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RESEARCH ARTICLE
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California, San Diego Joint Doctoral Program in Clinical Psychology, United States of America, 5 Department
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Abstract

Background

The translocase of outer mitochondrial membrane 40 (TOMM40), which lies in linkage dis-

equilibrium with the apolipoprotein E (APOE) gene, has been implicated in Alzheimer’s dis-

ease (AD). TOMM40 influences AD pathology through mitochondrial neurotoxicity, and the

medial temporal lobe (MTL) is the most likely brain region for identifying early manifestations

of AD-related morphology changes. While early reports indicated that the longer length

poly-T allele of TOMM40 increases risk for AD, these findings have not been consistently

replicated in further studies. We examined the effect of TOMM40 and APOE on regional

brain positron emission tomography (PET) 2-(1-{6-[(2 [F18]fluoroethyl) (methyl) amino]-2-

naphthyl}ethylidene)malononitrile (FDDNP) binding values in MTL.

Methods

A total of 73 non-demented older adults (42 females; mean age: 62.9(10.9) completed geno-

typing for both APOE and TOMM40 and received FDDNP-PET scans. For TOMM40, the

lengths of the poly-T sequence were classified as short (14–20 repeats; S), long (21–29

repeats, L) or very long (>29 repeats, VL). Using general linear models, we examined medial

temporal lobe FDDNP binding and cognitive functioning between TOMM40 and APOE-4

groups, with age, sex, and education as covariates.

Results

Data from 30 individuals with APOE-4 and L TOMM40 poly-T length, 11 non E4 TOMM40

S/S, 14 non E4 TOMM40 S/VL and 13 non E4 TOMM40 VL/VL were analyzed. Medial tem-

poral FDDNP binding differed significantly between TOMM40/APOE groups (F(3,62) = 3.3,

p = .03). Participants with TOMM40 S/S exhibited significantly lower binding compared to
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TOMM40 S/VL and APOE-4 carriers. We did not find a significant relationship between

TOMM40 poly-T lengths/APOE risk groups and cognitive functioning.

Conclusions

This is the first report to demonstrate a significant association between longer TOMM40

poly-T lengths and higher medial temporal plaque and tangle burden in non-demented older

adults. Identifying biomarkers that are risk factors for AD will enhance our ability to identify

subjects likely to benefit from novel AD treatments.

Introduction

Alzheimer’s disease (AD) is the most common form of dementia and is a heterogeneous disor-

der with environmental and genetic components. Several non-genetic risk factors for AD

(besides age), including hypertension, estrogen supplements, smoking, stroke, heart disease,

depression, arthritis, and diabetes as well as protective factors such as exercise, healthy diet,

intellectual and social engagement have been identified [1–5]. Several genetic mutations have

been implicated in familial (primarily early-onset) AD; however, for the more common late

onset AD, while genome wide association studies have detected a number of single nucleotide

polymorphisms [6–9], most of these polymorphisms, apart from the apolipoprotein E (APOE)

gene, have a small effect on AD risk [10]. While the APOE gene has been consistently pin-

pointed as the primary risk gene, possession of the E4 variant of the APOE gene is by itself not

sufficiently powerful to identify those likely to develop AD with high accuracy [9, 11]. More

recently, polygenic approaches [12, 13] have been developed that yield genetic risk scores

incorporating AD associated single nucleotide polymorphisms, and these show some promise

in identifying genetic risk for AD beyond APOE, even though the results were mixed in pre-

dicting AD conversion in participants with Mild Cognitive Impairment.

Using phylogenetic analysis, Roses and co-workers have implicated the translocase of outer

mitochondrial membrane 40 (TOMM40), which lies in linkage disequilibrium with APOE, in

the development of AD [14–16]. This stretch of DNA varies with respect to the length of a

poly-T polymorphism. Longer length poly-T variants were found to be associated with

increased risk for AD, as well as a lower age at onset of dementia. However, further research

on TOMM40’s risk for AD was inconclusive, with some studies showing an association with

AD in the absence of APOE-4 [17]; and some reports indicating no correlation between

TOMM40 poly-T repeat length and age at dementia onset [18,19]; and still others showing

that increasing length was associated with a lower risk of AD [20]. It has also been pointed out

that since TOMM40 is in such close linkage disequilibrium with APOE, any signal at the

TOMM40 locus may be confounded with the APOE signal [21, 22]. Investigators have there-

fore examined the effect of TOMM40 poly-T repeat length stratified by APOE genotype or

specifically within APOE-4 non-carriers [23, 24]. Notwithstanding these few studies, the effects

of TOMM40 and APOE4 on AD pathology remain to be elucidated.

The main neuropathological hallmarks of AD are senile plaques and neurofibrillary tangles.

In recent years, positron emission tomography (PET) ligands have been developed for measur-

ing in vivo AD pathology in the brain and have been shown to be useful in clinical use and for

patient recruitment and as an outcome measure in clinical trials [25–27]. Notably, our group

developed a small molecule, 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethyli-

dene) malononitrile (FDDNP), for use as an in vivo chemical marker of cerebral aggregates of
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Aβ and tau proteins [28]. FDDNP-PET provides a measure of both plaque and tangle binding

levels in the living human brain, and the in vivo distribution of FDDNP in the brain follows

patterns of plaque and tangle distribution observed at autopsy [29, 30]. Also, FDDNP binding

levels have previously been shown to correlate with cognitive function in older adults [29] and

be predictive of cognitive decline [31] in non-demented individuals, making it a valuable bio-

marker to study early AD-related changes in the brain.

In this study, we examined a cohort of non-demented older adults to determine the effect

of TOMM40 and APOE4 on FDDNP binding values in the medial temporal lobe (MTL), a

region showing high concentrations of tau and Aβ even before patients develop dementia. We

chose to study non-demented individuals in order to identify possible genetic biomarkers

using sensitive imaging techniques that can pinpoint early manifestations of pathophysiologi-

cal changes in the brain. We focused on the MTL since the atrophy and anti-neuroplastic pro-

cesses occurring in AD-related cognitive decline are recognized to begin in the MTL, and

global MTL volume atrophy is known to be associated with memory impairment and AD [32].

Methods

Participants

A total of 73 non-demented older adults who had genotype testing and FDDNP-PET scans

were drawn from a larger study of predictors of cognitive decline. Data were collected between

December 2001 and January 2009. Briefly, volunteers from the community were recruited

through advertisements, media coverage of the study, and referrals by physicians and families.

Members of the research staff screened potential volunteers via telephone interviews. All sub-

jects underwent FDDNP-PET scans, as well as clinical and cognitive assessments performed

by investigators who were blinded to the results of FDDNP-PET scans. The study was reviewed

and approved by the UCLA Human Subjects Protection Committee and participants gave

written informed consent according to the UCLA Human Subjects Protection Committee pro-

cedures. Cumulative radiation dosimetry for all scans was below the mandated maximum

annual dose and in compliance with state and federal regulations. Exclusion criteria included

MRI intolerance, evidence of stroke or brain tumor on MRI, traumatic brain injury, cogni-

tively-altering medications, and excessive head motion during scanning. Participants with a

diagnosis of Alzheimer’s disease or other dementias were also excluded. Subjects were also

excluded for any history of alcohol or substance abuse, head trauma or other major systemic

disease affecting brain function, a history of neurological or psychiatric disorders, as well as

hypertension or cardiovascular disease.

During study intake, participants underwent an extensive physical and medical examina-

tion, laboratory screening including blood tests to rule out medical conditions that could affect

cognitive performance, and a medical history assessment. The current study was conducted on

a subset of 73 of these participants who had successfully completed genotyping for both APOE

and TOMM40, as well as imaging procedures.

DNA sampling and genotyping

DNA was extracted from blood. Samples were aliquoted on 96-well plates for determination of

both APOE and TOMM40 genotypes. Genotyping for the APOE gene was done by the UCLA

Center for Neurobehavioral Genetics using standard methods [33]. Genotyping for TOMM40

using the rs10524523 (‘523’) allele was completed at Polymorphic DNA Technologies (Ala-

meda, CA, USA; http://www.polymorphicdna.com). TOMM40 polymorphisms were analyzed

using polymerase chain reaction (PCR) and bidirectional direct Sanger sequencing of the

DNA templates on an Applied Biosystems 3730xl DNA Analyzer (Applied Biosystems Inc.,
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Carlsbad, CA) followed by sequence data analysis. This polymorphism, 523, is a homopolymer

length polymorphism (poly-T) located in an intronic region of TOMM40. The poly-T lengths

for each chromosome were converted into the S, L, and VL standard labeling [15].

Imaging methods

FDDNP was prepared at very high specific activities (>37 GBq/mol), as described in detail

elsewhere [34]. All scans were performed with the ECAT HR or EXACT HR+ tomograph (Sie-

mens-CTI, Knoxville, TN) with subjects supine and the imaging plane parallel to the orbito

meatal line. A bolus of FDDNP (320–550 MBq) was injected via an indwelling venous catheter,

and consecutive dynamic PET scans were performed for 2 hours. Scans were decay corrected

and reconstructed using filtered back-projection (Hann filter, 5.5mm FWHM) with scatter

and measured attenuation correction. The resulting images contained 47 contiguous slices

with plane separation of 3.37mm (ECAT HR) or 63 contiguous slices with plane separation of

2.42mm (EXACT HR+). Determinations of data reproducibility were performed when the

new scanner was introduced in the Nuclear Medicine clinic using phantoms and comparing

results between scanners. Nonparametric Wilcoxon two-sample tests found no significant dif-

ferences in regional FDDNP signals between the two PET scanners.

All subjects received MRI scans that were co-registered to PET scans for determination of

ROIs. These anatomical brain scans were obtained using either a 1.5 T or 3 T magnet (General

Electric-Signa, Milwaukee, WI) scanner. Fifty-four transverse planes were collected through-

out the brain, superior to the cerebellum, using a double-echo, fast-spin echo series with a

24-cm field of view and 256 x 256 matrix with 3 mm/0 gap (TR = 6000 [3 T] and 2000 [1.5 T];

TE = 17/85 [3 T] and 30/90 [1.5 T]). Rules for ROI drawing were based on the identification of

gyral and sulcal landmarks with respect to the atlas of Talairach and Tournoux [35]. All PET

and MRI scans were read and the ROIs were drawn by investigators blind to clinical assess-

ments. Previous inter-rater reliability studies have confirmed high consistency and reliability

using this method [36].

FDDNP-PET binding levels were quantified as previously described [29]. Briefly, we per-

formed Logan graphical analysis with cerebellum as the reference region for time points

between 30 and 125 minutes [37]. The slope of the linear portion of the Logan plot is the rela-

tive distribution volume (DVR), which is equal to the distribution volume of the tracer in an

ROI divided by that in the reference region. We generated DVR parametric images and ana-

lyzed them using gray matter ROIs drawn manually on the FDDNP-PET image obtained in

the first 5 minutes after injection (the perfusion image). This image shows the perfusion pat-

tern and has sufficient anatomical information to identify the cerebellum and cerebellar gray

matter. ROIs were drawn bilaterally on the medial temporal (containing limbic regions,

including hippocampus, parahippocampal, and entorhinal areas) region, as previously

described [38] and was expressed as an average of left and right regions. MTL binding from an

FDDNP-PET scan was the single pathology score used for each participant in this study.

Neuropsychological testing

A neuropsychological test battery was administered to assess specific cognitive domains: 1)

Memory, including the Wechsler Memory Scale Third Edition (WMS-III) logical memory

(delayed score), and Buschke selective reminding (delayed score); 2) Language, including the

Boston naming test and letter (F.A.S.) and category (Animal naming test) fluency; 3) Attention

and information-processing speed, including Trail making task A, Stroop color naming

(Kaplan version), and Wechsler Adult Intelligence Scale Third Edition (WAIS-III) digit sym-

bol; and 4) Executive functioning, including Trail making task B, and Stroop Interference

Longer TOMM40 poly-T variants associated with higher FDDNP-PET medial temporal tau and amyloid binding
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(Kaplan version). We converted raw test scores to Z scores by standardizing them to a mean of

0 and a standard deviation of 1. We computed domain Z scores by averaging those Z scores

belonging to the cognitive tests in that domain.

Statistical analyses

Data were screened for outliers for all variables included in these analyses. For TOMM40, the

lengths of the poly-T sequence were classified as short (14–20 repeats; i.e. ‘S’), long (21–29

repeats, i.e., ‘L’) or very long (>29 repeats, i.e., ‘VL’), as has been done in the literature [15].

For APOE, we categorized subjects into two groups: those carrying at least one E4 allele and

those without any E4 allele. Since the TOMM40 L variant is almost exclusively linked to the

APOE-4 allele and the VL and S variants are in strong linkage disequilibrium with APOE-3,

we further classified participants into the following 4 groups: TOMM40 S/S, TOMM40 S/VL

and TOMM40 VL/VL (excluding those with APOE-4 allele), and APOE-4 carriers.

Demographic and clinical measures were compared between groups using Kruskal-Wallis

tests for continuous measures and Fishers exact tests for categorical measures. Nonparametric

ANCOVAs (using ranked MTL FDDNP binding levels rather than raw DVR values) with

Tukey-Kramer adjusted post-hoc comparisons were used to test for statistically significant dif-

ferences in MTL FDDNP binding among the four subject groups. For cognitive performance,

we estimated a similar nonparametric MANCOVA with cognitive domain scores as dependent

variables. For both these models, age, sex, educational level and Mini Mental State Examina-

tion (MMSE; not used for cognitive models) scores were evaluated and retained as covariates,

if found necessary. In addition to the standard statistics, effect size (ES; Cliff’s delta [39]) esti-

mates are also presented. A significance level of p< 0.05 (two-tailed) was used for all

inferences.

Results

Among the 73 participants (42 (57.5%) females; mean ± SD age: 62.9 ± 10.9; MMSE:

28.9 ± 1.2), thirty-five individuals posessed a copy of the E4 allele. Of these 35 subjects, 5 par-

ticipants had TOMM40 poly-T lengths not classified as L (they were 1 S/S, 2 S/VL, and 2 VL/

VL) and thus were not used in further analyses. Among the 38 non APOE-4 carriers, 11 were

classified as S/S, 14 as S/VL and 13 as VL/VL (Fig 1). There were no differences in demo-

graphic variables across the TOMM40 and APOE-4 groups, including age, sex, educational

level, ethnicity and MMSE (Table 1).

Analyses revealed a significant association between medial temporal FDDNP binding and

TOMM40/APOE-4 groups (F(3,62) = 3.3, p = .03) (Fig 2). Non APOE-4 participants with the

TOMM40 S/S variant (median M = 1.08, interquartile range IQR = .09, range 1.02–1.17)

exhibited significantly lower binding compared to non APOE-4 S/VL (M = 1.14, IQR = .06,

range 1.03–1.23, t(62) = 3.10, p = .004; ES = .47) and compared to APOE-4 carriers (M = 1.14,

IQR = .06, range 1.01–1.20, t(62) = 2.4, p = .02; ES = .39). No other pair-wise differences

reached statistical significance. We also did not find a significant relationship between

TOMM40 poly-T lengths/APOE risk groups and cognitive scores in any of the domains of

cognitive function (multivariate F(12,140) = 0.7, p = .7; univariate p-values range from .5 to

.9).

Discussion

To our knowledge, this is the first report to identify significant associations between TOMM40

poly-T lengths and higher medial temporal plaque and tangle burden in the living brain of

non-demented older adults within individuals not carrying the APOE-4 allele. Participants

Longer TOMM40 poly-T variants associated with higher FDDNP-PET medial temporal tau and amyloid binding
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with the shortest TOMM40 poly-T lengths had significantly less plaque and tangle burden in

the medial temporal lobe compared to both those with longer TOMM40 lengths and those

with the APOE-4 genetic risk. In contrast, those subjects with longer TOMM40 poly-T repeat

lengths, who do not carry the E4 allele, had comparable MTL plaque and tangle burden to the

APOE-4 carriers. We did not, however, detect a relationship of TOMM40/APOE risk factors

with cognitive performance in this cohort. It is possible that in this relatively small but highly

educated cohort, we lacked statistical power to detect an association of cognitive functioning

with the genetic risk factors, and that the FDDNP imaging measures are a more sensitive indi-

cator of the changes occurring in the brain.

Fig 1. Distribution of TOMM40 variants by APOE status.

https://doi.org/10.1371/journal.pone.0208358.g001

Table 1. Demographic characteristics of subject groups.

Measure^ Non E4 S/S Non E4 S/VL Non E4 VL/VL E4� Statistics, p-value#

(N = 11) (N = 14) (N = 13) (N = 30)

Females 6 (54.6) 10 (71.4) 8 (61.5) 14 (46.7) 0.5

Age, years 62 (46–85) 62 (46–82) 62 (46–85) 67 (46–87) 6.3, 0.1

Education, years 18 (13–22) 17 (14–22) 16.(11–20) 18 (14–22) 1.8, 0.6

Ethnicity 0.3

Caucasian 9 (81.8) 13 (92.9) 12 (92.3) 27 (90.0)

African-American 0 (0) 0 (0) 0 (0) 1 (3.3)

Asian 2 (18.2) 0 (0) 0 (0) 2 (6.7)

Other 0 (0) 1 (7.1) 1 (7.7) 0 (0)

MMSE$ 29 (27–30) 30 (28–30) 29 (27–30) 29 (26–30) 5.3, 0.2

^Values are medians with range in parentheses, or number of subjects with percentage (%) in parentheses

�5 E4 participants with S/S (1), S/VL (2) and VL/VL (2) TOMM40 poly-T lengths not included
#Kruskal-Wallis test statistics and p-values for continuous measures; Fisher’s exact p-value for categorical measures
$Mini Mental State Examination

https://doi.org/10.1371/journal.pone.0208358.t001
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The apolipoprotein E4 variant on chromosome 19 has historically been the most significant

genetic marker for AD. Other genetic risk factors have been identified using genome-wide

association studies, but have mostly not been replicated in subsequent studies or had relatively

small effects. To date, TOMM40 is the only gene identified that is thought to contribute to late

onset AD-related mitochondria dysfunction [40]; however, it has been suggested that the sta-

tistically significant correlation of TOMM40 with AD risk is due to linkage disequilibrium

with APOE on chromosome 19. In agreement with previous reports [41, 42], the majority of

Fig 2. Medial temporal FDDNP-PET binding by non APOE-4 TOMM40 variants and APOE-4 carriers. Non APOE-4 participants with the TOMM40 S/S variant

(median M = 1.08, interquartile range IQR = .09) exhibited significantly lower binding compared to non APOE-4 S/VL (M = 1.14, IQR = .06, t(62) = 3.1, p = .004;

effect size ES = .47) and compared to APOE-4 carriers (M = 1.14, IQR = .06, t(62) = 2.4, p = .02; ES = .39).

https://doi.org/10.1371/journal.pone.0208358.g002
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the E4 cohort in our sample (85.7%) possessed at least one ‘long’ TOMM40 variant, and the

non-E4 cohort was either ‘short’ (65.8%) or ‘very long’ (34.2%).

Our finding that longer TOMM40 poly-T lengths, in the absence of APOE genetic risk, is asso-

ciated with a greater degree of plaques and tangles in the brain is consistent with our previous

study [23] that demonstrated cortical thinning in MTL sub-regions in subjects with no APOE

risk, but elevated TOMM40 risk. Further, a recent study [43] that examined the association

between verbal memory and 1.2 million gene variations across the human genome, showed that

only TOMM40 had a strong link to declines in both immediate recall and level of delayed recall,

and further, found an independent effect of TOMM40 among individuals who do not carry the

APOE E4 allele. Several previous studies have also found that TOMM40 is associated with hippo-

campal atrophy [44] and decline in cognitive performance [45], independently of APOE. Indeed,

even the studies that did not yield an APOE-independent effect of TOMM40 on AD risk found

an association between TOMM40 and AD risk within the E3/E3 participants [17, 20]. It has also

been suggested [40] that the effects of the longer variants of the TOMM40 genotype may be spe-

cific to non-symptomatic individuals, or present only in very early stages of the disease. Our

results are consistent with this hypothesis and further emphasize the need for examining the effect

of TOMM40 risk in individuals before the onset of dementia symptoms.

Methodologic limitations should be noted. First, this is a cross-sectional, observational

study, which cannot infer causality. The sample size is limited and the number of individuals

with the S/S variant was in particular small. These findings will thus need to be replicated in

larger data sets. The participants carrying the E4 allele were older than the other groups,

though the difference was not statistically significant. Further, we controlled for age in all our

analyses, but it is still possible that some of the observed effects were due to this difference in

age. FDDNP binding could also be affected by other variables, such as cerebrovascular risk,

that were not taken into account in the present analyses. We also did not observe a relationship

between cognitive performance and genetic risk groups, which may be due the small sample

size. Advantages of this study are application of an AD neuropathology specific imaging tracer

to a well-characterized cohort to examine AD genetic risk. It should be noted that neuropa-

thology in the MTL in AD is predominantly composed by tau aggregates and relatively less

predominant Aβ [46] and FDDNP MTL binding levels reflect this distribution, as also shown

by neuropathology autopsy determinations [29].

AD is a highly heterogeneous disorder, and neither genetic nor imaging markers alone are

likely to be useful in definitively predicting who will develop AD. The current finding that

FDDNP binding is related to a genetic risk factor for AD may imply that there are changes in

the brain that may be phenotypic in prodromal AD. It is intriguing to consider the possibility

of developing an AD risk score for individuals based on genetic, neuroimaging and lifestyle

factors. Further research is required to integrate and verify the existing results before such a

score can be validated and applied clinically. However, identifying biomarkers that are risk fac-

tors for AD will enhance our ability to identify subjects likely to benefit from the novel AD

treatments currently under development.
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