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Abstract 
Successfully incorporating backbone flexibility into the computational modeling 

and design of proteins and protein interactions is a key challenge that has yet to be fully 

solved. Most existing techniques for perturbing the backbone make changes that are not 

localized but propagate to distant parts of the protein, which can cause inefficiencies 

when working in a restricted region of the protein. The methods that do make localized 

changes have mostly been based on complex mathematical formulations that can inhibit 

their widespread application. In this thesis I describe a simple, automated approach, 

termed “backrub,” for sampling the protein backbone. The method is based on a recurring 

motif of backbone motion previously observed in ultrahigh resolution (!1Å) crystal 

structures, and involves backbone rotations around axes between C" atoms. It is shown to 

be useful for a variety of applications, including recapitulating the backbone/side chain 

bias in known instances of the backrub motif, predicting the conformations of point 

mutants, and modeling the opening and closing of a loop around an enzyme active site. 

After these initial results, I undertook a large-scale study in retrospective and prospective 

prediction of the peptide binding specificities of natural and synthetic PDZ domains. 

Here, backrub backbone flexibility was shown to significantly improve the accuracy of 

amino acid frequency prediction. The developed method was able to capture a large 

fraction of the amino acids frequently observed in phage display experiments both with 

natural PDZ domains and a large dataset of point mutants. Finally, in an effort to broaden 

the application and use of the PDZ peptide specificity work, I generalized the method to 

also predict fold stability, using GB1 phage display as a benchmark, and produced a 

detailed protocol for others to apply to a wide variety of systems. 
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Introduction 
If anything has captured my imagination during the course of graduate school, it 

has been two things: thinking about how proteins move and how those fluctuations affect 

protein function, and creating better computational tools for simulating and analyzing 

data related to protein dynamics. 

My first project, implementing and evaluating a generalized backrub move for 

sampling protein conformations, combined both of these interests. The move was 

inspired by motions observed in high-resolution crystal structures1 and involved rotations 

around axes between backbone C" atoms. One of the important computational 

advantages of the move was that all changes were localized. In the context of a pairwise 

decomposable scoring function like is used in Rosetta, this enables backbone 

perturbations to be evaluated without recomputing all interaction energies in the 

structure. Purely local moves are not new however, with formulations introduced as early 

as 19702 and further refinements introduced since3-6. The distinguishing features of the 

backrub move are that is inspired by real motions observed in nature, that it leverages 

bond angle flexibility to make simple geometric perturbations, and that it can make 

backbone changes as small as a peptide bond rotation. Before I began work on the 

project, Betancourt7 had evaluated a similar move with a highly simplified scoring 

function. Key advances I made were to determine conditions and optimizations under 

which similar moves could be applied in the context of a detailed, all-atom force field. I 

also showed that incorporation of such moves enabled sampling of experimentally 

observed protein dynamics and improved prediction of side chain conformations upon 

point mutation. See chapter 1 for a detailed analysis of the findings. 
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A primary focus of Tanja’s work was protein design8-10, while Matt had made a 

major thrust into understanding how phosphorylation brought about conformational 

changes and regulated protein function11,12. Prior to my joining, they had briefly 

considered the idea of creating a phosphoswitchable protein, which I then developed into 

a project designing a PDZ domain whose peptide binding affinity was controlled by 

phosphorylation. The reverse design goal had previously been accomplished, namely 

redesigning a peptide to have its PDZ binding affinity regulated by phosphorylation13. 

While incorporation of linear kinase recognition motifs into unstructured peptides was 

relatively straightforward, the reactivity of a kinase with designed globular domains was 

unknown. With a visiting summer undergraduate student, Catherine Shi, I began a pilot 

study to determine how readily incorporation of the protein kinase A (PKA) linear 

recognition motif into a folded protein domain would yield a competent phosphorylation 

site. Out of eight candidate phosphosites, two were successfully phosphorylated.  

At the same time the phosphoswitchable PDZ project was moving forward, a 

collaborator, Dev Sidhu, made available a large amount of PDZ-peptide phage display 

data that were later published14,15. Given my interest in regulating PDZ-peptide 

interactions, I undertook a project to determine how well our flexible backbone protein 

design methods could recapitulate the large amount of phage display data available. A 

previous student, Elisabeth Humphris, had developed a method for predicting the set of 

sequences that could be tolerated at the human growth hormone (hGH)/human growth 

hormone receptor (hGHR) interface16. Her method incorporated the backrub backbone 

sampling I had developed earlier. A significantly faster reimplementation of her 

algorithm in a new version of Rosetta allowed the large-scale analysis of hundreds of 
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natural and synthetic PDZ domains whose peptide phage display profiles were known. 

Chapter 2 describes the predictive performance in depth. I also took the PDZ-peptide 

interaction method and made it more generalizable and readily accessible to the greater 

scientific community using a mechanism known as a “protocol capture”. This work is 

highlighted in Chapter 3. 

In tandem with the PDZ specificity work, I continued the phosphoswitch project 

by characterizing the mutants to determine factors that may influence phosphorylation. 

Circular dichroism thermal denaturation showed that the two phosphorylated proteins 

were the least thermostable, potentially indicating a higher degree of disorder at room 

temperature. The mutant with the highest rate of phosphorylation was further 

characterized via NMR. It showed significant chemical shift differences from the wild-

type, suggesting a change in structure and/or dynamics. In addition, CLEANEX hydrogen 

exchange experiments showed an increase in solvent exposure of residues nearby the 

phosphorylation site. Given these results, we undertook a second round of design, 

incorporating the destabilizing mutations into previously unsuccessful designs. That 

strategy worked and rescued three of the original designs. Upon purifying phosphorylated 

variants, we found that phosphorylation lead to an approximately 10-fold reduction in 

binding affinity for several of the new designs. While these results showed that we had 

successfully created a phosphoswitchable PDZ domain, they came too late to incorporate 

into this thesis beyond the brief description here. 
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Chapter 1. Backrub-like backbone simulation 
recapitulates natural protein conformational variability 
and improves mutant side-chain prediction 

Abstract 

Incorporation of effective backbone sampling into protein simulation and design 

is an important step in increasing the accuracy of computational protein modeling. Recent 

analysis of high-resolution crystal structures has suggested a new model, termed backrub, 

to describe localized, hinge-like alternative backbone and side chain conformations 

observed in the crystal lattice. The model involves internal backbone rotations about axes 

between C! atoms. Based on this observation, we have implemented a backrub-inspired 

sampling method in the Rosetta structure prediction and design program. We evaluate 

this model of backbone flexibility using three different tests. First, we show that Rosetta 

backrub simulations recapitulate the correlation between backbone and side-chain 

conformations in the high-resolution crystal structures upon which the model was based. 

As a second test of backrub sampling, we show that backbone flexibility improves the 

accuracy of predicting point-mutant side chain conformations over fixed backbone 

rotameric sampling alone. Finally, we show that backrub sampling of triosephosphate 

isomerase loop 6 can capture the ms/#s oscillation between the open and closed states 

observed in solution. Our results suggest that backrub sampling captures a sizable 

fraction of localized conformational changes that occur in natural proteins. Application of 

this simple model of backbone motions may significantly improve both protein design 

and atomistic simulations of localized protein flexibility. 
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Introduction 

Proteins undergo conformational fluctuations in response to thermal energy, 

binding events, and mutation. Understanding and predicting such excursions around the 

native state of a protein is a key challenge in computational molecular biology. Side 

chain sampling17 has been shown to be an extremely useful first-order method for 

predicting small-scale conformational change. Successful applications include protein-

protein docking18,19, total redesign of protein sequences20,21, and redesign of both protein-

protein8 and protein-DNA22 interfaces. However, one key approximation made by many 

of these applications is keeping the backbone structure fixed. In actual proteins the 

backbone often undergoes subtle shifts in response to binding events23 or sequence 

changes24. Successfully capturing such near-native shifts is thus important for many 

docking and design applications. 

Numerous methods have been developed to take backbone flexibility into account 

for both the whole protein and local subsections. Molecular dynamics is currently one of 

the most pervasive methods. However, in the absence of a steep energy gradient, 

dynamics depend on random thermal velocities and a long sequence of time steps to 

sample motions as simple as a rotamer change. Monte Carlo minimization of backbone 

torsion angles25-27 has also been very successful, but can result in highly non-local 

displacements of the protein backbone and becomes increasingly less efficient with 

greater protein size. Insertion of peptide fragments has been used for de novo protein 

structure prediction28 and loop prediction29, but causes similar propagating changes. 

Several non-local sampling techniques have been applied to protein design including 

random torsion angle sampling30 and more correlated methods such as fragment 
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insertion31, parameterized coiled-coils32, and normal mode analysis33. These methods 

make use of patterns commonly observed in protein structures or a harmonic 

approximation of intra-protein interactions to increase backbone sampling efficiency. 

Other methods have addressed the problem of making local perturbations using heuristics 

to iteratively optimize backbone torsion angles until distortions of covalent geometry are 

minimized34-36, but those techniques sometimes leave strained chain junctions that must 

be relaxed with other algorithms. Another method, called wriggling37, was developed to 

make partially local moves in which groups of four torsion angles are changed 

simultaneously to minimize the displacement of distant atoms. 

Deformations of protein backbones are truly local only if all consecutive atoms 

beyond the perturbed region remain fixed. Several local methods exist, the first being 

introduced by Go and Scheraga2 with numerous subsequent refinements and adaptations3-

6. These methods involve making a random prerotation of one or more backbone angles, 

followed by solving a geometric constraint equation for six other backbone degrees of 

freedom to maintain the locality of the move. Several of the methods incorporated bond 

angle sampling, either as part of the prerotation3,6, or both the prerotation and the solved 

constraint equation5. The latter work also biased the prerotations towards less perburbed 

backbone conformations. The implementation of these methods is more complex than 

other common techniques like rotamer sampling. Another drawback is that such loop 

closure methods are biased towards proposing moves that satisfy bonded, geometric 

constraints, whose multiple free rotation axes can lead to radically different 

conformations, often with substantial steric clashes and unsatisfied hydrogen bonds. 
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Those non-bonded factors are particularly relevant in highly packed protein cores and 

interfaces. 

The work described here, instead of being motivated by geometric constraints, 

derives its motional model from conformational variations observed in high-resolution (! 

1Å) crystal structures1. The fluctuations observed in the crystal lattice motivated Davis et 

al. to create a simple model, called Backrub, for subtle backbone shifts using just three 

residues. The core idea in this work is to use that type of motion, observed in nature, to 

computationally sample backbone configurations in a generalized scheme. A similar 

move set was recently described7 in the context of a simplified energy function. Here, we 

investigate the utility of the backrub move to sample conformations in the context of the 

Rosetta all-atom force field. Rosetta has been successfully used for protein-protein 

docking19, protein-ligand docking38, redesign of protein cores31, design of new protein 

interface specificities8, and de novo prediction of small protein structures39. As an initial 

test, we recapitulate the backbone/side-chain correlations observed in the same high-

resolution structures that inspired the Backrub model. We go on to show that backrub 

backbone flexibility improves side-chain modeling of point mutations. Finally, as a 

demonstration of the method’s potential, we present a proof-of-concept simulation 

showing efficient sampling of the opening and closing of triosephosphate isomerase loop 

6. Our results indicate that the backbone sampling described here captures a sizable 

fraction of the subtle conformational variability found in folded proteins. 

Results 

We implemented the backrub sampling protocol inspired by motion observed in 

protein structures1 (see Figure 1-1, Figure 1-2, and Methods), and evaluated it using three 
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different tests: First, we sought to determine whether the motional model, combined with 

an all-atom force field, could recapitulate the variation seen in occurrences of a backrub 

motion in high-resolution crystal structures. Secondly, we test whether backrub sampling 

can improve the accuracy of modeling small backbone and side chain conformational 

changes in response to single point mutations in a set of crystal structure pairs. Finally, 

we show simulations indicating that backrub sampling can capture conformational 

variability observed in a long time-scale loop motion. 

Figure 1-1. Schematic showing the generalized backrub move 

 

Moves are made by first randomly selecting the polypeptide backbone segment 

size, typically 2-12 residues, then randomly selecting a starting residue 

compatible with the selected segment size. The C" atoms of the starting and 

ending residues define the rotation axis. All atoms between the two C" atoms are 

then rotated about that axis by a random angle up to 11-40 degrees, depending on 

the segment size. To minimize the bond angle penalty imposed by full atom force 

fields, precise placement of branching C$ and hydrogen atoms is done using 

quadratic equations that describe the relationship between the backbone bond 

angle and branching atom spherical coordinates (see Methods). 
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Figure 1-2. Flow chart depicting substeps taken during a single Monte Carlo step 

 

The proportion of backbone, rotamer, and backbone + rotamer steps are 

controlled by two parameters. The first, Protamer, specifies the probability of only 

making a rotamer move. The second, Pbackbone, specifies the probability that only 

the backbone is modified, given that a rotamer only move type was not selected. 

Test 1: Simulation of 3-Residue Backrubs 

Davis et al.1 derived the “Backrub” model of protein backbone motion from 

examples of three residue segments exhibiting multiple backbone conformations in high-

resolution (! 1.0 Å) crystal structures. To model those variations, they used the C! atoms 

as pivot points and enumerated the three possible rotation axes between them. By 

manually rotating the backbone around those axes, they were able to model the 

conformational transitions in a significant number of cases. They catalogued 126 such 
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rotamer change. In those cases, the backbone-determined location of the C" atom 

significantly altered the conformation of attached side chain atoms. As an initial test of 

our generalized backrub sampling method, we used focused Monte Carlo simulations to 

determine whether we could detect distinct populations of coupled backbone/side-chain 

conformations centered on coordinates observed in the PDB.  

Out of 161 derived starting structures (see Methods), the majority (105) came 

from PDB residue entries with #1 angles of the central side chain, i, occupying multiple 

rotameric bins (-60°, 60°, 180°). In our analysis, we therefore used the #1 angle as a one-

dimensional representation of the side chain conformation. We used the C!i,initial–C!i-1–

C!i+1–C!i,current pseudo-dihedral angle ($disp), to represent the backbone conformation of 

the 3-residue segment. (Figure 1-3) We wanted to determine whether the simulations 

showed a similar correspondence between side-chain and backbone conformation to that 

observed in the crystal structures. To answer that question, we calculated $disp probability 

distributions for each of the #1 bins visited during the simulations and compared those 

distributions to the crystallographic $disp backbone angles. An example analysis of a 

simulation showing good agreement with the PDB is given in Figure 1-4. 

Figure 1-3. Schematic of dihedral angle used for 3-residue backrub analysis 

 

For 3-residue backrub analysis, the $disp angle was used as a one-dimensional 

representation of the backbone conformation. In simulations, it was defined as the 
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C!i,initial–C!i-1–C!i+1–C!i,current pseudo dihedral angle (red). In this illustration, 

the starting atomic coordinates are shown in gray. In some high-resolution PDB 

structures, alternate C! coordinates were not provided, so the $disp angle was 

instead defined as the C"i,initial–C!i-1–C!i+1–C"i,alternate pseudo dihedral angle (not 

shown) for all PDB analysis. 

Figure 1-4. Example backbone/#1 populations from a 3-residue backrub simulation 

A 

 
 
B 

 

 C 

 
 
D 

 

Results are shown for PDB 1PQ7 chain A, residues 62-64, starting from the “B” 

alternate backbone coordinates. The central side-chain is glutamine. (A) To 

monitor coupled backbone and side-chain conformational changes, we recorded 

both the C!i,initial–C!i-1–C!i+1–C!i,current pseudo-dihedral angle ($disp) and #1 angle 

after every Monte Carlo step. Those angles are shown binned into hexagonal 
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arrays40. (B) We separated the backbone pseudo-dihedral angles by #1 angle and 

generated normalized histograms for bins -60° (red), 60° (green), and 180° (blue, 

not shown because the overall population was < 0.05%). Circles indicate the 

population means (%$disp | #1&). For each alternate C" atom position found in the 

PDB, the C"i,initial–C!i-1–C!i+1–C"i,alternate dihedral angle (also $disp) is indicated as 

a vertical line colored according to the #1 bin. The overall population of each bin 

is indicated in the upper right. The RMSD of the population means from the 

corresponding PDB $disp angles is shown in the upper left. Representative 

structures are shown from the (C) -60° and (D) 60° #1 bins. The three simulated 

residues are shown with a ball and stick representation. Other protein residues are 

shown using a surface representation. The two crystallographic alternate 

backbone conformations are shown using a wire representation and colored 

according to the #1 bin. Images were created with VMD. 

A simple binary metric indicating if the simulations correctly captured the side-

chain/backbone bias is whether the average backbone conformations for each #1 bin 

(%$disp | #1&, circles in Figure 1-4B) were in the same relative orientations found in the 

PDB (vertical lines in Figure 1-4B). This is easiest to interpret for those residues with 

PDB side-chain conformations in exactly two #1 bins, as in Figure 1-4. There were 98 

starting structures where that was the case and of those, in 76 cases the simulations did 

visit both #1 bins observed in the PDB, making the comparison possible. Out of these 76, 

55 (73%) showed the correct bias, which is significantly better (chi-square p-value 1%10-

4) than would be expected at random (50%). When only buried side chains (SASA <30%, 

see below) are considered, 15 out of 17 (88%) are correct. 

A comparison between the mean $disp angles from the simulations and those 

determined from the PDB shows reasonable agreement (Figure 1-5). As the accuracy of 



 

 13 

rotamer prediction has been shown to be strongly dependent on the degree of residue 

burial41-44, we show results for 24 residues with solvent accessible surface areas (SASA) 

of <30%, using the surface area of an extended residue flanked by glycines as the 

reference SASA. Deviations from the diagonal can result from both scoring/sampling 

problems in our modeling procedure and uncertainty in the crystallographic fitting. 

However, there is a reasonable positive correlation (R = 0.64). The correlation becomes 

clearer when individual simulations (connected by lines) are examined. Nearly all such 

lines show positive slopes, indicating that the simulations capture the direction of 

correlated side chain and backbone conformational changes correctly in many cases, 

albeit with some variation in the absolute magnitude. 

Figure 1-5. Predicted angular displacements from 3-residue backrub simulations 

 

Backbone angular displacement (%$disp | #1&) is correlated between PDB structures 

and predicted populations from 3-residue backrub simulations. Points are colored 

by #1 bin: -60° (red), 60° (green), and 180° (blue). Points from the same 

simulation are connected by thin lines. Any connecting lines with positive slopes 

represent simulations which show the correct bias between side chain 
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conformation and backbone conformation. Disconnected points are from 

simulations where only one of the #1 bins seen in the PDB was visited during the 

simulation. The thick black line shows a least squares linear fit. 

A notable observation is that at certain backbone $disp angles (i.e. < 3° or > 17° in 

Figure 1-4), some side chain conformations are completely inaccessible. The intervening 

backbone conformations form a transitional zone where the rotameric change becomes 

more and more energetically favorable. In our simulations, there is little evidence for an 

energetic barrier between the subtle differences in backbone conformations. On the other 

hand, there can be significant energy barriers involved in side chain transitions, 

particularly in the protein core. Our data indicate that the side chain rotamers may lock 

the backbone into slightly different conformations, giving rise to the alternate 

conformations observed by Davis et al1. This mirrors another simulation study, where a 

side chain transition played a key role in stabilizing a relatively unconstrained backbone 

conformational transition45. 

Backbone/#1 Correlation in Crystal Structures Alone 

After observing the correlation of backbone conformation with the side chain #1 

angle in our simulations, we wanted to determine whether the same biases could be 

observed at a global level in the Davis et al.1 dataset, irrespective of the simulation 

results. To do so, we considered the 68 residues (out of 126) where there were at least 

two #1 bins represented in the PDB. For every alternate backbone conformation, we 

calculated the $disp angle, using the first conformation as the reference structure. We then 

normalized the $disp angles for each of the 68 residues to make the $disp weighted mean 
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(using PDB occupancies as the weights) of each individual residue 0. The distribution of 

$disp for each #1 bin is shown in Figure 1-6. 

Figure 1-6. Correlation between crystallographic backbone and sidechain angles 

A 

 

B 

 

In high-resolution crystal structures, alternate backbone conformations are 

correlated with the side chain #1 angle, with a straightforward structural 

explanation. (A) Out of 126 residues in the backrub set, 68 have #1 angles in 

multiple rotameric bins. For those residues, the calculated C"i,initial–C!i-1–C!i+1–

C"i,alternate pseudo-dihedral angles ($disp) described in Figure 1-3B were normalized 

by the average angle (weighted by PDB occupancy). Histograms of those angles 

are shown using 2.5° bins and colored by #1 bin: -60° (red), 60° (green), and 180° 

(blue). (B) The clear difference between the -60°/180° and 60° bins has a 

straightforward structural explanation, where side chains in the 60° bin push the 

backbone to the left, and the -60°/180° side chains push the backbone to the right. 

Hypothetical ' atom positions are colored by #1 bin. 

Interestingly, the distribution of $disp angles for the 60° #1 bin was significantly 

different from the distributions for the -60°/180° #1 bins. (Figure 1-6A) There was a 5.8° 

difference in means between the 60° and the joint -60°/180° distributions. The structural 

explanation for the difference is quite clear when the orientation of the C"-C/O' bond 

vector is visualized on a hypothetical backbone with the central side chain pointing up 
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and the C!i-1 atom in front of the C!i+1 atom. (Figure 1-6B) In that orientation, the 60° 

C"-C/O' vector points nearly perpendicular to the C!i-1-C!i+1 axis, pushing the backbone 

in a counter-clockwise direction. That rotation corresponds to a negative $disp angle. In 

the -60°/180° bins, the C"-C/O' vectors point in the opposite direction but are much less 

perpendicular. The degree of perpendicularity helps explain the negative skew of the 60° 

distribution in comparison to the relative symmetry of the -60°/180° distributions.  

In principle, the dependence of backbone conformation on side-chain 

conformation could be used to derive coupled moves in sequence and structural 

optimization algorithms. For example, the differences in backbone distributions could be 

used to restrict sampling of backbone conformations when switching into or out of the 

60° #1 rotameric bin. 

Test 2: Point Mutant Side Chain Prediction 

In addition to distinct conformations observed in the high-resolution crystal 

structure dataset discussed above, another context in which subtle backbone differences 

may be important are residue point mutation. A single-residue point mutation represents 

the simplest of increasingly more difficult structural modeling tasks where one is given a 

template and then must predict the new low energy conformation after a known 

perturbation. In addition, the ability to accurately predict the conformation of a side-chain 

upon point mutation has direct bearing on the success of protein sequence design 

algorithms. 

We wanted to determine the extent to which generalized backrub sampling could 

improve the prediction of point mutant side chains, especially when using a fixed rotamer 

library as commonly done in computational protein design methods. Recently, Bordner 
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and Abagyan46 compiled a large benchmark set of PDB structure pairs differing by a 

single point mutation. We applied the generalized backrub protocol to locally refine 

structural models after mutation/fixed backbone rotamer optimization in Rosetta31. We 

found that overall, incorporation of backrub sampling improved both side chain heavy 

atom RMSD and #1/#2 recovery within 40°. (Figure 1-7) We also found that the local 

backbone RMSD between PDB structure pairs was correlated with prediction difficulty, 

in terms of both RMSD and #1/#2 recovery. The larger the backbone conformational 

change upon mutation, the larger was the improvement resulting from backrub sampling. 

In particular, the fraction of pairs with the highest starting RMSD showed the most 

sizeable improvement. Similar observations were made in a previous study30 which 

showed improvements in prediction of side chain conformations after core substitutions 

in T4 lysozyme when comparing flexible with fixed backbone methods. There backbone 

flexibility was modeled using a different mechanism employing random continuous 

adjustments of ±3 degrees to each backbone angle. 
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Figure 1-7. Point mutant side chain prediction RMSD and chi angle analysis 

A 

 

B 

 

Generalized backrub sampling (blue) improves (A) the RMSD and (B) #1/#2 

recovery (within 40°) of predicted point mutant side-chains over fixed backbone 

sampling alone (red). Prediction results were sorted by increasing starting 

backbone RMSD and divided into four equally sized groups. The improvement 

was most distinguished for structure pairs with a larger starting backbone RMSD. 

Breaks between groups are along the x-axis. Results are shown for 543 non-

proline residues for which the solvent accessible surface area of the wild-type 

residue was < 5%. Residues within a 6Å radius of the wild-type residue were 

sampled. In the boxplots, boxes indicate the interquartile range (IQR), thick 

horizontal lines show the median, and dots show the mean. Whiskers extend to 

the most extreme datapoint within 1.5 times the IQR of the 25th or 75th percentile. 

In addition to the dependence on initial backbone RMSD, we also investigated 

how a number of other factors affected the extent of improvement, including the radius of 

neighboring residues allowed to change rotameric conformations (4, 5, 6, 7, and 8 Å from 

the mutated residue) and the degree of burial of the mutated residue (< 5%, < 30%, and ! 

100% solvent accessible surface area). Figure 1-7 shows results from point mutant 

predictions that showed the best overall improvement in prediction accuracy, considering 
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< 5% solvent exposure and a 6Å sampling radius. Between a 4 Å and 8 Å sampling 

radius, the prediction of side chain RMSD does not change significantly. Backrub 

sampling gives better #1/#2 recovery at 6Å than using any other radius. Considering the 

amount of residue burial, backrub sampling continues to improve overall RMSD 

prediction somewhat using a 30% SASA cutoff. When evaluating all residues including 

those that are largely solvent exposed, backrub sampling still improves predictions for 

high backbone RMSD pairs, but makes low RMSD pairs slightly worse. 

Figure 1-8 shows examples of backrub sampling improving side chain prediction. 

The improvement can come from two sources, namely better prediction of the side-chain 

conformation and better prediction of the protein backbone. In some cases, the side-chain 

improvement comes at the cost of backbone prediction accuracy, as is shown in the last 

row of images. However, the worsening of backbone (C!/C") RMSD is relatively small 

compared with the improvement in side chain RMSD. (Table 1-1) The source of the error 

could lie in crystallographic uncertainty, inaccuracies in the scoring function, or 

compensation for a discretized rotameric side-chain representation. 
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Figure 1-8. Examples of improved side chain prediction 

 

The fixed backbone prediction is shown in red and the backrub prediction is 

shown in blue. The starting PDB structure is shown in green and the target 

mutated PDB structure is shown in purple. Nitrogen and oxygen atoms are shown 

in light blue and red, respectively. Examples are sorted by the improvement in 

mutant residue C!/C" RMSD from fixed backbone to backrub protocols. The 

modeled mutation M153F in 1KYO and 1LOJ is the same, but 1KY0 has a 

leucine at positions 118 & 121 whereas 1L0J has a methionine at positions 118 & 

121. In both cases, backrub sampling correctly shifts the backbone at residue 153 

and better recovers the target side chain. In the last five examples, backrub 

sampling increases the C!/C" RMSD but improves the side chain prediction. 
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C!/C" and side-chain RMSDs are listed in Table 1-1. Images were created using 

ICM Browser. 

Table 1-1. C!/C"  and side-chain RMSD for examples of point mutant predictions 

PDB 
Chain 

 Mutated Residue C!/C" RMSD Side Chain RMSD 
Mutation Fixed BB Backrub Delta Fixed BB Backrub Delta 

1CV1:A M111I 1.13 0.21 -0.91 2.41 0.37 -2.04 
1CWU:B G138A 1.03 0.16 -0.87 NA NA NA 
1KGY:H G1649Q 1.22 0.42 -0.80 4.54 1.21 -3.33 
1LVE:A Q89L 0.64 0.09 -0.55 1.14 0.30 -0.84 
2HEC:A A56F 0.70 0.16 -0.55 3.70 0.98 -2.71 
2MEB:A L56M 0.57 0.08 -0.49 1.18 0.59 -0.60 
1THP:B P225Y 0.75 0.31 -0.44 2.24 0.38 -1.86 
1LUW:B Q30V 0.64 0.23 -0.41 1.01 0.32 -0.69 
1GAD:P N313T 0.43 0.13 -0.30 2.61 0.27 -2.34 
5EAA:A S191W 0.68 0.40 -0.28 7.47 0.88 -6.60 
1WKD:A A102D 0.46 0.22 -0.24 2.74 0.57 -2.17 
1KY0:A M153F 0.54 0.32 -0.22 3.66 0.49 -3.17 
1NAG:A G43N 0.45 0.24 -0.21 3.10 0.37 -2.73 
2BQJ:A A125V 0.44 0.24 -0.20 2.50 0.42 -2.08 
1L0J:A M153F 0.34 0.24 -0.10 3.61 0.24 -3.37 
1G7L:A S92W 0.34 0.45  0.11 3.71 0.81 -2.90 
2TOD:D A69K 0.16 0.32  0.16 4.36 1.36 -3.00 
1N7X:A E45Y 0.13 0.31  0.19 6.60 0.65 -5.95 
1KX0:C V207I 0.14 0.44  0.29 3.29 0.76 -2.53 
1L82:A L153F 0.48 0.93  0.45 3.70 0.98 -2.72 

Examples were selected from cases where backrub sampling improved side-chain 

prediction as shown in Figure 1-8. The majority of the selected examples also 

showed improvement in prediction of the backbone, although this was not always 

the case. 

Test 3: Triosephosphate Isomerase Loop 6 Simulation 

As a third, proof-of-principle test of the backrub sampling protocol, we 

investigated a much larger conformational change. The hinge motion of triosephosphate 

isomerase (TIM) loop 6 is a well-characterized example of a protein segment undergoing 

significant conformational change while maintaining a relatively rigid internal 

conformation. The C! RMSD between an 11 residue segment (V167-T177) in the closed, 

(PDB 2YPI47), and open (PDB 1YPI48) conformations is 4.6 Å. We found that by 
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manually rotating the closed segment 50° about the C!167–C!177 axis, the C! RMSD to 

the open form drops from 4.6 to 1.1 Å, indicating that a backrub simulation may capture 

much of the conformational variability of the TIM loop. However, such a large rotation 

introduces several significant steric clashes and adds sizable backbone bond angle strain 

at residue V167. 

We wanted to determine whether generalized backrub sampling of the loop region 

could capture the same degree of conformational variability without producing 

energetically unreasonable conformations. Previous studies using molecular dynamics 

have had difficulty capturing the TIM loop 6 conformational transition49,50. Notably, the 

simulations required temperatures from 1000-1200 K to see transitions from one state to 

the other.  

We ran simulations starting from both the open conformation (1YPI) and the 

closed conformation (2YPI). In each simulation, we allowed backrub moves of size 2-12 

on residues 165-179. Residues 128-130 showed small but potentially significant changes 

between the two conformations, so we allowed backrub moves of size 2-3 for those 

residues. In addition to all of those residues, rotamer changes were allowed for residues 

whose side chains were in the vicinity of the loop using a 5 Å cutoff and by visual 

inspection (3, 7, 95, 96, 131, 134, 139, 164, 180, 183, 208, 211, 216, 219, 220, 223, 230). 

Each simulation was run without the ligand, making the atomic composition identical. 

We ran the simulations for 1.5 million Monte Carlo moves, using a temperature of 302 K 

in the Metropolis criterion. Each simulation took 14 hours to complete on a single 

2.0GHz Xeon processor. 
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To analyze the simulation trajectories, we calculated the C! RMSD of the loop 

from both the open (1YPI) and closed (2YPI) conformations. The sign of the difference 

between those RMSDs indicates whether the loop is closer to the open (positive sign) or 

closed (negative sign) conformation. Starting from the closed conformation with the 

ligand removed, the backrub simulations were able to oscillate between the open and 

closed forms of the loop many times during a 1.5 million step simulation. Eight example 

transitions are pictured in Figure 1-9, where the minimum RMSD for each approach to 

the open form ranged 1.57-2.2 Å and the RMSD values for return to the closed form 

ranged 1.37-2.36 Å. The loop structure (V167-T177) maintained a relatively stable 

internal conformation over the length of the simulation, with an average aligned C! 

RMSD of 1.3 Å (0.3 Å standard deviation) from the starting structure. 
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Figure 1-9. Generalized backrub sampling of triosephosphate isomerase loop 6 

A 

 
B 

 1 2 3 4 5 6 7 8 
 

        
RMSDopen 2.49 4.90 1.74 4.51 1.76 4.75 1.73 3.71 
RMSDclosed 5.12 1.73 4.35 1.66 4.19 2.36 4.71 1.68 
Difference 2.64 -3.17 2.61 -2.84 2.42 -2.39 2.97 -2.03 
         
 9 10 11 12 13 14 15 16 
 

        
RMSDopen 1.57 5.02 1.77 5.02 2.20 4.39 1.96 4.14 
RMSDclosed 4.34 1.74 3.50 2.04 4.22 2.22 4.85 1.38 
Difference 2.77 -3.28 1.73 -2.99 2.01 -2.17 2.89 -2.76 

(A) For every 200 accepted moves in the simulations, we calculated the C! 

RMSD of the loop from both the open (1YPI, purple lines) and closed (2YPI, 

green lines) PDB structures. We defined a single reaction coordinate for the 

simulations as RMSDclosed – RMSDopen (black lines). The green and purple lines 

are plotted with modified axes such that the black line is the sum of those 

component lines. The simulation starting in the open conformation is on top and 

the simulation starting in the closed conformation is on the bottom. The 

simulation starting from the open conformation makes an initial excursion closer 

to the closed conformation but then stays open for the remainder. The simulation 
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starting in the closed conformation alternates back and forth between the open and 

closed conformations at least eight times during the simulation. (B) The open 

structure (1YPI) is shown in purple. The closed structure (2YPI) is shown in 

green. For reference the substrate analogue, 2-phosphoglycolate, is shown using 

space fill. (It was not present in either simulation.) The conformation at the 

numbered Monte Carlo step is shown in black. 

We found that the motion of the loop depended on the starting structure, not 

always showing the opening and closing behavior. In the simulation starting from the 

open conformation, there was a transient excursion closer to the closed form (within 2.38 

Å) at the beginning of the simulation. After that, the loop stayed in a predominantly open 

conformation for the remainder of the simulation, in some cases migrating to a “hyper 

open” state up to 8.29/4.23 Å from the closed and open structures, respectively. 

There are several explanations for the difference in the simulations and lack of 

convergence. In addition to possibly needing more sampling to equilibrate, it may be that 

the anchor points or other fixed regions of the different starting protein structures bias the 

loop motion. Another possible explanation is that the backrub motions are not sufficiently 

sampling the internal degrees of freedom in the loop. A likely limitation is that proline 

residues (at TIM residue positions 168 and 176) are not currently allowed as pivot 

residues in backrub sampling, thus keeping all of their internal angles fixed. This effect 

may be substantial in the TIM loop case as P168 shows a ( angle change of 40° between 

the two conformations. (Figure 1-10) 
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Figure 1-10. TIM loop 6 simulation starting structure and proline bias 

 

The TIM loop 6 simulations are biased by the starting structure (see main text, 

Figure 9), but the bias is reduced by including approximate proline flexibility in 

extended simulations. From each of the open (1YPI) and closed (2YPI) starting 

structures, 20 extended simulations were run for 20 million moves. A snapshot 

was recorded every 2,500 moves. The last half of every simulation (4,000 

snapshots) was used to calculate probabilities of the loop being closer to the 

closed or the open form. As is shown in Figure 9 in the main text, simulations 

starting from the closed form (solid green) cover a range of conformations 

between the open and closed forms. Simulations starting from the open form 

(solid purple) are more strongly weighted towards the open conformation. To 

determine the effect of keeping proline backbones fixed, simulations were run in 

which the proline backbone was allowed to move, but any strain introduced to the 

bond lengths or angles of the proline side-chain were not penalized. Simulations 

starting from the closed form (dotted green) show a sharper distribution, while 

those starting from the open form (dotted purple) shift towards the closed form 

distribution. This suggests that the 40° ( angle difference between the open and 

closed forms at P168 is significant but does not completely explain the lack of 

convergence that persists to some extent even after extended simulations. 

Extending the backrub move set in the future (for example by including shearing 
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moves, etc.) or combination with other sampling protocols may help overcome 

some of these limitations. 

To assess the degree to which more complete backrub sampling (not limiting 

sampling to just the loop 6 region) captures the flexibility of the TIM structure, we ran 

multiple simulations of the complete TIM dimer (with the constraint of fixing the 

backbone coordinates of 17 core residues in each monomer). The loop 6 region does 

indeed show the largest conformational variability: three of the four largest calculated B-

factors from those simulations are in the tip of loop 6 (G171-G173). (Figure 1-11) In 

addition to the high calculated B-factors for loop 6, some flexibility was observed in 

several other regions. These regions also showed structural differences between the open 

and closed crystal structures. 
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Figure 1-11. TIM fluctuations observed in whole protein sampling 

 

In backrub simulations of the whole TIM dimer, residues in loop 6 show the 

highest computed average B-factors. Calculated C" B-factors are mapped onto the 

closed (1YPI) and open (2YPI) starting structures with a blue-white-red color 

scale indicating low to high fluctuations. Three out of the top four most flexible 

residues (G171, G173, G137, and T172) are in loop 6. For all residues, the B-

factors are somewhat correlated (R = 0.62) with the distance between C" atoms in 

the two structures. This indicates that the backrub simulations are recapitulating 

flexibility hinted at by the crystallographic heterogeneity (although alternative 

conformations in different crystal structures may be caused by factors other than 

intrinsic flexibility, such as crystal packing). For each starting structure, 20 

independent trajectories were run for 250,000 MC steps, with a snapshot recorded 

every 2,500 steps. 17 core residues (8, 41, 62, 63, 75, 76, 92, 93, 94, 163, 206, 

207, 208, 226, 228, 229, and 248) were held fixed during the simulations. Core 

residues were identified as those having the most heavy atoms within a 10 Å 

radius of the C" atom in 1YPI, including at least one residue from each $ strand. 
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B-factors were calculated separately for each starting structure using all 2,000 

recorded snapshots from the independent simulations. 

Testing for Even Conformational Sampling 

If true thermodynamic properties are desired from a Monte Carlo simulation, it is 

necessary that detailed balance be preserved. An important requirement of detailed 

balance is that conformational space is evenly sampled, subject to whatever constraints 

are placed on the simulation. In doing so, one must first define which space one wishes to 

evenly sample. There are two obvious spaces in which even sampling could be 

maintained, namely Cartesian space and internal coordinate space. Even sampling of 

internal coordinates does not necessarily evenly sample Cartesian space, as implied by 

the spherical coordinate Jacobian determinant. 

! 

"(x,y,z)
"(r,#,$)

= r2 sin$  

Here r represents the radius, ) represents the azimuth angle ranging -180 to 180°, 

and * represents the zenith angle ranging 0 to 180°. Out of the determinant come 

expected distributions of each spherical coordinate, the most relevant being an even 

distribution for azimuth angles and a sin distribution for zenith angles. In internal 

coordinates, torsion angles are azimuth angles. Thus even sampling of torsion angles 

implies even sampling in Cartesian space, and vice versa. However, bond angles are 

instead zenith angles and would be expected be found in a sin distribution.  

To determine how backrub sampling affects sampling of conformational space, 

we ran simulations without any force field on 8-polyalanine, similar to previously 

described tests4,5,51. To avoid gimbal lock, bond angles were constrained to 0.1-179.9°. 
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To avoid artifacts coming from fixed endpoints, 1% of moves consisted of choosing a 

random *, (, or ! angle and selecting a new value from a uniform (*/() or sin (!) 

distribution. The other 99% of moves consisted of a standard backrub move with $max set 

to 180°. Test simulations were run for 107 steps. 

We implemented the derivatives as described by Betancourt7, checking each for 

correctness numerically, and then ran simulations using his acceptance criterion. 

Histograms of the corresponding backbone degrees of freedom are shown in Figure 

1-12A. The bond angle distributions did not follow a sin distribution and instead showed 

greater sampling at the extremes of the distribution. Sampling ! angles from an even 

distribution during the 1% of moves incurred negligible changes to the bond angle 

distributions. (data not shown) 
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Figure 1-12. Test of uniform sampling by backrub move 

 

Backrub moves evenly sample backbone degrees of freedom without the 

weighting procedure described by Betancourt7. Individual residues of 8-

polyalanine are shown using different shades of gray. * (C-N-C!-C torsion) angle 

distributions are shown for residues 2-8. ( (N-C!-C-N torsion) angle 

distributions are shown for residues 1-7. N-C!-C bond angle distributions are 

shown for residues 1-8. Blue lines indicate the theoretical distributions expected 

from a spherical zenith angle given even Cartesian sampling. (A) Betancourt7 

weighting skews N-C!-C bond angle selection probabilities to the extremes of the 
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distribution. (B) Removing Betancourt weighting results in correct distributions of 

all sampled backbone internal angles. (C) Limiting the N-C!-C bond angle to the 

95-125° interval continues to preserve expected distributions. (D) Limiting $max to 

20° leads to over-selection of N-C!-C bond angles at the center of the allowed 

interval. (E) Incorporation of the correction procedure described in Materials and 

Methods restores the correct distributions. 

To determine whether the Betancourt acceptance criterion was necessary for 

evenly sampling Cartesian space, we repeated the simulation without it. The internal 

coordinate distributions exactly matched those expected (Figure 1-12B), indicating that 

backrub moves inherently produce even sampling of Cartesian space. That result can be 

explained using the spherical coordinate Jacobian determinant, if one aligns the atoms 

involved in the backrub move in the proper coordinate frame. By placing C!i at the 

origin and C!j along the positive z-axis (that is, * = 0°), the backrub move then only 

results in changes to the ) coordinate for intervening atoms. According to the Jacobian 

determinant, if ) is sampled evenly, then Cartesian space is sampled evenly. This makes 

the backrub move a particularly straightforward addition to any Monte Carlo protocol 

preserving detailed balance in Cartesian space. 

We also tested for even sampling when bracketing ! angles using Ibond angle. To do 

so, we limited ! angles to the interval 95-125° and repeated the simulation. That too 

resulted in correct internal coordinate distributions. (Figure 1-12C) We next tested 

bracketing the $ angle using Irotation angle with a $max value of 20°. Without the weighting 

described in Materials and Methods, bond angles in the middle of the allowed interval are 

oversampled because of their increased probability of being within Ibond angle + Irotation angle. 
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(Figure 1-12D) However, addition of the weighting protocol restores the correct 

distributions. (Figure 1-12E) 

In addition to backbone degrees of freedom, the branching atom internal 

coordinates are also modified slightly by the generalized backrub move. As described in 

Table 1-3 and shown in Figure 1-16, for a given ! angle, each branching atom internal 

coordinate, !i, is calculated with the following formula. 

! 

" i = Ai + Bi# + Ci#
2  

To determine the effect of that transformation on the expected populations of !i, 

we transformed the expected ! angle distribution using the following formula. 

! 

P(" i) =
P(#)
d" i /d#

=
sin#

Bi + 2Ci#
 

Plots of P(!i) vs. !i for each branching atom internal coordinate are shown in 

Figure 1-13. Importantly, none of the distributions agree with what would be expected 

from even Cartesian sampling. This is expected because even without using a force field, 

the branching atom optimization imposes knowledge from the force field that causes 

greater sampling of C"/H! positions that have favorable energies. Over the 99.7-119.7° 

range of transformed ! angles, the discrepancy is up to 39%. This indicates that if strict 

observance of detailed balance is desired for side chains, the quadratic functions 

described in this work should not be used. A detailed balance preserving alternative 

would involve keeping those degrees of freedom fixed during backbone movement and 

sampling them separately using the expected distributions. In practice, the impact of the 

quadratic function update procedure may be negligible compared with errors in the 
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energy function. In addition, the impact is limited because the discrepancy is much less 

for those ! angles most likely to be accepted by the force field bond angle potential. 

Figure 1-13. Nonuniform branching atom sampling using optimized placement 

 

Placement of branching atoms using pre-fit quadratic functions results in an 

imbalance in the selection probabilities of branching atom internal angles. Using 

the Amber quadratic coefficients for non-glycine residues, the expected (without a 

force field) zenith angle distribution for N-C!-C bond angles along the interval 

99.7-119.7° was transformed into the expected distributions for all branching 

atom internal angles. (black lines) Those distributions disagree with the expected 

azimuth and zenith angle distributions given even Cartesian sampling. (blue lines) 

The expected zenith angle distributions follow a sin function but appear flat here 

due to the limited angular range shown on the x-axis. The location of the overall 

bond angle minimum (N-C!-C = 109.7°) is indicated with circles. 
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Discussion 

We have shown that the backrub sampling method is useful for sampling small, 

high-resolution conformational fluctuations as well as a larger, functionally relevant 

conformational change. In addition to capturing the structural variability of single 

sequences, generalized backrub sampling also improves modeling of changes to protein 

structures upon point mutation. While many of the backbone movements are less than 1 

Å, they can result in significant displacements of the attached side chains. In addition, the 

localized breathing motion that backrub sampling emphasizes can allow otherwise 

energetically unfavorable rotameric transitions. 

This work supports the conclusion advanced by Davis et al1 that protein 

backbones are influenced by side-chain conformations in a predictable manner, 

complementing the accepted notion that side-chain conformations can be backbone 

dependent. In backbone-dependent rotamer libraries, the side chain conformation is 

influenced by the * and ( angles of the residue itself42. Our simulations and analysis 

support the notion of a second-order correlation between a central side-chain and the 

protein backbone in adjacent residues. The 3-residue simulations indicate that the 

energetic barriers between the relevant backbone conformations can be significantly less 

than those typically associated with side-chain rotamer transitions.  

As a sampling method, the overall philosophy behind the move used here is 

somewhat different from other methods (although bearing similarities to local 

perturbation approaches highlighted earlier5,6). First, it is a generalization of movement 

that is observed in nature at both small and large amplitude. Rotameric sampling was 

likewise inspired by observations made from crystal structures. Second, instead of 
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treating bond angles as inviolable, it takes advantage of the small but significant 

flexibility in the bond angle to move a set of backbone atoms through a single, unified 

rotation. As indicated by the 3-residue simulations, backrub sampling helps free the 

protein backbone to explore an ensemble of conformations around the native state. While 

molecular dynamics could be used to accomplish the same goal, correlated movement of 

atoms can take a considerable number of time steps, unless there is already a set of forces 

accelerating the atoms in a concerted direction. Simultaneous, correlated rotation of many 

atoms is one of the strengths of rotamer sampling. Backrub sampling shares that strength. 

Backrub moves are biased towards sampling hinge-like protein motion. Another 

type of motion sometimes seen in proteins is a shearing move, where a subsection of the 

protein is translated laterally in relation to the remainder of the protein. That type of 

motion is almost completely orthogonal to the generalized backrub move described in 

this work. However, the same philosophy as defined originally for the backrub move1,7 

and described here could be applied to model shearing moves directly. This would 

require four C! atoms as pivot points. One embodiment may consist of rotating C!2 

about C!1 in the C!1-C!2-C!3 plane, and rotating C!3 about C!4 in the C!2-C!3-C!4 

plane, such that the C!2-C!3 distance is preserved. Though somewhat more complex, 

this type of move may help model subtle shifts of alpha helices and other structural 

elements by small but significant distances. While development of additional move sets 

may prove useful in capturing the full range of protein motion, another promising avenue 

might involve combination of backrub and rotamer sampling with traditional molecular 

dynamics in a hybrid Monte Carlo approach.  
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The combination of backrub-inspired backbone flexibility with side chain 

sampling and protein design protocols has a number of useful practical applications. First, 

we show here that employing backrub motions in a high-resolution refinement protocol 

improves mutant side chain predictions in two large datasets, comprising 126 backrub 

motions in 19 high-resolution structures and 2,023 pairs of protein point mutant 

structures. These results suggest that backrub sampling may enhance the applicability and 

accuracy of methods to estimate the change in fold stability or binding affinity of proteins 

upon point mutation30,52-55. Second, we show in related work that incorporation of 

backbone flexibility using the backrub model significantly increases the agreement 

between modeled side chain conformational variability in folded proteins and side chain 

relaxation order parameters measured by NMR (Friedland et al., in press). Such 

simulations may provide insights into protein dynamics and mechanisms of correlated 

motions. Finally, the use of near-native backbone ensembles has been shown to broaden 

the set of sequences identified by computational methods and result in successful 

designs33. Similarly, we find that design simulations employing backrub-generated 

backbone ensembles predict protein sequence families more similar to those observed by 

experimental phage display selection methods than predictions using just the 

crystallographic backbone (Humphris & Kortemme, unpublished data). Given its relative 

simplicity in implementation and ability to capture relevant conformational changes 

inspired by observed alternative conformations in high-resolution structures, the backrub 

method may be generally useful for a broad spectrum of side chain sampling and protein 

design protocols. 
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Methods 

Generalized Backrub Move 

The backrub move (Figure 1-1) is applied to an internal protein segment two or 

more residues long and consists of a geometric rotation by a random angle, $, about an 

axis defined by the flanking C! atoms. The move simultaneously changes 6 internal 

backbone degrees of freedom in the protein, namely the * and ( angles at both pivot 

points and the N-C!-C bond angle, !, at both pivots. (Variable names follow the 

conventions of Betancourt7 instead of Davis1, which uses $ for the N-C!-C bond angle.) 

The sampling strategy employed here is similar to the one described by 

Betancourt7, in that three types of moves are used, namely backbone only, rotamer only, 

and rotamer/backbone. However, the move selection is significantly different. We were 

interested in selectively sampling backbone motion in specified local regions of the 

protein while keeping other regions fixed. Therefore, we devised a flexible scheme for 

specifying which parts of the protein structure were variable. At the highest level, the 

operator indicates for each residue whether to sample the backbone, side chain or both. 

Backrub moves are only allowed for segments where backbone sampling is enabled for 

both the beginning (i) and ending (j) residues, and all intervening residues. Because the 

proline side-chain rejoins to the backbone at the amide nitrogen, it has been excluded as a 

pivot point. In addition, the minimum and maximum segment size (j-i+1) can be varied. 

By default, the minimum segment size is 2, corresponding to a rotation of the atoms 

making up the peptide bond between two consecutive C! atoms. The default maximum 

segment size is 12, although higher or lower values may be desired depending on the 

application. 
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Given that information, a sparse upper-triangular boolean matrix, B, is created 

where B[i,j] indicates whether a move starting at residue i and ending at residue j is 

permissible. B can then be further modified to enable or disable individual residue 

segments. Before beginning Monte Carlo sampling, a data structure is generated from B 

that lists each possible segment size, along with all starting residues compatible with that 

particular segment size. Segment selection then becomes the simple procedure of first 

selecting a random segment size uniformly from all allowed segment sizes, and then 

selecting a random segment from all allowed segments with the selected size. As there 

are fewer long segments than short segments, individual long segments will be selected 

slightly more often than individual short segments. 

Monte Carlo Sampling Protocol 

During the course of an actual Monte Carlo simulation, the protocol described in 

Figure 1-2 is used to perform each move. At the beginning of a step, a decision to make a 

rotamer only move is made according to the adjustable probability, Protamer. The default 

value of Protamer is 0.25. If a rotamer only move is chosen, a single variable side-chain is 

randomly selected and a rotamer is chosen from a library generated using a backbone-

dependent rotamer library31,56. The rotamer library is initialized using the */( angles 

from the starting structure and not updated during the simulation. If a rotamer only move 

is not made, then a random segment and angle is selected as described previously, and the 

rotation is applied. At that point, the algorithm decides whether to terminate the move 

(leaving it as a backbone only move) according to the second adjustable probability, 

Pbackbone. The default value of Pbackbone is 0.75 to emphasize the more frequently accepted 

backbone only moves. If the move is not ended, then one or two residues (respective 
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probabilities 0.75 and 0.25) are selected from along the length of the perturbed backbone 

segment and random rotamers are chosen for those residues. After all structural 

perturbations are complete, the move is evaluated using the Metropolis criterion and the 

Rosetta energy function. Constraints on the degree of angular perturbation and example 

acceptance probabilities are given in subsequent sections. 

Rosetta Scoring Function 

In a previous implementation7 of the move described here, N-C!-C bond angles 

were not energetically scored and were constrained to being within 10° of the median 

bond angle observed in PDB structures. In this work we used bond angle potentials from 

the Amber ff9457 and CHARMM2258 force fields. 

In addition to the added bond angle term, the Rosetta full-atom scoring function59 

uses several bonded terms including a */( angle term based on Ramachandran 

distributions and a # angle term based on Dunbrack rotamer statistics. For evaluating 

non-bonded interactions, Rosetta uses a van der Waals term resembling a Lennard-Jones 

potential, an explicit geometry-dependent hydrogen bonding term54, a short-range 

electrostatics term approximated by a residue-specific pairwise distance potential, and the 

Lazaridis/Karplus implicit solvation model60. 

Bond Angle Constraints 

In order to reduce the amount of bond angle strain imposed, we sought to bracket 

the randomly chosen rotation angle such that the bond angle strain never exceeds a 

threshold value, !max. We used a previously described method7 to analytically determine 

the set of $ intervals satisfying that constraint. Briefly, the method involves solving for $ 

a trigonometric equation that relates ! to $ and then plugging in !ideal - !max and !ideal + 
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!max for both the starting and ending residues. The resulting values of $ establish the 

intervals of allowed $ angles. We term that set of intervals Ibond angle. 

To determine how the acceptance ratio decays for increasingly strained bond 

angles, we performed a long (106 step) Rosetta Monte Carlo simulation using a PDZ 

domain structure (PDB 2H3L61), imposing the Amber bond angle potential and limiting 

bond angles to within 10° of the overall bond angle minimum. Move attempts were 

binned by the maximum deviation (at either pivot point) from the Amber ideal bond 

angle and acceptance ratios were calculated (Figure 1-14A). The acceptance rate 

remained above 20% for all moves where both bond angles remained within 6.25° 

degrees of ideal. At the extreme, where one of the bond angles reached a 10° deviation 

from ideal, the acceptance rate dropped to 6.6%. Those rates may initially seem 

somewhat high, given the severity of the angular strain. However, there are always two 

bond angles changing during any move. At equilibrium, moves may transfer bond angle 

strain from one residue to the other, without increasing the total amount of strain in the 

system. 
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Figure 1-14. Backrub move acceptance ratios 

A 
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Constraining both the bond angles and degree of rotation helps maintain relatively 

high acceptance ratios under many conditions. Monte Carlo acceptance statistics 

were gathered using a 106 step simulation of the Erbin PDZ domain (PDB 2H3L; 

Appleton 2006) using Amber bond angle parameters at kT = 0.6. (A) For every 

step, the maximum deviation of the N-C!-C bond angle (!) from ideal (!ideal, 

composite )0 from Table 1-2.) was determined prior to evaluating the acceptance 

criterion. (For a move about residues i and j, max(|!i - !ideal|, |!j - !ideal|).) The 

acceptance remains relatively high (6.6%), even when there is a 10° strain in one 

of the bond angles. (B) The acceptance ratio is highly dependent on both the 

magnitude of the rotational angular displacement ($) and segment size. Two 

residue moves, corresponding to peptide plane rotations, are significantly more 

flexible than larger moves. (C) Simply limiting bond angles to within 10° from 

ideal and ignoring non-covalent forces, peptide bonds (size = 2) have significantly 
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greater rotational freedom than other segment sizes. $ interval lengths (the total 

length of Ibond angle + [-90°, 90°]) were calculated for all 2-12 residue segments of 

PDB 2H3L. (D) Limiting the extent of angular displacement for longer segments 

allows the acceptance ratio to remain reasonably high (>23% for backbone only 

moves, red), regardless of the segment length. 

Table 1-2. Bond angle energy parameters used for simulations 

 Amber CHARMM 
 Non-Glycine Glycine1 Non-Glycine2 Glycine! 
 K) )0 K) )0 K) )0 K) )0 
N-C!-C 63 110.1 63 110.1 50 107.0 50 107.0 
N-C!-C" 80 109.7 50 109.5 70 113.5 48 108.0 
N-C!-H! 50 109.5 50 109.5 48 108.0 48 108.0 
C-C!-C" 63 111.1 50 109.5 52 108.0 50 109.5 
C-C!-H! 50 109.5 50 109.5 50 109.5 50 109.5 
C"-C!-H! 50 109.5 35 109.5 35 111.0 36 115.0 
N-C!-C (composite) 74.7 109.7 72.3 110.0 58.7 107.0 57.4 106.9 

1 For glycine residues, C" refers to the position of the second H! atom. 
2 The CHARMM force field has different bond angle parameters for proline. Because 
proline residue geometry is currently fixed during backrub sampling, the coefficients are 
not listed. 

Bond angle energy parameters used for simulations were taken from the Amber 

and CHARMM force fields. K) is listed in kcal mol-1 radian-2. )0 is listed in 

degrees. The total energy for a particular bond is determined using the standard 

formula E = K)() - )0)2. The composite N-C!-C parameters were determined from 

least squares fitting of the total energies described in Table 1-3. The Amber bond 

angle potential has composite K) values 26-27% greater than the CHARMM 

potential. At an energy of kT = 0.6, the non-glycine composite force constants 

lead to bond angles of )0 ± 5.1° and )0 ± 5.8°, respectively. That corresponds to a 

Metropolis acceptance rate of 37%. 

Rotation Angle Constraints 

Examining the acceptance statistics further, we made the intuitive observation that 

as the magnitude of angular displacement increases, the acceptance statistics drop almost 
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exponentially (Figure 1-14B). This phenomenon is best explained through sterics, where 

the larger the rotation, the more likely a deleterious steric clash is encountered. We 

therefore imposed an additional constraint upon moves that restricted the maximum 

angular rotation to a given threshold, $max. This was done by generating an additional 

interval, Irotation angle = [-$max, $max], and then calculating the intersection, I = Ibond angle + 

Irotation angle, of that interval with the previously calculated intervals bracketing the bond 

angle. Importantly, this additional constraint can create an imbalance in the selection 

probabilities for the possible angles, as the total angular range of the intervals may be 

different before (l) and after (l’) moves. (Figure 1-15) Because the probability of 

selecting a given angle is inversely proportional to the number of possible values, the 

following acceptance criterion can be used to produce uniform selection probabilities: 

! 

P "( ) =min 1, l
l'

# 

$ % 
& 

' ( 
 

Trial move $ angles are generated using this procedure: 

 1. Calculate the total length, l, of the set of intervals, I.  

 2. Choose a random threshold, t, uniformly from the interval [0, 1]. 

 3. Choose a random angle, $, uniformly from I. 

 4. At angle $, calculate the new rotational interval, Irotation angle’ = [$ - $max, $ + $max]. 

 5. Calculate I’ = Ibond angle + Irotation angle’ and the total length, l’, of I’. 

 6. If l/l’ & t, return $. Otherwise go back to step 3. 

Because l and l’ are generally quite similar, this procedure rarely iterates more than 

several times and is considerably less costly than other parts of the simulation. 
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Figure 1-15. Example of angular constraints 

 

(A) Backrub moves are constrained so that N-C!-C bond angles remain within a 

given threshold, !max, of the ideal value. A hypothetical set of constraining 

intervals (Ibond angle) is shown in red. The set is discontinuous because one of the 

pivot atom bond angles exceeds the permissible range for $ values between 16° 

and 22°. Backrub moves are also constrained so that the rotation cannot exceed a 

given magnitude, $max, using another interval (Irotation angle) shown in blue. Moves 

are made by selecting a random rotation angle, $, from the intersection of the two 

intervals (I) shown in purple. (B) An example $ angle of 12° is shown, along with 

the corresponding rotation angle constraints (Irotation angle’) and overall constraint 

(I’) that would be used on the next move. Because the length of I’ is greater than I, 

the probability of selecting the reverse $ angle (-12°) on the next move is less than 

going in the forward direction. That results in nonuniform sampling. (Figure 

1-12D) To equalize the probabilities, a proposed $ angle is therefore selected with 

a probability of length/length’, which is about 0.83 in this case. 

To ameliorate the reduction in acceptance ratio for large segment sizes, the $max 

parameter is varied for each possible residue segment. This is distinguished from the 

Betancourt strategy of making equal magnitude displacements regardless of segment size. 

Different values of $max are stored in another sparse upper triangular matrix, T. Based on 

!"#$%&'$()*
!+#,',-#$&'$()*

!"#$!" $!" %!"#%!"

!+#,',-#$&'$()*.

!

!.

&'&($"

)*$(,/.&'&)*"&

)*$(,/&'&)!"
0'1&'&$!"

!

"



 

 46 

empirical observation of the acceptance statistics, we devised the following rule relating 

$max to segment size, s: 

! 

"max =
40; s = 2
23# s; s $ 3
% 
& 
' 

 

We found peptide bonds (size 2) to be significantly more flexible than other 

segment sizes. The large increase in flexibility is partially due to peptide bonds lacking 

the steric constraints of other segment sizes. However, when one looks at the distribution 

of allowable $ angles, given only a 10° bond angle cutoff, it is also clear that peptide 

bond segments have significantly more flexibility than larger segments (Figure 1-14C). In 

addition to Davis et al.1, a similar type of motion has also been observed in unbiased 

computational simulations. A recent analysis of correlated */( motions in a large set of 

molecular dynamics trajectories also observed significant, localized peptide bond 

fluctuations62. Additionally, in pairs of structures of the same protein crystallized 

multiple times, larger “peptide flips” (involving rotations ~180°) are often observed63. 

As a result of constraining both the N-C!-C bond angles and maximum angular 

displacement during a move, the acceptance statistics remain relatively high for segments 

sizes from 2 to 12 (Figure 1-14D). For the PDZ domain test simulation, backbone only 

moves showed an average acceptance ratio of 29%, and rotamer only moves showed an 

acceptance ratio of 34% (data not shown). When combined with the much less accepted 

simultaneous rotamer/backbone moves, the overall acceptance ratio drops to 26% 

(weighted mean of all move types). Elimination of simultaneous rotamer/backbone 

moves would increase the overall acceptance rate to 30%. 
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Optimized Placement of C"  and H!  Atoms 

An important methodological consideration in a procedure that modulates C! 

backbone bond angles is how the positions of the branching C" and hydrogen atoms are 

simultaneously varied. Placement of branching atoms means positioning of C$ and H" 

relative to the N, C", and C atoms. A number of angular bisecting heuristics can be 

applied to place those atoms in positions with acceptable geometries. In this work, to 

reduce bond angle strain, the branching atoms are placed in positions at the minimum of 

the force field bond angle potential, given the current N-C!-C bond angle. Minimization 

after every Monte Carlo move would be computationally expensive. Fortunately, the 

minimized internal coordinates of those atoms follow a predictable pattern (Figure 1-16). 

To enable fast updates of the position of a branching atom X, quadratic functions were fit 

that related a series of N-C!-C backbone bond angles to the corresponding fully 

minimized branching atom internal coordinates, namely the C-N-C!-X torsion offset 

from *, and the N-C!-X bond angle (Table 1-3). These fits were very accurate even to 

highly unfavorable bond angle energies of 20 kcal/mol. 
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Figure 1-16. Branching atom internal coordinate optimization 

 

During sampling, branching atom internal coordinates are optimized for each 

backbone bond angle. (A) When the backbone (N-C!-C) bond angle is varied and 

branching C" positions are minimized solely according to the Amber and 

CHARMM bond angle potentials, the internal coordinates show a very 

predictable pattern. (black dots) The minimized coordinates are shown for all 

backbone angles in which the total bond angle energy after minimization is less 

than 20 kcal/mol. (see Table 1-3) It is possible to precisely describe each internal 

coordinate dependency with a quadratic function. (Amber: red lines, CHARMM: 

purple lines) Colored circles show the overall minima for each force field. 

Comparable quadratic fits are observed for branching hydrogen positions (not 

shown). (B) In 199 high resolution (! 1.0 Å) crystal structures, C" atom positions 

135

130

125

120

115

110

80 90 100 110 120 130

100

105

110

115

120

100 105 110 115 120

1

16

32

47

62

77

92

108

123

138

154

169

184

199

214

230

245

Counts

N CA C Bond AngleN CA C Bond Angle

C
N

C
A

C
B 

To
rs

io
n 

O
ffs

et
 fr

om
 P

hi
N

C
A

C
B 

Bo
nd

 A
ng

le
A B



 

 49 

show a similar dependence on backbone bond angle. Internal coordinate counts 

for all non-glycine, non-proline residues are shown binned into hexagonal arrays40. 

Linear fits (R = -0.29 & -0.21, respectively) of the PDB coordinate pair data (blue 

lines) show qualitatively similar slopes to the fits derived from force fields (red 

and purple lines rescaled from A). This result is expected as crystallographic 

refinement makes use of a bond angle potential drawn from similar force fields. 

Blue circles indicate the median values observed in the PDB. Overall, positions 

determined using the Amber bond angle potential show closer agreement with 

PDB statistics. 

Table 1-3. Quadratic coefficients for optimal placement of C"  and H!  atoms 

  Non-Glycine Residues1 Glycine Residues2 
  A B (") C ("2) A B (") C ("2) 
Amber C-N-C!-C" Offset -1.5886 -0.2540 -0.0130 -1.3072 -0.5629 0.0790 
 N-C!-C" Angle 1.8826 0.1753 -0.0843 1.8962 0.2001 -0.1008 
 C-N-C!-H! Offset 1.1958 0.7613 -0.1560 1.3072 0.5629 -0.0790 
 N-C!-H! Angle 1.9467 0.1764 -0.1042 1.8962 0.2001 -0.1008 
CHARMM C-N-C!-C" Offset -1.2906 -0.4873 0.0357 -1.4440 -0.4213 0.0509 
 N-C!-C" Angle 1.9570 0.1645 -0.0815 1.8553 0.1969 -0.0974 
 C-N-C!-H! Offset 1.2681 0.6386 -0.1165 1.4440 0.4213 -0.0509 
 N-C!-H! Angle 1.9120 0.1652 -0.0966 1.8553 0.1969 -0.0974 

1 The CHARMM force field has different bond angle parameters for proline. Because 
proline residue geometry is currently fixed during backrub sampling, the coefficients are 
not listed. 
2 For glycine residues, C" refers to the position of the second H! atom. 

Quadratic coefficients were derived for optimal placement of C" and H! atoms 

with spherical coordinates. The spherical coordinates used are the torsion angle 

offset from phi (C-N-C!-C) to C-N-C!-X and the N-C!-X bond angle, where X 

is C" or H!. (There are two sets of equivalent torsion offests and bond angles that 

can be used to uniquely place the C$ and H" atoms using spherical geometry. The 

difference between the two is whether the spherical coordinate axes are set up N-

to-C or C-to-N. Using either set, the optimization procedure we describe will 

generate identical atomic positions.) Given a N-C!-C backbone bond angle, ", a 

particular spherical coordinate, !i, can be calculated by applying the formula !i = 

Ai + Bi" + Ci"2. Coefficients are listed in radians1, radians0, and radians-1, 
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respectively. Note the symmetry in coefficients for glycine residues and the slight 

asymmetry in coefficients for non-glycine residues. The coefficients were 

produced as follows: N-C!-C backbone geometries were generated with N-C!-C 

bond angles every 0.5 degrees between 70 and 140 degrees. For each fixed 

backbone bond angle, C" and H! atom positions were calculated by minimizing 

only the bond angle potential. Spherical coordinates were extracted for all 

geometries with total energies < 20 kcal/mol. (see Figure 1-16) Coefficients were 

determined by least squares fitting to the formula above. 

After every backrub move, the new branching atom positions are found using 

those quadratic fits. Subsequently, the coordinates of the side chain prior to the move are 

rotated about the C! atom pivot point such that the old C" atom is collinear with the new 

C!-C" axis. Finally, the whole side chain is rotated slightly about the C!-C" axis to 

restore the #1 angle to its original value. 

Simulation of 3-Residue Backrubs (Test 1) 

Davis et al1 identified 126 positions in 19 high resolution (! 1.0Å) crystal 

structures where there was evidence for a localized rotation of a 3-residue segment of the 

protein backbone. In some cases, the conformational variability in the backbone was only 

implied by alternate C" atom positions in the PDB file, with a single set of C! atom 

coordinates representing the mean location of multiple C! atom positions. In those cases, 

we used a single starting structure with the C" atom optimized according to the bond 

angle potential. If alternate C! coordinates were present in the PDB file, we generated 2-

3 starting structures, one for each variant letter (A, B, or C) in the contiguous set of atoms 

with alternate backbone coordinates. All other alternate atom coordinates were set to the 
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A variants. In total, this procedure yielded 161 starting structures in the 3-residue backrub 

set. 

The simulations for each identified backrub were as follows. Given a three 

residue backbone motion centered on residue i, angular perturbations were enabled for 

residue pairs (i-1, i+1), (i-1, i), and (i, i+1). The side chain of residue i was also allowed 

to sample different rotameric states. 200,000 Monte Carlo steps were run at a temperature 

of 302 K. 50% of the steps consisted of a random perturbation of the (i-1, i+1) angle and 

a simultaneous rotamer swap. The other 50% of steps consisted of a random perturbation 

of either the (i-1, i) or (i, i+1) angle and no rotameric sampling. 

Point Mutant Side Chain Prediction (Test 2) 

We used a benchmark set of 2,141 pairs of protein structures for which the only 

difference was a single point mutation, aside from extra or missing residues at the N and 

C termini46. We removed 7 pairs from the set that had, at the mutated residue position, 

either missing side chain atoms or a non-canonical amino acid. We also removed 8 pairs 

for which the mutation was duplicated in another pair in the list. Finally we removed 103 

pairs that had either missing or zero occupancy backbone atoms in the first structure in 

the pair. Structures with missing or zero occupancy backbone atoms in the second 

structure were removed during analysis (see below). That left 2,023 ordered pairs of 

structures. 

During side-chain prediction, we sampled conformations (backbone and side-

chain) for both the mutated residue and neighboring residues. Neighboring residues were 

selected that, prior to mutation, had any atom within a given radius of any atom in the 

mutated residue. Radial cutoffs of 4Å, 5Å, 6Å, 7Å, and 8Å were tested. At the beginning 
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of each sampling run, the side-chain in the first PDB structure was mutated and then 

rotamer optimized along with all the neighboring side-chains using an energy-table based 

Monte Carlo simulated annealing protocol31. Subsequently, the backrub protocol was run 

for 104 steps at a single temperature of kT = 0.6, maintaining either a fixed backbone 

(Protamer = 1) or allowing backbone sampling (Protamer = 0.25). The lowest energy structure 

found during ten separate executions was used as the prediction. 

To facilitate comparison of the prediction with the second PDB structure in the 

pair, we first superimposed the N, C!, and C atoms from a set of residues around the 

mutated residue. The superimposed set was defined as all residues satisfying the 

following condition in both the first and second PDB structures: a heavy atom of the 

residue must be within 4Å of a heavy atom in the mutated residue. All subsequent RMSD 

calculations used this fixed superimposition. To compare effects of the mutation on 

surrounding side-chains, we used a similar set of residues. The set was defined as all non-

mutated residues satisfying the following condition in either the first or second PDB 

structures: a non-backbone heavy atom of the residue must be within 4Å of a non-

backbone heavy atom in the mutated residue. Any RMSD calculation in which all 

compared atoms in the second PDB structure had zero occupancy was ignored in 

calculating overall statistics. All superimposition, RMSD, and chi angle calculations were 

done using ICM Browser 3.5-1l (Molsoft). Sequence alignments for mapping atom 

selections from structure to structure were created using ClustalW 1.8364. 

Rosetta Energy Function 

Other than the addition of the bond angle term, we used the default Rosetta full-

atom energy function and weight set, which is internally referred to as score12. It is very 
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similar to that described by Kuhlman59, except as noted. The functional form is as 

follows: 

Eprotein = WrotErot + Waa|phi,psiEaa|phi,psi + WramaErama + WatrEatr + WrepErep + WintraEintra + 

WsolvEsolv + WpairEpair + Wbb_hbondEbb_hbond + Wsc_hbondEsc_hbond + 

Wsc_bb_hbondEsc_bb_hbond + Wbond_angleEbond_angle 

The weights used were as follows: 

Wrot 0.56 Wsolv 0.65 
Waa|phi,psi 0.5 Wpair 0.49 
Wrama 0.2 Wbb_hbond 1.17 
Watr 0.8 Wsc_hbond 1.1 
Wrep 0.44 Wsc_bb_hbond 1.17 
Wintra 0.004 Wbond_angle 1 

 
The Eintra term includes intra-residue van der Waals repulsive energies identical in 

form to the inter-residue Erep term. The bond angle potential was given a weight of unity. 

The sequence was held fixed during all Monte Carlo simulations so the invariant residue 

type reference energies are not shown. 

Code Availability 

Source code for the implemented backrub model is available for download free-

of-charge as part of the 2.2 release of the Rosetta molecular modeling software at 

http://www.rosettacommons.org/. 
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Chapter 2. Structure-based prediction of the peptide 
sequence space recognized by natural and synthetic 
PDZ domains 

Abstract 

Protein-protein recognition, frequently mediated by members of large families of 

interaction domains, is one of the cornerstones of biological function. Here we present a 

computational, structure-based method to predict the sequence space of peptides 

recognized by PDZ domains, one of the largest families of recognition proteins. As a test 

set, we use the considerable amount of recent phage display data that describe the peptide 

recognition preferences for 169 naturally occurring and engineered PDZ domains. For 

both wild-type PDZ domains and single point mutants, we find that 70-80% of the most 

frequently observed amino acids by phage display are predicted within the top 5 ranked 

amino acids. Phage display frequently identified recognition preferences for amino acids 

different from those present in the original crystal structure. Notably, in about half of 

these cases, our algorithm correctly captures these preferences, indicating that it can 

predict mutations that increase binding affinity relative to the starting structure. We also 

find that we can computationally recapitulate specificity changes upon mutation, a key 

test for successful forward design of protein-protein interface specificity. Across all 

evaluated datasets, we find that incorporation backbone sampling improves accuracy 

substantially, irrespective of using a crystal or NMR structure as the starting 

conformation. Finally, we report successful prediction of several amino acid specificity 

changes from blind tests in the DREAM4 peptide recognition domain specificity 

prediction challenge. Because the foundational methods developed here are structure 

based, these results suggest they can be more generally applied to specificity prediction 
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and redesign of other protein-protein interfaces that have structural information but lack 

phage display data.  

Keywords: PDZ domain; specificity prediction; tolerated sequence space; protein 

design; backrub backbone flexibility 

Abbreviations 

PWM: position weight matrix 

ROC: receiver operator characteristic 

AAD: average absolute difference 

AUC: area under ROC curve 

Frobenius: Frobenius (Euclidian) distance 

Rank Top: predicted rank of the top amino acid 

Introduction 

For many proteins, the ability to recognize and bind to other proteins is one of the 

key determinants of function. For proper cellular behavior, these proteins must have 

sufficient interaction specificity, that is, discriminate between their true targets and a 

large number of competing proteins14. Determining which partners interact, through 

experiment or computational prediction, is critical for understanding the roles each 

protein plays. In addition to characterizing wild type protein interactions, knowing how 

mutations can affect specificity is similarly important, as perturbed protein-protein 

interactions are likely to contribute to genetic disorders65. Beyond characterizing 

naturally occurring interactions, the redesign of specificity has important applications, 
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including the study of cellular functions through perturbation of protein-protein 

interfaces, or creating proteins with new specificities for use in synthetic biology66. In the 

area of synthetic proteins, computational redesign has had recent success in improving 

the binding specificity of calmodulin for a single binding partner67, generating a new pair 

of DNase-inhibitor proteins that bind to each other but not to the wild type precursors8,9, 

and designing peptides that selectively bind to members of the bZIP protein family68. 

In addition to determining the set of sequences that accommodate a given protein-

protein interaction, one can more generally consider the problem of predicting the set of 

sequences that can be tolerated by a protein fold and still maintain function, such as 

binding or catalysis. Several methods have recapitulated the sequences allowed by a 

protein family in its core69,70. Computational enumeration of sequences tolerating a 

protein fold has also been used to generate a library of new GFP molecules with altered 

fluorescent properties71. The work presented in this manuscript is motivated by the 

premise that more accurately predicting sequences that are compatible with a given 

structure will not only help better characterize similar proteins, but will also improve our 

ability to design proteins with new functions. Many of the foundational methods 

necessary for predicting protein-protein interactions, as described here, are relevant to 

other areas of computational protein design and characterization. 

A number of computational methods have been developed specifically to 

enumerate some or all of the allowed sequences at a protein-protein interface. Wollacott 

and Desjarlais pioneered protein-peptide interaction prediction for several PDZ domains, 

several SH3 domains, mdm2, and EVH172. Other studies have predicted protein-peptide 

interactions, including MHC73 and SH3 domains74,75. Using methods developed for SH3 
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specificity prediction75, a large-scale database of predicted protein-linear motif 

interactions has been released online76. Prediction of interaction specificities between 

several types of globular proteins (which are generally not mediated by linear motifs) has 

also been demonstrated, including Ras protein interactions77 and human growth hormone 

and its receptor16. 

In the present study we focus on PDZ domains, which primarily bind to the C-

terminal residue (termed position 0) of other proteins and the residues immediately 

upstream (positions -1, -2, -3, etc.). A large amount of PDZ-peptide interaction data have 

been accumulated, beginning with the foundational work of Songyang et al.78, who 

synthesized an oriented peptide library and chemically sequenced peptide populations 

binding to a set of 9 PDZ domains. Their work identified two classes of PDZ domains, 

with class I binding to a S/T at peptide position -2 and class II binding to a mostly 

hydrophobic amino acid at the -2 position. Other groups have screened a smaller number 

of PDZ domains with either a discrete library of peptides using membrane-based 

synthesis79 or a set of globular proteins using a yeast two hybrid assay80. One of the 

largest PDZ-peptide interaction studies to date used protein microarrays with subsequent 

confirmation by florescence anisotropy81. While the study examined a large number of 

PDZ domains (157), the number of genomic peptides used (217) was considerably 

smaller than the sequence space that can be explored by nature or computation. 

To develop and assess our computational methods, we leveraged the considerable 

amount of PDZ-peptide phage display data that has been collected recently14,15,82. In 

contrast to other techniques, phage display library sizes can exceed 1010 peptides and thus 

sample a considerable fraction of sequence space 82. Using purely structural information, 
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we can predict the specificity of wild-type PDZ domains at a majority of the peptide 

positions. Several studies have developed methods for docking PDZ peptides83,84. In 

contrast, we rely solely on PDZ-peptide complexes from the PDB and aim to predict the 

space of peptides tolerated by each domain. Different from previous studies, our method 

also models and captures specificity differences arising from PDZ point mutations14. For 

the more difficult case of PDZ domains with a greater number of mutations (at 4-10 

residues)15, prediction performance decreases but the algorithm is still able to recapitulate 

the loss and gain in recognition preference for amino acids at some positions. Our results 

show that incorporation of backbone flexibility into the modeling procedure significantly 

improves performance. Finally, to assess the predictive capacity of our method, we 

present results from a recent blind peptide recognition domain specificity prediction 

challenge. 

Results 

Human PDZ Prediction 

From the 54 human PDZ domains for which phage display specificity profiles had 

been published14, we identified 17 that had available PDB structures with a bound peptide 

(Table 2-1). We truncated any peptide amino acids occurring before position -6 and after 

position 0. When superimposed, the helix and beta strand forming the peptide-binding 

site had very similar conformations across all 17 structures, with a mean pairwise C!-C! 

distance less than 0.9 Å for all residues (Figure 2-1A). There was slightly more backbone 

variation in positions 0 to -3 of the peptide (mean C! distances of 0.9-1.4 Å), and 

increasing variation at positions -4, -5 and -6 (mean C! distances of 2.1, 4.4, and 7.2 Å, 

respectively). 



 

 59 

Table 2-1. Human PDZ domain structures used for PDZ profile prediction 

PDZ Domain PDB Code Source PDZ Chain Peptide Chain Peptide Residues 
CASK-1 1KWA X-Ray A B 568-574 
DLG1-2 2I0L X-Ray A C 2001-2006 
DLG1-3 2I0I X-Ray A D 2001-2006 
DLG2-3 2HE2 X-Ray A B 511-517 
DLG4-3 1TP5 X-Ray A B 420-425 
DVL2-1 1L6O X-Ray A D 2-8 
ERBB2IP-1-hi 1N7T NMR A B 301-307 
MLLT4-1-hi 2AIN NMR A B 99-104 
MPDZ-7 2IWQ X-Ray A A 1241-1247 
MPDZ-10 2OPG X-Ray A B 1714-1720 
MPDZ-12 2IWP X-Ray B A 1921-1927 
MPDZ-13 2FNE X-Ray A C 2042-2048 
PDLIM4-1 TBD* X-Ray TBD* TBD* TBD* 
PTPN13-2 1D5G NMR A B 9-15 
SLC9A3R2-2 2HE4 X-Ray A A 228-234 
SNTA1-1 1QAV X-Ray A B 1105-1111 
TJP1-1 2H2B X-Ray A A 114-120 

Where necessary, the listed peptide residues were transformed onto the PDZ 

domain using crystallographic symmetry. *Structure from Dev Sidhu & co-

workers (personal communication). 

Figure 2-1. PDZ structures and computational prediction scheme 

 

(A) When the 17 human PDZ domains structures are superimposed onto the PDB 

1N7T alpha helix (H79-K87) and beta strand (L23-S28), both the peptide-binding 

site and the 4-5 C-terminal peptide residues take on very similar conformations. 

The peptide conformations are shown using a green cartoon representation. The 

superimposed parts of each PDZ structure are shown using a cyan cartoon 

representation. The entire 1N7T PDZ backbone trace is shown using cyan wires. 
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(B) The general scheme for profile prediction is shown using the DLG1-2 PDZ 

domain as an example. Each member of a backrub ensemble is used to generate a 

position weight matrix (PWM). The PWMs are combined into a unified PWM for 

the final prediction and evaluated by comparison with experimental data from 

phage display14,15,82. 

The computational strategy is summarized in Figure 2-1B. Similar to a previously 

developed protocol16, we generated an ensemble of 20 backbone structures using 

independent Monte Carlo simulations consisting of backrub moves85, which rotate short 

segments of the backbone about axes between C" atoms, and side chain moves. Because 

peptide positions -5 and -6 were generally observed experimentally to be nonspecific14, 

we predicted peptide profiles for only the last 5 positions. We used the design module31 

of the program Rosetta to generate and score approximately 10,000 sequences for each 

backbone structure. The intramolecular components of the score were downweighted to 

emphasize intermolecular interactions. For each backbone structure, a position weight 

matrix (PWM) was generated by Boltzmann weighting the score of each sequence with a 

given temperature. In the absence of a method for predicting the absolute binding affinity 

of the highest affinity peptide, we assumed that all PDZ domains had equivalent binding 

affinities and applied a single Boltzmann factor to all PDZ domains and backbones. For 

each PDZ domain, PWMs were merged by taking the median frequency (i.e. the 50th 

percentile of frequencies from all individual backbones) of each amino acid type at each 

peptide position and renormalizing each position to have a total frequency of 1. The 

algorithm used three free parameters, whose determination is discussed in Methods. 

We evaluated the resulting predictions with several scoring metrics, of which two 

are graphically depicted in Figure 2-2A. The average absolute difference (AAD) 
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represents the average amino acid frequency error when predictions were compared with 

phage display. After visually comparing the predicted and experimental sequence logos at 

many positions, we defined the cutoff for a good prediction as being < 6%. At this level, 

one or more of the dominant amino acids will be shared between amino acid profiles, and 

there will be comparatively few false positives. 43 out of 85 positions displayed such 

good predictions. One of the PDZ domains, CASK-1, had its specificity previously 

predicted by Wollacott and Desjarlais72. For that domain, our prediction had a slightly 

better AAD than their prediction (Figure 2-3). 



 

 62 

Figure 2-2. Human PDZ peptide profile prediction 

 

(A) For 85 peptide positions corresponding to 17 human PDZ domains, the 

protocol produces predictions at 43 positions with average absolute difference 

(AAD) < 6%, and at 54 positions with area under ROC curve (AUC) > 0.75. The 

PDZ domains are sorted by overall AAD. 12 positions have flat experimental 

profiles with less than 2 bits of information (orange triangles), which can result in 

poor AAD scores. 48 positions show a mismatch between the starting PDB 

sequence and the most frequent amino acid selected in the phage display 

sequences (white and red triangles). 24 positions have an amino acid with > 10% 
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experimental frequency that is correctly predicted to be more highly represented 

than the amino acid in the starting PDB structure (red triangles). (B) Sequence 

logos are shown for five PDZ domain predictions. PDZ domain amino acids 

aligning with the positions mutated in the Erbin 10 mutation dataset are shown 

with blue boxes (1N7T positions 23, 25, 26, 27, 28, 48, 49, 51, 79, and 83). The 

peptide sequence from the PDB, used for generating the backrub ensembles, is 

shown below the PDZ sequence. Sequence logos were generated with LOLA 

(University of Toronto). 

Figure 2-3. Comparison of CASK-1 prediction with Wollacott & Desjarlais 2001 

 

The Wollacott PWM was generated by Boltzmann weighting the scores listed in 

Table 8 of their paper (J Mol Biol 313: 317-342). The Boltzmann temperature 

factor (1.4) was chosen to minimize the average absolute difference (AAD) 

between the predicted PWM and phage display, whereas the parameters for our 

prediction were optimized for all predictions. Both predictions used the same PDZ 

structure, 1KWA. The AAD for our prediction (7.0%) was slightly better than 

Wollacott (7.7%). Our prediction recapitulates an aspartate at the -1 position and 
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Wollacott does not. At the -2 position, Wollacott correctly predicts a 

phenylalanine as being the second most preferred and we do not predict it to have 

a significant frequency. See Figure 2-2 for a description of the figure elements. 

Another domain for which they made predictions, the third PDZ domain of PSD-

95, has no published phage display data to date. 

We also scored the predictions with a metric that depends solely on the relative 

ranking of amino acids. The area under the ROC curve (AUC) gives an indication of how 

well the prediction ranks the most populated amino acids, defined as those with phage 

display frequency & 10%. Another advantage of using AUC is that there is a clearly 

defined random score of 0.5, unlike for AAD. For the human PDZ dataset 54 out of 85 

positions had a good AUC score, defined as > 0.75, halfway between a perfect and 

random score. Many positions with low AAD scores had high AUC scores, indicating 

that while frequencies may have been mispredicted, often because of one or two strong 

false positives, the correct amino acids were still highly ranked. 

The predicted and experimentally determined sequence logos for the binding 

preferences of several representative PDZ domains are shown in Figure 2-2B. In some 

cases, the prediction correctly captures the preference for a negative or positively charged 

amino acid, such as ERBB2IP-1 position -3 and MPDZ-10 position -4, but does not 

recapitulate the preferences for the particular amino acid (i.e. aspartate or glutamate). 

None of the scoring metrics took amino acid similarity into account, and the absolute 

frequency based metrics particularly penalized such mistakes. For the SNTA1-1 PDZ 

domain, the structure we used came from a complex with an internal motif in the nNOS 

protein. When the nNOS structure was truncated down to 7 amino acids, the C-terminus 

was not in the canonical conformation, making prediction of positions 0 and -1 much less 
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accurate. On the other hand, positions -2 to -4 were predicted very well. The prediction at 

position -4 was particularly notable because, while the crystal structure contained a 

leucine, the prediction correctly captured preference for arginine. 

Having the prediction correctly capture specificity, despite a suboptimal peptide 

bound in the PDB structure, was often observed in the dataset. At 48 out of 85 of the 

peptide positions, the peptide amino acid residue from the PDB structure was not the 

most frequently observed in the phage display (Figure 2-2A). However, at 24 of those 

mismatched positions, the prediction successfully ranked at least one amino acid 

(experimentally observed to have & 10% frequency) above the PDB amino acid, thus 

“overcoming” the starting structure used in the backrub simulations. The predictions were 

most able to overcome the PDB structure at the -1, -3, and -4 peptide positions. The 

predictions tended to be much more sensitive to the starting structure at the 0 and -2 

positions. This reduced ability to overcome the PDB structure at the 0 and -2 positions 

corresponded to the overall PDZ domain ranking, where the best predictor of a poor 

overall score was the mismatch between the PDB sequence and phage display at those 

positions. 

Erbin Single Point Mutant Prediction 

In addition to the phage display dataset for wild-type PDZ domains, several 

datasets with synthetic variants of the Erbin PDZ domain have been published14,15. We 

used these datasets to test our peptide profile prediction method on a set of progressively 

more difficult modeling cases. The first dataset14 consisted of 91 Erbin PDZ domain 

single point mutants at 10 different positions near the binding site. For each of the 10 

sites, point mutants were constructed using amino acid residues observed at the same site 
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in other naturally occurring PDZ domains. With this dataset, we were able to test the 

prediction of functional changes as the result of mutation. 

As shown in Table 2-2, prediction performance of Erbin point mutant phage 

display profiles was better overall than the wild-type human PDZ domains. This 

difference is likely because the wild-type Erbin phage display profile was already 

predicted better than most other human PDZ domains and less than half the point mutants 

had experimentally significant specificity differences from the wild-type14. In addition to 

good overall performance, the predictions were able to capture two of the key specificity 

changes in response to mutation, the loss of preference for an aspartate or glutamate at 

the -3 position and loss of serine or threonine at the -2 position. R49 mutants were among 

the most likely to lead to the D/E loss at the -3 position, an example of which is shown in 

Figure 2-4A. When compared across the whole dataset, the combined frequency of D/E 

was slightly overpredicted but still shows reasonable correspondence between phage 

display and prediction (R2 = 0.42, Figure 2-5). Likewise, the predicted S/T frequency at 

the -2 position was also observed to correlate with phage display (R2 = 0.53, Figure 2-5). 

In class I PDZ domains such as Erbin, a S/T preference results from an intermolecular 

hydrogen bond with the histidine at positions equivalent to position 79 on the PDZ 

domain78. The predictions here captured loss of S/T preference not only for H79 mutants, 

but also for the V83K mutation (Figure 2-4A) that makes a -2/K83 salt bridge more 

favorable than a -2/H79 hydrogen bond. 
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Table 2-2. Summary of performance on the 4 experimental datasets 

  Bits of Information     
Dataset Size Phage Display Predicted AAD AUC Frobenius Rank Top 
Human PDZ 17 3.22 2.94 5.49% 0.79 0.59 5.1 
Erbin Point Mutant 92 2.93 3.16 4.19% 0.90 0.43 2.5 
Erbin 10 Mutation 61 3.22 1.98 6.43% 0.72 0.64 6.1 

All data are averaged over positions 0 to -4 on the peptide. The Erbin Point 

Mutant dataset included one wild-type profile, so that the total number of PDZ 

domains evaluated is 169. 

Figure 2-4. Predicted sequence logos and structures for Erbin point mutants 

 

(A)-(C) Three examples from the Erbin Point Mutant dataset are shown, along 

with the wild type domain (D). Both loss of -3 position aspartate/glutamate and -2 

position threonine preferences are captured. The R49I mutation breaks an 

electrostatic interaction with the peptide -3 position (A). In the case of V83K, a 

salt bridge interaction between the peptide -2 and K83 is captured, albeit with a 

glutamate rather than an aspartate (B). Specificity changes to glycine are not well 

captured because they likely require backbone shifts (C). By overall AAD, the 

predictions are ranked 1, 22, and 9, respectively (out of 92). See Figure 2-2 for 
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AAD/AUC color scale. The modeled structures for prediction (red) and phage 

display (blue) used the backbone for which the consensus peptide was closest in 

score to the best scoring peptide (i.e. the backbone that most preferred the 

consensus peptide relative to other peptides). 

Figure 2-5. Changes in specificity predicted for the Erbin point mutant dataset 

 

 

 

Predictions of the combined serine/threonine frequencies at position -2 correlate 

with phage display derived frequencies. Aspartate/glutamate frequencies at 
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position -3 also correlate, but are slightly over-predicted. Glycine frequencies at 

position -3 correlate more poorly using the WETWV starting sequence (left) than 

the phage display consensus sequences (right). Linear least squares regression 

lines are shown. 

An emerging specificity that was consistently missed in the predictions was 

glycine at the -3 position, which was associated with mutations at the adjacent S26 and 

S28 residues. One such mutant, S26N, is shown in Figure 2-4. By phage display, the only 

S26/S28 mutations that did not switch to a dominant -3 glycine were S26T/S28A/S28G 

(small amino acids) and S26K/S28R (positively charged amino acids that slightly 

preferred an aspartate to glycine). The preference for glycine may come because the side 

chain from any other amino acid sterically clashes with the PDZ backbone or side chains, 

or from the peptide preferring an area of Ramachandran space not accessible to other 

amino acids. In either case, without the glycine present during backrub relaxation, the 

PDZ and peptide backbones will likely be biased away from conformations that prefer 

glycine, resulting in missed -3 preference for glycine. The one mutation for which we 

correctly predicted a -3 glycine preference was S26I, which is the largest beta branched 

amino acid and sterically favors glycine even after backbone relaxation. 

Erbin 10 Mutation Prediction 

To test our prediction method with a larger number of mutations, we used a 

recently published dataset15 that contained 61 random combinations of mutations from 

the Erbin point mutant dataset. Each synthetic Erbin PDZ domain had 4-10 mutations 

(with a distribution of 1, 2, 10, 18, 19, 7, and 4 counts, respectively). As shown in Table 

2-2, predicting peptide profiles with this number of mutations was more difficult than for 

either the wild-type or single point mutants. Several good predictions are shown in Figure 
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2-6. The best prediction, mutant E-32, captured simultaneous loss of the -3 D/E and -2 

S/T preferences. It combined both the R49E and H79V mutations, along with four others. 

In the Erbin 10 mutation dataset, the new amino acid preference we were able to predict 

most accurately was -2 R/K. Across the whole dataset, there was slight correspondence in 

combined -2 R/K frequencies, with the largest errors coming from false positive 

predictions of a -2 R/K preference. 

Figure 2-6. Predicted sequence logos and structures for Erbin 10 mutation domains 

 

Two examples from the Erbin 10 Mutation dataset are shown (identifiers E-32 

and E-5815). Prediction of the simultaneous loss of -3 aspartate/glutamate and -2 

threonine specificities is evident for the E-32 mutant (A). Mutation V83E results 

in capturing slight preference for an E83/R-3 salt bridge (B). The predictions 

ranked 1 and 7, respectively (out of 61). 
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Figure 2-7. Changes in specificity predicted for the Erbin 10 mutation dataset 

 

The general trend best predicted in the Erbin 10 Mutation dataset was the 

presence of arginine/lysine at the -2 position. Prediction of a F/G/I/V/Y amino 

acid at -2 or aspartate/glutamate at -3 showed only a very slight upward trend. 

Prediction of glycine at -2 or -3 showed essentially no positive correlation (data 

not shown). 

The Erbin 10 mutation dataset represents a difficult test case for prediction of 

specificities, given the number of mutations involved so close to the binding site. Even 

for point mutations, peptide specificity changes have been reported distant from the site 

of mutation, which were attributed to ligand orientation effects14. While the success we 

saw here was encouraging, we did not pursue further homology modeling tests in which 

more residues were changed, inserted, or deleted. Such changes would likely result in 

further changes to the PDZ domain structure, further decreasing prediction accuracy. 

Comparison of Different Protocols 

Using the human PDZ, Erbin point mutant, and Erbin 10 mutation datasets, we 

analyzed whether backbone flexibility improved performance. To do so, we repeated the 

predictions with a fixed backbone, using either the 1N7T PDB NMR ensemble for Erbin 

and its variants or a single PDB structure (X-ray structure or model 1 from an NMR 
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ensemble) for all other human PDZ predictions. By any metric, fixed backbone 

performance was the same or worse for all three datasets. The most significant change 

was observed in overall AAD, which increased from 5.37% to 6.69% when the backbone 

was fixed (Table 2-3). 

Table 2-3. Changes in performance with changes to the prediction method 

  Bits of Information     
Dataset Size Phage Display Predicted AAD AUC Frobenius Rank Top 
Fixed Backbone 170 3.12 2.09 6.69% 0.78 0.68 5.1 
Flexible Backbone 170 3.12 2.69 5.37% 0.80 0.55 4.6 
Consensus 170 3.12 2.73 5.02% 0.83 0.52 3.7 
Frobenius Optimized 170 3.12 1.89 5.56% 0.80 0.54 4.6 

Overall performance is given as the average of the Human PDZ, Erbin Point 

Mutation, and Erbin 10 Mutation datasets. The flexible backbone method 

represents the primary method described in this manuscript (i.e. an average of the 

first three rows of Table 2-2). The fixed backbone method excluded backbone 

moves from the Monte Carlo simulations. For the consensus variant, the peptide 

was mutated to the phage display derived consensus sequence prior to generation 

of the backrub ensemble. The Frobenius optimized method used the average 

Frobenius distance for parameter optimization instead of the AAD. 

We also analyzed how the predictions were affected by the starting peptide 

sequence used during backbone ensemble generation. Using phage display data, we 

determined the most frequent amino acid for all positions. Before starting backrub 

simulations, we mutated each peptide to use this “consensus” sequence instead of the 

sequence from the PDB structure. We found that starting from these consensus sequences 

improved overall performance across the three datasets (Table 2-3). The protocol also 

improved prediction of glycine at the -3 position in the Erbin point mutant dataset (R2 = 

0.13 for standard flexible backbone vs. R2 = 0.32 for consensus prediction). While overall 

performance increased across the datasets, two metrics became slightly worse for the 
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human PDZ dataset, the AAD (increasing 0.15%) and Frobenius distance (increasing 

0.02, see below and Methods). This small increase may be because a somewhat 

suboptimal sequence can do better job recapitulating backbone flexibility for the human 

PDZ domains. Another contributing factor may be the protocol used for mutating the 

PDB peptides to the consensus sequence, which replaces all PDZ and peptide side chains 

with rotamer optimized, minimized conformations. The resulting side chains may be 

more poorly packed than the starting PDB conformations. 

Comparison of Scoring Metrics 

To evaluate the predictions, we used several metrics for scoring profile prediction 

performance: the area under ROC cure (AUC, see Methods), the predicted rank of the top 

amino acid (Rank Top), the average absolute difference (AAD), and Frobenius distance. 

A comparison of the correlations between those four scoring metrics on the human PDZ 

dataset is shown in Figure 2-8. The AAD and Frobenius distance metrics were strongly 

correlated, which is expected given the close mathematical relationship between the two 

(see Methods). Likewise, the Rank Top and AUC metrics were also closely correlated, 

which stems from each metric similarly scoring the enrichment of at least one of the most 

frequent amino acids. A comparison between all four metrics reveals that while most 

positions with good AAD or Frobenius distance scores also receive nearly perfect Rank 

Top and AUC scores, there is much less correlation for those positions with relatively 

poor AAD or Frobenius distance scores. From the perspective of method optimization, 

application of the Frobenius distance was found to result in a substantial reduction in the 

predicted number of bits (see Table 2-3). 
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Figure 2-8. Profile evaluation metric correlation 

 

Scatter plots between pairs of metrics are shown in the lower diagonal. 

Correlation coefficients are shown in the upper diagonal. The mean number of 

bits in the experimental and predicted profiles is shown with a rainbow color 

scheme, with red indicating the least number of bits and purple indicating the 

greatest number of bits. For consistency, area under ROC curve (AUC) values are 

shown as 1-AUC so that lower scores represent better predictions for all metrics. 

DREAM4 Specificity Prediction Challenge 

While developing the current method, we participated in the PDZ specificity 

prediction part of the DREAM4 challenge. We did so using an earlier iteration of the 

method described here, with several slight differences. The PDZ section involved blind 

prediction of 5 Erbin PDZ domain variants that had 6-9 mutations each at the same 

positions as the Erbin 10 mutation dataset15. Because the Erbin 10 mutation dataset was 

available before the competition deadline, we began by examining the specificities of 

synthetic PDZ domains with high local sequence identity around each of the individual 
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peptide positions. Using that information, we made predictions by hand of the amino acid 

that would be most highly represented at each peptide position, and mutated the peptide 

to those sequences prior to backrub ensemble generation. After running our prediction 

method, we noted that several of the computational predictions did not show a high 

tryptophan frequency at the -1 position (2B11, 2D5, and to a lesser extent 2C6). This 

contrasted with the Erbin 10 mutation dataset, which preferred tryptophan at the -1 

position for all similar PDZ domains. Despite this deficiency, we elected to submit the 

PWMs unmodified so that our prediction solely reflected the computational results. 

The two blind predictions where we performed best, 2C6 and 2D4, are shown in 

Figure 2-9, along with the three other blind predictions. In both cases, the last four 

positions (-3 to 0) show good correspondence to experiment. At those positions, at least 2 

out of the top 4 preferred amino acids are shared between the predictions and phage 

display results. At the -4 position, we over predicted the preference for arginine, aspartate 

and glycine.  
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Figure 2-9. DREAM4 prediction results for 2 synthetic Erbin variants 

 

Wild type and mutant PDZ domain residues are shown at the top in blue and red, 

respectively. The last five peptide positions are shown as sequence logos. (A) 

Submitted predictions captured shifts in specificity at the -3 and -2 positions, as 

well as a slight preference for isoleucine at the 0 position. (B) Reoptimization of 

parameters using the Frobenius distance p-value scoring metric employed in 

DREAM4 evaluations improves the predictions primarily by flattening out 

specificity profiles. (C) Using the current prediction method, with the unbiased 

starting peptide sequence of WETWV, similar shifts in specificity at the -3 and -2 

positions are seen with the exception of the 2C6 -3 lysine false positive. A slight 

preference for -1 arginine is also observed. (D) Phage display determined 

specificity profiles released after submission of (A). DREAM4 phage display 

profiles were never used as training data for any of the predictions shown in A-C. 

To determine how several factors affected our performance, we generated altered 

predictions and scored them using the same method as the competition organizers as well 

as the other scoring metrics introduced above. The Frobenius distance score used in the 
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competition was different from the average absolute difference score we used to optimize 

the parameters on the Erbin 10 mutation training data. Reoptimization of parameters on 

the training data (excluding the DREAM4 set) using the Frobenius distance improves our 

score significantly. While much of the improvement comes from flattening out the 

profiles, there are small increases in the AUC and top rank scores, indicating 

improvement in the relative frequencies of amino acids. The AAD improves as well, 

indicating some degree of mismatch between the Erbin 10 mutation training data and the 

DREAM4 synthetic PDZ domains. 

Our current prediction method, which was not seeded with sequences derived 

from manual analysis, performs more poorly than the prediction we submitted. Whereas 

the method used for our submitted predictions was optimized using experimental data 

very similar to what it was predicting, the current prediction method uses parameters 

simultaneously optimized for wild type structures, point mutants, and larger numbers of 

mutants. The current method does capture several important changes in specificity from 

wild-type Erbin. At the -1 position of 2C6, it correctly predicts the emergence of a minor 

population of arginine. At the -2 position of 2C6, it predicts emergence of phenylalanine 

and tyrosine. At the -2 position of 2D4, it correctly identifies a switch in preference from 

threonine to arginine. 

Because Frobenius distance scoring appears to reward profiles that are flat and 

have less information content, we tested how the scoring metric would behave using a 

relatively naïve PWM with W and V at the last two positions, and a flat profiles at all 

other positions. Using that PWM for all DREAM4 PDZ proteins yields a score on par 

with the best prediction submitted to the challenge (Table 2-4). Hence, using the 
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Frobenius scoring makes it difficult to determine whether shifts in specificity are 

correctly captured. 

Table 2-4. DREAM4 blind prediction challenge performance 

Prediction 2B11 2B9 2C6 2D4 2D5 Score AAD AUC Top Rank Bits 
Best Team* 0.90 1.06 0.83 0.98 1.21 47.6     
xxxWV 0.96 1.16 0.76 0.74 1.22 44.5 3.78% 0.63 13.9 1.73 
Frobenius 1.38 1.27 0.85 0.63 1.33 27.0 4.96% 0.81 4.9 1.66 
Submitted* 1.63 1.28 1.07 0.79 1.57 21.5 5.64% 0.80 5.8 2.73 
Current 1.50 1.55 1.08 1.11 1.81 14.2 5.88% 0.73 6.6 2.28 

Only starred predictions were submitted to the competition. The “Frobenius” 

prediction was based on reparameterization on separate training data using the 

Frobenius score that was used in evaluating the predictions submitted to the 

DREAM4 challenge. xxxWV was a naïve prediction where all positions in all 

domains were set to be flat, and the last two positions were set to WV. The 

Current prediction was based on global parameterization and was not seeded with 

manual predictions. The Frobenius distance between prediction and experiment is 

shown for each domain. The score was calculated using the average of the -

log10(p-value) of each Frobenius distance. AAD is the average absolute difference. 

AUC is the average area under the ROC curves. Top Rank is the average 

predicted rank of the most frequent amino acid from phage display. Bits is the 

average information content of each prediction, with the value for experiment 

being 1.97 bits. AAD, AUC, Top Rank, and Bits are calculated only for the last 5 

peptide positions. 

Relative Biases of Average Absolute Difference and Frobenius Distance 

Though highly correlated, there were subtle differences between the AAD and 

Frobenius distance metrics. Relative to the maximum value of each metric, the Frobenius 

distance scoring metric was less than or equal to the AAD for all peptide positions. As is 

shown in Figure 2-8, the degree to which the Frobenius distance was less than the AAD 

is directly related to the average flatness of the experimental and predicted profiles. The 
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amount the points fell below the diagonal can be quantified using the ratio between the 

metrics, which has a Pearson correlation coefficient of 0.84 with the average bits of 

information. This relationship arises because the shape of either the experimental or 

predicted amino acid profile sets an upper bound on the Frobenius distance. This is 

illustrated in Table 2-5. Comparison of AAD and Frobenius distance with hypothetical 

profiles with a series of hypothetical profiles consisting of one dominant amino acid and 

increasing levels of background. When compared to the most divergent possible profile, 

the maximum Frobenius distance drops much more quickly as a function of the bits of 

information than the AAD. Mathematically, this arises because the Frobenius distance 

uses the error squared, which strongly penalizes more prominent false positives. From the 

perspective of method optimization, application of the Frobenius distance can lead to 

substantial reduction in the predicted number of bits. When used instead of AAD for 

parameter optimization, the average number of bits shown in Table 2-3 drops from 2.69 

to 1.89, substantially below the 3.12 bits present in the phage display profiles. 

Table 2-5. Comparison of AAD and Frobenius distance with hypothetical profiles 

p(AA1) p(AA2)…p(AA20) Bits AAD Normalized AAD Frobenius Normalized Frobenius 
1.00 0.00 4.32 10.0% 1.00 1.41 1.00 
0.81 0.01 2.81 9.9% 0.99 1.28 0.90 
0.62 0.02 1.75 9.8% 0.98 1.16 0.82 
0.43 0.03 0.91 9.7% 0.97 1.07 0.76 
0.24 0.04 0.30 9.6% 0.96 1.00 0.71 
0.05 0.05 0.00 9.5% 0.95 0.97 0.69 

The average absolute difference (AAD) is much less constrained by the bits of 

information content than the Frobenius distance. The hypothetical profiles given 

in the table are compared to a profile with p(AA1)…p(AA19) = 0 and p(AA20) = 1, 

which gives the maximum possible metric value. The AAD and Frobenius 

distances shown are normalized by their respective maxima of 10% and 21/2. 
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Discussion 

In this study, we have undertaken structure-based prediction of the peptide 

sequence space recognized by a large set of 169 wild-type and mutant PDZ domains. By 

visual inspection and evaluation based on multiple scoring metrics, we found that peptide 

profiles could be successfully predicted at a majority of the positions for wild-type PDZ 

domains. Incorporation of backbone flexibility was a key aspect of our approach leading 

to significantly improved performance. A particularly novel aspect of the work presented 

here is that we capture peptide specificity shifts upon point mutation, which has not been 

previously reported on a dataset of this size. We observed that though the algorithm can 

in many cases find better PDZ-peptide interactions than those present in the PDB 

structure, there is still clear room for improvement, particularly when predicting changes 

in peptide specificity from large to small amino acids. In the course of evaluating our 

predictions, we also identified strengths and weaknesses of several different metrics for 

comparing PWMs. Performance should thus be evaluated using several criteria, where 

the optimal criterion depends on the intended application, as discussed below. Finally, in 

a blind test, we were able to predict the gain and loss of preference for several amino 

acids. 

As noted above, the overall predictive performance on wild type and point mutant 

PDZ domains was quite good, but a fraction of the positions were not correctly predicted. 

While many of these mispredictions are likely dominated by insufficient sampling or 

scoring errors, there are also several caveats in using phage display data as the reference. 

First, while the typical 3-5 rounds of iterative panning and propagation enriches the 

phage population with high affinity binders, the biases this may introduce into relative 
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peptide populations are not well understood nor explicitly modeled by the computational 

predictions. Second, the number of peptides sequenced can limit precision. For the PDZ 

domains used in this study, 8-193 peptides were sequenced per experiment, with a 

median of 46 peptides sequenced. Third, for flat profiles, where there are many 

represented amino acids with small populations, uncertainty in both the absolute 

experimental frequencies and the computational score function increases, which can lead 

to high AAD scores. Of the 12 flat human PDZ positions, each with less than 2 bits of 

information, only 3 had good AAD scores. Nevertheless, we believe phage display 

remains the best experimental method for comparison with extensive computational 

sequence sampling.  

An advantage of phage display and the computational techniques used here is that 

they are both in principle capable of detecting covariation in amino acid preferences 

between positions. Any such covariation will be ignored in the PWM representation used 

for our analysis. In the phage display data used here, we found few cases where there was 

evidence of covariation, and the number of peptide sequences reduced the potential 

significance. This is to be expected given the extended nature of the peptide conformation 

in the PDZ domain binding site minimizing interactions between peptide positions. While 

the method presented here is technically capable of capturing correlations between 

positions, it needs to be evaluated on other systems where covariation is more prevalent. 

In the development of protein design algorithms, one of the key metrics used to 

measure performance is the ability to predict the amino acid originally found in the PDB 

structure (i.e. native sequence recovery). However, for many of the PDZ structures we 

examined, the peptide sequence in the structure was not optimal for binding. In those 
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cases, the more difficult task is to identify those sequences that bind more strongly than 

the starting sequence. Our results demonstrate the ability to “overcome” the input 

sequence in half of the cases where phage display showed a stronger preference for 

amino acids not in the PDB structure. This strongly supports the use of computational 

design algorithms, like the one presented here, in improving binding affinity between 

partners of known structure, especially in cases where a technique like phage display is 

not applicable to a given design scenario, or is not available to a researcher. 

One of the important findings in this study is that incorporation of backbone 

flexibility using the backrub model85 significantly increases accuracy, especially the 

ability to predict amino acid frequencies. For both computational protein design and 

structure based drug design, high-resolution crystal structures are usually preferred. For 

the human PDZ predictions, almost all of which used crystal structures, using backrub 

ensembles based on those structures outperformed the original structures themselves. 

Using NMR ensembles is another means of incorporating backbone flexibility into 

computational modeling. However, using the Erbin PDZ domain NMR structure as input, 

backbone flexibility modeled with backrub moves again significantly improved the 

prediction performance. 

Several results from this study highlight the relationship between modeling 

backbone flexibility and predicting preferences for amino acids not present in the input 

structure. While important specificity changes were already captured using the default 

flexible backbone method, using the phage display consensus sequence during backbone 

generation markedly improved the predicted mutant PDZ profiles. Glycines were notably 

under-predicted in the Erbin point mutant dataset, but prediction was improved by 
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seeding glycine into those structures where it was expected. One explanation for the 

observed improvement is that the ensemble generation procedure optimizes the PDZ 

domain structure to accept whatever amino acid is input. An ideal method would search 

both sequence and structure space simultaneously and find the combinations of both that 

lead to the best binding interaction. 

One way to accomplish this simultaneous optimization is through iteration 

between backbone relaxation and sequence optimization. Such methods have been 

applied to de novo design of new protein folds59 and loops86. However, in those cases the 

design algorithm only needed to converge on a small number of foldable sequences to be 

successful. When trying to predict the sequence space of binding peptides, one must 

evaluate a much larger sequence space. If cysteine is excluded, the combined sequence 

space for five amino acids is nearly 2.5 million, which presents a challenge when paired 

with sampling backbone conformational space. 

In addition to demonstrating the utility of a model of backbone flexibility in 

amino acid profile prediction, we also tested and compared a number of different scoring 

metrics for evaluating performance. Which metric is most applicable depends on the 

desired application for the computational predictions. For library construction, where one 

wishes to determine a small set of likely amino acids for combinatorial screening, the 

area under ROC curve (AUC) is likely the best discriminator. For protein design aimed at 

testing of individual designs, where one wants to maximize the probability of finding the 

best amino acid, the predicted rank of the top amino acid (Rank Top) may be a more 

sensible scoring metric. For binding partner prediction methods that depend on having an 
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accurate PWM, metrics that directly compare amino acid frequencies, such as the average 

absolute difference (AAD) or Frobenius distance, are good candidates. 

While the Frobenius (or Euclidian) distance, and related metrics like RMSD, are 

often used for clustering and structural comparison, we found that its use in evaluating 

and optimizing specificity prediction can have several drawbacks. First, it is biased 

towards rewarding flat profiles more than specific profiles. When used for algorithm 

optimization, using a Frobenius distance metric can artificially flatten all profiles, 

sometimes with comparatively small improvements in performance (Table 2-3). Second, 

there is no well-defined random model for Frobenius distance. In this study, we found a 

combination of distance-based metrics, rank-based metrics, and frequency correlations 

for a subset of important residues the best gauge of overall performance. 

 One of the best ways to experimentally validate a computational technique is 

through controlled, blind prediction. In the DREAM4 challenge, we were able to predict 

both loss of specificity at defined peptide positions as well as a number of new amino 

acid preferences. Using the Erbin 10 mutation dataset as a guide, we determined that new 

preference for R/K at the -2 position could be best captured using the method. In the 

DREAM4 challenge, this observation was borne out, as one of our best performing 

predictions also contained this specificity. The DREAM challenge also exposed a third 

drawback related to the application of the Frobenius distance, namely that it alone does 

not indicate if a given set of predicted amino acid frequencies correlates with the 

observed frequencies. This was evidenced by the artificial xxxWV prediction, which 

scored almost as well as the best submitted prediction. To discern whether significant 
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differences in specificity between PDZ domains are reproduced, direct correlation 

analysis of the relevant amino acid frequencies is likely much better suited. 

Many applications of computational protein design involve making individual 

mutations, or a library to be screened. Success is measured based on whether any of the 

limited number of designs were successful. In this study, we have compared 

computational protein design with experiments that consider nearly all possible binding 

interactions and can better evaluate the computational effectiveness. The protocol 

described here predicts a large fraction of the preferred amino acids (> 10% frequency in 

the phage display sequences) within the top 5 ranked amino acids, both for structures 

where one of the partners stays fixed (70%) or a single mutation is made (80%). By 

incorporating backbone flexibility, the predictive power is improved over fixed backbone 

design, irrespective of whether a crystal or NMR structure is used as a starting point. 

Applying this method should increase the success rate of computational second-site 

suppressor designs8, where a destabilizing mutation on one side of an interface is 

compensated for by mutations on another side of the interface. Finally, while a significant 

amount of high throughput binding data has been accumulated for PDZ and other 

domains, there remain a significant number of other protein binding modules with 

structures for which exhaustive binding data is not available. This method enables 

predictive assessment of the amino acid preferences of those domains. 

Methods 

Structure Preparation 

17 PDZ-peptide complex structures (Table 2-1) were used for structure based 

profile prediction. Bound peptides were N-terminally truncated to at most 7 amino acids. 
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To prepare the syntrophin PDZ domain structure (1QAV), which is bound to an internal 

motif on the nNOS PDZ domain, nNOS was C-terminally truncated after the residue that 

occupies the canonical peptide 0 position. Where necessary, ICM Browser Pro (Molsoft, 

La Jolla, CA) was used to generate the PDZ domain-peptide complex using 

crystallographic symmetry. For only the 1N7T Erbin PDZ domain NMR ensemble, all 20 

models were used as independent starting structures for backrub ensemble generation. 

Model 1 was used for the other NMR structures in the set. 

Backrub Ensemble Generation 

To generate an ensemble of backbone conformations for profile prediction, we ran 

multiple 10,000-step, 0.6 kT Monte Carlo simulations in the Rosetta protein modeling 

program with backrub85 and side rotamer moves (see below), retaining the lowest scoring 

structure visited during the simulation16,85. Erbin PDZ domain mutants were modeled by 

replacing all side chain conformations using Monte Carlo simulated annealing31, 

followed by a two stage minimization of: 1) only side chains and then 2) a combination 

of side chains and the phi/psi angles of peptide positions -6 to -4. This mutagenesis 

procedure was repeated prior to every backrub Monte Carlo simulation.   

The backrub Monte Carlo protocol we used was implemented in the Rosetta 3 

software suite, with several minor differences from the Rosetta 2 algorithm85. Because of 

their low acceptance, combined backbone/side-chain moves were eliminated in favor of 

backbone only and side chain only moves, each made with respective frequencies of 75% 

and 25%. Instead of sampling discrete chi angle combinations with equal probabilities, 

side chain rotamers were sampled according to the frequencies given in the 2002 

Dunbrack backbone-dependent rotamer library87. Chi angles for a selected rotamer were 
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sampled continuously from Gaussian distributions with the mean and standard deviation 

taken the PDB-derived rotamer definition. This chi angle selection scheme is similar to a 

previously described biased-probability side chain sampling algorithm88. In 10% of the 

side chain moves, the Dunbrack-biased chi angle sampling was bypassed and chi angles 

were sampled uniformly. 

Simulations used the standard Rosetta full-atom energy function, except where 

noted below. The hydrogen bond potential was not weighted by residue burial. While 

removal of the hydrogen bond potential environment dependence has been shown to 

over-estimate the free energy difference between native residues and alanine53, we found 

it to better predict specificity for polar and charged peptide residues in the PDZ binding 

site. Using the standard Rosetta reference energies, we observed an over-prediction of 

histidine, which may be due in part to the reference energies being parameterized for an 

environment dependent hydrogen bond potential. To counteract this, we increased the 

reference energy for histidine by 1.2 score units. Bond angle energies were calculated 

using CHARMM parameters58. 

Before backrub ensemble generation, the 1N7T NMR ensemble had an average 

pairwise C" RMSD of 0.25 for the amino acids in the binding region (residues 23-28 and 

79-84). After ensemble generation, the RMSD increased to 0.47. This is slightly more 

than the structural diversity in a backrub ensemble generated from a crystal structure 

(2IWP). That ensemble had an average RMSD of 0.34 for the equivalent residues (1845-

1850 and 1898-1903). 
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Profile Prediction 

The profile prediction protocol16 previously implemented in Rosetta 2 was 

similarly reimplemented in Rosetta 3. Briefly, for the 5 C-terminal peptide residues, a 

population of 2000 sequences was optimized using a genetic algorithm over the course of 

5 generations, leading to evaluation of slightly less than 104 non-redundant sequences per 

ensemble member. Scores for individual sequences were determined using Monte Carlo 

simulated annealing of the side chain conformations31 of all residues with a C" atom 

within 10 Å of the C" of one of the 5 predicted peptide residues. Advances in the Rosetta 

3 architecture enabled precalculation and caching of all rotamer-rotamer interaction 

energies, decreasing computation time by a factor of 10-20. 

When transforming the evaluated sequence scores for a given backbone into a 

position weight matrix (PWM), the previous iteration of this algorithm selected those 

sequences that had intermolecular and intramolecular scores within given deltas of the 

wild type scores. Instead of treating the intermolecular (sum of all residue-residue scores 

between chains) and intramolecular (sum of all intraresidue and residue-residue scores 

within chains) scores separately, we used a linear combination of the two, holding the 

intermolecular weight fixed and weighting intramolecular scores by a given factor (see 

below). Additionally, because PDZ domains can interact with many different partners 

and it is difficult to define what the “wild-type” peptide sequence is, we used Boltzmann 

weighting to generate a PWM. The temperature was used to vary the contribution of 

higher scoring sequences to the PWM. 

Each backbone in the ensemble was used to produce a different PWM, giving a 

distribution of frequencies for every amino acid type at every peptide amino acid position 
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(N values for N structures in the backrub ensemble). To collapse each distribution for a 

single amino acid at each position into a single frequency, a given percentile of the 

frequency distribution (a parameter) was calculated. For instance, a percentile of 0.5 (or 

50%) would correspond to the median frequency of the distribution. Because this almost 

always produced, at a given amino acid position, a set of frequencies for all amino acid 

types that did not sum to 1, the frequencies were renormalized to sum to 1. If at a given 

sequence position, the percentile cutoff gave a specificity profile with entirely zero 

frequencies, the percentile cutoff was raised to the minimum necessary to create a non-

zero profile. 

As an alternative to the above approach, we also tried generating a unified PWM 

by Boltzmann weighting the sequences from all backbones together into a single 

distribution. Prior to Boltzmann weighting, all scores were normalized such that the 

lowest score for every backbone was zero. This resulted in worse overall performance 

than the application of a percentile cutoff. This may come from the percentile cutoff 

being more resistant to backbones with outlier specificities, several of which are shown in 

Figure 2-1. 

Parameter optimization 

To optimize the three free parameters for specificity prediction, we enumerated all 

combinations of the intramolecular score weight factor (1-1, 1.5-1, …, 4-1), Boltzmann 

weighting temperature (0.2, 0.225, …, 0.4), and percentile cutoff for PWM unification 

(0.4, 0.45, …, 0.6) to calculate a 3D grid of the average absolute difference scores for 

every PDZ domain. Predicted PWMs were compared to phage display using the AAD 

between all corresponding PWM elements. We observed that the optimal Boltzmann 
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temperature increased as the number of mutations made to the template structure 

increased, which produces flatter overall sequence profiles. (See predicted bits of 

information for Human PDZ and Erbin 10 Mutation datasets in Table 2-2.) This 

flattening of the profiles implicitly captures the increasing uncertainty as the number of 

mutations increases. To understand how the number of mutations affected the optimal 

parameters, we used L-BFGS-B89 optimization to find the optimal linear parameter fits 

from 0-10 mutations that produced the lowest mean score across all datasets. The score of 

each PDZ domain was weighted such that each dataset (Table 2-2) contributed equally to 

the overall mean. For the flexible backbone predictions (Table 2-3), the only parameter 

found to change depending on the number of mutations was the Boltzmann temperature, 

which started at 0.23 for 0 mutations and increased to 0.44 for 10 mutations (Figure 

2-10). The optimal intramolecular weight and percentile cutoff for PWM unification did 

not vary based on the number of mutations made, and were 2.5-1 and 0.5 (median 

frequency), respectively. The increasing uncertainty with more and more mutations is 

likely transferrable to other systems beyond PDZ domains. Using the parameters derived 

for this dataset, one would increase the Boltzmann temperature by 0.021 score units for 

every mutation made to the template. 
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Figure 2-10. Parameter sensitivity for wild-type PDZ specificity prediction 

 

Two dimensions of the parameter optimization grid are shown for the wild type 

PDZ domains. The percentile cutoff parameter sensitivity is not shown. 

Parameters used for PWM generation (intramolecular weighting factor of 2.5-1 

and Boltzmann temperature of 0.23) are indicated with a red point. The best grid 

point (at 2.0-1 and 0.225, respectively) for the wild-type domains is shown with a 

black point. The average absolute difference (AAD) did not show a significant 

change between the two. The parameters used for increasing numbers of 

mutations were evenly spaced along the red line, with 10 mutation predictions 

using a Boltzmann temperature of 0.44. 
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Profile Evaluation Metrics 

We used several metrics for evaluating the predictions. The average absolute 

difference (AAD) is reported as a percentage and was defined as: 

 

! 

1
N

Ei " Pi
i=1

N

#  

Where E is a vector of experimentally determined amino acid frequencies and P is a 

vector of predicted frequencies. A perfect prediction is 0% and the worst prediction is 

10%. The Frobenius distance was defined as: 
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#  

The best score is 0 and the worst score is 21/2. The AAD and Frobenius distance are 

related, as they are both proportional to norms of the difference between vectors. The 

AAD is directly proportional to the Manhattan norm and the Frobenius distance is 

identical to the Euclidian norm. Receiver operator characteristic (ROC) curves were 

generated by calculating the true positive and false positive rates for predicting amino 

acids represented with a experimental frequency of at least 10%, given different predicted 

frequency cutoffs. The area under the ROC curve (AUC) was calculated independently 

for each individual amino acid position in each domain. The top rank was defined as the 

predicted rank of the most frequent experimentally observed amino acid. In the case of 

ties in the prediction, the maximum rank was used. 

To gauge how flat or peaked a PWM was at a given peptide position, we used the 

information theoretic bits of information. Given a vector A of amino acid frequencies, the 

number of bits of information is defined as: 
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DREAM4 Specificity Prediction 

For the DREAM4 specificity predictions, the last five peptide residues were 

mutated to expected consensus motifs for each of the five target PDZ domains (2B11: 

FGFWV, 2B9: FGEWV, 2C6: GGFWV, 2D4: GDRWV, 2D5: FDFWV) derived from 

manual analysis of similar PDZ sequences from the Erbin 10 mutation dataset prior to 

backrub ensemble generation. As the DREAM4 predictions used an earlier version of the 

protocol, the reference energy for histidine was increased 1.5 score units and the 

reference energy for tryptophan was decreased 0.5 score units. Instead of Boltzmann 

weighting the peptide sequences, all sequences within a given delta of the lowest score 

were given equal weight, and those above discarded. The optimized parameters consisted 

of an intramolecular weight of 1.5-1, score cutoff of 2.5, and percentile cutoff of 0.55. 

These parameters were determined by grid optimization to produce the best average 

absolute difference score for the Erbin 10 mutation dataset, irrespective of the number of 

mutations.  

Rosetta Command Lines and Input 

Backrub Ensemble Generation (Subversion revision 33982) 
 
backrub_pilot -database [database location] -s [starting structure]  
-resfile [resfile] -ex1 -ex2 -ex1aro -ex2aro -extrachi_cutoff 0 
-backrub:minimize_movemap [minimize movemap] 
-backrub:ntrials 10000 
-score:weights standard_NO_HB_ENV_DEP.wts 
Added for fixed backbone predictions: -backrub:sc_prob 1 

Specificity Prediction (Subversion revision 33982) 
 
sequence_tolerance -database [database location] -s [starting structure] 
-resfile [resfile] -ex1 -ex2 -ex1aro -ex2aro -extrachi_cutoff 0 
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-ms:generations 5 -ms:pop_size 2000 -ms:pop_from_ss 1 
-ms:checkpoint:prefix [output prefix] -ms:checkpoint:interval 200 -ms:checkpoint:gz 
-seq_tol:fitness_master_weights 1 1 1 2 
-score:weights standard_NO_HB_ENV_DEP.wts -score:ref_offsets HIS 1.2 

standard_NO_HB_ENV_DEP.wts File 
 
METHOD_WEIGHTS ref  0.16 1.7 -0.67 -0.81 0.63 -0.17 0.56 0.24 -0.65 -0.1 -0.34 -
0.89 0.02 -0.97 -0.98 -0.37 -0.27 0.29 0.91 0.51 
fa_atr 0.8 
fa_rep 0.44 
fa_sol 0.65 
fa_intra_rep 0.004 
fa_pair 0.49 
fa_plane 0 
fa_dun 0.56 
ref 1 
hbond_lr_bb 1.17 
hbond_sr_bb 1.17 
hbond_bb_sc 1.17 
hbond_sc 1.1 
p_aa_pp 0.64 
dslf_ss_dst 1.0 
dslf_cs_ang 1.0 
dslf_ss_dih 1.0 
dslf_ca_dih 1.0 
pro_close 1.0 
NO_HB_ENV_DEP 
 

Code Availability 

Source code for backrub ensemble generation and genetic algorithm-based 

specificity prediction will be made freely available as part of the Rosetta 3.2 software 

release. The tools developed here will also be made available online at 

https://kortemmelab.ucsf.edu/backrub/. 
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Chapter 3. Predicting the tolerated sequences for 
proteins and protein interfaces using Rosetta Backrub 
flexible backbone design 

Abstract 

Predicting the set of sequences that are tolerated by a protein or protein interface, 

while maintaining a desired function, is useful for characterizing protein interaction 

specificity and for computationally designing sequence libraries to engineer proteins with 

new functions. Here we provide a general method, a detailed set of protocols, and several 

benchmarks and analyses for estimating tolerated sequences using flexible backbone 

protein design implemented in the Rosetta molecular modeling software suite. The input 

to the method is at least one experimentally determined three-dimensional protein 

structure or high-quality model. The starting structure(s) are expanded or refined into a 

conformational ensemble using Monte Carlo simulations consisting of backrub backbone 

and side chain moves in Rosetta. The method then uses a combination of simulated 

annealing and genetic algorithm optimization methods to enrich for low-energy 

sequences for the individual members of the ensemble. To emphasize certain functional 

requirements (e.g. forming a binding interface), interactions between and within parts of 

the structure (e.g. domains) can be reweighted in the scoring function. Results from each 

backbone structure are merged together to create a single estimate for the tolerated 

sequence space. We provide an extensive description of the protocol and its parameters, 

all source code, example analysis scripts and three tests applying this method to finding 

sequences predicted to stabilize proteins or protein interfaces. The generality of this 

method makes many other applications possible, for example stabilizing interactions with 

small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or 
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multistate design, it may also be possible to use this method to find sequences that 

stabilize particular protein conformations or binding interactions over others. 

Introduction 

The concept of “tolerated sequence space” – the set of sequences that a given 

protein can tolerate while still preserving its function at a defined level – has enabled 

considerable advances in understanding protein sequence-structure relationships and 

engineering new functions90. Knowing which sequences would be tolerated is important 

for designing for particular functions or inhibiting others8, optimizing protein stability91, 

anticipating drug resistance mutations92, or characterizing potential evolutionary 

pathways93. Therefore, as illustrated by these examples, the ability to computationally 

estimate the tolerated sequence space of a protein is of both great scientific interest and 

practical utility. Even in cases where it is especially difficult to predict sequences 

optimized for a given function (for example the rate of an enzymatic reaction or the 

emission spectrum of a fluorescent protein), screening from a pool of predicted tolerated 

sequences can increase the likelihood of diversifying existing or identifying new 

functions71. 

To experimentally estimate the tolerated sequence space for a given protein fold, 

one can either use sequence alignments of orthologous proteins, or a high throughput 

technique such as phage display. The disadvantage of using evolutionary information is 

that it represents only a part of the total tolerated sequence space, and may have 

confounding constraints that have not yet been characterized. Moreover, simply replacing 

amino acids in one protein with those observed in other members of the protein’s family 

often fails to preserve function94, because residue interactions in proteins can be 
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exquisitely interdependent. Phage display has been extensively used to probe the 

tolerated sequence space of both protein folds95-97 and protein-protein interactions14,15,97-

101. Phage display selects for protein binding, but through the use of a binding partner that 

does not interact directly with the mutated amino acids, binding can be used as a proxy 

for protein stability. Phage display methods are limited by the number of sequences that 

can be produced and analyzed. For example, allowing all 20 naturally occurring amino 

acid types at all positions in a standard-size protein-protein interface is generally not 

possible in a single screen. Therefore, computational methods that can reduce the 

enormous number of possible sequences to those that are more likely to be functional are 

extremely useful, in particular to focus libraries that can then be screened experimentally 

much more efficiently.  

Here we provide a generalized strategy and a set of protocols for using flexible 

backbone protein design to predict the tolerated sequence space for a given protein fold 

or interaction, implemented in the Rosetta software suite for molecular modeling. 

Developing and, importantly, adequately testing flexible backbone protein design 

approaches has been a long-standing problem (102 and references therein). Several 

approaches to considering backbone flexibility in computational protein design have been 

described. These include sampling small random perturbations of the ' and ( backbone 

torsion angles30, taking backbones from a parametric family of structures32 or using 

normal mode analysis33, utilizing families of crystal structures103 or computationally 

generating backbone ensembles16,70,104, adapting dead end elimination to incorporate 

backbone changes105,106, and iterating between sequence and structure 

optimization59,69,86,107. Our protocol utilizes “backrub” conformational moves in 
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Rosetta85,108 inspired by observations of conformational heterogeneity in high-resolution 

crystal structures1. We and others109 have previously shown that backrub moves capture a 

significant fraction of the conformational variability explored by proteins to enable 

sequence changes70.  

We first describe the methodology and simulation protocol in-depth. Next we 

report key benchmarking results using phage display data. These include a new example 

demonstrating prediction of the tolerated sequence space of the 6 core and boundary 

residues in GB1, as well as the benchmarks of the generalized protocol for two systems 

we previously used to test variants of the computational method: the human growth 

hormone-human growth hormone receptor (hGH-hGHR) interface, for which 

approximately 1000 tolerated sequences have been determined in six phage display 

screens101, and over 8000 sequences from 169 screens of naturally occurring and 

synthetic PDZ domain-peptide complexes110. The main new aspects here are the 

generalized protocol with a consistent set of parameters tested in several systems, 

detailed documentation on how to perform the computations (including all necessary 

source code and analysis tools as well as example input and output as part of this Rosetta 

collection issue), and the application of this method to the problem of predicting tolerated 

sequences for fold stability. We hope that providing a well-documented consistent 

protocol that can be applied to other systems both in a prospective or retrospective 

manner will stimulate further studies leading to a better understanding of transferability 

issues as well as scoring and sampling problems. We conclude with a discussion of 

current limitations as we see them and potential strategies for overcoming them, as well 

as future applications of the methodology described here. 
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Methods 

Figure 3-1. Scheme for predicting tolerated sequences for a protein fold or 

interaction 

 

The input is at least one protein structure from the protein structure databank 

(2QMT in the example). Rosetta first creates an ensemble of backbone 

conformations using the backrub method85, then predicts sequences consistent 

with each conformation in the ensemble, scoring each trial sequence–structure 
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combination using the Rosetta score12, and finally combines the sequences into a 

predicted sequence profile. This approach ignores potential covariation between 

side chains. To speed up calculations, the scoring function is split into one-body 

terms describing the intrinsic energy of a particular residue conformation, and 

two-body terms between residues; these residue-residue interaction terms are 

assumed to be pairwise additive. One- and two-body terms are pre-calculated and 

stored in an interaction graph111 such that optimization of sequence–structure 

combinations for entire proteins only takes seconds using look-up tables of 

interaction energies. For the interaction graph, vectors of residue self-energies 

(one body) are stored on the vertices (green circles) and matrices of residue 

interaction energies (two body) are stored on the edges (thick black lines). 

Computed interaction energies within proteins, between proteins, or between 

groups of residues can be reweighted to generate custom fitness functions for 

specific applications. This flexibility in scoring residue groups allows modeling of 

separate requirements, such as those to maintain residues required in an 

interaction interface with a binding partner. Group and group interaction 

reweighting is typically only done for protein-protein interactions. (For the 

monomeric GB1 domain shown here, no reweighting was applied.) 

Definitions of Sets of Amino Acid Positions 

The protocol and methods described here (Figure 3-1) aim to identify the amino 

acid types that can be tolerated at a given set of positions while still preserving protein 

fold stability and function (most commonly represented as binding). There are two 

general stages of the protocol: (1) creation of a set of protein backbone conformations 

(ensemble generation), and (2) prediction of sequences consistent with the ensemble 

conformations. The input to the protocol is at least one protein structure in PDB format 

and a definition of residue positions. There are three sets of sequence positions that can 

be defined: The first set of amino acids includes those that are mutated prior to ensemble 
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generation in stage (1) and often remain the same for all subsequent simulations. These 

positions will be referred to as the “premutated” positions. Definition of premutated 

positions is optional. If no positions are chosen, the input sequence will be used for 

ensemble generation. The second, most important set of positions are those that can vary 

their amino acid type in stage (2); these have to be defined by the user and will be 

referred to as the “designed” positions. For each designed positions, a set of considered 

amino acid types can be defined, as described in the “Detailed Workflow” section below. 

A final set of amino acids includes those whose conformations (but not amino acid types) 

change during sequence scoring in step (2). This set will be referred to as the “repacked” 

positions and is often a superset of the “premutated” positions. These positions can be 

determined by the user or automatically chosen by the protocol. The predicted tolerated 

amino acid types at the designed positions will depend on how many other positions are 

allowed to vary simultaneously (for example, allowing residues in a surrounding shell to 

be repacked may help to accommodate different amino acid choices at designed 

positions). For all of the results reported here, as well as a in previous study110, residues 

chosen for repack included all those with a C-alpha atom with 10 Å of the C-alpha atom 

of a designed position. This is the current default if repacked positions are chosen 

automatically by the protocol. Smaller sets of repacked positions can be used to restrict 

sequence diversity and simulate more conservative changes closer to the starting 

sequence and conformation, or to reduce the computational time required for the 

algorithm. 
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Phage Display Datasets Used for Testing 

Our study uses three datasets where a considerable number of tolerated sequences 

(not just a few) in a given system had been determined experimentally by phage display. 

The first test dataset investigated effects of sequence variations on the stability of the B1 

domain of protein G (GB1) by using phage display to screen a 20 amino acid library for 6 

total residues (3 core and 3 boundary)96. The second set, one of the largest phage display 

studies on protein-protein interactions, involved the human growth hormone (hGH) and 

human growth hormone receptor (hGHR)101. Through 6 separate phage display 

experiments randomizing 5-6 positions each, 35 amino acid positions on hGH were 

sampled to determine tolerated sequence space for hGHR binding. The third set is taken 

from a study that has determined the peptide sequence space tolerated for binding to 82 

naturally occurring PDZ domains and 91 PDZ single point mutants14. 

Input Structures 

All GB1 simulations were started using PDB code 2QMT112, which had a 

resolution of 1.05 Å, the highest available to date. The designed sequence positions were 

allowed to sample any of the 20 canonical amino acids and included residues 5, 7, 16, 18, 

30, and 33. For the 56 residue GB1 domain, the repacked residues included all but 22-24, 

40, 42, and 46-49 (i.e. 47 out of 56 residues). All hGH/hGHR simulations used a 2.6 Å 

resolution structure with PDB code 1A22113. PDZ/peptide simulations used the input 

structures previously reported110. For hGH/hGHR and PDZ/peptide simulations, the 

designed sequence positions were allowed to sample any amino acid but cysteine. 
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Backrub Ensemble Generation 

During the first stage of the prediction protocol, an ensemble of backbone 

structures is generated using backrub Monte Carlo simulations85,110. Both the backrub 

simulations and sequence sampling were implemented in the Rosetta 3 software suite114. 

The move set consists of 75% backrub backbone moves, 22.5% chi angle moves biased 

by the amino acid rotamer probabilities observed in the protein structure databank87, and 

2.5% uniformly sampled chi angle moves. Moves are accepted or rejected with the 

Metropolis criterion115 using a kT of 0.6. After 10,000 moves are applied, the lowest 

energy structure from the simulation is output for the next stage of sequence sampling. 

For the results presented here, 200 backbones were generated from independent backrub 

Monte Carlo simulations for each starting structure. The exception was the hGH/hGHR 

predictions, which used 100 backbones to match the number of structures used 

previously16. Using fewer backbones will generally produce reasonable results, but 

exhibit stochastic variation. Figure 3-2 gives estimates of the variation as a function of 

the number of backbones based on a benchmark using 2000 backbones and 

approximately 240 million sequence scores. Predicted ranks of selected amino acid types 

are generally more robust than predicted amino acid frequencies. Figure 3-3 illustrates 

the dependence of prediction performance on the number of backbones. Predictions using 

less than 20 backbones show reduced area under ROC curve scores.) If possible, at least 

100 backbones are recommended for results more robust to stochastic variation (Figure 

3-2). For the scoring metrics summarized in Table 3-1, the average standard deviation 

over three runs when using 100-200 backbones was between 0.4-1.9% of the dynamic 

range of each measure. 
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Figure 3-2. Increasing the number of backbones reduces stochastic variation 

 

2000 backbones were generated for each of the prediction simulations used here, 

resulting in approximately 240 million sequence scores. The frequencies 

calculated from the entire dataset (kT = 0.23) were treated as the ground truth and 

used to calculate the root mean squared error (RMSE) for subsets of the data 

using 200 (red), 100 (orange), 50 (cyan), and 20 (purple) backbones each. (A) 

Frequency data were divided into 20 equally spaced bins and the predicted 

frequency RMSE was calculated for each bin. For example, if the method is 

applied using 100 backbones, and an amino acid frequency is predicted to be 

0.425, then the estimated error is approximately 0.125 (dashed lines). (B) The 

data were divided by rank and the predicted rank RMSE was calculated for each 

rank. For example, if this method is applied using 20 backbones, and an amino 

acid rank is predicted to be 3, then the estimated error is approximately 1.9 

(dashed lines). For 20 backbones, the stochastic contribution to the root mean 

squared error (RMSE) of the predicted frequency can be up to 0.25, which is 25% 

of the dynamic range. The predicted ranks are more robust, with an RMSE of up 

to 2.5, or 12.5% of the dynamic range. 100 and 200 backbones reduce the 

stochastic error by approximately 2-fold and 2.5-fold over 20 backbones. 
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Figure 3-3. Dependence of prediction performance on number of backbones 

 

Distributions of area under ROC curve (AUC) values are shown for varying 

numbers of backbones. Prediction performance plateaus at approximately 20 

backbones. Each boxplot shows the distribution of mean AUC values for 50 sets 

of independent backbones (mean AUC values were computed across all datasets, 

from the equivalent of rows 1, 4, and 5 of Table 3-1). Horizontal lines represent 

the median, the box spans the interquartile range (IQR), whiskers extend to the 

furthest data point up to 1.5 times the IQR from the box, and data points outside 

the range are shown with circles. This figure used the same data that were 

generated for Figure 3-2). 

The conformational variation between different polypeptide backbones modeled 

by the backrub method is generally small, and using larger variation often leads to flat 

profiles that do not agree well with experimental data70. For all backrub ensembles used 

here, the average C-alpha atom RMSD from the starting structure was 0.4-0.9 Å. 
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By default, the starting sequence in the input PDB is used when the entire protein 

structure is sampled in the fixed-sequence backrub Monte Carlo simulations in stage (1). 

However, there are several circumstances in which a user may want to change the 

sequence of the input structure prior to ensemble generation. For example, it may be 

desirable to mutate residues to more closely represent the experimental system. Also, 

experimental data may suggest that another amino acid sequence shows greater function 

than the sequence in the starting structure. As shown in a previous study110, mutating the 

starting structure to that sequence prior to ensemble generation improves prediction 

performance. 

Such mutations can be made manually prior to backrub Monte Carlo or done 

automatically as a preprocessing step of the simulation. If the automatic option is used, 

the side chain conformations of the mutated residues and all other residues are optimized 

using simulated annealing31. If desired, iterative minimization can be applied by 

including progressively more degrees of freedom in three stages (first chi angles only, 

then chi/phi/psi angles, finally chi/phi/psi angles and rigid body degrees of freedom). 

Designed Position Sequence Scoring 

Before any sequences are scored, a graph of pairwise interaction energies between 

all possible conformations of all allowed amino acids is precomputed111. The first step of 

scoring a given sequence is to determine the conformations of side chains that minimize 

the score of the entire structure. We term this score the “raw Rosetta score”. This is done 

using Monte Carlo simulated annealing31. Once that conformation is identified, the 

interaction energies between and within user-defined groups of residues, often individual 

protein polypeptide chains, are calculated. The actual total fitness score of a given 
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sequence is a user-defined linear combination of the self-energies and interaction 

energies between these groups of residues. We term this score the “reweighted Rosetta 

fitness score”. For the dataset of PDZ domain-peptide complexes, the optimal weights 

were found to be 1 for the intermolecular PDZ-peptide interaction energies, and 0.4 for 

the intramolecular score110. We used those same weights for the hGH/hGHR interaction 

energies. Varying these weights in a grid search showed that these parameters are 

transferable to the hGH system, where they produced nearly optimal fits to the phage 

display data (Figure 3-4). For the GB1 protein fold stability dataset, only the 

intramolecular weight was applicable, which was kept at 0.4. 

Figure 3-4. hGH/hGHR interface data processing parameter sensitivity 

 

Sequence tolerance prediction for the hGH/hGHR interface is not highly sensitive 

to data processing parameters. For the 35 designed positions in the human growth 

hormone (hGH)/human growth hormone receptor (hGHR), position weight 

matrices (PWM) were generated using a grid of intramolecular weights and 

percentile cutoffs. (A) At each grid point, the value of kT was fit such that the 

average number of bits of information matched that observed in phage display (i.e. 

0.89 bits, see Table 3-1). (B) In the resulting PWMs, the average absolute 

difference (AAD) between phage display and prediction shows little sensitivity to 
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the processing parameters. The point with parameters equivalent to those found in 

the PDZ/peptide predictions (0.4 intramolecular weight, 0.5 percentile) is only 

slightly worse (by 0.04% AAD) than the lowest (best) AAD sampled on the grid. 

The other rank-based metrics also do not change significantly across the same 

parameter space and are less sensitive to changes in kT (data not shown). 

The general protocol described here for all three datasets uses the default 

“score12” energy function in Rosetta 3, with its implementation in the 3.2 release. The 

only modification to the default score12 energy function was to increase the reference 

energy of histidine by 1.2 score units, as was done previously for PDZ/peptide specificity 

prediction110. Histidine reweighting was found to improve performance across all three 

datasets tested here. Other than histidine reweighting, the previous scoring function used 

for PDZ-peptide specificity prediction110 differed from score12 in a number of ways: 

First, the Ramachandran and omega angle energy terms were turned off. (Because omega 

angles were never varied during the simulations, the omega energy term had no effect.) 

Second, the short-range backbone-backbone hydrogen bond and the amino acid 

probability given phi/psi terms were doubled. Third, turning off environment dependent 

hydrogen bonding was found to improve performance for PDZ-peptide specificity (it is 

on per default in standard in Rosetta 3). The first two differences to the published 

method110 listed above, namely the addition of two terms and the change of two weights, 

are part of a “score12 patch” that is standard in Rosetta 3 methods using score12, but was 

not used for the PDZ-specificity prediction110. 
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Background on the “standard” and “score12” Rosetta Energy Function 
Weights 

In Rosetta 2, side chain optimization via simulated annealing was done with 

weights (called “packer” weights) now defined as “standard” in Rosetta 3. Full backbone 

optimization in Rosetta 2 differed from these packer weights by including several small 

changes. First, short-range (i.e. alpha helical) hydrogen bond weights were halved. 

Second, a scoring term based on smoothed Ramachandran plots was added to better 

restrain phi/psi angles. To compensate for the addition of the Ramachandran score, the 

weight was halved for the score term taking into account the probability of an amino acid 

given phi and psi. In Rosetta 3, these three changes were incorporated into the “score12 

patch”. Rosetta 3 also added an energy term restraining the omega peptide bond angle to 

the default scoring function, which was similarly incorporated into the score12 patch. 

Rosetta 3 now generally uses the same scoring function for side chain optimization and 

full backbone relaxation, which is “score12”, including the changes included in the 

“score 12 patch”, by default. 

Genetic Algorithm Optimization 

Sequence sampling proceeds using a genetic algorithm independently on each 

backbone in the ensemble. The initial population is generated by selecting random 

sequences from the user-defined set of allowed amino acids at the designed positions. In 

addition, a single population member is generated that contains the sequence from a 

single simulated annealing call where all possible amino acids are allowed (i.e. the 

sequence with the best raw Rosetta score). The population size for each generation is 

2000 sequences and 5 total generations are produced, including the initial population. 

This results in slightly less than 10,000 sequences scored for each backbone. If 200 
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backbones are generated, this will result in up to 2*106 sequence scores, which is within 

an order of magnitude of the theoretical size of the 5 and 6 amino acid libraries (3.2*106 

and 6.4*107 sequences, respectively) used for experimental screening in the GB1, 

hGH/hGHR, and PDZ systems. In contrast to phage display, however, 4 out of 5 

generations of sequences are not selected randomly from all possible combinations, but 

are increasingly enriched in later generations using an applied fitness function. Changing 

the number of generations to 30 was previously shown to produce equivalent results16. 

For the genetic algorithm the reweighted Rosetta fitness score is used to 

determine the fitness for each sequence. For every new generation of the genetic 

algorithm, the best fitness sequence is automatically propagated to the next generation. 

The remaining sequences are generated by crossover and mutation of parental sequences 

from the previous generation. Parental sequences are selected by tournament selection, in 

which two random sequences are chosen, and the sequence with the best fitness is chosen 

to be a parent. Half of the new population members are generated by crossover, in which 

two parents are chosen and the identity of each amino acid is randomly selected between 

the two parental sequences. Unlike physical DNA crossover, there is no linkage between 

sequence positions close to one another. The other half of the new population members 

are generated by mutation, in which a single parent is chosen and each of its amino acids 

is mutated with a 50% probability. 

While our predictions agree reasonably well with experimental data, 

undersampling of sequence space and trapping in local minima are possible caveats of the 

applied optimization algorithms. Other sequence optimization methods could be 

compared to our results, such as approaches that are guaranteed to find the global 
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minimum energy sequence116. Along these lines, we have found that predicted sequences 

using Rosetta Monte Carlo optimization are similar to results of an approach that finds all 

low-energy sequences within a given energy threshold of the global minimum of the 

Rosetta scoring function (117 & unpublished results). We therefore believe that 

inaccuracies in scoring and the inability to more accurately sample backbone variation 

upon sequence changes are more significant contributors to the remaining discrepancies 

with experimental data than fixed-backbone sequence sampling issues. 

Sequence Processing 

The sequences output by the genetic algorithm are processed into a single position 

weight matrix (PWM) by first calculating a PWM for each individual backbone, and then 

merging the PWMs together. Individual backbone PWMs are calculated by Boltzmann 

weighting (w = e"G/(kT), w: sequence weight, "G: reweighted Rosetta fitness score, kT: 

Boltzmann factor) each of the individual sequences and calculating residue frequencies. 

The default Boltzmann factor used here was 0.228, as determined previously110. The 

Boltzmann factor can be changed by the user (see accompanying protocol capture). 

PWMs are merged together with the assumption that all backbones are equivalent. The 

contribution of individual backbones is not weighted by their total scores because the 

total energy of a backbone can be largely determined by structural features distant from 

the designed region, which could add considerable noise. Instead, to generate a merged 

PWM, the median frequency for every position/amino acid type element across all 

backbones is calculated. Taking the median is more robust to outliers than taking the 

mean or weighted mean. Users can alternatively use any percentile cutoff they wish (in 

the accompanying protocol capture postprocessing script), with the 50th percentile being 
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equivalent to the median. While PWM analysis ignores correlations between sequence 

positions, a similar analysis could be done using the Boltzmann weighted sequences to 

calculate residue co-occurrence at two or more positions. 

Phage Display Data 

Raw sequencing data (Andrea G. Cochran, personal communication) from round 

three of phage display of the Streptococcus GB1 domain using the human IgG Fc domain 

as bait96 included 185 sequences. Sequences were excluded that contained ambiguous 

reads, early stop codons, and mutations at sites other than those explicitly varied, leaving 

171 total sequences and 167 unique sequences. For the hGH/hGHR example, phage 

display frequencies were taken from Figure 2 of the authors’ publication101. Erbin PDZ 

frequencies were used as previously described110. 

Detailed Workflow 

The following is a detailed description of the steps that need to be taken to apply 

the described method to another system, or reproduce the results of the analysis done 

here. The protocol capture contains all the input files, command lines, and postprocessing 

scripts for replicating the computations, figures, and tables given here. (It can be 

downloaded at http://kortemmelab.ucsf.edu/data/) 

Select and prepare input structure. The input structure should be a crystal 

structure, NMR structure, or high quality homology model. If multiple structures are 

available (e.g. an NMR ensemble), the input structures should be placed into separate 

PDB files for input into the backrub application. Input of multiple structures can be 

facilitated by the backrub_seqtol.py script if they are numbered sequentially starting at 1, 

for instance PDB_01.pdb, PDB_02.pdb, etc. 



 

 113 

Determine which amino acids will be premutated, designed and repacked and 

create resfiles. Each of these sets of residues is described above. If there are no 

premutated residues, a backrub resfile is unnecessary. If there are, those should be placed 

as PIKAA X (picking the desired amino acid X by one letter code) in the backrub resfile, 

with the default behavior for all other residues specified as NATAA (i.e. sample side chain 

conformations while preserving the native amino acid type). 

A resfile is required for the sequence_tolerance application and should contain 

the designed and repacked sets of residues. Designed residues should use either ALLAA 

(all amino acids) or PIKAA XYZ… (picking the allowed amino acid residues with one 

letter codes X, Y, Z, etc.). Repacked residues should use NATAA and nonrepacked 

residues should use NATRO (native rotamer). A convenience script, seqtol_resfile.py, will 

generate a resfile for an input structure and a given set of designed residues, 

automatically determining the repacked residues having C-alpha atoms within 10 Å of the 

designed residue C-alpha atoms. 

Determine whether to minimize after premutation and create movemap file. If 

premutated residues are specified using the backrub resfile, an optional stage of 

minimization is recommended and can be enabled after the premutation step but before 

the backrub Monte Carlo simulation. To do so, a movemap file (specified using the -

backrub:minimize_movemap option) must be created which specifies the sidechain, 

backbone, and rigid body degrees of freedom to minimize. This was done, for example, 

in the case of the Erbin mutant V83K to minimize all side chains and the most N-terminal 

backbone dihedral angles of the peptide. If backbone dihedral angles or rigid body 
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degrees of freedom are minimized, care should be taken with the fold tree; information 

on the fold tree is given in the Rosetta 3.2 manual and Leaver-Fay et al114. 

Determine whether to sample phi/psi angles directly and create movemap file. 

While not used for any results published here or elsewhere to date, it is possible to have 

the backrub Monte Carlo procedure also make small direct perturbations to phi/psi angles 

of the protein. To do so, a movemap file (described in the Rosetta 3.2 manual) must be 

provided using the -in:file:movemap option. In addition, the -sm_prob option, which 

gives the probability of making a “small” combined phi/psi move27, must be given a 

positive value. The fold-tree warning above about minimizing backbone degrees of 

freedom applies to backbone perturbations as well. 

Create backrub ensemble. The backrub application can be run once and produce 

many different backbones, each starting from the original specified structure. As an 

alternative, the backrub application can be run separately each time a new ensemble 

member is required. The backrub_seqtol.py script does this and renames the resulting 

structures as if they came from a single execution of the backrub application. On a 

heterogeneous cluster, this stage took 20 seconds to 10 minutes per backbone for the 

results published here. 

Determine appropriate fitness function and score a large number of sequences. 

The sequence_tolerance application is used to score a random selection of sequences that 

are increasingly enriched in those that conform to the prescribed fitness function, whose 

coefficients are specified using the -seq_tol:fitness_master_weights option, which is fully 

described in the Rosetta 3.2 manual. The fitness function individually weights 

interactions between and within sets of residues defined by the PDB chain identifier. The 
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sequence scoring process took 15 minutes to 5 hours per backbone for the results 

published here. 

Post-process sequence scores. Post processing of the results is done using an R118 

script in the sequence_tolerance.R file. The function used, process_specificity(), takes 

several parameters. The first parameter, fitness_coef, allows the user to specify a vector 

of coefficients for the fitness function used in postprocessing. The second parameter, 

temp_or_thresh, allows the user to specify the Boltzmann factor (temp) or threshold 

cutoff value above the minimum fitness (thresh). The third parameter, type, determines 

how sequences are weighted and temp_or_thresh is interpreted. Sequences are either 

weighted using the Boltzmann equation ("boltzmann"), or a binary threshold cutoff 

("cutoff"). The final parameter, percentile, gives the percentile to use for merging 

frequencies from multiple backbones together. The default value, 0.5, corresponds to the 

median frequency across all backbones. 

Good results can still be obtained even if the genetic algorithm uses weights for 

tournament selection that are slightly different from those used for final sequence 

scoring. For instance, in a previous PDZ peptide specificity study110 and the results 

reported here, the genetic algorithm used a ratio of 1:2 between the weights of 

intramolecular and intermolecular interactions, while the final sequence scoring was done 

using a ratio of 1:2.5. The user thus has the flexibility to make small perturbations to the 

weights during post-processing without running the whole algorithm again. 

Caveats and Factors Not Taken into Account 

For the case of interface optimization, residue-residue interactions across the 

interface are upweighted in lieu of explicitly calculating the scores of the two partners 
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separately and in complex. This was done in part for computational efficiency and in part 

because separate calculation of scores was found to add noise to interface ))G prediction 

(unpublished results). If the designed residues change their conformations in 

energetically significant ways when not in complex, the algorithm will neglect those 

contributions to binding affinity. Also, the contribution of conformational entropy 

changes is not modeled. 

Results 

In the following, we show example results that assess the performance of Rosetta 

Backrub sequence tolerance predictions using three different experimental datasets that 

determined tolerated sequences for protein fold stability96 and protein binding16,110 using 

phage display. Two of these tests were previously performed with an earlier Rosetta 

version16 or scoring function110. Here we evaluate the generality of the Rosetta 3 standard 

protocol described in this Rosetta collection on all three datasets, compare to previous 

results, present a new test on a dataset of tolerated sequences for fold stability and 

provide an extensive set of customizable simulation and analysis tools in addition to all 

source code. Overall, the generalized protocol captures a significant fraction of the 

observed sequence space in all three datasets (Table 1), with values for the area under a 

ROC curve between 0.64 and 0.87, and the fraction of sequence space captured by the top 

5 ranked amino acid types between 54 and 82%. 

GB1 Fold Stability Tolerated Sequence Space Prediction 

The fold stability test used a dataset by Kotz et al who determined tolerated 

sequences for three residues in the core (L5, L7, and F30) of the B1 domain of protein G 

(GB1) and three residues bordering the core (T16, T18, and Y33)96. The authors utilized 
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the ability of the GB1 domain to bind to the human IgG Fc domain for a phage display 

screen. The side chains of the six GB1 residues varied in the experiment are at least 7 Å 

from any heavy atom on the IgG Fc domain in the cocrystal structure between the GB1 

and IgG Fc domains119, as shown in Figure 3-5. Mutating the GB1 residues should thus 

primarily affect the stability of the GB1 domain and report on sequences tolerated for 

fold stability, instead of selecting sequences that modify the interaction directly. After 

three rounds of GB1 display on phage, using IgG as bait, the authors obtained 171 full-

length GB1 sequences suitable for analysis. 
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Figure 3-5. Prediction of tolerated sequences for GB1 fold stability 

 

Frequently observed amino acids in phage display are enriched in the GB1 

prediction. (A) The structure (PDB code 1FCC) of Streptococcal GB1 (blue) is 

shown bound to the Fc domain of human IgG (green). The core and peripheral 

residues that were randomized in phage display are shown with sticks and 

transparent spheres. The side chain atoms (starting at C-beta) of these amino acids 

are at least 7 Å away from any atom of the Fc domain, making residues selected 

at these positions unlikely to interact directly with the Fc domain. (B) Amino 

acids are ranked individually for each sequence position by computationally 
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predicted frequency (using the Boltzmann factor kT = 0.23, as described in the 

main text). Wild type residues, which were used in protein ensemble generation, 

are shown in red. The dashed line indicates a typical cutoff of picking the top 5 

amino acid choices at each position. (C) Sequence logos (LOLA, University of 

Toronto) are shown for predictions with two different Boltzmann factors. The 

relative degree of specificity (in terms of bits of information, y-axis) shows good 

correspondence between prediction and phage display. Increasing the Boltzmann 

factor lowers the overall specificity and brings the absolute frequencies closer to 

phage display. 

The results of applying the generalized sequence tolerance prediction protocol 

described in Methods are shown in Figure 3-5. Consistent with previous studies110, the 

prediction of sequence rank is often better than the absolute frequencies. Therefore, we 

compared the predicted ranking of the amino acid types at each position to the 

experimentally observed frequencies. Averaged over the six positions, 57% of the 

frequently observed amino acids are found in the top five predicted amino acids. This 

performance metric, which is helpful for gauging the usefulness of the prediction for 

library design or other protein engineering applications, is used along with other metrics 

to compare all three datasets in Table 3-1. For actual protein engineering applications, it 

is critical to correctly identify at least one “viable” (tolerated) amino acid type at each 

position. Here, for all six positions, the prediction finds at least one frequently observed 

amino acid (greater than 10% frequency) within the top five ranked amino acids. (This 

analysis ignores co-variation between positions, which can be obtained from analysis of 

the actual predicted sequences). 
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Table 3-1. Summary of backrub tolerated sequence prediction performance. 

  Residue 
positions 

Bits of information Fraction 
Top 5 (%) 

   
 Proteins Phage display Predicted AAD (%) AUC Rank Top 
GB1 (kT=0.23) 1 6 1.58 2.66 56.9 5.61 0.74 6.17 
GB1 (kT=0.59) 1 6 1.58 0.89 54.2 4.05 0.71 7.17 
hGH/hGHR1 1 16 1.19 3.58 59.3 7.46 0.75 6.00 
hGH/hGHR2 1 35 0.89 3.24 41.9 7.48 0.64 7.72 
PDZ/Peptide 5 25 3.11 2.82 81.7 4.16 0.87 2.84 
PDZ/Peptide3 5 25 3.11 3.06 82.0 3.67 0.88 2.76 

1 16 designed hGH amino acid positions as defined in 16 and shown in Figure 3-6. 
2 All designed hGH amino acid positions shown in Figure 3-7. 
3 Performance metrics based on position weight matrices from Smith & Kortemme 2010110. 

Scoring metrics are used as defined previously110. Fraction Top 5 gives the 

average fraction (for every position) of amino acids with phage display 

frequencies & 10% in the predicted top 5 ranked amino acids. AAD gives the 

average absolute difference in amino acid frequency between prediction and 

phage display. AUC gives the area under receiver operator characteristic curve, 

with true positives defined as those with phage display frequencies & 10%. Rank 

top gives the average rank of the most frequently observed amino acid in phage 

display. The table gives results from one set of predictions as described in 

Methods. To gauge the variability, we repeated the predictions three times and 

calculated the standard deviation of the scoring metrics. The absolute standard 

deviations and dynamic ranges are 0.4/4.32 (Bits Predicted), 1.9/100 (Fraction 

Top 5), 0.4/10 (AAD), 0.006/1 (AUC), and 0.2/19 (Rank Top). As a percentage of 

the dynamic range of a given metric, the average standard deviations (over the 

first 5 rows) were: 0.9% (Bits Predicted), 1.9% (Fraction Top 5), 0.4% (AAD), 

0.6% (AUC), and 1.1% (Rank Top). 

In this example test case, the predictions reveal bias towards the native, input 

sequence at five positions. Two out of those five positions, core residues L5 and F30, 

show the wild type sequence to be the most frequent in phage display. Two of the border 

positions, T16 and T18, are incorrectly biased towards the input sequence. One of those 

positions is flat, with no single residue having greater than 20% frequency, so it is not 

surprising that the input bias overwhelms the relatively weak preferences. For residue 
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Y33, the prediction correctly ranks both frequently observed amino acids in the top five 

ranked amino acids and above the input wild-type tyrosine.  

Human Growth Hormone/Human Growth Hormone Receptor 
Interaction 

The first iteration16 of a sequence tolerance prediction method was implemented 

in Rosetta 2 and applied to the recapitulation of data from phage display selections of 

human growth hormone (hGH), using human growth hormone receptor (hGHR) as 

bait101. Besides using an entirely different implementation, which made the present 

computations approximately 2-20 times faster, there were several algorithmic differences 

between the previous approach and the generalized protocol presented here.  

The main difference lies in the way sequences were scored, filtered and weighted. 

The earlier protocol used a scoring function parameterized for protein-protein interfaces. 

In addition, the score of the protein was decomposed into a “binding” score 

(intermolecular interactions between chains; A-B in Figure 3-1) and a “folding” score 

(intramolecular interactions, sum of A and B in Figure 3-1). Sequences were allowed to 

contribute to the calculated frequencies if their binding and folding scores fell below 

given cutoffs determined using the wild-type sequence scores. The generalized protocol 

presented here uses the Rosetta 3.2 default all-atom scoring function, including an 

increased histidine reference energy (see Methods), was designed to work without having 

a wild-type sequence, and all scores were normalized to the lowest fitness found for a 

given backbone. Additionally, instead of using two separate scores for weighting, a linear 

combination of the binding and folding scores was used. Finally, instead of using hard 

cutoffs, Boltzmann weighting was used to weight the contribution of a given sequence to 

the final position weight matrix. 
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The predictions from the generalized protocol were similar to the previous 

method16 for the 16 residue positions in which a computationally selected library was 

described16 (Figure 3-6, all positions shown in Figure 3-7). Using the residue-specific 

size of the library as previously defined (Table 2 in reference 16), the Rosetta 3 protocol 

has one fewer false negative (and by definition of the fixed-size library one fewer false 

positive) than the Rosetta 2 protocol. These results thus highlight the transferability of the 

parameters and protocol used here, while providing a more general prediction framework. 

Figure 3-6. hGH/hGHR interface tolerance prediction 

 

The generalized Rosetta 3 protocol described here was applied to rank human 

growth hormone (hGH) amino acids by computationally predicted frequency. The 

residue positions shown and their ordering are taken from previously published 

results using the Rosetta 2 protocol (Humphris & Kortemme, Table 216). Wild 

type residues, which were used in protein ensemble generation, are shown in red. 

For each position, an average of 59% of the amino acids observed in phage 

display (& 10% experimental frequency) are predicted within the top five 

computationally ranked amino acids (above dashed line). Overall performance 
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was similar to previous results of the Rosetta 2 protocol. Amino acids (other than 

wild-type) included in the computationally selected library from the Rosetta 2 

protocol are indicated with a star. If the same number of amino acids at each 

position is used as defined in the computational library in16, Table 2, the Rosetta 3 

protocol misses two frequently observed amino acids included by Rosetta 2 (V67 

and L176). Conversely, the Rosetta 2 protocol misses three frequently observed 

amino acids included by Rosetta 3 (S21, A21, and E22). Both protocols share 

similar false positive predictions. However, the Rosetta 3 histidine reference 

energy reweighting (see Methods) eliminates 6 out of 8 histidine false positives 

(H*). 

Figure 3-7. hGH/hGHR interface tolerance prediction for all residues 

 

Human growth hormone (hGH) amino acids are ranked by computationally 

predicted frequency using the generalized Rosetta 3 protocol described here. Wild 

type residues, which were used in protein ensemble generation, are shown in red. 

(Representation and color coding is as shown in Figure 3-6). 

PDZ/Peptide Interaction 

The third test dataset contains peptide sequences selected by phage display to bind 

to PDZ domains14. To determine if the generalized protocol and scripts described here 

produce similar results to those previously published on the PDZ-peptide dataset110, we 

performed 5 representative PDZ/peptide interface specificity predictions. (For details on 

methodological differences between the published and current protocols, see the Methods 
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section.) Computational and experimental sequence logos are shown in Figure 3-8. The 

correspondence to experiment is overall similar to the previous protocol110, with the 

largest difference observed in the absolute frequency of amino acids, as shown in Table 

3-1. The primary changes are reductions in the preferences for R/K at position -4 and T at 

position -2 for the DLG1-2 PDZ domain, as well as the preference for T at position -2 for 

the Erbin PDZ domain. These differences likely come from the restoration of 

environment dependent hydrogen bonds in the current protocol, which weakens hydrogen 

bonds in solvent exposed areas. 

Figure 3-8. PDZ/peptide interface tolerance predictions 

 

Shown are 5 representative examples of predictions with the generalized protocol, 

compared to experimental data from phage display. The Erbin V83K interface 

prediction involved making the indicated point mutant (V83K) to the PDZ 

domain prior to backrub ensemble generation (an example of a “premutated” 

position). 

Sampling Efficiency and Boltzmann Factors 

From an algorithmic point of view, one of the primary differences between the 

protocols presented here for interface vs. fold stabilization is whether the fitness function 

is reweighted (interfaces) or not reweighted (fold stabilization) after side chain packing. 
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The first generation of the genetic algorithm consists of random sequences as well as the 

sequence with the best raw score as defined by the non-reweighted fitness function. 

Because the reweighting changes the fitness function, this optimized sequence often does 

not score as well relative to sequences that evolve in later generations in the case of 

interface stabilization. This leads to a lower overall contribution of the first generation 

sequences to the final PWM (Figure 3-9A). However, the reweighted fitness quickly 

improve, leading to a median fifth generation PWM contribution of 40%.  

Figure 3-9. Sequence contribution by genetic algorithm generation 

 

Sequences from later genetic algorithm generations contribute more in interface 

design prediction than in protein stability design prediction. The total Boltzmann 

weights in the final PWM for the new sequences sampled in each generation were 

calculated. The distribution of contributions for each generation across the 200 

simulations (one simulation for each backbone in the backrub ensemble) is shown. 

Boxes span from the first quartile to the third quartile, with the line indicating the 

median. Whiskers extend to the most extreme data point within 1.5 times the 

interquartile range of the box. Circles show data points beyond that limit. (A) 

Because the fitness function used for protein-protein interfaces (here shown for a 

complex between the second PDZ domain of DLG1 and peptides) is different 

from the fitness function used for optimization of side chain packing, the genetic 

algorithm is important for enriching the population in sequences predicted to be 

better binders. (B) For optimization of protein fold stability (designing positions 
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in the GB1 core), the initial full protein design phase is very effective at finding a 

low energy sequence, which dominates the contribution to the position weight 

matrix (PWM) when the same Boltzmann factor (kT = 0.23) is used. (C) When 

the Boltzmann factor is optimized to minimize the average absolute difference 

between experiment and computation (kT = 0.59), the contribution of the later 

generations increases significantly. 

By contrast, when optimizing sequences to preserve fold stability, the raw Rosetta 

score for optimization of intramolecular side chain packing and reweighted Rosetta 

fitness score for Boltzmann weighting are identical. Using the same Boltzmann factor as 

for interface prediction, the first generation overwhelmingly dominates the contribution 

to the final PWM (Figure 3-9B). The primary contribution of the first generation comes 

from the sequence that showed the best overall side chain packing. It typically takes 

several generations for new sequences to be discovered that score close enough to that 

sequence to make a significant contribution to the PWM. This imbalance may be partially 

an artifact of the Boltzmann factor that was not previously assessed for prediction of 

tolerated sequences for fold stability. The Boltzmann factor increases from 0.23 (taken 

from the PDZ-peptide study) to 0.59 if it is reoptimized to produce the highest similarity 

between the predicted and experimental PWMs (Figure 3-9C). Here, the contributions of 

the different generations are more balanced. Of note, this change in Boltzmann factor 

does not significantly change the sequence ranks (data not shown), but does make the 

computational predictions match the relative flatness of the experimental PWM better. If 

this protocol is applied to other monomeric systems where absolute frequencies matter, 

the Boltzmann factor of 0.59 may provide a more useful starting point. 
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Another algorithmic consideration is the influence of introducing backbone 

flexibility into the prediction method. To determine the effect backbone flexibility had in 

our simulations, we repeated the predictions without backrub moves and computed 

overall performance (Table 1-1). The results with the heterogeneous test set used here 

mirror the previous finding for PDZ-peptide interactions110, namely that backbone 

flexibility improves predictions by most metrics. The only place where the fixed 

backbone method showed better performance was the Fraction Top 5 scores for the GB1 

dataset. Overall prediction performance improved with an increasing number of 

backbones until convergence was reached at about 20 backbones (Figure 3-3) for the 

three datasets tested here. 

Table 3-2. Summary of fixed backbone prediction performance 

  Residue 
positions 

Bits of information Fraction 
Top 5 (%) 

   
 Proteins Phage display Predicted AAD (%) AUC Rank Top 
GB1 (kT=0.23) 1 6 1.58 4.25 70.8 7.77 0.73 6.33 
GB1 (kT=0.66) 1 6 1.58 1.00 76.4 4.53 0.75 6.33 
hGH/hGHR1 1 16 1.19 3.69 52.8 7.51 0.68 7.38 
hGH/hGHR2 1 35 0.89 3.56 42.0 7.81 0.62 7.86 
PDZ/Peptide 5 25 3.11 2.82 81.0 5.61 0.84 3.36 

1 16 designed hGH amino acid positions as defined in16 and shown in Figure 3-6. 
2 All designed hGH amino acid positions shown in Figure 3-7.  

As a fraction of the dynamic range of the performance metrics, the predicted bits 

of information, AAD, AUC, and Rank Top metrics (averaged over all datasets) 

are better with backrub sampling (see Table 3-1) by 9.4%, 9.1%, 1.6%, and 1.1%, 

respectively. The only performance metric that was better (by 3.8%) without 

backrub sampling was Fraction Top 5. This improvement came primarily from the 

GB1 dataset. Fraction Top 5 was found to be the most variable performance 

metric across replicated predictions (Table 3-1). 

A final point of comparison can be made to a naïve model, in which residues with 

similar chemical properties to those in the input structure are given equal weight in a 
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predicted PWM. Using the unmodified kT of 0.23, the prediction method presented here 

also outperforms the naïve model by most performance metrics (Table 3-3).  

Table 3-3. Summary of naïve model prediction performance 

  Residue 
positions 

Bits of information Fraction 
Top 5 (%)3 

   
 Proteins Phage display Predicted AAD (%) AUC Rank Top 
GB1 1 6 1.58 2.79 52.8 6.39 0.71 9.00 
hGH/hGHR1 1 16 1.19 2.67 44.3 6.71 0.67 12.63 
hGH/hGHR2 1 35 0.89 2.67 27.9 7.52 0.57 14.52 
PDZ/Peptide 5 25 3.11 2.72 68.7 6.61 0.79 7.96 

1 16 designed hGH amino acid positions as defined in16 and shown in Figure 3-6. 
2 All designed hGH amino acid positions shown in Figure 3-7.  
3 Naïve predictions, which rank up to 4 amino acids, do artificially poorly with Fraction Top 5. 

Naïve predictions were constructed by generating position weight matrices in 

which the PDB amino acid and amino acids in its similarity group were given 

equal weight, and all other amino acids given zero weight. The similarity groups 

were as follows: DENQ, RKH, LIVM, FYW, PAG, ST, and C16. All metrics for 

the performance of the naïve model (Fraction Top 5, AAD, AUC and Rank Top) 

were worse than those shown in Table 3-1, with the exception of the hGH/hGHR 

AAD for the 16-residue set. In addition to performing better than a naïve model, 

the method described in the main text also does better than random, as evidenced 

by the area under ROC curves (AUC) being greater than random (0.5) for all 

datasets (Table 1). 

Discussion 

One of the key assumptions made in the method described here is that the 

backbone structures generated with the input sequence will adequately sample backbones 

that will accommodate other amino acid sequences. While we have shown here and in 

previous work that incorporation of backbone flexibility improves prediction of tolerated 

sequence space16,110, side chain order parameters108, and residual dipolar couplings70, this 

and previous studies indicate that there are limitations to that assumption. To adequately 

sample both backbone and sequence space, variants of simultaneous or iterative sampling 
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strategies59,69 are likely necessary. We have made initial attempts at adding iteration to 

this method and others, but found that the simulations end up trapped in local minima of 

sequence space, with the backbones retaining the bias towards the sequence that they start 

with. Often, the solution to limited sampling is to increase the simulation temperature, 

which can be done when the backbone is fixed. However, when the backbone is flexible, 

increasing the temperature can lead to protein unfolding and sampling of unproductive 

regions of sequence space. Application of constraints, restraints, or other sampling 

methods may be required to overcome that problem. 

While the uses of this protocol to date have been limited to protein-protein 

interfaces and monomeric protein folds, there are several other applications that it can 

also be generalized to. For instance, this method could be leveraged in prediction of the 

amino acid sequences that will bind to a small molecule substrate, cofactor, or inhibitor, 

as well as for protein-DNA and protein-RNA interfaces. Another potential application 

would be stabilizing particular conformations of loops or domains. For that purpose, one 

could place the backbone into a preferred conformation at the outset, and then upweight 

the interaction energies between the residues that are desired to interact. While many 

design problems can be described using a single state, adaptation of the code described 

here could be used to generate a set of sequences that satisfy multiple states or 

constraints10,120,121. 
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