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S U M M A R Y
Earth’s liquid core hosts a diverse set of waves with periods ranging from days to thousands of
years. One class of waves with periods of several decades is known to arise from an interplay
between magnetic, Archimedes and Coriolis forces. These so-called MAC waves are thought
to be relevant for interpreting historical fluctuations in the geomagnetic field. In this study,
we show that MAC waves provide a good description of time-dependent zonal flow at the
top of the core. The same collection of waves also offers a simple explanation for observed
fluctuations in the dipole field. Both of these predictions require a stratified layer at the top
of the core with a thickness of 130–140 km and a buoyancy frequency comparable to Earth’s
rotation rate. We extend these predictions to include changes in the length of day (LOD) and
find that MAC waves can account for about half of the observed fluctuation at decadal periods.
Larger fluctuations are possible when electromagnetic stresses couple MAC waves to flow in
the interior of the core. In fact, an idealized model for the coupled motion overestimates the
LOD fluctuations, probably reflecting limitations in this idealized model. Our results offer
support for stable stratification at the top of the core and suggest a common origin for decadal
fluctuations in the geomagnetic field and the LOD.

Key words: Earth rotation variations; Geomagnetic induction; Rapid time variations.

1 I N T RO D U C T I O N

Waves in Earth’s core are often invoked to explain fluctuations in the
geomagnetic field with periods of several decades (Hide 1966). Ini-
tial attempts to identify these waves appealed to a class of magnetic
waves, known as torsional oscillations (Braginsky 1970), which
represent a transient response to disturbances in the primary force
balance in the core (Jones 2011). The associated flow is organized
into the form of cylinders that align with the rotation axis due to
the strong influence of planetary rotation. Motion between adja-
cent cylinders distorts any magnetic field that crosses the cylinder
surfaces, providing the necessary restoring force for wave motion
(Jault & Finlay 2015). Waves with periods of several decades imply
a relatively weak magnetic field (Zatman & Bloxham 1997; Buffett
et al. 2009), whereas numerical geodynamo models predict a much
stronger internal magnetic field (Christensen 2011). More recent in-
terpretations of core-surface flow now favour torsional waves with
periods of 4–6 yr (Gillet et al. 2010), providing better agreement
with numerical geodynamo models (Teed et al. 2014). However, this
consensus leaves the origin of longer period fluctuations unknown.

Waves with periods of several decades can arise when the top
of the liquid core is stably stratified (Braginsky 1993). A balance
between buoyancy, rotation and magnetic forces (sometimes called a
MAC balance) permits long-period motion with almost no influence

from inertia. Instead, slow radial motion alters the pressure field in
the presence of a background stratification (see Fig. 1). Horizontal
pressure gradients sustain a geostrophic flow, which continually
adjusts to the changing radial position of buoyant parcels. This
geostrophic flow distorts the radial magnetic field, inducing a weaker
poleward flow. The feedback of this poleward flow on the radial
motion closes the chain of interactions that permit the so-called
MAC waves. Nominal wave periods are set by the strength of the
fluid stratification and by the amplitude of the radial magnetic field.
The thickness of the layer has a principal role in determining the
damping of the waves.

Braginsky (1993) showed that MAC waves with periods of 30–
60 yr could be realized with plausible values for the fluid stratifi-
cation and radial magnetic field. He was able to obtain analytical
solutions for the waves when the radial magnetic field was restricted
to the form of a dipole. However, detailed tests of these waves with
available observations suggest that a more general description of
the radial magnetic field is required if we want to link core-surface
flows to fluctuations in the dipole field (Buffett 2014). The difficulty
arises because the shapes of waves in the presence of a dipole field
are not compatible with both the core-surface flow and the dipole
fluctuations. Both phenomena can be reconciled by modifying the
spatial structure of the modes through a change in the spatial distri-
bution of the radial magnetic field over the core–mantle boundary.

C⃝ The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1789
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1790 B. Buffett, N. Knezek and R. Holme

Figure 1. Schematic illustration of a MAC wave at the top of the core. A radial displacement, !r, disturbs the density distribution, creating regions of high
(H) and low (L) pressure. The influence of rotation, !, promotes a balance between the horizontal pressure gradient and a geostrophic flow vφ (directed out of
the page). Tension in the radial magnetic field opposes vφ , inducing a meridional flow toward the north (N) and south (S) poles.

A simple, but plausible alternative is to assume that the radial field
is randomly distributed over the surface of the core with nearly
equal power across a broad range of spatial scales. Because the
magnetic restoring force does not depend on the direction of the
radial field, a uniform spectrum can be approximated as a constant
root-mean-squared (rms) radial field, at least for the purposes of
predicting the waves. Good agreement with available estimates for
core-surface flows and dipole fluctuations requires a stratified layer
with a buoyancy frequency comparable to the Earth’s rotation rate
(Buffett 2014).

Geodetic observations of fluctuations in the length of day (LOD)
are also known to exhibit fluctuations with periods of several
decades (Gross 2001; Holme & de Viron 2005). These fluctua-
tions are commonly attributed to exchanges of angular momentum
between the core and the mantle. Similarities between the LOD
and geomagnetic fluctuations have prompted speculations about a
common origin (Braginsky 1984). While torsional waves can ac-
count for the LOD fluctuations (Braginsky 1970), a purely toroidal
flow does not contribute to variations in the dipole field. Here we
assess whether MAC waves offer a viable interpretation for both
phenomena.

A primary focus in this study is to quantify the role of MAC
waves on LOD fluctuations. We find that MAC waves in a layer
at the top of the core carry angular momentum, which permits
a change in LOD. By fitting a linear combination of waves to the
core-surface flow of Jackson (1997), we can account for roughly half
of the observed, long-period change in LOD solely from motions
within this layer. The other half could arise from the influence of
electromagnetic stresses exerted by the waves on the interior of
the core. We predict torques on the order of 1018 N m, which are
large enough to explain the typical amplitude of LOD variations.

In some instances, the predicted torques can actually be too large.
One interpretation of the excessive LOD predictions is that the
interior flow has an important feedback on the MAC waves. In this
case, an isolated treatment of MAC waves may not be sufficient to
fully describe the dynamics.

Extensions of the MAC-wave model to include the response of
the interior of the core have a chain of consequences. Motion of
the interior due to electromagnetic stresses would tend to reduce
differential motion between the stratified layer and interior. The
corresponding reduction in electromagnetic stresses would lower
the torque, potentially yielding better agreement with the LOD ob-
servations. While a fully coupled treatment of the dynamics of the
interior is beyond the scope of the current work, we do consider
one idealized case to illustrate a few basic features of the coupled
problem.

Another motivation for the present work is to correct a minor
error in the wave calculations in Buffett (2014). As shown below,
the error has only a small effect on the structure of the waves,
so the previous conclusions are not changed. However, some of
the specific predictions for the wave periods and damping are
revised.

2 D E S C R I P T I O N O F M A C WAV E S

MAC waves can be represented as small perturbations in velocity,
v, and magnetic field, b. We assume that these perturbations are
superimposed on background fields, V and B, which are taken to
be steady over the period of the waves. The shallow depth of the
layer means that radial gradients in the perturbations are much
larger than horizontal gradients. Terms like B · ∇v in the induction
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Evidence for MAC waves 1791

equation can be approximated by Br∂ rv, indicating that the radial
magnetic field, Br, has a primary role in the dynamics. Following
Braginsky (1993) we let V = 0 and retain only the radial part of
B. With these approximations the linearized equations for v and
b are

ρ(∂t v + 2! × v) = −∇ P + 1
µ

Br∂r b + !ρg + ρν∇2v (1)

∂t b = Br∂r v + η∇2b (2)

∇ · v = ∇ · b = 0 (3)

where ρ is the fluid density, ! = 'ẑ is the mean rotation rate
of the Earth, µ is the magnetic permeability, !ρ is the density
perturbation, g = −gr̂ is the acceleration due to gravity, ν is the
fluid viscosity and η = (µσ )−1 is the magnetic diffusivity. Here σ

is the electrical conductivity of the core.
Density perturbations in the Boussinesq approximation arise

from radial motion through a background stratification. This strat-
ification may be due to temperature or composition, but its origin
is not important as long as the effects of thermal or compositional
diffusion are small over one cycle. Under this approximation, the
density perturbation can be written as

!ρ = −u · ∇ρ ≈ −ur
∂ρ

∂r
(4)

where u is the displacement associated with the wave. For small-
amplitude waves

∂t u = v . (5)

Radial variations in density due to hydrostatic pressure do not con-
tribute to the buoyancy force, so the radial derivative in (4) is de-
fined relative to variations in a well-mixed, isentropic fluid. It is
convenient to express the density gradient in terms of a buoyancy
frequency

N =

√

− g
ρ

∂ρ

∂r
(6)

which defines the hypothetical frequency of a fluid parcel oscillat-
ing in a density stratification without the effects of rotation and a
magnetic field.

The governing equations are written in non-dimensional form
using the radius of the core, R, as the lengthscale, '−1 as the
timescale and

√
'ρµη as the scale for the magnetic field. The

resulting dimensionless equations are

∂t v + 2ẑ × v = −∇ P + Eη Br∂r b − Ñ 2(u · r̂)r̂ + E∇2v (7)

∂t b = Br∂r v + Eη∇2b (8)

where the dimensionless parameters

Ñ 2 = N 2

'2
, E = ν

'R2
, Eη = η

'R2
(9)

are, respectively, a (squared) dimensionless buoyancy frequency,
the Ekman number and a parameter sometimes called the magnetic
Ekman number (Christensen et al. 2010). The model used here is
similar to one used by Braginsky (1993), but we retain the effects of
local inertia in (7) and include all components of the rotation vector
in the Coriolis force. We also retain the viscous force, whereas
Braginsky (1993) assumes inviscid flow.

2.1 Boundary conditions

Solutions to (7) and (8) are subject to boundary conditions at the
top and bottom of the stratified layer. Viscous stress-free conditions
are imposed on the top and bottom boundaries to eliminate viscous
boundary layers, thus reducing the demands on numerical resolu-
tion. No radial motion is permitted at the core–mantle boundary,
under the assumption that the deformation of the mantle is small.
Below the stratified layer we expect fluid motion to take the form
of torsional oscillations (Braginsky 1970). The quasi-geostrophic
nature of this motion ensures that the radial component of flow is
small. Consequently, we impose no radial motion at the base of
the layer. While buoyant fluid parcels below the layer can induce
radial motion, we treat this motion as part of the excitation source
rather than as part of the wave. Indeed, numerical calculations in
Buffett (2014) confirm that radial motion in the bulk of the neu-
trally stratified interior is small. This condition prevails at the base
of the stratified layer, where the strength of stratification vanishes
(see below).

The magnetic field at the top of the layer is continuous with a po-
tential field outside the core under the approximation that the mantle
is an electrical insulator. A more general electromagnetic condition
is needed at the base of the layer because viscous stress-free con-
ditions on velocity permit discontinuities in the horizontal velocity.
A suitable condition is obtained by combining the requirements
of continuity of the magnetic field and continuity of the horizon-
tal electric field (Gubbins & Roberts 1987). The condition on the
electric field can be written in spherical coordinates (r, θ , φ) as

[η ∂r bθ,φ]+− + Br [vθ,φ]+− = 0 (10)

where [ ]+− denotes the jump in the enclosed quantity across the
base of the layer. To be specific in our discussion we let subscript
− indicate the lower (interior) side of the interface and superscript
+ represent the upper (layer) side of the interface.

The continuity condition in (10) requires a solution for the mag-
netic perturbation in the interior of the core. A simple solution is
obtained when the wave motion is confined to the stratified layer
and the flow in the underlying region vanishes (i.e. v− = 0). In this
case, the magnetic perturbation obeys a diffusion equation in the
interior of the core. Solutions with time dependence of the form eiωt

can be approximated by

b−
θ,φ(r, θ,φ) = b−

θ,φ(ri , θ,φ) e(1+i)(r−ri )/δ (11)

where

δ =
√

2η

ω
(12)

is the skin depth and ri is the radius of the interface between the layer
and the interior of the core. This particular approximation depends
on δ being small compared with the lengthscale for horizontal vari-
ations. An identical solution for b− would also be appropriate when
the interior velocity is characterized by a large-scale geostrophic
flow because the horizontal lengthscales are large compared with
the skin depth. In either case the induced magnetic perturbation in
the interior is due mainly to a velocity discontinuity at ri. Thus,
the interior solution represents a diffusive perturbation near the
boundary.

Invoking the continuity of magnetic field in (10) yields

∂r b+
θ,φ − (1 + i)

b+
θ,φ

δ
+ Br

η
(v+

θ,φ − v−
θ,φ) = 0 (13)

where η is assumed to be continuous inside the core. Setting v− = 0
defines a homogeneous boundary condition at the bottom of the
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stratified layer, which fully specifies the solution for b+ when com-
bined with the insulating condition at the top. Restoring the interior
flow to the wave problem requires a separate description of the dy-
namics in the interior. Several possibilities are discussed below, but
most of the subsequent results are obtained using v− = 0. Another
complication arises with the frequency dependence of the skin depth
in (12). Numerical solutions for the waves can be obtained using
standard methods once a rough estimate is given for the skin depth.
The resulting solution for the eigenfrequency can then be used to
update the skin depth and the calculation is repeated. Corrections
to the eigenfrequencies are typically very small, so one iteration is
usually sufficient to obtain accurate solutions.

2.2 Numerical solution

Solenoidal conditions on v and b in (3) are imposed using a toriodal–
poloidal decomposition (Kuang & Bloxham 1999). The toroidal
and poloidal scalars are expanded in fully normalized spherical
harmonics with coefficients that depend on radius, r, and time, t.
Each coefficient corresponds to a particular degree, l, and order, m,
in the spherical harmonic expansion. The time dependence for all
coefficients (say vm

l ) is represented in the form

vm
l (r, t) = ṽm

l (r )eiωt (14)

where ω is the frequency of the wave. Radial derivatives in the
governing equations are approximated by second-order finite dif-
ferences on an evenly spaced grid in radius.

Substituting the spherical harmonic expansions into the govern-
ing equations defines a system of algebraic equations of the form

Ax = ωBx (15)

where x is a vector of scalar coefficients for v, b and u at the radial
gridpoints. Similarly, the boundary conditions can be written in
matrix form as

Cx = 0 (16)

The governing equations and boundary conditions can be combined
into a single matrix equation
[

A CT

C 0

] [
x
ϵ

]
= ω

[
B 0
0 0

] [
x
ϵ

]
(17)

where the auxiliary variables, ϵ, tend to decrease in amplitude as the
resolution of the numerical solution improves (Fox & Parker 1968).
Iterative solutions for the complex eigenvalues, ω, are obtained
using an implicitly restarted Arnoldi method (Lehoucq & Sorensen
1996).

Numerical solutions are obtained on a radial grid with 200 radial
levels, and the spherical harmonic expansion is truncated at l = 40.
Solutions for zonal waves (m = 0) fall into two classes, depending
on whether the radial flow is symmetric or antisymmetric about the
equator. We confine our attention to symmetric waves because the
associated azimuthal flow, vφ , is directly comparable to the zonal
flows inferred from geomagnetic secular variation (Jackson 1997;
Gillet et al. 2015).

3 R E P R E S E N TAT I V E S O LU T I O N
F O R M A C WAV E S

Our numerical calculations are specified by the three dimensionless
parameters in (9) and by the strength of the radial magnetic field.
Indirect inferences of Br from geodetic observations (Buffett et al.

2002; Koot et al. 2010), as well as numerical geodynamo models
(Christensen 2011), suggest that a large part of the radial mag-
netic field resides in wavelengths that are too small to detect at the
Earth’s surface. We adopt a simple description by assuming that the
radial magnetic field is randomly distributed over the core–mantle
boundary. Because the waves do not depend on the direction of the
magnetic field, the rms value can be approximated as a constant in
the calculations. Here we take Br = 0.62 mT, which is sufficient to
explain the geodetic observations when the electrical conductivity
is σ = 106 S m−1 (Pozzo et al. 2012). Combining this value for σ

with the permeability of free space, µ = 4π × 10−7 H m−1, gives a
magnetic diffusivity of η = 0.8 m2 s−1. Standard values for R = 3.48
× 106 m, ' = 0.729 × 10−4 s−1 and ρ = 104 give a characteristic
magnetic field of

√
'ρµη = 0.86 mT and a magnetic Ekman num-

ber of Eη = 9 × 10−10. Finally, we adopt a turbulent value for ν ≈ η,
which gives E = Eη, although the resulting waves are relatively
insensitive to the choice of E when stress-free boundary conditions
are imposed.

The properties of the stratified layer are specified by its thickness,
H, and by the buoyancy frequency, N. For simplicity H is assumed to
be constant and N is allowed to vary linearly with radius across the
layer, broadly consistent with expectations for thermal stratification
(Lister & Buffett 1998). The value of N is largest at the core–mantle
boundary and decreases to zero at the base of the stratified. As
a result, the structure of the layer is completely determined by H
and the maximum value of N (denoted as Nmax). Both H and Nmax

are subsequently treated as adjustable parameters when we seek to
interpret core-surface flow in terms of MAC waves (see Section 4).
Here we adopt plausible values (H = 140 km and Nmax = 0.84 ')
to calculate the real and imaginary parts of a typical wave. The
wave shown in Figs 2 and 3 has a symmetric pattern of radial
flow, vr, which is roughly described by a zonal spherical harmonic
with degree l = 4. In detail the waves are more complicated than
a single spherical harmonic degree, but the dominant pattern is
useful for characterizing the different waves. The gravest waves
have upwellings at the poles and a downwelling at the equator over
half of a cycle (corresponding to l = 2). Overtones have more
complicated structure in radius and are more heavily damped than
the fundamental modes. Waves with a larger number of upwellings
and downwellings (i.e. larger l) have shorter periods.

Symmetries in the radial motion in Figs 2 and 3 are mirrored in
the azimuthal flow, vφ , which is driven by pressure perturbations
associated with vr. A weaker meridional flow, vθ , is induced by
the effects of magnetic friction on the azimuthal flow. The peak
azimuthal flow occurs slightly below the core–mantle boundary in
Fig. 2. As time advances by half a cycle (Fig. 3), the peak azimuthal
flow shifts toward the core–mantle boundary. One implication of this
result is that the angular momentum of a wave cannot be directly
assessed from flow at the core–mantle boundary. Another point to
note is that the large azimuthal flow is nearly geostrophic. Lorentz
forces induce a meridional flow, but the amplitude of this flow is
about an order of magnitude smaller than vφ . Thus, the departures
from tangential geostrophy are about 10 per cent in this particular
example.

Table 1 lists the periods and quality factors for two sets of waves.
One set of waves is defined by fitting the core-surface flow of
Jackson (1997), which is based on the geomagnetic field model
GUFM1 (Jackson et al. 2000). The other set of waves is obtained
by fitting the flow model of Gillet et al. (2015), based on the geo-
magnetic field model COV-OBS (Gillet et al. 2013). The period and
quality factors listed under GUFM1 were calculated with a layer
thickness H = 140 km and a stratification Nmax = 0.84 ', whereas
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Evidence for MAC waves 1793

Figure 2. The real part of the velocity field for a typical MAC. The flow has components in the (A) radial, (B) meridional and (C) azimuthal directions. This
particular wave is specified by l = 4 and n = 0, corresponding to the dominant spherical harmonic degree l of radial velocity and the radial overtone n. The
radial velocity, vr, induces a large geostrophic flow, vφ , with a peak velocity below the core–mantle boundary. The meridional flow, vθ is about an order of
magnitude smaller than vφ .

Figure 3. The imaginary part of the velocity field for a typical MAC (l = 4, n = 0). The relative magnitudes of the (A) radial (B) meridional and (C) azimuthal
components of flow are comparable to those in the real part of the velocity field, although the radial structure is somewhat different. The largest radial flow
occurs deeper in the layer and the peak azimuthal flow occurs at the core–mantle boundary.
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Table 1. MAC wave period, P, qualify factor, Q and fit to surface core flow.

Mode Overtone GUFM1 COV-OBS
l n P (yr) Q Fit (per cent) P (yr) Q Fit (per cent)

2 0 116.47 2.47 1.3 133.13 2.24 0.9
2 1 134.86 0.85 0.0 175.13 0.51 0.0
4 0 57.40 2.77 29.1 68.07 2.42 28.8
4 1 71.35 1.71 9.6 77.98 1.39 19.2
6 0 37.82 3.17 7.7 43.93 2.76 8.0
6 1 51.19 1.75 29.8 55.68 1.78 22.9
8 0 28.04 3.73 5.0 32.38 3.00 4.6
8 1 41.35 1.78 16.2 43.85 1.81 15.6

the waves listed under COV-OBS were calculated with H = 129 km
and Nmax = 0.74 '. Details of the fitting procedure are given in
Section 4. Here it suffices to note that the waves are classified ac-
cording to the dominant spherical harmonic degree of the radial
wave motion. We also distinguish between the fundamental mode
(n = 0) and the first overtone (n = 1). Higher overtones (n > 1)
are heavily damped, making them less likely to detect in surface
observations. The quality factor is approximated by

Q = Re(ω)
2I m(ω)

. (18)

One surprising feature of the waves is that the first overtone has
a longer period than the fundamental mode. This behaviour is at-
tributed to the fact that overtones have larger radial motion near the
bottom of the stratified layer, where the strength of the stratification
is weaker. A weaker restoring force lengthens the period of the over-
tones. By comparison, waves in a layer with constant stratification
(not shown) have nearly identical periods for the fundamental and
first overtone. The quality factors for waves with constant N are
similar to the values shown in Table 1.

4 I N T E R P R E TAT I O N O F
C O R E - S U R FA C E F L OW

Estimates of time-dependent flow at the top of the core offer a
quantitative assessment of MAC waves. We focus initially on the
flow model of Jackson (1997), although we also consider a second
flow model from Gillet et al. (2015) to assess the consistency of
our interpretation. The model of Jackson (1997) relies on tangential
geostrophy as a constraint to reduce non-uniqueness in the inversion
(e.g. Holme 2015). Strictly enforcing tangential geostrophy means
that the zonal flow is purely toroidal. The symmetric part of this flow
contains most of the time dependence, so we limit our attention to
flow with odd spherical harmonic degrees. We also confine our anal-
ysis to the largest spatial scales to reduce the unwanted influence
of unresolved features in the geomagnetic field and flow (Eymin
& Hulot 2005). In our subsequent discussion, we retain only the
spherical harmonic components of flow with degrees l = 1, 3
and 5.

The symmetric part of vφ from the tangentially geostrophic flow
of Jackson (1997) is shown in Fig. 4. The results are displayed as a
function of sin θ , where θ is colatitude, because the motion in the
Northern and Southern Hemispheres is the same. In addition, we
confine the record to a 60-yr interval between 1930 and 1990. This
interval is long enough to capture the decadal fluctuations, but short
enough to consider the role of waves with constant amplitude and
phase.

The question posed here is whether vφ can be described by MAC
waves. We treat the layer thickness, H, and the peak stratification,
Nmax as adjustable parameters in the wave calculation and fit a lin-

ear combination of the eight gravest modes to the flows of Jackson
(1997). All of the predicted waves are filtered to remove l > 5,
consistent with the flow model. Iterative adjustments to H and Nmax

are used to minimize the misfit, yielding the predictions shown in
Fig. 4(B). The best-fitting results are achieved with H = 140 km
and Nmax = 0.84 '. These values differ slightly from those reported
previously in Buffett (2014). A minor error in the previous calcula-
tions had the effect of reducing the strength of the radial main field,
requiring a larger stratification (N 2

max = 1.02 '2 or Nmax = 1.01 ')
to match vφ . Correcting the error lowered the strength of the strat-
ification, but this change had little effect on the spatial structure of
the waves.

Good agreement between the flow model and the prediction of the
MAC waves means that the flow can be adequately represented by a
small number of MAC waves. The input flow model is described by
three spherical harmonic coefficients (l = 1, 3 and 5) at 15 epochs
for a total of 45 data points, whereas the wave prediction relies on
8 (complex) amplitudes once the values of H and Nmax are pre-
scribed. Over two-thirds of the flow is attributed to only four waves
(with dominant radial motion at l = 4 and 6), which means that
reasonable fits could be achieved with a smaller set of waves. While
these fits are encouraging, it is quite likely that a linear combination
of waves could be adapted to explain the periodic nature of flow in
the model of Jackson (1997).

A second model for core-surface flow due to Gillet et al. (2015)
permits another test using more recent magnetic-field observations.
An ensemble of flows were constructed by treating the unresolved
magnetic field and core-surface motion as stochastic processes.
Flows over the time interval 1940–2010 were constrained using
the condition of quasi-geostrophy (Amit & Olson 2004) and the
assumption of equatorial symmetry (Pais & Jault 2008). Thus, we
focus exclusively on the symmetric waves, as was done previously
with the flow model of Jackson (1997). A preference for symmetric
waves might be attributed to the nature of the excitation mechanism.
A focusing of upwelling into the equatorial region, as seen in some
geodynamo models (e.g. Matsui et al. 2014), could account for the
generation of symmetric waves. We fit a set of symmetric waves
to the ensemble average over a 60-yr interval (1950–2010), after
removing the time average. Iteratively adjusting the layer properties
yields a best fit at H = 129 km and N = 0.74 '. A slightly lower
buoyancy frequency means that the wave periods are somewhat
longer than those inferred from GUFM1 (see Table 1). The longest
period wave (now P = 175 yr for the l = 2 and n = 1 mode) was
too long to reliably fit to flow to a 60-yr interval, so we exclude
this wave from the fit. For the sake of consistency, we exclude the
same wave from the fits to the flow based on GUFM1, although the
differences are small.

Both flow models yield similar results for the properties of
the stratified layer. The resulting wave periods from COV-OBS
are slightly longer than those inferred from GUFM1, whereas the
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Evidence for MAC waves 1795

Figure 4. (A) Low-degree part of the zonal flow from the model of Jackson (1997) as a function of sin θ and time t. (B) A prediction for the best-fitting linear
combination of MAC waves, calculated using H = 140 km and Nmax = 0.84 '.

quality factors are generally lower. On the other hand, the rela-
tive contributions of the various waves to the core-surface flow are
broadly similar between the two flow models. The majority of the
flow for both GUFM1 and COV-OBS can explained by the same
four waves. Even the relative amplitudes of those waves are com-
parable (see Table 1). We conclude that MAC waves are compatible
with the flow, but a more extensive test is possible using predictions
for the dipole fluctuations and the associated changes in LOD. A
key point to note below is that there are no adjustable parameters
once the waves have been fit to estimates of vφ .

5 F LU C T UAT I O N S I N D I P O L E F I E L D

A large part of each wave is comprised of a nearly geostrophic
flow vφ . A weaker meridional flow, vθ , is induced by the effects of
magnetic friction on vφ . Once a linear combination of waves are
fit to an estimate of vφ , the associated meridional flow sweeps the

radial magnetic field toward the pole. The resulting fluctuations in
the radial magnetic field, br, are described by

∂t br = −∇H · (vBr ) + η

r
∇2(rbr ) (19)

where ∇H · denotes the horizontal part of the divergence opera-
tor. Recall that Br is the steady background radial field and br is
the perturbation associated with the waves. Thus, the horizontal
divergence in (19) represents the influence of wave velocity, v, on
the steady main field. The magnetic fluctuation is also affected by
magnetic diffusion, which arises primarily from radial gradients in
br. We approximate the diffusive term using a characteristic radial
lengthscale, H/π , and write the induction equation for br in the
form

(
∂t + η

π 2

H 2

)
br = −∇H · (vBr ) (20)
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Figure 5. Fluctuations in the dipole field are computed from geomagnetic
field models GUFM1 (Jackson et al. 2000) and COV-OBS (Gillet et al.
2013), after removing a linear trend. The predicted dipole fluctuations
(dashed lines) are based on fitting a linear combination of MAC waves
to the core-surface flow over the intervals 1930–1990 and 1950–2010.

which is solved numerically for each wave using the method of finite
differences in spherical coordinates. The total magnetic fluctuation
is predicted using the linear combination of waves that fit vφ .

It is important to distinguish between the role of Br in the wave
dynamics and its contribution to the dipole fluctuation in (20). All
spherical harmonic components of Br influence the spatial struc-
ture of the waves through the effects of magnetic friction. We have
previously assumed that Br is randomly distributed over a large
number of spherical harmonics. Because magnetic friction does
not depend on the sign of Br we can reasonably approximate B2

r
as a constant over the core–mantle boundary. However, we do not
expect the short-wavelength components of Br to contribute much
to the magnetic fluctuations at Earth’s surface. The MAC waves
considered in this study are predominantly long wavelength, so a
short-wavelength component of Br will induce a short-wavelength
component of br at the core–mantle boundary. We have no hope
of detecting this short-wavelength perturbation at the surface, even
though this short-wavelength perturbation has an important influ-
ence on the dynamics. Only odd zonal spherical harmonics in Br

contribute to br because of the symmetry of the waves, and we can
safely focus on the longest wavelength components to compute br

at the surface. The largest contribution to br comes from the dipole
part of Br, but we retain all odd zonal components from the GUFM1
field model (Jackson et al. 2000) for the mid-range epoch of 1960.
Similarly, we use the odd zonal components from the COV-OBS
field model (Gillet et al. 2013) at 1980 when computing dipole
fluctuations from the waves based on the flow model of Gillet et al.
(2015). The dipole component of br is recovered from the numerical
solution using the orthogonality of spherical harmonics.

Fig. 5 compares the predicted dipole fluctuation with the time
variations in the GUFM1 and COV-OBS models, after removing
a linear trend. The amplitude and phase of the dipole fluctuation
agree reasonably well with the predictions based on MAC waves.
Even the gradual decay of the dipole fluctuation is captured by
the waves, although the predicted decay appears to be more rapid
than the observations. Better agreement with the dipole fluctuations
(but not the core flow) might be achieved by reducing the damping
of the waves. One way to reduce the damping is to increase the
thickness of the layer. Unfortunately, this change has the unwanted

consequence of decreasing the amplitude of the dipole fluctuation
(see Appendix A). Alternatively, we could lower the wave damping
by changing boundary conditions at the base of the layer. A large
part of the damping is associated with electromagnetic stresses at
the base of the layer. These stresses suppress horizontal motion at
the base of the layer when the interior is stationary. Less damping is
expected when the interior is allowed to move in response to elec-
tromagnetic stresses. A smaller velocity discontinuity at the base
of the layer would reduce the electric currents and lower damping.
Thus accounting for the dynamics of the interior of the core could
potentially lower the damping without substantially changing the
nature of wave motion at the top of the stratified layer. We revisit
this question in the next section on core angular momentum and
LOD variations.

6 C H A N G E S I N C O R E A N G U L A R
M O M E N T U M

Fluctuations in the LOD on decadal timescale are usually attributed
to changes in the angular momentum of the core (Bullard et al.
1950). A direct calculation of the core angular momentum can
made using surface flows when the interior flow is assumed to be
geostrophic (Jault et al. 1988). This approximation restricts fluid
motion to be invariant in the direction of the rotation axis. As a
result, core-surface flow can be extended into the interior. Many
previous studies (e.g. Jault et al. 1988; Jackson et al. 1993) have
used this approach to calculate changes in core angular momentum
and found that the expected changes in LOD are consistent with
observations. Only the l = 1 and 3 components of the zonal toroidal
flow contribute to the core angular momentum, so we already have
the core-flow models needed to reproduce the predictions of Jackson
et al. (1993) and Gillet et al. (2015). Fig. 6(A) shows a compari-
son of the results of Jackson et al. (1993) with the observed LOD
estimates (Gross 2001; Holme & de Viron 2013), after filtering the
observations to remove fluctuations with periods of a year or less.
The results of Gillet et al. (2015) are compared with the LOD ob-
servations in Fig. 6(B). Both of these flow models yield remarkable
agreement with the observations, adding strength to the argument
for geostrophic flow in the interior.

Stable stratification alters the nature of flow in the core (see
Fig. 2), so it is reasonable to ask whether the observed fluctuations
in LOD can be explained with MAC waves. As a first step toward
answering this question we compute the angular moment associated
with each wave and sum over the linear combination of modes that
are fit to vφ at the core surface. The polar angular momentum is
given by

Lz =
∫

Vl

ρvφ r sin θ dV (21)

where the volume of the stratified layer, Vl, accounts for only about
18 per cent of the moment of inertia of the entire core. The cor-
responding change in LOD is based on conservation of angular
momentum

Cm!'m + Lz = 0 (22)

where Cm = 7.12 × 1037 kg m2 is the polar moment of inertia of the
mantle and !'m is the change in angular velocity of the mantle.
The corresponding change in LOD, !T, is given by

!T
T

= −!'m

'
(23)

where T is the nominal period corresponding to '.
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Figure 6. Length-of-day fluctuations compared with predictions using core-
surface flows of (A) Jackson (1997) and (B) Gillet et al. (2015). Two types
of predictions are presented. One is based on geostrophic flow (dotted line),
while the other relies on the angular momentum carried by MAC waves in
a stratified layer (dashed line). MAC waves must couple to motion below
the stratified layer in order to account for the magnitude of the observed
fluctuations.

Predictions for the MAC waves account for about half of the
observed fluctuations between 1930 and 1990 (see Fig. 6A). Some-
what smaller fluctuations are predicted for MAC waves between
1950 and 2010 (see Fig. 6B), based on the flow model of Gillet
et al. (2015). Neither of these results is entirely surprising because
the stratified layer represents only a small fraction of the total mo-
ment of inertia of the core. In order to reconcile the amplitude of
the observed fluctuations with MAC waves we need to account for
motion in the interior of the core. Allowing for a deeper source of
angular momentum could alter both the amplitude and phase of the
LOD prediction.

Our calculations so far have assumed that the interior of the core
is stationary (see Section 2.1). Wave motion is confined to the strat-
ified layer, but electromagnetic stresses on the underlying fluid can
drive motion through the entire core. The flow in the interior of the
core is expected to be nearly geostrophic. Local stress drive a flow
which takes the form of quasi-rigid fluid cylinders, but the response
is not locally confined. Instead, nearby cylinders are coupled by the
internal magnetic field (specifically by the cylindrical radial com-

Figure 7. Electromagnetic torque at the base of the stratified layer due to
MAC waves. Fluctuations in the torque are roughly ±1018 N m2 for both
flow models. The corresponding changes in core angular momentum are
sufficient to produce ±5 ms fluctuations in length of day over periods of
60 yr.

ponent Bs), allowing disturbances to propagate throughout the core
as torsional waves. In other words, a full description of the interior
response requires a treatment of torsional waves.

A rough upper bound for the angular momentum change in the
interior is computed from the total electromagnetic torque due to
MAC waves. This calculation is liable to overestimate the actual
torque because the underlying fluid is assumed to be static in our
MAC-wave calculation. A large velocity discontinuity above a static
interior ensures a large magnetic stress. Allowing the underlying
fluid to adjust to these stresses would likely reduce the velocity
discontinuity and lower the magnetic stresses. A general expression
for the axial torque on the interior of the core is given by (Rochester
1962)

.z = 1
µ

∫

S
Br bφ r sin θ dS (24)

where the integral is taken over the surface at the base of the stratified
layer (r = ri). The steady radial field is approximated by a constant
rms value of Br = 0.62 mT and the magnetic perturbation bφ at
the base of the layer is taken from the MAC-wave calculation (with
v− = 0).

Fig. 7 shows the predicted torque on the interior for our two sets
of MAC waves. In both cases the predicted fluctuations are on the
order of ±1018 N m. In fact, the amplitudes of the torque are sur-
prisingly similar where the predictions overlap. This agreement may
be partly fortuitous because the angular momentum fluctuations as-
sociated with the two sets of MAC waves are somewhat different
in amplitude (see Fig. 6). On the other hand, the phases of the
angular momentum fluctuations are similar. It is not unreasonably
expect a similar agreement in the phases of the torques. However,
the agreement in the amplitudes of the torques means that the waves
inferred from COV-OBS produce larger magnetic perturbations for
the available angular momentum in the flow. This outcome is rea-
sonable because a thinner layer means larger gradients in b, which
produce larger electric currents. Thus, a larger torque (relative to the
amplitude of the flow) for COV-OBS is expected. Small differences
in the radial structure of the two sets of MAC waves could also
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contribute to the amplitude of the torque. The key point is that both
cases yield torques with fluctuations on the order of ±1018 N m.
These fluctuations are sufficient to produce LOD fluctuations on
the order of ±5 ms over periods of 60 yr. By comparison, the ob-
served fluctuations in Fig. 6 are closer to ±1.5 ms over recent times,
so the computed torques are too large by about a factor of 3. Weaker
torques are possible when the dynamics of the interior are taken
into account, but the preceding results show that MAC waves are
capable of producing large fluctuations in the LOD. A more defini-
tive assessment requires a fully coupled model for MAC waves and
interior flow.

A simple model of coupled motion can be realized when torsional
waves are fast enough to redistribute angular momentum through the
core on timescales of several decades. Recall that torsional waves are
characterized by periods of 4–6 yr (Gillet et al. 2010), which means
that the periods of MAC waves are about an order of magnitude
longer. At sufficiently low frequency, the interior fluid is expected
to respond as a rigid body (see Appendix B). This motion would
entrain the inner core through electromagnetic coupling, but a strong
gravitational torque on the inner core resists any rotation relative
to the mantle (Buffett & Glatzmaier 2000). When the gravitational
torque is substantially larger than the electromagnetic torque at the
top of the core, the interior (i.e. outer and inner cores) should remain
nearly stationary as MAC waves propagate through the stratified
layer.

To quantitatively explore this suggestion we express the gravita-
tional torque on the inner core in the form

.z = γ (φm − φi ) (25)

where φm and φi are the angular orientation of the mantle and inner
core, respectively, relative to their positions in gravitational equi-
librium, and γ is the amplitude of the torque. (The corresponding
gravitational torque on the mantle is equal in magnitude but oppo-
site in direction.) We take φm = 0 on account of the large moment of
inertia of the mantle and relate φi to rigid rotations of the interior of
the core under the assumption that fast torsional waves redistribute
angular momentum on timescales of several decades. Numerical
calculations with the extended model show that the interior of the
core becomes nearly stationary once γ reaches a value of 1021 N m.
This value is about a factor of 5 larger than recent estimates (Davies
et al. 2014), but our experiment illustrates one way in which waves
above a static interior could be realized. In fact, the MAC waves in
the coupled model that are nearly identical to those described earlier
for an isolated stratified layer. We obtain good fits to core-surface
flow and reproduce the observed the fluctuations in the dipole field.
We also find that the amplitude of the gravitational torque on the
mantle is sufficient to produce ±5 ms fluctuations in LOD, consis-
tent with our previous estimate based on MAC waves in an isolated
stratified layer.

One way to improve our prediction is to reduce the strength of
the gravitational torque. Setting γ = 1020 N m brings the LOD
fluctuations into better agreements with observations. We find a
modest (20 per cent) increase in the misfit to the core-surface flow
of Jackson et al. (2000), but the amplitude of the predicted dipole
fluctuation is too small by a factor of 2. Thus, the simple coupled
model cannot account for all of the observed phenomena. However,
there are a number of ways to refine this simple model. Allowing
the inner-core shape to viscously adjust adds another degree of
freedom to the problem. Further flexibility is gained by removing
the restriction of rigid-body motion in the interior. We may also
need to consider a more general distribution of radial magnetic
field in the stratified layer. Whether any of these generalizations are

sufficient to reconcile all of the observations is presently unclear.
However, our initial attempt at the coupled problem demonstrates
that MAC waves can transfer enough angular momentum to the
mantle to account for the observed fluctuations in LOD.

7 C O N C LU S I O N S

Axisymmetric MAC waves in a stratified layer at the top of the core
offer a simple interpretation for several observed phenomena in the
core. A linear combination of four to eight MAC waves gives a
good description of time-dependent zonal flow at the top of the core
(Jackson 1997; Gillet et al. 2015). The same set of waves can also
account for observed fluctuations in the dipole field (Yokoyama &
Yukutake 1991). Both of these predictions require a stratified layer
with a thickness of roughly 130–140 km and a peak buoyancy fre-
quency of Nmax = 0.74 '–0.84 '. MAC waves may also contribute
to fluctuations in LOD, although the direct contribution from the
waves explains only half (or less) of the observed amplitude. Al-
lowing for electromagnetic coupling to the interior of the core,
together with gravitational coupling to the mantle, can substantially
increase the predicted fluctuations. In one idealized example, the
predicted fluctuations in LOD are too large. Thus, generalizations
of the coupled model may be needed to simultaneously account for
time-dependent fluctuations in core-surface flow, dipole intensity
and LOD.

Damping of the waves is recovered from fits to the core-surface
flows. The level of damping is controlled primarily by the thickness
of the layer, although the value of electrical conductivity in the core
is also an important factor. Conventional values for σ (say σ = 5 ×
105 S m−1) require thicker layers to match the core-surface flow,
whereas higher σ permit thinner layers. We favour a thinner layer
and a higher conductivity because the layer thickness also affects
the amplitude of the dipole fluctuation. We obtain good agree-
ment with the observed dipole fluctuation when H ≈ 140 km and
σ = 106 S m−1. Adopting a lower σ , and consequently a thicker
layer to match the core-surface flow, misfits the dipole fluctuation
for a fixed value of Br = 0.62 mT. Adopting a larger value for Br

could compensate for a thicker H when a lower value is chosen for
σ (see Appendix A).

Excitation of MAC waves occurs when buoyant parcels in the
convecting part of the core impinge on the base of the stratified layer.
Transmission of radial motion into the stratified layer is expected to
excite waves. Focusing of upwelling into the equatorial region could
account for the preferential excitation of symmetric waves. While
these waves do not discriminate between thermal and compositional
stratification in the core, the thickness and strength of stratification
are broadly consistent with a thermal origin (Gubbins et al. 1982).
Thermal stratification is expected when the core heat flow, Q, is
below a hypothetical heat flow, Qa, conducted through a well-mixed
region at the top of the core (often called the adiabatic heat flow). A
simple model for thermal stratification predicts H ≈ 140 km when
Q/Qa ≈ 0.87 (Lister & Buffett 1998). An adiabatic heat flow of 15
TW (Pozzo et al. 2012) would correspond to Q = 13.1 TW. The
predicted buoyancy frequency is Nmax = 1.5 ', which differs only
by a factor of two from the values recovered from the MAC waves.
Compositional stratification tends to yield much larger buoyancy
frequencies (Buffett & Seagle 2011; Gubbins & Davies 2013), al-
though a variety of processes, such as double-diffusive convection
or wave-driven mixing, could reduce the strength of core stratifica-
tion. Thus, a compositional origin cannot be ruled out.
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A P P E N D I X A : D E PA RT U R E F RO M
TA N G E N T I A L G E O S T RO P H Y

Strict adherence to tangential geostrophy in a stably stratified layer
ensures zonal flows, vφ , that are purely azimuthal (Bloxham 1990).
Introducing the effects of a radial magnetic field causes depar-
tures from tangential geostrophy, which are expressed as a small
meridional flow, vθ . The Coriolis force associated vθ is principally
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balanced by Lorentz forces at low frequencies because the inertial
effects are small. When radial gradients in b are large compared
with horizontal gradients, the relevant force balance can be approx-
imated by

f vθ = Br

ρµ
∂r bφ (A1)

where f = 2 ' cos θ is the Coriolis parameter. The magnetic pertur-
bation, bφ , is related to the azimuthal flow by

∂t bφ = Br∂r vφ + η ∂2
r bφ (A2)

where only the radial derivatives are retained in the diffusive term
because the layer is thin. Approximating the diffusive term by

η∂2
r bφ ≈ −η

π 2

H 2
bφ (A3)

and adopting a time dependence of eiωt yields
(

iω + η
π 2

H 2

)
bφ = Br∂r vφ (A4)

or

iω
(

1 − i
π 2

2
δ2

H 2

)
bφ = Br∂r vφ (A5)

on introducing the skin depth, δ, from (12). Thus, diffusive effects
are small when the skin depth is small compared with the thickness
of the layer.

Using the diffusion-free solution for bφ in the force balance (A1)
gives

f vθ = V 2
a

iω
∂2

r vφ (A6)

where Va = Br/
√

ρµ is the Alfvén velocity associated with Br.
Finally, we quantify the magnitude of vθ by letting H/π characterize
the lengthscale for radial variations in vφ . The resulting relationship

f vθ ≈ i
V 2

a π 2

H 2ω
vφ (A7)

shows that departures from tangential geostrophy depend on the
strength of the radial magnetic field and the thickness of the
stratified. Thinner layers are responsible for larger meridional
flow, but also cause greater damping of the waves. To account
for the observed dipole fluctuations we favour thinner layers and
higher values for electrical conductivity, although thicker layers
are also viable if the strength of the radial magnetic field is
increased.

A P P E N D I X B : F O RC E D T O R S I O NA L
O S C I L L AT I O N S

MAC waves produce electromagnetic stresses on the underlying
fluid. The motion of the interior is expect to take the form of tor-
sional waves, although the frequency of this motion is an order of
magnitude lower than the natural frequency of torsional waves. It
is customary to describe torsional waves in terms of the angular
velocity, ζ (s), of fluid cylinders as a function of cylindrical radius
s. The governing equation for ζ (s) is essentially a statement of con-
servation of angular momentum for the fluid cylinders. When the
time dependence of ζ (s) is specified by eiωt, the governing equation

can be written as (Braginsky 1970)

− ω2 m(s)ζ (s) = d
ds

(
τ (s)

dζ

ds

)
+ iω f (s) (B1)

where m(s) is the moment density of the cylinder, τ (s) is the mag-
netic tension due to the average value of B2

s over the cylinders and
f(s) is the torque on the ends of the cylinders.

We are interested in the case where the motion is forced by f
at frequencies ω much lower than the natural frequency, ω0, of
the torsional waves. In this case, the inertial term on the left-hand
side of (B1) is nominally (ω/ω0)2 smaller than the leading order
terms in (B1). Consequently, we approximate the forced motion
using

d
ds

(
τ (s)

dζ

ds

)
+ iω f (s) = 0 (B2)

where f(s) can include the influence of stresses from MAC waves
at the base of the stratified layer (r = ri), as well as stresses on
the inner-core boundary. We confine our attention to stresses due to
MAC waves and express f(s) in the form

f (s) = 4πs2

(
ri

z f

) (
Br bφ

µ

)
(B3)

where z f =
√

r 2
i − s2 is the axial position of the interface between

the interior and the stratified layer. The electromagnetic torque on
fluid cylinders inside radius s = s′ is

.z(s ′) =
∫ s′

0
f (s) ds (B4)

so the total electromagnetic torque on the interior of the core is
.z = .z(ri).

Departures from constant angular velocity (rigid rotation) are
quantified by dζ/ds. Integrating (B2) over s and noting that τ (0) = 0
yields

dζ

ds
= −iω

.(s)
τ (s)

(B5)

It follows that departures from constant angular velocity are small
when the frequency, ω, is small or the magnetic tension, τ , is large.
To put this estimate for dζ/ds into a more intuitive context, we
evaluate the average angular velocity of the interior using angular
momentum conservation

iωC f (ri )ζ̄ = .(ri ) (B6)

where

C f (ri ) =
∫ ri

0
m(s) ds (B7)

is the moment of inertia of the fluid interior (roughly 82 per cent
of the entire moment of inertia of the core). Thus, a characteristic
lengthscale, L, for the gradient in ζ (s) is

L−1 ≡ 1

ζ̄

dζ

ds
= ω2C f (ri ).z(s)

τ (s).z(ri )
(B8)

A representative value for L exceeds the radius of the core when we
take Bs ≈ 0.3 mT and let s ≈ 0.5ri. This means that a rigid-body
rotation is a reasonable first approximation for the response of the
interior when the internal magnetic field is strong enough to permit
fast torsional waves.
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