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Abstract

Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to

genome function and evolution remain mysterious. In budding yeast, repression of the

highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases

splicing of non-RPG transcripts through reduced competition for the spliceosome. We show

that under these “hungry spliceosome” conditions, splicing occurs at more than 150 previ-

ously unannotated locations we call protointrons that do not overlap known introns. Protoin-

trons use a less constrained set of splice sites and branchpoints than standard introns,

including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely

related species, suggesting that most are not under positive selection and are fated to disap-

pear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contrib-

ute to the creation of new genes. Others are found across boundaries between noncoding

and coding sequences, or within coding sequences, where they offer pathways to the crea-

tion of new protein variants, or new regulatory controls for existing genes. We define protoin-

trons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and

importantly (3) are not currently understood to contribute to gene expression or regulation in

the way that standard introns function. A very few protointrons in S. cerevisiae challenge

this classification by their increased splicing frequency and potential function, consistent

with the proposed evolutionary process of “intronization”, whereby new standard introns are

created. This snapshot of intron evolution highlights the important role of the spliceosome in

the expansion of transcribed genomic sequence space, providing a pathway for the rare

events that may lead to the birth of new eukaryotic genes and the refinement of existing

gene function.

Author summary

The protein coding information in eukaryotic genes is broken by intervening sequences

called introns that are removed from RNA during transcription by a large protein-RNA
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complex called the spliceosome. Where introns come from and how the spliceosome con-

tributes to genome evolution are open questions. In this study, we find more than 150

new places in the yeast genome that are recognized by the spliceosome and spliced out as

introns. Since they appear to have arisen very recently in evolution by sequence drift and

do not appear to contribute to gene expression or its regulation, we call these protoin-

trons. Protointrons are found in both protein-coding and non-coding RNAs and are not

efficiently removed by the splicing machinery. Although most protointrons are not con-

served and will likely disappear as evolution proceeds, a few are spliced more efficiently,

and are located where they might begin to play functional roles in gene expression, as pre-

dicted by the proposed process of intronization. The challenge now is to understand how

spontaneously appearing splicing events like protointrons might contribute to the crea-

tion of new genes, new genetic controls, and new protein isoforms as genomes evolve.

Introduction

Eukaryotic genes are often split by intervening sequences called introns that are removed dur-

ing and after transcription by the spliceosome and associated splicing proteins. Although

much is known about the biochemical mechanisms of intron recognition and splicing [1–3], a

clear understanding of the events and processes that explain the appearance and persistence of

introns during the evolution of eukaryotic genomes remains elusive [4, 5].

As a necessary step in the expression of most extant eukaryotic genes, splicing has been

exploited by evolution in at least two main ways. One allows diversification of the structure

and function of the RNA and protein products of a gene by producing multiple distinct

mRNAs through alternative splicing [2]. A second allows changes in gene expression through

nonsense-mediated decay (NMD), whereby alternative splicing can lead to either functional

mRNA, or to transcripts with premature stop codons that are degraded, providing develop-

mental on-off control, or stable homeostatic expression settings [2]. The complex gene archi-

tecture of multicellular organisms, as contrasted with the simpler gene architecture in many

single-celled eukaryotes, has prompted widespread speculation that alternative splicing is

responsible for emergent complexity in metazoans. Although it contributes in complex and

critical ways to gene function and regulation in extant eukaryotes, how splicing came to reside

so pervasively in the eukaryotic lineage remains to be explained [4–6].

Until recently, gain or loss of introns has been detected by comparing closely related

genomes. Many such “presence/absence” variations are inferred to be intron loss, in which

reverse transcription of a spliced RNA, followed by homologous recombination of the intron-

less cDNA back into the gene of origin, erases the intron [6, 7]. Several mechanisms for the

gain of new introns have been proposed (for review see [8, 9]). For example, single nucleotide

changes that create new splice sites (and thus new introns) can lead to “intron sliding” or new

alternative splicing events [10]. “Exonization” of an Alu sequence in a large intron can lead to

inclusion of a new exon and splitting of an intron into two smaller introns [11]. These intron

gain mechanisms rely on pre-existing local splicing events, and represent intron diversifica-

tion, rather than de novo intron creation at sites where no intron previously existed.

De novo intron creation appears to occur by two main pathways, “intron transposition”

whereby an intron at one location is copied and inserted at a new location, and “introniza-

tion”. First described in the marine alga Micromonas [12], transposition of introns called

“Introner Elements” appears to have expanded an intron repeat family in some lineages [13–

17] perhaps through an “armed spliceosome” carrying an intron-lariat RNA which is then
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reverse spliced into an mRNA (which then must be converted to cDNA to return to the

genome at a new location, [6, 9]). More recently, intron transposition through an RNA inter-

mediate has been documented in S. cerevisiae, supporting the idea that reverse splicing may

operate to spread introns [18]. Other models suggest that introns transposition may arise by

the action of DNA damage repair [19] or non-autonomous DNA transposons [20].

A distinct pathway for de novo intron creation is called “intronization” whereby mutations

arise either through drift [4, 8, 21], or other sequence changes [22] to create sequences recog-

nized as introns by the splicing machinery. As a genome sequence distant from other introns

drifts, it may accumulate mutations that by chance allow its transcripts to be recognized by the

splicing machinery and spliced. This process is thought to occur gradually over evolutionary

time, generating sequences that exhibit properties of both exons and introns that are often

alternatively spliced through several, different, weak splicing signals [4, 23]. Whether these

sequences evolve to become bona fide introns depends on whether their removal through

splicing provides a fitness advantage.

Splicing in the S. cerevisiae genome appears to have been streamlined by evolution, such

that about 5% of genes have introns, and most that do have only one. Despite their scarcity in

genes, introns appear in about 25% of transcripts when cells are growing in rich medium [24,

25]. More than a third of annotated introns are found in genes for ribosome biogenesis (ribo-

somal protein genes, RPGs), and their mRNAs account for 90% of the splicing performed in

rapidly growing cells [25, 26]. This unusual distribution of introns in a highly expressed class

of genes with shared function presents both challenges and opportunities for studying integra-

tion of splicing into core cellular regulation. For example, repressing transcription of the RPGs

increases the efficiency of splicing for the majority of non-RPG introns and can suppress tem-

perature-sensitive spliceosomal protein mutations [27, 28]. Based on this we proposed that

relieving pre-mRNA competition by reducing RPG expression frees the spliceosome to process

less competitive, splicing substrates it normally ignores. This phenomenon has been shown to

contribute to the efficiency of meiotic splicing [28, 29], as well as regulation of Coenzyme Q6

synthesis [30], whereby regulated repression of RPGs potentiates splicing control mechanisms

at other genes.

In this study, we use rapamycin to repress RPGs and create hungry spliceosome conditions

in three related yeast species that have diverged over ~10–20 million years [31], and find 163

locations in the S. cerevisiae genome that are substrates of the spliceosome, but distinct from

the current set of annotated introns. Other studies have also found undocumented splicing

events in yeast [32–39], including alternative splicing of known introns. Here we focus strictly

on splicing events not associated with a known intron, which we call protointrons. To better

understand intron creation, we distinguish, standard introns from protointrons as follows.

Standard introns are efficiently spliced under normal growth conditions (median efficiency

~93% spliced), highly conserved in related Saccharomyces species, and have known functions

in gene expression (93% reside in protein coding regions). Protointrons on the other hand

generally splice with very low efficiency (median efficiency ~1% spliced), are often specific to

different Saccharomyces species, and most importantly do not have a clear role in correct gene

expression. These protointrons are found in mRNAs as well as noncoding RNAs such as pro-

moter-associated transcripts, CUTs, SUTs, XUTs and other noncoding RNAs [40–48]. Related

yeasts S. bayanus and S. mikatae also have protointrons, but most are species-specific, indicat-

ing that protointrons appear and disappear during evolution. This suggests that protointrons

arise initially through genetic drift, and provide raw material for intronization to enable intron

creation through a mechanism distinct from gene duplication or intron transposition [4].

While only a very tiny fraction of protointrons might ever evolve into new standard introns,

we observe several more efficiently spliced protointrons that appear to have advanced along

Protointrons in Saccharomyces
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the intronization pathway. This intermediate class of introns tends to occur in 5’UTRs where

they might buffer the negative effects of RNA secondary structure or micro-ORFs (uORFs) on

translation, however there is currently no evidence that these have any adaptive value. This

work reveals the extent to which the spliceosome recognizes and splices intron-like sequences,

thus expanding the information contained in the genome. This contribution of the spliceo-

some to the information content of the transcriptome may enhance the rate at which new

genes and regulatory mechanisms appear in eukaryotes.

Results

Deeper RNA sequencing of a nonsense-mediated decay deficient strain

confirms a class of rare splicing events in Saccharomyces cerevisiae
In experiments where we observed increases in splicing efficiency of standard introns after

repression of RPG expression [28], we also observed unannotated splicing events, distinct

from known introns, whose splicing efficiency improved. In addition, inventive new RNAseq

methods designed to capture branchpoints [32, 34] have provided evidence for splicing events

elsewhere in the transcriptome. Some of these events appear to be activated in response to

stress [32], which down-regulates RPG expression and creates hungry spliceosome conditions.

Still others are more readily detected during meiosis [32, 39], or when cells are deleted for

RNA decay pathway components that degrade unstable transcripts [32, 33, 38]. Our interest in

understanding the evolution of splicing prompted us to focus on these distinct new introns.

To capture more of them, we obtained additional RNAseq data that included non-polyadeny-

lated RNAs and RNAs sensitive to nonsense-mediated decay. We made four libraries, one

each from rRNA-depleted RNA from untreated (0 min) and rapamycin treated (blocks nutri-

ent signaling and represses RPGs, 60 min) replicate cultures of a yeast strain deficient in NMD

(upf1Δ, [49]). We obtained more than 300 million reads that show excellent between-replicate

coherence in gene expression changes (S1A Fig). These data confirm our previous observation

[28] that splicing of a majority of standard introns in non-RPGs increases after rapamycin

treatment. A splicing index relating change in the ratio of junction/intron reads over time (SJ

index = log2[junctions-t60/intron-t60]–log2[junctions-t0/intron-t0]) increases for most

introns in transcripts whose total transcript levels change less than two-fold during the experi-

ment (Fig 1A, blue circles, S1 Table, NB: RPGs are repressed >2 fold and are excluded). In

addition to the standard introns, we observe more than 600 splicing events that result from use

of alternative 3’ or 5’ splice sites overlapping the standard introns (see also the study by Doug-

lass et al. [38]). Some of these splicing events have been previously characterized [33, 36, 37],

and produce out of frame mRNAs that are more easily detected in the upf1Δ strain due to the

loss of NMD (S2 Table). Because our interest here is in introns appearing at novel locations,

we have not studied the splicing events that overlap the standard introns any further. At this

sequencing depth, a set of splicing events that do not overlap any standard intron is evident

(S1 and S3 Tables). These are supported by reads that span sequences with known characteris-

tics of introns but occur at much lower frequencies than those for standard introns. As is the

case for standard introns, splicing of the majority of these nonstandard introns increases upon

rapamycin treatment (Fig 1A, orange circles, positive values indicate increased splicing), sug-

gesting they are also in competition with RPG pre-mRNAs for the spliceosome.

Identification and validation of protointrons

To extract and validate nonstandard splicing locations from the RNAseq data, we inspected

reads that span and are missing genomic sequences bounded by GT or GC on the 5’ side and

Protointrons in Saccharomyces
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Fig 1. Identification and validation of splicing at unannotated genomic locations. RNA sequencing reads corresponding to spliced RNAs

defined as described in the text were used to identify and measure splicing. Reads (~300M) were obtained from untreated cells and cells treated

for 60 minutes with rapamycin from two biological replicate experiments. (A) Splicing efficiency of many introns improves after rapamycin

treatment as judged by the log2 fold change in the ratio of splice junction reads to intron reads (splicing index; see Methods) for replicate

experiments. Standard introns with�35 total junction reads are shown as blue dots. Unannotated and non-overlapping splicing events

(protointrons) with�50 total junction reads are shown as orange dots. Data points in quadrant I indicate introns in which splicing improved

after treatment with rapamycin in both replicate experiments. (B) Genomic alignment and lack of conservation for three example protointrons.

Protointrons in a divergent upstream transcript antiASH1, a XUT XUT12R-370, and an mRNA for TAF13 are shown. The 5’ ss is green, the

branchpoint sequence is yellow, and the 3’ ss is blue. The vertical bars indicate where additional intron sequences are not shown. (C) RT-PCR

validation of protointron splicing and increased splicing after rapamycin is shown for the protointrons in (B), and for a non-coding vegetative

Protointrons in Saccharomyces
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AG on the 3’ side, aggressively filtering out those that were unlikely to have been generated by

the spliceosome (S4 Table, see also Methods). For example, we ignored reads that are abundant

in only one library due to spurious PCR-derived “jackpot” amplification, or that are incor-

rectly mapped as spliced over naturally repeated sequences. We also filtered out reads that

appeared fewer than three times, spanned sequences with no discernable match to a relaxed

and appropriately positioned branchpoint consensus sequence (RYURAY, >45 from a 5’ss,

>7 from a 3’ss), or that use a GAG 3’ ss (although some of these may be true). Finally, in order

to focus on new intron locations, we separated out reads that overlap known standard introns

(these are found in S2 Table). Finally, we merged overlapping alternative splice sites observed

at each new intron location into one. From this sequencing experiment, we identify 226 splic-

ing events at 163 intron locations in the Saccharomyces cerevisiae genome that do not overlap

with standard introns. We call these protointrons (Table 1, S3 Table, NB: we have reclassified

some previously annotated introns as protointrons based on their less efficient splicing and

lack of conservation in close relatives, see below).

To characterize protointrons as a distinct class of splicing events, we inspected the align-

ments of many individual protointrons (for example Fig 1B) and validated more than a dozen

of them by RT-PCR, cloning, and Sanger sequencing (Fig 1B and 1C, S5 Table). These events

map to a diversity of transcribed locations, including mRNAs, a variety of non-coding RNAs

(CUTs, SUTs, XUTs, etc.), and within telomeric Y’ repeats. 39% of protointrons can be found

entirely within a coding region (e. g. TAF13 Fig 1B and 1C, S1B and S1E Fig), whereas others

reside in noncoding regions or within RNA antisense to a standard gene (29%, e. g. antiASH1,

Fig 1B and 1C, S1B and S1C Fig). Often alternative splice sites are observed, for example in the

noncoding RNA XUT12R-370 antisense to TUS1 (Fig 1B, note only the product derived from

use of the downstream 3’ ss is visible on the gel in Fig 1C, S1D Fig). An internally initiating

RNA from the meiotic SPO1 gene expressed only during vegetative growth has a protointron

(Fig 1C, S1F Fig). Protointrons can also be found crossing boundaries from the coding region

to either UTR in mRNAs (17% in 5’UTR^coding; 1% in coding^3’UTR), and still others can

be found completely within a UTR (9% in 5’UTR; 4% in 3’UTR). In many cases, excision, clon-

ing and sequencing the faint band near the size predicted by the RNAseq reads identifies addi-

tional alternatively spliced forms not observed by RNAseq. For the four events shown in Fig

1C, we successfully confirmed splice junctions indicated by RNAseq (S3 Table).

Several of the protointrons predicted by the RNAseq data appear to use unusual 5’ splice

sites (5’ ss) not anticipated by examination of standard introns. Standard intron 5’ ss show

strong conservation of the G residue at position 5 (G5, underlined here: GUAYGU), which

contributes to intron recognition through interactions first with U1 snRNA and later with U6

snRNA [50, 51]. The 5’ ss consensus in mammals has a less strongly conserved G5, and a sub-

set of mammalian introns use G at position 6 instead [52]. Validation tests of several protoin-

trons whose 5’ ss lack G5 show that they are authentic products of splicing (Fig 1D, S1G Fig).

During this effort we also detected splicing at an AT-AC junction in the noncoding RNA

SUT635 (Fig 1E). Although yeast does not have a minor (U12) spliceosome, some major (U2)

spliceosomal introns use AT-AC junctions [53], and mutation of a standard yeast intron

shows that AT-AC is the most efficient splice junction dinucleotide combination after GT-AG

[54]. Alternative AT-AC junction use has been reported for the standard intron (a normal

cell transcript of a meiotic gene ncSPO1. PCR products corresponding in size to spliced (predicted based on RNAseq read structure) and

unspliced. RNAs are labeled. Splice junctions were confirmed by sequencing cloned PCR products. (D) Validation of protointron splicing

through 5’ ss not observed in standard introns. Junctions were validated by sequencing cloned PCR products. (E) A protointron in SUT635 uses

both GT-AG and AT-AC splice sites. The sequences of two cloned PCR products from SUT635 are aligned to the genome (above) and the

sequencing trace from the clone representing the use of AT-AC junctions is shown (below).

https://doi.org/10.1371/journal.pgen.1008249.g001
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GT-AG intron) in RPL30 [32], however no standard yeast intron uses AT-AC junctions nor-

mally. The appearance of an AT-AC protointron in SUT635 suggests that AT-AC introns may

represent an alternative path to evolution of standard introns.

Distinct features of protointrons: Sequence, conservation, size, and splicing

efficiency

To begin contrasting the features of protointrons and standard introns, we evaluated evolu-

tionary conservation, the most obvious difference. To analyze conservation around splicing

signals of both intron classes, we extracted a sequence window surrounding the 5’ss, predicted

Table 1. Easily detectable protointrons in Saccharomyces cerevisiae upf1Δ mutant cells.

Gene Overlapping 5’SS Consv. BP Consv. 3’SS Consv. % %

Junctions 5’SS (predicted) BP 3’SS Spliced Spliced

0 min. 60 min.

MTR2 5 GTACGT 0.04 AACTAATA 0.02 CAG 0.42 57 62

GTATGT 0.00 AACTAACC 0.00 CAG 0.03

TAG 0.00

Opposing 2 GTATGA 0.79 TACTAACA 0.77 AAG 0.16 22 35

YPL216W GTTTGT 0.00 AAG 0.14

MCR1 5 GTACGT 0.74 TACTAAC 0.00 AAG 0.38 36 46

GTACTC 0.01 AACTAACA 0.25 TAG 0.03

TACTAACG 0.01 CAG 0.04

YEL023C 1 GTATGG 0.00 CACTAACA 0.27 TAG 0.41 23 17

TAG 0.18

ZTA1 2 GTATGA 0.95 TACTAATC 0.57 CAG 0.98 1.6 5.3

AAG 0.99

PDX3 0 GTATCA 1.00 TACTGACG 0.50 AAG 1.00 1.6 1.9

TVP15 1 GTATGC 0.98 TACTAAGT 0.16 CAG 0.62 2.2 4.7

TAG 0.62

PUS7 3 GTAAGG 0.99 TACTAACA 0.89 AAG 0.97 6.5 4.4

TAG 0.62

AAG 0.62

AAG 0.96

YDR336W 1 GTACGT 0.06 CACTAAAA 0.12 TAG 0.02 18 44

AAG 0.08

NTH1 1 GTATGG 0.99 TGCTAACA 1.00 CAG 1.00 1.4 4.0

TAG 1.00

SPO1 0 GTATGT 0.52 TATTAACC 0.96 CAG 0.66 6.8 14

MCA1 0 GTACAG 0.02 GACTAATG 0.97 AAG 0.68 2.7 2.5

Opposing 1 GTAAGT 0.37 TACTAACT 0.25 AAG 0.44 0.11 18

IPT1 CAG 0.29

PDC1 1 GTATGT 1.00 CACTGACA 1.00 CAG 1.00 0.03 0.05

CAG 1.00

Downstream 1 GTGTGT 0.01 GACTAACA 0.04 CAG 0.00 36 31

of PDR12 AAG 0.02

SYN8 2 GTATGG 0.99 AACTAATA 0.23 TAG 0.96 2.1 3.4

CAG 0.95

CAG 0.96

https://doi.org/10.1371/journal.pgen.1008249.t001
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branchpoint, and 3’ss from each standard intron and protointron and compared them. Posi-

tion-specific weight matrix-based logos of the splicing signals (Fig 2A) reveal that protointrons

use a more divergent collection of splicing signals than do standard introns. As noted above,

G5 of the 5’ss is a prominent feature of the standard yeast intron 5’ss but is less well repre-

sented among protointron 5’ss. Similarly, the predicted branchpoint sequences of protointrons

lack strong representation of bases to either side of the core CUAA of the UACUAAC consen-

sus for standard introns. Branchpoints of standard introns are enriched for Us upstream of the

consensus and for A just downstream, and neither of these context elements are prominent in

the predicted branchpoints of protointrons. The 3’ss are more similar, but as with the branch-

point, the U-rich context detectable upstream of the standard intron 3’ss is not observed in

protointrons. The more diverse collection of splicing signals used by protointrons is similar to

that of the overlapping alternative splice sites of standard introns [33], and a mixed set of over-

lapping and distinct potential introns detected using a branchpoint sequencing approach [32].

Furthermore, we note that protointrons use a less constrained set of 5’ splice sites than stan-

dard introns as compared to the branchpoint and 3’ss sequences. This may reflect important

interactions between the pre-mRNA cap binding complex and the U1 snRNP during earliest

steps of spliceosome assembly [55–58] and suggests these robust interactions allow greater

drift of the 5’ss than other splicing signals. This is also consistent with our observation that

26% of protointrons overlap 5’ UTRs as compared with 5% for 3’ UTRs and agrees with a pre-

diction of the intronization model developed for metazoans [8, 59]. We conclude that protoin-

trons use a wider variety of branchpoints and splice sites than do standard introns in S.

cerevisiae and hypothesize that protointrons may evolve toward standard intron status by

acquiring mutations that enhance the context and match to the consensus of the core splicing

signals, in part to increase their ability to compete with RPG pre-mRNAs [28].

With the exception of the protointrons found entirely within protein coding sequences, typ-

ically at least one (and often all three) of the splicing signals for a given protointron in S. cerevi-
siae is imbedded in sequence that is not conserved in closely related Saccharomyces species

(Fig 1B and 1E, S1C and S1F Fig). To analyze whether this is a distinguishing characteristic of

protointrons, we recorded the average phastCons score (range between 0, evolving as not con-

served, and 1, evolving as highly conserved, [60]) of the nucleotides within sequence windows

containing the 5’ss, the branchpoint, and the 3’ss of the standard introns and protointrons and

plotted them (blue bars, standard introns; orange bars, protointrons, Fig 2B). Many standard

introns are embedded in conserved protein coding sequences, and thus the splice sites and

their immediate exon context are also conserved, such that the average phastCons scores for

both the 5’ and 3’ss windows rise above 0.7 (Fig 2B). The branchpoints of standard introns are

also conserved but have a broader and lower score distribution, because constraining protein

coding exon sequences are not usually found near the branchpoints of standard introns. In

contrast, the distributions of phastCons scores for each of the protointron splicing signals is

clearly bimodal, meaning that protointron splicing signals are either highly conserved, falling

within protein coding sequence, or are poorly conserved, falling in UTRs or intergenic regions

(Fig 2B). This distribution illuminates the sequence landscape within which most protointrons

arise. Since the strongly transcribed regions of the genome code mostly for protein, and tran-

scription is a prerequisite for splicing, protointrons tend to appear in or span less well con-

served noncoding RNA sequences such as UTRs and ncRNAs (S1B Fig). This distinguishes

protointrons from standard introns and suggests that most of the protointrons we detect have

appeared only recently in the S. cerevisiae genome, when transcribed non-protein coding

regions acquire intron-like features by mutation.

Standard introns show a bimodal length distribution, with peaks at about 100 nt and 400 nt

([61], Fig 2C). In contrast, the distribution of protointrons is on average shorter, with a single
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Fig 2. Differences between standard introns and protointrons. (A) Splice site and branchpoint sequences of protointrons are less constrained

in sequence than the standard introns. Weblogos representing position-specific weight matrices of the 5’ ss, branch points, and 3’ ss of the

standard introns (top) and the protointrons (bottom) are shown. (B) The pattern of sequence conservation in the context of protointron

splicing signals (orange bars in each panel) is bimodal as compared to the standard introns (blue bars in each panel). Histograms of the standard

introns (blue bars) and the protointrons (orange bars) showing the distributions of PhastCons scores in windows containing the 5’ ss,

branchpoints, and 3’ ss of the standard introns and protointrons. See text. (C) The size distribution of protointrons is distinct from that of the

standard introns. Histograms show the distribution of intron sizes for the standard introns (blue bars) and the protointrons (orange bars). A

Kolmogorov-Smirnoff test indicates the two distributions are different (D = 0.22, p value� 10−4). (D) Protointrons are much less efficiently

spliced than standard introns. The scatter plot shows the relationship between splicing efficiency in untreated (time 0) cells and the change in

splicing efficiency after one hour in rapamycin. Standard introns are shown in blue, protointrons in orange.

https://doi.org/10.1371/journal.pgen.1008249.g002
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main peak at around 100 nt in length, and few larger than 300 nt. These distributions are sig-

nificantly different (Kolmogorov-Smirnoff test, p� 10−4), suggesting that if protointrons

evolve into standard introns, they may become longer by acquiring additional sequence fea-

tures that enhance their recognition by the spliceosome. Many of the larger standard introns

are found in RPGs [61], where secondary structures and other long distance RNA-RNA inter-

actions promote efficient and accurate splicing [62, 63]. The elaboration of such structures

during evolution of increased splicing efficiency may explain the increased intron length that

characterizes the large intron class in yeast.

Protointrons are less efficiently spliced than standard introns (Fig 2D, Table 1, S1 and S3

Tables). The vast majority of standard introns are spliced at greater than 80% efficiency

(median ~ 93%) by comparison of splice junction reads to intron base coverage. Exceptions

include meiotic introns whose efficient splicing may require repression of RPGs or the expres-

sion of a meiosis-specific splicing factor like Mer1 [27–29]. In contrast, most protointrons

have splicing efficiencies below 20% at best (median ~ 1%). A few protointrons, such as the

introns in the S. cerevisiae MTR2, USV1, and MCR1 genes or the S. bayanus YTA12 gene, are

uncharacteristically well spliced, suggesting that they may be transitional intron forms or spe-

cies-specific standard introns (see below). Splicing improves for most protointrons and stan-

dard introns after rapamycin treatment, however some standard introns appear to show

reduced splicing, suggesting splicing repression in response to rapamycin at those introns.

Coding regions are depleted of sequences required for splicing

Protointrons that emerge within coding regions (39%, S1B Fig) might disrupt gene expression

by reducing mRNA levels or creating toxic proteins. Since protointrons emerge readily from

nonconserved sequence (Fig 2B), we wondered whether the appearance of protointrons within

ORFs most often reduces fitness, and thus whether the frequency of splice site and branch-

point sequences might be lower than would be expected by chance in protein coding regions.

In rare cases such introns might allow advantageous mRNA regulation through NMD [5, 64]

to emerge (as appears to have been the case with a recently evolved standard intron in PRP5,

[65]) or make mRNA for beneficial alternative proteins (as may be the case for PTC7, [30, 66,

67]; and MRM2 [37], see below), which have in-frame conserved coding sequences through

their introns. Analysis of several diverged genomes by Farlow et al. revealed that the consensus

5’ ss sequence is significantly underrepresented in the coding strand of genes compared to the

noncoding strand [68]. To test whether S. cerevisiae coding sequences might be depleted of

splicing signals, we compared their frequency in the ORF set of the extant S. cerevisiae genome

with that in 10,000 synthetic ORF sets derived by randomizing the order of codons for each

ORF. This approach maintains ORF length, integrity, GC content, and codon usage in the per-

muted ORF sets while generating partially randomized nucleotide sequences that can be used

as a background sequence set for comparison, and has been used to evaluate co-evolution of

RNA processing signals within coding sequence [69].

To assess the representation of 5’ ss and branch point sequences, we chose two 6-mers as

proxies–one for the 5’ ss (GTATGT), and one for the branch point (ACTAAC). We counted

the number of times each appeared in the extant S. cerevisiae ORF set, and in each of the

10,000 permuted ORF sets, and plotted them. For both 6-mers, their counts in the extant ORF

set are less than 3 standard deviations below the mean of their respective counts from the

10,000 permuted ORF sets (vertical lines), indicating that these 6-mers are significantly under-

represented in the natural S. cerevisiae coding sequences as compared to the randomized cod-

ing sequences (Fig 3A).
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Fig 3. Hexamers representing splicing signals are depleted from annotated S. cerevisiae ORFs. (A) Histogram of

counts of two hexamers (6-mers) serving as proxies for the branch point (ACTAAC, blue) and the 5’ ss (GTATGT,

yellow) in the extant ORF set of S. cerevisiae (vertical lines) as compared with the distribution of counts in each of

10,000 codon-permuted ORF sets. (B) Histogram of Z-scores computed for each of 4096 6-mers in the extant S.

cerevisiae ORF set relative to their corresponding mean representation in 10,000 codon-permuted S. cerevisiae ORF

sets. The number of 6-mers (y-axis) with the given Z-score (x-axis) is represented as a histogram in grey. Similar

distributions are shown for two subclasses: those containing stop codons (blue histogram) and those containing start

codons (maroon histogram). The Z-scores for the branchpoint proxy hexamer ACTAAC and the 5’ splice proxy

hexamer GTATGT are marked in the plot. The 6-mer “ACTAAC” had a Z-score of -12.25 and ranked 153rd lowest

among all 4096 6-mers, and 91st lowest of 759 6-mers carrying stop codons. The 6-mer GTATGT had a Z-score of

-6.98 and ranked 671st lowest among all 4096 6-mers, and 7th lowest of 255 6-mers carrying start codons.

https://doi.org/10.1371/journal.pgen.1008249.g003
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To determine whether these proxy 6-mers were unusually depleted as compared to other

6-mers, we calculated a Z-score for each of the 4096 6-mer sequences in turn, comparing the

counts of each in the extant S. cerevisiae ORF set with its mean counts in the 10,000 permuted

ORF sets, and plotted the distribution (Fig 3B, grey bars). The intron branchpoint 6-mer

“ACTAAC” is found comparatively much less frequently in the extant genome than are other

6-mers (Fig 3B), and much less frequently than the average stop codon-containing 6-mer (blue

bars). The 5’ ss 6-mer “GTATGT” is also more depleted than the average 6-mer, especially

when compared to the subset of ATG containing 6-mers (maroon bars, Fig 3B). Because there

is a large amount of information in coding sequences, we cannot be certain the depletion of

the splicing signal 6-mers is due to splicing. Numerous other features are being randomized by

the process of codon permutation, for example 6-mer representation may be influenced by di-

codon frequencies that affect translation [70]. Even so, these observations are consistent with

the idea that splicing signals within ORFs carry a risk of reduced fitness. This suggests that a

robust level of spliceosome activity may be sufficient to lead to loss of correct mRNA should

genetic drift create splice sites within ORFs, providing a rationale for tight regulation of a splic-

ing activity limited to pre-mRNAs that can compete [28].

Protointrons are idiosyncratic to closely related species

S. cerevisiae protointrons are not conserved in closely related yeasts, suggesting that they have

appeared or disappeared in S. cerevisiae in the time since these lineages diverged. To explore

the hypothesis that protointrons arise and disappear differently in the other Saccharomyces lin-

eages, we treated cultures of S. mikatae and S. bayanus with rapamycin for 0 or 60 minutes, iso-

lated RNA, depleted rRNA, and made cDNA libraries for sequencing. These strains are NMD

competent (UPF1), so our ability to detect transcripts subject to NMD is limited. Regardless,

nearly all annotated introns in S. cerevisiae are present in the S. mikatae and S. bayanus
genomes, and S. bayanus has an additional standard intron in a CHA4-like gene that has no

ortholog in S. cerevisiae (S6 and S7 Tables). Some annotated S. cerevisiae introns are missing in

these close relatives and based in part on their locations and splicing efficiencies, we propose

reclassifying them as protointrons (see below). In contrast to the high conservation of standard

intron locations, we detect distinct sets of protointrons in each species (S6 and S7 Tables). We

validated a subset of these (Fig 4) and find that most all of the S. mikatae protointrons are not

present in either S. cerevisiae or S. bayanus, and that the S. bayanus protointrons are not found

in S. cerevisiae or S. mikatae (S3, S6, and S7 Tables). An exception to this is YIL048W/NEO1,

in which the same protointron is observed in both S. cerevisiae (S3 Table) and S. mikatae (Fig

4, S6 Table). High sequence conservation in the coding region of YIL048W/NEO1, most likely

due to functional constraints on the protein coding function of the sequence, has fortuitously

preserved the splicing signals in all of the Saccharomyces yeasts. The intron is in frame with the

coding sequence (S8 Table), thus although the splicing of this protointron is not efficient, it

remains possible this intron could generate a functional alternative protein. We conclude that

protointrons are idiosyncratic in closely related yeast species. This is evidence for rapid evolu-

tionary appearance and disappearance of sequences that can be functionally recognized by the

spliceosome. The dynamics of creation of protointrons thus appears consistent with genetic

drift, primarily in the rapidly evolving nonconserved sequences of recently diverged genomes.

Introns with features of both protointrons and standard introns may be

intermediates in de novo intron creation

Based on the above analysis and those described elsewhere that note “novel” splicing [32–34,

37–39, 67], we propose defining standard introns as (1) conserved in related organisms or
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clades, (2) efficiently spliced under appropriate physiological conditions, and (3) established in

the pathway for production or regulation of a functional gene product. Furthermore, we pro-

pose defining protointrons as (1) not conserved in closely related species, (2) inefficiently

spliced, and (3) not clearly understood to contribute to correct expression or regulation of a

gene. This simple definition allows classification of most all of the observed splicing events in

the yeast genome as either protointron or standard intron, with only a few exceptions. The

vast majority of protointrons arise by neutral drift and likely provide no fitness advantage, and

most probably disappear. A few introns do not neatly fall into one or the other category and

may be transitioning from protointron to standard intron status, as predicted by the introniza-

tion model. Like protointrons these intermediate class introns not conserved, but unlike typi-

cal protointrons they have increased splicing efficiency, and may appear positioned to

influence expression of the gene that carries them.

Examples of protointrons that may be on an evolutionary path toward standard intron sta-

tus include introns in the 5’ UTRs of S. cerevisiae MTR2, USV1, YEL023C, and MCR1, and in

the 5’ UTR of S. bayanus YTA12 (Fig 5). Using the unrooted tree describing relationships

between the genomes of the sensu stricto yeasts [71], we map the appearance of these high effi-

ciency protointrons as predicted by their presence in extant genomes that have diverged over

Fig 4. Protointrons are found in other Saccharomyces species but are not conserved. RT-PCR products from RNA of S. mikatae (left) and S.

bayanus (right) at different protointrons identified by RNAseq. Splice junctions were validated by cloning and sequencing the PCR products

indicated by a white dot. Below the gel image are shown alignments of the RT-PCR product sequences from S. mikatae antiYCR060W and S.

bayanus YOL122C to their corresponding genomes to show lack of conservation of splicing signals (boxed).

https://doi.org/10.1371/journal.pgen.1008249.g004
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10–20 million years. The MTR2 intron contains essential sequences [72] and can diversify the

N-terminal sequence of the mRNA export protein Mtr2 [73]. When sequences of related yeasts

became available [31], it became clear that the MTR2 intron is unique to S. cerevisiae (Fig 5).

High efficiency protointrons are found in the 5’UTRs of USV1 and MCR1. The USV1 intron is

efficiently spliced after rapamycin treatment in S. cerevisiae and is also functional in S. mikatae

Fig 5. Unusually efficient protointrons that may be evolving toward standard introns. Positions of 5 efficiently spliced protointrons that

share similarity with standard introns on the unrooted tree of sensu stricto Saccharomyces species are shown. Grey arrows indicate separation

points that delineate boundaries between species having or lacking the indicated protointron sequence. Bars in the alignments indicate that

sequences between these blocks are not shown. 5’ ss are green, branchpoint sequences are yellow, and 3’ ss are blue. Although these protointrons

are restricted to one or two closely related species, their splicing efficiency approaches that of standard introns. Most protointrons are unique to

a species and are very inefficiently spliced.

https://doi.org/10.1371/journal.pgen.1008249.g005
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(Fig 5, S6 Table). However, S. kudiravzevii and S. bayanus have different sets of nucleotide

changes that eliminate splice sites and branchpoints required for this intron. The MCR1 intron

is spliced at about 30%, and appears to be shared by S. paradoxus, but is absent in S. mikatae,
S. bayanus, and S. kudriavzevii. None of these splicing events alter the N-terminus of Usv1 (a

stress induced transcription factor) or Mcr1 (a mitochondrial NADH-cytochrome b5 reduc-

tase), however both introns remove uORFs from the 5’ UTRs of these genes, suggesting that

splicing could affect 5’UTR function in mRNA translation or stability for both genes. Finally, a

very efficiently spliced (>95%) intron is found in the 5’UTR of the S. bayanus YTA12 gene, as

well as in S. kudriavzevii (Fig 5). Removal of this intron does not alter the N-terminus of

Yta12, a mitochondrial protein complex assembly factor [74], but does lead to removal of a

uORF. Interestingly the S. cerevisiae YTA12 gene matches at 88 of 117 (75%) positions in the S.

bayanus intron and has neither an intron nor any uORF (see below).

Ten percent of the protointrons identified in S. cerevisiae are located exclusively in 5’UTRs

(S1B Fig). The apparent relationship between introns and uORFs leads to the idea that 5’UTR

introns may be adaptive by protecting mRNAs with long 5’UTRs from the general negative

effect of uORFs [48, 75]. To test this idea, we asked whether uORFs are present more fre-

quently in 5’UTRs that contain standard introns, as compared to similarly sized 5’UTRs that

do not. There are 22 yeast genes (7%) with standard introns in their 5’UTRs, (this number

does not count the annotated introns in MCR1, MTR2, or USV1, which are not conserved

across the sensu stricto group). The size range of the (unspliced) 5’UTRs for these 22 is from

~240 to 950 nucleotides, and there are 91 intronless genes with 5’UTRs in this size range. We

counted uORFs longer than 4 codons (including the AUG, but not the stop codon) within

5’UTRs in this size range. Among the 91 genes without 5’ UTR introns, 53 lack any uORFs,

whereas 38 have at least one uORF. All 22 genes with 5’UTR introns have at least one uORF,

and for 20 of these all the uORFs in the 5’ UTR are removed by splicing. This distribution of

uORFs in 5’UTRs with introns is unlikely to have been generated by chance (Fisher’s exact

test, p<10−5). One hypothesis to explain this is that by removing much of the 5’ UTR RNA, an

intron may protect a gene that has a long 5’UTR from genetic drift that creates uORFs, or

other translational inhibitory features like RNA secondary structure [48]. Additional experi-

ments will be needed to determine which if any of these splicing events promotes gene expres-

sion and whether or not the effect contributes to fitness.

A second evolutionary scenario whereby protointrons may be adaptive concerns in frame

splicing, which would produce an alternative polypeptide. This appears to be the case for the

standard intron in PTC7 [30, 66]. A similar intron is found in MRM2, where as many as three

different proteins may be produced (S1 and S2 Tables, see also [37], NB: not annotated in

SGD, but this fits the standard intron definition). Despite forces that seem to deplete splicing

signals within ORFs (Fig 3), we find 20 (out of 63) 3n protointrons within ORFs that do not

interrupt the reading frame and thus could produce functional proteins, particularly under

stress or other conditions where RPG transcription is reduced (S8 Table). We suggest that

such protointrons provide evolutionary opportunities to create new protein isoforms from

existing genes.

Telomeric Y’ repeats

Intron-like sequences have been noted in the telomeric Y’ family of repeat sequences for more

than 25 years and continue to be annotated in the Saccharomyces Genome Database (SGD).

So far, molecular tests for splicing of these annotated introns have been negative [61, 76].

Intron predictions allow some Y’ repeat element copies to encode a large (1838 amino acid)

protein (e. g. YNL339C, Fig 6A), that carries an N-terminal Sir1 domain and a central DExD
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Fig 6. Introns in the Y’ element repeat family. Two different introns are found in the transcribed Y’ repeat elements.

(A) Y’ intron 1. Top: expanded view of the protein encoded by YRF1-6 located in the Y’ element at the left end of

chromosome XIV with the Sir1 and DECD helicase homology regions indicated. An expanded segment from the

upstream part of the gene shows the alignment of the detected intron relative to the annotated predicted intron at SGD.

At the bottom is shown the alignment of the seven different versions of this intron from the seventeen Y’ elements in the

S. cerevisiae genome that possess it. Sequence names are based on standard and systematic annotations from the

Saccharomyces Genome Database (SGD). 5’ ss are green, branchpoint sequences are yellow, and 3’ ss are blue. (B) Y’
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helicase domain. Other Y’ elements differ in sequence and can only encode fragments of the

open reading frame that may nonetheless produce smaller functional proteins, for example the

helicase overexpressed in telomerase-deficient “escaper” colonies [76, 77]. The function(s) of

any of the Y’ element predicted proteins in normal cells are not known.

To determine if Y’ element transcripts are spliced, we allowed RNAseq reads to map to the

repetitive Y’ elements (i. e. without masking). Although the mapped locations may not be the

precise origin of the RNA that created the read, this allows us to identify spliced reads and

assign them to possible members of the Y’ repeat family. We find two introns within the Y’

repeat family (Fig 6), one of which lies on the far left of the repeat and is required to create the

open reading frame for the longest predicted protein (exemplified by YNL339C near TEL14L,

Fig 6A). The other is in the center of the Y’ repeat (exemplified by YLR464W near TEL12R,

Fig 6B). Neither of these introns matches the annotations at SGD, and instead in both cases,

downstream 3’ ss are used (see also [37]). It is not uncommon for the yeast spliceosome to skip

proximal 3’ ss in favor of a distal 3’ ss, in some cases due to secondary structure of the pre-

mRNA [78]. The Y’ elements in S. cerevisiae differ from each other; not all can express a pro-

tein as large as YNL399C after removal of intron 1 using the distal 3’ ss. Intron 2 splicing does

not greatly extend the open reading frame of YLR464W. To confirm that the reads arise from

splicing rather than from a deleted copy of the Y’ element precisely lacking the intron, we

searched the genome using the “spliced” sequence produced for intron 1 or intron 2 and

found that there is no such contiguous genomic sequence. We conclude that Y’ element tran-

scripts can carry at least two introns that are distinct from current annotations in SGD (Fig 6).

To evaluate the sequence relationships of the Y’ repeat element introns we aligned them

with each other, after merging identical copies into one. All the predicted intron 1 sequences

have the second most common 5’ ss in the yeast genome (GUACGU, followed by the preferred

A at position 7, [61]. The most distal 3’ ss of several possible creates the large ORF, and is UAG

for all except YPR202W, which has a CAG. Several other potential 3’ ss (including the one

annotated in SGD) are skipped or used alternatively. Interestingly only YPR202W, YRF1-3,

YRF1-6, and YRF1-7 have the canonical UACUAAC branch point sequence, whereas most of

the others have UAUUAAC, a variant found in some standard introns (Fig 6A). The remain-

ing group (YEL075C, YRF1-2, and YRF1-4) are deleted for the region containing the branch

point, suggesting that they are unable to be spliced. Intron 2 has the most common 5’ss

GUAUGU, and the most common branch point UACUAAC, and uses the first AAG (a less

commonly used but standard 3’ ss) downstream from the branch site (Fig 6B). Most copies

also contain an alternative 5’ ss which is used less frequently. We have not estimated the effi-

ciency of splicing of these introns because we cannot reliably assign reads to specific repeat ele-

ments with confidence. The current genome assemblies of S. mikatae, S. paradoxus, and S.

kudriavzevii, but not the S. bayanus assembly include at least one Y’ element related to the S.

cerevisiae elements [71], but the precise numbers and arrangements of the Y’ elements in those

genomes await refinement of the genome assemblies for those organisms.

The S. bayanus YTA12 protointron functions in S. cerevisiae
The finding of a highly efficient protointron in the YTA12 5’ UTR of S. bayanus (and putatively

in S. kudriavzevii, Fig 5) that is not observed in the alignable syntenic sequence of S. cerevisiae

intron 2. Top: expanded view of the protein encoded by YLR464W located in the Y’ element at the right end of

chromosome XII. The alignment shows the detected intron relative to the annotated predicted intron at SGD. At the

bottom is shown the alignment of the nine different versions of this intron from the nine Y’ elements in the S. cerevisiae
genome that possess it. Splicing signals are highlighted as in (A).

https://doi.org/10.1371/journal.pgen.1008249.g006
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prompted us to test (1) whether this S. bayanus-specific intron can be spliced in S. cerevisiae,
and (2) whether the intron might confer some advantage for growth on glycerol, given the

function of Yta12 in assembly of mitochondrial protein complexes [74]. Fig 7A shows an align-

ment of the region including and upstream of the Yta12 start codon from S. bayanus (sacBay),

S. cerevisiae (sacCer) and S. cerevisiae in which the 117 bp of the S. cerevisiae genome corre-

sponding to the S. bayanus intron have been replaced in S. cerevisiae with the S. bayanus intron

(Sc-SbI). This replacement was made using CRISPR/Cas9 guided cleavage of an S. cerevisiae-
specific target sequence within the syntenic region and a repair fragment containing the S.

bayanus intron (Fig 7B). As controls, we created S. cerevisiae strains precisely deleted for the

syntenic region aligning with the S. bayanus intron, as well as versions of the S. bayanus intron

with 5’ ss mutations (Fig 7C). We isolated RNA and evaluated the expression of these modified

YTA12 genes by extension of a labeled primer complementary to YTA12 mRNA with reverse

transcriptase (Fig 7C). The major transcription start sites for YTA12 in S. cerevisiae map about

300 nt from the 5’ end of the primer (Fig 7A and 7C, lane 1). These start sites are unaffected by

the 117 bp deletion (the same collection of cDNAs are shorter by 117 residues, lane 2). The

migration of cDNAs from the deletion strain are useful to mark the expected position of

spliced RNAs, and indeed replacement of the 117 bp with the S. bayanus intron sequence (lane

3) results in the appearance of the same collection of cDNAs with the disappearance of the sig-

nal from pre-mRNA, indicating efficient splicing (lane 3, compare with lane 1).

Mutation of the 5’ ss from GUAUGU to GaAUGU or GaAcGU results in the reduction of

the spliced mRNA cDNAs, and the appearance of cDNAs corresponding to pre-mRNA (lanes

4 and 5), indicating that splicing is inhibited by these mutations. Changing the 5’ ss from

GUAUGU to the less commonly used GUAcGU reduces the efficiency of splicing but does not

block it, as judged by the slight accumulation of unspliced RNA (lane 6). Unexpectedly, the S.

bayanus intron sequence activates a set of cryptic start sites in the S. cerevisiae sequences

downstream of the major start site and the S. bayanus intron (Fig 7C, lanes 2–6). These start

sites are inefficiently used in the wild type S. cerevisiae YTA12 promoter (lane 1). One conse-

quence is that new mRNAs are made that initiate downstream of the intron and thus do not

require splicing for expression of Yta12. This interpretation is supported by the observation

that all the strains grow on YP glycerol plates as well as wild type BY4741 (not shown). This

result highlights the challenge of anticipating the effect of mutations in 5’ UTRs where tran-

scription, splicing, and translation operate together on the same sequence. This experiment

measures changes in splicing due only to differences in the intron, and not due to any differ-

ences in exonic sequences or trans-acting factors between S. bayanus and S. cerevisiae. We con-

clude that the efficiently spliced protointron from S. bayanus is equally at home in S. cerevisiae.
This intron appears to have formed in S. bayanus after S. bayanus and S. cerevisiae last shared

a common ancestor, but before the divergence of S. bayanus from S. kudriavzevii.

Discussion

A second class of splicing events exposes roles of the spliceosome in

evolution

Many previous studies have noted “novel” introns in yeast under a variety of experimental

conditions and genetic backgrounds [32–39, 67]. Here we distinguish protointrons by several

criteria, including that they appear by genetic drift at locations not overlapping known stan-

dard introns. We first recognized protointrons while studying how the abrupt disappearance

of RPG pre-mRNA during early nutrient deprivation signaling frees the spliceosome to

increase splicing of other pre-mRNAs [28, 29]. RNAseq analysis of NMD-deficient yeast cells

treated with rapamycin revealed that protointrons are found throughout the transcriptome in
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Fig 7. The S. bayanus YTA12 5’UTR intron is efficiently spliced in S. cerevisiae. (A) Alignment of the YTA12 promoter and 5’UTR from S.

cerevisiae (sacCer, no intron), S. bayanus (sacBay, very efficient intron), and the S. cerevisiae strain carrying the S. bayanus intron (Sc-SbI),

showing the major transcription start sites and the cryptic start sites (>), the splice sites (underlined), and the aligned base pairs (�). (B) Strategy

for CRISPR/Cas9 editing-based transplantation of the S. bayanus intron into S. cerevisiae. A guide sequence was designed to recognize a

sequence present in the S. cerevisiae YTA12 5’UTR but not present in the S. bayanus intron. A plasmid derived from those provided by DiCarlo

et al. [79] expressing this guide along with Cas9 was co-transformed with a synthetic rescue fragment that contained the S. bayanus intron

sequence between “exons” from S. cerevisiae. Repair of the double-stranded break using this rescue fragment results in transplantation of the S.

bayanus intron into S. cerevisiae. (C) Reverse transcriptase primer extension analysis of RNA from the YTA12 locus of S. cerevisiae strains with

the transplanted S. bayanus intron and mutant derivatives. The cDNAs representing unspliced (native) start sites, spliced (or deleted) RNAs

initiating from the normal start site, and unspliced RNAs arising from cryptic start sites are indicated at left. Lane 1, wild type; lane 2, deletion of
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both coding and non-coding regions of pre-mRNAs, ncRNAs, and antisense transcripts, such

as CUTs, SUTs, and XUTs (Fig 1, S1 Fig). Protointrons contain all of the splicing signals neces-

sary for recognition by the spliceosome (5’SS, BP, and 3’SS), however the sequences of these

signals are more variable than those of standard introns (Fig 2A and 2B). Whereas standard

introns are conserved in related organisms, efficiently spliced, and established for production

or regulation of a functional gene product, protointrons are present in one or a few closely

related species, not efficiently spliced, and do not clearly contribute to correct expression or

regulation of a gene. Given this redefinition, we propose a revised intron annotation, including

the addition of a standard intron in MRM2, and molecular evidence for the correct location of

expected but not demonstrated splicing of Y’ repeat element transcripts. We provide this and

related data on a publicly accessible genome browser with several Saccharomyces species

genomes at http://intron.ucsc.edu/.

Splicing events that occur outside our expectation of what is needed to make a protein or a

structural RNA have attracted labels like “splicing noise” or “splicing error” [80]. But viewing

the spliceosome as an enzyme able to catalyze a complex series of pre-mRNA binding, refold-

ing, and release operations, including two cleavage-ligation reactions, or even just the first one

[35, 81], on a very diverse set of substrates (for review see [2]) suggests that such terms should

be more carefully defined. The protointrons described here, as well as similar newly evolved

splicing events observed in mammalian lncRNAs [82, 83], reveal the outer edges of the sub-

strate repertoire of this enzyme in sequence space, and do not represent either splicing noise

or splicing errors. We suggest the term “splicing noise” should refer to fluctuations due to sto-

chasticity inherent in particular splicing events, just as the term “transcriptional noise” refers

to the stochasticity of transcription events (see [84] and references therein). We also suggest

the term “splicing error” should refer to events within the spliceosome that lead to spliceosome

assembly or catalysis that is incompatible with successful completion of the two splicing reac-

tions, spliced product release, and recycling. In order for splicing to contribute to rapid evolu-

tion of multicellular organisms it seems likely that a variety of sequences besides highly

evolved introns would need to be recognized and spliced, including those that appear in

genomes by genetic drift. The extent to which these spliceosome-generated spliced RNA

sequences contribute to fitness would eventually determine their evolutionary fate. The proto-

intron class of splicing substrates represents opportunity to create new genes, create new pro-

teins from existing genes, or impose new regulatory controls on existing genes.

Some protointrons show greater splicing efficiency and may be adaptive

The forces and mechanisms that drive intron evolution in eukaryotic genomes are still largely

unknown. If protointrons represent raw material for intron creation by the process of introni-

zation, then perhaps a very few of the most efficiently spliced protointrons represent interme-

diates in standard intron formation that have acquired improving mutations. Our data

provide evidence for rapid and complete intronization in the YTA12 5’ UTR between now and

the time S. bayanus and S. cerevisiae last shared a common ancestor (~ 20 Mya, [71]). Over the

117 bp intron sequence, the S. cerevisiae 5’ UTR differs at 29 positions (Fig 7A). Replacement

of this region with the S. bayanus sequence produces an efficiently spliced intron in S. cerevi-
siae (Fig 7C). This intron transplantation experiment shows that no species-specific barrier

prevents this sequence from serving as an efficient intron in S. cerevisiae. Although this intron

the region that aligns with the S. bayanus intron; lane 3, transplantation of the wild type S. bayanus intron; lane 4, GaAUGU mutation of the S.

bayanus intron 5’ ss; lane 5, GaAcGU mutant eliminating both the 5’ ss and the start codon of a uORF; lane 6, GUAcGU mutant that creates a

common functional ss while removing the start codon of the uORF; lane m, 100 bp ladder markers.

https://doi.org/10.1371/journal.pgen.1008249.g007
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appears fixed in the S. bayanus and S. kudravzevii branch of the Saccharomyces tree, there is

currently no evidence for fitness effects, and thus this intron could be a product of neutral

evolution.

In some cases, a protointron might provide increased fitness that would explain its evolu-

tionary persistence. We suggest three specific ways that protointrons may support improve-

ments in gene function. Approximately 10% of protointrons reside entirely within 5’UTRs (S1B

Fig), including the four most efficiently spliced protointrons we observed (S. cerevisiae MTR2,

USV1, and MCR1, S. bayanus YTA12). We realized that genes with long distances between their

transcription start sites and their start codons (i. e. with large 5’ UTRs) are at risk for mutations

that create a uORF in the 5’ UTR, which often negatively influences translation [48, 75].

Removal of a large region of the UTR by splicing would buffer this genetic risk. Secondary

structures or other detrimental sequences that might arise in long 5’UTRs [85] might also be

safely removed by splicing. To test the plausibility of this idea, we examined the frequency of

uORFs in 5’ UTRs of S. cerevisiae genes that have or do not have 5’ UTR introns and found that

uORFs are significantly more prevalent in 5’ UTRs that have introns as compared to other 5’

UTRs (see Results). This suggests that the presence of a 5’ UTR intron may help buffer an

mRNA against any detrimental effects of uORFs or RNA secondary structure, and provides evi-

dence that intronization in particular in 5’ UTRs may be adaptive in Saccharomyces species.

A second way that protointrons may become functional is by producing in frame splicing

events within ORFs to create mRNAs encoding shorter protein isoforms with new functions.

The frequency of splicing signals is lower than expected in S. cerevisiae ORFs (Fig 3), support-

ing the expectation that most introns that arise within ORFs would be detrimental to fitness.

Despite this, we found 20 protointrons contained within ORFs that do not interrupt the read-

ing frame, and that may lead to the translation of alternative protein products (S8 Table). If

such shorter proteins contribute to fitness, mutations that increase the splicing of the protoin-

tron (without disrupting the function of the full-length protein) may lead to the establishment

and conservation of a standard intron that allows production of both protein forms. This may

be the mechanism by which the conserved in-frame introns of PTC7 [30, 66] and MRM2 ([37],

this work) have evolved. In these cases, both the intron and the protein sequence encoded by

the intron are conserved in sensu stricto yeasts, suggesting both contribute to fitness across the

genus Saccharomyces. Many protointrons span the boundaries between conserved and non-

conserved sequences (Fig 2B), increasing the chances that a new splicing event will alter one or

the other end of an existing protein. Studies of protein evolution indicate that proteins evolve

at their edges [86], suggesting that protointrons may contribute to this as well. Although there

is as yet no evidence for new function, the 5’ UTR protointron in the S. cerevisiae MTR2 gene

has arisen sufficiently close to the start codon that different alternative splicing events add dif-

ferent peptides to the amino terminus of the annotated protein sequence [72, 73]. Thus, proto-

introns that appear in frame within existing genes, or that span the edges of existing genes,

create protein expression variation that may provide fitness advantages, in particular under

stress conditions that have yet to be explored.

A third way that protointrons may prove advantageous is through controlled downregula-

tion through splicing and NMD. We find that 16% of protointrons in S. cerevisiae span the 5’

UTR and coding region of twenty-seven genes and upon being spliced, remove the canonical

AUG start codon making these transcripts potential targets of NMD. In ten of these protoin-

trons, the AUG start codon is embedded within the GUAUG of the 5’ ss (e. g. Ade2), suggest-

ing sequences surrounding start codons are particularly susceptible to drifting toward a 5’ ss.

A recently studied example of this is the standard intron in the PRP5 gene that is conserved in

the Saccharomyces genus and destroys the PRP5 mRNA by removing the start codon and cre-

ating a transcript that is subject to NMD [65]. The intron must have appeared since the
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divergence of the Saccharomyces species from their common ancestor with Lachancia kluveri,
since this more distant relative has a different intron in its PRP5 gene. This situation may

evolve where overexpression of a particular protein may be detrimental. PRP5 encodes a splic-

ing factor, and increase (or decrease) in Prp5 protein activity may increase splicing and reduce

(or decrease splicing and accumulate) PRP5 mRNA levels by using this conserved out of frame

intron to create a homeostatic regulatory loop. A more difficult to recognize but no less impor-

tant mechanism is illustrated by the BDF2 gene in which abortive splicing downregulates

expression through spliceosome-mediated decay [35]. It is unclear whether to annotate this

location and others like it [81] as an intron, since it does not appear that 3’ splice site selection

is required or important for its activity. Thus, even protointrons that are out of frame within

coding regions, or pseudo-intron locations at which abortive splicing takes place may provide

opportunities for adaptive regulatory controls to evolve.

Conclusions

Protointrons are a rare class of splicing events that represent the action of the spliceosome on

RNA without a necessary connection to the expression of a mature gene. In mammalian cells

the spliceosome is no less constrained, and a very large number of alternative splicing events

that appear unrelated to “correct” gene expression support this [87]. In particular, newly

evolved lncRNAs have introns that are inefficiently spliced and have multiple alternative splice

sites, unlike older, more conserved lncRNA and mRNA encoding genes [82, 83]. These obser-

vations indicate that a general feature of the evolution of introns is that any transcribed

sequence has a chance of being spliced by the spliceosome, should that sequence evolve recog-

nizable splicing signals. Additionally, any sequence that suddenly becomes transcribed can be

expected to contain sequences by chance that are immediately recognized as introns. Since the

sequences required for splicing are ubiquitous and have low information, many such newly

appearing sequences will immediately produce diverse RNA transcripts. If these confer some

advantage, or if mutations that improve splicing become fixed by neutral genetic drift, then a

standard intron may evolve. As appears to be the case for exonization of Alu elements [88], it

is unlikely that any more than a rare few protointrons become established and maintained as

standard introns. Nonetheless, intronization of protointrons may be a source of new introns

whose splicing contributes to diversification of the transcriptome, and to the appearance of

new genes and new products from existing genes, as genomes evolve.

Materials and methods

Strains and culture conditions

Two independent cultures of S. cerevisiae strain BY4741 upf1Δ (MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0 upf1Δ::KANMX) were grown in YEPD medium at 30˚C to an optical density at 600

nm (OD600)� 0.5. The cultures were split and rapamycin was added to one half at a final con-

centration of 200 ng/ml for 1 hour. S. bayanus strain JRY9195 (MATa hoD::loxP his3 lys2
ura3) and S. mikatae strain JRY9184 (MATa hoD::NatMX trp1D::HygMX ura3D::HygMX)

were grown in YEPD medium at 26 ˚C, and were treated with rapamycin as for S. cerevisiae
except at 26˚C. These strains were a kind gift of Chris Hettinger [71].

RNA isolation

RNA was extracted from yeast cells using Procedure 1 as described [89]. Prior to RNAseq

library construction (see below), RNA was DNased using Turbo DNase (Life Technologies)

and RNA quality was evaluated using the 2100 Bioanalyzer (Agilent).
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RNAseq library preparation

5–10 ug of total S. cerevisiae RNA was depleted of ribosomal RNA using the RiboZero Gold

rRNA Removal Kit (Illumina) according to the manufacturer’s instructions. Strand-specific

cDNA libraries were prepared using the Kapa Stranded RNA-Seq Library Preparation Kit for

Illumina Platforms (Kapa Biosciences) following the manufacturer’s instructions with the fol-

lowing modifications. Sequencing adapters and oligonucleotides used for PCR barcoding were

from the NEBNext Multiplex Oligos for Illumina Kit (New England Biolabs, NEB). Prior to

PCR amplification of the library, adapter-ligated cDNA was treated with USER enzyme

(NEB). Adapter-ligated libraries were then PCR amplified for 10 cycles using NEB index prim-

ers compatible with Illumina sequencing. After amplification, size selection of the libraries was

performed using an E-gel Safe Imager and 2% E-gel size select gels (Invitrogen). Indexed

libraries were pooled and 100 bp paired-end sequenced on the same flow cell of an Illumina

HiSeq4000 instrument at the Berkeley sequencing facility. RNA extracted from S. bayanus and
S. mikatae was depleted of ribosomal RNA as described above. Strand-specific cDNA sequenc-

ing libraries were prepared as described [90] and 50 bp paired-end sequenced on the

HiSeq2000 platform (Illumina).

Mapping and analysis of RNAseq data

RNAseq data is deposited in GEO under the accession number GSE102615. For S. cerevisiae
libraries, all mappings were done using 100x100 bp reads to the SacCer3 Apr. 2011 genome

assembly (Saccharomyces Genome Database, SGD, [91]). For S. bayanus and S. mikatae librar-

ies, mappings were done using 51x51 bp reads to the SacBay2 and SacMik2 genome assemblies

(Saccharomyces Sensu Stricto Database, [71]), respectively. Reads mapping by BowTie2 [92]

to S. cerevisiae tRNA and rRNA defined by Ensemble or to Ty elements defined by SGD were

discarded, however mappings to Y’ elements were recovered. For each library, reads were

remapped to their respective genomes using STAR with two-pass mode [93]. PCR duplicate

reads (reads with identical positions at both ends) were discarded and reduced down to one

read. Changes in gene expression upon treatment of cells with rapamycin were determined

using DESeq2 [94], comparing untreated and treated cells. Splice junctions were identified by

STAR mapping [93].

Splicing Indexes (ratios of splicing measurements) were calculated by comparing reads that

cross the intron, reads that cross the splice junction, and reads in exon 2 in different ways.

Splice junction coverage is taken as the number of reads that cross the splice junction. Intron

coverage was taken as the average per nucleotide coverage across the whole intron. When

introns overlapped, a minimal length intron was used such that start of the intron was the

most downstream start of the overlapping introns and the end was the most upstream start of

the overlapping introns. Exon2 coverage was the average coverage for 100 bases of the follow-

ing exon, using the most downstream 3’ ss to define the exon. Log2-transformed ratios

(Indexes) were calculated for the three comparisons: intron/exon2, splice junction/exon2,

splice junction/intron. Fig 1A shows how the splice junction/intron index changes with rapa-

mycin treatment by plotting the value of log2[splice junction-60/intron-60]–log2[splice junc-

tion-0/intron-0] for each intron in each replicate. The splicing events plotted here are for

locations whose overall transcript level changes less than 2 fold, and whose junctions are sup-

ported by at least 35 reads for standard introns or at least 50 reads for protointrons. The gen-

eral shift of the points to the upper right quadrant indicates increased splicing efficiency

(increased junction relative to intron reads) after rapamycin treatment.

Intron splice sites and candidate branch sites were extracted for analysis using the mapped

splice junctions and by choosing a best branch point using the following heuristics. The likely
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branch points (underlined) were identified by searching introns for the following sequences in

order until a branchpoint was identified: 1. ACTAA, 2. RYTRAYR, 3. YTRAY (where R = A or

G, Y = C or T) constrained to be 45 or more bases away from the 5’ ss and no closer than 7

nucleotides upstream from the 3’ ss. Candidate introns not matching YTRAY were considered

to have no good match to a branchpoint consensus. If multiple equally good branchpoints are

identified the one closer to the 3’ ss was recorded. Details and scripts are at: <https://github.

com/donoyoyo/intron_bp_generator>. To evaluate conservation, phastCons conservation

scores were extracted from a window surrounding the splice site or branchpoint using data

from the UCSC Human Genome Browser for S. cerevisiae at<http://genome.ucsc.edu>.

Weblogos [95] were created using the site at https://weblogo.berkeley.edu.

Reverse transcription and PCR

RNA was reverse transcribed using SuperScript III (Life Technologies) according to the manu-

facturer’s instructions using a mixture of anchored oligo-dT (T24VN) and random hexamers

as primer. Primers to validate and sequence products of splicing from protointrons by

RT-PCR were designed using Primer3 [96]. PCR was performed using oligonucleotides listed

in S5 Table. PCR products were resolved by electrophoresis on agarose gels and visualized

with ethidium bromide staining.

Cloning and sanger sequencing of PCR products

PCR products generated by T. aquaticus DNA polymerase (Taq) were cut from low melting

point agarose gels and purified using Machernary-Nagel gel extraction kits, then cloned using

TOPO-cloning (Invitrogen). Inserts were sequenced by Sanger sequencing at the U. C. Berke-

ley sequencing center. Splice junctions were identified using BLAT [97] running behind a

home copy of the UCSC Genome Browser [98] publicly available at http://intron.ucsc.edu/.

Estimation of background frequency of splicing signals in codon-permuted

yeast genes

To test the hypothesis that “ACTAAC” (proxy for the branchpoint sequence), GTATGT

(proxy for the 5’ ss), or any other 6-mer nucleotide sequence within extant yeast ORFs might

be enriched or depleted, we created 10,000 codon-permuted versions of the S. cerevisiae ORF

set and counted the number of each of the 4096 possible 6-mers in each, computing a Z-score

for each that compares representation of each in the extant ORF set to the mean representation

of each in the 10,000 permuted ORF sets. To create permuted ORF sets in a way that preserves

the GC content and codon usage of the extant set, we permuted the codons within each ORF

(except for the start and stop codons) in the complete set of ORFs. Scripts for creating per-

muted ORF sets and analysis related to this question can be found under this github link:

https://github.com/rshelans/genePermuter.

CRISPR/Cas9 mediated intron transplantation

Yeast CRISPR editing was done essentially as described by DiCarlo et al [79], except that we

rearranged the elements from different plasmids into a simplified single plasmid system by

Gibson assembly. We obtained p426-crRNA-CAN1.Y and p414-TEF1p-Cas9-CYC1t [79]

from Addgene. To create a BaeI cleavable cassette for easy guide cloning, we annealed oligos

newguide1 and newguide2 together, and separately newguide3 and newguide4, and filled to

make two fragments which were mixed and then PCR amplified using newguide1 and new-

guide4 as primers (S5 Table). This duplex was purified and assembled using Gibson mix
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(NEB) with p426-crRNA-CAN1.Y that had been cut with NheI and Acc65I to replace the

CAN1.Y guide target region with a stuffer fragment that could be released by BaeI (NEB) and

allow any guide to be inserted easily (p426-crRNA-BaeI). We then used p426-crRNA-BaeI as a

template to amplify a fragment containing the new cassette with the SNR52 promoter and the

URA3 gene using oligos trp1-S-ura3 and Cyc-K-SNR52 (S5 Table). This fragment was com-

bined with p414-TEF1p-Cas9-CYC1t that had been cut with SnaBI and Acc65I and assembled

using Gibson mix to create p416-TEF1p-Cas9-NLS-crRNA-BaeI. The net effect of these

manipulations is to (1) combine the guide RNA and Cas9 genes on a single centromeric (low

copy) plasmid, (2) create a flexible entry site for any guide sequence, and (3) replace the TRP1
marker with URA3. To target the S. cerevisiae YTA12 5’UTR, we cleaved p416-TEF1p-

Cas9-NLS-crRNA-BaeI with BaeI, annealed the YTA12_top YTA12_bot 25-mers together (S5

Table) and ligated them to the BaeI cleaved plasmid to produce p416-TEF1-Cas9-NLS-CYC1t-

crRNA-YTA12. The advantage of this single plasmid system is that guide sequences are more

easily inserted, only one plasmid is needed, and cells lacking the plasmid can be selected after

editing on 5-fluororotic acid (5-FOA) plates.

Rescue fragments were created by annealing combinations of synthetic oligonucleotides

(S5 Table) and filling them in with DNA polymerase. These fragments contained the

sequences needed to edit the S. cerevisiae YTA12 5’ UTR so that it contained the S. bayanus
intron, or was deleted of the intron-syntenic sequences, or contained different 5’ ss mutations

of the S. bayanus intron. Candidate edited yeast clones were grown, and DNA was isolated and

analyzed by PCR using primers on either side of the edited site. PCR products were purified

and sequenced at the U. C. Berkeley sequencing center to confirm correct editing. Yeast strains

determined to contain the correct sequence were streaked on 5-FOA to select clones that have

lost the p416-TEF1-Cas9-NLS-CYC1t-crRNA-YTA12 plasmid.

Supporting information

S1 Fig. (A) Coherence of gene expression changes after 60 minute rapamycin treatment

between the two replicate experiments. Log2ratio of treatment to control read coverage over

genes was plotted giving an R2 value of ~0.99. Supplemental to Fig 1A. (B) Percentage of stan-

dard introns and protointrons that are located in non-coding, 5’UTR, 5’UTR^coding, coding,

coding^3’UTR and 3’UTR regions. (C) Coverage tracks showing transcription through the

genomic locus upstream of ASH1 where the antiASH1 protointron is located. Supplemental to

Fig 1B and 1C. (D) Coverage tracks showing transcription through the genomic locus

upstream of TUS1 where the XUT12R-370 protointron is located. Supplemental to Fig 1B and

1C. (E) Coverage tracks showing transcription through the genomic locus of TAF13 where the

TAF13 protointron is located. Supplemental to Fig 1B and 1C. (F) Coverage tracks showing

transcription through the genomic locus of SPO1 where the ncSPO1 protointron is located.

Supplemental to Fig 1B and 1C. (G) Alignment of sequenced RT-PCR products showing the

location of protointrons with unusual 5’ ss. Supplemental to Fig 1D.

(TIF)

S1 Table. Saccharomyces cerevisiae standard introns.

(XLSX)

S2 Table. Saccharomyces cerevisiae overlapping standard introns.

(XLSX)

S3 Table. Saccharomyces cerevisiae protointrons.

(XLSX)
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S4 Table. Saccharomyces cerevisiae filtered reads.

(XLSX)

S5 Table. Oligonucleotides.

(XLSX)

S6 Table. Saccharomyces mikatae introns.

(XLSX)

S7 Table. Saccharomyces bayanus introns.

(XLSX)

S8 Table. Saccharomyces cerevisiae in-frame protointrons.

(XLSX)
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