for the ith individual. The dataset we have is D = {(Si, Fi) : i =
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1, . . . , n}. In this section, we propose a Bayesian hierarchical trans-dimensional model for

the joint longitudinal diagnostic outcomes, where the word “trans-dimensional” means the

dimension of parameter space in each state is allowed to vary. In this model, we separate the

parameter space into global parameters and “cow-specific” parameters, which correspond to

individual cows. We use Θ to denote the global parameters and φkii to denote the “cow-

specific” parameters. Note the dimension of φkii is different for different ki.

Consider the ith cow in the data. If ki = 1, we model the response jointly as below:

Sij|(ki = 1, φ1
i ),Θ

⊥∼ β0i + εij

Fij|(ki = 1, φ1
i ),Θ

⊥∼ Bern(1− sp) (5.1)

where Sij and Fij are regarded to be independent; β0i is the base serology score of cow i, and

εij
iid∼ N(0, τe) is random error. There is only one “state-specific” effect in state one, β0i. In

addition, we let sp be the specificity of FC test and model Fij with a Bernoulli distribution,

since the test is not perfect.

If ki = 2, cow i is in the “intermediate” state, where the cow is infected but due to a lag,

there is no serologic reaction to the infection. The model for Sij is the same as it was for

state one, however the model for Fij is different:

Sij | (ki = 2, φ2
i ),Θ

⊥∼ β0i + εij

Fij | (ki = 2, φ2
i ),Θ

⊥∼

 Bernoulli(1− sp) if t < t?i

Bernoulli(se) if t ≥ t?i

(5.2)

where t?i is the infection time for individual i, and φ2
i = {β0i, t?i }. We let se be the sensitivity
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of FC test. Clearly, the probability of a positive FC outcome is different before and after

the disease infection t?i .

If ki = 3, cow i is infected with JD and has shown serology increase. The model is constructed

as below:

Sij | (ki = 3, φ3
i ),Θ

⊥∼ β0i + g(tij|φ3
i ) + εij

Fij | (ki = 3, φ3
i ),Θ

⊥∼

 Bernoulli(1− sp) if t < t?i

Bernoulli(se) if t ≥ t?i

(5.3)

where g(t|φ) is the function used to fit the serology score after infection since it increases

after a lag from infection time.

In fact, this model could be regarded as a finite mixture model for cluster analysis, which is

used to classify cows into the three infection states (clusters). With this mixture model, we

are able to estimate whether and when a cow was infected with JD.

We mention that we have implemented cluster analysss using the Dirichlet Process when

analyzing SWAN data in previous chapters. We prefer the DP there because clustering is

model based. In this study, we know that there are only three infection states (clusters).

5.2.2 Sigmoid Function

In model (5.3), we use a function, g(t|φ), to fit the developmental trajectory for the serology

scores, and there are numerous choices for the function. For example, Norris, Johnson and

Gardner (2009) [25] used a linear function to fit the developmental trajectory. However, a

linear function may be an oversimplification of the serology trend. For example, it may be

expected that the trend would increase gradually and then, at some stage, level off; sigmoid
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Figure 5.2: Four-parameter sigmoid function with reparameterization

functions come to mind. We choose a four-parameter sigmoid curve to fit serology scores

after the infection time t?i in state 3. The function was briefly introduced in chapter one.

In our data analysis, we use a re-parameterized sigmoid function for the curve fitting com-

pared with Equation (1.22), and a new set of parameters is {t?, d, h, r}. The mathematical

form of the function is:

g(t|φ = {t?, d, h, r}) = (
h

1 + e−r(t−t?−d−2/r)
− h

1 + er(d+2/r)
)I(t ≥ t?) (5.4)

Figure 5.2 displays that the parameters have nice interpretations; t? is the infection time, h is

the upper bound of the maximum serology increase an individual could achieve (max(g(t|φ)) =

h(1 − 1
1+e2+rd

) → h), d is regarded as a kind of lag time of the serologic reaction, and r is

related to the rate of increase in the function. When r > 0, the curve is increasing as shown

in the figure. When r < 0, the curve is monotonically decreasing. In addition, the curve

reaches its maximum changing rate, hr/4, at the half-height point of the sigmoid function,

namely,

d g(t|φ)

d t
|t=t?+d+2/r=

hre−r(t−t
?−d−2/r)

(1 + e−r(t−t?−d−2/r))2
|t=t?+d+2/r= hr/4
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Thus considering the tangent line at the half-height point, the point of intersection on the

x-axis is t? + d. The steeper is the slope at the half-height point, the flatter is the curve to

the left of t?+d, indicating less serologic reaction up to that point in time, but with a strong

reaction after that point in time. Thus instead of having a fixed lag time as was done in

Norris et al (2009), we regard d in our sigmoid model as reflecting lag time, which is allowed

to be different for all cows in stage 3. Since each cow in state 3 will be modeled to have its

own sigmoid function, these parameters will be actually modeled as random effects.

5.2.3 Likelihood

With the models specified above, we can write the likelihood contribution for each cow, i,

below:

f
(
Si, Fi | (ki, φkii ),Θ

)
= f(Si | (ki, φkii ),Θ

)
f(Fi | (ki, φkii ),Θ

)
(5.5)

∝
[

(

mi∏
j=1

τ
1
2
e e
− τe

2
(Sij−β0i)2sp1−Fij(1− sp)Fij)

]I(ki=1)

·
[( mi∏

j=1

τ
1
2
e e−

τe
2
(Sij−β0i)2

)( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

) ]I(ki=2)

·
[( mi∏

j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φki=3)

)2)( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)]I(ki=3)

where g(t|φ) = 0 for t < t?i .
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Let (k,φ) = {(ki, φkii ) : i = 1, . . . , n}. Then we obtain the likelihood function:

L
(
(k,φ),Θ

)
=

n∏
i=1

f
(
Si, Fi | (ki, φki),Θ

)
(5.6)

∝
∏
i:ki=1

[
(

mi∏
j=1

τ
1
2
e e
− τe

2
(Sij−β0i)2sp1−Fij(1− sp)Fij)

]
·
∏
i:ki=2

[( mi∏
j=1

τ
1
2
e e−

τe
2
(Sij−β0i)2

)( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

) ]
·
∏
i:ki=3

[( mi∏
j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φ3i )

)2)( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)]

5.3 Prior Specification

We specify prior distributions for parameters in this section, including both cow-specific and

global parameters.

5.3.1 Cow-specific Effects

First, we assign a multinomial distribution to latent variable ki:

ki ∼ Multinomial(q1, q2, q3)

where qk is the proportion of cows in state k for k = 1, 2, 3.

Then, we assign distributions to the cow-specific effects, φki , for each k value. In state 1 (k =

1), there is only one such parameter, β0i. We let the base serology score β0i
⊥∼ N(µβ0 , τβ0).

Since β0i exists in all three states and has the same interpretation, we keep using the same

distribution for β0i in the three models corresponding to the three states; µβ0 is the overall
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Figure 5.3: The interval for infection time in state 2

mean serology level before infection.

In state 2, φki=2
i = {β0i, t?i }. We model uncertainty about t?i as Uniform(timi − blag, timi) as

shown in Fig 5.3; timi is the last screening time for cow i, and blag = 17 months is the upper

bound of possible lag times. The serology trajectory is a horizontal line since the serology

score has not started to rise in the screening window. Thus all cows in state 2 would be

infected inside a blag length window prior to their last screening time.

The state-specific effects in state 3 include φki=3
i = {β0i, t?i , hi, di, ri}. The modeled dis-

tribution for t?i is different from state 2. In state 3, we assign it a uniform distribution

Uniform(dobi, timi − alag) as shown in Fig 5.4, where dobi is the ith cow’s date of birth, and

alag is the lower bound for the lag time, which is 4 months. The upper bound for the dis-

tribution is timi − alag instead of timi because there is a lag for serologic reaction and we

should not have observed if the cow was infected after timi − alag, if they are in stage 3.

The other three effects, {hi, di, ri}, determine the shape of the sigmoid function. We assign

distributions as:

log(di) ∼ N(µd,
1
τd

)

log(hi − ch) ∼ N(µh,
1
τh

)

log(ri) ∼ N(µr,
1
τr

)

where ch is a positive number, which forces hi > ch. This model in state 3 is the same as

the model in state 2 when hi → 0. We choose the cutoff ch > 0 since otherwise, it is difficult

to discriminate between states 2 and 3 for some cows. In our analysis, we let ch = 0.2.

We can write the pdf for the state-specific parameters (ki, φ
ki
i ) corresponding to each indi-
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Figure 5.4: The interval for infection time in stage 3

vidual i:

f
(
(ki, φ

ki
i ) | Θ

)
= f(φkii | ki,Θ) f(ki | Θ) (5.7)

∝
(
q1τ

1
2
β0
e−

τβ0
2

(β0i−β0)2
)I(ki=1)(

q2
I(timi−blag ,timi )(t

?
i )

blag
τ

1
2
β0
e−

τβ0
2

(β0i−β0)2
)I(ki=2)

(
q3
I(dobi,timi−alag)(t

?
i )

timi − alag − dobi
τ

1
2
β0
e−

τβ0
2

(β0i−β0)2 τ
1
2
h

hi − ch
e−

τh
2
(log(hi−ch)−µ1)2

τ
1
2
r

ri
e−

τr
2
(log ri−µ2)2 τ

1
2
d

di
e−

τd
2
(log di−µ3)2

)I(ki=3)

We obtain the joint density for all state parameters as follow:

f
(
(k,φ) | Θ

)
=

n∏
i=1

f(φkii | ki,Θ) f(ki | Θ) (5.8)

∝
∏
i:ki=1

(
q1τ

1
2
β0
e−

τβ0
2

(β0i−β0)2
)
·
∏
i:ki=2

(
q2
I(timi−blag ,timi )(t

?
i )

blag
τ

1
2
β0
e−

τβ0
2

(β0i−β0)2
)

∏
i:ki=3

(
q3
I(dobi,timi−alag)(t

?
i )

timi − alag − dobi
τ

1
2
β0
e−

τβ0
2

(β0i−β0)2 τ
1
2
h

hi − ch
e−

τh
2
(log(hi−ch)−µ1)2

τ
1
2
r

ri
e−

τr
2
(log ri−µ2)2 τ

1
2
d

di
e−

τd
2
(log di−µ3)2

)
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5.3.2 Global Parameters

We now specify the prior distributions for the global parameters Θ, which are

Θ = {q1, q2, q3, se, sp, τe, β0, τβ0 , µh, τh, µr, τr, µd, τd}

where (q1, q2, q3) are the proportions of cows in the 3 stages, respectively. We assign a

Dirichlet prior as:

(q1, q2, q3) ∼ Dirichlet(aq1, aq2, aq3) (5.9)

where aq1, aq2, aq3 are pre-selected numbers. We let them be 1 in our analysis.

Now (se, sp) are the sensitivity and specificity of the FC test. We assign independent beta

distributions to both of them;

se ∼ Beta(ase, bse)

sp ∼ Beta(asp, bsp) (5.10)

where we let ase = bse = asp = bsp = 1. Note better priors could be used for se and sp since

they both are greater than 50%. For example, uniform(0.5, 1) can be used as their prior.

The prior distributions for the rest of global parameters are listed below. Conventionally,
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we assigned normal priors to means µ and gamma priors to precisions τ . Namely,

τe ∼ Γ(aτe , bτe)

µβ0 ∼ N(uβ0 , vβ0) τβ0 ∼ Γ(aβ0 , bβ0)

µd ∼ N(ud, vd) τd ∼ Γ(ad, bd) (5.11)

µh ∼ N(uh, vh) τh ∼ Γ(ah, bh)

µr ∼ N(ur, vr) τr ∼ Γ(ar, br)

where a·, b·, u·, v· are all hyper-parameters. We use diffuse prior for precisions τ with aτe =

aβ0 = bτe = bβ0 = 0.001, ad = ah = ar = 2 and bd = bh = br=0.01. For the mean, we let

ud = uh = ur = 0, vd = vh = vr = 1, uβ0 = −2 and vβ0 = 1 based on the expert elicited

prior information. For example, we let µβ0 ∼ N(−2, 1) since the expert were at least 95%

confident that µβ0 is in the range (−4, 0). In addition, we tried different hyper-parameter

values for the prior distributions, and the posterior inferences are consistent with the choices.

5.4 Posterior Sampling

Combining the likelihood (Equation 5.6) and the prior distributions (Equation 5.8, 5.9, 5.10

and 5.11), we obtain the posterior distribution using Bayes rule:

f
(
(k,φ),Θ|D

)
∝ L

(
(k,φ),Θ

)
f
(
(k,φ) | Θ

)
f(Θ) (5.12)
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5.4.1 Gibbs Sampling

Since the posterior distribution is not recognizable, a Gibbs sampler was employed for pos-

terior sampling. The full conditional distributions for the majority of the parameters are

recognizable due to conditional conjugacy, and we can easily draw samples from them. For

example, the gamma distribution is commonly used as a conditionally conjugate prior for

precisions τ . So we can obtain the full conditional distribution of τe easily as below:

τe|else ∼ Γ
(
aτe +

∑
imi
2

, bτe +
∑

i:ki=1,2

∑
j

1
2

(
Sij − β0i)2 +

∑
i:ki=3

∑
j

1
2
(Sij − β0i − g(tij|φki=3)

)2)
(5.13)

Another example is the prior distribution (q1, q2, q3) ∼ Dirichlet(aq1 , aq2 , aq3), which is con-

jugate to the Multinomial(q1, q2, q3). The full conditional distribution for (q1, q2, q3) is:

(q1, q2, q3)|else ∼ Dirichlet(n1 + aq1 , n2 + aq2 , n3 + aq3) (5.14)

where nk, k = 1, 2, 3, is the number of cows in state k.

We list all the recognizable full conditional distributions below:

se|else ∼ Beta
(
ase +

∑
i:ki=2,3

∑
j:tij≥t?i

Fij, bse +
∑

i:ki=2,3

∑
j:tij≥t?i

(1− Fij)
)

sp|else ∼ Beta
(
asp +

∑
i:ki=1

∑
j

(1− Fij) +
∑

i:ki=2,3

∑
j:tij<t?i

(1− Fij
)
,

bsp +
∑
i:ki=1

∑
j

Fij +
∑

i:ki=2,3

∑
j:tij<t?i

Fij
)

µβ0|else ∼ N
(τβ0∑i β0i + v−1β0 uβ0

nτβ0 + v−1β0
, (nτβ0 + v−1β0 )−1

)
(5.15)

τβ0|else ∼ Γ
(
aβ0 +

n

2
, bβ0 +

∑
i(β0i − µβ0)2

2

)
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µh|else ∼ N
(uhv−1h + τh

∑
i:ki=3 log(hi − ch)

n3τh + v−1h
, (n3τh + v−1h )−1

)
τh|else ∼ Γ

(
ah +

n3

2
, bh +

∑
i:ki=3(log(hi − ch)− µh)2

2

)
µr|else ∼ N

(urv−1r + τr
∑

i:ki=3 log ri

n3τr + v−1r
, (n3τr + v−1r )−1

)
τr|else ∼ Γ

(
ar +

n3

2
, br +

∑
i:ki=3(log ri − µr)2

2

)
µd|else ∼ N

(udv−1d + τd
∑

i:ki=3 log di

n3τd + v−1d
, (n3τd + v−1d )−1

)
τd|else ∼ Γ

(
ad +

n3

2
, bd +

∑
i:ki=3(log di − µd)2

2

)

5.4.2 Reversible-Jump MCMC

There is difficulty in sampling from (ki, φki)|else, since the three infection states have different

dimension of parameter spaces. We use a reversible-jump MCMC algorithm to solve the

problem, which has been introduced in chapter 1. According to Equation (1.20), we need to

construct a transition kernel q(k → k′)qk→k′(u) for the reversible jump algorithm.

We first let q(k → k′) = 1
3

for any k, k′ ∈ {1, 2, 3}, so that an individual has equal probability

to move to one of the three infection states at each MCMC iteration. When k′ = k, the

individual stays in the same state as in the previous iteration, where the acceptance rate

α(k, k′ = k) = 1.

We use the reversible jump algorithm for the jumps between different infection states k and

k′. There are three different jumps we have to consider: k = 1 � k′ = 2, k = 1 � k′ = 3

and k = 2 � k′ = 3.

In the Appendix, we illustrate the reversible-jump MCMC sampler using a move from state
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1 (k = 1) to state 3 (k′ = 3) in detail. The acceptance rate for the move from state 1 to

state 3 is

α(k = 1, k′ = 3) = min(1, α13) (5.16)

where

α13 =
q3

1
timi−alag−dobi

q1ψ(t?i )
·

( mi∏
j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φ3i )

)2)
(
∏mi

j=1 τ
1
2
e e−

τe
2
(Sij−β0i)2)

·

( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)
∏mi

j=1 sp
1−Fij(1− sp)Fij

Similarly, we obtain the acceptance rate for the move from state 1 to state 2 and the move

from state 2 to state 3:

α(k = 1, k′ = 2) = min(1, α12); α(k = 2, k′ = 3) = min(1, α23) (5.17)
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where

α12 =
q2

1
blag

q1ψ2(t?i )
·

( mi∏
j=1

τ
1
2
e e−

τe
2
(Sij−β0i)2

)
(
∏mi

j=1 τ
1
2
e e−

τe
2
(Sij−β0i)2)

·

( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)
∏mi

j=1 sp
1−Fij(1− sp)Fij

α23 =
q3

1
timi−alag−dobi

ψ2(t
?
i )

q2ψ3(t?
′
i ) 1

blag

·

( mi∏
j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φ3i )

)2)
(
∏mi

j=1 τ
1
2
e e−

τe
2
(Sij−β0i)2)

·

( ∏
j:tij<t?

′
i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?
′
i

seFij(1− se)1−Fij
)

( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)

Since the constructed Markov chain is reversible, we can easily get the acceptance rates for

the remaining moves:

α(k = 3, k′ = 1) = min(1, α31) where α31 = α−113

α(k = 2, k′ = 1) = min(1, α21) where α21 = α−112 (5.18)

α(k = 3, k′ = 2) = min(1, α32) where α32 = α−123

5.4.3 Within-State Moves

At each MCMC iteration, we resample φkii within state ki in order to accelerate the conver-

gence of the Markov chain. Consider φki=1
i = β0i first. The posterior sample can be easily
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drawn from the following distribution due to conjugacy,

β0i|ki = 1, else ∼ N
(τe∑mi

j=1 Sij + τβ0β0

τemi + τβ0
, (τemi + τβ0)

−1) (5.19)

The cow-specific parameters are φki=2
i = {β0i, t?i } for state 2. The full conditional distribution

for β0i|ki = 2, else is the same as Equation (5.19), since the model for serology scores is the

same for states 1 and 2,

β0i|ki = 2, else ∼ N
(τe∑mi

j=1 Sij + τβ0β0

τemi + τβ0
, (τemi + τβ0)

−1) (5.20)

The full conditional distribution for t?i has the following form:

f(t?i |ki = 2, else) ∝
( ∏
j:tij<t?i

sp1−Fij(1−sp)Fij
)( ∏

j:tij≥t?i

seFij(1−se)1−Fij
) 1

blag
I(timi−blag ,timi )(t

?
i )

For t?i , we use a Metropolis step.

We propose a new value t?
′
i from the interval (timi − blag, timi) using a truncated normal

distribution with location at t?i and spread parameter 0.4 years. We use ftn(t?
′
i |t?i , 0.4, timi −

blag, timi) to denote the density function of the proposal distribution. Then the acceptance

rate is:

α(t?i , t
?′

i ) = min(1,
f(t?

′
i |ki = 2, else)ftn(t?i |t?

′
i , 0.4, timi − blag, timi)

f(t?i |ki = 2, else)ftn(t?
′
i |t?i , 0.4, timi − blag, timi)

) (5.21)

Finally consider posterior sampling for φki=3
i = {β0i, t?i , hi, di, ri}. We can draw posterior

samples for β0i|ki = 3, else using the full conditional distribution:

β0i|ki = 3, else ∼ N(
τe
∑mi

j=1(Sij − g(tij|t?i , hi, di, ri)) + τβ0β0

τemi + τβ0
, (τemi + τβ0)

−1) (5.22)
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We regard the four parameters {t?i , hi, di, ri} as a block, denoted by ui, and we draw posterior

samples for ui = {t?i , hi, di, ri} simultaneously. The full conditional distribution for ui has

the following form:

f(ui|ki = 3, else) ∝ f
(
Si, Fi | (ki, φ3

i = (βi0, ui)),Θ
)
f(ui | ki,Θ) (5.23)

∝
( mi∏
j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φ3i )

)2)( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)

( ∏
j:tij≥t?i

seFij(1− se)1−Fij
)
·
( 1

timi − alag − dobi
I(dobi,timi−alag)(t

?
i )

· τ
1
2
h

hi − ch
e−

τh
2
(log(hi−ch)−µ1)2 τ

1
2
r

ri
e−

τr
2
(log ri−µ2)2 τ

1
2
d

di
e−

τd
2
(log di−µ3)2

)

It is evident that the distribution is not recognizable, and we employ a Metropolis step for

sampling ui. The algorithm is the same as sampling for t?i in state 2. In order to remove

redundancy, we specify the detailed steps in the Appendix. The acceptance rate for the

update of ui is listed in Equation (C.40).

5.4.4 Sampling scheme

With all the full conditionals listed above, the Gibbs sampling algorithm for posterior sim-

ulation consists of nine steps:

1. Assign appropriate initial values to all the parameters including global parameters Θ0

and cow-specific parameters {(k0i , φ
ki0
i )}.

2. At iteration l, draw a new τ le using Equation (5.13) with the values from previous step.

3. Sample (ql1, q
l
2, q

l
3) with full conditional distribution given in Equation (5.14) using τ le

and other parameter values from previous steps.
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4. Similarly, sample each global parameter in {se, sp, β0, τβ0 , µh, τh, µr, τr, µd, τd} succes-

sively with full conditional distributions listed in Equation (5.15) using the newest

updated values for other parameters.

5. For each cow i, update its infection state, ki, using the reversible jump MCMC algo-

rithm,

• For a proposed (k′i, φ
k′i
i ), evaluate the acceptance rate α(k, k′) using Equation

(5.16), (5.17) or (5.18) depending on the (ki, k
′
i) values.

• Let kli = k′i and φkili = φ
k′i
i with probability α(k, k′), and let kli = kl−1i and

φkili = φkil−1i with probability 1− α(k, k′).

6. For each cow i, update φkii within state.

• If ki = 1, draw βl0i using Equation (5.19)

• If ki = 2, draw βl0i using Equation (5.20), and use Metropolis step to sample t?li .

– For a proposed t?
′
i , evaluate the acceptance rate α(t?i , t

?′
i ) using Equation

(5.21).

– Let t?li = t?
′
i with probability α(t?i , t

?′
i ), and let t?li = t?l−1i with probability

1− α(t?i , t
?′
i ).

• If ki = 3, draw βl0i with Equation (5.22), and use Metropolis step to sample

uli = {t?li , hli, dli, rli}.

– For a proposed u′, evaluate the acceptance rate α(u, u′) using Equation (C.40).

– Let ul = u′ with probability α(u, u′), and let ul = ul−1 with probability

1− α(u, u′).

7. Repeat Step 2-6 iteratively for l = 1, . . . , NMC to reach convergence.
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Figure 5.5: Plots of four selected subjects, ‘s’ and ‘F’ represent the observed serology score
and FC test results. The solid black line is the true mean curve used to simulate the serology
scores. The red dash line is the estimated mean curve.

5.5 Simulation

We use a simulation study to check model performance. The simulated data consist of 100

subjects with 30, 25 and 45 subjects in each of the three infection states 1, 2, 3, respectively.

The data from four selected subjects are shown in Figure 5.5. For each subject i, i =

1, . . . , 100, we generated 12 to 36 repeated observations on a time scale ranging from 0 to 40

years. The simulated data are unbalanced, but the screening was generated around annually.

In addition, we give the true values of the parameters used for simulation in Table 5.1.

Figure 5.5 also shows that the estimated mean trajectories fit to the serology data were quite

accurate. Table 5.1 gives posterior means, medians and 95% probability intervals together

with the true values used to simulated the data.

One question of interest for the study is to diagnose the cows. We would like to know how

the cows are classified into the three infection states. The classification is done using a 0-1
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Table 5.1: Parameter estimates and 95% probability intervals for simulated data

Parameters Truth Posterior Posterior 95% PI

Θ Mean Median lower upper

q1 0.3 0.291 0.29 0.184 0.404
q2 0.25 0.252 0.249 0.147 0.368
q3 0.45 0.457 0.456 0.36 0.557
se 0.7 0.714 0.714 0.677 0.751
sp 0.9 0.903 0.903 0.887 0.917
σe 0.2 0.199 0.199 0.193 0.206
β0 0.1 0.105 0.105 0.076 0.134
σβ0 0.141 0.134 0.135 0.115 0.159
µd 1 1.007 1.008 0.84 1.169
σd 0.15 0.093 0.089 0.061 0.144
µh 0.55 0.527 0.527 0.485 0.568
σh 0.1 0.083 0.082 0.063 0.108
µr -0.2 -0.234 -0.239 -0.333 -0.114
σr 0.1 0.1 0.097 0.066 0.152

Table 5.2: Classification of subjects in simulation.

Fitted

1 2 3

1 23 6 1
Truth 2 4 21 0

3 0 1 44

loss function, where subjects are classified into the infection state with the highest posterior

probability. We show classification results in Table 5.2. The model produced a reasonably

accurate results, in which 88 out of 100 subjects were correctly classified.

The continuous response serology score is often used for disease diagnosis. It would be

interesting to quantify its capability in diagnosing disease. We now consider diagnosis solely

based on serology. In this case, classification of subjects as diseased or non-diseased is

typically based on a dichotomized score. Subjects with serology scores above a specified

cutoff, denoted c, are classified as diseased while those below are classified as non-diseased.

We can calculate the sensitivity and specificity of the serology test corresponding to different

cutoffs c. In addition, since the concentration of antibodies in an infected subject rise

significantly over time after a lag, the sensitivity will be a function of time.
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Let S(t) be the serology score at time t for a new infected subject. We use se(c, t) to denote

the sensitivity of the serology test at t corresponding to cutoff c, and obtain the predicted

se(c, t) using the following equation:

ŝe(c, t) = P (Si(t) > c|D) (5.24)

=

∫
p(β0 + g(t|φ3) + εt > c|k = 3, φ3,Θ)f(φ3,Θ|D) d(φ3,Θ)

We evaluate the integral using Monte Carlo approximation based on posterior samples.

The specificity of the serology test is assumed not to vary with t. Let sp(c) denote the

specificity at cutoff c. We can estimate it similarly as:

ŝp(c) = P (S(t) < c|D) (5.25)

=

∫
p(β0 + εt < c|k = 1, φ1,Θ)f(φ1,Θ|D) d(φ1,Θ)

If we fix t and vary the cutoff c, we obtain a set of points,
(
1 − ŝp(c), ŝe(c, t)

)
. The curve

generated by these points is the estimated receiver-operating characteristic (ROC) curve at

time t. By varying t over a grid of values, we obtain a family of ROC curves as shown in

Figure 5.6. This gives us insight into how useful the serology score is in disease diagnosis

and how the performance changes with time past infection t. In the simulation study, the

generated lags (di in the model) averaged 2.7 years. The ROC curves correspond to it well.
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Figure 5.6: Estimated ROC curves from simulation.

5.6 Data Analysis for Johne’s Disease

We apply our finite mixture model to the joint longitudinal screening data for JD. Table 5.3

provides inferences for the global parameters. First, we are interested in disease diagnosis.

We obtain inferences for disease prevalence 0.47 (0.36,0.59) by combining the posterior pro-

portion of states 2 and 3, since the cows in state 2 and 3 are infected. Among the infected

cows, about 60% are still in the “intermediate” state, which indicates JD is likely spreading.

The performance of the FC test is also quantified. We can see the FC test has a high

specificity 0.965 (0.954, 0.974), which is important for such a test. Of concern is having an

infected cow pass the test and is not removed from the herd. Infected cows continue infecting

other healthy cows. The estimated sensitivity of the FC test is 0.635 (0.582, 0.686), which is

low. That is why we would like to include serology score in the model to improve the disease

diagnosis.

We also show model fitting to 12 cows in Figure 5.7. The cows were selected to show the

model fitting for the three infection states.
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Table 5.3: Parameter estimates and 95% probability intervals for the cow data

Parameters Posterior Posterior 95% PI

Θ Mean Median lower upper

q1 0.533 0.534 0.467 0.601
q2 0.282 0.281 0.231 0.335
q3 0.185 0.184 0.125 0.249
se 0.635 0.635 0.582 0.686
sp 0.965 0.965 0.954 0.974
σe 0.105 0.105 0.101 0.109
β0 -1.749 -1.749 -1.757 -1.741
σβ0 0.054 0.054 0.061 0.047
µd -0.08 -0.08 -0.174 0.026
σd 0.164 0.16 0.106 0.246
µh 0.652 0.653 0.502 0.799
σh 0.535 0.53 0.424 0.698
µr 1.868 1.866 1.578 2.16
σr 1.21 1.184 0.881 1.685

Figure 5.7: Model fitting shown with 12 selected cows. Column 1: three uninfected cows;
column 2: three cows in state 2; column 3 and 4: six cows in state 3. Cows were predicted
by the model to be in these states.
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We can compare our parameter estimates with Norris (2009) [25] since our models have many

similarities. The majority of the estimates are comparable. For example, the estimated mean

baseline serology score is -1.749 for our model and -1.745 for hers. A significant difference

comes from the estimated proportions of cows in the three states, which are (0.53, 0.28, 0.19)

for our model and (0.46, 0.25, 0.29) for hers.

Our model differs from hers in modeling the serology trend after infection. We use a four-

parameter sigmoid function to fit the serology data, and she used a linear function. That

leads to different inferences for the parameters related to serologic reaction. Firstly, the

lag time for serologic reaction is pre-determined and universal for all cows. However, it is

model based and is different for each cow in our model, and the estimated mean lag time is

0.92 (0.84, 1.03) years. Secondly, the estimated overall slope in her model is 1.09 (0.10, 12.55),

which has large variation. The corresponding parameter in our model is the maximum

increasing rate hiri/4, which is estimated to be 3.1 (2.0, 4.4). Figure 5.7 shows that our

model fits the serology data well with sigmoid function.

In addition, we give an ROC plot in Figure 5.8 to evaluate the serology test. Recall that the

lag for serologic reaction ranges from 4 to 17 months (0.25 to 1.4 years). The serology test

shows some effectiveness at t = 0.8 years after infection. When t ≥ 1.4 years, most of the

cows have developed serologic reaction, and the serology test is nearly perfect.

5.7 DPM Model

By examining the six infected cows in Figure 5.7, we see there are different developmental

patterns for the serology score. For example, cow 145 has a steep rise in serology score, but

it does not rise to a high level. On the contrary, cow 165 has lower increasing rate, but it

eventually reaches a much higher serology level. Therefore, the normality assumption for
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Figure 5.8: Estimated ROC curves based on the cow data.

log(hi − ch) and log ri is questionable. In order to relax the assumption, we use a Dirichlet

Process Mixture (DPM) for these two parameters in state 3.

In state 3, we model the two cow-specific parameters {hi, ri} using a DPM as follows:

log(hi − ch)|µh, τh ∼ N(µh,
1

τh
)

log(ri)|µr, τr ∼ N(µr,
1

τr
) (5.26)

{µh, τh, µr, τr}|G
iid∼ G

G ∼ DP (α,G0)

where the base distribution G0 includes:

µh|τh ∼ N(uh,
λh
τh

) τh ∼ Γ(ah/2, bh/2)

µr|τr ∼ N(ur,
λr
τr

) τr ∼ Γ(ar/2, br/2)
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Table 5.4: Posterior Distribution for the number of clusters
Cluster Number 3 4 5 6 7 8 9 ≥10

Posterior Probability 0.01 0.23 0.29 0.21 0.12 0.08 0.04 0.02

We use a Gibbs sampler to draw posterior samples as in the parametric case. In previous

chapters, we introduced the DPM model in detail and illustrated sampling schemes with

examples.

We applied this model to the joint longitudinal screening data for JD, and were able to

identify different developmental trends based on longitudinal serology scores. Table 5.4

shows the posterior distribution for the number of clusters. In our analysis, each cluster

corresponds to a distinctive developmental pattern. It is clear that there is more than one

increasing pattern.

Figure 5.9 shows density estimation for the two cow-specific parameters {hi, ri}. We can

identify two significant modes: One mode has the highest density, which corresponds to a

large log(ri) value. Since the maximum rate of increase is hiri/4 for the sigmoid curve, this

mode corresponds to a high increasing rate. The other mode has much lower peak compared

to the first one. It has a large log(hi − ch) value and a low log(ri) value. This mode

corresponds to a sigmoid curve reaching a high serology level with a moderate increasing

rate. There seems to be another insignificant mode with low log(hi − ch) and log(ri) values,

which corresponds to a small bump in the figure. The sigmoid curve of this mode has a

low serology level with low increasing rate. Our clustering also results correspond to those

of Norris, Johnson and Gardner (2014) [26], where they modeled only slopes after infection

plus lag with a DP. They identified two distinct slopes for serologic reaction.

However, we have some concern for this analysis, due to having convergence issues on multiple

occasions when we ran the Gibbs sampler for the DPM model using the joint longitudinal

screening data for JD. We believe the problem was caused by having a limited number of

observations from some cows. This kind of issue was discussed in chapter 4, and is more
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Figure 5.9: Predictive density estimation for {log(hi − ch), log ri}

difficult here due to having latent states.

In the DPM model, the normality assumption has been relaxed for {hi, ri}. Their estimates

depend solely on their serology score observations after infection time. By checking the data,

we found some infected cows had a small number of observations after infection and did not

fully develop serological reactions in the screening window. For these cows, it is impossible

to obtain a reasonable estimate for {hi, ri}, thus leading to questionable clustering results

for them.

5.8 Conclusion

In this chapter, we built a finite mixture model for the diagnosis of JD by fitting longitudinal

FC outcomes and serology scores jointly. The parametric model was shown to work well using

simulated data and it was illustrated using real JD data. As for the non-parametric model

with the DPM, we identified different increasing pattern for serologic reaction. However, our

method had convergence issues due to missing data for after infection serology scores. Our
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future work will focus on resolving that problem.
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Appendices

A Appendix A

A.1 Details about assigning prior to γ

The statistical meaning of γ is easier to understand with model (2.3) by considering:

V ar(yi|βi) = V ar(Xibi + εi)

= τ−1e (XiΓ
−1XT

i + Iri)

The variation is contributed by two parts: the random error τ−1e Iri and the mixed effects

within cluster part τ−1e XiΓ
−1XT

i . Then the overall variation of the vector yi is
∑ri

j=1 V ar(yij|βi),

which consists of

trace(τ−1e Iri) = riτ
−1
e

and

trace(τ−1e XiΓ
−1XT

i ) = trace(τ−1e XT
i XiΓ

−1)
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If orthogonal polynomial basis functions are used for balanced data, we can write Xi =

(x0i, x1i, . . . , xpi) with xk being an orthogonal basis function of degreee k in the defined

discrete time space for all k = 0, 1, . . . , p. And thus XT
i Xi = Ip+1 and trace(τ−1e XiΓ

−1XT
i ) =

τ−1e

∑p
j=0 γ

−1
j . Taking the ratio of this to the total, we see that the mixed effect explains∑p

j=0 γ
−1
j∑p

j=0 γ
−1
j +ri

× 100 percent of variation corresponding to individual i.

The result gives us an idea about how to select a prior distribution for γ. For example,

assume basis functions up to cubic terms (p = 3) are used and the individual has ri = 10

observations. Then 28.2% variation is explained by the mixed effect if we let the precision

ratio γj = 1 for all j = 0, 1, . . . , p. In our analysis, we assigned a diffuse Gamma prior to γ:

γj ∼ Gamma(
aγ
2
,
bγ
2

), for all j = 0, 1, . . . , p

where aγ = 2.02 and bγ = 0.02. It covers a wide range of γ values with sufficient probability.

Notice when γj →∞, XiΓ
−1XT

i tends to 0. The contribution from mixed effect diminishes

and our model (2.2) becomes model (2.1). In fact, model (2.1) could be regarded as the

special case of our model (2.2) with mixed effects tending to 0. That is analogous to DP

vs DPM, where DP is a special case of DPM with the standard deviation of each normal

mixture goes to 0. We used a similar result when taking model (2.1) to be a special case of

our model (2.1) when performing a simulation in Chapter 2. We used Gamma(aγ
2
, bγ

2
) with

aγ = 106 and bγ = 1.

If Legendre basis functions are used for unbalanced data, XT
i Xi is not exactly equal to, but
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still close to Ip+1. The diagonal element is

xTkixki =

tiri∑
j=ti1

x2ki(tj)

=
ri
2

tiri∑
j=ti1

x2ki(tj)
2

ri

≈ ri
2

∫ 1

−1
x2k(t) dt

=
ri
2

for all k = 0, 1, . . . , p

Similarly, the non-diagonal element is

xTkixli ≈
ri
2

∫ 1

−1
xk(t)xl(t) dt = 0, for all , 0 ≤ k 6= l ≤ p

Similar to the procedure above, we can still obtain a rough idea about the relative contribu-

tion of mixed effects variation in selecting an appropriate prior for γ.

B Appendix B

B.1 K-medoids clustering method

The K-medoids algorithm is a clustering algorithm related to the K-means algorithm and

the medoidshift algorithm. Medoids are representative individuals of a data set or a cluster

with a data set whose average dissimilarity to all the individuals in the cluster is minimal.

Medoids are similar in concept to means or centroids, but medoids are always members of

the data set.
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Both the K-means and K-medoids algorithms break the dataset up into groups, and both

attempt to minimize the distance between points labeled to be in a cluster and a point des-

ignated as the center of that cluster. In contrast to the commonly used K-means algorithm,

K-medoids chooses data points as centers (medoids) and works with an arbitrary matrix of

distances between data points instead of squared Euclidean distance. In our analysis, we

do not know the coordinates of the subjects, and thus are not able to define the cluster

centers. However, we do have the pairwise distances between any two subjects in the data

set. Therefore, the K-mediods algorithm is applicable in our case.

K-medoid is a classical partitioning technique for clustering the data set of n subjects into K

clusters, where K is pre-specified. In our case, K is picked based on the posterior distribution

of the number of clusters.

The most common realization of K-medoid clustering is the Partitioning Around Medoids

(PAM) algorithm. When applied to our analysis, the procedure is as follows:

1. Initialize: randomly select K of the n data points as the medoids.

2. Associate each data point with the closest medoid using pairwise distances defined in

Equation (3.5).

3. For each medoid k, k = 1, . . . , K and each non-medoid subject i in the data, swap k

and i and compute the total cost of the configuration.

4. Repeat step 2 to 4 until there is no change in the medoids.

B.2 Hierarchical Clustering Models

Hierarchical clustering is a method of cluster analysis in data mining, which seeks to build a

hierarchy of clusters. Given a set of n subjects to be clustered, and an n ∗n mutual distance
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(or similarity) matrix, the basic process of agglomerative hierarchical clustering is as follows:

1. Start by assigning each subject to a cluster, so that if you have n subjects, you now have

n clusters, each containing just one subject. Let the distances between two clusters

the same as the largest mutual distance between any pair of subjects from them.

2. Find the closest (with the shortest distance) pair of clusters and merge them into a

single cluster, so that now you have one less cluster.

3. Compute distances between the new cluster and each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size n.

Hierarchical clustering arranges items in a hierarchy with a treelike structure based on the

distance or similarity between them. The graphical representation of the resulting hierar-

chy is a tree-structured graph called a dendrogram. Figure (fig:dendrogram.galaxy) is an

example.

Step 3 can be done with different linkage functions. Some commonly used linkage functions

include single-linkage, complete-linkage and average-linkage. The dendrogram and clustering

of subjects are different with different linkage.

I personally prefer the K-medroid method over Hierarchical clustering becuase of the link-

age function. Sometimes the clustering results are very different for two different linkage

functions. And it is not evident how different linkage functions affect the clustering results.
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B.3 Table of P (ki|y,K = 6)

Table B.5: Posterior probability for clustering of the sub-

jects in the Galaxy Data

Subjects Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Other

sub 1 0.97 0 0 0 0 0 0.03

sub 2 0.973 0 0 0 0 0 0.027

sub 3 0.974 0 0 0 0 0 0.026

sub 4 0.975 0 0 0 0 0 0.025

sub 5 0.974 0 0 0 0 0 0.026

sub 6 0.971 0 0 0 0 0 0.029

sub 7 0.965 0.001 0 0 0 0 0.034

sub 8 0 0.752 0.053 0.075 0.073 0.001 0.046

sub 9 0 0.746 0.054 0.076 0.073 0.001 0.05

sub 10 0 0.096 0.615 0.1 0.085 0 0.104

sub 11 0 0.087 0.636 0.094 0.08 0 0.102

sub 12 0 0.083 0.646 0.091 0.077 0 0.102

sub 13 0 0.066 0.692 0.077 0.064 0 0.102

sub 14 0 0.062 0.701 0.073 0.061 0 0.103

sub 15 0 0.061 0.7 0.075 0.061 0 0.104

sub 16 0 0.055 0.714 0.07 0.058 0 0.104

sub 17 0 0.057 0.714 0.07 0.057 0 0.102

sub 18 0 0.056 0.711 0.072 0.059 0 0.102

sub 19 0 0.056 0.712 0.069 0.057 0 0.106

sub 20 0 0.056 0.715 0.072 0.058 0 0.1

sub 21 0 0.054 0.711 0.074 0.058 0 0.103

sub 22 0 0.054 0.719 0.069 0.056 0 0.102
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sub 23 0 0.055 0.712 0.072 0.059 0 0.102

sub 24 0 0.053 0.71 0.075 0.059 0 0.103

sub 25 0 0.054 0.709 0.076 0.061 0 0.099

sub 26 0 0.055 0.705 0.08 0.063 0 0.097

sub 27 0 0.056 0.705 0.079 0.061 0 0.099

sub 28 0 0.056 0.702 0.081 0.064 0 0.098

sub 29 0 0.056 0.707 0.082 0.062 0 0.094

sub 30 0 0.055 0.698 0.082 0.063 0 0.102

sub 31 0 0.055 0.695 0.087 0.067 0 0.097

sub 32 0 0.057 0.674 0.099 0.075 0 0.094

sub 33 0 0.058 0.676 0.1 0.075 0 0.09

sub 34 0 0.058 0.678 0.1 0.074 0 0.09

sub 35 0 0.058 0.671 0.102 0.077 0 0.093

sub 36 0 0.058 0.667 0.106 0.077 0 0.092

sub 37 0 0.059 0.667 0.106 0.077 0 0.092

sub 38 0 0.062 0.629 0.13 0.09 0 0.089

sub 39 0 0.069 0.565 0.17 0.11 0 0.086

sub 40 0 0.073 0.505 0.207 0.127 0 0.089

sub 41 0 0.074 0.494 0.216 0.131 0 0.084

sub 42 0 0.073 0.481 0.224 0.134 0 0.089

sub 43 0 0.073 0.475 0.231 0.135 0 0.086

sub 44 0 0.075 0.415 0.266 0.153 0 0.09

sub 45 0 0.079 0.348 0.314 0.168 0 0.092

sub 46 0 0.082 0.203 0.422 0.197 0 0.096

sub 47 0 0.08 0.144 0.47 0.208 0 0.098

sub 48 0 0.079 0.123 0.489 0.212 0 0.096

sub 49 0 0.079 0.11 0.499 0.214 0 0.098
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sub 50 0 0.079 0.104 0.506 0.215 0 0.096

sub 51 0 0.077 0.081 0.522 0.217 0 0.102

sub 52 0 0.077 0.079 0.527 0.219 0 0.098

sub 53 0 0.078 0.078 0.526 0.221 0 0.096

sub 54 0 0.078 0.079 0.527 0.219 0 0.098

sub 55 0 0.076 0.075 0.532 0.221 0 0.096

sub 56 0 0.077 0.073 0.529 0.221 0 0.1

sub 57 0 0.076 0.066 0.538 0.224 0 0.096

sub 58 0 0.075 0.062 0.54 0.226 0 0.098

sub 59 0 0.074 0.062 0.542 0.226 0 0.095

sub 60 0 0.073 0.06 0.545 0.227 0 0.095

sub 61 0 0.073 0.06 0.541 0.228 0 0.097

sub 62 0 0.074 0.058 0.544 0.232 0 0.093

sub 63 0 0.073 0.056 0.544 0.235 0 0.092

sub 64 0 0.072 0.056 0.54 0.234 0 0.098

sub 65 0 0.072 0.054 0.534 0.241 0 0.097

sub 66 0 0.072 0.055 0.535 0.238 0 0.1

sub 67 0 0.072 0.056 0.533 0.24 0 0.099

sub 68 0 0.072 0.054 0.529 0.243 0 0.1

sub 69 0 0.073 0.055 0.531 0.245 0 0.097

sub 70 0 0.072 0.055 0.525 0.246 0 0.102

sub 71 0 0.072 0.053 0.509 0.261 0.001 0.104

sub 72 0 0.073 0.053 0.501 0.268 0 0.105

sub 73 0 0.072 0.053 0.502 0.268 0.001 0.105

sub 74 0 0.072 0.053 0.497 0.274 0 0.105

sub 75 0 0.073 0.052 0.473 0.294 0.001 0.107

sub 76 0 0.073 0.052 0.444 0.324 0.001 0.107
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sub 77 0 0.073 0.051 0.355 0.441 0.001 0.078

sub 78 0 0.071 0.047 0.226 0.581 0.004 0.071

sub 79 0 0.071 0.046 0.211 0.571 0.005 0.096

sub 80 0 0.002 0 0 0.005 0.909 0.084

sub 81 0 0.001 0 0 0.003 0.949 0.047

sub 82 0 0.001 0 0 0.003 0.845 0.15

C Appendix C

C.1 Calculation of Accepatance Rate for Reversible Jump MCMC

In the reversible-jump MCMC sampler used in chapter 5, we have to consider six different

moves including k = 1 � k′ = 2, k = 1 � k′ = 3 and k = 2 � k′ = 3, and calculate the

acceptance rate for each move. The acceptance rate can be derived using Equation (1.21),

which is also listed below:

α(Mk,Mk′) = min{1, f(k′, θk′|y)q(k′ → k)qk′→k(u
′)

f(k, θk|y)q(k → k′)qk→k′(u)
| ∂gk→k

′(θk, u)

∂(θk, u)
|}

We start to illustrate the reversible-jump MCMC sampler in detail using a move from state

1 (k = 1) to state 3 (k′ = 3). Firstly, the full conditional distribution of (ki, φ
ki
i )|else can be

obtained with Equation (5.5) and (5.7) using

f
(
(ki, φ

ki
i )|else

)
∝ f

(
Si, Fi | (ki, φkii ),Θ

)
f
(
(ki, φ

ki
i ) | Θ

)
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We then obtain (ki, φ
ki
i )|else for both state 1 and state 3:

f
(
(ki = 1, φ1

i )|else
)
∝ (
∏mi

j=1 τ
1
2
e e−

τe
2
(Sij−β0i)2sp1−Fij(1− sp)Fij)q1τ

1
2
β0
e−

τβ0
2

(β0i−β0)2

f
(
(ki = 3, φ3

i )|else
)
∝
( mi∏
j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φ3i )

)2)( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)

(C.27)( ∏
j:tij≥t?i

seFij(1− se)1−Fij
) (
q3

1
timi−alag−dobi

τ
1
2
β0
e−

τβ0
2

(β0i−β0)2

τ
1
2
h

hi−ch
e−

τh
2
(log(hi−ch)−µ1)2 τ

1
2
r

ri
e−

τr
2
(log ri−µ2)2 τ

1
2
d

di
e−

τd
2
(log di−µ3)2

)

The state-specific parameters are φ1
i = β0i for state 1 and φ3

i = {β0i, t?i , hi, di, ri} for state 3.

So we construct a random vector u = {t, u1, u2, u3} for state 1 to match the dimension of

the parameter space in state 3. The proposal distribution q1→3(u) includes:

u1 ∼ N(µh, τ
−1
h )

u2 ∼ N(µr, τ
−1
r )

u3 ∼ N(µd, τ
−1
d )

where the three distributions are the same as the prior distribution for {hi, di, ri}. We

generate t with the distribution below:

ψ3(t) ∝ Sp

∑
j:tij<t

1−Fij
F (1− SpF )

∑
j:tij<t

Fij(1− SeF )
∑
j:tij≥t

1−FijSe

∑
j:tij≥t

Fij

F I(dobi ≤ t ≤ timi − alag)

We then have the proposal density function:

q1→3(u) ∝ ψ3(t)τ
1
2
h e
− τh

2
(u1−µ1)2τ

1
2
r e
− τr

2
(u2−µ2)2τ

1
2
d e
− τd

2
(u3−µ3)2 (C.28)
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The one-to-one mapping between (β0i, u) and {β0i, t?i , hi, di, ri} has relation as: t?i = t, hi =

ch + eu1 , ri = eu2 and di = eu3 .

Let J denote the Jacobian matrix in Equation (1.21). The determinant of the Jacobian

matrix is:

|J | = |∂(β0i, t
?
i , hi, ri, di)

∂(β0i, t, u1, u2, u3)
| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0

0 1 0 0 0

0 0 eu1 0 0

0 0 0 eu2 0

0 0 0 0 eu3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= eu1+u2+u3 = ridi(hi − ch) (C.29)

Denote α13 =
f((ki=3,φ3i )|else)q(k′=3→k=1)

f((ki=1,φ1i )|else)q(k=1→k′=3)q1→3(u)
| J |, which is the ratio term in Equation (1.20)

applied to our case. By plugging in the results from Equation (C.27), (C.1) and (C.29), we

obtain:

α13 =
f((ki = 3, φ3

i )|else) · 13 · e
u1+u2+u3

f((ki = 1, φ1
i )|else) · 13 · q1→3(u)

(C.30)

=
q3

1
timi−alag−dobi

q1ψ3(t?i )
·

( mi∏
j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φ3i )

)2)
(
∏mi

j=1 τ
1
2
e e−

τe
2
(Sij−β0i)2)

·

( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)
∏mi

j=1 sp
1−Fij(1− sp)Fij

And the acceptance rate for the move from state 1 to state 3 is

α(k = 1, k′ = 3) = min(1, α13) (C.31)

189



Since the constructed Markov chain is reversible, we can easily get the acceptance rate for

the move from state 3 to state 1:

α(k = 3, k′ = 1) = min(1, α31), where α31 = α−113 (C.32)

Similarly, we consider the move from state 1 to state 2, we have the full conditional distri-

bution (ki, φ
ki
i )|else for state 2 as follow:

f
(
(ki = 2, φ2

i )|else
)
∝
( mi∏
j=1

τ
1
2
e e−

τe
2
(Sij−β0i)2

)( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)
(C.33)

·
( ∏
j:tij≥t?i

seFij(1− se)1−Fij
)(
q2

1

blag
τ

1
2
β0
e−

τβ0
2

(β0i−β0)2
)

Since φ2
i = {β0i, t?i } for state 2, we need to create just one random variable u = t for state 1

to match the parameter space in state 2. The proposal distribution q1→2(u) is:

ψ2(t) ∝ Sp

∑
j:tij<t

1−Fij
F (1− SpF )

∑
j:tij<t

Fij(1− SeF )
∑
j:tij≥t

1−FijSe

∑
j:tij≥t

Fij

F I(timi − blag ≤ t ≤ timi)

We then have the proposal density function:

q1→2(u) = ψ2(t) (C.34)

Note the proposal distribution for t?i is different for the move to state 3 (ψ3(t)) and for the

move to state 2 (ψ2(t)). Even though t?i has the same interpretation in both states, which is

the infection time, they are mathematically different because they were defined in different

domains. In state 2, t?i ranges from timi − blag to timi . But its domain is (dobi, timi − alag) in

state 3.
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We then obtain the acceptance rate as:

α(k = 1, k′ = 2) = min(1, α12) (C.35)

where

α12 =
q2

1
blag

q1ψ2(t?i )
·

( mi∏
j=1

τ
1
2
e e−

τe
2
(Sij−β0i)2

)
(
∏mi

j=1 τ
1
2
e e−

τe
2
(Sij−β0i)2)

·

( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)
∏mi

j=1 sp
1−Fij(1− sp)Fij

Consider the move from state 2 to state 3, the state-specific parameters are φ2
i = {β0i, t?i }

for state 1 and φ3
i = {β0i, t?

′
i , hi, di, ri} for state 3. Here we use t?

′
i to denote the infection

time in state 3 in order to differentiate it from t?i in state 2. We construct a random vector

u = {t, u1, u2, u3} for state 2 and a random variable u′ = t′ from state 3.

The generation of u is the same as in the move between state 1 and 3. So the one-to-one

mapping still has the relation: t?
′
i = t, hi = ch + eu1 , ri = eu2 and di = eu3 . The variable

u′ = t′ is generated from ψ2(t), which is used to match t?i : t
′ = t?i . Therefore, the proposal

distribution q2→3(u) = q1→3(u), and the proposal q3→2(u
′) = ψ2(t

′).

We plug in the results to Equation (1.21), and obtain the acceptance rate:

α(k = 2, k′ = 3) = min(1, α23) (C.36)
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where

α23 =
q3

1
timi−alag−dobi

ψ2(t
?
i )

q2ψ3(t?
′
i ) 1

blag

·

( mi∏
j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φ3i )

)2)
(
∏mi

j=1 τ
1
2
e e−

τe
2
(Sij−β0i)2)

·

( ∏
j:tij<t?

′
i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?
′
i

seFij(1− se)1−Fij
)

( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)

Using reversibility of the Markov chain, we also have

α(k = 2, k′ = 1) = min(1, α21) where α21 = α−112 (C.37)

α(k = 3, k′ = 2) = min(1, α32) where α32 = α−123 (C.38)

C.2 Metropolis-within-Gibbs

In state 3, the cow-specific parameters include φki=3
i = {β0i, t?i , hi, di, ri}. We regard the

four parameters {t?i , hi, di, ri} as a block, denoted by ui, and we draw posterior samples for

ui = {t?i , hi, di, ri} simultaneously. The full conditional distribution for ui has the following

form:

f(ui|ki = 3, else) ∝ f
(
Si, Fi | (ki, φ3

i = (βi0, ui)),Θ
)
f(ui | ki,Θ)

∝
( mi∏
j=1

τ
1
2
e e
− τe

2

(
Sij−β0i−g(tij |φ3i )

)2)( ∏
j:tij<t?i

sp1−Fij(1− sp)Fij
)( ∏

j:tij≥t?i
seFij(1− se)1−Fij

)
·
(

1
timi−alag−dobi

· τ
1
2
h

hi−ch
e−

τh
2
(log(hi−ch)−µ1)2 τ

1
2
r

ri
e−

τr
2
(log ri−µ2)2 τ

1
2
d

di
e−

τd
2
(log di−µ3)2

)
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It is apparent that the distribution is not recognizable, and we employ Metropolis-within-

Gibbs algorithm for sampling u. We choose the transition kernel below to propose a new

step u′i:



log(h′i − ch)

log r′i

d′i

logit(
t?
′
i −dobi

timi−alag−dobi
)


∼ N4





log(hi − ch)

log ri

di

logit(
t?i−dobi

timi−alag−dobi
)


, Σ̂ =



0.05 0 0 0

0 0.05 0 0

0 0 0.25 0

0 0 0 0.1




where Σ̂ controls the step size of the Markov chain, which can be adjusted in order to attain

a good acceptance rate.

Let fn(·) be the density function for the transition kernel, which is a multivariate normal

distribution. We can obtain the density function for the propsal u′i:

q(ui → u′i) = fn
(
(log(h′i − ch), log r′i, d

′
i, logit(

t?
′
i − dobi

timi − alag − dobi
))|ui, Σ̂

)
·|
∂
(

log(h′i − ch), log r′i, d
′
i, logit(

t?
′
i −dobi

timi−alag−dobi
)
)

∂(t?i , hi, di, ri)
|

where the determinant of the Jacobian matrix can be simplified:

|
∂
(

log(h′i − ch), log r′i, d
′
i, logit(

t?
′
i −dobi

timi−alag−dobi
)
)

∂(t?i , hi, di, ri)
| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
h′i−ch

0 0 0

0 1
r′i

0 0

0 0 1 0

0 0 0
timi−alag−dobi

(t?
′
i −dobi)(timi−alag−t

?′
i )

∣∣∣∣∣∣∣∣∣∣∣∣∣
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We then can obtain the ratio of the proposal distribution:

q(u′i → ui)

q(ui → u′i)
=
r′i(h

′
i − ch)(t?

′
i − dobi)(timi − alag − t?

′
i )

ri(hi − ch)(t?i − dobi)(timi − alag − t?i )
(C.39)

Using the results from Equation (5.23) and (C.39), we can calculate the acceptance rate of

the move:

α(u, u′) = min(1,
f(u′i|ki = 3, else)q(u′i → ui)

f(ui|ki = 3, else)q(ui → u′i)
) (C.40)
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