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Abstract

The progressive depletion of quiescent “bystander” CD4 T-cells, which are non-permissive to HIV 

infection, is a principal driver of the acquired immunodeficiency syndrome (AIDS). These cells 

undergo abortive infection characterized by the cytosolic accumulation of incomplete HIV reverse 

transcripts. These viral DNAs are sensed by an unidentified host sensor that triggers an innate 

immune response, leading to caspase-1 activation and pyroptosis. Using unbiased proteomic and 

targeted biochemical approaches as well as two independent methods of lentiviral shRNA-

mediated gene knockdown in primary CD4 T-cells, we identify Interferon gamma Inducible 

protein 16 (IFI16) as a host DNA sensor required for CD4 T-cell death due to abortive HIV 

infection. These findings provide insights into a key host pathway that plays a central role in CD4 

T-cell depletion during disease progression to AIDS.

HIV/AIDS is a devastating global epidemic with over 70 million infections and 35 million 

deaths (WHO). AIDS is primarily caused by loss of the quiescent “bystander” CD4 T-cells 

that populate lymphoid organs. These cells are not permissive for viral replication resulting 

in abortive infection and the accumulation of incomplete DNA transcripts (1). These 

cytosolic viral DNAs trigger an innate immune response that activates a highly 

inflammatory form of programmed cell death, pyroptosis (2). Here, we sought to identify the 

host DNA sensor that initiates pyroptosis in abortively infected CD4 T-cells.

An unbiased proteomic approach involving DNA affinity chromatography and mass 

spectrometry was utilized to identify potential viral DNA sensor candidates. Cytosolic 

fractions of tonsillar CD4 T-cell lysates were incubated with a biotinylated 500-bp HIV-1 

Nef DNA fragment and subjected to strepavidin immunoprecipitation, SDS-PAGE, and 

silver staining (Fig. 1A). The Nef region is reverse transcribed early thus this DNA RT 

product is likely present during abortive HIV infection. Streptavidin immunoprecipitation 
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samples incubated with biotinylated HIV DNA showed numerous bands (Fig. 1A). 

Nonspecific background binding was very low: protein was not detected when 

nonbiotinylated DNA was tested. The cytosolic lysates appeared free of nuclear 

contamination as immunoblotting showed no histone H3 (Fig. 1B). Mass spectrometry was 

employed to identify cytosolic proteins from the tonsillar CD4 T-cells that bound to HIV 

DNA. The top six hits, based on protein discriminant scores (30), correspond to Ku80, 

PARP-1, Ku70, RPA-1, IFI16, and IFIX (Fig. 1C) (see File S1 for the complete list).

A rational approach investigating biologically relevant DNA sensor candidates was pursued 

in parallel. Expression of various known innate immune sensors was assessed by 

immunoblotting cytosolic lysates from resting tonsillar CD4 T-cells, confirming the 

presence of IFI16 (3, 4), AIM2 (5-8), DAI (9), STING (10-12), DNPK-1 (13), NLRP3 

(14-16) and IFIX (PYHIN-1) (17) (Fig. 1D). cGAS (18, 19) was neither detected at the 

protein level in tonsillar CD4 T-cells (Fig. S1D), nor in the affinity chromatography-mass 

spectrometry experiments (File S1). We were intrigued with IFI16 since it was identified in 

both approaches and shown to form an inflammasome (4, 17). Of the known inflammasome 

DNA sensors, IFI16, but not AIM2, bound HIV-1 DNA (Fig. 1D). Since AIM2 binds DNA 

in a non-sequence-specific manner, we had expected it would be a top candidate, but it was 

not identified by mass spectrometry (File S1). IFI16 mRNA levels are ~5-fold higher than 

AIM2 mRNA in resting tonsil CD4 T-cells (Fig. S1A). Of note, all three IFI16 isoforms 

were detected in the cytosol and nucleus of primary tonsillar CD4 T-cells (Fig. S1B).

RT of the HIV RNA genome initially generates single-stranded DNA (ssDNA) and then 

double-stranded DNA (dsDNA); either might be sensed during abortive infection. A 

biotinylated dsDNA probe was incubated with cytosolic extracts from tonsillar CD4 T-cells 

with 10-fold excess of unlabeled ssDNA as a competitor (Fig. 1E). IFI16 effectively bound 

dsDNA (Fig. 1F) as described (3, 20) and was competed by “cold” ssDNA. Biotinylated 

ssDNA was subjected to binding and competition with cold dsDNA, but IFI16 was not 

initially detected by immunoblotting. However, further analysis using higher protein input 

confirmed that IFI16 binds to ssDNA, albeit more weakly than dsDNA (Fig. 1G). RIG-I 

selectively bound dsRNA as a control (Fig. 1F, G).

Standard methods, including liposome-mediated delivery of siRNAs or infection with VSV-

G pseudotyped lentiviruses encoding shRNAs, are ineffective for targeted gene knockdown 

in resting CD4 T-cells (21, 22). siRNA nucleofection is highly variable, often toxic, and 

associated with extensive cell death in tonsillar cultures. To overcome these challenges and 

to test whether specific DNA sensor candidates are required for cell death in primary 

lymphoid CD4 T-cells undergoing abortive HIV infection, we used an “activation-rest” 

strategy. Splenic CD4 T-cells were activated with PHA and cultured in 100U/ml of IL-2, 

which rendered cells permissive for infection with VSV-G-pseudotyped lentiviruses 

encoding shRNA and mCherry. mCherry-positive cells were isolated by cell sorting (Fig. 

S2), expanded by two rounds of activation with anti-CD3/anti-CD28 antibody-conjugated 

beads, and then rested by reducing IL-2 levels to 10 U/ml for 3-4 days (23). IFI16 protein 

expression was markedly decreased in the mCherry-positive splenic CD4 T-cells receiving 

the lentivirus encoding shIFI16-A compared to cells receiving the lentivirus encoding the 

control scramble shRNA (Fig. 2A). Next, the rested mCherry-positive CD4+ T-cells were 
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co-cultured with tonsil or spleen CD4 T cells infected with an HIV-GFP reporter virus 

(NLENG1). In cells expressing the scramble-shRNA, marked depletion of CD4 T-cells 

occurred (Fig. 2B); this death was rescued by adding a non-nucleoside reverse-transcriptase 

inhibitor (NNRTI) efavirenz (EFV), implicating abortive HIV infection as previously 

described (1). In sharp contrast, introduction of shIFI16-A resulted in survival of the 

mCherry-positive CD4+ T-cells. In the same experiments, mCherry-negative CD4+ T cells 

were markedly depleted, suggesting that they had returned to a sufficient state of rest to 

undergo abortive infection.

To exclude more formally the possibility that the “activated and rested” CD4 T-cells were 

dying as a result of productive infection, we assessed the activation status of these cells. 

Flow cytometry analysis revealed that CD4 T-cells cultured in reduced IL-2 levels had lower 

levels of CD25 and CD69 than cells activated with 100 U/ml IL-2 and 10 μg/ml PHA (Fig. 

2C). However, CD25 levels were higher than found in unactivated cells, indicating that 

these cells had not fully returned to a resting state. This finding likely relates in part to the 

upregulation of CD25 expression by IL-2 (24). To directly test the permissivity of these cells 

to productive HIV infection, we utilized an HIV-1-GFP reporter virus. In cells expressing 

shScramble or shIFI16-A, only ~1-2% of the mCherry-positive cells, and ~1-2% of 

mCherry−negative cells, were productively infected as indicated by GFP expression (Fig. 

2D). Thus, the 60-70% depletion of CD4 T-cells observed was not due to high levels of 

productive viral infection.

To confirm IFI16 as an HIV-1 DNA sensor and to test a broader array of potential 

candidates, a second, more rapid shRNA knockdown strategy was employed. Virus-like 

particles (VLPs) were packaged with the SIV accessory protein Vpx that degrades the 

SAMHD1 restriction factor and render cells susceptible to lentiviral infection (25, 26). This 

method was adapted for use in resting CD4 T-cells based on prior success in monocyte-

derived dendritic cells (27). Twenty-four hours after VLP-Vpx spinoculation, complete 

tonsillar HLACs were spinoculated with shRNA-mCherry lentiviral vectors pseudotyped 

with HIV gp160 Env (Fig S3, 30). Cells were co-cultured 3 days later with HEK293T cells 

producing or not producing HIV-1 virions. CD4 T-cell death was assessed 2 days later in 

mCherry-positive CD4+ T-cells expressing the shRNA and mCherry-negative CD4+ T-cells 

lacking the shRNA. In parallel, EFV was added to select wells.

Three independent shRNAs targeting IFI16 reduced IFI16 protein expression in mCherry-

positive CD4+ T-cells, compared to the shScramble control (Fig. 3A, C). All three IFI16 

shRNAs prevented depletion of mCherry-positive CD4+ T cells, while shScramble did not 

(Fig. 3B, D). EFV rescued depletion of scramble-shRNA-expressing cells, supporting the 

notion that the CD4 T-cell depletion resulted from abortive infection (Fig. 3B). Moreover, 

mCherry negative CD4+ T-cells were depleted regardless of the shRNA demonstrating that 

experimental conditions were sufficient for abortive infection in all infected samples (Fig. 

3B, D). Thus, using an independent method for shRNA knockdown, we confirmed that 

IFI16 is required for lymphoid CD4 T-cell depletion by HIV following abortive HIV 

infection.
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To confirm that shScramble mCherry-positive CD4 T-cells die via abortive infection, which 

requires RT but not integration (1), cells were co-cultured with 293T cells producing single 

round HIV-1(ΔEnv with gp160 coexpressed) or HIV containing a disabling integrase 

mutation, D116N (Fig. 3E). These replication-defective, non-spreading viruses induced 

depletion of mCherry-positive CD4 T-cells expressing shScramble. In contrast, introduction 

of shIFI16-A rescued cells from HIV-1-mediated depletion. Thus, neither productive 

infection nor HIV integration is required for cell death. Knockdown of IFI16 decreased 

caspase-1 activation in the mCherry positive cells, while IFNβ was induced in HIV-infected 

cells with the shScramble control, but not in cells expressing shIFI16-A (Fig. 3G). These 

findings suggest that IFI16 is required to sense incomplete DNA reverse transcripts that 

accumulate in abortively infected cells, leading to caspase-1 activation, which results in the 

subsequent death of these cells via pyroptosis (2). IFI16 sensing also leads to IFNβ 

induction.

Although IFI16 shRNAs consistently rescued death of lymphoid CD4 T-cells during 

abortive infection, other DNA sensor candidates were also evaluated. The VLP-Vpx method 

was used to render resting lymphoid CD4 T-cells permissive to infection with lentiviruses 

encoding shRNAs directed against AIM2 and STING. Although effective in inhibiting 

expression of AIM2 and STING protein in THP-1 cells (Fig. 4A), neither of these shRNAs 

rescued the mCherry positive cells from depletion (Fig. 4B). Validated shRNAs targeting 

IFIX (Fig. 4C) or DNPK-1 (Fig. 4E) also did not rescue mCherry-positive CD4 T-cell 

depletion (Fig. 4D, F). Moreover, small-molecule inhibitors of DNPK-1, Nu7026 and 

Nu7441 (13), did not rescue cells from abortive infection and pyroptosis (Fig 4G). These 

findings and a recent publication suggest that DNPK-1 may play a role in DNA sensing only 

within the small fraction of cells (5% in tonsil) that are permissive for productive HIV 

infection and trigger noninflammatory apoptosis (13). In contrast, IFI16 appears to be 

required to detect abortive infection and induction of highly inflammatory pyroptosis in 

nonpermissive CD4 T-cells (Fig. 4H). These cells form the majority of HIV-1 cellular 

targets in most lymphoid tissues (95% in tonsil cultures). Both mechanisms likely contribute 

to HIV-1-induced AIDS, but at different frequencies determined by the number of 

permissive versus nonpermissive cellular targets residing within various lymphoid tissues.

IFI16 evolved as an anti-viral DNA sensor (3, 4). In addition, IFI16 exerts novel antiviral 

activity, including restriction of herpesvirus replication by inhibiting viral gene expression 

(28). That IFI16 is targeted for degradation by herpesviruses (29) further highlights an 

evolutionary pressure to counteract its activity. Our studies reveal that IFI16 initiates an 

innate immune response that, rather than protecting the host, drives the debilitating CD4 T-

cell depletion that underlies progression to AIDS in untreated HIV-infected individuals. The 

cycle of abortive infection, inflammatory death, and recruitment of new cells likely explains 

how this innate host response is undermined and, in fact, centrally contributes to HIV 

pathogenesis. Our findings now identify IFI16 as a critical DNA sensor required for cell 

death during abortive HIV-1 infection. Therapies directed against this host pathway might 

preserve CD4 T-cells and reduce chronic inflammation—two signature pathologies in HIV 

infection.
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Figure 1. Biochemical analysis of cytosolic DNA binding proteins in CD4 T-cells
(A) Tonsillar CD4 T-cell lysates were incubated with a 500-bp biotinylated HIV Nef DNA 

probe or control non-biotinylated DNA and immunoprecipitated with streptavidin-coated 

beads. Samples were separated by SDS-PAGE and silver stained. (B) Western blot analysis 

of nuclear histone H3 and beta-actin in whole or digitonin lysis buffer prepared CD4 T-cell 

lysates. (C) Top ranked hits (rank based on protein discriminant scores described in 

Materials and Methods) from MS samples prepared as in (A). (D) Western blot analysis of 

candidate DNA sensors. (E) SDS-PAGE and silver stain analysis of biotinylated dsDNA or 

ssDNA samples prepared as in (A) and competed with a 10-fold excess of ssDNA or dsDNA 

(F) Western blot analysis of IFI16 and RIG-I binding samples in (E). (G) Western blots with 

high levels of protein input showing IFI16 binding to biotinylated ssDNA and dsDNA and 

RIG-I-RNA controls.
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Figure 2. IFI16 shRNA knockdown rescues activated and rested splenic CD4 T-cells from 
depletion following abortive HIV infection
(A) Western blot analysis of IFI16 and beta-actin expression in shRNA expressing 

mCherry+ CD4+ T-cells after activation and rest in reduced IL-2. (B) Flow cytometry 

analysis of mCherry-positive CD4 T-cell survival after knockdown with shSCR or shIFI16-

A and co-culture with either donor-matched mCherry− CD4+ T-cells or tonsillar HLAC 

spinoculated with an HIV-1-GFP reporter virus. Cells were co-cultured in the presence or 

absence of 100 nM efavirenz, or with uninfected cells. Data represent the average of three 

independent experiments from three different donors. Error bars indicate standard error of 

the mean, * p<0.05 (Student’s t-test), n.s.=not significant, p>0.1. (C) Flow cytometry 

analysis of CD25 and CD69 expression after IL-2 reduction. (D) Flow cytometry analysis of 

mCherry+ GFP+ populations in shRNA-expressing spleen cells post-co-culture.
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Figure 3. shRNA knockdown of IFI16 rescues HIV-induced tonsillar CD4 T-cell depletion
(A) Western blot analysis of IFI16 and beta-actin expression in mCherry+ tonsil CD4 T cells 

receiving shScramble, shIFI16-A or shIFI16-B. (B) Quantitation of flow cytometry of 

HLAC infected with VLP-Vpx, followed by shScramble, shIFI16-A, B lentiviruses 

pseudotyped with HIV gp160 Env then co-cultured with 293T cells producing HIV-1. ** 

p≥0.01 (Student’s t-test), n.s.=not significant, p>0.1. (C) Western blot analysis of shIFI16-C 

knockdown. (D) Quantitation of flow cytometry results as in (B). *** p<0.001. (E) 
Quantitation of mCherry+ gate of HLAC treated as in (B) with single round HIV-1ΔEnv 

pseudotyped with gp160 envelope or HIV-1 D116N integrase mutant. ** p<0.01, * p<0.05. 

(F) Flow cytometry analysis of FLICA-660 Caspase-1 and IFNβ intracellular staining in 

mCherry+ cells, histograms are representative of results obtained with two donors.
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Figure 4. VLP-Vpx-facilitated shRNA knockdown of other candidate DNA sensors does not 
rescue cells from depletion following abortive HIV infection
(A) Western blot analysis of AIM2, STING, and HSP90 in shRNA expressing mCherry+ 

THP-1 cells. (B) Quantitation of flow cytometry results for HLAC infected with 

shScramble, shAIM2, or shSTING. n.s.=not significant, p>0.1 (Student’s t-test). (C) 
Western blot analysis of IFIX in mCherry+ SupT1 cells. (D) Quantitation of flow cytometry 

analysis as in (B) of shScramble and shIFIX. (E) Western blot analysis of DNPK-1 in 

shRNA expressing mCherry+ Jurkat T-cells. (F) Flow cytometry analysis as in (B) with 

shDNPK-1. (G) CFSE labeled HLAC were pre-treated with DMSO alone in uninfected and 

no drug conditions, 10 or 20 μM Nu7026 or 1 or 2 μM Nu7441 or 250 nM AMD3100. 

CFSE+ cells were co-cultured with donor-matched HLAC productively infected with HIV 

and analyzed 3 days post co-culture. Quantified data represent the average of three 

independent experiments from three different donors. Error bars represent the standard 

errors of the mean. (H) Summary model.
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